Energiministeriets ForskningsProgram

Energianvendelse i Bygninger

Analyse af varmeakkumuleringsevne for boliger

Erwin Petersen (DTI)
Kirsten Engelund Thomsen (LfV)

Energiteknologi
Dansk Teknologisk Institut
Laboratoriet for Varmeisolering
LfV Meddelelse nr. 229
Danmarks Tekniske Højskole

Analyse af varmeakkumuleringsevne for boliger

Erwin Petersen (DTT)

Kirsten Engelund Thomsen (LIV)

PRONEKTGRUPPE

Laboratoriet for Varmeisolering
Danmarks Tekniske Hejskole
Bygning 118
2800 Lyngby
Jørgen Erik Christensen, civ.ing., lic.techn., professor ved SIN (Narvik)
Bjarne Saxhof, civ.ing., projektleder
Kirsten Engelund Thomsen, civ.ing.

Energiteknologi
Dansk Teknologisk Institut
Gregersensvej
2630 Taastrup
Erwin Petersen, civ.ing., lic.techn.
Peter Steensen, civ.ing.

FORORD

Denne rapport afslutter projektet "Analyse af varmeakkumuleringsevne for boliger", et projekt i Energiministeriets forskningsprogram EFPP-86 under området Energianvendelse i bygninger, med ENS j.nr. 603-02-01.

Projektet er gennemfort som et samarbejde mellem Laboratoriet for Varmeisolering (LfV), Danmarks Tekniske Hejskole og Energiteknologi, Dansk Teknologisk Institut (DTI).

Der er tidligere gennemfort forskellige undersogelser af bygningers akkumuleringsevne på et teoretisk grundlag med nogle fastlagte beregningsforudsætninger. Den tilgangelige viden har imidlertid vist sig at vere utilstrakkelig, når man skulle gả ind i mere nøjagtige analyser, som svarede til forhold i praksis.

Projektet har derfor bl.a. haft til opgave at klarlægge på hvilke områder, der foreligger tilstrækkelig viden og på hvilke områder, der bør ske en videnopbygning, så beregning af bygningers varmebalance og energiforbrug kan foretages tilstrakkelig nojagtigt.

I projektet er tidligere udgivet rapporten "Analyse af varmeakkumuleringsevnen for boliger, Litteraturstudium", LfV Rapport nr. 88-16.

I projektet indgår en rakke beregninger, der danner grundlag for en oversigt over varmeakkumuleringens betydning for en bygnings energiforbrug til rumopvarmning. Yderligere er der i projektet skitseret en forenklet metode til bestemmelse af eller vurdering af behovet for varmeakkumuleringen i projekteringsfasen. Denne metode er ikke færdigudviklet.

Projektet er et forprojekt og efterlader derfor en rakke ubesvarede spørgsmål.

MNDHOLDSEORTLGNELSE

Forord
Summary 5

1. Indledning 9
1.1 Baggrund 9
1.2 Formål 9
1.3 Gennemforelse 9
2. Konklusioner 11
3. Status for viden 15
3.1 Termiske påvirkninger 15
3.1.1 Udeklimaet 15
3.1.2 Intern varmelast 16
3.1.3 Varmeoverføring til bygningsflader 16
3.1.4 Varmeoverføring ved stråling 16
3.1.5 Varmeoverføring ved ledning og konvektion 16
3.2 Bygningskonstruktionens indflydelse på varmeakkumuleringen 17
3.2.1 Temperatursvingninger 17
3.2.2 Eksempler med homogene vægge 17
3.2 .3 Isolerende lag 21
3.3 Rummets geometri, orientering og placering af materialer 21
3.3.1 Varmefordeling og akkumulering 21
3.3.2 Solstrålingens fordeling til overfladerne 22
3.4 Tilladelige temperaturvariationer 24
3.5 Valg af varmesystem 24
4. Beregningsforudsætninger 25
5. 1 Valg af rummodel 25
4.2 Beregningsvariationer 28
4.2.1 Orientering 28
4.2.2 Isoleringsstandard 28
4.2.3 Internt varmetilskud 28
4.2.4 Intern masse 29
4.2.5 Med/uden solindfald 29
4.2.6 Placering af tyngde 29
4.3 Varme- og udluftningsstrategi 30
6. Beregningsresultater 31
5.1 Folsomhedsanalyse af energiforbrug 31
5.1.1 Beregning af rum uden intern varmelast 32
5.1.2 Udnyttelse af solvarmen i et let og tungt rum uden intern var- melast 40
5.1.3 Beregning af rum med intern varmelast 42
5.1.4 Udnytelse af solvarmen i et let og tungt rum med intern varme- last 43
5.1.5 Beregning med ofte benyttede byggematerialer 43
5.2 Felsomhedsanalyse af temperaturforhold 45
5.2.1 Døgnmiddeltemperaturen 46
5.2.2 Temperaturamplituden 50
5.2.3 Forenklet beregningsmetode il beregning af et rums temperatur 53
7. Litteraturliste 59
APPENDIX A: Kort beskrivelse af EDB-programmer 63
APPENDIX B: Termiske materialedata 71
APPENDIX C: Varmeakkumulering i bygningskonstruktioner 75
APPENDIX D: Oversigt over inddata til TSBI 2.1 83
APPENDIX E: Oversigt over EDB-beregninger 87

SUMMARY

The ability of a room to accumulate the heat input influences the usability of the gains, ie how large a part is utilized to cover the heat losses from the room. The thermal mass is also very important as a stabilizer of room temperatures at fluctuating heat input, eg because of solar gains.

To illustrate the importance of thermal mass on utilization of direct gain passive solar, computer analyses have been carried out to compare two geometrically identical rooms, one being thermally very light (gipsum boards on timber frames) and the other very heavy (0.10 m of concrete). The rooms have only one surface (a wall) exposed to the outdoor climate and have windows with normal double-glazed sealed units. The rooms are designed for an acceptable thermal indoor environment, with room temperatures not exceeding $24^{\circ} \mathrm{C}$.

If the rooms have south facing windows with an aperture to floor area ratio of 15%, the heating demand is about 4% lower in the high mass room. If the ratio is 30%, the difference in heating demand is 12%. However, it must be emphasized that the heating demand increases with increasing window area in both rooms - the main reason is that the ratio of usable solar gains decreases because the room temperatures get too high. When the window area is increased from 15% to 30% of the floor area, the heating demand is increased 9% and 18% in the high mass room and the low mass room respectively. To obtain a heating demand reduction at increasing window area, the U-value of the window must be improved considerably, so that the heat loss through panes, frame and casing is smaller than the usable solar gains.

In most of the computer simulations, empty rooms have been analyzed. In a few simulations, the effect of furnishing the rooms has been calculated. The thermal mass of furniture is of no importance in the high mass room, but the presence of furniture etc may lower the total heat capacity of the room by shading or insulating the thermal mass. The above-mentioned 4% and 12% differences in heating demand for the two rooms at 15% and 30% window to floor area ratio change to 3% and 9% respectively, when the rooms are furnished.

When a room has internal gains, eg from persons, lighting and appliances, the heating demand is reduced, and the calculations show that the differences between the high mass room and the low mass room increase. The total gains get so high that they would result in unacceptably high temperatures especially in the low mass room, so that excess heat must be ventilated away, and the ratio of usable solar gains decreases. If the figures for internal gains from SBI-report 148 (Johnsen \& Nielsen - 1984) are used, the heating demand is 10% lower in the high mass room at 15% window area, and 17% lower at 30% window area.

The two above-mentioned rooms have also been compared to a thermally light room equipped with one thermally heavy surface, eg a concrete floor or ceiling, the floor with or without carpets. The calculations show that one such heavy surface has a large effect, even if the surface is covered with a carpet. In this case, the heating demand is the mean of the values for the low mass and the high mass room.

The demands on the thermal environment, ie demands to maximum temperatures, have a large influence also on the heating demand, because measures to keep the room temperature down, eg shading, often lower the solar heat gains also in the heating season.

If there are no solar gains at all, the heating demands in the high mass room and the low mass room increase 51% and 44% respectively at 15% south facing window area, and 82% and 61% at 30% south facing window area.

In the calculations for the heating season, the room temperature has only been allowed to rise above $24^{\circ} \mathrm{C}$ for very short periods (through introduction of a ventilation rate of 3 ach). To evaluate the effect of thermal mass on room temperatures, the temperature has been allowed to float freely in the summertime. At 15% south facing window area without shading the maximum temperature is $36.3^{\circ} \mathrm{C}$ and $30.2^{\circ} \mathrm{C}$ in the low and high mass rom respectively. If one major accumulating surface, eg a concrete floor, is placed in the low mass room, the maximum temperature reached is $33.3^{\circ} \mathrm{C}$, and if this surface is carpeted, the maximum temperature is $33.7^{\circ} \mathrm{C}$. Thus the effect of the carpet is negligible.

The window orientation has a strong influence on the heating demand. At 15% window to floor area ratio the heating demand is $20-25 \%$ higher for rooms with east/west facing windows than for rooms with south facing windows. The corresponding figures for 30% window area are $25-38 \%$ higher heating demand. In percentages the influence of thermal mass is about the same for rooms with east/west and south facing windows. Thermal mass in east/west facing rooms is important though the solar gains in the heating season are fairly small, because it is difficult to shade the large gains in the summertime.

Thus two major reasons can be given for designing rooms with sufficient thermal mass:
to accumulate the solar gains during daytime for later use without getting unacceptably high room temperatures.
to cut off the top of the overheating so that it is not necessary to introduce shading measures that eliminate a major part of the gains during the heating season.

In this project some simple formulae for calculating the mean 24 -hour temperature and the temperature amplitude in the 24 -hour period are given. The calculations are based on an estimated $50-50 \%$ distribution of heat accumulation and heat loss. Some comparisons to computer calculations with the program TSBI 2.1 indicate a high sensitivity to the distribution estimate and better agreement between the two methods at $75-25 \%$ split between heat loss and accumulation, but it has not been possible to investigate this problem further within the project.

In the project, parameters of (larger or smaller) importance for heat accumulation have been systematically investigated, and their importance has been evaluated through literature studies, analysis of earlier investigations and new series of computer calculations. Through this work, some areas of lacking or insufficient information/documentation on usual hypotheses have been identified.

For practical design purposes some of these areas are:

- convective heat transfer between rooms,
- the influence of furniture,
- the influence of heating systems (eg floor heating),
- the split between heat transfer by radiation and convection,
- the influence of suspended ceiling and chocked-up floors,
- the heat penetration in the boundary surfaces.

The below-mentioned investigations are proposed as follow-up of this project:

1) Further parametric studies for different building constructions to validate the general use of the results as a design basis, respectively to define the limits of their validity.
2) Experimental studies to provide a number of key figures in the areas defined above.
3) Analysis of typical Danish houses in serial production to evaluate and optimize the use of thermal mass.
4) Dissemination of knowledge - drawing up of a design manual.

1. INDLEDNING

1.1 Baggrund

Et rums evne til at akkumulere den tilforte varme spiller en væsentlig rolle dels for udnyttelse af varmetilskud fra solindfald og anden intern varmelast, som forekommer uafhængig af det aktuelle varmebehov, dels for opretholdelse af stabile indetemperaturer i forbindelse med varierende varmetilskud. Varmeakkumuleringsevnen kan derfor have en betydelig indflydelse på bygningens samlede varmebehov. Forundersagelser viser, at en forggelse af den termiske masse vil kunne give en reduktion af opvarmningsbehovet på op til 15%.

Ved de fleste beregninger af bygningers årsvarmeforbrug fastsettes varmeakkumuleringens indflydelse imidlertid ved meget grove tilnarmelser. I energibehovberegninger foretaget efter SBI-rapport 148 "Beregning af energiforbrug i småhuse" indgår varmeakkumuleringstallet for forskellige konstruktioner, men er ikke særligt præcist bestemt, og selv ved anvendelse af storre EDB-programmer er en rakke forenklende forudsætninger nodvendige. Hovedproblemet ved anvendelsen af disse forenklinger er, at der foreligger meget lidt baggrundsmateriale, som belyser storrelsen af de fejl, som tilnærmelserne medforer i beregningerne. Endvidere er akkumuleringsevnen hidtil fortrinsvis blevet analyseret termisk på grundlag af et tomt rum med givne antagelser om modstandstal og materialekonstanter, mens fladerne i virkeligheden er mere eller mindre dækket af genstande, ligesom møbler påvirker varmekapaciteten og varmeoverfaringen til de enkelte flader.

1.2 Formail

Formålet med denne underspgelse er at tilvejebringe en lettilgængelig oversigt over de energiog komfortmæssige konsekvenser af ændringer i den termiske masse. Ønsket var at samle materiale til grundlag for en praktisk projekteringsvejledning til bestemmelse af den nødvendige termiske masse, til brug for arkitekter og ingeniører.

1.3 Gennemifrelse

Den eksisterende litteratur inden for området er blevet gennemgået, og på basis af denne gennemgang og tidligere indhøstede erfaringer på LfV og DTI, er der blevet foretaget en systematisk opstilling og vurdering af de faktorer, som er bestemmende for varmeakkumuleringens storrelse og indflydelse pá varmebehov og temperaturforlbb. Der er desuden udført folsomhedsanalyser for forskellige bygningskonstruktioner i et udvalgt rum. Rummet er blevet analyseret under forskellige betingelser, fx en meget let og en meget tung konstruktion for at vurdere yderpunkterne for energiforbrug og temperaturforhold. De andre parametre, som varieres (én ad gangen) er fx vinduesarealet, orienteringen, isoleringsstandarden, interne varmetilskud osv.

Beregninger udfores dels med EDB-programmet TSBI version 2.1 "Termisk simulering af bygninger og installationer" og dels med det amerikanske energiberegningsprogram BLAST. I appendix A er der en kort beskrivelse af EDB-programmer, dels en generel gennemgang af programmernes opbygning, dels en sammenligning af forskellige typer.

2. KONKLUSIONER

Et rums evne til at akkumulere den tilforte varme har indflydelse på, hvor meget af denne der kan udnyttes til at dække en del af varmetabet fra boligen og har stor betydning for, at der kan opretholdes en acceptabel rumtemperatur iforbindelse med et varierende varmetilskud.

Betydningen af et rums varmeakkumulerende evne for udnyttelse af solvarmen og dermed en reduktion af opvarmningsbehovet er anskueliggiort ved at sammenligne et meget let rum (gipsvagge på isoleret traskelet) og et tungt rum (10 cm beton). Rummet har almindelige termoruder og et acceptabelt indeklima med en rumluftemperatur, der så vide muligt ikke overstiger $24^{\circ} \mathrm{C}$.

Med et sydvendt vindue med et areal svarende til 15% af gulvarealet, vil opvarmningsbehovet være ca. 4% mindre i det tunge rum end i det lette. Øges vinduesarealet til 30% af gulvarealet, vil opvarmningsbehovet i det tunge rum vare 12% mindre end i det lette. Det skal dog bemærkes, at opvarmningsbehovet stiger i såvel det lette som det tunge rum, når vinduesarealet ages, fordi solindfaldet til tider bliver så stort, at en del må udelukkes for at kunne opretholde et acceptabelt indeklima. Når vinduesarealet oges fra 15% til 30% stiger opvarmningsbehovet med henholdsvis 9% og 18% for det tunge og lette rum. Hvis der stadig skal opnås en reduktion i energiforbruget, når vinduesarealet øges, er det nødvendigt samtidig at forbedre U-værdien, så varmetabet gennem glas, karm og ramme bliver mindre end det udnyttede solindfald.

Ved beregningerne er der regnet med et umøbleret rum. Varmekapaciteten i inventaret er uden betydning i det tunge rum, når der ses bort fra, at moblerne evt. kan dæmpe akkumuleringen ved deres isolering af den akkumulerende masse. I det lette rum vil inventarets akkumulering imidlertid kun have en lille betydning i påvirkningen af opvarmningsbehover. Ved 15% vinduesareal bliver opvarmningsbehovet således 3% mindre i det tunge rum end idet lette, og ved 30% vinduesareal bliver det 9% mindre. (Uden inventar var forskellen som angivet ovenfor henholdsvis 4% og 12%).

Når et rum får et internt varmetilskud fra lys, personer, installationer m.m., som delvis drekker en del af rummets varmetab, reduceres opvarmningsbehovet, og det viser sig, at forskellen i opvarmningsbehovet mellem et tungt og et let rum bliver større, fordi den samlede varmebelastning i det lette rum nu bliver så stor, at kun en mindre del af solvarmen kan udnyttes i det lette rum, hvis der skal opretholdes et acceptabelt indeklima. Ved 15% vinduesareal er opvarmningsbehovet 10% mindre i det tunge rum, og ved 30% vinduesareal er det 17% mindre, når der regnes med et standard varmetilskud fra personer og installationer, som angivet i SBI-rapport 148.

Det lette og tunge rum er blevet sammenlignet med et let rum forsynet med en enkelt tung flade (loft/gulv), samt et tungt gulv dækket af et tæppe. Resultaterne viser en stor effekt med blot én stor akkumulerende flade i rummet, også selv om fladen dækkes af et tæppe eller lignende. Energiforbruget vil i dette tilfælde ligge ca. midt mellem forbruget i det lette og tunge rum.

De termiske forhold i lokalet kan have afgørende indflydelse på opvarmningsbehovet, idet kravet til komforten ikke mindst i sommerperioden kan bevirke, at der geres foranstaltninger, som udelukker solvarmen mere eller mindre hele året og derved reducerer den passive solvarmeudnyttelse. Ved 15% vinduesareal stiger opvarmningsbehovet med henholdsvis 44% og 51% for et let og tungt rum, hvis al solvarmen udelukkes. Ved 30% vinduesareal stiger opvarmningsbehovet med henholdsvis 61% og 82%, hvis al solvarmen udelukkes. Det er derfor vigtigt, at solindfaldet ikke udelukkes mere end højst nødvendigt i opvarmningssæsonen.

I ovenstående beregninger er der taget hensyn til, at der i opvarmningssæsonen er et acceptabelt indeklima, idet rumtemperaturen kun overskrider $24^{\circ} \mathrm{C}$ i ganske fà timer. Ved vurderingen af akkumuleringens indflydelse på rumtemperaturen er der betragtet et rum i sommerperioden, hvor temperaturen har fået lov til at stige uden begrænsninger. Ved 15% vinduesareal fås en max. temperatur på henholdsvis $36,3^{\circ} \mathrm{Cog} 30,2^{\circ} \mathrm{C}$ for det lette og tunge rum. Forsynes det lette rum med blot én tung flade fx gulvet, bliver max. temperaturen $33,3^{\circ} \mathrm{C}$ dvs. en halvering af temperaturstigningen. Anbringes et tappe på det tunge gulv bliver max. temperaturen $33,7^{\circ} \mathrm{C}$. Tæppet ændrer således ikke den tunge flades akkumulerende indflydelse særlig meget.

Vinduesorienteringen har indflydelse på opvarmningsbehovet, idet dette stiger med 20-25\% for det øst/vestvendte vindue i forhold til det sydvendte ved 15% vinduesareal og med 25-38\% ved 30% vinduesareal. Akkumuleringens indflydelse på forskellen i opvarmningsbehovet for et let og tungt rum er stort set det samme som ved det sydvendte vindue. Selv om solindfaldet gennem et øst/vestvendt vindue er betydeligt mindre i opvarmningssæsonen, er det vigtigt, at der også i disse rum er tilstrækkelig akkumuleringsevne på grund af det meget store solindfald om sommeren.

Der er således to formål med at give et rum en tilstrakkelig varmeakkumulering:
at akkumulere solvarmen i dagtimeme til brug senere på døgnet, uden at rumtemperaturen stiger over komfortgrensen.
at dæmpe temperaturstigningerne i rummet, således at der ikke foretages foranstaltninger, der i opvarmningssæsonen udelukker det solindfald, som ellers kunne dække en del af opvarmningsbehovet.

Yderligere er der i projektet angivet nogle simple beregningsudtryk til beregning af dels døgnmiddeltemperaturen og dels amplituden. Beregnes amplituden med EDB-programmet TSBI 2.1 giver dette nogle mindre amplituder end overslagsberegningen. Dette kan skyldes, at der i overslagsberegningen er forudsat, at varmen akkumuleres i 50% af døgnet og afgives i de resterende 50%. Hvis der derimod i virkeligheden tabes 75% af den tilforte varme i den periode, hvor der sker en akkumulering, skal der kun akkumuleres 25%, og dermed kommer amplituderne, beregnet efter de to metoder, til at vare ens. En nærmere undersøgelse af dette forhold har der ikke været mulighed for inden for dette projekts rammer.

I analyseprojektet er der foretaget en systematisk gernemgang af faktorer af mulig betydning for varmeakkumuleringsevnen, og der er foretaget en vurdering af betydningen ud fra litteraturstudier, analyser af tidligere undersogelser og nye teoretiske beregninger. Herunder er der også afgrænset nogle områder, hvor der savnes oplysninger eller underbygning af påstande/sædvanlige antagelser. Et aktuelt eksempel er konvektiv varmeudveksling mellem rum, hvor de seneste undersøgelser fra National Bureau of Standards, USA, munder ud i et behov for nye måleprojekter.

For varmeakkumulering mangler der stadig tilstrekkelig viden vedrorende bl.a.:

- konvektiv varmeudveksling mellem rum
-- indboets betydning
- varmesystemers (især gulvvarmes) indflydelse
- forholdet mellem varmetransport ved stråling og konvektion
- betydningen af nedhængte lofter/opklodsede gulve (fx almindelige stragulve)
- varmens indtrængning i begransningsfladerne

Følgende projektiorslag kan fremsættes som en opfolgning af dette forprojekt:

1) Udvidede folsomhedsanalyser for forskellige bygningskonstruktioner for at sikre resultaternes generelle anvendelse som projekteringsgrundlag, hhv. afgranse deres gyldighedsområde.
2) Måleserier, som har til formål at fremskaffe praktiske nggletal på de mangelområder, som er nævnt ovenfor.
3) Analyse af danske typehuse med henblik på vurdering og optimering af varmeakkumuleringsevnen i projekteringsfasen.
4) Videnformidling - udarbejdelse af projekteringsvejledning.

3. STATUS ROR VIDEN

Dynamikken for termiske forhold i byggematerialer kan beskrives ved hjælp af fysiske og matematiske love. Da der imidlertid er mange variable, bliver beregningerne meget komplicerede og vanskelige at gennemfore. Ved opstilling af komplicerede modeller og tidsrom vende beregninger er det imidlertid muligt at gennemfore disse analyser, når der gores nogle antagelser om de variable, som ikke kendes fuldstændigt. Ved forenklinger og anvendelse af mere simple beregningsmetoder, er det ligeledes muligt at fat overblik over betydningen af de forskellige variable for et rums varmeakkumuleringsevne og termiske tilstand.
I det falgende skal der gares rede for de forhold der paivirker rummets termiske tilstand samt foretages en vurdering af den viden og de eventuelle mangler der foreligger pà området.

De variable kan inddeles i følgende hovedgrupper:

- termiske påvirkninger
- materialeegenskaber
- rummets geometri, orientering og placering af materialer
- tilladelige temperaturvaniationer
- valg af varmesystem

3.1 Termiske påvirkminger

En analyse af de termiske påvirkninger kan opdeles i varmebelastningeme og måden hvorpá disse tilfores rummet. Varmebelastningen fås fra udeklimaet og en intern varmebelastning fra personer, apparater, belysning osv.

3.1.1 Udeklimaet

Storrelsen af solindfaldet på en given flade og udetemperaturens variationer forudsættes i beregningerne at være velkendte storrelser, når referenceårets data benyttes (Andersen et al 1982). Det beregnede solindfald gennem et vindue kan dog godt vare behæftet med en vis usikkerhed, dels på grund af skyggevirkningen i vinduesåbningen fra gardiner og genstande og dels på grund af skyggevirkningen fra andre bygninger og beplantning omkring boligen (Schultz - 1989).

Udetemperaturen påvirker boligens varmebalance gennem transmissionstabet, men for den velisolerede bolig er disse termiske påvirkninger så kendte, at de ikke behover nærmere undersggelse i forbindelse med boligens akkumuleringsevne. Det samme gæider vindhastig. hedens indflydelse på varmetabet, selvom infiltrationstabets storrelse som funktion af vindpåvirkningen ikke er fuldt afklaret.

3.1.2 Intern varmelast

Størrelsen af den interne varmelast kan beregnes, men hvor stor en del der tabes umiddelbart og hvor meget der tilfares boligen er behæftet med en stor usikkerhed. Ved beregning af boligens energibehov til rumopvarmning kan den interne varmelast have stor betydning, idet denne normalt regnes tilfort og udnyttet af boligen primært, mens solvarmen derefter kan udnyttes til et evt. udakket varmebehov. Hvor stor den interne varmelast er i praksis, samt storrelsen af den del der kan udnyttes til dækning af boligens varmetab bor derfor undersøges nærmere.

3.1.3 Varmeoverfaring till bygningsflader

Varmen kan overfores til den akkumulerende flade, varmelageret, enten ved stråling eller via luften ved ledning og konvektion. Når varmen overfores til overfladen, varmes det yderste lag op og varmen trænger derefter ind i materialet. Temperaturstigningen og dermed hastigheden hvormed varmen ledes ind i materialet er bl.a. afhængig af materialets termiske egenskaber. En flades akkumuleringsevne er meget afhængig af om varmeoverfaringen sker på den ene eller anden måde. I tilfælde hvor varmen overføres ved stråling er der storre muligheder for at akkumulere varmen, uden at rumtemperatureme bliver for høje. I praksis vil varmeoverfrringen altid vare et samspil mellem de to former.

3.1.4 Varmeoverforing ved strailing

Når overfladen absorberer stralingen (fx solindfald) får den en hajere temperatur end omgivelserne og noget af varmen afgives til rumluften og de omgivende flader, mens resten ledes ind i materialet. Fordelingen er afhængig af om materialet er en god varmeleder og om det har en stor masse, der kan akkumulere varmen. Hvis dette ikke er tilfældet, bliver overfladetemperaturen hoj og en storre del af den absorberede varme afgives til rumluften. Det er kun en del af den solstråling, der rammer overfladen, der absorberes. En helt sort overflade absorberer 95%, mens en helt lys overflade kun absorberer 20% af solstrålingen.

Viden omkring varmeoverføring ved stråling er velkendt. Der er imidlertid i praksis en meget ujævn fordeling af solstrålingen til rummets flader afhængig af, hvorledes strålingen transmitteres gennem vinduet. Inventar kan ligeledes hindre strålingen i at ramme akkumulerende flader, og tæpper kan øge modstanden for varmeledning ind i det akkumulerende lag. Betydningen af disse forhold er uafklaret.

3.1.5 Varmeoverforing ved ledning og konvektion

Når der er en temperaturforskel mellem rumluften og overfladen, sker der en varmeveksling mellem luft og flade ved luftens bevægelse forbi fladen og ved varmeledning. Der vil være en modstand (overgangsisolans R) mod varmeoverføringen, som er afhængig af lufthastigheden, temperaturdifferensen og fladens orientering.

Viden omkring varmeoverforing ved konvektion er velkendt så længe varmevekslingen sker mellem rumluften og lokalets flader. I beregninger tages der ikke hensyn til temperaturgradienter i rummet og variationer iovergangsisolanserne og betydningen heraf er endnu ikke afklaret. I tilfælde, hvor der sker en varmeudveksling mellem flere rum fx gennem ăbenstående døre er der ligeledes uafklarede forhold omkring størrelsen og betydningen af denne varmeudveksling.

3.2 Bygnimgskonstruktionens indflydelse pai vamealkumuleringen

Materialekonstanterne har betydning for varmeakkumuleringsevnen. I appendix Ber angivet værdier for $\rho, \mathbb{C} \log \lambda$ for forskellige bygningsmaterialer.

Lagtykkelsen og periodelængden for varmepåvirkningen har ligeledes betydning for fladens akkumuleringsevne.

3.2.1 Temperatursvingninger

Når overfladen tilfores varme over en læagere periode, vil temperaturen på overfladen være stadig voksende, og hvis påvirkningen varer længe nok, vil materialet i hele væggens tykkelse blive opvarmet. I praksis sker påvirkningen i perioder, fx over et døgn, og vagtemperaturen vil derfor stige og falde i lobet af de 24 timer. Temperatursvingningen forplanter sig ind i materialet, men dæmpes jo længere den når ind, indtil temperaturen er konstant og lig overfladens middeltemperatur. Når temperaturen ikke ændres, sker der ingen varmeakkumulering, dvs. der er en granse for hvor stor en del af væggen der kan regnes med til den akkumulerende masse. Hvor meget der kan medregnes er afhrongig af materialekonstanterne og påvirkningens varighed (periodelængde). Normalt vil periodelængden være et dagn, men andre påvirkninger kan også forekomme (se bilag C).

En kolig gråvejrsperiode på en uge efterfulgt af en solskinsperiode vil bevirke, at der ud over de daglige svingninger, også er en periode over fx syv dogn hvor væggens middeltemperatur vil stige dag for dag. For denne ugepaivirkning vil der kunne medregnes en starre del af væggens tykkelse til den akkumulerende masse.

3.2.2 Eksempler med homogene vagge

Varmelagringen kan beregnes iflader af ensartede, homogene materialer, der påvirkes af en sinusformet, periodestationær temperatursvingning. I fig. 3.1-3.4 er angivet hvor meget varme der kan akkumuleres i $1 \mathrm{~m}^{2}$ vægflade, når luften ved væggen svinger $\pm 1 \mathrm{~K}$ i løbet af 24 timer. Varmepåvirkningen antages at ske samtidig på begge sider af væggen. Akkumuleringen fra hver side er angivet som funktion af hele vægtykkelsen. Det fremgår heraf, at det er begrænset hvor stor del af vægtykkelsen, der kan medregnes til den akkumulerende masse og at denne grænse varierer med de forskellige materialer.

Varmeakkumuleringen er meget athængig af overgangsisolansen. På figur 3.1-3.4 ses hvor stor betydning isolansen har for akkumuleringen.

Figur 3.1 Varmelagring fra begge sider i en betonvag ved en sinusformet svingning af lufttemperaturen på begge sider af vægfladen, med en periode på 24 timer (Brown og Partheen 1980).

Figur 3.2 Varmelagring fra begge sider i en teglvæg ved en sinusformet svingning af lufttemperaturen på begge sider af vægfladen, med en periode på 24 timer (Brown og Partheen 1980).

Figur 3.3 Varmelagring fra begge sider i en gasbetonvag ved en sinusformet svingning af luftemperaturen pả begge sider af vægfladen, med en periode på 24 timer (Brown og Partheen 1980).

Figur 3.4 Varmeakkumulering i en let konstruktion af plader med 100 mm isolering imellem, når luftemperaturen varierer sinusformet med periodelængden 24 timer; lufttemperaturen er konstant på den anden side og lig middelværdien af svingningen (Brown og Partheen 1980).

Ved naturlige luftbevægelser i rummet er isolansen $\mathrm{Rca} .0,3 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ for vægge og loft, mens den er ca. 0,6 for et gulv, der er koldere end luften.

Tilfældet med $\mathbb{R}=0$ svarer til, at overfladens temperatur direkte påtvinges en svingning på $\pm 1 \mathrm{~K}$, hvilket tilnærmelsesvis kan sammenlignes med at varmen tilfæres som stråling. Da en given strålingsintensitet, som rammer en væg, vil give en hajere temperatur på en let end på en tung væg, kan kurverne for $R=0$ ikke direkte anvendes til at sammenligne den lette og tunge vægs evne til at akkumulere strålingen, med mindre forskellen på overfladetemperatureme kendes.

Når overgangsisolansen vokser, forringes fladens evne til at akkumulere varmen, og denne forringelse er storst for de mest varmelagrende flader. Årsagen er, at temperatursvingningen i det akkumulerende lag dæmpes og at tykkelsen af det aktive lag bliver mindre. Ved konvektiv varmeoverforing kan kurverne pà figur 3.1-3.4 direkte anvendes til at sammenligne de lette og tunge vægges evne til at lagre varmen.

De teoretiske analyser gælder for simple tilfælde med homogene materialer og påvirkninger i form af en sinussvingning. I praksis er påvirkningerne mere komplicerede, idet de dels sker både ved konvektion og stråling og disse påvirkninger ofte er faseforskudt, og der sker en varmeveksling mellem fladen og omgivelseme. Endvidere er materialeme ikke homogene. Der er derfor et behov for en undersogelse af de forhold, som forekommer i praksis, sammenlignet med de teoretiske analyser.

3.2.3 Isolerende lag

Isolansen mellem rumluft og en overflade kan foroges ved at overfladen dækkes af et isolerende lag. Tunge akkumulerende flader bør derfor så vidt muligt have overfladen mod rumluften uisoleret.

Isolansen (\mathbb{R}) for nogle typiske overfladebelægninger er folgende:

1 cm kork	$0,12 \mathrm{~m} 2 \mathrm{~K} / \mathrm{W}$
1 cm filt (tappe)	$0,20 \mathrm{~m}^{2 \mathrm{~K}} / \mathrm{W}$
$0,5 \mathrm{~cm}$ linoleum	$0,03 \mathrm{~m}^{2 \mathrm{~K}} / \mathrm{W}$

Når varmen overføres ved konvektion ved en given temperatursvingning af rumluften, vil en forggelse af overgangsisolansen reducere temperatursvingningen på den akkumulerende overflade. Når varmen derimod overfares ved stråling, er den overfarte varmestram til overfladen ved samme absorption uafhængig af isolansen. Er fladen fx isoleret med et tæppe vil overfladetemperaturen blive væsentlig hajere end på en tilsvarende akkumulerende uisoleret flade. Det må derfor antages, at en mindre ændring i overgangsisolansen til det akkumulerende lag ikke har så afgørende betydning, når varmen overfores ved stråling, som når varmen overføres via luften. Der er dog behov for en mere detaljeret undersøgelse af isolerende lags indflydelse på akkumuleringsevnen, idet gulvet, som rammes af solstrålingen, ofte dækkes af tæpper.

3.3 Rummets geometri, orientering og placering af materialer

3.3.1 Varmefordeling og alkumulering

Rummets akkumuleringsevne er afhængig af om massen er placeret i en enkelt flade eller er ligeligt fordelt på alle flader. Flader der absorberer solstrålingen opvarmes i forhold til omgivelserne, og lette flader fx gardiner, mobler o.1. opvarmes mere end de tunge flader. De varme flader afgiver varmen til omgivelseme dels ved langbolget stråling (ca. 60%), dels konvektion (ca. 40%).
 sker på denne måde en udjævning af store temperaturforskelle mellem de enkelte flader. Temperaturniveauet vil derfor være afhængigt af fladernes samlede varmeakkumuleringsevne.

Varme som afgives til rumluften overiøres til koldere flader. Da den varme luft søger opad er det fortrinvis rummets øverste del der får tiffort varme ved konvektion. For en kold gulvflade er den konvektive varmeovergang mindre god, da den kolde luft bliver liggende ved gulvet. Overgangsisolansen er ca. dobbelt så stor ved gulvet som de gvrige flader.

Opvarmes gulvet af solen vil overgangsisolansen være som ved de øvrige flader og luften vil overfore varmen fra gulvfladen til koldere flader. En isolering af gulvet med et tæppe vil give en højere overfladetemperatur på tæppet. Akkumuleringen i gulvet vil være forringet, men en del af varmen overføres til andre akkumulerende flader på grund af tappets hojere temperatur.

Inventaret kan påvirke akkumuleringsevnen i både positiv og negativ retning. Varmefordelingen mellem rummets flader vil i et mableret rum blive påvirket af inventarets skyggevirkning, således at solstrålingen ikke længere rammer de akkumulerende flader. Inventaret forgger rummets termiske masse, men moblernes overflade opvarmes hurtigere og fordelingen af varme ved stråling og konvektion kan derved ændres. Betydningen af disse forhold for rummets akkumuleringsevne er uafklaret, idet der normalt regnes med rum uden inventar.

3.3.2 Solstrålingens fordeling till overfiaderne

Solstrålingen transmitteres gennem vinduet dels som direkte stråling som alene er nedadrettet, og dels som diffus stråling, hvoraf hovedparten kommer fra himmelen. Når strålingen rammer fladerne i rummet vil en del blive reflekteret og ramme andre flader. Den endelige fordeling af solstrålingen er derfor afhængig af de enkelte fladers reflektans.

Solhrjden og indfaldsvinklen for solstrålingen samt vinduets placering og rumdybden er bestemmende for, hvilke arealer i rummet der rammes af direkte sol.

På fig. 3.5 er vist et eksempel på hvorledes den direkte solstråling rammer rummets flader afhængig af tidspunkt på dag og år. Heraf ses, at kun et mindre areal rammes af strålingen, og at placeringen af dette areal varierer med årstiden.

I december og januar er det kun væggene eller indbo, der rammes af sol. For den øvrige del af opvarmningssasonen vil en stor del af strålingen ramme gulvet. Når vinduet går helt ned til gulvet er der en bedre mulighed for også at udnytte den forreste del af gulvfladen til akkumulering; og det er måske lettere at holde denne del af gulvet fri for skyggende genstande.

I et markt rum vil solstrålingen fortrinsvis blive absorberet i de flader som rammes af strålingen. I et lyst rum vil der ske en interrefleksion af strålingen mellem alle fladerne og strålingen bliver mere ligeligt fordelt på alle flader.

Den diffuse stråling vil hovedsagelig være nedadrettet, da storstedelen kommer fra himlen. Gulvfladen absorberer hovedparten af denne, dels på grund den morke farve og dels på grund af strålingsretningen. Absorptionen er dog ret ujævn over gulvfladen, og den forste tredjedel af arealet ved vinduet absorberer $3-5$ gange så meget som det avrige gulvareal.

Loftsfladen absorberer mindst solstråling pr. m^{2} flade, mens bagvæggen er den næstbedste absorberende flade.

Det er beregningsmæssigt muligt at bestemme hvorledes strålingen rammer rummets flader. Påvirkningen af de enkelte delflader vil vare faseforskudt og betydningen af dette for rummets samlede akkumuleringsevne er uafklaret.

Facade med vindue; lysningsdybde $=0,25 \mathrm{~m}$

a) Solbeskinnet areal d. 15. januar (26. nov.)

b) Solbeskinnet areal d. 15. marts (28. sept.)

c) Solbeskinnet areal d. 15. maj (28. juli)

Figur 3.5 Eksempler på solstrålingens vandring over et rums flader i lobet af dagen og året (Nielsen 1980b).

3.4 Tilladelige temperaturvaviationer

Storrelsen af den varmemængde, der kan akkumuleres i konstruktionerne, er i høj grad afhængig af de temperatursvingninger, der kan accepteres i rummet. I et rum, hvor temperaturen holdes konstant, kan der ikke akkumuleres varme.

Ved undersøgelser af rums akkumuleringsevne er det derfor nodvendigt at fastsætte nogle avre og nedre granser for rumtemperaturen, som evt. Kun overskrides i et givet tidsrum. Måden hvorpå temperaturen begrenses fx vha. øget luftskifte eller begransning i vamebelastningen ved hjælp af solafskærmning, skal ligeledes fastsættes.

Disse forhold kan styres beregningsmæssigt, men der mangler viden om hvorledes de teoretiske grenser, som anvendes i beregninger, svarer til dem der forekommer i praksis. Styringen af temperaturniveauet ved øget luftskifte fx ved naturlig ventilation gennem vinduesudluftning vil være meget usikker. Tilsvarende gælder for intervaller, hvori solafskærmninger anvendes. Disse forudsætningers rigtighed har især betydning for beregninger, som vedrører besparelser i en boligs energiforbrug til rumopvarmning.

3.5 Vallg af vamesystem

Valg af varmesystem og styring af dettes varmeafgivelse har betydning for de energibesparelser, der kan opnås ved at akkumulere overskudsvarme.

For det varmeafgivende system er dette lettest at opfylde, når det har mindst mulig treghed, en hurtig regulerbar varmeafgivelse og tilstrækkelig effekt. For nogle varmeproducerende systemer er det dog nodvendigt, at der er en vis traghed og akkumulering i systemet for at varmeproduktionen (fx i en gaskedel) kan ske med en hoj nyttevirkning. Et luftvarmeanlæg giver mulighed for en fordeling af varmen til andre rum i boligen, som ikke umiddelbart făr tilført solvarme. Gulvvarmeanlæg er træge i reguleringen og forvarmede, når de modtager solstrålingen, men betydningen af dette for solvarmeudnyttelsen er ikke afklaret.

Normalt forudsættes det, at varmeanlægget har en uændret nyttevirkning, når der er overskudsvarme, der udnyttes til rumopvarmning. Der mangler undersøgelser over hvorledes varmeanlæggets nyttevirkning påvirkes, når der ønskes en haj udnyttelse af overskudsvarmen.

4. BEREGNINGSTORUDSAETNINGER

Ved analysen af varmeakkumulering i boliger har det været nødvendigt at gøre en lang rakke forudsætninger for at afgrense området. Dette har resulteret i et valg af et rum, der er blevet analyseret under forskellige betingelser, om tyngde, vinduesareal, orientering, isoleringsstandard, med/uden internt varmetilskud, med/uden solindfald. I dette afsnit vil disse forudsætninger blive nærmere beskrevet.

4. 1 Valg af rummodel

Der er udvalgt et rum med henholdsvis en meget let og en meget tung konstruktion for at vurdere yderpunkterne for energiforbrug og temperaturforhold.

Dimensioner på rum

Det valgte rum er karakteriseret ved frigende geometriske dimensioner:

Bredde	$4,80 \mathrm{~m}$
Dybde	$4,50 \mathrm{~m}$
Rumhajde	$2,80 \mathrm{~m}$
Grundareal	$21,60 \mathrm{~m}^{2}$
Bagvæg- og facadeareal	$13,44 \mathrm{~m}^{2}$
Sidevægge	$12,60 \mathrm{~m}^{2}$
Volumen	$60,48 \mathrm{~m}^{3}$

Der er regnet med et vinduesareal på henholdsvis 15% og 30% af gulvarealet med et tilhørende glasareal på 65% :

15% vinduesareal	$3,24 \mathrm{~m}^{2}$
heraf: glas	$2,11 \mathrm{~m}^{2}$
\quad karm	$1,13 \mathrm{~m}^{2}$
30% vinduesareal	$6,48 \mathrm{~m}^{2}$
heraf: glas	$4,22 \mathrm{~m}^{2}$
karm	$2,26 \mathrm{~m}^{2}$

Den rene ydervæg excl. vindue bliver således:

Ren ydervæg (15% vindue)	$10,20 \mathrm{~m}^{2}$
Ren ydervæg (30% vindue)	$6,96 \mathrm{~m}^{2}$

Ruden er en tolagsrude med 12 mm luftmellemrum med en U-værdi på $3,0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ og karm med 55 mm træ svarende til en U-værdi på $1,6 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ (vinduets U-værdi er dermed 2,6 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$).

Der er sondret mellem et let rum (gipsvægge) og et tungt rum (betonvægge). Herudover er der lavet nogle enkelte beregninger med folgende tre vægtyper: tegl, letbeton, og træ for at
placere nogle kendte ofte benyttede byggematerialer i forhold til yderpunkterne. Rummet omgives af andre rum med samme temperaturforlob som det givne, således at ingen varmeudveksling finder sted med andre rum.

Isoleringsvardien er valgt således, at U-værdieme er de samme de forskellige steder, således at det er muligt at sammenligne de enkelte tilfælde.

Let rum

Alle indvendige vægge, gulve og lofter består af: $2 \times 13 \mathrm{~mm}$ gipsplade, 75 mm mineraluld, klasse $39 \operatorname{og} 2 \times 13 \mathrm{~mm}$ gipsplade.

Ydervæggen, regnet indefra, består af: $2 \times 13 \mathrm{~mm}$ gipsplade, $92,7 \mathrm{~mm}$ mineraluld, klasse 39 , og 100 mm teglmur, svarende til en U-værdi på $0,35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

Thught rom

Alle indvendige vægge, gulve og lofter består af: 100 mm beton.
Ydervæggen, regnet indefra, består af: 100 mm beton, $96,2 \mathrm{~mm}$ mineraluld, klasse 39 , og 110 mm teglmur, svarende til en U-værdi på $0,35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

Rum med teglvæg

Alle indvendige vægge, gulve og lofter består af: 110 mm teglmur (der er altså tale om en meget teoretisk konstruktion).

Ydervaggen, regnet indefra, bestå af: 110 mm teglmur, $91,8 \mathrm{~mm}$ mineraluld, klasse $39,0 \mathrm{~g}$ 110 mm teglmur, svarende til en U-værdi på $0,35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

Rum med letbetonveg

Alle indvendige vægge, gulve og lofter består af: 100 mm letbeton (altså også en noget teoretisk konstruktion).

Ydervæggen, regnet indefra, består af: 100 mm letbeton, $83,7 \mathrm{~mm}$ mineraluld, klasse 39, og 110 mm teglmur, svarende til en U-værdi på $0,35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

Rum ned treveg

Alle indvendige vægge, gulve og lofter bestå af: 22 mm traplade, 75 mm mineraluld, klasse 39 , og 22 mm træplade.

Ydervæggen, regnet indefra, består af: 22 mm træplade, $91,4 \mathrm{~mm}$ mineraluld, klasse 39,110 mm teglmur, svarende til en U-værdi på $0,35 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

Dimensionerende varmetab - 15% vinduesarcal

Transmission: $\Phi_{\mathrm{t}}=\mathrm{U} \cdot \mathrm{A} \cdot\left(\Theta_{i}-\Theta_{\psi}\right)$

Væg:
Vindue:
Ventilation:

$$
\begin{array}{ll}
0,34 \cdot(13,44-3,24) \cdot 32 & =114,2 \mathrm{~W} \\
2,6 \cdot 3,24 \cdot 32 & =269,6 \mathrm{~W} \\
\Phi_{\mathrm{V}}=0,34 \cdot \mathrm{n} \cdot \mathrm{~V} \cdot\left(\Theta_{i}-\Theta_{\nu}\right) & \\
0,34 \cdot 0,5 \cdot(4,8 \cdot 4,5 \cdot 2,8) \cdot 32 & =329,0 \mathrm{~W} \\
& =712,8 \mathrm{~W}
\end{array}
$$

Dimensionerende varmetah - 30% vinduesareal
Transmission:

Væg:	$0,35 \cdot(13,44-6,48) \cdot 32$	$=78,0 \mathrm{~W}$
Vindue:	$2,6 \cdot 6,48 \cdot 32$	$=539,1 \mathrm{~W}$
tilation:		$=329,0 \mathrm{~W}$
ensionerende varmetab		$=946,1 \mathrm{~W}$

Materialeparametre

Tabel 4.1 indeholder en liste over de termiske materialedata, der er benyttet i beregningerne:

ρ	Densiteten	$\mathrm{kg} / \mathrm{m}^{3}$
C	Den specifikke varmefylde	$\mathrm{J} / \mathrm{kgK}$
λ	Varmeledningstallet	W / mK

Tabel 4.1 Materialeparametre.

	ρ	C	λ
	$\mathrm{kg} / \mathrm{m}^{3}$	$\mathrm{~J} / \mathrm{kgK}$	W / mK
Beton	2300	880	1,6
Gips	800	1006	0,17
Letbeton, indvendigt	800	1000	0,26
Mineraluld, klasse 39	55	850	0,039
Tegl, indvendigt	1642	880	0,62
Tegl, udvendigt	1642	880	0,7
Træ	450	2500	0,12

Der er regnet med en absorptionskoefficient for kortbrlget stråing (solstråling) på $0,7 \mathrm{og}$ for langboilget stråling på 0,9 .

4.2 Reregningsvariationer

4.2.1 Orientering

De fire verdenshjømer nord, øst, syd og vest er blevet undersøgt med hovedvægten på den sydvendte orientering.

4.2.2 Isoleringsstandard

Som beskrevet tidligere er der i standardtilfældet benyttet en ydervæg med en U-værdi på 0,35 W/m² for begge vægkonstruktioner. Denne vardi er valgt ud fra $\mathrm{BR}-82$ ved at tage middelvardien for en tung væg ($0,40 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$) og en let væg ($0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$), idet det er nødvendigt at have den samme værdi for at kunne sammenligne. Herudover er der regnet med tolagsruder med en transmissionsfaktor på 0,76 (transmissionen af direkte stråling ved indstråling vinkelret på ruden (normalstråling)) samt en U-værdi på 3,0 W/m² K for ruden og $1,6 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for karmen.

For at se hvilken indflydelse det ville få på temperaturforholdene og energiforbruget at opfare huset som lavenergihus er der lavet nogle beregninger med en U-værdi for ydervæggen på $0,20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ og en trelagsrude med en transmissionsfaktor på 0,68 samt en U-værdi på 2,0 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ for ruden og $1,6 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for karmen.

4.2.3 Internt varmetilskud

I nogle tilfælde er beregningerne gennemfort med interne varmetilskud, idet det påvirker solvarmeudnyttelsen. Det interne varmetilskud er beregnet ved brug af SBI-rapport 148, idet der er regnet med at grundarealet for rummet på $21,6 \mathrm{~m}^{2}$ udgør 17% af arealet af et hus på $124 \mathrm{~m}^{2}$. Det interne varmetilskud er derfor sat til 17% of det, der er benyttet i SBI-rapport 148.

For et hell hus benyttes folgende værdier (side 26 i SBI-rapport 148) for varmetilskuddet:

Personer:	$21 / 2$ person $\cdot 640 \mathrm{kWh} /$ person/år	$=1600 \mathrm{kWh} / \mathrm{a} \mathrm{r}$
El:	80% af $4000 \mathrm{kWh} / \mathrm{ar}$	$=3200 \mathrm{kWh} / \mathrm{a} \mathrm{r}$
Varmt vand:	20% af $3000 \mathrm{kWh} / \mathrm{å}$	$=600 \mathrm{kWh} / \mathrm{ar}$
Samlet varme		$=5400 \mathrm{kWh} /$

Arealfaktor: $21,6 \mathrm{~m}^{2} / 124 \mathrm{~m}^{2}=0,174 \sim 17 \%$
Varmetilskuddet bliver således for det rum, vi regner på:
Varmetilskud: $\quad 0,174 \cdot 5400 \mathrm{kWh} / \mathrm{år} \quad=940,6 \mathrm{kWh} / \mathrm{å} \cdot \mathrm{rum}$

$$
=2,58 \mathrm{kWh} / \mathrm{dag} \cdot \mathrm{rum} .
$$

I SBI-rapport 148 er der givet et forslag til årsvariation for det interne varmetilskud, således at det daglige tilskud i vinterhalvåret ligger $5-15 \%$ over, og i sommerhalvåret $5-15 \%$ under gennemsnittet. I nærværende beregninger er der set bort fra denne fordeling og regnet med en konstant værdi for hele året.

Med hensyn til fordeling over døgnet er der regnet med, at tilskuddet fra kl. 24 til 8 udgør 25% af det daglige tilskud fra kl. 8 til 24 . Herudover er der undersøgt, hvilken indflydelse en halvering af varmetilskuddet ville give på energiforbruget. Resultaterne af effekttilforslen under disse forudsætninger er vist i nedenstående skema.

Internt varmetilskud	K1. 8-24	K1. 24-8
	W	W
SBI-rapport 148	143,2	35,8
50% af SBI-rapport 148	71,6	17,9

4.2.4 Intern masse

I nogle tilfælde er beregningerne gennemfort med intern masse, idet rummets varmekapacitet påvirkes af møbler og inventar. Den interne masse for et rum er fastsat, bl.a. ud fra materiale fra "Mål og vægt på møbler i proverum" (Statens Byggeforskningsinstitut - 1968) og sat ækvivalent til $15 \mathrm{~m}^{2}$ af 22 mm træ og $4,5 \mathrm{~m}^{2}$ of 150 mm træ.

4.2.5 Med/udens solindiald

For at vurdere, hvor stor en del af solindfaldet, der kan udnyttes til at dakke rummets varmetab, er der ved forskellige beregningskombinationer udfort beregninger over energiforbruget både med og uden solindfald. Der er anvendt strålingsdata fra referenceåret (Andersen et al.-1982).

4.2.6 Placering af tyngde

I nogle tilfælde er beregninger gennemfort for et let rum med tyngde lagt forskellige steder i rummet, dels i loftet, dels i både loft og gulv, idet rummets varmekapacitet dermed ændres. Yderligere er der udfør beregninger med tungt gulv med dække af tregulv på strøer eller med dække af kokostæppe for at se påvirkningen af disse foranstaltninger dels på energiforbruget dels på temperaturniveauet.

4.3 Varme- og udlufiningsstrategi

Der er gjort den antagelse, at varmeanlægget holder en temperatur på minimum $20^{\circ} \mathrm{C}$ i opvarmningssasonen fra 1 . oktober til 30 . april, og at overskudsvarmen fjemes, ved at vinduerne bliver åbnet, når temperaturen overstiger $24^{\circ} \mathrm{C}$ i samme periode. Der regnes dog med, at luftskiftet ikke kan blive storre end tre gange itimen, dvs. at temperaturen kan blive højere end $24^{\circ} \mathrm{C}$, hvis dette luftskifte ikke er tilstrækkeligt. Ventilation af den overskydende varme vil imidlertid kun foregå, hvis udeluftens temperatur er lavere end indelufttemperaturen. Disse antagelser er giort for at se, hvordan energiforbruget bliver under nogenlunde realistiske forhold.

For at vurdere temperaturvariationerne med tilhørende amplituder og dermed konstruktionens evne til at akkumulere varme, er der i sommerperioden 1. maj til 30 . september giort den antagelse, at luftskiftet er konstant med værdien 0,5 gange i timen.

5. BRREGNHNGSRESULTATCR

5.1 Folsomhedsanalyse af energiforbrug

Der er blevet foretaget nogle skon over, hvor folsomme de beregnede energiforbrug er over for ændringer i indgangsparametrene. Denne analyse refereres i det følgende. Analyser er udfort for et rum med henholdsvis en meget let og en meget tung konstruktion. I det lette rum består alle indvendige vægge, gulv og loft af gipsplader, mens de i det tunge rum består af beton. Rummet har et gulvareal på $21,60 \mathrm{~m}^{2}$ med et vinduesareal på hhv. $15 \% \operatorname{og} 30 \%$ af dette dvs. hhv. $3,24 \mathrm{~m}^{2}$ og $6,48 \mathrm{~m}^{2}$. Heraf udgør glasarealet 65% dvs. henholdsvis $2,11 \mathrm{~m}^{2}$ og 4,22 m^{2}. For yderligere oplysninger angående beregningsforudsætninger m.h.t. U-værdier, arealer og materialedata henvises til kapitel 4.

Luftskiftet er sat til 0,5 gange i timen hele året. De 0,5 gange i timen fremkommer som en kombination af infiltration gennem utætheder og bevidst ventilation ved jævnlig (kortvarig) vinduesåbning. Varmeforsyningen er afbrudt i sommerperioden (fra 1. maj til 30. september), mens varmeanlægget holder en temperatur på minimum $20^{\circ} \mathrm{C}$ i opvarmningssæsonen fra 1. oktober til 30 . april. Endvidere er giort den antagelse, at når temperaturen overstiger $24^{\circ} \mathrm{C}$ i samme periode, bliver vinduerne åbnet, hvilket giver anledning til et luftskifte på tre gange i timen. Ventilationen af den overskydende varme vil imidlertid kun foregà, hvis udeluftens temperatur er lavere end indelufttemperaturen. Disse antagelser er gjort for at se, hvordan energiforbruget bliver under nogenlunde realistiske forhold.

For at vurdere temperaturvariationerne med tilhørende amplituder er der i sommerperioden 1. maj til 30. september giort den antagelse, at luftskiftet er konstant, med værdien 0,5 gange i timen. Der finder ingen varmeudveksling sted med andre rum.

Resultatet af modelberegningerne er vist i nedenstående tabeller og figurer. Rummene er blevet analyseret under forskellige betingelser: orientering, med/uden solindfald, vinduesareal, tyngde, internt varmetilskud, forskellige vægtyper og variationer i luftskiftets størrelse. Beregningerne er foretaget med EDB-programmerne TSBI 2.1 og BLAST indeholdende det danske referenceår med vejrdata - TRY.

Først beregnes rummene uden intern varmelast, dernæst analyseres tilfældene med forskellige størrelser af interne varmetilskud.

5.1.1 Beregning af rum wden interm varmelasit

Tabel 5.1 Rum isoleret efter BR-82 med 15% vinduesareal uden intern varmelast varmebehovet er for opvarmningssesonen (1. okt.-30. april).

OPVARMNINGSBEHOV I kWh

	Let	I \% ift. lokale uden sol	Tung	I \% ift. lokale uden sol
Ingen sol	1854	100	1868	100
Syd	1290	70	1234	66
Øst	1536	83	1521	81
Vest	1550	84	1536	82
Nord	1680	91	1688	90

FORHOLD TIL SYDVINDUE I \%

	Let	Tung
Ingen sol	144	151
Syd	100	100
Øst	119	123
Vest	120	125
Nord	130	137

FORHOLD MELLEM ENERGIFORBRUG I \%

	Let	Tung
Ingen sol	100	101
Syd	100	96
Øst	100	99
Vest	100	99
Nord	100	101

Tabel 5.2 Rum isoleret efter BR-82 med 30\% vinduesareal uden intern varmelast varmebehovet er for opvarmningssesonen (1. okt.-30. april).

OPVARMNINGSBEHOV 1 kWh

	Let	I \% ift. lokale uden sol	Tung	I \% ift. lokale uden sol
Ingen sol	2447	100	2446	100
Syd	1523	62	1342	55
Øst	1889	77	1838	75
Vest	1903	78	1852	76
Nord	2120	87	2112	86

I FORHOLD TIL SYDVINDUE I \%

	Let	Tung
Ingen sol	161	182
Syd	100	100
Qst	124	137
Vest	125	138
Nord	139	157

FORHOLD MELLEM ENERGIFORBRUG I \%

	Let	Tung
Ingen sol	100	100
Syd	100	88
Øst	100	97
Vest	100	97
Nord	100	100

Tabel 5.3 Forhold mellem energiforbrug ($\mathrm{kWh} / \mathrm{ar}$) med 15% og 30% vinduesareal mod syd.

Let rum	
Vinduesareal	
15%	30%
1290	1523
100%	118%

Tungt rum	
Vinduesareal	
15%	30%
1234	1342
100%	109%

Som det kan ses af de foregående skemaer, er energiforbruget til rumopvarmning næsten ens i et let og et tungt rum med 15% vinduer - forskellen er fra 0,5 til $4,3 \%$ - alt efter orientering. Forudsatningen er, at vinduerne bliver åbnet, når temperaturen overstiger $24^{\circ} \mathrm{C}$, hvilket giver anledning til et luftskifte på maksimalt tre gange i timen. Ved 30% vinduesareal forøges energiforbruget, og forskel på let og tungt rum bliver storre - op till 12%. Grunden til, at energiforbruget stiger fra 15% til 30% vinduesareal, er bl.a., at glasarealet kun udgør 65% af det totale areal. Akkumuleringens betydning stiger med forøget vinduesareal. Jo større vinduesareal, jo tungere konstruktioner kræves (ved uændret ventilation), hvis man skal kunne udnytte solvarmen og dermed reducere energiforbruget til rumopvarmning.

Tabel 5.4 Opvarmningsbehovet i fyringssæesonen og maksimale temperaturer (sommerhalvår med luftskifte på $0,5 \mathrm{~h}^{-1} \mathrm{og}$ uden afskærmning).

		Opvarmningbehov		Max. temperatur	
		Vinduesareal		Vinduesareal	
		15\%	30\%	15\%	30\%
		$\mathrm{kWh} / \mathrm{a} \mathrm{r}$		${ }^{\circ} \mathrm{C}$	
SYD	let rum	1290	1523	36,3	46,7
	tungt rum	1234	1342	30,2	37,5
ØST	let rum	1536	1889	38,5	49,6
	tungt rum	1521	1838	31,8	39,6
VEST	let rum	1550	1903	40,0	52,5
	tungt rum	1536	1852	32,6	41,4
NORD	let rum	1680	2120	28,1	32,6
	tungt rum	1688	2112	24,4	28,2

Den maksimale temperatur kan forekomme urealistisk og vil næppe blive så høj i praksis, fordi den anvendte beregningsforudsætning på et naturligt luftskifte på $0,5 \mathrm{~h}^{-1}$ vil ændres, når temperaturniveauet stiger. Temperaturen fremtvinges her for at se akkumuleringens betydning for temperaturniveauet. I efterfflgende figurer er vist, hvor mange timer temperaturen er hhv. $16-20^{\circ} \mathrm{C}, 20-24^{\circ} \mathrm{C}$ osv., hvilket viser, hvor ofte der kan blive for varmt g forskellen på temperaturen iet let og tungt byggeri. I opvarmningssasonen er temperaturniveauet realistisk pga. den beskrevne udluftning.

Figur 5.1 Antal timer i sommerperioden, hvor temperaturen er inden for definerede intervaller ($16-20^{\circ} \mathrm{C}, 20-24^{\circ} \mathrm{C}$ osv.).

Figur 5.2 Antal timer i opvarmningssesonen, hvor temperaturen er inden for definerede intervaller ($16-20^{\circ} \mathrm{C}, 20-24^{\circ} \mathrm{C}$ osv.).

På figurerne ses, at det er muligt at holde et acceptabelt indeklima i opvarmningssesonen med et luftskifte på tre gange i timen, når temperaturen overstiger $24^{\circ} \mathrm{C}$. For sommerperioden ses temperaturniveauet ved hhv. 15% og 30% vinduesareal, når der er gort den antagelse, at luftskiftet konstant er 0,5 gange i timen.

Tabel 5.5 Relativt varmebehov i fyringssæsonen i \%. Referenceværdien (100%) svarer til et opvarmningsbehov på 1290 kWh for et sydvendt, let rum med 15% vinduer.

Rummodel	Vindues- orientering	Vinduesareal	
		15%	30%
Let	N	130	164
Tung	\varnothing	131	164
Let	V	119	146
Tung	V	118	142
Let	S	119	148
Tung		96	144
Let		118	
Tung			104

Sættes referenceværdien for det sydvendte lette rum til 100%, er det beregnet, hvor meget det relative opvarmningsbehov for fyringssæsonen er for rummene, når de orienteres mod de øvrige verdenshjørner.

Forskellen er væsentlig i rum med ensidig vinduesorientering, idet der spares ca. 30% ved at orientere det samme vindue mod syd i stedet for mod nord. Endvidere ses, at opvarmningsbehovet for 15% vinduesareal er mindre end for 30%, så samtidig med, at der bruges storre vinduesarealer, må vinduets U-værdi forbedres og evt. isoleres bedre om natten.

For de folgende resultater henvises til afsnit 4 angående beregningsforudsætninger.

Tabel 5.6 Varmebehovet i fyringssæsonen og maksimale temperaturer (sommerhalvår med luftskifte på $0,5 \mathrm{~h}^{-1}$ og uden afskærmning) for rum med vindue vendende mod syd.

Sydvendte vinduer	Opvarmningbehov		Max. temperatur (sommer)	
	Vinduesareal		Vinduesareal	
	15\%	30\%	15\%	30\%
	kWh/àr		${ }^{\circ} \mathrm{C}$	
Let rum uden solindfald	1854	2447	21,7	22,6
Tungt rum uden solindfald	1868	2246	20,8	20,9
Let rum	1290	1523	36,3	46,7
Tungt rum	1234	1342	30,2	37,5
Let rum med inventar	1277	1480	35,2	45,2
Tungt rum med inventar	1234	1342	29,9	37,4
Let rum med tungt gulv	1263	1428	33,3	41,9
Let rum med tungt gulv med strger	1255	1428	33,7	42,7
Let rum med tungt gulv med tappe	1255	1428	33,6	42,4
Let rum med tungt gulv og loft	1255	1393	32,2	40,0
Let rum - lavenergi	1053	1169	36,1	47,6
Tungt rum - lavenergi	988	1024	30,3	38,6

Som det kan ses af tallene for beregningen af det lette rum med hhv. tungt gulv, med tungt gulv med dække af tragulv på strøer og med tungt gulv med dække af tæppe har den farste varmeakkumulerende flade stor betydning.

For at se hvilken indflydelse bedre isolering (lavenergihusstandard) ville få på temperaturforholdene og energiforbruget, er der udfart nogle beregninger med en U-værdi for ydervæggen på $0,20 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ og en trelagsrude med en U -værdi på $2,0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for ruden. Som det ses af tallene i tabel 5.6 , er der ca. 6% forskel på energiforbruget i et let og tungt rum med 15% sydvendte vinduer, ca. 12%, når der er 30% vinduesareal, dvs. den akkumulerende masses betydning for en besparelse i energiforbruget er stort set den samme for lavenergilokalet. Besparelsen i energiforbruget ift. det oprindelig lette og tunge rum er for 15% vinduesareal ca. $18-20 \%$, mens det for 30% vinduesareal er ca. 24%.

5.1.2 Udnyttelse af solvamen iet let og tumgt rum uden intern varmelast

I nedenstående tabel ses storrelsen i \% af den transmitterede sol, som bruges til at dække opvarmningsbehovet i opvarmningssesonen i referencerummet uden intern varmelast, dvs. procent nyttiggjort solindfald.

Tabel 5.7 Størrelsen i \% af den transmitterede sol som nyttiggøres i opvarmningssæsonen i referencerummet uden intern varmelast.

	Vinduesareal		
		15%	30%
SYD	let	89	73
	tung	97	88
NORD	let	100	100
	tung	100	100
ØST	let	90	82
	tung	98	89
VEST	let	91	86
	tung	100	94

Akkumuleringens betydning stiger med forgget vinduesareal både mht. energiforbruget og overskudsvarmen. I det tunge rum kan solindfaldet næsten udnyttes 100% ved 15% vinduesareal mod syd. Når solindfaldet fordobles vil der i flere perioder blive tilfort mere varme, end der kan udnyttes, især for det sydvendte vindue. Ved pget vinduesareal er det især af betydning, at der er en god akkumulering, når det vender mod syd. For øst/vest vendte vinduer er det nødvendigt med stor akkumulering af hensyn til temperaturforholdene.

Jo større solindfaldet er i forhold til transmissionstabet, jo mindre af solvarmen kan udnyttes, da solvarmen ikke er jævint fordelt over opvarmningssæsonen. I eksemplet er 65% af vinduet glas og $35 \% \mathrm{karm}$, som ikke transmitterer solstråling. Det reducerede solindfald i forhold til transmissionstabet vil derfor gøre udnyttelsen større.

I det nordvendte rum er solindfaldet ikke storre, end at solvarmen kan udnyttes. For de øvrige orienteringer vil solindfaldet i perioder vare så stort, at en del af varmen må fjernes ved afskærmning eller udluftning for at undgå for høje temperaturer. Mod øst/vest bør konstruktionerne være så tunge som muligt for at undgå store temperaturamplituder om sommeren.

I nedenstående tabel fra projekteringsvejledningen (Passiv solvarme - Projekteringsvejledning - 1985) ses bruttosolindfaldet i opvarmningssæsonen gennem $1 \mathrm{~m}^{2}$ tolags rude, hvilket for de fire hovedretninger stemmer godt overens med de i dette projekt udforte beregninger.

Tabel 5.8 Solindfaldet (brutto) gennem tolagsrude i opvarmningssæsonen (i $\mathrm{kWh} / \mathrm{m}^{2}$).

Orientering fra syd	
$0^{\circ}(\mathrm{S})$	280
$\pm 30^{\circ}$	250
$\pm 60^{\circ}$	200
$\pm 90^{\circ}(\varnothing / \mathrm{V})$	140
$\pm 120^{\circ}$	100
$\pm 150^{\circ}$	80
$\pm 180^{\circ}(\mathrm{N})$	80

Det ses, at solindfaldet, som maksimalt kan udnyttes til rumopvarmning, for de øst- og vestvendte vinduer er ca. 50% ift. de sydvendte.

Mod syd er det samlede solindfald i opvarmningssæsonen næsten lige så stort som transmissionstabet. Den effektive U-værdi udtrykker balancen mellem varmetab og solindfald gennem et vindue. Når solindfaldet er større end varmetabet i opvarmningssasonen er den effektive U-værdi negativ.

I et lavenergihus er der et mindre varmetab, og derfor mere overskudsvarme, som må ventileres bort.

For lavenergihuset er det i opvarmningssæsonen nyttiggjorte solindfald procentvis af samme størrelse som det i tabel 5.7 viste, men i absolutte tal er besparelsen mindre.

5.1.3 Beregning af rum med intern varmelast

Idet man i praksis har interne varmelaster, undersøges nogle tilfælde i det falgende. Det inteme varmetilskud er beregnet ved brug af SBI-rapport 148 , idet der i denne rapport er givet et forslag til årsvariationen af tilskuddet - se afsnit 4.2.3. Dette svarer til hhv. $2,58 \mathrm{kWh} /$ $1,29 \mathrm{kWh}$ per døgn.

Tabel 5.9 Varmebehovet i fyringssæsonen og maksimale temperaturer (sommerhalvår med luftskifte på $0,5 \mathrm{~h}^{-1} \mathrm{og}$ uden afskærmning) for referencerum med vinduer vendende mod syd.

Sydvendte vinduer	Opvarmningsbehov		Max. temperatur (sommer)	
	Vinduesareal		Vinduesareal	
	15\%	30\%	15\%	30\%
	kWh/år		${ }^{\circ} \mathrm{C}$	
Let rum uden intern varmelast	1290	1523	36,3	46,7
Tungt rum uden intern varmelast	1234	1342	30,2	37,5
Let rum med stor intern varmelast	807	1060	41,6	50,8
Tungt rum med stor intern varmelast	728	879	35,4	41,6
Let rum med lille intern varmelast	1046	1292	39,0	48,8
Tungt rum med lille intern varmelast	966	1111	32,8	39,5

Et internt varmetilskud fra lys, personer mv. vil dække en del af varmetabet og dermed reducere opvarmningsbehovet. Når et rum får et internt varmetilskud øges forskellen på opvarmningsbehovet på et let og tungt rum og varmekapaciteten får større betydning. Ved 15% vinduesareal vil det tunge rum få reduceret opvarmningsbehovet med ca. 10% i forhold til det lette, og ved 30% vinduesareal vil forskellen på det tunge og lette rum være 17%.

5.1.4 Udmyttelse aff solvarmen i ef let og tungt rum med intern varmelast

Det er beregnet, hvor stor en del af den transmitterede sol, som bruges til at dække opvarmningsbehovet i et rum med sydvendt vindue og med intern varmelast. Der er regnet med, at den interne varme er påtvunget lokalet og bruges farst, og dernæst udregnes den procentdel, der bruges af solindfaldet til at dakke opvarmningsbehovet med.

Tabel 5.10 Størrelsen i \% af den transmitterede sol, som bruges til at dække opvarmningsbehovet på årsbasis for et sydvendt rum med hhv. stor og lille intern varmelast.

Sydvendte vinduer	Relativt vinduesareal	
	15%	30%
Let rum uden intern varmelast	89	73
Tungt rum uden intern varmelast	97	88
Let rum med stor intern varmelast	76	66
Tungt rum med stor intern varmelast	87	79
Let rum med lille intern varmelast	84	69
Tungt rum med lille intern varmelast	98	84

Udnyttelsen af solvarmen og dermed opvarmningsbehovets størrelse er afhængig af, hvor stor en del af solvarmen der fjernes for at undgå overtemperaturer. Hvis temperaturen frit havde kunnet stige over $24^{\circ} \mathrm{C}$ i opvarmningssæsonen, ville der være akkumuleret mere varme og forskellen mellem let og tung ville være større.

5.1.5 Beregning med ofte benyttede byggematerialer

Der er lavet nogle enkelte beregninger med folgende tre vægtyper: tegl, letbeton og træ som har en varmeakkumulering, der ligger imellem let og tungt rum, for at se hvilken indflydelse dette har på opvarmningsbehovet og temperaturforholdene, og for at få en korrelation mellem det lette og tunge rum og rum med mere normalt forekommende varmeakkumuleringsevne.

Tabel 5.11 Varmebehovet i fyringssæsonen og maksimale temperaturer for rum med vindue vendende mod syd.

Sydvendte vinduer	Opvarmningbehov		Max. temperatur (sommer)	
	Vinduesareal		Vinduesareal	
	15\%	30\%	15\%	30\%
	$\mathrm{kWh} / \mathrm{a}$ r		${ }^{\circ} \mathrm{C}$	
Let rum (gips)	1290	1523	36,3	46,7
Tre	1277	1494	35,3	45,6
Letbeton	1255	1429	33,7	42,8
Teg1	1240	1356	31,0	39,0
Tungt rum (beton)	1234	1342	29,9	37,4

Tabel 5.12 Varmebehovet i fyringssæsonen og maksimale temperaturer for rum med vindue vendende mod vest.

Vestvendte vinduer	Opvarmningbehov		Max. temperatur (sommer)	
	Vinduesareal		Vinduesareal	
	15\%	30\%	15\%	30\%
	kWh/år		${ }^{\circ} \mathrm{C}$	
Let rum (gips)	1550	1903	40,0	52,5
Tra	1550	1896	39,1	51,1
Letbeton	1536	1874	37,2	47,3
Tegl	1536	1867	33,9	42,9
Tungt rum (beton)	1536	1852	32,6	41,4

Som det ses af tabelleme, er energibesparelserne starst ved at bruge tunge materialer ved store vinduesarealer vendende mod syd. For vestvendte vinduer er besparelsen kun ca. 3\% ved 30\% vinduesareal.

For de øst/vestvendte vinduer gælder det, at disse får det storste solindfald om sommeren. Der er derfor storre risiko for overophedning end for de sydvendte.

5.2 Cuilsomhedsanalyse af temperaturiforhold

Udnyttelse af overskudsvarme og dermed reduktion af kobt energi til rumopvarmning er afhængig af hvor store temperaturvariationer man vil tolerere i rummet. En akkumulering af overskudsvarmen er betinget af, at der sker en temperatursvingning i rummet i forhold til varmelagerets temperatur, således at der kan optages og afgives varme til lagret. Jo mindre varmekapaciteten er i et rum, jo starre bliver temperatursvingningen ved en given periodisk varmebelastning fx solindfaldet gennem vinduerne. Af hensyn til indeklimaet kan det derfor vere nødvendigt at begrænse tilskudsvarmen og dermed udnyttelse af denne.

Der er derfor foretaget nogle beregninger på forskellige rum for at undersage, hvorledes forskellige forhold har indflydelse på temperaturvariationerne og hvor stor varmekapaciteten skal vare hvis tilskudsvarmen skal kunne udnyttes fuldt ud. Beregningerne er udfort på de samme rum som beskrevet i kap. 4, idet der især er lagt vægt på det lette og tunge rum. Beregningerne er foretaget i en karakteristisk periode (15. maj-20. juni) med en varierende solbelastning, som vist på fig. 5.3. Det naturlige luftskifte er fastsat til 0,5 gange i timen, og rumtemperaturen har fået lov til at svinge frit. De angivne temperaturer gælder for rumluften.

Figur 5.3 Degnsum af solindfald.

På baggrund af beregningerne er der forsagt opstillet en forenklet metode til bestemmelse af temperaturvariationeme i et rum til vurdering af, hvor stor et rums varmekapacitet skal være for at temperaturvariationeme kan holdes på et passende niveau.

Temperaturforholdene i et rum kan beskrives ved en drgnmiddeltemperatur og en temperatursvingning omkring middeltemperaturen.

5.2.1 Degnmiddeltemperaturen

Dognmiddeltemperaturen er givet ved rummets varmebalance, idet
tilfort varme $=$ varmetab + akkumuleret varme
Ved periodestationær tilstand, dvs. at der er indtrådt en termisk ligevægt i rummet efter at det igennem en periode på adskillige dagn har været udsat for den samme varierende termiske påvirkning, vil det lette og tunge rum have samme dagnmiddeltemperatur. Det betyder, at i begge tilfælde vil hele den varme, der akkumuleres om dagen, blive afgivet igen om natten.

Drgnmiddeltemperaturen er vist for det lette og tunge rum på fig. 5.4. I begyndelsen af perioden er solindfaldet pr. dagn meget varierende, mens det er stabilt fra den 6. juni. I en periode, hvor varmelageret varmes op, vil det lette rum have en hajere døgnmiddeltemperatur end det tunge, mens det omvendte er tilfældet i en afkolingsperiode, hvor det tunge rum bruger noget af den akkumulerede varme. Det skal bemærkes, at dggnmiddeltemperaturen i dette tilfælde er forsinket ca. 4 dggn for det tunge rum i forhold til det lette, men at de ellers opnår samme niveau. I dette tilfælde falder udetemperaturen inden det tunge rum kommer op på det lette rums temperatur. En pludselig variation i varmebelastningen vil påvirke det lette rums døgnmiddeltemperatur meget hurtigt.

Degnmiddeltemperaturer

Figur 5.4 Døgnmiddeltemperatur for det lette og tunge rum.

Selvom varmekapaciteten er 5 gange storre i det tunge rum end i det lette, vil akkumuleringen på døgnbasis være næsten den samme. Den manglende varmekapacitet i det lette rum kompenseres ved at varmelagerets temperatur i stedet for opvarmes så meget desto mere. I den stationære tilstand vil hele den akkumulerede varme blive afgivet igen i nattens løb.

I en opvarmningsperiode over adskillige døgn vil der dog blive oparbejdet et større varmelager i det tunge rum. På fig. 5.5 er vist et eksempel på størrelsen af den akkumulerede varme for de lette og tunge rum i en opvarmningsperiode i maj/juni måned.

Akkumulering af solvarme

Figur 5.5 Størrelsen af den summerede akkumulerede varme i 4 forskellige rum.

Udetemperaturens variation påvirker ligeledes døgnmiddeltemperaturen. På fig. 5.6 og 5.7 ses dognmiddeltemperaturen dels med solvarmebelastning fra forskellige vinduesstorrelser, og dels uden solindfald. Uden varmebelastning følger rummets dagnmiddeltemperatur næsten udetemperaturen. När vinduesarealet øges stiger solvarmebelastningen, men transmissionstabet gennem det storre vindue stiger samtidigt, så man fär ikke en stigning i døgnmiddeltemperaturen svarende til den forogede solvarme.

Figur 5.6 Dggnmiddeltemperaturens variation i let rum.

Figur 5.7 Døgnmiddeltemperaturens variation i tungt rum.

5.2.2 Tenaperaturamplituden

I den periodestationære tilstand vil dagnmiddeltemperaturen være konstant og rumtemperauren vil igennem døgnet svinge omkring middeltemperaturen. Svingningens storrelse kan beskrives ved hjælp af amplituden, som er 0,5 gange differensen mellem maksimum- og minimumtemperatur.

Amplitudens storrelse vil være afhrngig af varmebelastningen og hvor stor en varmekapacitet der er til rådighed til at akkumulere varmen. På fig. 5.8 og 5.9 er vist et eksempel på temperaturvariationen for det lette og tunge rum. Det ses at udetemperaturens variation næsten ikke har indflydelse på rumtemperaturens amplitude (ved luftskifte på $0,5 \mathrm{~h}^{-1}$). Derimod giver solindfaldet en vasentlig storre amplitude i det lette rum fordi varmelageret skal opvarmes til en højere temperatur for at få akkumuleret lige så meget varme som i det tunge rum.

Figur 5.8 Temperaturvariationen i let rum dels uden og dels med solindfald.

Figur 5.9 Temperaturvariationen i tungt rum dels uden og dels med solindfald.

Udetemperaturens variation har en stor indflydelse på storrelsen af rumluftens amplitude, når luftskiftet øges. Jo større luftskifte jo større amplitude. På fig. 5.10 er vist et eksempel på amplitudens variation som funktion af luftskiftet i det lette og tunge rum med 15% vindue. Når luftskiftet øges, vil dagnmiddeltemperaturen i rummet falde på grund af det øgede varmetab. Maksimumtemperaturen, som er en kombination af drgnmiddeltemperaturen og amplituden, vil derfor normalt blive mindre, når luftskiftet øges.

Figur 5.10 Endring af amplitudens storrelse som funktion af luftskiftets stomelse (12. juni).

Storrelsen af amplituden for rumluften er undersagt for de forskellige rumtyper, som beskrevet i kap. 4 og kap. 5.1, idet der er foretaget en sammenligning af de forskellige tilfælde. Resultatet er vist i figur 5.11. Det er da muligt at vurdere betydningen af en ændring i akkumuleringen, fx når gulvfladen eller loftsfladen i det lette rum udskiftes med en tung flade, eller når betongulvet dækkes af et kokostæppe eller et trægulv.

Figur 5.11 Temperaturamplituder for rum med samme varmebelastning, men forskellig opbygning (den 12. juni i referencearret).

5.2.3 Forenklet beregningsmetode till beregning af et rums temperatur

Den angivne metode er brugbar til overslagsberegninger til besternmelse af et rums temperatur ved en given varmebelastning. Ved mere nøjagtige beregninger er det nodvendigt at anvende de metoder der er beskrevet i appendix A.

Beregningen opdeles i 2 trin, idet der dels beregnes dagnmiddeltemperaturen og dels beregnes amplituden på temperaturen, som svinger omkring døgnmiddeltemperaturen. Beregningen af amplituden er følsom for valgt fordeling af varmetab over døgnet, jf. side 57.

Beregning af dognmiddeltemperatur

Drgnmiddeltemperaturen t_{m} kan beregnes af falgende udtryk:

$$
t_{m}=\frac{t_{u} \cdot B_{u}+t_{k} \cdot B_{k}+t_{1} \cdot B_{1}+Q / 24}{B_{u}+B_{k}+B_{1}}
$$

hvor: $t_{u}=$ dagnmiddeltemperaturen for udeluften
$B_{u}=$ varmetab gennem ydervægge $o g$ vinduer pr. K temperaturdifferens mellem inde og ude, dvs. summen af fladeareal x transmissionstal (U-værdi)

$$
B_{u}=\sum \text { areal } \cdot \mathrm{U}-\mathrm{værdi}
$$

$t_{k}=$ Temperaturen i naborum med konstant temperatur (fx korridorer)
$B_{k}=$ varmetab til naborum pr. K temperaturdifferens

$$
B_{k}=\text { vægareal } \cdot \mathrm{U}-\mathrm{v} æ \mathrm{rdi}
$$

$t_{1}=$ ventilationsluftens dognmiddeltemperatur. (Den er normalt lig udeluftens temperatur plus den temperaturstigning luften få, inden den tilfores rummet)
$B_{1}=$ varmetab ved ventilationen $\mathrm{pr} . \mathbb{K}$ temperaturdifferens mellem rumluft O ventilationsluft

$$
B_{1}=V \cdot C_{p} \cdot \rho \cdot n
$$

hvor $\mathrm{V}=$ rummets volumen
$C_{p} \cdot \rho=$ luftens varmefylde \cdot massefylde
$\mathrm{n}=$ luftskiftet
$Q \quad=$ summen af den varme, som tilfores rummet ilobet af et dogn fra personer, den kunstige belysning, solstråling og anden varmebelastning.

EKSEMPEL:

Døgnmiddeltemperaturen beregnes for sydvendt rum, med 15% vinduesareal med data som angivet i afsnit 4.1.

Heraf fås transmissionstabet $B_{u}=12,0 \mathrm{~W} / \mathrm{K}$ og og ventilationstabet $B_{1}=10,3 \mathrm{~W} / \mathrm{K}$, medens $\mathrm{B}_{\mathrm{k}}=0$. Varmebelastningen Q fra solindfaldet er $6,8 \mathrm{kWh}$ (d. 12. juni) og udeluftens middeltemperatur er $15,6^{\circ} \mathrm{C}$.

Heraf fås dagnmiddeltemperaturen

$$
\mathrm{t}_{\mathrm{m}}=\frac{(12,0+10,3) \cdot 15,6+6800 / 24}{12,0+10,3}=15,6+12,7=28,3^{\circ} \mathrm{C}
$$

Beregningen med EDB-programmet TSBI 2.1 gav for det lette rum $\mathrm{t}_{\mathrm{m}}=30,0^{\circ} \mathrm{C}$ og for det tunge rum $\mathrm{t}_{\mathrm{m}}=29,0^{\circ} \mathrm{C}$ dvs. en lidt højere temperatur, fordi rummet det dagn også får et litle varmetilskud fra varmelageret (på figur 5.5 er den summerede akkumulering fra 26/5-20/6 vist).

Beregning af amplituden

På grundlag af rummets varmekapacitet og varmebelastningen beregnes temperatursvingningen. Rummets varmekapacitet kan direkte beregnes ud fra materialeværdierne, idet varmekapaciteten M er

$$
M=A \cdot e \cdot \rho \cdot C
$$

hvor A er arealet, e er den aktive tykkelse, ρ er massefylden $\operatorname{og} \mathrm{C}$ varmefylden.
I beregningseksempleme har vi en varmekapacitet for henholdsvis det lette og tunge rum

let	$1,926 \mathrm{MJ} / \mathrm{K}$ eller	$0,535 \mathrm{kWh} / \mathrm{K}$
tungt	$10,34 \mathrm{MJ} / \mathrm{K}$ eller	$2,87 \mathrm{kWh} / \mathrm{K}$

Varmetilfarslen fra solindfaldet er $6,8 \mathrm{kWh}$ den 12 . juni og en del af denne varme akkumuleres i den ene halvdel af døgnet. Da der er periodestationær tilstand tabes de $6,8 \mathrm{kWh}$ i løbet af døgnet ved transmissions- og ventilationstab, og tabet er antaget jæunt fordelt over hele døgnet. Dvs. halvdelen tabes i den periode, hvor der sker en akkumulering, og der skal således kun akkumuleres $3,4 \mathrm{kWh}$.

Hvis det antages at hele rummets masse opvarmes, kan temperaturstigningen beregnes som tilfort varme/varmekapacitet. For at akkumulere $3,4 \mathrm{kWh}$, skal det lette og tunge rum derfor opvarmes henholdsvis $3,4 / 0,535=6,4^{\circ} \mathrm{C}$ og $3,4 / 2,87=1,2^{\circ} \mathrm{C}$.

I virkeligheden er der en overgangsisolans til varmelageret, som reducerer varmelagringen.
Da varmelagringen bl.a. er afhængig af vægtykkelsen og overgangsisolansen, kan en bedre vardi findes ved anvendelse of fig. 3.1-fig. 3.4.

Kurverne gælder for en væg, der påvirkes fra begge sider, dvs. indvendige bygningsdele. I eksemplet udgør de indvendige flader $81,8 \mathrm{~m}^{2}$ medens facadevæggen udgar $10,2 \mathrm{~m}^{2}$. I facadevæggen anvendes den fulde tykkelse af det akkumulerende lag.

Varmeoverføringen til rummet sker både ved stråling og konvektion, så overgangsisolansen regnes at være $0,13 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$. Pà fig. 3.1 -fig. 3.4 aflæses varmelagringen pr. m^{2} overflade og pr. K , idet varmelagringen i de indvendige vagge er den halve værdi for den angivne vægtykkelse (påvirkning fra begge sider).

For de forskellige rumtyper fảr vi da folgende amplituder:

EKSEMPLER:

Tungt rum, 10 cm beton

Indervægge $81,8 \cdot 35 \cdot 0,5=$
Facadevæg $10,2 \cdot 35=$
I alt
Når der skal akkumuleres $3,4 \mathrm{kWh}$ bliver amplituden altså $3,4 / 1,79=1,9 \mathrm{~K}$.
Flere eksempler

Rum med 11 cmat tegl

Indervægge $81,8 \cdot 27 \cdot 0,5=$
Facadevæg $10,2 \cdot 27=$
I alt
$0,28 \mathrm{kWh} / \mathrm{K}$
$1,38 \mathrm{kWh} / \mathrm{K}$
Amplitude: $3,4 / 1,38=$

Rum med 10 cm letbeton

Indervægge $81,8 \cdot 12,6 \cdot 0,5=$
Facadevæg $10,2 \cdot 12,6=$
I alt
$0,52 \mathrm{kWh} / \mathrm{K}$
$0,13 \mathrm{kWh} / \mathrm{K}$
$0,65 \mathrm{kWh} / \mathrm{K}$

Amplitude 3,4/0,65 $=$
Let rum, 26 mm gips
Indervagge $81,8 \cdot 5,2=$
$0,425 \mathrm{kWh} / \mathrm{K}$
Facadevæg 10,2 5 ,2 $=$
$0,053 \mathrm{kWh} / \mathrm{K}$
I alt =
$0,48 \mathrm{kWh} / \mathrm{K}$
Amplitude $3,4 / 0,48=$
$7,1 \mathrm{~K}$

En sammenligning med amplituderne beregnet med TSBI for disse rum viser en stor uoverensstemmelse, idet amplituderne i TSBI-beregningerne kun er halvt så store som i ovenstående beregninger. Dette kan skyldes, at der i denne overslagsberegning er forudsat, at varmen akkumuleres i 50% af dagnet og afgives i de resterende 50%. Hvis derimod der tabes 75% af den tilforte varme i den periode, hvor der sker en akkumulering (solindfald i 18 timer/dag om sommeren), skal der kun akkumuleres 25%, og dermed kommer amplituderne, beregnet efter de to metoder, til at være ens. Det kan konkluderes, at metoden til beregning af amplituden ikke er færdigudviklet, idet den er meget falsom for valgt fordeling af varmetabet over døgnet og dermed storrelsen af akkumuleringen af den tilforte varme. Der mangler således en enkel måde til at vurdere denne fordeling. En nærmere undersggelse af problemet har der imidlertid ikke været mulighed for inden for dette projekts rammer.

6. LITTERATURLISTE

Adamson, Bo \& Bengt Eftring - 1979:
"Design of low-energy houses"
Lund Institute of Technology
Report BKL 1979:6
Aggerholm, Søren - 1982 :
"Dynamiske temperaturforhold i uventilerede lokaler"
Laboratoriet for Varme- og Klimateknik
Danmarks Tekniske Hejskole
Aggerholm, Saren - 1985a:
"Dynamiske temperaturforhold i bygninger"
Laboratoriet for Varme- og Klimateknik
Danmarks Tekniske Hgjskole
Aggerholm, Søren - 1985b:
"Energikatalog med typiske simuleringsresultater for kontorbygninger"
Laboratoriet for Varme- og Klimateknik
Danmarks Tekniske Højskole
Andersen, Bo et al. - 1982:
"Vejrdata for VVS og energi - Dansk referenceår TRY"
Statens Byggeforskningsinstitut
SBI-rapport 135
Brown, Gösta \& Klas Partheen - 1980:
"Värmelagring og temperatur i väggar og bjälklag vid rumstemperatursvängninger" SP-rapport 1980-13

Byggestyrelsen - 1982:
"Bygningsreglement" (BR-82)
Borresen, Bent A - 1972:
"Varmelagring i bygningskonstruksjoner"
Institutt for VVS
NTH
Christensen, Jørgen - 1983:
"Regulering og indregulering af storre varmeanlæg"
Statens Byggeforskningsinstitut
SBI-rapport 143
Christensen, Jørgen Erik - 1984:
"BLAST - EDB-program til beregning af passiv solvarme"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hajskole
Meddelelse nr. 165

Christensen, Jørgen Erik - 1985:
"BLAST - Introduktion til RECAU og BLAST"
Laboratoriet for Varmeisolering
Danmarks Tekniske Højskole
Rapport nr. 85-12
Christensen, Jørgen Erik - 1987:
"EDB-Programmer til beregning af passiv solvarme"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hojskole
Meddelelse nr. 185
Dansk Ingeniørforening - 1986:
"DS 418 - Regler for beregning af bygningers varmetab", 5. udgave
Normstyrelsens publikationer NP-186-S, 1986
Dansk Standard - 1986:
"Termisk miljø"
DS/ISO 7730
Djurtoft, R.G. - 1984:
"Tidskonstanter for huse"
i Aktuel energiforskning, Laboratoriet for Varmeisolering
Meddelelse nr. 150, pp. 40-56
Djurtoft, R. G. - 1984:
"Tidskonstanters betydning for husets energiforbrug"
i Aktuel energiforskning, Laboratoriet for Varmeisolering
Meddelelse nr. 150, pp. 73-82
Engelund Thomsen, Kirsten \& Christensen, Jørgen Erik - 1988:
"Analyse of varmeakkumuleringsevnen for boliger - Litteraturstudium"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hojskole
Rapport nr. 88-16
Grau, Karl et al. - 1985:
"Brugervejledning for EDB-programmet tsbi -
Termisk simulering af bygninger og installationer"
tsbi, version 2.1
Statens Byggeforskningsinstitut
Hittle, Douglas C. - 1981:
"Calculating Building Heating and Cooling Loads using the Frequency Response of Multilayered Slabs"
U.S. Army Construction Engineering Research Laboratory Champaign, Illinois, USA

Report CERL-TM-E-169
Isfält, Engelbrecht - 1972:
"Värmelagringseffekter i byggnader"
Kungliga Tekniska Högskolan

Jensen, Niels Mejlhede - 1982:
"Solopvarmning gennem vinduer"
Laboratoriet for Varmeisolering
Danmarks Tekniske Højskole
Meddelelse nr. 124
Jensen, Niels Mejlhede - 1983:
"Birkerød Solhus - Beregninger og målinger"
Laboratoriet for Varmeisolering
Danmarks Tekniske Højskole
Meddelelse nr. 145
Johnsen, Kjeld \& Anker Nielsen - 1984:
"Beregning af energiforbrug i småhuse"
Statens Byggeforskningsinstitut
SBI-rapport 148
Jørgensen, Ove - 1983:
"Analysis Model Survey"
Task VIII - Passive and Hybrid solar low energy buildings
International Energy Agency - Solar heating and cooling programme
Thermal Insulation Laboratory
Technical University of Denmark
Report no. 143
Kommissionen for de Europæiske Fællesskaber - 1983:
"Europæisk Passiv Solvarme Håndbog"
Generaldirektoratet XII for Videnskab, Forskning og Udvikling
(EKSF, EØFF, EURATOM, Bruxelles og Luxemburg)
Laboratoriet for Varmeisolering
Laboratoriet for Varmeisolering - 1984:
"Aktuel Energiforskning - Laboratoriet for Varmeisolering 1959-1984"
25 -års jubilæumsskrift
Laboratoriet for Varmeisolering
Danmarks Tekniske Hrjskole
Meddelelse nr. 150
Mørck, Ove - 1985:
"Modelling and Simulation of Solar Heating Systems"
Laboratoriet for Varmeisolering
Danmarks Tekniske Højskole
Meddelelse nr. 170
Mørk, Preben - 1984:
"Tidskonstanter for rum og bygninger, Forundersogelse"
Statens Byggeforskningsinstitut
SBI-meddelelse nr. 94
Nielsen, Anker - 1980a:
"Beregning af solbeskinnet areal i et rektangulært rum med et vindue"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hajskole

Nielsen, Anker - 1980b:
"Vinduets betydning for enfamiliehuses energiforbrug"
Laboratoriet for Varmeisolering
Danmark Tekniske Højskole
Meddelelse nr. 105
Nielsen, Anker - 1981:
"Enfamiliehuse med glasbeklædte uderum - En analyse af energiforbrug"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hrjiskole
Meddelelse nr. 113
Olsen, Lars - 1986:
"Solvægge - målt og beregnet"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hojskole
Meddelelse nr. 167
"Passiv solvarme - Projekteringsvejledning" - 1985:
Teknologisk Institut - Varmeteknik
Danmarks Tekniske Hojskole - Laboratoriet for Varmeisolering
Energiministeriets solvarmeprogram - Rapport nr. 30
Schultz, Jørgen M. - 1987:
"Generelt edb-program til beregning af skyggearealer på plane flader"
Laboratoriet for Varmeisolering
Danmarks Tekniske Hojskole
Rapport nr. 87-26
Statens Byggeforskningsinstitut - 1968:
"Mâl og vægt på møbler i preverum"
Internt materiale
Therkelsen, P. - 1985:
"Dimensionering af radiatorer under hensyntagen til genopvarmning efter natsænkning"
Ramball \& Hannemann
Thorshauge, Jørgen - 1985:
"Indeklimaproblemer efter natsænkning"
Crone \& Koch
Weiczynski, Jan - 1977:
"The influence of heat transfer coefficients of indoor climate" Royal Institute of Technology
Heating and Ventilating

APPENDIX A- KORT BESKRIVELSE AF EDB-PROGRAMMER

EDB-programmer til analyse af varmeakkumuleringsevnen i boliger er en forudsætning for, at det kan lade sig gøre at undersoge en lang rakke alternativer i forhold til hinanden. Dette er ikke muligt med målinger alene, da disse er meget tidskravende og dyre at udfore.

Det er imidlertid en fordel at udifre målinger parallelt, for at kume vurdere de beregnede resultater og for at undersoge specielle forhold, der ikke kan lade sig gare med EDB-programmer.

EDB-programmerne benytter en varmebalance ved simuleringen af indeklimaet og energiforbruget. De kilder, der indgår i denne varmebalance, er illustreret ifigur A1. For denne balance skal der til ethvert tidspunkt gælde, at den til rummet tilforte varme er lig med bortfort varme, idet der medregnes den varmemængde, der tilfores eller afgives fra varmeakkumulerende bygningsdele.

Figur A1. Skematisk figur, der illustrerer de forskellige kilder, der indgår i varmebalancen.

Beregningsresultaterne deles op it to kategorier:
Stationære metoder
Ikke-stationære metoder

Stationare forhold

Under stationære forhold udtrykker et rums varmebalance, at den tilforte varme er lig den tabte. De helt enkle metoder til beregning af bygningers energiforbrug har traditionelt været baseret på stationære betragtninger, fx graddagnsmetoden.

Der findes også bedre beregningsmetoder for beregning af energiforbrug i småhuse (SBI-rapport 148 er et eksempel på en sådan metode). Den er stationzer, men tager hensyn til solindfald, internt varmetilskud og boligens varmeakkumuleringsevne.

Imidlertid er det ved en undersøgelse af nærværende karakter meget vigtigt at benytte en ikke-stationær beregningsmetode, da varmeudvekslingen med varmeakkumulerende konstruktioner er af ikke-stationær karakter. Disse erfaringer kan derefter i forenklet form overfores til stationære metoder. Det var en ikke-stationær model, der blev anvendt ved udarbejdelsen af SBI-rapport 148.

Hkke-stationære forhold

Ved beregning af varmebalancen i et rum under ikke-stationære forhold er det nodvendigt at tage hensyn til varmeakkumuleringen i bygningskonstruktionerne. Dette gares i de fleste tilfælde ved at benytte diskrete beregningsmetoder, hvilket vil sige, at tiden deles op i tidsstep på maksimalt en time. Denne beregning kræver losning af et ligningssystem, der repræsenterer al varmeudveksling i rummet. Dette betyder i den simpleste form en ligning for rumluften og en for hver overflade.

1 EDB-programmer til simulering af termisk indeklima regnes der normalt endimensionalt ved beregningen af den instationare varmeledning for en væg. Dette medforer, at detaljerede undersøgelser af problemstillingen med flerdimensionale varmestrømme ikke kan løses med disse programmer, hvorfor der mả henvises til specielle analyseprogrammer.

Beskrivelse af CDB -programmer

EDB-programmer til beregning af termisk indeklima udfører beregninger på baggrund af bygningers konstruktive og geometriske opbygning og vejrdata for den givne lokalitet. Vejrdata findes på timebasis og indeholder oplysninger om udetemperaturer, solindfald og vindforhold. Programmerne regner med tidsstep på en time eller mindre. I de tilfælde, hvor der regnes med flere tidsstep pr. time, regnes vejrdata konstante inden for den givne time. Programmerne anvender enten internationalt anerkendte formater for de indgående vejrdata: TRY, TMY, SOLMAT etc. eller specielle formater, der ferst må konverteres fra de kendte formater.

Programmerne kan deles op i tre hoveddele:

1. Beregning af temperatur og nettoenergiforbrug
2. Beregning af ventilationssystem
3. Beregning af centralvarme/koleanlæg

I nogle programmer sker beregningen af de tre hoveddele itre separate beregningsstep; i andre sker det simultant. Den sidste lasningsmetode er den mest korrekte, men gør samtidig også sammenkædningen of lasningsalgoritmerne mere kompliceret.

I nærværende analyse af varmeakkumuleringsevnen er det kun den frrste hoveddel, der har interesse, hvorimod beregningen af ventilationssystemer og centralvarme/koleanlæg ligger uden for rammerne. I beregningen af den første del af temperatur- og nettoenergiforbrug er det specielt beregningen af den instationære varmeledning for bygningskonstruktionerne og fordelingen af solindfaldet på disse, der har interesse.

Beregningen af begge disse forhold er tidskrævende, hvorfor der foretages en rakke simplificeringer for at nedbringe regnetiden. Inden disse bliver beskrevet, vil de programmer, der har varet på tale at anvende i dette projekt blive præsenteret.

TSBI	Statens Byggeforskningsinstitut
SUNCODE	USA
BLAST	USA
ESP	Storbritannien

I tabel A1 er de vigtigste oplysninger om de fire programmer samlet, idet der er sondret imellem om programmet ligger på en personal computer (PC), en mellemstor computer (Mini) eller en stor computer (Main Frame).

Tabel A1. Hovedoplysninger om programmer.

	Grundmodel		Solindfald		Computer PC/MMNI/ MAN	Anvendelse: Kommerciel - K Forskning - F Passiv solvarme - PA	Antal rum med/uden varmendveksling		Temp. og nettoenergi-TN Ventilationssystem - V Centralvarme/kpleanlag - C
	For- enkset	Detaljeret	For- enklet	Detal- jeret					
							Med	Uden	
TSBI	X		X		PC	K	-	1.	TN +V
SUNCODE		X	X		PC	$\mathrm{K}+\mathrm{F}+\mathrm{PA}$	10	10	TN
BLAST		x		X	MAIN	$\mathrm{F}+\mathrm{PA}$	20	100	$\mathrm{TN}+\mathrm{V}+\mathrm{C}$
ESP		x		X	MINI		10	10	TN+V+C

TSBI
TSBI er udviklet på Statens Byggeforskningsinstitut og er i version 2.1 baseret på en simpel termisk model for et rum. Modellen tager hensyn til den termiske varmekapacitet og de dynamiske varmeudvekslinger mellem: rumluft - ventilationsluft - overflader - bygningsdele og udeluft. Forenklingerne i grundmodellen går i hovedtrak ud på, at alle indvendige overfladetemperaturer regnes ens og beregningen af den instationære varmeledning i væggene bliver foretaget ved at indføre fiktive, uendeligt tynde varmeakkumulerende lag med samme temperatur. Disse lag beskriver herefter rummets varmekapacitet.

Detaljerede grundmodeller

I SUNCODE, BLAST OG ESP benyttes der detaljerede grundmodeller til beregning af den instationære varmeledning i de varmeakkumulerende lag. Grundlaget for disse programmer er en matematisk model af rummene i bygningen som et termisk system. Varmebalancen for hvert rum bliver udregnet på timebasis inkluderende en strålings-", konvektiv- og varmeledningsbalance for hver overflade og en varmebalance for rumluften i hvert rum. Denne varmebalance inkluderer varmeudveksling mellem de enkelte rum.

ESP var på det tidspunkt, hvor projektet blev påbegyndt, ikke implementeret på Laboratoriet for Varmeisolering og kunne derfor ikke benyttes i projektet. Interessen samlede sig derfor om BLAST Og SUNCODE.

BLAST kontra SUNCODE

Da valget stod mellem BLAST og SUNCODE var det af interesse at vurdere de fordele og ulemper, der er ved programmerne. Dette er sket ved at se på modelopbygning og beregningsteorien bag dem.

En af de grundlæggende forskelle mellem programmerne er beregningen af den instationzre varmeledning i bygningskonstruktionerne. Denne udfores ved diskrete beregningsmetoder, hvor tiden deles op i tidsstep på maksimalt en time. Herved fremkommer et ligningssystem, der repræsenterer al varmeudveksling i rummet.

Losning af instationzer varmeledning

Lasning af problemstillingen for den instationære varmeledning lases i BLAST Og SUNCODE på to principielt helt forskellige måder:

$$
\begin{array}{ll}
\text { Responsfaktormetode } & \text { - BLAST } \\
\text { Differensmetode } & \text { - SUNCODE }
\end{array}
$$

Responsfaktormetodle. Princippet i metoden går ud på, at responsen fra et system, fx en væg, undersoges efter påtrykning af en trekant-enhedsimpuls. Denne trekant-impuls består af en ændring af overfladetemperaturen på en grad på væggens overflade og varer to timer. Ideen ved metoden er herefter, at væggen påtrykkes en enheds-temperaturimpuls på den venstre overflade og ingen på den hajre overflade. Dette giver et ligningssystem med fire parametre: to kendte temperaturer og to ubekendte varmestromme. Lasningen af dette system giver responsen fra væggen i form af responsfaktorer.

Differensmetoder kan deles i eksplicitte og implicitte metoder. Ved de eksplicitte metoder lases en ligning for hver af de ubekendte parametre i flere ligninger. I SUNCODE benyttes en eksplicit metode og i ESP en implicit metode. Princippet for beregningen er, at Fouriers varmeledningsligning omformes til en differensligning. Dette sker ved at inddele den væg, hvori det ønskes at få beregnet temperaturforlobet i et antal netpunkter (differens netpunkter).

Fordelen ved responsfaktormetoden er, at den er hurtig, når forst responsfaktoreme er regnet ud (de kan ligge i et bibliotek). Til gengæld er det ikke muligt at finde temperaturforlobet gennem væggen, da det kun er temperaturer og varmestromme ved overflader, der kendes. Herudover kan tidssteppet på en time i BLAST ikke umiddelbart ændres.

Ved anvendelse af differensmetoden er det muligt at få udskrevet temperaturforlabet gennem væggene ved angivelse af det antal netpunkter, der har interesse. Desuden kan brugeren i SUNCODE selv vælge tidssteppet, idet der dog er et minimum antal af tidsstep, der skal benyttes for at det eksplicitte tidskriterium er opfyldt.

Greometrio

I BLAST er der mulighed for et højt detaljeringsniveau, hvor geometrien for de enkelte rum beskrives eksakt med indgàende dimensioner og koordinater. I SUNCODE beskrives rummene blot ved flader med tilhørende arealer.

Solindiald på flader

I BLAST medtages indvendig absorption for lang- og kortbolget stråling, og fordelingen af solindfald på de enkelte flader kan beregnes. Brugeren kan herudover selv specificere absorptionsforhold for lang- og kortbelget stråling eller lade programmet benytte nogle standardværdier på henholdsvis 0,90 og 0,75 .

I SUNCODE angives hvor mange procent af solindfaldet, der absorberes på de enkelte flader, samt hvor mange procent, der går direkte til rumluften eller tabes ud gennem vinduet.

BLAST tager således bedst hensyn til fordelingen af solindfaldet, da dette beregnes på baggrund af den geometriske beskrivelse af rummene. Da der i SUNCODE ikke gives nogen geometrisk beskrivelse af fladerne i rummet, er dette ikke muligt, hvorfor brugeren må skrnne fordelingen. Til gengæld har SUNCODE den fordel, at en del af solindfaldet kan fordeles direkte til rumluften, hvilket ikke umiddelbart er muligt i BLAST.

Overgangsisolanser

BLAST

I varmebalancen i BLAST indgår beregning af strålingsudvekslingen mellem overfladerne ved hjælp af en middelstrålingstemperaturteknik.

De indvendige overfladers konvektive overgangsisolans justeres automatisk efter fladernes hældning, baseret på om fladerne er varmere eller koldere end rumluften. Brugeren kan ikke ændre på disse værdier, hvilket er en ulempe, hvis overgangsisolansens indflydelse onskes nærmere undersagt.

SUNCODE

I SUNCODE anvendes en resulterende overgangsisolans for stråling og konvektion. Dette svarer til det princip, der benyttes i DS 418 (Dansk Ingeniørforening - 1986), hvor den indvendige overgangsisolans sættes til $0,13 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ og den udvendige til $0,04 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$.

Vallg af programmer

Som det fremgår af det foregående, kan der fremføres en rekke argumenter for og imod de forskellige programmer. I dette projekt blev det besluttet at benytte dels det amerikanske program BLAST og dels det danske program TSBI version 2.1. BLAST med den detaljerede grundmodel blev bl.a. brugt, fordi det er af stor betydning af hensyn til varmeakkumuleringen
at kunne beregne den korrekte fordeling af solindfaldet på flademe; TSBI med den enkle grundmodel blev anvendt, bl.a. fordi det er et hurtigt PC-baseret program, som benyttes af adskillige danske ingeniarfirmaer.

APPENDIX B - TERMLSE MATERLALEDATA

TABS er absorptionskoefficienten over for langbolget stråling.
ABS er absorptionskoefficienten over for kortbølget stråling.

* Defaultværdi fra BLAST indsat pga. manglende materialeværdier.

	$\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \mathrm{C} \\ (\mathrm{~J} / \mathrm{kgK}) \end{gathered}$	$\begin{gathered} \lambda \\ (\mathrm{W} / \mathrm{mK}) \end{gathered}$	TABS	ABS
ALUMINIUM	2700	890	220,00	0,10	0,16
ASBESTCEMENT	1900	800	0,47	0,95	0,71
ASBESTPAP	1100	840	0,30	0,95	0,93
ASFALTPAP	1050	840	0,20	0,90	0,93
BETON	2300	880	1,60	0,90	0,65
BLY	11300	125	35,00	0,40	0,75
BRONZE	8700	360	65,00	0,9*	0,75*
CEMENTMØRTEL	2000	840	1,10	0,90	0,78
ETERNTT	2000	840	1,90		
FIBERPLADE (HARD)	1000	1300	0,15	0, ${ }^{\text {* }}$	0,75*
FIBERISOLATIONSPUDS	550		0,09		
FILT	180		0,05		
FLAMINGO	20	1380	0,03		
GIPS	800	1006	0,17	0,90	0,79
GIPS (STØBT)	970	1090	130,00		
GLAS	2600	840	0,80		
GUMMI (HÅRD)	1150	750	0,19		
ISOLERING KL $=16-100$	15-30	840	0,016-0,1	0,90	0,55

		$\begin{gathered} \rho \\ \left(\mathrm{kg} / \mathrm{m}^{3}\right) \end{gathered}$	$\begin{gathered} \text { C } \\ (\mathrm{g} / \mathrm{kgK}) \end{gathered}$	$\begin{gathered} \lambda \\ (W / \mathrm{mK}) \end{gathered}$	TABS	ABS
PAP PLEXIGLAS PVC		$\begin{array}{r} 600 \\ 1180 \\ 1900 \end{array}$	$\begin{aligned} & 1470 \\ & 1200 \end{aligned}$	$\begin{aligned} & 0,07 \\ & 0,18 \\ & 0,90 \end{aligned}$	$0,9^{*}$	0,75*
SANDSTEN SKIFER SPANPLADE STØBEASFALT STÅL (BL $\emptyset D T$) SØLV		$\begin{array}{r} 2500 \\ 2700 \\ 650 \\ 2100 \\ 7830 \\ 10600 \end{array}$	$\begin{array}{r} 710 \\ 750 \\ 1700 \\ \\ 500 \\ 230 \end{array}$	$\begin{array}{r} 1,70 \\ 2,00 \\ 0,12 \\ 0,80 \\ 55,00 \\ 407,00 \end{array}$	$\begin{aligned} & 0,79 \\ & 0,9^{*} \\ & 0,90 \\ & 0,55 \end{aligned}$	$\begin{gathered} 0,60 \\ 0,75^{*} \\ 0,75 \\ \\ 0,44 \end{gathered}$
TEGL, 1400 TEGL, 1600 TEGL, 1800 TR/E	UDV INDV UDV INDV UDV INDV	1484 1484 1642 1642 1800 1800 $450 / 600$	$\begin{array}{r} 880 \\ 880 \\ 880 \\ 880 \\ 880 \\ 880 \\ 2500 \end{array}$	$\begin{array}{r} 0,04 \\ 0,54 \\ 0,70 \\ 0,62 \\ 0,79 \\ 0,71 \\ 0,12 / 0,16 \end{array}$	$\begin{aligned} & 0,90 \\ & 0,90 \\ & 0,90 \\ & 0,90 \\ & 0,90 \\ & 0,90 \\ & 0,90 \end{aligned}$	$\begin{aligned} & 0,73 \\ & 0,73 \\ & 0,73 \\ & 0,73 \\ & 0,73 \\ & 0,73 \\ & 0,77 \end{aligned}$
VAND		1000	4180	0,60		
ZINK		7100	390	110,00	0,90	0,24

APPENDIX $\mathbb{C}-V A R M E A K K U M U L E R I N G$ I BYGNINGSIKONSTRUKTIONER

I folgende bilag findes supplerende oplysninger til teorien i kap. 3 om bygningsfladernes evne til at akkumulere varme.

Akkumuleringen er afhængig af mange faktorer, og det er derfor nodvendigt at gøre forenklinger og tilnærmelser, når resultatet skal fremiægges i simple tommelfingerregler.

VARMEOVERFORING TIL BYGNINGSFLADER

Varmen kan overføres til den akkumulerende flade, varmelageret, enten ved stråling eller via luften ved ledning og konvektion. Mulighederne for at akkumulere varmen, uden at få for hoje rumtemperaturer, er vasentlig forskellig for de to tilfælde.

VARMEOVERIORING VED STRALING

Den absorberede stråling giver overfladens yderste lag en temperaturstigning, og varmen vil blive overfort dels til de koldere bagvedliggende lag ved ledning, og dels til rumluften og omgivelserne. Et eksempel på temperaturforlabet for overflade og rumluft, når overfladen udsættes for en konstant strålingspåvirkning er vist på figur C 1 . Overfladetemperaturen stiger og er større end lufttemperaturen. Jo mindre varme der kan akkumuleres i materialet, jo hurtigere stiger overfladetemperaturen og jo storre temperaturforskel bliver der mellem overflade og rumluft.

Figur C1. Temperaturforlbb ved konstant strålingspåvirkning.

VARMEOVERFORING VED KONVEKTHION

En flade kan også tilføres varme via rumluften (konvektiv varmetilførsel). Når solstrålingen rammer fladerne vil disse afgive en del af varmen til rumluften, som derefter overfører denne til koldere overflader. Et eksempel på konvektiv varmetilforsel til en akkumulerende flade er vist på figur C2. Her vises temperaturforlabet for rumluft og overflade, når rumluften udsættes for en konstant varmetilfarsel. Da rumluften har en ringe varmekapacitet vil den hurtigt fả en temperaturstigning, der i forhold til fladens temperaturstigning vil se ud som et spring. Dette spring standser når temperaturforskellen mellem rumluften og overfladen er så stor, at den varme, der tilføres rumluften nu kan overføres til fladen ved ledning og konvektion. Temperaturforskellen er bl.a. afhængig af overgangsisolansens storrelse. Jo mere varme der kan akkumuleres i materialet og ledes bort, jo langsommere stiger overfladetemperaturen og jo storre temperaturforskel bliver der mellem overflade og rumluft (modsat strålingspåvirkningen).

Figur C2. Temperaturforlab ved konstant varmetilforsel, konvektiv varmeovergang.

EKSEMPEL

Den principielle forskel i varmeoverforing til en flade ved stråling og konvektion belyses med et eksempel. En vægflade rammes af solstråling med intensiteten $500 \mathrm{~W} / \mathrm{m}^{2}$. Er fladen så mørk at 80% af solstrålingen absorberes, overføres $400 \mathrm{~W} / \mathrm{m}^{2}$ direkte til overfladen. Hvis samme varmestrom skal overføres til fladen ved naturlig konvektion med overgangsisolansen $R=0,3 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$, kan dette ske hvis temperaturforskellen mellem luft og overflade er $0,3 \mathrm{x}$ $400=120 \mathrm{~K}$.

I praksis er situationen anderledes, idet luften har berroing med alle rummets flader og ikke kun den ene m^{2}, som solen rammer. Et rum på $4 \times 5 \times 3 \mathrm{~m}$ har en overflade på $94 \mathrm{~m}^{2}$. Skal 400 W overføres til vægfladerne skal temperaturforskellen da være $0,3 \times 400 / 94=1,3 \mathrm{~K}$. Endvidere vil væggen, som rammes af solstråling, få en temperaturstigning og afgive en del af den absorberede varme til rumluften. Varmetilforslen til et rum kan i praksis let blive væsentlig større, med følgende højere temperaturforskel mellem luft og overflade.

PERIODISK TEMPERATURPAVIRKING

Situationen kompliceres yderligere af at varmepåvirkningen ikke er konstant, men varierer fra det ene ojeblik til det andet. Der er dog som regel en vis lovmæssighed i påvirkningen, som tilnærmelsesvis kan sammenlignes med en svingning, som vist på figur C3. Den ene kurve angiver lufttemperaturens svingning, som funktion af tiden, mens den anden angiver overfladens temperatur som følge af endringerne i lufttemperaturen. I halvdelen af tiden vil luften være varmere end overfladen og der tilføres overfladen en varmestrom, der er proportional med temperaturforskellen, hvis overgangsisolansen er konstant. I den anden halvdel af tiden afgives den lagrede varme atter tilbage til rumluften.

Figur C3. Temperaturforløb ved periodisk varmepåvirkning.

ANALYSE AF MATERIALERS AKIKUMULERINGSEVNE

Forskellige materialers varmeakkumuleringsevne kan analyseres ved at påvirke en flade med en periodisk temperaturvariation, der har form som en sinussvingning.

Der er 3 materialeparametre, der har indflydelse på akkumuleringsevnen

- varmeledningstallet $\quad \lambda(\mathrm{W} / \mathrm{mK})$
- varmefylden $\quad \mathrm{C}(\mathrm{J} / \mathrm{kgK})$
- massefylden $\quad \rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$

Det kan vises, at et materiales varmeakkumulering er bestemt af en faktor d (varmeindtrængningstallet), hvor $d=\sqrt{\lambda \cdot C \cdot \rho}$.

Tidsperioden for svingningen (periodelængden P) har ligeledes indflydelse på varmeakkumuleringen. Den varmemængde der i en periode tranger ind i en flade og afgives igen er proportional med d \sqrt{P}.

Perioden for en varmepåvirkning i bygningen er normalt 24 timer. Der kan også blive tale om meget små perioder, fx varmetilforslen til et rum med termostatstyring, hvor perioden P kan være mindre end $1 / 2$ time. Endelig kan der ske en varmepåvirkning over en længere periode, fx en uge, hvor der mellem to gråvejrsperioder indtræffer 7 dage med solskin (opnåelse af periodestationær tilstand).

I tabel Cl er angivet data for nogle typiske byggematerialer.

Tabel C1. Materialeegenskaber for forskellige bygningsmaterialer. Varmelagringen galder for en halvuendelig væg, hvor amplituden på overfladen svinger $1 \mathrm{~K}(1 \mathrm{~kJ}=$ 0,2778 Wh) (Brown og Partheen 1980).

Materiale	λ W / mK	C $\mathrm{J} / \mathrm{kgK}$	$\rho$$\mathrm{kg} / \mathrm{m}^{3}$	$d=\sqrt{\lambda \cdot C \cdot \rho}$$\mathrm{J} / \mathrm{m}^{2} \mathrm{Ks}$	Bolgelængde i m, ved periodelængderne			Varmelagring i Wh/m² ved periodelængderne		
					7 d g n	$\begin{gathered} 24 \\ \text { rimer } \end{gathered}$	$24 . \mathrm{min}$.	7 d dgn	$\begin{gathered} 24 \\ \text { timer } \end{gathered}$	$\begin{gathered} 24 \\ \mathrm{~min} . \end{gathered}$
Beton	1,5	880	2300	1740	2,4	0,90	0,116	300	114	15
Tegl	0,58	840	1500	855	1,9	0,71	0,091	153	56	7,2
Tre	0,14	2300	500	400	0,96	0,36	0,047	69	26	3,3
Letberon	0,15	1050	500	280	1,5	0,56	0,072	48	18	2,4
Gipsplade	0,22	840	900	408	1,5	0,56	0,073	70	27	3,3
Hård trefiberpl.	0,13	1350	1000	419	0,86	0,32	0,042	72	27	3,6
Halvhård træ-	0,08	1350	600	255	0,87	0,33	0,042	44	17	2,1
fiberpl.	0,052	1350	300	145	0,99	0,37	0,048	25	9,4	1,2
Mineraluld	0,04	750	200	77,5	1,4	0,54	0,07	13	5,0	0,6
Mineraluld	0,04	750	50	38,7	2,	1,1	0,14	65	2,5	0,3
Mineraluld	0,045	750	16	23,2	5,3	2,0	0,26	3,9	1,5	0,2
Polystyrenskum	0,04	1300	20	32,2	3,4	1,29	0,17	5,6	2,1	0,3

HOMOGEN HALVUENDELIG VEG

I en analyse af en temperatursvingnings indflydelse på varmeakkumuleringen betragtes en homogen væg, som er uendelig tyk. Resultatet kan derefter overfores til en væg af endelig tykkelse. Temperatursvingningen i luften antages at være sinusformet (figur C4). Udbredelsen af temperatursvingningen ind i væggen sker med forskellig hastighed afhængig af materialet.

Figur C4. Temperaturvariation i luften.
For en homogen halvuendelig væg galder, at bolgelængden L for temperatursvingningen, dvs. vejlængden for en hel periodes temperaturændring ind i væggen, er bestemt ved

$$
L=2 \sqrt{\Pi \alpha P}, \text { hoor } a=\lambda / C \cdot \rho
$$

Balgelængden er altså afhængig af periodelangden P og materialeegenskaberne (tabel C1).

HOMOGEN VEG MED BEGR/ENSET TYKKELSE

For en homogen væg med begrænset tykkelse e, hvis overfladetemperatur varierer sinusformet på begge sider, med samme amplitude, som for den halvuendelige væg, vil forholdet F mellem varmelagringen i henholdsvis væggen med endelig udstrakning Q_{e} og uendelig udstrakning Q_{∞} være en funktion af vægtykkelsen eog svingningens bølgelængde L. Denne sammenhæng er vist på figur C5.

Når e/L er mindre end 0,2 vil varmelagringen være proportional med vægtykkelsen og temperaturen i den midterste del af væggen vil variere lige så meget som på overfladen, dvs. hele væggens varmekapacitet bruges. Dette gælder for tynde vægge og materialer med stor bølgelængde L for temperatursvingningen.

Det bemærkes endvidere, at når forholdet e/L ligger i intervallet 0,25 til 0,75 , har væggen en akkumuleringsevne, der er større end den uendelige tykke vægs. Max. værdi af F ved e/L $=$ 0,375 er 1,14 . Når e/L er større end 0,75 vil der ikke kunne opnås yderligere varmeakkumulering, selvom væggen gøres tykkere, idet temperatursvingningen i væggens midterste lag er dæmpet så meget at varmetransporten er ~ 0.

Da periodelængden P for varmepåvirkningen indgår i bolgelængden L, betyder det, at en større del af vægtykkelsen deltager i varmelagringen, når påvirkningen er af længere varighed, fix en uge med solskin; ved hurtige temperaturvariationer er det kun de yderste lag af væggen der deltager i varmeakkumuleringen.

Figur C5. Varmelagring Q_{e} i en homogen væg med begranset tykkelse, e, i forhold til varmelagringen Q_{∞} i en væg med uendelig tykkelse. Væggene er af samme materiale og overfladerne påvirkes af samme sinusformede temperatursvingning (Overgangsisolansen $R=0$) på begge sider af væg med begranset tykkelse. $\mathrm{F}_{\max }=1,14$. Abscissen er forholdet mellem tykkelsen e og bolgelangden L (Brown og Partheen 1980).

OVERGANGSISOLANSEN

Varmelagringen er meget afhængig af overgangsisolansen (\mathbb{R}). Betydningen heraf fremgår af tabel C2 som viser varmelagringen i forskellige vægge, når luftemperaturen ved væggens 2 overflader svinger sinusformet med en amplitude på 1 K . Periodelængden er 24 h . Når overgangsisolansen nu ages vil temperatursvingningen i væggen blive dæmpet, således at kun de yderste lag deltager i varmelagringen.

På figur 3.1 er vist hvorledes varmelagringen i betonvæggen ændres når overgangsisolansen ages. $N a ̊ r ~ R=0$, dvs. når overfladetemperaturen svinger med en amplitude på $1 \mathbb{K}$ ved en påtrykning på $\pm 1 \mathrm{~K}$, er der næsten proportionalitet for varmelagringen ved en vægtykkelse på op til 20 cm , ved påvirkning fra den ene side. $\mathrm{R}=0$ svarer til varmeoverforing ved ren stråling. Når overgangsisolansen øges aftager denne proportionalitet hurtigt, fordi de dybere liggende lag ikke længere deltager i varmelagringen.

En forogelse af overgangsisolansen har strrst indvirkning på de mest varmelagrende flader. Det kan derfor være vanskeligt at sammenligne forskellige byggematerialers akkumuleringsevne med mindre det sker under præcis samme betingelser. Eksempelvis ses af tabel C2, at varmelagringen i en vægflade af 10 cm beton, som påvirkes fra begge sider, vil ændres fra 56 til $30 \mathrm{~Wh} / \mathrm{m}^{2} \mathrm{~K}$, dvs. næsten en halvering, når isolansen R ændres fra 0 til $0,2 \mathrm{~m} 2 \mathrm{~K} / \mathrm{W}$.

For 10 cm gasbeton, der har en mindre varmeakkumuleringsevne, ændres denne fra 14 til $12,5 \mathrm{~Wh} / \mathrm{m}^{2} \mathrm{~K}$, når R går fra 0 til 0,2 , dvs. kun en reduktion på $\mathrm{ca} .10 \%$.

Når varmen overffres fra et rum til et andet via luften gennem døråbningen, sker akkumuleringen med en overgangsisolans på $0,2-0,3 \mathrm{~m} 2 \mathrm{~K} / \mathrm{W}$. De tunge flader i de sekundære rum er derfor mindre effektive end i rum, hvor der sker en strålingspåvirkning.

Tabel C2. Varmelagring fra begge sider i vægge af beton, tegl, tra og gasbeton ved sinusformet svingning i lufttemperaturen ved fladerne, ved forskellige vægtykkelser e og varmeovergangsisolans $R . e_{0}=$ vagtykkelse som giver maksimal varmelagring ved $R=0$. Periodelængde 1 dogn $o g$ amplitude for rumluftemperatur er 1 K (Brown og Partheen 1980).

Materiale	e_{0} cm	e cm	Varmelagring i $\mathrm{Wh} / \mathrm{m}^{2} \mathrm{~K}$ ved $\mathrm{R}=$				
			0	0,1	0,2	0,5	1,0
Beton	34	2,5	14		13	10,3	6,7
		5	28		23	13,3	7,2
		10	56		30	14,4.	7,5
		20	105		33	14,4	7,5
		25	121		32	14,4	7,5
		∞	114	49	30	13,9	7,2
Tegl	27	2,5	8,9		9	7,5	5,8
		5	18		16	11,4	6,9
		10	35		24	13,3	7,2
		20	60		27	13,3	7,2
		25	63		27	13,3	7,2
		∞	56	35	24	12,8	6,9
Træ*	14	2,5	8,1		7,8	6,9	5,6
		5	16		14	10,3	6,7
		10	28		19	11,4	6,7
		15	30		18	10,8	6,4
		18	29		17	10,6	6,4
		∞	26	21	16	10,3	6,4
Gasbeton	21	2,5	3,6		3,6	3,6	3,3
		5	7,2		7,2	6,4	5,3
		10	14.		12,5	9,4	6,1
		20	21		15,0	9,7	6,1
		30	19		13,9	9,2	5,8
		∞	18	16	13,3	8,9	5,8

I et rum vil der som regel være både lette og tunge konstruktioner og varmeoverfaringen vil ske både ved stråling og konvektion. Denne kombination har bl.a. betydning for, hvor de akkumulerende flader helst skal placeres, og hvilken betydning de skal tillægges.

APPENDIX D - OVERSIGT OVER INDDATA TLL TSBI 2.1

Beregning af varmekapacitet og specifikt vameoveripringstal

Simuleringsprogrammet bygger på en simpel matematisk model af rummet. Kun tre parametre skal specificeres for rummet, nemlig:
sa, rummets samlede varmekapacitet, MJ / K
boi, varmeoverføringen fra rummets overflader til indeluften, kW / K.
boa, varmeoverforingen fra rummets overflader til den varmeakkumulerende masse, kW / K

En EDB-mæssig beregning af disse storrelser ville kræve indlæsning af et meget stort antal parametre til beskrivelse af alle overflader i rummet, de enkelte lag i alle konstruktionerne etc. De tre størrelser udregnes derfor forud for dataindlæsningen.

Beregning af rummets vammekapacitet, $\mathbb{S a}$

Rummets samlede varmekapacitet beregnes som summen af kapaciteten af de enkelte bygningsdele ud fra $\mathrm{A} \cdot \mathrm{e} \cdot \rho \cdot \mathrm{C}$, hvor:

A er arealet af en indvendig bygningsoverflade (væg, gulv etc.), m^{2}
e er tykkelsen af det medregnede akkumulerende lag, m
ρ er lagets massefylde, $\mathrm{kg} / \mathrm{m}^{3}$
C er lagets varmefylde, $\mathrm{MJ} / \mathrm{kgK}$.

Beregning af specifilk varmeoverforing, boi

Varmeoverføring pr. \mathbb{K} fra overflader til indeluft beregnes som overfladearealer gange konvektiv varmeovergangskoefficient: A α

Overgangskoefficienten, der er forskellig for rummets forskellige flader, afhænger af flere forhold, især temperaturforskel og luftbevægelser ved overfladen.

Rummodellen kan imidlertid ikke tage hensyn til variationer i varmeovergangskoefficienterne (eller temperatureme), og det anbefales generelt at benytte fifigende gennemsnitstal:
α for gulve: $\quad 2,5 \mathrm{~W} / \mathrm{m}^{2 \mathrm{~K}}$
α for lofter: $\quad 2,0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$
α for vægge: $\quad 3,0 \mathrm{~W} / \mathrm{m}^{2 \mathrm{~K}}$

Beregning air specifik varmeoveriørimg, boa
Varmestrom pr. K fra overfladerne til det varmeakkumulerende lag, kW / K, beregnes som areal gange transmissionstal: $A \cdot k^{2}$. Transmissionstallet k^{\prime} er eksklusive overgangsisolans og beregnes ind til bag det akkumulerende lag.

I nedenstående tabel D1 er vist de brugte værdier af sa, boi og boa for de enkelte karsler (nummereringen i tabellen svarer til tabellen i appendix E).

Tabel D1. Oversigt over inddata til TSBI (mindste luftskifte $n=0,5 h^{-1}$ hele året; ved ventilation øget til $n=3 h^{-1}$ ved $24^{\circ} \mathrm{C}$ i opvarmningssæsonen; afbrudt varmeforsyning i sommerperioden).
"-" anvendes i tabellen som gentagelsestegn.

Nr.	ORIEN. TERING	TYNGDE	SPECIEL TYNGDE	INTERN MASSE/ VARME	SOL	VINDUESAREAL $\%$	SA MJ/K	$\begin{aligned} & \mathrm{BOI} \\ & \mathrm{~kW} / \mathrm{K} \end{aligned}$	$\begin{aligned} & \mathrm{BOA} \\ & \mathrm{KW} / \mathrm{K} \end{aligned}$
1	SYD	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$			$\stackrel{\text { JA }}{\sim}$	15	$\begin{gathered} 1,9 \\ 10,3 \end{gathered}$	$\begin{aligned} & 0,24 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 2,8 \end{aligned}$
2	-	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			\cdots	30	$\begin{aligned} & 1,8 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 0,23 \\ & 0,23 \end{aligned}$	$\begin{aligned} & 0,58 \\ & 2,8 \end{aligned}$
3	-	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			NEI	15	$\begin{gathered} 1,9 \\ 10,3 \end{gathered}$	$\begin{aligned} & 0,24 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 2,8 \end{aligned}$
4	-	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			-	30	$\begin{aligned} & 1,8 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 0,23 \\ & 0,23 \end{aligned}$	$\begin{aligned} & 0,58 \\ & 2,8 \end{aligned}$
5	VEST	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			JA	15	$\begin{gathered} 1,9 \\ 10,3 \end{gathered}$	$\begin{aligned} & 0,24 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 2,8 \end{aligned}$
6	-	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			-	30	$\begin{aligned} & 1,8 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 0,23 \\ & 0,23 \end{aligned}$	$\begin{aligned} & 0,58 \\ & 2,8 \end{aligned}$
7	NORD	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$				15	$\begin{gathered} 1,9 \\ 10,3 \end{gathered}$	$\begin{aligned} & 0,24 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 2,8 \end{aligned}$
8	-	$\underset{\text { TUNG }}{\text { LET }}$			-	30	$\begin{aligned} & 1,8 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 0,23 \\ & 0,23 \end{aligned}$	$\begin{aligned} & 0,58 \\ & 2,8 \end{aligned}$
9	$\emptyset S T$	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			-	15	$\begin{gathered} 1,9 \\ 10,3 \end{gathered}$	$\begin{aligned} & 0,24 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 2,8 \end{aligned}$
10	-	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$				30	$\begin{aligned} & 1,8 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 0,23 \\ & 0,23 \end{aligned}$	$\begin{aligned} & 0,58 \\ & 2,8 \end{aligned}$
11	SYD	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$		100% INVENTAR		15	$\begin{gathered} 2,4 \\ 11,5 \end{gathered}$	$\begin{aligned} & 0,30 \\ & 0,29 \end{aligned}$	$\begin{aligned} & 0,70 \\ & 2,9 \end{aligned}$
12	-	$\underset{\text { LUNG }}{\text { LET }}$		100\% INVENTAR	\cdots	30	$\begin{gathered} 2,3 \\ 10,1 \end{gathered}$	$\begin{aligned} & 0,30 \\ & 0,29 \end{aligned}$	$\begin{aligned} & 0,67 \\ & 2,8 \end{aligned}$
13	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		STOR INTERN VARME	-	15	1,9 10,3	0,24 0,24	0,60 2,8
14	\cdots	LET TUNG		STOR INTERN VARME	\cdots	30	1,8 9,7	0,23 0,23	0,58 2,8
15	SYD	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		LILLE INTERN VARME	-	15	1,9 10,3	0,24 0,24	0,60 2,8
16	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		LILLE INTERN VARME	-	30	$\begin{aligned} & 1,8 \\ & 9,7 \end{aligned}$	$\begin{aligned} & 0,23 \\ & 0,23 \end{aligned}$	0,58 2,8

Nr.	ORIEN- TERING	TYNGDE	SPECIEL TYNGDE	$\begin{aligned} & \text { INTERN MASSE/ } \\ & \text { VARME } \end{aligned}$	SOL	VINDUESAREAL $\%$	SA MJ/K	BOI kW / K	BOA kW/K
17	-	LET		STOR INTERN VARME	NEJ	15	1,9	0,24	0,60
		TUNG		-	-	-	10,3	0,24	2,8
18	-	LET		STOR INTERN VARME	-	30	1,8	0,23	0,58
		TUNG		-	-	-	9,7	0,23	2,8
19	-	LET		LILLE INTERN VARME	-	15	1,9	0,24	0,60
		TUNG		.	-	-	10,3	0,24	2,8
20	-	LET		LILLE INTERRN VARME	-	30	1,8	0,23	0,58
		TUNG		-	-	-	9,7	0,23	2,8
21	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$	LAVENERGI		JA -	15 -	$\begin{gathered} 1,9 \\ 10,3 \end{gathered}$	$\begin{aligned} & 0,24 \\ & 0,24 \end{aligned}$	$\begin{aligned} & 0,60 \\ & 2,8 \end{aligned}$
22	-	LET	LAVENERGI		-	30	1,8	0,23	$0,58$
23	-	LET	TUNGT GULV MED STR $\varnothing E R$		-	*	3,7	0,24	0,52
24	-	LET	TUNGT GULV ELLER LOFT		-	30	3,6	0,23	1,13
		LET	TUNGT GULV MED STR $\emptyset E R$		-	-	3,6	0,23	0,50
25	-	LET	TUNGT GULV MED KOKOS TEPPE		-	15,	3,7	0,24	0,61
26	-	LET	TUNGT GULV MED KOKOS TAEPPE		-	30	3,6	0,23	0,59
27	-	LET	TUNGT LOFT + GULV		-	15	5,4	0,24	1,7
28		LET	TUNGT LOFT + GULV		-	30	5,3	0,23	1,7
29	SYD	TEGL			-	15	8,1	0,24	0,99
		LETB.			-	-	3,7	0,24	0,48
		TRAE			-	"	2,3	0,24	0,50
30	-	TEGL			-	30	7,6	0,23	0,97
		LETB.			-	-	3,6	0,23	0,46
		TRe			-	-	2,2	0,23	0,48
31	VEST	TEGL			-	15	8,1	0,24	0,99
		LETB.			-	-	3,7	0,24	0,48
		TRAE			-	"	2,3	0,24	0,50
32	-	TEGL			-	30	7,6	0,23	0,97
		LETB.			-	-	3,6	0,23	0,46
		TRA			-	-	2,2	0,23	0,48

APPENDIX E-OVERSIGT OVER EDB-BEREGNINGER

Tabel E1. Oversigt over EDB-beregninger (mindste luftskifte $n=0,5 h^{-1}$ hele året; ved ventilation gget til $n=3 h^{-1}$ ved $24^{\circ} \mathrm{C}$ i opvarmningssæsonen; afbrudt varmeforsyning i sommerperioden).
"-" anvendes i tabellen som gentagelsestegn.

Nr.	ORIENTERING	TYNGDE	SPECIEL TYNGDE	$\begin{aligned} & \text { INTERNMASSE/ } \\ & \text { VARME } \end{aligned}$	SOL	VINDUES AREAL	ARLIGTENERGFORBRUGMAX.TEMP.$\mathrm{kWh} \quad{ }^{\circ} \mathrm{C}$	
1	SYD	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			${ }^{\text {JA }}$	15	$\begin{aligned} & 1290 \\ & 1234 \end{aligned}$	$\begin{aligned} & 36,3 \\ & 30,2 \end{aligned}$
2	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$			-	30	$\begin{aligned} & 1523 \\ & 1342 \\ & \hline \end{aligned}$	$\begin{aligned} & 46,7,5 \\ & 37 \end{aligned}$
3	-	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			NEJ	15	$\begin{aligned} & 1854 \\ & 1868 \end{aligned}$	$\begin{aligned} & 21,7 \\ & 20,8 \end{aligned}$
4	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$			-	30 - -	2444	22,6 20,9
5	VEST	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			JA	15	$\begin{aligned} & 1550 \\ & 1536 \end{aligned}$	$\begin{aligned} & 40,0 \\ & 32,6 \end{aligned}$
6	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$			\because	30	1903 1852	$\begin{aligned} & 52,5 \\ & 41,4 \end{aligned}$
7	NORD	LET TUNG			\div	15	$\begin{aligned} & 1680 \\ & 1688 \end{aligned}$	$\begin{gathered} 28,1 \\ 24,4 \end{gathered}$
8	-	$\underset{\text { TUNG }}{\text { LET }}$			-	30	2120 2112	$\begin{aligned} & 32,6 \\ & 28,2 \end{aligned}$
9	øST	$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$			\because	15	$\begin{aligned} & 1536 \\ & 1521 \end{aligned}$	$\begin{aligned} & 38,5 \\ & 31,8 \end{aligned}$
10	-	$\underset{\text { TUNG }}{\text { LET }}$			"	30	1889 1838	$\begin{aligned} & 49,6 \\ & 39,6 \end{aligned}$
11	SYD	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		100% INVENTAR	".	15	${ }_{1234}^{1277}$	$\begin{aligned} & 35,2 \\ & 29,9 \end{aligned}$
12	-	$\underset{\text { LUNG }}{\stackrel{\text { LET }}{ }}$		100% INVENTAR		30	$\begin{aligned} & 1480 \\ & 1342 \end{aligned}$	$\begin{aligned} & 45,0 \\ & 37,4 \end{aligned}$
13	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		STOR INTERN VARME	-	15	807 728	41,6 35,4
14	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		STOR INTERN VARME	-	30	1060 879	50,8 41,6
15		$\begin{aligned} & \text { LET } \\ & \text { TUNG } \end{aligned}$		$\underset{\text { VARME }}{\operatorname{LILLE}}$	-	15	1046 966	39,0 32,8
16	-	$\begin{gathered} \text { LET } \\ \text { TUNG } \end{gathered}$		$\underset{\text { VARME }}{\operatorname{LILLE}}$	-	30	1292 1111	48,8 39,5

Nr .	ORIEN. TERING	TYNGDE	SPECIEL TYNGDE	INTERN MASSE/ VARME	SOL	VINDUESAREAL \%	ÂRLIGT ENERGIFORBRUG MAX.TEMP. $\mathrm{kWh} \quad{ }^{\circ} \mathrm{C}$	
17	SYD	LET		STOR INTERN VARME	NEJ	15	1290	27,1
		TUNG			-	-	1283	23,9
18	-	LET		STOR NTERN VARME	-	30	1874	26,8
		TUNG			-	-	1874	23,2
19	-	LET		LILLE INTERN VARME	"	15	1579	2A,4
		TUNG			-	-	1587	21,3
20	*	LET		LILLE INTERN VARME	-	30	2156	24,7
		TUNG			-	-	2163	21,1
21	-	LET	LAVENERGI		JA	15	$\begin{array}{r} 1053 \\ 988 \end{array}$	$\begin{aligned} & 36,1 \\ & 30,3 \end{aligned}$
		TUNG						
22	-	LET	LAVENERGI		-	$\stackrel{30}{-}$	$\begin{aligned} & 1169 \\ & 102 A \end{aligned}$	$\begin{aligned} & 47,6 \\ & 38,6 \end{aligned}$
		'TUNG						
23	-	LET	TUNGT GULV		-	15	1263	33,3
		LET	TUNGT GULV MED STR $\varnothing E R$		-	\cdots	1255	33,7
24	-	LET	TUNGT GULV ELIER LOFT		-	30	1428	41,9
		LET	TUNGT GULV MED STRØER		-	-	1428	42.7
25	-	LET	TUNGT GULV MED KOKOS TEPPPE		-	15	1255	33,6
26	-	LET	TUNGT GULV MED KOKOS TAEPPE		-	30	1428	42,4
27	-	LET	TUNGT LOFT + GULV		-	15	1255	32,2
28	-	LET	TUNGT LOFT + GULV		-	30	1393	40,0
29	-	TEGL LETB. TRA			-	15	1240	31,0
						-	1255	31,7 35
30	-	TEGL LETB. TRAE			-	30	1356	39,0
					-	,	1429	42,8
					-	-	1494	45,6
31	VEST	TEGL			-	15	1536	33,9
		LETB.			-	-	1536	37,2
		TREE			-	-	1550	39,1
32	-	TEGL			-	30	1867	42,9
		LETB.			-	-	1874	47,3
		TR/E			-	-	1896	51,1

