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PREFACE

This report is the final report from the research project "Short Time Investi-
gation of the heat consumption of houses” that has been funded through the
Danish Energy Agency by the 1986 Research Programme of the Danish Ministry
of Energy (EFP-86), research project journal No. 603-01-01.

The project has been carried out by the Thermal Insulation Laboratory (TIL)
in collaboration with the Institute of Mathematical Statistics and Operation Re-
search (IMSOR).
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SUMMARY

For a number of years, it has been normal practise in Denmark (and in some cases
mandatory) to calculate the energy demand for heating of buildings at the design
stage, either by a simple hand calculation or by computer simulations. When the
building is completed no one knows if the building actually has a satisfactory
energy performance, at or below the theoretically calculated level. Furthermore,
the heat dynamics of the building such as the heat accumulation in walls, floor
and ceiling (and the indoor air), which play an important role in usability of solar
heat gains and control of the heating system, have almost never been determined
or only superficially simulated.

Short time determination of the heat dynamics of buildings is a useful tool to
identify the characteristic thermal parameters such as heat loss coefficient and
heat accumulation. Also one or several time constants useful in designing an
efficient control of the heating system can be determined.

The aim of the present project is a further development and optimisation of the
work carried out in a previous project "Regression Models for Energy Consump-
tion in Buildings” funded by the Danish Energy Agency. A new method based on
estimation in continuous time of linear differential equations has been used. The
equations are generated from a lumped parameter model of the building. The
method and the computer program used for the identification are developed at
the Institute of Mathematical Statistics and Operation Research at the Technical
University of Denmark. Furthermore, use of optimised statistical control of the
heat input to the building is introduced in the project through use of Pseudo
Random Binary Sequences (PRBS) as well as a so-called Principal Component
Analysis (PCA) for creating the most representative air temperature from mea-
surements at several different positions.

The experiments were carried out in the Danish PASSYS test cells, which have
the advantage that they have a simple geometry, they are highly insulated and
extremely airtight, and they are supplied with a large number of air and surface
temperature sensors. PASSYS is a project for investigation of PASsive solar
SYStems funded by the European Community.

The PRBS-signal controlling the heat input consists of two different signals de-
signed for each of the expected time constants of the test cell: A short time
constant related to the heat capacity of the indoor air, and a long time constant
related to the walls, floor and ceiling. The total length of the experiment is only
16 days.

The model describing the test cell is a second order model with two resistances
and two capacities. The identification of these four parameters is carried out



by comparison of the "measured” indoor air temperature and the indoor air
temperature calculated by the model when supplied with the measured climatic
data and the heat input. The former is calculated by use of the PCA as that
linear combination of the 7 measured air temperatures which describes most of
the variations between the single sensors. In the performed measurements an
equal weight was put on each of the sensors by the PCA, indicating that none of
the sensors were malfunctioning or in an unfortunate position.

The program used for the identification is called CTLSM (Continuous Time Lin-
ear Stochastic Modelling). The advantage of the continuous time formulation
is that the identified values of the parameters in the model can be physically
interpreted. In this way, the building experts can be directly involved in both
formulation of the model and evaluation of the identified results.

A comparison between the output of the identified model and the measured air
temperature shows only very small deviations and the standard deviation on the
identified parameters is very small.

It has been proven in this project that determination of heat dynamics of buildings
by use of well designed PRBS-signals, use of principal component analysis, and
model identification in continuous time can be carried out with a high degree of
accuracy, with only a few weeks of measurements. The results of this project
indicate that an even shorter test period can be achieved. Future development
in computer performance and of the computer program would make it possible
to automatize the process, e.g. let one computer take care of both input control,
data acquisition and on-line identification and automatically stop the experiment,
when the requested accuracy has been reached.



INTRODUCTION

Short time determination of heat dynamics of buildings is a way to "measure” the
effective thermal behaviour of real buildings. The results of the experiments are
some key values which can be used for simulation of yearly energy consumption,
comparison with theoretically determined heat loss coeflicients, or investigation
of aging effects by regular repetition of the measurements.

This project is based on the previous work carried out for the Danish Energy
Agency in the EFP-83 project "Regression Models for Energy Consumption in
Buildings” where simple mathematical models describing the thermal behaviour
of buildings were formulated and used for identification of the thermal parameters
of the experimental low-energy building at the Thermal Insulation Laboratory.
The experiments carried out in the test building showed the advantage of using a
time varying input signal which decor relates the climatic influence from the heat
input to the building. Also a method of choosing the most representative indoor
air temperature from measurements at several different locations was considered.

In the present project the experience from the previous work carried out is concen-
trated into a method for short time determination of heat dynamics of buildings.
The aim is to optimize the input signal (frequency, power level and duration) and
to develop sufficient mathematical models for accurate determination of the heat
consumption and heat capacity of buildings.

The data from the old experiments for the regression model project did not
contain all the information needed for the new analysis methods, so a new set of
experiments was designed. The experimental work was performed in the PASSYS
test cells at the Thermal Insulation Laboratory (PASSYS is a project funded
by the European Community for testing of PAssive Solar SYStems). The test
cells were preferred to the experimental low-energy building because of a simpler
geometry, a simpler window arrangement, an even higher insulation level, and a
very well defined construction with respect to the used materials and their thermal
properties. Furthermore, the south wall in the test cells can easily be exchanged
with a different type of wall construction leading to a different mathematical
model for estimation. Besides, a comprehensive set of sensors for measurement
of air and surface temperatures as well as climatic data are available, which
ensures that even more complicated mathematical models can be identified.

With this report we intend to give a brief description of some results from an
identification method - or test method - developed at the Technical University
of Denmark. The main objective is to propose a statistical method for short
time determination of models describing the heat dynamics of buildings. There
are several benefits of considering a continuous time model: The continuous



time formulation ensures that the parameters are easily interpreted as equivalent
thermal parameters, and the methods allow for changes in the sampling time,
which ensures that a stiff system like a house, with both short and long time
constants, can be identified.

Usually it is a very difficult task to determine the most appropriate locations
for sensors (for instance for measuring the indoor air temperature). In case of
several sensors it may be difficult to determine the signal(s) expected to be the
most representative for the room air temperature (surface temperature, etc.). The
present report also illustrates a method for finding the most reasonable signal as
a linear combination of all the measured signals.

A main objective of the project is to demonstrate that it is possible to identify the
main heat dynamical characteristics of a building within a reasonable short time.
Actually only 384 hours (16 days) were spent on the main experiment described
in this report.

In the discussion most attention is paid to the results - not to the mathemat-
ics. However, the key part of the identification method - a maximum likelihood
method for estimating linear stochastic differential equations - is outlined in Ap-
pendix B.

1 EXPERIMENTAL DESIGN

The experimental design is a very important part of an experiment. Furthermore,
it is well known that the design procedure is partly iterative, since results from
any experiment can be used for an improved design of future experiments.

The first design of the experiment is based on the knowledge of the physical
properties of the test building. The PASSYS test cell consists of a heavily in-
sulated test room and an adjacent service room holding measuring equipment
and a cooling system. The two rooms are separated by a well insulated door.
The wall, roof and floor are made of a rigid steel frame insulated with mineral
wool - the outside is covered with sheets of stainless steel. On the inside 400
mm of polystyrene is glued to a chipboard screwed to the steel frame. Thus the
construction has no thermal bridges. On the inside, the polystyrene is covered
with a layer of chipboard to which the final cover of 2 mm galvanized steel plates
is screwed. The large insulation thickness and
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Groundplan and sectional view A-A.

S



cells relatively large time constants. The overall dimensions are shown in Figure
1.

As a goal for the present test experiment it was chosen to try to estimate simul-
taneously both the short time and the long time dynamics of the test cell. As a
starting point we expected a short time constant around 10 minutes, and a long
time constant in the interval 38-100 hours.

In order to ensure a reasonable information for an identification of the dynamics,
the system has to be excited in both the short time and the long time part of the
frequency scale of variations. This is ensured by controlling the heat input by a
Pseudo Random Binary Sequence (PRBS-signal), which can be chosen to excite
the system in desired intervals of the frequency scale of variations.

The PRBS-signal is a deterministic signal shifting between two constant levels.
The signal may switch from one value to the other only at certain intervals of
time, t = 0, T, 2T,..., nT. The levels are used to control the heat supply (on
- off). This signal contains some very attractive properties, e.g. the signal is
uncorrelated with other external signals (meteorological data), and it is possible
by selecting the time period, T, and the order of the signal, n, to excite the
system in the areas of the scale of variations, where interesting parameters are
expected to be located. See [Godfrey, 1980] for further information.

The time period, T, and the order of the PRBS-signal, n, are determined by
the expected time constants in the system. If only one PRBS-signal is used, the
period T is of an order of magnitude as the smallest time constant, and n may be
selected such that n'T is of the order of magnitude as the largest time constant.

To excite the system in each part of the frequency scale of variations, two different
PRBS-signals are used in a single experiment. In order to search the short time
constant a PRBS-signal with T=20 minutes and n=6 has been selected. The
PRBS-signal is periodic with a period of (2" -1)T = 21 hours. In our experiment
this PRBS-signal has been used in two periods, i.e. 42 hours. This procedure
yields good possibilities to estimate time constants between 5 minutes and 4
hours.

In order to search for the long time constant a PRBS-signal with T=20 hours and
n=4 was used. This corresponds to a test period of 300 hours. This PRBS-signal
forms a god basis for estimating time constants between 10 hours and 160 hours.

The total experiment consists of an entrance period of 6 periods using the PRBS-
signal corresponding to the short time constant - (T,n) = (20 min., 6). This period
contains the transient part of the experiment, and ensures variations around
stationary values for the rest of the experiment. Then follows a period of 42



hours using the same PRBS-signal. In this period the relevant data are measured
with a sampling time of 5 minutes. The PRBS-signal is then changed to (T,n) =
(20 hours, 4). The sampling time is still 5 minutes. After a single period of this
signal (300 hours), the PRBS-signal is changed to the first one, (T,n) = (20 min.,
6), for 42 hours. Hence, data are collected with a sampling time of 5 minutes in a
total period of (42+4300+442) hours. In Fig. 3 the total experiment is illustrated
by the PRBS-signals.

The heating system in the test room consists of four 75 W electric bulbs. The
total energy consumption in the bulbs is measured with an electricity meter.
The accuracy is about 0.05 kWh. The electric power, when the bulbs are turned
on, is found as a mean value over the total experiment by dividing the total
consumption by the total number of hours the bulbs have been turned on. In the
service room we use three 500 W electric heaters, that can be controlled by the
Data Acquisition System in the low-energy experimental house. This means that
we can control the temperature in the service room within 0.5°C. The heating
equipment is indicated on Figure 2.

Figure 2: Plan of test cell. The heating system used in the calibration of the
cells is shown.

Several experiments have been carried out. However, the results shown in this
report only originate from a single experiment, where the heat loss through the
partitioning wall has been eliminated by ensuring that the temperature in the
service room is equal (within 0.5°C) to the temperature inside the test cell.

In each test cell 7 sensors for measuring the air temperature and 16 sensors for
measuring the surface temperature have been used. The location of the sensors,
as well as a further description of the measurements are found in Appendix A.
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Figure 3: The PRBS’s of the total experiment illustrated by the PRBS-signals.
(Note, that the sampling index corresponds to 5 minutes at the two periods of
42 hours, and to 1 hour at the long period of 300 hours.)

2 PRINCIPAL COMPONENTS

This section shows how the relevant information from all the sensors is con-
centrated in so-called principal components. The principal components form the
basis for estimating the model in later sections. By using this method we are able
to find the most reasonable linear combination of all the measurements for rep-
resenting the indoor air temperature or the surface temperature. If, for instance,
a single sensor is placed unsuccessfully for measuring the indoor air temperature,
the principal component will pick up this measurement as non-representative for
the indoor air temperature.

In this report the principal components for the air temperature will be considered
for illustration purposes only. The principal components correspond to an eigen-
value analysis of the variance matrix for the vector containing the measurements
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of the indoor air temperature.

Consider the stochastic vector

Xy = (Xltszty”"yX'?t) (1)

which contains the seven measurements at time t of the indoor air temperature.
Based on measurements of the indoor air temperature, the mean value vector
and the variance matrix %, associated with this stochastic vector, are readily
calculated.

The eigenvalues of % is then calculated and ordered in decreasing order

A 22> e 2Ny (2)

and the associated eigenvectors are

PL,P D7 (3)

The i’th principal component is then defined as

Vi = P;:-Xt (4‘)

The first eigenvector then determines that linear combination of the measure-
ments, which accounts for most of the variation of the measurements of indoor
air temperature. How much of the total variation, which is described by the first
principal component, is determined by the first eigenvalue.

For an ordinary and well planned experiment, the first principal component is
representative for the indoor air temperature, and it contains information from
all (in this case) seven measurements. So apart from the fact that the analy-
sis will pick up unsuccessful measurements it will also reduce the measurement
error, since information from several sensors is contained in the first principal
component.



11

Based on the estimated variance matrix for the indoor air temperature we found
the following values of the p;,p, and ps

p1 = (0.3781,0.3785,0.3784,0.3787,0.3780,0.3771,0.3758)' (5)
py = (—0.547,0.266,—0.105, —0.232,0.011, —0.130, 0.740)’ (6)
ps = (—0.583,—0.377,0.391,0.037,0.073,0.586, —0.126 )’ (7)

The associated eigenvalues explain 99.9948 %, 0.0042 % and 0.0003 %, respec-
tively, of the variations of the indoor air temperature. The first principal compo-
nent, determined by p; and defined though (5), is seen to put equal weight on all
seven measurements, and this component will be the best representation for the
indoor air temperature. Corresponding to a single measurement the measurement
error for this component is approximately 1/4/7 times the original measurement
error. A plot of the first principal component is shown in Appendix D.

The second principal component is seen to be approximately the difference be-
tween X, and X;. Xy is the measurement near the wall to the service room,
which is heated in such a way that no heat loss takes place through this wall. X,
is the measurement near the floor of the test cell. Hence, the second principal
component measures a difference between the temperature near the wall to the
service room and the temperature near the floor (which is the coldest). A plot
of the second principal component is shown in Appendix D, and it is seen that
this component behaves very much like the PRBS-signal! Hence, it is reasonable
to conclude that when the heating system is turned on, there are differences be-
tween measurements, which are not present when the heating system is turned
off. This agrees very well with the fact that the electric bulbs positioned on the
floor were shielded with cylinders of aluminium foil with openings in the top and
bottom. When the heat was on (i.e. the bulbs are turned on) the stack effect of
the cylinders will force a warm air stream towards the ceiling of the test cell. In
case of no heating a more uniform temperature distribution in the test room will
occur.

Also the third principal component is interesting. A further analysis has shown
that it measures some transient behaviour of the temperatures. The third princi-
pal component happens to be large just after the heating system is turned on and
small just after it is turned off - see Appendix D. For the higher order principal
components no interesting behaviour is found.

For the surface temperature a similar principal component analysis was carried
out. Also in this case the first principal component happens to be the best
representative for the surface temperature.
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3 FORMULATION OF A STOCHASTIC DIF-
FERENTIAL EQUATION MODEL

An adequate description of the heat dynamics of the test cell requires at least
two time constants - one time constant describing the long time variations and
another time constant describing the short time variations. A description of
the short time constant is essential for modelling the variations of the room air
temperature. Unfortunately, it is very difficult to achieve a reasonable descrip-
tion of the short time dynamics when the traditional (deductive) approach is
used. But, by using the statistical (inductive) approach it is possible to describe
the variations on the whole time scale covered by the experimental data. In
the [Madsen, Nielsen and Saxhof, 1992] some proposals for dynamic models with
more than one time constant are given, which then contain the capability of
describing both long term and short term variations.

The “two time constant” model shown in Figure 4 may be adequate if the dom-
inant heat capacities are located in the outer walls. This is expected to be the
case for the test cell. However, it is possible by a statistical test to verify whether
the model gives a reasonable description.

The states of the model are the temperature 7, of the large heat accumulating
medium with the heat capacity c¢,,, and the temperature T; of the room air -
possibly including the inner part of the wall - with the capacity ¢;. The resistance
against heat transfer to the ambient air with temperature T, is denoted r,, while
r; denotes the resistance against heat transfer between the room air and the large
heat accumulating medium. The heat input to the system is from the electric
resistance heaters, @), and from the sun, @,.

It is readily seen that the equations for the heat transfer become

drl’,, 1 1
Cm dt — ;;(Ta - Tm) + ;;‘(Tg - Tm) (8)
dT; 1
S (T T+ 8, 4 B 9
6 = T T)+8, 8, (9)

Additional heat inputs are added on the right hand side of (9). It can be shown
that the model can be identified (this is further discussed in
[Madsen, Nielsen and Saxhof, 1992] even if T, is not measured.
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Figure 4: A “two time constant” model with the dominant heat capacities in the
outer wall.



14

In general it is convenient to describe the differential equations in the matrix

form

a ] | o T;
i) - —[;;i—,mimL[Tm]dt
T
[ e ;
0 1/Ci l/ci dwi(t)
T 1(racn) 0 0 ] o dt+[dwm(t) (10)

where the states are the temperature T; of the room air, and the temperature 7.,
of the large heat accumulating medium. The constants c,,, ¢;, 74, and r; are the
equivalent thermal parameters, which describe the dynamic behaviour of the test
cell.

The last vector, dw(t), on the right hand side of (10) describes the stochastic part
of the model. The stochastic part is introduced in order to describe the deviation
between (8)-(9) and the true variations of the states of the system.

In a more compact form the model for the heat dynamics is described by the
stochastic differential equation

dT

ATdt + BUdt + dw(t) (11)
where the structure of the matrices A and B in the present case is as described
in (10). w(t) is a two-dimensional stochastic process, and in the present context
we will further restrict w(t) to be a Wiener process with incremental covariance

2
_ o111 O
o= { 0 0“%,22 ] (12)

It can be shown than the diagonal structure in (12) is necessary in order to
provide identifiability of the system.

Since the temperature of the heat accumulating medium, 7,,, is not measured,
but only the air temperature, T;, we can express our measurement as

Ti(t)

L= T, ()

[1 0] [ } + e(t) (13)
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where e(t) is the measurement error, which is assumed to be normally distributed

with zero mean and variance o7 .

A further discussion about the formulation of the stochastic state space model
(11)-(13) is given in Appendix B.

4 IFICATION

The used method for parameter estimation is described in Appendix B. In this
section only the results are discussed.

At the estimation a sample time of 5 minutes is used in the case of the PRBS-
signal with (T,n) = (20 min., 6), whereas a sample time of 1 hour is used in the
period where a PRBS-signal with (T,n) = (20 hours, 4) is used.

The results shown below are based on only one experiment with one of the test
cells. Furthermore, some test results have shown that the influence from the solar
radiation is insignificant, so the system considered is as described by (10), except
that @, is not included.

The following (maximum likelihood) estimates are found (the number in brackets
are the associated standard error of the estimates):

& = 01172 kWh/°C (0.0013)
ém = 0.5004 kWh/°C (0.0149)
A = 3.2968°C/kW  (0.0660)

Pe = 493.45°C/kW  (16.7)

The estimates belonging to the stochastic part of the model are

62,, = 0.00152(°C)* (0.00017)
67, = 0.01177(°C)* (0.00096)
62 = 0.00021(°C)? (0.00003)

First, it is noted that no large heat capacity is found for the test cell. The
resistance against heat transfer to the ambient air, »,, is found to be very
large, whereas the resistance against heat transfer between the heat accumu-
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lating medium and the air is more moderate. The estimated standard deviation
of the measurement error is 4/0.00021 = 0.015°C - this small measurement er-
ror is in fact the 'measurement’ standard error of the first principal component,
which is found to be representative for the indoor air temperature (the estimated
real measurement error is approx. v/7 x 0.015°C).

An analysis has shown that if we only consider for instance the PRBS-signal
corresponding to the high frequency variation (T,n) = (20 min., 6), then it is
impossible to give a good estimate of r,, but the remaining estimates are nearly
the same. It is concluded that it is important to use at least two PRBS-signals
in order to estimate both the short time and long time dynamics of a house.
Furthermore, it is essential to use an estimation method where the sampling time
can be changed from period to period.

EL

Based on the above estimates it is possible to estimate the performance of the
model for forecasting the indoor air temperature. The standard error of the
forecast error in the case of a horizon of 5 minutes is 0.024° C, and if a horizon of
one hour is considered the standard error is 0.079° C. Figure 5 shows the observed
and predicted air temperature for a very small segment of the total series. If a
larger segment is chosen it is hardly possible to see the difference between the
observed and the predicted temperature.

The largest differences are observed just after the heating system has been turned
off or on. The reasons why are that the dynamic of the heating system (in this
case most likely the heat capacity of the electric bulb) has to be included in the
model. An analysis of the residuals has shown that the model, except for the
fast dynamics of the heating system discussed above, is able to describe all the
variations. These include tests in the autocorrelation functions as well as tests in
the frequency domain.
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Figure 5: Observed (line with cross) and predicted air temperature (Only a small
part of the observations is shown).

6 CONCLUSION

Short time determination of heat dynamics of buildings is a way to "measure” the
effective thermal behaviour of real buildings. The results of the experiments are
some key values which can be used for simulation of yearly energy consumption,
comparison with theoretically determined heat loss coefficients, or investigation
of aging effects by regular repetition of the measurements.

Design of an experiment for short time determination of heat dynamics of build-
ings will always be an iterative process to achieve the specific input signal that
leads to the most accurate estimation of the thermal parameters. However, the
results in this project show that with a rough estimation of the thermal behaviour
based on the construction and some knowledge of the physical properties of the
used materials, a suitable input signal can be designed. Especially the use of
Pseudo Random Binary Sequence (PRBS) signals has proved to be useful, as
one design of the PRBS signal can cope with a large range of time constants.
If the building is characterised by both having very short and very long time
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constants the test signal can be composed of two or more different PRBS signals,
designed for each of the expected time constants. Furthermore, the PRBS signal
is decor related with the climatic input variables as solar radiation and outdoor
air temperature making the influence of these parameters identifiable.

The indoor air temperature has been used for control of the identified model by
comparison between the calculated and the measured temperature. The "mea-
sured” temperature used in the comparison is created from measurements of the
air temperature at 7 different locations in the test room. For this purpose a
so-called principal component analysis (PCA) was used for calculation of that
linear combination of the measured values (the 1st principal component) which
describes most of the variations between the single sensors. The effective mea-
surement error is in this case (7 sensors) reduced to the measurement error of a
single sensor. Furthermore, the PCA is a very useful tool to detect if one sensor
is measuring something else than expected, e.g. if an air temperature sensor is
positioned too near to a heating element, or if the sensor has been damaged and
is malfunctioning. The remaining principal components can be used for inves-
tigation of the performed test, e.g. to find an explanation for the discrepancies
between the output from the identified mathematical model and the measured
value.

The identification program CTLSM used in this project is developed at the In-
stitute of Mathematical Statistics and Operation Research (IMSOR) and is chai-
acterised by identification in continuous time by integration of the differential
equations describing the lumped model of the building. The advantage of the
continuous time formulation is that the identified values of the parameters in the
model can be physically interpreted. In this way, the building experts can be di-
rectly involved in both formulation of the model and evaluation of the identified
results.

The experiments carried out in the PASSYS test cells have proved the large
possibilities in testing of thermal performance of buildings by use of PRBS-signals
and advanced statistical identification. The test period is only 384 hours (16 days)
and the identification results indicates that a shorter test period could probably
be achieved. Both a short and a long time constant is identified related to the
heat capacity of the air and the heat capacity of the walls, floor and ceiling
respectively.

The principal component analysis showed that an almost equal weight was put
on each of the seven air temperatures in creating the effective air temperature.
This indicates that each of the seven sensors was measuring the "correct” air
temperature. However, the second principal component shows a change in the
temperature distribution between periods where the heat was turned on and
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periods with the heat turned off. The third principal component indicates a sys-
tematic variation in the air temperature just after the heat is turned on and off.
The remaining principal components show no systematic variations. The princi-
pal component analysis is a powerful tool to point out where the experimental
part of the test can be improved.

The output from the identified model and the measured air temperature in the
test room are almost identical except in the period just after the heat is turned
on and off. A reasonable explanation is that the heat capacity of the heating
system is not covered by the model and with the third principal component in
mind this seems to be a very good explanation.

Short time determination of the heat dynamics of buildings has been carried
out in real tests, but an optimisation of the length of the test period is still
missing. Future development of the identification program CTLSM and increased
computer performance would make it possible to perform an on-line identification,
where the program continuously tests if the accuracy of the identified parameters
has reached the desired value, and stops the experiment if positive. In this way
the computer can be installed in the actual building and perform the control of
the input signal, the data acquisition and the model identification. A first step
could be a smaller computer installed in the actual building for data acquisition
and control, with a link, e.g. through the public telephone network, to a more
powerful computer in a central place, running the identification program.
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A Position of surface and air temperature sen-
sors in the Danish test cells

Figure Al. Location of indoor air temperature sensors.
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B A method for estimation of continuous time
stochastic differential equation models

The entire estimation for the identification is carried out by a program written
in Fortran. Hence it is possible to move the program to other machines (e.g. in
term of the source code) because only a Fortran compiler is required. The pro-
gram is built up in blocks for transforming the differential equations to difference
equations, for evaluation of conditional densities (by means of a Kalman filter),
for evaluation of the likelihood function and for minimisation.

B.1 Linear stochastic models in state space

In [Madsen, Nielsen and Saxhof, 1992] it is argued that a lumped description of
the heat dynamics of buildings can frequently be described by a system of linear
differential equations, and in a very useful matrix notation the equations can be
parameterised by the linear state space model in continuous time

T _ ar4BU (14)
dt

where T is the state-vector and U is the input vector.The dynamic behaviour of
the system is characterised by the matrix. A and B are a matrices which specify
how the input signals (outdoor air temperature, solar radiation, radiator supply,
etc) enter the system. For a further discussion of the structure of the matrices
and vectors we refer to Equation 10.

Since the description will always be a model of the system, which, of course,
is unable to give an exact description of the system some deviations are to be
expected. To describe the deviation between (14) and the true variation of the
states an additive noise term is introduced. Then the model of the heat dynarics
is described by the stochastic differential equation

dT = ATdt+ BUdt + dw(t) (15)

where the m-dimensional stochastic process w(t) is assumed to be a process with
independent increments. With the purpose of calculation of the likelihood func-
tion we will further restrict w(t) to be a Wiener-process with the incremental
covariance Rj(t).
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As an example of a model in the class described by (15) consider the following
important example:

dT,; | = Iz
a]-[E A

L PiCm TaCm TiCm

T
0 1/0,' 1/6,; * dwi(t)
T 1 (raew) 0 0 } Z}: dt + [ dwm(t)} (16)

where the states are the temperature of the T; of the room air (and the inner part
of the walls), and the temperature T, of the large heat accumulating medium.
The constants ¢, ¢;, 74, 7i, Ay and p are the equivalent thermal parameters, which
hence describe the dynamic behaviour of the building. The model (16) is further
discussed in [Madsen, Nielsen and Saxhof, 1992].

The equation (15) describes the transfer of all the states of the system; and it is
most likely that only some of the states are measured. If we for instance consider
the state space model in (16) it is reasonable to assume that the temperature of
the indoor air is measured; but not the temperature of the large heat accumulation
medium (it might also be difficult to find a reasonable temperature to measure
in order to represent the temperature of the large heat accumulating medium).
In the general case we assume that only a linear combination of the states is
measured, and if we introduce T, to denote the measured or recorded variables
we can write

T.(t) = COT(t)+ e(t) (17)

where C is a constant matrix, which specifies which linear combination of the
states that actually is measured. In practise, however, C most frequently acts
only as a matrix which picks out the actual measured states. The term e(t) is the
measurement error. It is assumed that e(t) is normal distributed white noise with
zero mean and variance Ry. Furthermore, it is assumed that w(t) and e(t) are
mutually independent. For the example discussed, where the system is described
by (16), and where we assume that only the indoor air temperature is measured,
the measurement equation simply becomes

n0) = ol | 7 | e (18)
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where e(t) is the measurement error, which accomplish the measurement of the
indoor air temperature.

B.2 Some notes on parameter identifiability

It is a crucial question whether the parameters of a specified state space model can
be identified. If a non-identifiable model is specified, the methods for estimation,
which we shall discuss later on, will not converge. The problem of identifiability
arises from the fact that for a given transfer function model, in general, a whole
continuum of possible state space models exists. Therefore, we must introduce
a restriction on the structure of the state space model, in order to provide a
unique relation between the parameters of the state space model and the transfer
function.

Let us illustrate the problem by considering a couple of examples. First we con-
sider a slightly simplified system compared to (16), where the outdoor tempera-
ture and the solar radiation are considered to be zero (or constant). Furthermore,
only the deterministic part of the model is considered. Hence, (16) can be written
as

0
d

-a a

T = [ b —(b+c)

] Tdt + [ ] &,dt (19)

It is readily verified that the parameters of the corresponding original model, i.e.
Ciy Cm, T; and 7, , can be identified (or calculated) if the parameters a, b, c and d
of the above model can be identified.

Furthermore, it is assumed that only 7} is measured and the noise e(t) is zero.
In general, the identifiability is deduced by investigating the transfer functions
belonging to every input to output combination in equations (15) and (17). All
these combinations are contained in the (matrix) transfer function G(s), where s
is the Laplace operator, and we have

T.(s) = G()U(s) (20)

where

G(s) = C’(s[—A)’lB (21)
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In single-input, single-output cases, as (19), the transfer function G(s) becomes
a scalar function. For the considered example, see (19), the transfer function
becomes

d(s + a)
G =
(s) 82+ (a+b-+c)s + ac (22)
This has to be compared to what we actually observe, namely
b
Gls) = th (23)

82 + a8+ ay

That is, we observe bg, b1, a1 and ap. If we compare (22) and (23) it is seen that
based upon these values we are able to identify a, b, ¢ and d. Hence the model
is identifiable.

As an example of a model which is not identifiable we consider the following
slightly modified version of (19), namely

b

_d]Tdt+ [ ’ ] Bydt e

T = [ e
¢
where the transfer function becomes

e(s + a)

¢l) = 77 (a + d)s -+ (ad — cb)

(25)

By a comparison with (23) it is seen that both ¢ and b cannot be identified;
only the product can. However, by regarding (24) it is not surprising that we
got problems, since it contains 5 parameters, and (23) tells us that only 4 can be
identified.

B.3 From continuous to discrete time

The previously discussed method uses finite differences for transforming the equa-
tions from continuous time to discrete time. For the present method, where the
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system is assumed to be described by the stochastic differential equation (15) it
is possible analytically to perform an integration, which under some assumptions
exactly specifies the system equation in discrete time.

For the continuous time model (15) the corresponding discrete time model is
obtained by integrating the differential equation through the sample interval [t,
t+ 7]. Thus the sampled version of (15) can be written as

t+7
T(t+7) = eAHOT@) 4 [ AR (s)ds +
1

t+1
/ A7) Gy (5) (26)
t

Under the assumption that U(t) is constant in the sample interval the sampled
exact version of (15) can be written as the following discrete time model in state

space form
Tt+7) = ¢(r)T@)+T(r)UE) +v(t;r) (27)
where
#r) = o, T(r)= [ e*Bds (28)
b
() = ./{ et day () (29)

On the assumption that w(t) is a Wiener process, v(t;7) becomes normal dis-
tributed white noise with zero mean and covariance

Ry(r) = Eu(t;r)o(t;r)] = [qﬁ(s)aggﬁ(s)'ds (30)

If the sampling time is constant (equally spaced observations), the stochastic
difference equation can be written
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Tit+1) = ¢T(t)+TU) -+ v(t) (31)

where the time scale now is transformed in such a way that the sampling time
becomes equal to one time unit.

B.4 Maximum likelihood estimates

In the following it is assumed that the observations are obtained at regularly
space time intervals, and hence that the time index t belongs to the set {0, 1,
2, ..., N}. N is the number of observations. In order to obtain the likelihood
function we further introduce

Ti¢) = [Tr(t)7Tr(t”‘ 1)>'°’3Tr(1),Tr(O)]’ (32)

P

i.e. T*(t) is a matrix containing all the observations up to and including time
t. Finally, let 8 denote a vector of all the unknown parameters - including the
unknown variance and covariance parameters in K; and R,.

The likelihood function is the joint probability density of all the observations
assuming that the parameters are known, 1.e.

L@ TIN) = p(T(0)10)
= p(T(N)ITI(NV ~ 1), 0)p(T; (N —1)[0)

EP(Tr(i)le (t—1),0)| p(T:(0)16) (33)

i

where successive applications of the rule P(A N B) = P(A|B)P(B) are used to
express the likelihood function as a product of conditional densities.

Since both v(t) and e(t) are normally distributed the conditional density is also
normal. The normal distribution is completely characterised by the mean and
the variance. Hence, in order to parameterise the conditional distribution, we
introduce the conditional mean and the conditional variance as

Bt —1) = EGEOITE- 1),0] (34)
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and

Ritlt~1) = VIT(OITHE~1),6] (35)

respectively. It is noticed that (34) is the one-step prediction and (35) the as-
sociated variance. Furthermore, it becomes convenient to introduce the one-step
prediction error (or innovation)

e(t) = T,(t)—To(tlt—1) | (36)

Using (33) - (36) the conditional likelihood function (conditioned on 7.(0)) be-
comes

KoL) = T [(m) " detR(de ~ 1)

t=1

xexp(—1/2e(t) R(t|t — 1)e(t))] (87)

where m is the dimension of the T, vector. Most frequently the logarithm of the
conditional likelihood function is considered. It is written

logL(0;T,(N)) = -1/2 i [logdet R(t]t — 1)
+e(t) R(t|t — 1)”1e(t)] + constant (38)

The conditional mean T,(¢ | t — 1) and the conditional variance R(t—t-1) can
be calculated recursively by using a Kalman filter (see e.g. [Astrom, 1970] or
[Madsen, 1989]). The Kalman filter is most easy to understand as formulae for
recursively calculating one-step prediction (or estimate) of the state of the system,
together with formulae for updating (or reconstructing) this estimate, (see e.g.
[Madsen, 1989]). In the present case where the transfer of the states of the system
in discrete time is described by (31) and the observations by (17) the equations
for updating the estimate of the state T become

T(tt) = T(tt — 1) + K (To(t) — CT(t[t — 1)) (39)



P(tlt) = P(tt—1) —~ KR(t)t - 1) K]

where the Kalman gain K, is

K, = P(tjt—1DC'R(t— 1)

The formulae for prediction become

T+1t) = ¢T(t)t) + TU(#)

Tt +10t) = CT(t+ 1)

Pt+11t) = $P(t)S + Ry

Rt+1jt) = CP@t+1|t)C'+ R,

32

(40)

(41)

(42)

(43)

(44)

(45)

The formulae require some initial values, which describe the prior knowledge

about the states of the system in term of the prior mean and variance

T(10) = E[T(1)] = po

P(1]0) = VIT(1)] = Vo

(46)

(47)

The recursive use of the Kalman filter as it is formulated above can be explained
in the following way: Assume that the time is t-1, and we have calculated the
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prediction and the associated variance for the state at time t. When the next
observation (7,(t)) at time t becomes available e.g.. (39) - (41) can be used for
updating the estimate of the state. Using the updated values it is then possible
to use e.g.. (42) - (45) to calculate the prediction and the associated variance
for the state at time t41. This was one step of the recursive calculations, which
constitute the Kalman filter.

The maximum-likelihood estimate (ML-estimate) is the set 6 which maximises
the likelihood function. For the optimisation of the likelihood function the IMSL-
routine ZXMIN (1980) was used.

An estimate of the uncertainty of the parameters is obtained by the fact that the
ML-estimator is asymptotically normally distributed with mean and variance

D = H! (48)

where the matrix H is given by

(b} = =B | logl (T (49)

An estimate of D is obtained by equating the observed value with its expectation
and applying

bt ~ = |y loo b0 ) (50)

'0:@

The above equation is thus used for estimating the variance of the estimates.
If an estimated variance is large compared to the actual estimated value for a
parameter, this indicates that probably this parameter can be eliminated from
the model (the parameter is equal to zero).



34

C Evaluation of the Model

The described methods for evaluation of the model can be divided into two cate-
gories. The first category contains purely statistical methods based on the resid-
uals of the model. These are generally used methods within time series analysis
for evaluation of empirically determined dynamic models. The second category
contains an illustration of the performance of the model for simulation and fore-
casting. Furthermore, the estimated parameters are naturally compared with
parameters calculated by the traditional approach from the physical characteris-
tics of the building - if this calculation is reasonable and possible.

C.1 Methods based on the residuals

The purpose of all model building is to describe all systematic variation by pa-
rameters in a model. In the model building case most frequently several models
are considered. And the best model is selected as the smallest model, which is
capable to describe all the variation. If all systematic variations are described
by a specific model the residuals will be a white noise process, i.e. the residuals
are uncorrelated in time. This section describes the methods used for testing the
assumption that the residuals are white noise.

Test in the autocorrelation function

Let {¢;} denote the sequence of residuals, and let p.(k) denote the autocorrelation
function for the residuals (Box and Jenkins, 1976). If {¢;} is white noise we have

pe(k) approz. N(0,1/N) (51)

where N(u,o?) denotes the normal distribution with mean p and standard devi-
ation o. Finally, N denotes the number of residuals, which frequently is equal to
the number of observations.

By using (51) confidence limits for the autocorrelation function under the hy-
pothesis that {e;} is white noise is easily calculated. Frequently the 2¢-limits
corresponding to approximately 95% confidence limits are used.

Besides the autocorrelation function it is very common to also consider the partial
autocorrelation function (see [Box and Jenkins, 1976]). A very useful rule is that
if the autocorrelation and the partial correlation are nearly identical, then the
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model is satisfactory (- or a little more correct: it is not likely that the model
can be improved in the considered class of stationary models).

Test in the cumulated periodogram

This test is especially useful for detecting periodical behaviour of the residuals,
which is not described by the model. The cumulated periodogram is a test for
white noise in the frequency domain.

For the frequencies f; = 1/N,7 = 0,1,---,[N/2] the periodogram for the residuals
is calculated as

2
1

R N N 27
I(f;) = v [(E;etcos?'irf,;t) +<Zetsin27rfit)}

The periodogram is a description in the frequency domain of the variations of
{e:}, since I(f;) is that part of the variations of {¢;} that is concentrated at the
frequency f;.

The cumulated periodogram is then

[v/2

) iy 72,
C(f) = @f(fj))/(g I(fj)) (52)

which is a non-decreasing function defined for the frequencies f; = i/N,7 =

0,1,---,[N/2].

For white noise the variation is equally distributed on all the frequencies - the
name 'white noise’ originates, in fact, from the analogy with optics. Hence, the
theoretical periodogram is constant. In the case of white noise the total variation
is N 02, and, thus, the theoretical periodogram for white noise is

I(f,) = 27 (53)

Theoretically, the accumulated periodogram is therefore a straight line from the
point (0, 0) to (0.5, 1) - see (52). Hence, if the residuals are actually white noise,
we will then expect that the estimated accumulated periodogram is 'close’ to that
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line. The closeness can be judged by a drawing e.g. 95% confidence limits on
both sides of the theoretical line. The 95% confidence interval is given by

[¢/r — 1.36//r,i/r + 1.36/+/7] (54)

where r = [N/2] and i = 0, 1,--- , [N/2]. The white noise hypothesis is rejected
(on a 5% significance level) if the estimated cumulated periodogram for any 1 falls
outside the above defined confidence limit.

C.2 Simulation and forecasting.

Since applications of heat dynamic models for buildings are, in general, simulation
or forecasting, it seems appropriate to illustrate the performance of the estimated
models for simulation and forecasting.

In the (dynamic) simulation the estimated system equations and the (measured)
independent variables are used to govern the dependent variables. A plot of
the simulated variables together with the measured independent variables versus
time is then used to illustrate the performance of the model, and its ability to
reproduce the dynamic characteristics.

The performance of the model for forecasting, which might be important in con-
trol situations, is illustrated by a time plot, which shows the forecasted values
(with a given horizon) of the independent variables together with the correspond-
ing measured values. This approach differs from the above described dynamic
simulation by the fact that the forecast at time t (of the independent variable
at time 't + horizon’) utilises the actually measured values of the independent
variables up to, and including, time t, whereas the dynamic simulation does not
use measured independent variables at all. If the method based on an integration
of the differential equations, as described in section B.2, is used, it is possible
to select the forecast horizon as wanted, and not necessarily equal to the sample
time.



D Some figures

Some figures referred to in the report.
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Bolet, B., Rasmussen, N.H. & Korsgaard, V.: Ressourcebesparende
kassettebyggesystem til lavenergihuse (Resource saving element building
system for low-energy houses), in Danish with a summary in English. TIL,
Report no. 197, ISSN 0905-1511, December 1988,
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