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Numerical analysis of composite materialsPRIVATE 
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ADVANCE \U 14.15
Abstract: A method is presented in this paper by which mechanical pro​perties such as stiffness, eigenstrain/stress (e.g. shrinkage and ther​mal expansion), and physical properties (such as various con​duc​tivities with respect to heat, elec​tricity, and chlorides) can be pre​dicted for com​po​site materials with vari​able geo​me​tri​es. A separate analysis of porous ma​terials is made in a special section of the paper with strength esti​ma​tes added to the list of com​po​site properties con​si​de​red above. The pro​per​ty of percolation (phase continuity) is also con​si​de​red.


The paper is not a 'text​book' in com​po​si​​​te mate​rials. It is a 'users ma​nu​al' with ope​rational intro​​duc​tions to the ba​sics and run​ning of the pro​gram COMP deve​loped for com​pu​ter ana​ly​​sis of com​po​site mate​ri​als. The program, which can be down​loa​ded from the following address, is ba​sed on work pre​vi​ous​ly made by the author in the area of composite ma​te​rials.

http://www.byg.dtu.dk/publicering/software_d.htm.

Introduction

The composites considered in this paper are isotropic mixtures of two com​​po​nents: pha​se P and phase S. The amount of phase P in phase S is quan​​ti​fied by the so-cal​​led volume con​centration defi​ned by c = VP/(VP+VS) where volume is de​noted by V. It is assumed that both phases exhi​bit linearity between response and gra​di​ent of poten​tials, which they are subjected to. For example: Mechanical stress ver​sus deformation (Hoo​ke's law), heat flow versus temperature, flow of elec​tri​city versus elec​tric po​ten​tial, and diffusion of a substance versus con​cen​tra​tion of sub​stan​ce.

For simplicity – but also to reflect most composite problems encountered in practice – stiff​​ness and stress results presented assume an elastic phase beha​viour with Poisson’s rati​​os (P = (S = 0.2 (in practice (P ( (S ( 0.2). This means that, whenever stiffness and stress ex​pres​sions are pre​sen​​​ted, they can be considered as generalized quantities, apply​​ing for any loa​ding mode: shear, volu​me​tric, as well as un-axial. This feature is explained in more details in a subsequent section (Composite analysis).

The composite properties specifically considered in this paper are stiff​ness, eigen​strain (such as shrinkage and thermal expansion), and various con​​ductivities (with respect to chlo​ride or heat flow e.g.) as related to volu​me concentration, compo​site geo​me​try, and phase properties: Young's mo​duli EP and ES with stiff​ness ratio n = EP/ES, eigen​strains λP and λS, and con​duc​tivi​ties QP and QS with con​duc​​ti​vity ratio nQ = QP/QS. Normalized strength, S/So, of porous materials is also con​si​de​red where S and So de​no​te porosity dependent strength and real strength of phase S respectively. Fur​​​ther notations used in the text are explained in the list of nota​ti​ons at the end of the paper. 

The composite properties presented in this paper are determined by a ge​ne​ral method deve​loped by the author in (
,
,
). The strength of this me​thod, including the present method, rela​tive to other pre​dic​​tion met​hods with fixed, not variable types of com​po​site geo​me​tries (such as plates or fib​res in a matrix), is that glo​bal (stan​dard) solutions are pre​sen​ted which apply for any isotropic com​po​site geometry. Spe​cific com​posites are con​si​​de​red in these global solu​tions by so-cal​led 'geo-func​tions' (θ) where spe​ci​fic geo​me​tries are quan​tified by so-cal​led 'shape func​tions' (μP,μS). Thus, pro​​​per​ties can be pre​dic​ted where geometry can be respec​ted as it really de​ve​lops in natural or man-made com​po​site materials.

Not to exaggerate our present knowledge of composite geometries it has, deli​​be​ra​tely, been chosen to keep the shape functions (μ) described by simple mathe​ma​ti​cal expres​sions defined by only three geometrical para​me​ters (two shape factors and one criti​cal concentration, see Equation 2). It is em​phasized, however, that the com​plex​ity of shape func​tions does not influ​ence the global property predic​ti​ons previously refer​red to. As more kno​wledge on the description of composite geo​me​try turns up as the result of new research we just introduce the more 'accu​rate' shape functions.

It is emphasized that the paper is not a "textbook" in composite materials. The text is rather brief, and no attempts have been made to explain expres​sions theo​re​ti​​cally. The paper should rat​her be considered as a 'users ma​nu​al': An operational intro​duc​tion to the basics and application of the com​pu​ter program COMP, which can be down​​loaded from http://www.byg. dtu.dk/publicering/software_d.htm.

GeometryADVANCE \D 2.80
As demonstrated in Figure 1 composite geometry can be described by so-cal​led shape functions which are determined by so-called shape factors (μPo,μSo) and cri​ti​cal con​​cen​trations, cP and cS ( cP: Shape factors tell about the shapes of phase com​po​nents at dilute concentrations. Critical con​centrations are concentrations where the com​posite geometry changes from one type to another type.
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Figure 1. Geometrical sig​nificance of shape functions. (μP,μS) = (+,‑) means discrete P in con​tinu​ous S. (μP,μS) = (+,+) means mix​​ed P in mixed S. (μP,μS) = (‑,+) means con​tinuous P with dis​​cre​te S. Black and white sig​na​tu​res denote phase P and phase S re​spec​tively.

At fixed con​centrations we operate with the following types of composite geo​​me​tries: DC means a discrete phase P*) in a continuous phase S. MM means a mixed pha​se P geo​me​try in a mixed phase S geometry, while CD means a con​ti​nu​ous phase P mix​ed with a discrete phase S. We notice that MM-geo​me​tries (if porous) are partly im​preg​​nab​le. In modern terminology this means that phase P per​co​la​tion exists in com​po​sites with c > cS. Per​co​lation is complete for c ( cP. Porous materials have lost any coherence in this concentration area with no stiffness and strength left.

Composite geometries may change as the result of volume transfor​mations asso​​c​ia​​ted with increasing phase P con​centration. We will think of changes as they are stylised in Figure 1: At increa​sing con​centration, from c = 0, dis​cre​​te P ele​ments ag​glo​me​rate and change their shapes approa​ching a state at c = cS where they start forming con​tinuous geometries. Phase P grows fully continuous between c = cS and c = cP such that the composite geo​metry from the latter concentration has become a mixture of discrete, de-agglomerating, phase S particles in a continuous phase P.
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Figure 3. Composite Spheres As​sem​bla​​ge with phase S particles, CSAS.
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Figure 2. Composite spherical as​sem​​blage with phase P particles, CSAP.
In a complemen​tary way the geometry history of phase S follows the history of phase P and vice versa. The geo​metries just explained can be shifted along the con​cen​tra​tion axis. A com​po​site may develop from having a DC geometry at c = 0 to having a MM geo​me​try at c = 1. Such composite geometries, with cP > 1 and 0 < cS < 1, are named DC-MM geo​me​tries. Other composites may keep their DC type of geo​metry all the way up to c = 1 in which case the composite geo​metry is denoted as a DC-DC geo​me​try, with both cri​tical concentrations > 1. The geometry outlined in Figure 1 chan​ges from DC to CD geometry which ma​kes it a DC-CD geo​metry with both cri​tical con​cen​tra​ti​ons in c = 0-1.

Ideal geometries at c = 0 and at c = 1 of a DC-CD composite are illu​strated in Figu​​res 2 and 3 respec​tively. We notice in this context that the com​​po​site theory deve​​loped in (1,2,3) is based on the concept that any iso​tropic com​posite geo​me​try is a station on a geo-path moving from the CSAP geometry shown in Figu​re 2 to the CSAS geometry shown in Figure 3. CSA is an abbreviation for the com​po​site model Com​posite Spheres Assem​blage introduced by Hashin in (
). It is noti​ced that the four letter sym​bols for composite geometries are subse​quent​ly also used in the mea​ning, a 'DC-CD type of composite' or just a 'DC-CD com​​po​site'.

Quantification of com​posite geometry

The various types of geo​me​​tri​es con​sidered are lis​ted in Figure 4 which defi​​nes the fol​lowing two com​​posite clas​ses con​side​red in this paper: Par​ti​​cu​la​te com​po​sites are defi​ned by the former row. They ha​​ve particles in a ma​​trix geo​​​metry (DC) at small con​​​​​cen​tra​tions. La​mella com​​​​po​si​tes are defi​ned by the latter row. They have a mix​ed pha​se P geo​metry in a mix​ed pha​se S geometry (MM) at low con​​cen​tra​ti​ons. Obvious​ly, the phe​​no​me​non of per​​co​la​tion pre​vi​ous​ly con​si​de​red develops bet​ween the two criti​cal con​​​centrations. In Figu​re 4 the pha​se P per​colation is indi​cated by grey sha​​dings. We assume that perco​la​ti​on varies line​ar​ly from be​ing 0 at c < cS to being 100% at c > cP.
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Figure 4. Composite types versus cri​tical con​cen​tra​tions. Former and latter two letters deno​te com​po​site geo​metry at c = 0 and at c = 1 respec​ti​vely.
Shape factors and geo-pathsADVANCE \U 2.80
Shape factors for com​posites in general can be estimated from the geo-path graph pre​sented in Figure 5 reproduced from (
,3). The geometries pas​sed when the phase P concentration increases from c = 0 to c = 1 are shown in this figure. Plain fibre/disc shape factors indicated by numbers in Figure 5 are accurately deter​mi​ned by Equ​ation 1, reproduced from (3)**), where particle shapes are quan​tified by the as​pect ratio, A = length/di​​a​meter of par​​tic​le. Spherical particles have A = 1. Long par​​ticles have A > 1. Flat par​tic​les have A < 1.
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2
Figure 5. Geo-path and ten​tative des​cr​i​p​​tion of sha​pes: Num​​​bers indi​cate fib​re as​pect ratio A of par​tic​les (Equa​tion 1). Fra​me- and fibre works are agglomerating MM-struc​tures of long crum​b​​led fi​b​​res and shorter crum​b​​led fib​res res​​pe​c​tive​ly. Disc works are ag​glo​me​rating MM-struc​tu​res of crum​b​​led discs (sh​ee​ts). Pla​te works are cru​m​b​led sheets (foils).

Remark: For particulate com​posites with phase P being a mixture of par​ticles with various aspect ratio distributions the shape factors can be accu​rately calculated by a method deve​loped in (3). For the case of mixtures with only two aspect ratios this me​thod is simplified to be part of the pro​gram COMP previously referred to. An example: A mix​ture made with 20% A = 0.3 and 80% A = 2 is charac​terized by the sha​pe fac​tors (μPo,μSo) = (0.83,‑0.68).

Critical concentrationsADVANCE \U 2.80
It is emphasized that the cri​tical con​centrations depend very much on the pro​cessing tech​nique used to pro​duce com​po​si​tes. We notice that particle size distribution is part of proces​sing. For par​ticulate composites, for example, the cri​ti​cal con​centra​tion cS can be thought of as the con​cen​tra​tion at first severe inter​fe​rence of phase P (starting the creation of a cont​I​nu​ous skeleton). Impro​ved quality of size dis​tri​bu​tion (smooth​ness and den​sity) is con​si​dered by in​crea​sing cS. At this con​​cen​tra​tion po​rous ma​te​ri​als beco​me very stiff when impreg​nated with a very stiff material. At the other criti​cal con​cen​tra​tion, c = cP, the composite beco​mes a mixture of phase S ele​ments com​ple​tely wrapped in a matrix of phase P. As pre​v​iously mentioned porous mate​rials loose their stiff​ness and strength at cP becau​se phase P has become a con​ti​nu​ous, enveloping, void sy​stem.

	ADVANCE \D 5.60TYPE
	ADVANCE \D 5.60Crit-con cS
	ADVANCE \D 5.60EXAMPLES

	
	DC
	        cS > 1


	Particulate com​posite (concrete, mortar). Extremely high qua​lity of gra​ding (a​pproaching CSAP com​po​si​tes).

Pore sys​tem: Not impreg​​nable. Finite stif​fness at any po​rosity

	DC
	MM
	1 > cS > -μSo/μPo

	Particulate composite (concrete, mortar) with particle inter​ference at c = cS. Increasing quality of grading is quan​​tified by larger con​centration cS at first severe inter​​fe​rence.

Pore system: Only impregnable for porosities c > cS. Finite stiffness at any porosity.

	
	CD
	-μSo/μPo > cS > 0
	Mixed powders (ceramics).

Pore system: Only impregnable for porosities c > cS. No stif​fness for porosities c > cP.

	
	MM
	-μSo/μPo > cS
	Mixed lamella/foils ("3D-plywood").

Pore system: Fully open at any porosity. Finite stif​fness at any poro​sity.

	MM
	CD
	0 > cS > -μSo/μPo
	Mixed lamella/foils ("3D-plywood").

Pore system: Fully open at any porosity. No stif​fness for porosities c > cP. 


Table 1. Range of critical concentrations applying for various composites.

Remark: The definition of interference ('severe') introduced above is kept through​​out the paper. It is implicitly assumed that particles at c > cS are kept toge​ther by a very thin, suffi​cient​ly strong matrix "glue".

As previously indicated, critical concentrations can be fictitious (outside c = 0 - 1). In such cases they do not, of course, have the immediate physical mea​nings just exp​lai​ned. Theo​re​ti​cally, however, if we think of the c-axis as a plain geo​metry axis we may keep the expla​na​tion given in order to descri​be in an easy way how the rate of changing the composite geometry is influ​​en​ced by the pro​ces​sing tech​nique used. In such fictitious cases criti​cal con​cen​trations will have to be estimated from experience, or detected from calibration expe​riments.

ADVANCE \U 0.0Preparation of composite analysisADVANCE \D 2.80
The preparation of a composite analysis by COMP is as follows:

ADVANCE \D 5.60-
Estimate shape factors (μPo,μSo) from Figure 5 - or calculate by Equation 1 if pha​se P are plain discs/fibres. (We re-call that shape factors for two-shape mixtures can be determined by a special subroutine included in COMP).

-
Then decide the cri​​tical con​centra​tion cS (or cP) from knowing about mix​ing tech​nology and obser​vati​ons made on geo​metrical for​mation.

-
This in​for​ma​tion quantifies the composite geometry by the so-called shape func​ti​ons ex​pres​sed by Equation 2.

ADVANCE \D 5.60Remark: We recall from the introductory section of this paper: Shape functions are deli​be​ra​tely expressed by simple mathematical ex​pres​sions in order not to predict pro​per​ties with an 'ac​cu​racy' out of pro​por​tions to what is actually know about com​po​site geometry. A consequence of such simplification is that the quan​ti​ties of (μPo,μSo) and (cS or cP) chosen above must be adapted to each other such that the cri​ti​cal concentration not chosen is predicted realistically by Equation 2. Figu​re 4 and Tab​le 1 are useful when deciding on realistic shape functions for prac​tical composite analysis. 
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-
The last step of preparing a com​posite analysis by the global solutions (valid for any geometry) presented in Equations 4 to 8 is to calculate the so-called geo-func​tions ex​pres​sed by Equation 3 for stiffness analysis and con​ductivity ana​lysis respec​ti​​ve​ly.
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(3)
Com​posite analysisADVANCE \D 2.80
With composite geometry described by the geo-functions presented in Equ​ation 3 a pro​perty ana​ly​sis can now be made using the following glob-al solutions 4 – 8 with sym​bols explained in the list of notations presented at the end of the paper.

In general phase P and phase S stresses presented are volume averages. Ac​curate local stres​​​ses can only be determined for very special com​po​si​tes. One such case is of special inter​​​est for practice, namely the maximum ten​sile phase S stress in a CSAP composite sub​​jected to eigen​strain (think of shrin​kage cracking in concrete). The software COMP pre​​vi​ously refer​red to includes this accurate prediction.

Remark: We re-call from the introduction that the stiffness- and stress expres​sions pre​sen​ted have a genera​li​zed meaning. They can be used for any loading mode, shear, volu​​me​tric, as well as uni-axial. For example, E/ES can also be used to predict the com​po​​site shear modulus, G/GS, and the composite bulk modulus, K/KS, normalized with res​pect to the phase S pro​perties. In a similar way the phase stresses, (P/( and (S/(, also apply inde​pendently of loading mode as long as both phase stress mo​​des ((P,(S) and composite (external) stress modes (() are the same.

Six ex​amp​les of composite analysis (by COMP) are demonstrated in a fol​lo​​wing sec​ti​on.

Stiffness and eigenstrain/stress

Stiffness
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(4)

Stress due to external mechanical load
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(5)
Eigenstrain - linear
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(6)
Eigenstress – hydrostatic
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(7)
Conductivity
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(8)
Bounds on stiffness and conductivityADVANCE \D 2.80
It comes from (1,2,3) that the above predictions are bounded as follows be​tween the exact solutions for the CSA composite illustrated in Figures 2 and 3.
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(9)

The stiffness bounds are obtained introducing θ ( 1 and θ ( n respectively into Equ​ati​on 4. The conductivity bounds are obtained introducing θQ ( 2 and θQ ( 2nQ respec​​tive​ly into Equation 8. The bounds such determined are the same as can be ob​tai​ned from the studies made by Has​hin and Shtrik​​man in (
) on composite stiff​ness and in (
) on composite conduc​ti​vity. The bounds just considered are sub​se​quent​ly refer​red to by H/S.

ADVANCE \D 8.50
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 (10)
Porous materialsADVANCE \D 2.80
ADVANCE \U 5.60Porous materials can be analysed elastically by the expressions already pre​sented, just by introducing a stif​fness ratio of n = 0. In a similar way con​ductivity can be deter​​mined introducing a conduc​tivity ratio of nQ = 0 (as​su​ming a void con​duc​tivity of QP = 0). The re​sults are the following very simple expres​sions which are the ba​sics of the computer pro​gram PO​ROUS (in the COMP package). It is noticed that e and q become 0 for c > cP.

ADVANCE \D 5.70
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Strength estimate

An algorithm is included in POROUS by which a first estimate of strength of porous ma​terials can be made by the semi-empirical expression presented in Equation 12 (with S/So ( 0 for c > cP).
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(12)

Porosity dependent strength and strength at very low porosity are denoted by S and So respectively. It is emphasized that So is the real strength, not the theo​re​ti​cal strength, of phase S.

The strength expression is based on the fol​lowing arguments: Strength at low po​ro​sities is as predicted by the so-cal​led MOE-MOR rela​tion (Mo​du​​lus Of Ela​sti​city - Modulus Of Rup​tu​re) pre​sen​ted in Equa​tion 13 and il​lustrated in Figure 6. This relation was deve​lo​ped in (
,
) for materials with cracked uni-sized spherical pores.

At increasing porosities most real pore sy​stems will become more flexible with respect to geometry then described by the spherical pore model just men​ti​o​ned. Increa​​sed flexibility will reduce interac​ti​on such that strength reduc​tion will beco​me less seri​ous than described by Equa​ti​on 13. Kee​ping the low porosity quality of Equation 13, this feature is con​si​de​red by Equ​a​tion 12 let​ting it describe strength in a similar way as has previously been pro​posed from ex​perimental observations made by, for examp​le, Rysh​​ke​witch (
,
), Bal​shin (
), and Has​sel​man (
), who sug​ges​ted strength to de​crea​se expo​​nen​​tially, parabolically, and line​arly re​spec​​tively with res​pect to porosity
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Figure 6. MOE-MOR relation for a ma​te​ri​al with uni-sized spherical pores with co-cen​tric cracks. 
Parameter deduction from experiments 

ADVANCE \U 2.80Data from stiffness tests on porous materials can be used to determine ES, μPo, and cP: We linearize the former expression of Equation 11 as shown in Equ​a​tion 14. Then μPo, cP, and ES are easily dedu​ced by linear regres​sion of the manipulated ex​pe​ri​mental data (X,Y), optimising the fit quality with res​pect to cP.
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(14)
Now other material quantities like QS and So (and the factor 3/4 in Equ​ation 13 even​tually) can be deduced in similar ways by linear regres​​sions of mani​pu​la​ted expe​ri​men​tal data.

ExamplesADVANCE \D 2.80
Some examples (exercises) are presented in this section where composites are sub​jected to a property analysis as it has been presented in this paper. The text of the examples is very short. Only information absolutely necessary for solving the problems is presented. Discussion of the solu​tions is left to the reader herself. Among the composites considered are the DC-MM and DC-CD com​po​sites represented by their shape functions shown in Figures 7 and 8 res​pec​ti​vely, compare with Figures 1 and 4. 
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Figure 7. Geometry of 'soft concrete' con​​si​dered in Example 1.
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Figure 8. Geometry of cement paste con​​si​de​red in Example 2.
The ex​amp​​les are treated nu​merically by the computer program package, COMP. The (main) program, NORMAL, is meant for com​po​sites with com​po​nents the geo​metries of which are flexible (phase geo​me​tries ad​just to each other, naturally, by com​paction, or other​wise). The algo​rithm of this pro​gram follows exactly the text pre​viously presented in this paper. 

Some com​posites, such as concrete, however, form a stable phase P ske​le​ton at the cri​tical con​cen​tration cS such that voids will inevitably show up at higher con​cen​tra​tions. The program, NO-FLEX is a mo​di​fi​ca​ti​on of NOR​MAL developed in (3) which considers the reducing effect of self-in​flic​​ted voids on pro​per​ties by a simple 'free​zing' of shape functions such that these become constants for c > cS for which con​centrations phase S is po​rous. It is implicitly assumed in such modification that par​ticles at c > cS are kept toge​ther by a thin, suffi​cient​ly strong matrix "glue".

Except for a few composites the above discussion on NO-FLEX is of mi​nor inter​est for practice. Most often we do not need other programs than NOR​MAL be​cau​se we have no interest in producing composites with self-inflic​ted voids. The excep​ti​ons are composites, such as light clinker con​crete, where voids are wanted to sa​tis​fy an overriding demand for heat insu​lating property, irre​spec​tive of stiff​ness lost.

In summary: The program NORMAL can be used for the analysis of most com​​po​sites considered in prac​tice. Only very special composites (with self crea​ted voids) need analysis by the alternative programs presented. Finally, a special program (POROUS) considers the mechanical/physical beha​vi​our of porous materials, inclu​ding strength estimates.

Example 1: 'Soft concrete’:

Stiffness, internal stress, and eigenstrain/stress

Components: Phases (P,S) = (aggregates, cement paste). Young's moduli: (EP,ES) = (1000,30000) MPa. Linear eigenstrain (negative shrinkage): (λP,λS) = (0,‑0.001).
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Figure 9. Example 1: Composite stiff​ness.
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Figure 10. Example 1: Internal stress cau​​​sed by exter​nal mechanical load.
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Figure 11. Example 1: Linear com​posite eigen​strain (ne​gative shrin​kage).
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Figure 12. Example 1: Hydrostatic stress cau​sed by shrin​kage of matrix (S).
Geometry, see Figure 7: Phase P is a mixture of fibres and discs such that (μPo,μSo) = (0.6,-0.3), (corresponding, approximately, to equal amounts of aggre​ga​tes with aspect ratio A = 5 and aggregates with A = 0.2). The mix​ture has a cri​ti​cal con​cen​tra​tion of  cS = 0.75.

Analysis: Software NORMAL. A production technique is assumed by which phase P can be considered flexible. Otherwise pre​dic​tions should be made using NO-FLEX.

Example 2: Cement paste system:

Stiffness and Chloride diffusion

Components: Phases (P,S) = (saturated capillary pores, cement gel). Young's mo​duli: (EP, ES) = (0,32000) MPa. Chloride dif​fusion coef​fi​ci​ents: (QP,QS)/QP = (1, 0.00008) with QP = 2*10-9 m2/sec.

Geometry, see Figure 8: Aggregates (pores) aspect ratio at low c: Esti​ma​te A = 4 ( (μPo,μSo) = (0.81,-0.25). Cri​ti​cal con​cen​tration: cP = 0.78 cor​re​spon​ding to cS = 0.24, see Equa​tion 2, (it has been shown in (
) that cement paste exhibits no stiff​ness (and strength) at poro​sities grea​ter than c ( 0.78 which means that the solid phase (S) becomes sur​rounded by voids at that con​cen​tra​ti​on, de​fi​ning cP).
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ADVANCE \D 5.60Figure 14. Example 2: Chloride diffu​si​vity of cement paste as related to ca​pil​lary poro​sity. 
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ADVANCE \D 5.60Figure 13. Example 2: Stiffness of c​e​ment paste as related to capillary ​po​ro​sity.
ADVANCE \U 5.60Analysis: Software NORMAL. 

Experimental data: Stiffness: (
,
). Conductivity: (
,
).

Example 3: Light clinker concrete:

Stiffness and heat conduc​ti​vity

Components: Phases (P,S) = (clinker, cement paste). Young's moduli: (EP,ES) = (8,25) GPa. Heat conductivities: (QP,QS) = (0.2,1.2) J/(s*(K* m). Densities: (dP, dS) = (900,2000) kg/m3. 
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Figure 15. Example 3: Stiffness of light clin​​ker con​cre​te. Non-flex​ib​le pha​se P.
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Figure 16. Example 3: Stiffness of light clin​ker con​cre​te. Non-flex​ib​le pha​se P.
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ADVANCE \D 2.80Figure 17. Example 3: Heat con​duc​tivity of light clin​ker con​cre​te. Non-flex​​ib​le pha​se P.
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Figure 18. Example 3: Heat con​duc​tivity of light clin​ker con​cre​te. Non-flex​​ib​le pha​se P.
ADVANCE \U 19.85 

Geometry: Clinker aggregates with A ( 1. Cri​ti​cal con​cen​tration cS ( 0.6.ADVANCE \U 5.60
Analysis: Software NO-FLEX.

Experimental data: Stiffness versus density: (
)

Example 4: Cement mortar: Stiffness

Components: Phases (P,S) = (quartz sand, cement paste). Young's moduli: (EP, ES) = (75,25) GPa.

Geometry: Phase P consists of com​pact, nearly uni-sized particles which inter​fere at cS = 0.55. It can be as​sumed that A = 1.

Analysis: Software NO-FLEX.

Experimental data: Stiffness (
)
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Figure 19. Example 4: Stiffness of ce​ment mortar with quartz sand.

ADVANCE \U 5.60 

Example 5: Hardened cement paste:

Stiffness and first estimate of strength

Components: A HCP is looked at with phase P considered to be the total pore system (gel + capillary pores) in a phase S of gel solid. The stiffness data shown in Figu​re 20, reproduced from (
), represent stiffness for such a system. The expe​ri​men​tal data are from (
). The theoretical data are as predicted in (21) by a method similar to the one presented in this paper. A solid gel stiffness of ES = 80000 MPa was deduced from the expe​rimental stiffness data, see Equation 14, toge​ther with the geometrical pa​ra​​me​​ters μPo = 0.33 and cP ( 1.
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Figure 20. Example 5: Young's mo​du​lus of hydrated Portland cement paste (HCP).
[image: image35.wmf]
Figure 21. Example 5: Compressive strength estimate of HCP. Experi​men​tal data, with So ( 450 MPa, are intro​du​ced as explained in the main text.
The experimental strength data for HCP shown in Figure 21 are from (
 as evaluated in 14). No geometrical data could be deduced from the data repor​ted in (23) except that cP ( 0.78. The theoretical strength data shown in Figure 21 are predicted by Equ​a​tion 12 with shape factors estimated to be of the same orders of magnitude as for the HCP in Figure 20.

Analysis: Software POROUS.

Example 6: Hashin and Budiansky: Stiffness

It is up to the reader herself to show that the method presented in this paper cor​rect​ly pre​dicts the Hashin's (4) stiffness expression (left side in E​qua​​tion 9) with (μPo,μSo,cS) = (1,-1,() cor​responding to (A,cS) = (1,(). The reader may also show that the Budi​an​sky's (
) stiffness expres​sion repro​duced in Equation 15 is correctly predicted with (μPo,μSo,cS) = (1,-1,0.5) corresponding to (A,cS) = (1,0.5).
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ADVANCE \U 0.0Final remarksADVANCE \D 2.80
Isotropic composites of various geometries are considered in this paper. A com​​pu​ter analysis of the mecha​ni​cal/physical properties of such materials is prepared and developed on the basis of the authors theoretical work (1,2,3) in the field of com​po​site mate​rials. Examples of using the program de​ve​loped (COMP) con​firm the gene​ral obser​vation made in (1,2,3) that a very satisfying agreement exist be​tween theo​reti​​cally pre​dicted data and ex​pe​rimen​tally obtained data reported in the com​po​site li​te​​ra​ture.

Special sub-programs are prepared to consider particulate compo​si​tes with non-flex​ible particles - and strength of porous materials.

It is emphasized that the basic prediction expressions presented are global, mea​​ning that they apply for any isotro​pic composite geometry. Thus, other com​​po​sites than those explicitly consi​de​red in this paper can be analysed using the same ex​pres​​sions. This feature can be further studied in (3,
) where it is also demon​stra​​ted how the prediction method can be ge​ne​ra​li​zed to include viscoelastic com​po​site pro​per​ties. A simple version of such ge​ne​​ralization has recently been appli​ed by the author (
,
,
,
) to stu​dy the rheo​lo​gy of extreme com​po​si​tes such as Self Com​pacting Con​​cre​tes.

NotationsADVANCE \D 2.80


ADVANCE \U 5.60Abbreviations and subscripts



V
Volume




P
Phase P




S
Phase S


no subscript

Composite material




H/S
Hashin/Shtrikman's property bounds



Geo-parameters

c = VP/(VP+VS)
Volume concentration of phase P




μo
Shape factor




μ
Shape function




cP,cS
Critical concentrations




θ
Geo-function for stiffness




θQ
Geo-function for conductivity



Density



d
Phase density


d = c*dP+(1-c)*dS
Composite density



Stiffness and other properties



E
Stiffness (Young's modulus)




e = E/ES
Relative stiffness of composite




n = EP/ES
Stiffness ratio




Q
Conductivity (eg. thermal, electrical, chloride)




q = Q/QS
Relative conductivity of composite




nQ = QP/QS
Conductivity ratio




λ
Linear eigenstrain (eg. shrinkage, thermal expansion)




Δλ = λP-λS
Linear differential eigenstrain



Stress



σ
External mechanical stress




σP
Phase P stress caused by external mechanical stress




σS
Phase S stress caused by external mechanical stress




ρ
Hydrostatic stress caused by eigenstrain



Strength of porous material



S
Porosity dependent strength




So
Real strength (0-porosity) of phase S in porous material



Non-flexible phase P especially

ca = (c-cS)/c/(1-cS)
Phase S porosity (for c > cS)


cPOR = (c-cS)/c

Porosity (of composite) for c > cS
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