

Solvarmeanlæg til kombineret brugsvands- og rumopvarmning

Udvikling af konkurrencedygtige anlæg

Beregninger samt målinger på forsøgsanlæg

Klaus Ellehauge

Meddelelse nr. 223 August 1991 Laboratoriet for Varmeisolering Danmarks Tekniske Højskole

Udvikling af konkurrencedygtige anlæg Beregninger samt målinger på forsøgsanlæg

Klaus Ellehauge
Forord 3
Resumé 4
Summary 5

1. Indledning 1
1.1 Konklusion 2
2. Hidtidige arbejder i Danmark vedrørende aktive solvarmeanlæg til rumopvarmning 5
2.1 Beskrivelse af enkeltprojekter 5
2.2 Generel vurdering af de opnåede erfaringer fra de gennemforte projekter. 7
3. Systemløsninger 16
3.1 Modelberegninger med EMGP3 16
3.1.1 Stratificering og low flow 17
3.1.2 Simulering af radiatorer 17
3.1.3 Solfangere 18
3.1.4 \varnothing vrige komponenter 19
3.2 Anlæg kun til brugsvandsopvarmning (referenceanlæg) 19
3.3 "Udvidet brugsvandsanlæg" 19
3.3.1 "Udvidet brugsvandsanleg" tilsluttet eksisterende radiatorer 19
3.3.2 "Udvidet brugsvandsanlæg" tillsluttet separat radiator system 20
3.4 Drain back system 21
3.5 System med termisk adskilt rumvarmebeholder og varmtvandsbeholder 22
4. Kombinerede solvarmeanlæg til rumopvarmning og brugsvandsopvarmning- anvendelsesmuligheder 30
4.1 De forskellige anvendelsesmuligheder som diskuteres nærmere er: 30
4.2 Anlægs σ konomi - Sammenligning med brugsvandsanlæg 30
4.2.1 Rumopvarmningsbehov 32
4.2.2 Anlægsøkonomi og ydelser - Tabeller 33
4.3 Eksisterende olie- eller naturgasfyrede enfamiliehuse med et 34
4.3.1 "Udvidet brugsvandsanlæg" tilsluttet husets radiatorsystem 35
4.3.2 "Udvidet brugsvandsanlæg" med separat radiator 36
4.3.3 Drain back rumvarmesystem 37
4.3.4 System med eksisterende varmivandsbeholder 37
4.4 Enfamiliehuse med el-opvarmning 37
4.4.1 Lagring af nat-el 38
4.5 Nybyggeri, enfamiliehuse, lavenergi 40
4.6 Nybyggeri med frolles varmecentral 40
4.7 Store anlæg (institutioner og boligejendomme) 42
4.8 Benyttelse af hojeffektiv solfanger med ekstra teflondæklag. 43
4.9 Sammenfatning af beregninger og økonomi 44
5. Forsøgsanlæg 63
5.1 Solvarmeanlæggets komponenter 65
5.1.1 Solfanger 66
5.1.2 Lagerbeholdere 66
5.1.3 Styring 66
5.2 Måleudstyr 67
5.3 Driftserfaringer 67
5.3.1 Funktion af solfangerkreds 67
5.3.1.2 Støj i solfangerkredsen 68
5.3.2 Stratificering i tanken 68
5.4 Sammenligning af målte og beregnede ydelser 68
5.5 Samlet vurdering 69
Referencer 75
Bilag 1
Oversigt over danske projekter indenfor området aktive solvarmeanlæg til rumopvarmning. 77
Bilag 2.
Beregning af radiatorydelsen med EMGP3 79

Forord

Denne rapport beskriver og afslutter arbejdet, som er gennemført under projektet: "Udvikling af konkurrencedygtige solvarmeanlæg til kombineret brugsvands- og rumopvarmning til enfamiliehuse".

Projektet, som er financieret af Energiministeriet, er en del af forskningsområde 5: "Energianvendelse i bygninger" under ministeriets forskningsprogram EFP-88. Projektets journal nr. er 1213/88-10.
Projektet er gennemfort på Laboratoriet for Varmeisolering med deltagelse af nedenstående medarbejdere:

Klaus Ellehauge, civilingeniør
Peter Trans, elektroniktekniker
Christina Zimmermann, assistent
Birthe Friis, korrespondent
Forsøgsanlægget er opstillet med hjælp fra Arne Skouslund VVS. Endvidere har Henrik Knudsen fra Svantevit bidraget med prisoplysninger, og Torkil Forman fra Aidt Miljo har bidraget med kommentarer til rapporten.

Resumé

Rapporten beskriver det ved Laboratoriet for Varmeisolering udifrte arbejde med videreudvikling af solvarmeanlæg til kombineret rumopvarmning og opvarmning af brugsvand.

Dette arbejde bygger dels på erfaringerne fra tidigere udforte projekter med kombineret rumopvarmning og opvarmning af brugsvand, samt søger endvidere at udnytte de nye erfaringer fra de rene brugsvandsanlæg vedrorende udnytelse af maksimal temperaturstratificering ilagertanken (de såkaldte low flow anleg).

I rapporten er de hidtidigt udforte projekter i Danmark beskrevet.
Der er beregningsmassigt ved hjælp af solvamesimuleringsprogrammet EMGP3 analyseret forskellige anlægsudformninger, hvoraf én markedsføres af en fabrikant, og hvoraf andre er konstruktionsmæssige nyskabelser. Der analyseres dog ikke på anlag der er integreret i bygningsudformningen (f.eks. ved lagring af solvarme i et gulvvarmesystem).

Systememe er analyseret ved en rakke forskellige anvendelser, som anses for at vere mest interessante.

Okonomien for de forskellige systemer ved de forskellige anvendelser er analyseret ved at beregne anlæggenes ydelser og værdien af den dermed forbundne energibesparelse.

Endvidere er det vurderet hvad merprisen for anlægget i forhold til et brugsvandsanlæg med samme solfangerareal vil være. Hermed kan det vurderes om anlægget vil have bedre eller dåligere okonomi end de anlæg kun til brugsvandsopvarmning som efterspørges hos producenterne i dag.

Det fremgår af beregningerne at der for et "normalhus" (énfamiliehus) kan forventes god økonomi for moderate anlægsstørelser (op til ca. $10 \mathrm{~m}^{2}$ solfanger) ved de fleste systemer og anvendelser, når der er tale om at substituere el med solvarme.

For olie eller naturgasfyrede "normalhuse" kan især et af systemerne (drain back systemet) opnå en økonomi der er bedre eller lige så god som et rent brugsvandsanlæg.

For lavenergihuse vil der kun kunne opnås god økonomi hvis der er el-backup i huset.
Et af systemerne (drain back systemet) er blevet afprøvet på Laboratoriets forsøgsareal.
Ud fra målinger kan det ses at anlægget har fungeret uden problemer og med god temperaturstratificering. Ligeledes har solfangerkxedsens drain back funktion fungeret efter hensigten og uden problemer.

Anlægstypen vil således være et godt bud på, hvorledes kombinerede anlæg til brugsvand og rumopvarmning kan udføres med udnyttelse af de nye erfaringer med hensyn til temperaturstratificering og low flow.

Summary

The work carried out at The Thermal Insulation Laboratory with the development of solar systems for combined space heating and heating of domestic hot water is reported.

The work is making use of experience from earlier projects with combined systems carried out in Denmark, and of new experience with optimal temperature stratification in the storage tank in domestic hot water systems (the so called low flow systems).

Different systemconfigurations of combined systems are analyzed with the solar system simulation program EMGP3. One of the systems is maufactured by a Danish manufactorer, while other systems are new.

The systems are analyzed at different uses. (One family houses with oil- or gasburner, low energy houses etc.)

The economy is evaluated by calculation of the systems energy performance and the value of the economic saving due to the energy saving.

Furthermore, it is estimated how the additional costs of the systems will be, compared to systems with the same area of solar collectors, but only for heating of domestic hot water. In this way it is evaluated if the systems would or would not be preferable compared to the systems for heating only of domestic hot water, which are manufactured today.

For "normal" one family houses, most of the systems with moderate solar collector areas (up to $10 \mathrm{~m}^{2}$ of solar collector) will have a good economy if the houses are electricaly heated.

For oil or natural gas heated "normal" houses, especially one of the systems ("the drain back system") will have an economy as good as a domestic hot water system.

One of the systems ("the drain back system") has been tested at the Laboratory. From measurements it is found that the system has functioned without problems and with good temperature stratification in the storage.

This system will be a good proposal for a solar system for combined space heating and heating of domestic hot water.

1 Indledning

Udviklingen af solvarmeanlæg i Danmark har især koncentreret sig om anlæg til opvarmning af brugsvand, samt anlæg til opvarmning af fjernvarmevand eller svømmebassiner.

Ovennævnte typer af anlæg er efterhånden udviklet til at være pålidelige og velydende.
Solvarmeanlæggene til brugsvand dimensioneres som regel til at dække mellem 20 og 70% af det totale brugsvandsforbrug, mens anlæggene til fjernvarme kun dimensioneres til at dække en del af sommerforbruget. Den samlede dækningsgrad af boligernes samlede opvarmningsforbrug bliver i begge tilfælde meget lille.

Undtaget for ovennævite er anlæg med sæsonlagring. Disse er hidtil kun udført iforbindelse med fjernvarmenet, idet de sæsonlagre der hidtil er eksperimenteret med skal op i en stor størrelse for at være termisk effektive.

Denne teknik er imidlertid kostbar, og endnu på et eksperimentelt stade.
Siden arbejdet med solvarmeanlæg startede herhjemme midt i 70'erne har der da også været arbejdet på at udiføre anlæg der ud over at levere varme til opvarmning af brugsvandet, også leverer varme til selve husets opvarmning.

De første anlæg herhjemme byggede således på denne strategi: (nulenergihuset (reference [1]), demonstrationsprojekter i Greve, Gentofte (reference [2]) med flere).

Imidlertid viste de første anlæg udført med ovennævnte formål sig at være vanskelige at få til at fungere, samt uøkonomiske, hvorfor man herhjemme især koncentrerede sig om rene brugsvandsanlæg.

Der har dog med mellemrum været udført anlæg til både brugsvands- og rumopvarmning, dels som demonstrationsprojekter og dels som almindelige anlæg opført af private. (Ejby (reference [3]), m.fl.). Der foreligger således også systemgodkendte rumopvarmningsanlæg fra en del af fabrikanterne, som ligeledes har en løbende efterspørgsel efter denne type anlæg, blandt andet fra folk, som nødigt undværer rumopvarmning om sommeren (f.eks. varme i et badeværelsesgulv).

I de seneste år har der været en udvikling inden for brugsvandsanlæg gående ud på at opbygge og udnytte en maksimal stratificering i lagertanken.

Dette gøres blandt andet ved at køre med lille flow i solfangerkredsen (low flow anlæg). Ydelserne af brugsvandsanlæggene kan i visse tilfælde forbedres op til 20% med denne strategi ligesom anlægsprisen kan gøres mindre (reference [4],[5],[6]).

Det har været naturligt at prøve at indpasse den nye viden om stratificering idesign af anlæg til både rumopvarmning og brugsvandsopvarmning, med henblik på at forbedre disses ydelse.

Da de hidtidige erfaringer og projekter med kombinerede brugsvands- og rumopvarmningsanlæg har været temmelig sporadiske, har det endvidere været ønskeligt at prøve at udarbejde en oversigt over i hvilke tilfælde kombinerede rumopvarmning/brugsvandsanlæg har størst mulighed for at finde anvendelse. Dette set dels ud fra et rentabilitets synspunkt, men også set ud fra et synspunkt om at udføre anlæg med høj dækningsgrad. (D.v.s. anlæg,hvor en stor del "dækningsgraden" - af energiforbruget dækkes med solvarme, medens den resterende del leveres af en supplerende varmekilde).

Sidstnævnte synspunkt kan formentlig blive mere og mere aktuelt set i lyset af de seneste års debat om nødvendigheden af at nedbringe det globale energiforbrug (inspireret af Brundtlandrapporten m.fl.).

Selvom kombinerede anlæg med stor dækningsgrad i øjeblikket vil være mindre rentable end rene brugsvandsanlæg eller kombinerede anlæg med lille dækningsgrad, kan udviklingen således godt gøre disse anlæg interessante fremover.

Oversigten over anvendelsen af kombinerede anlæg er udført ved at analysere en række forskellige anvendelser af kombinerede anlag (f.eks. nybyggeri, lavenergi, el-opvarmede huse med mere), samt en rakke forskellige systemløsninger.

Analyserne er udfort ved hjælp af solvarme simuleringsprogrammet EMPG3. Ved hiælp af analyserne er der udpeget de anvendelser og systemudformninger som i første omgang er mest interessante.

Ved en udbygning med kombinerede solvarmeanlag vil det således vare fornuftigt at koncentrere indsatsen indenfor anvendelsen af disse systemer.

Da ét af de analyserede systemer er en nyskabelse i forhold til hidtil opførte anlæg er der på Laboratoriet for Varmeisolerings forsøgsareal opstillet og afprøvet et forsøgsanlæg.

Der analyseres ikke i projektet på anlæg der er integreret i bygningsudformningen (f.eks. i form af at benytte et betongulv med gulvvarmeslanger som varmelager). Disse systemer (jvi. f.eks. reference [9]) kan udformes på utallige måder, og vil ved rigtig udformning formentlig i nybyggeri være interessante. Et nærmere studie af disse ligger dog udenfor dette projekt.

1.1 Konklusion

En oversigt over de hidtil udforte projekter med solvarmeanlæg til kombineret opvarmning af varmt vand og rumopvarmning er angivet i bilag 1 og beskrevet i kapitel 2 .

De anlægstyper der i dette projekt er analyseret nærmere er:

- "Udvidet" brugsvandsanlæg, - low flow brugsvandsanlæg med varmeveksler i toppen af varmtvandsbeholderen, der leverer varme til rumvarme om sommeren, og som med varmetilførsel fra fyret benyttes til eftervarmning af det varme vand om vinteren.
- System med low flow og med radiator kreds tilsluttet varmtvandsbeholderens kappe. Systemet kan udvides med en ekstra lagerbeholder. Systemet forsøger at udnytte temperaturstratificeringen optimalt og kan med fordel udføres med drain back i solfangerkredsen (ved drain back tømmes solfangerne for væske når solfangerne ikke er i drift, systemet kan således udføres uden glucol i solfangerkredsen). I rapporten kaldes systemet for "drain back" systemet.
- System med separat varmivandsbeholder. Systemet kan f.eks benytte den eksisterende varmtvandsbeholder og kan være ønskeligt at udføre ved bebyggelser med et centralt varmeanlæg.

Det "udvidede" brugsvandsanlæg og drain back systemet er analyseret dels hvor varmen til rumopvarmningen tiliøres hele husets radiatorsystem og dels hvor der etableres en separat radiator der kun afgiver varme fra solvarmeanlægget.

Ovennæunte anlægstyper er analyseret iforhold til et low flow anlæg kun til brugsvandsopvarmning. Systemerne er udvalgt ved at gennemgå erfaringerne med tidligere anlæg. Der vil være mange andre udformninger af kombinerede anlag til rumopvarmning og opvarmning af brugsvand der vil være mulige, men mange af disse vil kunne beskrives som varianter af ovennævate typer.

Det "udvidede" brugsvandsanlæg markedsføres i dag af en fabrikant, medens drain back systemet er udformet i dette projekt, som et forslag til et anlæg med forbedrede ydelser.

Ovennævnte anlægstyper er analyseret i forhold til en række anvendelser. Disse er:

- Eksisterende olie- eller naturgasfyrede enfamiliehuse.
- Enfamiliehuse med el-opvarmning
- Enfamiliehuse med lagring af nat-el (udnyttelse af tripletariffen)
- Nybyggeri, enfamilie-lavenergihuse
- Nybyggeri med fælles varmecentral
- Store anlæg (institutioner og boligejendomme)

Okonomien for de forskellige systemer ved de forskellige anvendelser er analyseret ved at beregne anlæggenes ydelser og værdien af den dermed forbundne energibesparelse.

Derefter er anlæggets "cilladelige" anlægspris, d.v.s den pris anlægget må koste, hvis det skal have samme økonomi som et rent brugsvandsanlæg, beregnet. Denne er sammenlignet med prisen for et anlæg kun til brugsvandsopvarmning samt med overslag over hvad merprisen for det analyserede system vil være i forhold til et rent brugsvandssystem. Hermed kan det vurderes om anlægget vil have bedre eller dårligere \varnothing konomi end de anlæg kun til brugsvandsopvarmning som efterspørges hos producenterne i dag. En oversigt over en del af ovennævnte sammenligninger er angivet i Tabel III.

Det fremgår af beregningerne at der for et "normalhus" (årligt varmeforbrug 14.000 kWh) kan forventes god økonomi både for et $6.45 \mathrm{~m}^{2}$ og for et $8.3 \mathrm{~m}^{2}$ anlæg ved de fleste systemer og anvendelser, når der er tale om at substituere el med solvarme.

For olie eller naturgasfyrede "normalhuse" kan drain back systemet opnå en økonomi der er bedre eller lige så god som et rent brugsvandsanlæg.

Af de to anlægsstørrelser (på $6.45 \mathrm{~m}^{2}$ og på $8.3 \mathrm{~m}^{2}$ solfanger) er det lille anlæg der har bedst mulighed for god \emptyset konomi. Ønskes anlæg med større dækningsgrad end hvad $6.45 \mathrm{~m}^{2}$ anlægget kan levere er det et større drain back system, der er bedst. Et sådant anlæg har ikke væsentligt dårligere $ø \mathrm{konomi}$ end $6.45 \mathrm{~m}^{2}$ anlægget.

For lavenergihuse vil der kun kume opnås god økonomi hvis der er el-backup i huset.
Systemet med den separate varmivandsbeholder har ikke muligheder for så god $\emptyset k$ onomi. Dette system ville ellers måske vare relevant ved systemer for flere beboelser jvit. afsnit 4.6. En udtommende analyse heraf er imidlertid ikke foretaget så andre forhold end de medtagne kan måske ændre vurderingen.

Det er også blevet analyseret om det kan betale sig at benytte en hojeffektiv solfanger med ekstra teflon dæklag. Dette forbedrer anlæggets ydelse, men gør samtidig anlægget dyrere. I de analyserede tilfælde er det konkluderet, at det ikke kan betale sig.

Det anlæg der er blevet afprøvet på Laboratoriets forsøgsareal er en forsøgsudgave af̂ drain back systemet.

Der er blevet målt på anlægget således at funktionen og ydelsen har kunnet vurderes. Ud fra målingerne kan det ses at anlægget har fungeret uden problemer og med god temperaturstratificering. Ligeledes har solfangerkredsens drain back funktion fungeret efter hensigten og uden problemer.

Anlægstypen, som er den type der ifolge beregningsanalyserne har den bedste ydelse og \emptyset konomi, vil således være et godt bud på, hvorledes kombinerede anlæg til brugsvand og rumopvarmning kan udføres med udnyttelse af de nye erfaringer med hensyn til temperaturstratificering og low flow. Ved at benytte drain back i solfangerkredsen er problemet med kogning i solfangerkredsen, som især kan forekomme ved systemer med en lidt større dækningsgrad, samtidig løst.

Da anlægget er en nykonstruktion vil der imidlertid være behov for at afprove et prototypeanlæg i et eksisterende hus før anlægget eventuelt forsøges markedsfort.

2 Hidtidige arbejder i Danmark vedrørende aktive solvarmeanlæg till rumopvarmning

En oversigt over hidtidigt udforte projekter indenfor området aktive solvarmeanlæg till rumopvarmning er angivet i bilag 1. I bilaget er angivet bevillingsstørrelser og projektudførende. Nedenfor gives en beskrivelse af indholdet af de pågældende projekter.

2.1 Beskrivelse af enkeltprojekter

Demonstrationsanlleg i Greve og Gentofte (reference [2])

Anlæggene i Greve og Gentofte er 2 ud af 8 af de første demonstrationsanlæg som blev opført i 1978 som led i Energiministeriets solvarmeprogram. Anlæggene er på henholdsvis $50 \mathrm{~m}^{2}$ solfanger (Greve) og på $28 \mathrm{~m}^{2}$ solfanger (Gentofte). Opbygningen af anlæggene fremgår af Figur 1 og Figur 2 (side 9 og side 10).

Der blev målt på anlæggene i 2 år og målingerne blev sammenlignet med beregninger med simuleringsmodellen SVS der var blevet udviklet på Laboratoriet for Varmeisolering. Der blev endvidere med edb-modellen foretaget et grundigt analysearbejde med henblik på at afklare betydningen af en lang række anlægsparametre.

Begge anlæg bar ligesom demonstrationsprogrammets øvrige fiørste generationsanlæg præg af at være overdimensionerede. Den sparede energimængde ved anlægget i Greve var således i det andet måleår på $107 \mathrm{kWh} / \mathrm{m}^{2}$ solfangerareal medens den i Gentofte var på $174 \mathrm{kWh} / \mathrm{m}^{2}$ solfangerareal med dækningsgrader på henholdsvis 28% og 14%.

Endvidere påviste beregninger og målinger at forbrugsmønstret sami varmesystemets udformning i det pågældende hus er meget afgørende for anlæggets ydelse. Som konsekvens af dette blev der foreslået en ny systemlosning med en separat radiator som udelukkende far varme fra solvarmesystemet, idet dette i væsentlig grad kunne forhindre driftsproblemer samt forøge anlæggets ydelse ved at sænke returtemperaturen fra radiatoren.

Ovenstående er grundigt rapporteret i en rapport hvis konklusioner i væsentlig grad må anses for grundlæggende for emnet og også gældende i dag.

Anlæg till rumopvarmaing (Ejby) (reference [3])
Energiforskningsprogrammets næste demonstrationsprojekt indenfor rumvarme blev opført på et parcelhus i Ejby i 1984.

Anlægsopbygningen fremgår af Figur 3 og Figur 4, (se side 11 og 12). Der er $17.3 \mathrm{~m}^{2}$ solfanger og en lagertank på 735 liter. Der blev anvendt en systemløsning med separat radiator og i solfangerkredsen blev der benyttet drain back for at undgå kogningsproblemer.

Der blev målt på anlægget i et år. Den målte ydelse var lille, idet der kun blev målt en ydelse på $152 \mathrm{kWh} / \mathrm{m}^{2}$ pr. år med en dækningsgrad på 25%. Den lille ydelse tilskrives hovedsagelig
at også dette anlæg var overdimensioneret i forhold til forbruget. Der var dog også en del problemer med at få anlæggets solvarmekreds (drain back systerm) til at fungere.

Udvikling an konkurrencedygeige solvanmeanlacg til kombineret brugsvand og rumonevarming (dette projelet)

Projektet bygger på enfaringeme fra de øvrige projekter.

Solvarmeanixg ned dual vammelager \& soln eip el-opvarmede boliger (reference [7] og [8])
Projekterne omhandler et solvarmeanlæg til brug i el-opvarmede huse.
I forstnævnte projekt er der blevet opbygget en lagertank som både kan benyttes til lagring af solvarme og til lagring af varme fra en elpatron således at der kan gemmes vame fra om natten, hvor elpatronen kan benytte den billige nat-el, til om dagen.

Lagertanken er blevet funktionsafprøvet ved Laboratoriet for Varmeisolering. Opbygningen fremgat af Figur 5, (se side 13).

I sidstnævnte projekt er der blevet målt på et solvarmeanlæg med den afprøvede lagertank opsat i et hus i Favreholmvænget i Hillerød. Ydelsen af solvarmeanlægget har været $226 \mathrm{kWh} / \mathrm{m}^{2}$ pr. ar, og ved en forenkling af anlægget ville tilbagebetalingstiden have vaeret 10 ar.

Ydelsesmaidinger nis sol-rumvarmeanleg (reference [9])
I projektet er der blevet målt på et solvarmeanlæg kombineret med en storbrændekedel til opvarmning af et $257 \mathrm{~m}^{2}$ hus i $\varnothing_{\text {ster }}$ Hornum ved Støvring.

Både solvarmeanlæg ($16.6 \mathrm{~m}^{2}$) og braendekedel lagrer varme i husets tunge konstruktion via et gulvvarmesystem. Den eneste lagringsbeholder der er til solvarmeanlagget er således varmtvandsbeholderen på 2001.

Opbygning af systemet fremgår af Figur 6, (se side 13).
Der er mål på systemet i 3 år og ydelsen af solvarmeanlægget har for de 3 år vaeret henholdsvis 393,355 og $247 \mathrm{kWh} / \mathrm{m}^{2}$ med dækningsgrader på $29,28, \operatorname{og} 23 \%$.

Anlegget har fungeret efter hensigten og okonomien har været tilfredsstillende, idet solvarmeanlagget (excl. merudgifter til husets tunge konstruktion) har været meget billigt.

Nyt lagrings og styringsprincip for mindre, kombinerede anlag (reference [10])
Anlægget er på $13 \mathrm{~m}^{2}$ solfanger i kombination med en lagertank til brugsvand. Anlægsopbygningen fremgår af Figur 7 (se side 14), og er i princippet et udvidet brugsvandsanlæg.

Der har været målt på anlægget i 45 uger i 1988. Ud fra målingerne er der beregnet en årlig anlægsydelse i referenceåret på $345 \mathrm{kWh} / \mathrm{m}^{2}$, hvilket er tilfredsstillende.

Den foreliggende rapport er en foreløbig målerapport uden anlægsbeskrivelse.

Solvarmeanlaeg hil varmi brugsvand og rumopvarmming på Borwholms Folkehajskole (reference [11])

Anlægsopbygningen fremgår af Figur 8, (se side 14).
Anlægget kan i princippet betegnes som et solvameanlæg med korttidslager til fjernvarme, idet opvarmaingen af brugsvandet og rumopvarmningen ikke er adskilt, men sker via de samme (fjern)varmeledninger.

Det forsøges således ikke via anlægsopbygningen at opnå lave driftstemperaturer for solvarmen. I steder benyttes hojeffektive solfangere.

Der bliver målt på anlægget, men rapport foreligger endnu ikke.

Maleprojekt por solvarme -naturgasanlag invenergilus (reference [12])
Anlægget er et af de prisbelønnede anlæg i idekonkurrencen om varmeanlæg till lavenergihuse udskrevet af Teknologirådet i 1988. Anlægsopbygningen fremgår af Figur 9 (se side 15), solfangeren er på $4,4 \mathrm{~m}^{2}$. Anlægget er blevet opfort og der foretages målinger på det.
 [131)

Anlagsopbygningen er vist på Figur 10 , (se side 15). Der er $8.6 \mathrm{~m}^{2}$ solfanger og en lagerbeholder på 380 liter. Anlagget må betegnes som et udvidet brugsvandsanlag.

Der er målt på anlægget i juni-juli 1989. Det er på basis af målingerne ikke muligt at give et eksakt bud på anlagsydelsen, men der er konstateret unødige varmetab formentig som folge af selvcirkulation.

2.2 Generel vurdering af de opnåede erfaringer fra de gennemførte projekter.

De første demonstrationsprojekter (Greve, Gentofte og Ejby) var praget af posket om store dækningsgrader (50,28 og $17 \mathrm{~m}^{2}$ solfanger).

Konceptet har varet anlæg med specialbyggede lagertanke svarende til de store solfangerarealer.

Generelt kan siges om disse anlæg.

- at solfangerarealerne har varet så store at udbyttet pr. m² solfanger er for lille fordi anlæggene er overdimensionerede om sommeren.
- at de specialbyggede lagertanke med indbygget varmtvandsbeholder vil vare for dyre at producere i de mængder der vil være realistiske i Danmark.
- at anlagsopbygningerne har været for komplicerede med deraf følgende fejl funktioner.

Demonstrationsprojekterne har da således heller ikke dannet prototype for markedsførte anlæg. Derimod har det teoretiske arbejde omkring Greve og Gentofte-anlæggene skabt grundlag for det videre arbejde med rumopvarmningsanlæg.

Efter de ovennæunte projekter har der været målt på forskellige anlæg der i princippet har haft forskellige anvendelser og sigte.

Et anlæg har varet beregnet til anvendelse i el-opvarmede huse og sigter på også at kunne lagre billig nat-el i solvarmeanlæggets lagertank ("Solvameanlæg med dual varmelager" og sol til elopvarmede boliger").

Et andet anlag er opført på et hus med tung gulvkonstruktion og gulvarme således at gulver virker som varmelager ("ydelsesmålinger på sol -rumvarmeanlag). Endvidere er der blevet måle på anlæg som i princippet er udvidede brugsvandsanlæg (Ans Solvarme og Ringsted Energicenter).

Der er imidlertid ikke målt på de typer anlæg til rumopvarmning, som rent faktisk produceres og forhandles i dag. (I princippet brugsvandsanlæg med nogle $\mathfrak{f a}$ ekstra m^{2} solfanger, som ogsza levere varme til rumopvarmning hovedsageligt om sommeren.)

Det er endvidere karakteristisk for rumvarmeanlag, at ydelsen er afhangig dels af rumopvarmningsbehovet (som kan være meget forskelligt afhrongigt af hus og brugervaner), samt af rumopvarmningssystemet i huset især med henblik på hvilke returtemperaturer dette leverer.

Frolles for ovennævnte projekter er, at det er vanskeligt at drage generelle konklusioner vedrørende rumopvarmningsanlæg.

I store træk kan udviklingen indenfor aktive solvarmeanlæg til rumopvarmning således på baggrund af foranstående opsummeres således:

1. Solvarmeanlæg til rumopvarmning har måttet gennemgå samme "lære" som solvarmeanlagg til brugsvandsopvarmning

- De skal udføres så enkle som muligt
- de skal dimensioneres så pracist som muligt til varmebehovet
- de skal udnytte muligheden for temperaturstratificering optimalt

I modsætning til brugsvandsanlæggene har der dog ikke udviklet sig en velafprøvet og veldokumenteret praksis for anlægsudformning.
2. Forskellige rumopvarmningsprojekter har varet udfort. Nogle af disse har haft udmærkede resultater men det er vanskeligt at sætte disse resultater ind i en generel sammenhæng.
3. En del af fabrikanterne har udviklet systemløsninger som forhandles i et forholdsvis stort omfang på grund af efterspørgsel fra kunderne. Disse systemløsninger ser ud til at være fornuftige, men der foreligger ikke målinger på anlæggene.

Figur 1 Principdiagram. Demonstrationsanlægget i Greve.

Figur 2 Principdiagram. Demonstrationsanlægget i Gentofte.

Figure 3
Principdiagram. Demonstrationsanlægget i Ejby.

1. Varmeakkumuleringstank
2. Neddykket varmtvandsbenolder
3. Rørforbindelser til solfangerne
A. Plaskebeholdex
4. Eftervarmning af brugsvand (Ejexnvarme/alternativt el)
5. Separar varmeafgiver med blzser
6. Afbrydelig forbindelse til de eksisterende radiatorer
7. Koldtvandstilgang
8. Varmt vand
9. Aben ekspansionsbeholder
10. Gulvaflob
11. Pumpe i solfangerkreds
12. Pumpe i varmekreds

Figur 4 Demonstrationsanlægget i Ejby. Opbygning i bryggers.

Figur Solvarmeanlæg med dual vormelager (lagring af nat-el)

Figur 6
Principdiagram. Sol til gulvvarme-system.

ANS 88 Mågevej 19 ,Ans v. Lars Christiansen

Fighir 7
Principdiagram. Rumopvarmnings.ystem. Ans solvarme.

District Heating With Day-and-Night Storage

Figur 8 Solvarmeaniæg ved Bornholms Folkehøjskole.

Nuturgaysolvarme andeg raed luftberea v.efordehine

Figur 9 Solvarme til rumopvarmning i lavenergihus.

Figur 10
Solvarme til rumopvarmning. Ringsted Energicenter.

3 Systemløsninger

Ved forskellige anvendelser af kombinerede anlæg, vil der måske være forskellige systemløsninger, som vil være mest hensigtsmæssige.

Der er udvalgt en række systemer som skønnes mest interessante at vurdere nærmere, og disse er så analyseret i forhold til en række anvendelser som er beskrevet i kapitel 4. Systemerne der er udvalgt er kun enkelte variationer af utallige mulige. De beregnede ydelser vil dog også ved mange variationer være repræsentative såfremt variationerne udføres fornuftigt og med respekt for anlæggets grundlæggende funktionsmåde samt naturligvis at anlæggene opføres i overensstemmelse med beregningsforudsætningerne.

Ved udvælgelsen af systemløsninger er der også skelet til hvilke systemiøsninger der foreligger systemgodkendelse til fra Prøvestationen for Solvarmeanlæg. Der er dog kun et enkelt fabrikat der benytter low flow princippet iforbindelse med anlæg til rumopvarmning.

De analyserede systemløsninger er vist på Figur 11-Figur 18, (se side 24 og 27). På figurerne er kun angivet de principielle systemmæssige forhold. Disse er således absolut ikke udtømmende med hensyn til komponentbestykning m.m.

Ved de senere analyser af ydelserne for de forskellige systemløsninger ved forskellige anvendelser regnes der \emptyset konomi på den måde at rumopvarmningsanlaeggenes $ø$ konomi sammenlignes med økonomien for solvarmeanlæg kun til brugsvandsopvarmning (se afsnit 4.2). For de forskellige systemløsninger er der derfor i dette kapitel angivet hvad de skonnede merudgifter til rumopvarmningsanlægget vil være i forhold til referencebrugsvandsanlægget (afsnit 3.2). Disse skøn er naturligvis kun vejledende, idet de forskellige forhold på installationstedet kan medføre store variationer. Priserne er skønnede ud fra reference [14] og reference [15].

Som nævnt i indledningen analyseres der i nærværende projekt ikke på anlæg der er integreret i bygningsudformningen (f.eks. iform af at benytte et betongulv med gulvvarmeslanger som varmelager).

3.1 Modelberegninger med EMGP3

Ved beregningerne af ydelserne for de forskellige systemløsninger er benyttet solvarmesimuleringsprogrammet EMGP3 (European Modelling Group Programme 3) (reference [16]).

Dette beregningsprogram er udviklet som en del af EF's solvarmeprojekter i et samarbejde mellem EF-landene. Selve programudviklingen er foretaget af professor W.L. Dutre ved universitetet i Leuven i Belgien.

Programmet er modulopbygget således at de solvarmeanlæg der simuleres kan sammensættes ud fra en lang række komponenter som findes i programmet (solfangerelement, rørelement, lagerelement o.s.v.). Programmet har gennemgået en omhyggelig validering således at hver komponent så vidt muligt er valideret for sig.

Hvordan den modelmæssige opbygning af systemerne er foretaget er antydet på Figur 19Figur 21 (se side 28 og 29), hvor systemernes beregningsmæssige opbygning er angivet. Udover selve systemkomponenterne påføres systemet en række eksterne funktioner (klimaparametre, opvarmningsforbrug, supplerende energi m.m.) samt en række "controlers" som styrer systemet og som svarer til termostater m.m. På Figur 19-Figur 21 er af hensyn til overskueligheden kun optegnet en del af systemelementerne (angivet med E()) og en del af de eksterne funktioner (angivet med Ex..). Figurerne kommenteres i øvrigt ikke videre, idet en detaljeret gennemgang af modelopbygningen og EMGP3 programmet lades ude af denne rapport (interesserede kan rette henvendelse til Laboratoriet for Varmeisolering).

3.1.1 Stratificering og low flow

Temperaturstratificering (d.v.s. det forhold at vand med forskellig temperatur og dermed forskellig massefylde lægger sig i forskellige lag i beholderen - det varmeste øverst) i varmtvandsbeholder og lagertank håndteres i programmet således, at tankene beregningsmæssigt deles op i flere dele. Når der tappes varme eller vand overføres der beregningsmæssigt varme fra den ene del til den anden. Dette er ikke en helt korrekt simulering af de virkelige forhold, hvor der ved tapninger snarere er tale om at temperaturskiftelag (græensefladen mellem to lag med vand af forskellig temperatur) vandrer op og ned i beholderen.

Det er dog således at jo flere lag man opdeler lagerbeholderen i desto bedre kan man simulere forholdene korrekt. Mange lag i beholderen betyder imidlertid en forggelse af regnetiden som i forvejen for de anlæg der er beregnet i dette projekt er på mellem $1 / 2$ til flere timer. Hvor nøjagtigt man kan beregne anlæggene er således også et praktisk spørgsmål.

Man kan derfor ikke forvente helt korrekte beregningsresultater med modellen ved beregning af low flow anlæg, hvor det netop er meget væsentligt at kunne beregne de korrekte temperaturer og den korrekte lagdeling i tanken. Imidlertid findes der i dag ingen modulopbyggede simuleringsmodeller, som kan beregne low flow anlæg korrekt, hvorfor anvendelsen af EMGP3 har været den bedst fremkommelige vej.

Der er ved eksempler foretaget sammenligninger med den model til beregning of low flow anlæg som er udviklet på LfV. Hvor man ved low flow modellen i forhold til almindelige brugsvandsanlæg beregner merydelser på 10-15 \% beregner man med EMGP3 modellen for brugsvandsanlæg merydelser på ca. 5 \% når der regnes med et rimeligt (ca. 12) antal lag i lagerbeholderen. I de udførte beregninger er der af hensyn til regnetiden kun regnet med 5 lag i beholderne og ved at sammenligne disse beregninger med tilsvarende anlæg uden anvendelse af low flow princippet (d.v.s. normalt flow på $0.51 / \mathrm{m}^{2}$ pr. minut og solfangerretur til bunden af lagerbeholderen) fås kun merydelser på f.eks 1-2\%. Det vurderes imidlertid at tendenserne ved beregningerne er korrekte, og at modellen godt kan benyttes til at sammenligne forskellige systemudformninger, men at beregningsresultaterne er i underkanten af det korrekte. (Dette opvejes måske så af at installationspraksis aldrig svarer til det optimale og derfor ofte vil forringe ydelserne).

3.1.2 Simulering af radiatorer

De beregnede systemer kan have varmeafgivere i form af radiatorer eller f.eks. i form af vand til luft varmevekslere indbygget i et ventillationssystem. Til en vis grad vil resultaterne også kunne anvendes når der indgår mindre gulvvarmesystemer (f.eks. i et badeværelsesgulv). Der er dog ikke taget hensyn til varmeakkumulering i bygningskonstruktioner eller til at fremløbstemperaturen skal sænkes ved gulvvarmesystemer.

I systemdiagrammerne er der som varmeafgivere tegnet radiatorer. Dette kan således også være andre former for varmeafgivere. For eksisterende huse vil radiatorer måske i mange tilfælde vare mest relevante.

I den måde EMGP3 modellen er benyttet ved beregningerne er varmeafgiverne simuleret med en konstant varmeoverføringskoefficient.

For radiatorer er dette ikke helt korrekt og da afkøling over radiatorer samt flow i radiatorkreds vil have stor betydning for solvarmeanlæggenes ydelse, er betydningen heraf undersøgt nermere i bilag 2. Det konkluderes her at afvigelserne mellem de korrekte vardier for returtemperaturer efter radiatorer og de beregnede værdier vil vare små.

Det må imidlertid pointeres kraftigt at de temperaturer og flow der fremkommer i simuleringerne er ideelle på den måde at de svarer til temperaturer og flow gennem én radiator reguleret med en radiatorventil. I praksis vil der ved flere radiatorer ofte være én eller flere, som er "kortsluttet", (f.eks. en åben radiator under et åbentstående vindue). Derved kan der ikke opnås den ideelle afkoling i radiatorsystemet, hvilket kan have meget stor betydning for solvarmeanlæggets ydelse. Såfremt der installeres et solvarmeanlæg til rumopvarmning må det således sikres at returtemperaturen fra radiatorerne holdes nede, f.eks, ved temperaturstyring af returtemperaturen.

3.1.3 Solfangere

Ved beregningeme anfort i kapitel 4 er der benyttet solfangere med et lag glas og med selektiv belægning.

Den benyttede effektivitet er: (svarende til en ved Laboratoriet for Varmeisolering målt effektivitet på en typisk solfanger)

$$
n=0,78-4.4 \frac{T m-T a}{I}-0,011 \frac{(T m-T a)^{2}}{I}
$$

hvor:

$\eta:$	Solfangerens effektivitet	
$\mathrm{T}_{\mathrm{m}}:$	Middeltemperatur af væske i solfanger	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{a}}:$	Udeluftemperaturen	${ }^{\circ} \mathrm{C}$
$\mathrm{I}:$	Bestralingsstyrke	$\mathrm{W} / \mathrm{m}^{2}$

I. afsnit 4.8 er det vurderet at det ved de systemer der er analyseret i denne rapport ikke kan betale sig at benytte solfangere med et ekstra lag teflon, således som det kan betale sig ved solvarmeanlæg til fjernvarmeformål.

Ved vurderingen i afsnit 4.8 er for den højeffektive solfanger benyttet en effektivitet på:

$$
\eta=0,82-4.6 \frac{T m-T a}{I}
$$

Den hajeffektive solfanger har ifølge priseksempler en merpris iforhold til solfangeren uden teflon lag på $417 \mathrm{kr} / \mathrm{m}^{2}$ solfanger.

Der er ved alle beregningerne regnet med en solfangerhældning på $45^{\circ} \mathrm{mod}$ vandret og med solfangeren orienteret mod syd.

3.1.4 Dvrige komponenter

Der er i beregningerne regnet med lagerstørrelser på ca 50 liter pr. m^{2} solfanger. Heraf udgør den del af beholdervolumet, som indeholder brugsvandet minimum 200 liter. Beholderne regnes isoleret til rimelig standard med min .100 mm . mineraluld.

Endvidere er rørlængder og varmetab fra rør samt øvrige komponenter vurderet for de forskellige anlægsudformninger og anlægsstørrelser.

I det følgende beskrives de analyserede systemer.

3.2 Anlxg kun till brugsvandsopvarmning (referenceanleg)

Som reference for de beregnede anlæg (se senere i afsnit 4.2) benyttes et anlæg kun til brugsvandsopvarmning. Anlægget er vist på Figur 11, Figur 22, Figur 26, (se side 24, 32, 39).

3.3 "Udvidet brugsvandsanleg"

3.3.1 "Udvidet brugsvandsanlleg" tilliluttet eksisterende radiatorer

Systemet er optegnet på Figur 12, (se side 24). Systemet har været foreslået af en fabrikant. Princippet går ud på ved billig udvidelse af brugsvandsanlægget, at kunne supplere energi til rumopvarmningsbehov.

Systemet bestå af et low flow anlæg med kappebeholder, hvori der i toppen er indsat en spiralvarmeveksler i forbindelse med fyret og husets radiatorsystem.

Når fyret er i drift (forår, vinter, efterår), opvarmes toppen af beholderen ved hjælp af oliefyret til temperaturen for det varme brugsvand er $55^{\circ} \mathrm{C}$. Såfremt solfangeren kan bringe temperaturen i beholderen hajere op leveres der også varme til radiatorerne.

Om sommeren slukker fyret og solvarmeanlægget leverer varme til det varme brugsvand og til opvarmningen. Det varme brugsvand eftervarmes til brugsvandstemperaturen af et elvarmelegeme i toppen af beholderen.

Fordele: \quad Billigt anlæg til rumopvarmning da der kun kræves ganske få ekstra komponenter i forhold til et brugsvandsanlæg.

Ulemper: Om sommeren er radiatorvarmevekslerens placering i toppen af beholderen med til at formindske temperatur stratificeringen.

Da der varmelagres i brugsvandet kan anlægget kun levere til mindre dækningsgrader af rumvarmebehovet for ikke at få lagervolumenet for stort i forhold til forbruget af brugsvand.

Udenfor sommerperioden kan der kun leveres varme til radiatoreme når temperaturen i beholderen er over brugsvandstemperaturen.

Systemet kan formentig forbedres ved at indføre en varmeveksler mellem solfangerkredsen og radiatorkredsen således at der kan leveres varme til radiatorerne uden om varmtvandsbeholderen.

Når der ses bort fra low flow princippet svarer systemet i øvrigt til systemgodkendte anlag fra flere fabrikanter.

Ekstrakomponenter og ekstraarbejder if forhold till brugsvandsanizeg (referenceanlagget Figur 11, Figur 22, Figur 26), (se side 24, 32, 39):

Komponenter	Anslảet vardi for $6.45 \mathrm{~m}^{2}$ amleag	
	Komponent	Samlet arbejde
3 afspærringsventiler	60 kr	175 kr
shuntventil	220 kr	500 kr
rørtrak	5 m	1250 kr
ekstra installationsarbejde		500 kr
	i alt	2425 kr

3.32 "Udvidet brugsvandsanlwg" tilisiutet separat radiator system

Fordelen ved dette system (vist på Figur 13, se side 25) er, at systemet kan levere varme hele året så snart beholdertemperaturen er varmere end returtemperaturen fra den separate radiator. Ydelsen bliver på denne måde hojere, men til gengæld skal der investeres i en ny radiator eller varmeflade (f.eks. til indsættelse i ventilationssystemet) til brug for solvarmesystemet. Ideen med at benytte den separate radiator er beskrevet nærmere i reference [2] og [3].

I det viste system skal det varme brugsvand eftervarmes udenfor solvarmetanken for eksempel i en eksisterende varmtvandsbeholder eller i en gennemstrømningsvandvarmer.

Ekstrakomponenter og ekstraarbejder if forhold till brugsvandsanleg (referenceanlægget Figur 11, Figur 22, Figur 26, se side 24, 32, 39):

Forudsat at eksisterende varmtvandsbeholder benyttes

Komponenter	Anslået verdi for $6.45 \mathrm{~mm}^{2}$ anlleg	
	Komponent	Samlet arbejde
radiator/varmeflade	220 kr	570 kr
radiatorventil	150 kr	210 kr
pumpe	600 kr	1500 kr
rørtræk	10 m	1500 kr
ekstra installationsarbejde		500 kr
	i alt	4280 kr

3.4 Drain back system

Systemdesignet, som er vist på Figur 14 (se side 25), er fremkommet som et resultat af over vejelserne under dette projekt.
Der lagres primært i brugsvandsbeholderen, men hvis anlægget bygges til større dækningsgrader vil brugsvandsvolumenet være for lille. Systemet kan da udbygges som vist på figuren med en ekstra lagerbeholder.

Systemet er udformet så det så vidt muligt udnytter temperaturstratificeringen optimalt.
Ved at udføre solvarmeanlægget som drain back system kan dette formentlig i nogle tilfæide udføres så der undgås varmeveksling mellem solfangerkredsen og radiatorkredsen.

Systemet er afprøvet under nærværende projekt, hvilket beskrives i kapitel 5 .
I modelarbejdet er der gennemgået to tilfælde. I begge tilfælde forudsættes returledningen fra radiatorerne at komme ind i bunden af beholderen, men i det ene tilfælde forudsættes beholderens temperatur ud for indlobet af returledningen at antage dennes temperatur. I det andet tilfælde antages returledningens vand at fordele sig til det højdeniveau itanken der har samme temperatur som returledningen. Beregningsmæssigt var der størst ydelse ved det sidste system, men da forskellen var lille er der kun angivet resultater for det ene system (det første).

Endvidere er der regnet på systemet tilsluttet et radiatorsystem hvor der udføres supplerende opvarmning i kredsen (tilsluttet husets radiatorsystem), samt et system hvor der ikke udføres supplerende opvarmning (med separat radiator eller varmeflade).

Ekstrakomponenter og elkstraarbejder iforhold till brugsvandsanilæg (referenceanlægget Figur 11, Figur 22, Figur 26 se side 24, 32, 39):

Komponenter	Anstâet vardi for $6.45 \mathrm{~m}^{2}$ amllog	
	Komponent	Samlet arbejde
eventuel ekstra lagerbeholder	1000 kr	2000 kr
3 afsparringsventiler	60 kr	175 kr
rørtrak	5 m	1250 kr
ekstra installationsarbejde		500 kr
eventuelt ekstra varmeveksler		1000 kr
	i alt	1925 kr - 4925 kr
Vedl drain back		
Spares:		
ekpansionsbeholder	250 kr	750 kr
glucol	100 kr	100 kr
	i alt	850 kr
Ekstra:		
Tømmebeholder	200 kr	700 kr
Eventuel frostbeskyttelse af solfangerror (styring el. varmetråd).		1000 kr
	i alt	700 kr - 1700 kr

3.5 System med termisk adskilt rumvarmebeholder og varmivandsbeholder

Systemet er vist på Figur 15 (se side 26). Systemet kunne vare velegnet hvor solvarmelagerbeholderen ikke kan anbringes umiddelbart op ad varmtvandsbeholderen som for eksempel i bebyggelser med et centralt solvarmelager der forsyner flere boliger. (se Figur 16, Figur 17 og Figur 18, side 26 og 27).

For mindre dækningsgrader vil ydelsen være meget afhængig af at der sikres lav returtemperatur fra varmivandsbeholderen til lagerbeholderen. Dette kan i praksis formentlig være vanskeligt at udføre effektivt.

Ekstrakomponenter og ekstraarbejder i forhold til brugsvandsanlieg (referenceanlegget Figuri 11, Figur 22, Figur 26 (se side 24, 32, 31):

Komponenter	Anslået verdi ior Komponent	$6.45 \mathrm{~mm}^{2}$ anieg Samlet arbejde
ekstra lagerbeholder	300 kr	2000 kr
termostatisk reguleringsventil	390 kr	460 kr
rørtræk	5 m	1250 kr
ekstra installationsarbejde		500 kr
	i alt	4210 kr

Spares:
I mangetilfrelde vil
den eksisterende VVB
kunne benyttes
Ved drain back

Spares:
ekpansionsbeholder
glucol
Ekstra:
Tommebeholder
Eventuel frostbeskyttelse af solfangerror (styring el. varmetråd).

250 kr	750 kr
100 kr	100 kr
i alt	850 kr

200 kr 700 kr

1000 kr
i alt $\quad 700 \mathrm{kr}-1700 \mathrm{kr}$

Figur 11 Solvarmeanlæg kun til brugsvandsopvarmning.

Figur 12 "Udvidet brugsvandsanlæg" tilsluttet husets radiatorsystem

Higur 13 "Udvidet brugsvandsanlæg" med separat radiator

Figur 14
"System med drain back" tilsluttet husets radiatorsystem

Figur 15 "System med separat :Vs"

Figur 16 Fjernvarmesystem med centralt solvarmeanlæg.

Figur 17 Fjernvarmesystem med centrait solvarmeanlæg der udnytter lav returtemperatur.

Figur 18
Fjernvarmesystem med decentrale solvarmeanlæg.

Figur 19 EMGP3 modelopbygning "udvidet brugsvandsanlag"

Figur 20
EMGP3 modelopbygning. "Drain back system".

Figur 21 EMGP3 modelopbygning. "Drain back system med lagring af nat-el".

4 Kombinerede solvarmeanlæg till rumopvarmning og brugsvandsopvarmninganvendelsesmuligheder

Ved de forst udførte projekter med kombinerede solvarmeanlæg har der ikke varet udfort nogen systematisk vurdering af ved hvilke anvendelser kombinerede solvarmeanlæg vil være mest fordelagtige. Ved de tidligere demonstrationsprojekter har man især interesseret sig for en anvendelse, nemlig et slags "standard" parcelhus opvarmet med olie - eller gasfyr.

Imidlertid kan rentabiliteten og systemdesignet være noget athængige af hvor anlægget anvendes, hvorfor der nedenfor er forsøgt udpeget nogle anvendelser som ud fra forskellige kriterier kan være interessante at undersøge nærmere.

4.1 De forskellige anvendelsesmuligheder som diskuteres naermere er:

1. Eksisterende olie- og naturgasfyrede enfamiliehuse. (afsnit 4.3)
2. Eksisterende enfamiliehuse med el-opvarmning. (afsnit $3.5,4.4$)
3. Nybyggeri, enfamiliehuse, lavenergi. (afsnit 4.5)
4. Nybyggeri med falles varmecentral. (afsnit 4.6)
5. Institutioner, for eksempel plejehjem, hvor der er opvarmningsbehov hele sommeren. (afsnit 4.7)

4.2 Anlægsøkonomi - Sammenligning med brugsvandsanleg

Der er i rapporten regnet σ konomi på den måde at priser og ydelser for et solvarmeanlæg til kombineret rumopvarmning og brugsvand er relateret til et solvarmeanlæg kun til brugsvand.
(Ydelserne for et solvarmeanlæg kun til brugsvandsformål er til sammenligningsformål angivet i Tabel mI.)

Dette er giort for at opnå en \emptyset konomisk vurdering, som er forholdsvis uathængig af markedssvingninger på anlægskomponenter, støtteordninger samt priser for supplerende energi.

Rapportens konklusion vil således kunne benyttes til at angive om det i nogle tilfælde vil vare mere rentabelt at opføre et anlæg til både brugsvand og rumopvarmning end et anlæg kun til brugsvandsopvarmning.

Som referenceanlæg for parcelhuse er benyttet et brugsvandsanlæg på $6,45 \mathrm{~m}^{2}$ (svarende til 3 solfangerpaneler). Et anlæg på $4.3 \mathrm{~m}^{2}$ (2 solfangerpaneler) vil dog have næsten samme økonomi. \varnothing konomiberegningerne er angivet i Tabel I.

Tabell \varnothing konomi af brugsvandsanlæg.
Reference brugsvandsanlag

Brugsvandsforbrug	$1501 / \mathrm{d} \varnothing \mathrm{gn} \sim$	$2500 \mathrm{kWh} / \mathrm{å}$
	4,3 m^{2}	6,45 m²
Leveret solvarme	$1450 \mathrm{kWh} / \mathrm{ar}$	$1700 \mathrm{kWh} / \mathrm{a} \mathrm{r}$
Sparet tomgangstab		
(400 W i 18 uger) Sparet energi	$\frac{1210 \mathrm{kWh} / \mathrm{ar}}{2660 \mathrm{kWh} / \mathrm{ar} \mathrm{r}}$	$2910 \mathrm{kWh} / \mathrm{ar}$
Supplerende el sommer	$96 \mathrm{kWh} / \mathrm{å}$	$26 \mathrm{kWh} / \mathrm{å}$
Olie ekvivalent af supplerende el (x 1,7)	$164 \mathrm{kWh} / \mathrm{å}$	$44 \mathrm{kWh} / \mathrm{a}$ ar
Sparet energi	2660	2910
(olie ekvivalent)	$\frac{164}{2500} \mathrm{kWh} / \mathrm{år}$	$\frac{44}{2870} \mathrm{kWh} / \mathrm{a} \mathrm{r}$

Anlægspris
(ex. moms ex. tilskud)
Anlægspris pr. sparet energi
(ex. moms ex. tilskud)
$10,5 \mathrm{kr} . / \mathrm{kWh} / \mathrm{a} \mathrm{r} \quad 10,6 \mathrm{kr} . / \mathrm{kWh} / \mathrm{å} \mathrm{r}$

Ud fra oplyste priseksempler er skønnet en anlægspris på 30.300 kr . ex. moms og ex. tilskud (se Figur 22, se side 32).

Med et brugsvandsforbrug på $2550 \mathrm{kWh} /$ år svarende til 150 liter/døgn vil dette anlæg yde 1700 $\mathrm{kWh} / \mathrm{a} \mathrm{r}$ med en årlig dækningsgrad på 67% og med en dækningsgrad i sommermånederne på op til 100%.

Sådanne anlæg sælges der mange af og for et oliefyret hus hvor oliefyret slukkes i 18 uger om sommeren (der leveres således ikke varme til rumopvarmning om sommeren), vil \varnothing konomien se ud som angivet i Tabel I. (Der er ved alle vurderingerne set bort fra el til solfangerpumpen, dels

Figuir 22 Priser på solvarmeanlæg til brugsvandsopvarmning. Priseksempler.
fordi elforbruget er forholdsvis beskedent, og dels fordi det antages at være nogenlunde ens for de forskellige systemer.)

Den sparede energi på $2870 \mathrm{kWh} /$ år kan omregnes till besparelser i kroner ved at multiplicere med den aktuelle oliepris korrigeret for brendværdi samt fyrets virkningsgrad. Prisen for supplerende el er således modregnet ud fra den antagelse at el er ca. 1,7 gange så dyr som olieproduceret energi.

Ved at dividere anlægsprisen med energibesparelsen, fås i det benyttede brugsvandseksempel en anlægspris på 10.6 kr pr. sparet kWh .

4.2.1 Rumopvarmmingsbehov

Ved bestemmelse af rumopvarmningsbehov om sommeren, f.eks. med beregningsprogrammer der simulerer husets varmeforbrug ud fra referenceårets klimadata vil der som regel være et vist forbrug til opvarmning i sommerperioden. Dette forbrug vil formentlig i nogle huse være reelt nok, såfremt der er tændt for radiatorerne i hele sommerperioden.

I praksis vil mange imidlertid lukke for radiatorerne om sommeren, og således i korte perioder acceptere lavere temperatur end de $21^{\circ} \mathrm{C}$ antaget i beregningerne.

Det er klart at forbrugsmønstret med hensyn til rumopvarmning om sommeren vil have stor betydning for solvarmeanlæg der leverer varme til rumopvarmning.

I det følgende er der derfor foretaget beregninger (i de efterfølgende tabeller (se nedenfor) angivet med A), hvor der er regnet med fuldt opvarmningsforbrug om sommeren, det vil sige at solvarmeanlægget (incl. el-back up) også hele sommeren sørger for at holde huset opvarmet til den ønskede temperatur.

Desuden er der foretaget beregninger hvor radiatoranlægget forudsættes slukket i hele sommerperioden (fra 4. juni til 1. september, i alt 13 uger) (i tabellerne angivet med B). De to beregningstilfælde må således forudsættes at være to ydertilfælde for de beregnede ydelser.

Da det har vist sig at forholdet mellem de beregnede ydelser itilfælde A og B er nogenlunde konstant er der dog i mange af beregningstiliældene kun foretaget beregninger med fuldt opvarmningsbehov om sommeren (A), idet ydelserne uden opvarmningsbehov om sommeren vil kunne skønnes.

4.2.2 Anlegsekonomi og ydelser - Tabeller

I tabellerne (Tabel IV - Tabel XIX) er angivet de beregnede brutto- og nettoydelser for de forskellige solvarmesystemer. Bruttoydelsen er den ydelse som solfangeren leverer tillagertanken medens nettoydelsen er den nyttiggiorte solvarme i systemet; det vil sige behovet for rumvarme og brugsvand, fratrukket det beregnede forbrug af supplerende energi. Forskellen mellem nettoog bruttoydelsen vil være lagerbeholderens (el-lagerbeholderens) varmetab.

I tabellerne er endvidere angivet de beregnede dækningsgrader for rumvarmen og brugsvandet (dækningsgraden er den procentdel af henholdsvis rumvarmebehovet og brugsvandsbehovet som dækkes af solvarme). Dækningsgraderne er angivet dels for hele året og dels for sommerperioder på henholdsvis 20, 16, 14 og 12 uger (eller 5, 4 og 3 måneder).

Formålet hermed er at kunne vurdere om det vil være hensigtsmæssigt at slukke et eventuelt oliefyr i sommerperioder for derved at kunne spare fyrets tomgangstab.

Ved hvilken dækningsgrad det vil kunne betale sig at slukke oliefyret og eventuelt gå over til at supplere med el-varmelegemer i solvarmesystemet afhænger af energipriserne samt størrelsen af fyrets tomgangstab.

Det er normal praksis at dimensionere rene brugsvandsanleg til en sommerdækningsgrad på ca. 90%.

I tabellerne er endvidere nederst angivet, hvad anlægsprisen for det kombinerede anlæg må være, når der som i eksemplet med brugsvandsanlægget regnes med en anlægspris på $10,6 \mathrm{kr}$ pr. sparet $\mathrm{kWh} / \mathrm{a}$. De angivne anlægspriser fremkommer simpelthen ved at multiplicere de angivne energibesparelser (incl. sparet tomgangstab) med 10.6. (Eller for huse med el-back up med 18.02 ; se afsnit $3.5,4.4$).

Endvidere er til sammenligning angivet hvad et solvarmeanlæg på samme solfangerareal kun til brugsvand koster - idet dette anses for den minimalt opnåelige anlægspris for et solvarmeanlæg i denne størrelse.

Såfremt der er en positiv forskel skulle denne så angive den merpris der er til rådighed for at modificere anlægget til et anlæg både til rumopvarmning og brugsvand såfremt der ønskes samme rentabilitet som for et normalt anlæg kun til brugsvand.

Tallene i tabellerne er ikke afrundet til nærmeste 10 'ere eller 100 'ere som de måske burde for ikke at give indtryk af storre nojagtighed i beregningeme og i de pkonomiske forudsatninger end der er basis for. Det er imidlertid valgt at bevare samtlige cifre for bedre at give indtryk af tendensen itallene.

4.3 Eksisterende olie- eller naturgasfyrede enfamiliehuse med et rumopvarmningsbehov der ikke er lille

Der forudsættes et hus med et årligt rumopvarmningsbehov på 14.000 kWh (d.v.s et hus på ca $120 \mathrm{~m}^{2}$ boligareal isoleret til standard $\operatorname{BR} 77$, jvf. reference [17]). Brugsvandsforbruget forudsættes at være $2550 \mathrm{kWh} /$ år ($\sim 150 \mathrm{I}$ pr. døgn opvarmet fra $10^{\circ} \mathrm{C}$ til $50^{\circ} \mathrm{C}$). I beregningerne benyttes et tappeprofil over døgnet som vist på Figur 23.

Figur 23 Tappeprofil, varmt brugsvand

Der forudsættes endvidere at være et eksisterende opvarmningssystem (for eksempel radiatorer). Solvarmesystemet forudsættes installeret og tilsluttet det eksisterende opvarmningssystem. I princippet vil alle de ovenfor gennemregnede anlægskonfigurationer kunne anvendes.

Opvarmningsbehovet over året er vist på Figur 24.

Figur 24 Opvarmningsbehov i "standardhus" og i lavenergihus.

I det folgende angives beregninger af ydelsen ved de forskellige anvendte systemldsninger.

4.3.1 "Udvidet brugsvandsanlæg" hilshuttel husets radiatorsystem

Ydelserne fremgår af Tabel IV.
Det fremgår af tabellen hvilken merydelse anlægget vil have i forhold til et rent brugsvandsanlæg (Tabel III).

Såfremt der benyttes et anlag på $4.3 \mathrm{~m}^{2}$ vil mulighederne for at fo̊ høje dækningsgrader på både brugsvandet, og på rumvarmebehovet om sommeren ikke være tilstede. Anlægget bør således dimensioneres større end et rent brugsvandsanlæg. Da anlægget imidlertid kun leverer varme til rumopvarmning om sommeren vil anlægget imidlertid heller ikke kunne gøres særligt stort, uden at det går væsentigt ud over ydelsen pr. m^{2} solfanger.

Som det fremgår af tabellen er der kun en positiv forskel i nogle få tilfælde hvilket umiddelbart kan overraske da anlæggene til rumopvarmning jo yder mere end de rene brugsvandsanlæg.

Dette skyldes imidlertid at anlæggene til rumopvarmning skal levere en vis mængde varme til rumopvarmning i lpbet af sommeren. Dette betyder at enten kan fyret ikke slukkes i så lang en periode, eller også skal den supplerende energi leveres som el hvorved den energibesparelse (tomgangstab - supplerende energi i form af el), som ligger ud over den rene solfangerydelse bliver mindre i rumvarme tilfældet.

Ved at kigge på værdierne for "tilladelig" anlægspris nederst i Tabel IV ses det, at den "tilladelige" anlægspris kun er større end prisen for det tilsvarende rene brugsvandsanleg i det tilfaelde hvor der rent faktisk ikke er rumvarmeforbrug om sommeren.

Dette skyldes jo den merydelse der er fra anlægget i perioden med rumopvarmning samt at perioden med sparet tomgangstab kan gores tilstrakkelig stor iforhold til det rene brugsvandso anlæg hvor der er regnet med sparet tomgangstab i 18 uger.

Det ses dog også at for anlæggene på både 4,3 og $6,45 \mathrm{~m}^{2}$ er der ikke særlig stor forskel mellem prisen på det rene brugsvandsanlæg og anlægget udvidet til rumopvarmning.

Iforhold til et rent brugsvandsanlegg vil de ekstra komponenter der er tale om for at udvide anlægget til rumopvarmning være et par ekstra ventiler og lidt ekstra rortrak som alt i alt i mange tilfælde vil kunne holdes under elstraomkostningen på $1000-3000 \mathrm{kr}$.

Det må derfor konkluderende vurderes at akonomien i denne type anlæg i nogle tiffelde vil kunne sidestilles med økonomien i et rent brugsvandsanlagg medens det idet fleste vil vare en lidt ringere \emptyset konomi.

Sidstnævnte forhold skyldes imidlertid ikke at det er en dărlig anlægstype, men det forhold at folk der har rumvarmebehov om sommeren generelt vil have vanskeligere ved at kunme slukke for fyret med henblik på at opnå besparelsen på tomgangstabet.

4.3.2 "Udvidet brugsvandsanteg" medil separat radiator

Anlægget er beregnet således at eftervarmning af brugsvandet foregå i en efterfølgende varmivandsbeholder (af fyret om vinteren og ved en el-patron om sommeren).

Endvidere leverer anlægget rumvarme når det er istand til det ved hjælp af en separat radiator. I de udførte beregninger er den separate radiatorstorrelse sat til $30 \mathrm{~W} / \mathrm{K}$ eller 20% af radiatoreffekten i hele huset.

Den separate radiator kunne også vare en vand til luft varmeveksler indsat i husets ventilationsanlæg.

Det ses af Tabel V at dette anlag som forventet vil have en hel del hajere ydelse end anlagget beregnet i foregående eksempel. Især vil anlægsydelserne være rimelige også for større anlæg på $8,6 \mathrm{og} 12,9 \mathrm{~m}^{2}$.

Ekstra omkostninger i forhold til anlægget i første eksempel vil være til en separat radiator eller en varmeveksler i ventilationssystemet, og eventuelt til en ekstra lagerbeholder til eftervarming af brugsvandet af fyret. Det er klart at anlægstypen vil være mest fordelagtig hvor denne beholder findes i forvejen som en eksisterende varmtvandsbeholder.

Hvis man går ud fra dette vil den "tilladelige" merpris i forhold til anlægget iforudgående eksempel vare:

$$
\begin{array}{ll}
4,3 \mathrm{~m}^{2} \text { anlæg: } & 2700 \mathrm{kr} \\
6,45 \mathrm{~m}^{2} \text { anlæg: } & 4800 \mathrm{kr} \\
8,6 \mathrm{~m}^{2} \text { anlæg: } & 5600 \mathrm{kr}
\end{array}
$$

For anlæggene på $6,45 \mathrm{og} 8,6 \mathrm{~m}^{2}$ vil de "tilladelige" merpriser i nogle tilfælde nok kunne dække en ekstra radiator hvorfor denne anlægstype også vil kunne konkluderes at være interessant.

433 Drain back rumvarmesystem

Beregningerne fra dette anlæg er vist i Tabel VI (tilsluttet husets radiatorsystem), og i Tabel VII (med separat radiator).

Ved sammenligning med det foregående anlæg ses at anlægget især yder bedre ved de større dækningsgrader. Endvidere ses for eksempel ved at kikke på $8,6 \mathrm{~m}^{2}$ anlægget at det især yder bedre om sommeren.

Ekstra komponenter iforhold til et rent brugsvandsanlæg vil være ekstra rørtræk, samt eventuelt for de større beholdere en speciel beholderudformning.

Det må vurderes at denne anlægstype vil vare et godt bud på udformningen af et anlæg til kombineret rumopvarmning og opvarmning af brugsvand.

Ligesom for det udvidede brugsvandsanlæg ses også for low flow anlægget at gæolde at et arrangement med separat radiator (Tabel VII) forøger anlæggets ydelse. Forøgelsen er dog ikke så markant som for det udvidede brugsvandsanlæg.

43.4 System med eksisterende varmtvandsbeholder

Det ses at ydelserne for dette system beregningsmæssigt er væsentligt lavere end for de øvrige systemer (Tabel VIII).

4.4 Enfamiliehuse med el-opvarmning

Eksisterende én-familiehuse med el-opvarmning er karakteriseret ved, at der ikke forefindes noget vandbaseret varmeafgivelsessystem, samt at den energi som solvarmeanlægget erstatter er relativ dyr.

Systemlosningerne omtalt under foregående afsnit er vurderet i forhold til el-opvarmede huse.
I dette tilfælde vil der ikke være noget tomgangstab fra fyret at spare om sommeren.
Til gengald vil den energi der spares i el være mere værd end energien der spares som olie eller naturgas.

Der er regnet med at el er cirka 1,7 gange så dyr som oliefyret energi. Hvis man således \emptyset nsker samme økonomi som det rene brugsvandsanlæeg gennemgàet i afsnit 4.2 vil den "tilladelige" anlægspris for solvarmeanlægget kunne sættes til $1,7 \times 10,6 \mathrm{kr} /$ besparet kWh år $=18,02$ $\mathrm{kr} /$ besparet $\mathrm{kWh} / \mathrm{ar}$.

De "tilladelige" anlægspriser for systemerne genemregnet i afsnit 4.3.1-4.3.4, men med el back up fremgår af skemaerne Tabel IX - Tabel XIII.

Hvis man kigger på anłægget i Tabel XII kan man se at den "tilladelige" anlægspris er væsentlig højere end den tilsvarende pris for det rene brugsvandsanlæg, og høj nok til at indeholde investering i at der et centralt sted i huset opsættes en radiator eller anden form for varmeafgiver.

Systemet kan udifres med radiatorer som varmeafgivere eller ofte måske med en vand till luft varmeveksler anbragt i ventilationssystemet. Det sidste vil være en billig måde at etablere et varmeafgivningsapparat på.

Ved etablering af systemet må det overvejes, om der skal etableres supplerende varmekilde i form af et fyr (naturgas), eller om el-radiatorerne skal bibeholdes som supplerende varmekilde.

Der vil endvidere i det folgende blive undersøgt forhold omkring udnyttelse af systemet til tapning af nat-el til en billig nattakst.

4.4.1 Lagning af nat-el

For et el-opvarmet hus er det endvidere vurderet om der kan opnås væsentlige besparelser ved at benytte el-værkernes triple-tariffer, således at husets opvarmning foretages med el til den billige nattakst som gemmes i et varmelager til om dagen.

Systemudformningen er vist på Figur 25 og beregningene fremgår af Tabel XIV.

Figur 25 "System med lagring af nat-el".

El tariffen som er benyttet stammer fra NESA, og er vist på Figur 26, (se side 39).
Som det ses af Tabel XIV er der foretaget beregninger med et soliangerareal på $6,45 \mathrm{~m}^{2} \mathrm{og}$ med

Figur 26 El-tariffer, normaltarif og tripletarif.
3 lagerbeholderstørrelser på henholdsvis 450 liter, 700 liter og 1200 liter.
For hver beholder er der endvidere foretaget beregninger med forskellig udnyttelse af lagerkapaciteten i forhold til den lagrede el til nattarif.

Ved den næst nederste af de $ø$ konomiske vurderinger i tabellen er der overhovedet ikke forsøgt at lagre nat-el'en, og i den nederste er der hverken solvarmeanlæg eller lagring.

Som det ses af de samlede el-udgifter er der ikke megen besparelse at hente ved at lagre den billige nat-el (hvilket blandt andet skyldes at en meget vasentlig del af elforbruget til opvarmning i forvejen er på tidspunkter med den billige takst).

Under de giorte forudsætninger vil besparelserne næppe kunne reffærdiggøre merinvestering i lagringskapacitet til nat- el.

4.5 Nybyggeri, enfamilichuse, lavenergi

For lavenergihuse er regnet med et typisk årligt rumvarmeforbrug på ca 6250 kWh , som vist på Figur 24, (se side 35). Dette svarer til et hus på ca $120 \mathrm{~m}^{2}$ boligareal med 20 og 30 cm . mineraluld i henholdsvis ydervægge og loft samt med varmegenvinding på ventillationsluften, jvf. reference [17].

Da rumvarmeforbruget er mindre end ved det normale enfamiliehus som der er regnet på i de tidligere afsnit, vil solvarmeanlægget generelt yde mindre.

Imidlertid vil det ved nybyggeri være muligt at udføre systemudformningen af husets varmesystem således at det svarer til de tidligere systemer med separat radiator, men med radiatorstørrelsen svarende til en størrelse der har kapacitet til at opvarme hele huset. Dette kan. f.eks. opnås hvor varmeafgivelsen udfores som en vand til luft varmeveksling i husets luftvarmesystem. Man kan også forestille sig at den supplerende varmekilde i lavenergihuset er separate el-radiatorer. Dette giver systemmæssigt muligheder for bedre ydelser end i eksisterende huse.

Beregningerne er udført for olie eller naturgas som supplerende energikilde, og med el som supplerende energikilde.

Beregningerne fremgår af Tabel XV - Tabel XVII.
Som det fremgår af tabellerne vil det ikke med olie- eller naturgas være muligt at fà en $\emptyset k$ onomi der er bedre end brugsvandsanlæggene, medens dette vil være muligt for anlæggene med el som supplerende varmekilde.

4.6 Nybyggeri med fælles varmecentral

Nybyggede områder udlægges ofte med fjernvarme fra en fælles varmecentral. Såfremt fjernvarmenet og varmecentral etableres samtidigt med byggeriet er der mulighed for at anlægge fjernvarmenet og varmesystem til optimal kombination med et solvarmeanlæg. Mulighederne for en sådan kombination skal kort diskuteres i det følgende.

Ved normale udformninger af fiernvarmenettet udformes dette f.eks. som vist på Figur 16. Fremløbs- og returtemperatur i et sådant fjernvarmenet kan f.eks. være henholdsvis $80^{\circ} \mathrm{C}$ og 50 ${ }^{\circ} \mathrm{C}$. Såfremt der etableres et solvarmeanlæg som vist på Figur 16 (se side 26), vil dette ikke kunne køre på lavere temperaturer end returtemperaturen i fjernvarmenettet (f.eks. de $50^{\circ} \mathrm{C}$).

I reference [18] som omhandler undersøgelser vedrørende udformning af varmesystemet i " \emptyset kologisk Landsbysamfund" i Torup ved Hundested er ved beregninger unders \varnothing gt returtemperaturen i fjernvarmesystemet's betydning for solfangerydelsen. Det blev konkluderet i rapporten at solvarmeanlæggets ydelse især afhænger af fjernvarmenettets returtemperatur medens fremløbstemperaturen er af mindre eller ingen betydning.
Dette er vist på Figur 27 (fra reference [18]).

Figur 27 Ydelse at solvarmeanlag til fiernvarme som funktion af fiernvarmenettets returtemperatur

Der har været udfort forskelligt arbejde med henblik på udformning af fiernvarmenettet till lave temperaturer. Også af hensyn til varmetabet fra fjernvarmenettet går der bestræbelser på at udlagge fernvarmenettet til så lave temperaturer som muligt. Dette kan ske ved at udforme opvarmningssystemet i husene med store varmeflader f.eks. i form af store radiatorer eller iform af gulvarme. Ved udformningen som vist på Figur 16 (se side 26), nås dog en nedre grænse for fremløbs- og returtemperatur af hensyn til at det varme brugsvand skal opvarmes til $50-55^{\circ} \mathrm{Cog}$ af hensyn til at flowet i fjernvarmenettet overalt skal vare stort nok til sikre at de nødvendige temperaturer er tilstede overalt i ijernvarmenettet.

Der fremstilles derfor til brug for fjernvarmeformål specielle højeffektive solfangere. Også disse solfangere har dog som det fremgår af figuren bedre ydelser såfremt temperaturen i fjernvarmenettets returledning kan sænkes.

Forskellige andre udformninger med henblik på lavtemperatur i fjernvarmesystemet har været forsøgt og diskuteret. (se f. eks. reference [18]).

En anden mulig systemudformning kunne endvidere være som vist på Figur 17 (se side 27). Her søges systemet indrettet således at fjernvarmenettet om sommeren i princippet afkøles ned i narheden af det kolde brugsvands temperatur. Dette opnås ved at etablere en ringledning for
fremløbet af fiernvarmevandet. I nogle bebyggelser vil dette naturligvis betyde en ekstra omkostning, men i mange moderne bebyggelsesplaner, som udlægges til fjernvarme kan dette ske uden væsentlige merudgifter.

Ovennævnte systemer er med en central solfanger som formentlig prismæssigt er at foretrække hvis dette er muligt. Ofte kan det imidlertid være onskeligt at kunne placere solfangerne decentralt på de enkelte huse. Et sådant system kunne se ud som vist på Figur 18 (se side 27).

Begge ovennævnte systemer med central og decentral solfanger er omtalt her da de i virkemåde svarer til det beregnede system med termisk adskilt rumvarmebeholder og varmtvandsbeholder som beskrevet 1 afsnit 3.5, og som vist pà Figur 15 (se side 26). Den aktuelle pkonomi for et sådant system vil naturligvis afhænge af forholdene på stedet og skal ikke behandles nærmere her.

4.7 Store anlæg (institutioner og boligejendomme)

Mange institutioner (f.eks. plejehjem, hospitaler m.m) er kendetegnet ved at der er et rumvarmebehov hele sommeren.

Om det kan betale sig at udvide et brugsvandsanlæg til også at levere solvarme til rumopvarmningen diskuteres i det folgende.

Store solvarmeanlæg til brugsvandsopvarmning dimensioneres ofte til mindre dækningsgrader af det varme brugsvand end de små énfamilieanlæg som tilsigter en $90-100 \%$ dækning af forbruget om sommeren for derved at spare fyrets tomgangstab.

Dette skyldes flere årsager. F.eks.

- ofte udgør tomgangstabet ved større varmecentraler en mindre andel af det totale energiforbrug end ved fyret i et enfamiliehus.
(nogle steder leveres varmen af flere fyr, hvor kun ét benyttes om sommeren m.v.). Derved bliver besparelsen ved at kunne slukke fyret om sommeren en mindre andel af den samledes besparelse. Der er derfor bedre \not konomi i at dimensionere anlægget til en mindre dæekningsgrad med deraf følgende højere ydelse pr. m^{2} solfanger.
- nogle steder er det nødvendige tagareal til en solfanger med stor dækningsgrad ikke tilstede.

Såfremt anlægget dimensioneres til mindre dækningsgrader af det varme brugsvand vil der nok ikke være megen ekstra ydelse at hente ved at udvide dette til også at dække dele af rumopvarmningen. Af Tabel X ses at såfremt anlægget dimensioneres til en dækningsgrad af det varme brugsvand på f.eks. 52% vil dækningsgraden af rumvarmen kun være omkring 4% (under de gorte forudsatninger vedrørende størrelse af brugsvands- og rumopvarmningsbehov). Af Tabel XIX ses at ved en dækningsgrad af det varme brugsvand på ca 28% vil der kun være en dækningsgrad af rumvarmebehovet på 0.6% (under samme forudsætninger vedrørende brugsvandsbehov og rumvarmebehov som ovenfor). Solvarmeanlægget kan således rigeligt komme af med varmen til brugsvandet, og har ikke nogen væsentlig merydelse som følge af også at kunne levere til rumopvarmning.

Noget andet er, at for store anlæg udgør solfangerdelen en større del af anlægsomkostningerne end for små anlæg. En udvidelse af anlægget til et rumopvarmningsanlæg vil således kunne udfores relativt billigere end for de små anlæg.

4.8 Benyttelse af højeffektiv solfanger med ekstrateflondreklag.

Det er for nogle af ovenstående systemer og anvendelser vurderet om det kan betale sig at benytte solfangere med et ekstra teflondæklag i systemerne. Beregningsforudsætningerne er anført i afsnit 3.1.3. Endvidere er benyttet de samme $ø$ konomiske forudsætninger som i dette kapitel. På samme måde som ved de øurige beregninger i dette kapitel er ydelsen udregnet for forskellige størrelser anlæg, idet der er benyttet en højeffektiv solfanger i beregningerne.

På Figur 28 er angivet de resulterende "tilladelige" anlægspriser sammenlignet med prisen for det rene brugsvandsanlæg af samme størrelse. Priserne er angivet dels for anlæg med almindelig solfanger og dels for anlæg med den hojeffektive solfanger.

Figur 28 Solvarmeanlæg med almindelig og med hojeffektiv solfanger.
Som det kan ses bliver ekstraomkostningen til den mere effektive solfanger ikke i tilstrækkeligt omfang tjent ind ved systemets ekstra ydelse. For det viste system vil det derfor ikke
beregningsmæssigt kunne betale sig at benytte den dyrere men mere effektive solfanger. Det samme er fundet for det udvidede brugsvandssystem. Det skal dog bemærkes at forskellen mellem systemerne med almindelig og med højeffektiv solfanger er lille.

4.9 Sammenfatning af beregninger og pkonomi

De "tilladelige" merpriser, d.v.s den pris anlægget må koste, hvis det skal have samme økonomi som et rent brugsvandsanlæg (den "tilladelige anlægspris") fratrukket prisen for et rent brugsvandsanlæg, er i Tabel II sammenlignet med de i kapitel 3 anslåede merpriser for at udbygge et anlæg kun til brugsvand til også at kunne levere varme til rumopvarmningen.

De steder hvor de "tilladelige" merpriser er større end de anslåede merpriser kan der forventes en $\emptyset k o n o m i$ for solvarmeanlagget til rumopvarmning der er bedre end \wp konomien for et rent brugsvandsanlæg. De steder hvor de "tilladelige" merpriser er mindre kan der forventes dårligere qkonomi.

Som det ses af tabellen kan der for et "normalhus" (årligt varmeforbrug 14.000 kWh) forventes god økonomi băde for et $6.45 \mathrm{~m}^{2}$ anlæg og for et $8.3 \mathrm{~m}^{2}$ ved de fleste systemer når der er tale om at substituere el med solvarme.

For olie eller naturgasifyrede "normalhuse" ses det at drain back systemet har det bedste potentiel for at opnå en \emptyset konomi der er bedre eller lige så god som et rent brugsvandsanlæg.

Af de to anlægsstørrelser (på $6.45 \mathrm{~m}^{2}$ og på $8.3 \mathrm{~m}^{2}$ solfanger) ses det at det er det lille anlæg der har bedst mulighed for god \emptyset konomi. Det ses dog også at ønskes anlæg med støree drekningsgrad end hvad $6.45 \mathrm{~m}^{2}$ anlagget kan levere er det drain back systemet der er bedst og som ikke har væsentigt dårligere økonomi end $6.45 \mathrm{~m}^{2}$ anlægget.

Det ses endvidere at for lavenergihuse vil der kun kunne opnås god okonomi hvis der er elbackup i huset.

Systemet med den separate varmtvandsbeholder har ikke muligheder for så god pkonomi. Dette system ville ellers måske være relevant ved systemer for flere beboelser jvi. afsnit 4.6. En udtommende analyse heraf er imidlertid ikke foretaget så andre forhold end de medtagne kan måske ændre vurderingen.

Tabel III Sammenligning af "tilladelig" merpris og anslået merpris for de forskellige typer anlæg.

6.45 kvm anlæg		Tilladelig merpris i forhold til brugsvandsanlæg		Anslået merpris
Normathus		olie/naturgas	el-backup	
Udvidet brugsvandsanlæg	Husets radiator: rumvarme sommer	-3143	5250	2425
	Separat radiator: rumvarme sommer	1849	13605	4280
Drain back anlæg	Husets radiator: rumvarme sommer	1867	12891	1775-6700
	Separat radiator: rumvarme sommer	6610	17882	6000-12700
System med separat VVB	Rumvarme sommer	. 9049	-2048	2060-5910
Lavenergihus				
Udvidet brugsvandsanlag		-4667	9327	4280
Drain back anlæg		-2088	12717	6000-12700
8.3 kvm anlæg		Tilladelig merpris iforhold til brugsvandsanlæg		Anslået merpris
Normallhus		olie/naturgas	el-backup	
Udvidet brugsvandsanlæg	Husets radiator: rumvarme sommer ikke rumvarme sommer	-6461 - 6680	$\begin{array}{r} 3417 \\ -2746 \end{array}$	2425
	Separat radiator: rumvarme sommer	702	14770	4280
Drain back anlæg	Husets radiator rumvarme sommer ikke rumvarme sommer	$\begin{aligned} & 1657 \\ & 2233 \\ & \hline \end{aligned}$	$\begin{array}{r} 15545 \\ 8895 \\ \hline \end{array}$	1775-6700
	Separat radiator rumvarme sommer	5162	18716	6000-12700
System med separat VVB	rumvarme sommer	-8808	1597	2060-5910
Lavenergihus				
Udvidet brugsvandsanlæg		.7267	8833	4280
Drain back anlæg		-5406	11466	6000-12700

Tabel III Ydelser af reference brugsvandsanlæg

Reference brugsvandsanleg

Arlige forbrug ($\mathrm{kWh} /$ ar)
Rumvamebehov A 0
brugsvandsforbrug 2.547

Rumvarmebehov B 0
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukker om sommeren.

Ydelser solfanger areal m²		Bruttoydelse		Nettoydelse		Leveret ril rumvarme	Leveret til brugsvand	Varmetab tank
		$\mathrm{kWh} / \mathrm{ar}$	$\underset{\mathrm{prm}^{2}}{\mathrm{kWh}_{\mathrm{K}}^{\mathrm{g}} \mathrm{r}}$	kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{ar} \\ & \mathrm{prm}^{2} \\ & \hline \end{aligned}$	kWh/år	kWh/år	
A	4,3	1656	385	1451	337	0	1450	204
B	4,3							
A	6,45	1981	307	1699	263		1700	
A	8,6	2182	254	1850	215	0	1851	
B	8,6							
A	12,9							
A	20,6							

Dækningsgrader
Rumvarme Brugsvand

	Solfanger areal m^{2}	$\begin{aligned} & \text { hele } \\ & \text { ărer \% } \end{aligned}$	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 16 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 14 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 12 \text { uger } \\ \% \\ \hline \end{gathered}$	$\begin{aligned} & \text { hele } \\ & \text { aret } \% \end{aligned}$	$\begin{gathered} 20 \text { uger } \\ \% \\ \hline \end{gathered}$	$16 \text { uger }$ $\%$	$\begin{gathered} 14 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 12 \text { uger } \\ \% \end{gathered}$
A	4,3	0					56,9	87.4	90,3	90,3	91,3
B	4,3										
A	6,45	0					66,7	96,1		$98,0$	98,0
A	8,6	0					72,7	99,2	99,7	$99,9$	
B	8,6										99,9
A	12,9										
A	20,9										

Energibesparelse
(incl. sparet tomgangstab)
tomgangstab: 400 W
periode fyret er slukker periode fyret er slukket

	(in solfan-gerareal m^{2}	Energibesparelse (incl. sparet tomgangstab) tomgangstab: 400 W periode fyret er slukker			14 uger $k W h / a ̊ r$	12 uger $\mathrm{kWh} / \mathrm{å} \mathrm{r}$		adelig a gsfakto de fyret 20 uger kr	egspris $10,6 \mathrm{kr} /$ slukke 16 uger kr	Wh $\begin{gathered} 14 \\ \text { uger } \\ \mathrm{kr} \end{gathered}$	$\begin{gathered} 12 \\ \text { uger } \\ \text { kr } \end{gathered}$	pris for brugs. vandsanlæg kr
A	4,3	1451	2709	2473	2345	2222	15381	28711	26214	24860	23549	26200
B	4,3											
A	6,45	1699	3016	2762	2630	2464	18009	31972	29279	27880	26121	30285
A	8,6	1850	3189	2924	2790	2656	19610	33798	30990	29577	28153	37380
B	8,6											
A	12,9											77970
A	20,9											7970

Tabel IV Beregninger af "udvidet brugsvandsanlæg" tilsluttet husets radiatorsystem.

Udvidet brugsvandsanlag tilisluttet husets radiatorsystem

Årlige forbrug ($\mathrm{kWh} / \mathrm{år}$)
Rumvarmebehov A 14,073
brugsvandsforbrug $\quad 2,547$
Rumvarmebehov B $\quad 13,575$
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Nettoydelse		Leveret til rumvarme	Leveret til brugsvand	Varmetab tank
		kWh/ar	$\begin{aligned} & \mathrm{kWh} / \mathrm{hr} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$	kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{ar} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$	$\mathrm{kWh} / \mathrm{ar}$	kWh/ar	kWh/år
A	4,3	1847	430	1575	366	291	1290	271
B	4,3	1735	403	1401	326	7	1394	334
A	6,45	2345	364	1971	306	387	1591	373
A	8,6	2711	315	2264	263	500	1771	447
B	8,6	2457	286	1922	223	95	1837	535
A	12,9	3276	254	2724	211	733	1999	552
A	20,9							

Drkningsgrader
Rumvarme Brugsvand

	Solfangerareal m^{2}	$\begin{aligned} & \text { hele } \\ & \text { aret \% } \end{aligned}$	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	16 uger \%	$\begin{gathered} 14 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 12 \text { uger } \\ \% \end{gathered}$	hele året \%	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	16 uger \%	14 uger	$\begin{gathered} 12 \text { uger } \\ \% \end{gathered}$
A	4,3	2,1	17,6	27,9	36,2	49,0	50,6	73,6	74,9	75,5	76,0
B	4,3	0,1	0,6	1,3	2,3	7,3	54,7	83,3	86,2	85,9	86,4
A	6,45	2,7	21,5	35,3	45,9	67,1	62,5	87,2	88,5	89,5	89,4
A	8,6	3,6	27,4	40,0	51,4	69,6	69,5	92,7	92,1	93,7	93,1.
B	8,6	0,7	6,6	8,6	8,5	9,7	72,1	98,3	99,2	99,3	99,2
A	12,9	5,2	37,0	49,4	60,8	80,6	78,5	96,5	96,7	97,1	97,8
A	20,9										

Energibesparelse (incl. sparet tomgangstab)
tomgangstab: 400 W
periode fyret er slukket

sol- fanger areal m^{2}	0 uger $\mathrm{kWh} / \mathrm{ar} \mathrm{r}$	20 uger $k W h / a ̊ r$	16 uger kWh/år	14 uger $\mathrm{kWh} / \mathrm{ar}$	12 uger $\mathrm{kWh} / \mathrm{ar}$	$\begin{gathered} 0 \text { uger } \\ \text { kr } \end{gathered}$	$\begin{gathered} 20 \\ \text { uger } \\ \mathrm{kr} \end{gathered}$	$\begin{gathered} 16 \\ \text { uger } \\ \mathrm{kr} \end{gathered}$	$\begin{gathered} 14 \\ \text { uger } \\ \mathrm{kr} \end{gathered}$	$\begin{gathered} 12 \\ \underset{\mathrm{ger}}{\mathrm{ugr}} \\ \mathrm{kr} \end{gathered}$	pris for brugs-vandsaniæg kr
	1575	1978	2108	2133	2122	16695	20962	22342	22614	22497	26200
4,3	1401	2059	2190	2209	2150	14851	21829	23215	23414	22794	
6,45	1972	2513	2621	2638	2616	20903	26638	27781	27961	27726	30285
8,6	2264	2884	2963	2973	2946	23998	30576	31412	31512	31233	37380
8,6	1922	2718	2798	2798	2724	20373	28807	29659	29662	28875	
12,9	2724	3463	3497	3488	3460	28874	36703	37068	36975	36680	51570
20,9											

Tabel V "Udvidet brugsvandsanleg" med separat radiator.

Udvidet brugsvandsanlæg tilsluttet separat radiatorsystem

Årlige forbrug (kWh/år)
Rumvarmebehov A 14073 brugsvandsforbrug 2547

Rumvarmebehov B 13575
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Energibesparelse (incl. sparet tomgangstab) tomgangstab: 400 W
periode fyret er slukket

Tilladelig anlegspris
omregningsfaktor: $10,6 \mathrm{kr} / \mathrm{kWh}$
periode fyrer er slukket

sol- fanger areal m^{2}	0 uger $\mathrm{kWh} / \mathrm{ar}$	20 uger $\mathrm{kWh} / \mathrm{ar}$	16 uger $\mathrm{kWh} / \mathrm{å} \mathrm{r}$	14 uger $\mathrm{kWh} / \mathrm{AR}$	12 uger kWh/ar	0 uger kr	$\begin{gathered} 20 \\ \text { uger } \\ \mathrm{kr} \end{gathered}$	$\begin{gathered} 16 \\ \text { uger } \\ \text { kr } \end{gathered}$	$\begin{gathered} 14 \\ \text { uger } \\ \text { kr } \end{gathered}$	$\begin{gathered} 12 \\ \text { uger } \\ \mathrm{kr} \end{gathered}$	pris for brugs-vandsanlæg kr
4,3	1853	2308	2396	2399	2375	19647	24462	25397	25429	25178	26200
4,3											30285
6,45	2436	3076	3112	3091	3048	25817	32606	32982 38788	32767	32310	30285
8,6	2894	3665	3659	3623	3565	30677	38849	38788	38399	37789	37380
$8,6$	3624	4573	4499	4439	4359	38414	48476	47684	47052	46206	51570

Tabel VI "Drain back rumvarmesystem" tilsluttet husets radiatorsystem.

Drain back rumvarmesystem tilsluttet husets radiatorsytem.

Arlige forbrug ($\mathrm{kWh} / \mathrm{ar}$)
Rumvarmebehov A 14073
brugsvandsforbrug 2547

Rumvarmebehov B 13575

A: rumvarmebehov hele sommeren, B : samme hus, radiatorer lukket om sommeren.

Ydelser		Bruttoydelse		Nettoydelse		Leveret til rum-	Leveret til	Varmetab tank
	fanger al ma	$\mathrm{kWh} / \mathrm{ar}$	$\begin{aligned} & \mathrm{kWh}_{\mathrm{WW}}^{\mathrm{g}} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$	$\mathrm{kWh} / \mathrm{ar}$	$\begin{aligned} & \mathrm{kWh} / \mathrm{gr} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$	$\mathrm{kWh} / \mathrm{A} \mathrm{r}$	kWh/ar	$\mathrm{kWh} / \mathrm{Zar}^{\text {r }}$
A	4,3	2037	474	1796	418	555	1296	241
B	4,3	1897	441	1571	365	230	1407	326
A	6,45	2760	428	2396	371	927	1536	361
A	8,6	3395	395	2937	342	1321	1688	457
B	8,6	3109	362	2568	299	907	1735	541
A	12,9	4380	340	3778	293	2014	1844	602
A	20,9	5647	270	4851	232	2973	1964	796
B	20,9	5219	250	4327	207	2444	1965	893

Dækningsgrader
Rumvarme
Brugsvand

	Solfangerareal m²	hele året \%	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 16 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 14 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 12 \text { uger } \\ \% \end{gathered}$	$\begin{aligned} & \text { hele } \\ & \text { arret \% } \end{aligned}$	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 16 \text { uger } \\ \% \end{gathered}$	14 uger \%	$\begin{gathered} 12 \text { uger } \\ \% \end{gathered}$
A	4,3	3,9	26,4	35,3	43,4	55,8	50,9	73,1	74,7	74,9	75,1
A	4,3	1,7	12,1	13,8	17,1	36,5	55,2	83,0	85,5	86,1	87,9
A	6,45	6,6	39,1	49,3	57,7	71,1	60,3	84,3	85,8	85,7	86,2
A	8,6	9,4	51,5	61,4	69,2	82,0	66,3	89,7	90,8	90,8	91,5
B	8,6	6,7	39,4	42,9	48,6	76,8	68,1	94,1	95,6	96,7	97,7
A	12,9	14,3	70,5	78,2	85,1	96,4	72,4	94,7	95,5	95,6	96,1
A	20,9	21,1	89,9	93,9	99,1	100, 0	77,1	98,8	99,2	99,4	99,6
B	20,9	18,0	84,6	88,4	95,7	138,4	77,1	99,1	99,5	99,7	99,9

	(in p solfan- gera- real m^{2}	Energibesparelse (incl. sparet tomgangstab) tomgangstab: 400 W periode fyret er slukket			Tilladelig anlægspris omregningsfaktor: $10,6 \mathrm{kr} / \mathrm{kWh}$ periode fyret er slukket							
A	4,3	1796	2276	2369	2381	2361	19038	24127	25116	25242	25026	26200
B	4,3	1571	2294	2383	2390	2327	16653	24313	25260	25332	24667	
A	6,45	2396	3070	3109	3093	3055	25398	32545	32952	32781	32381	
A	8,6	2937	3763	3745	3706	3652	31132	39887	39700	39282	38710	37308
B	8,6	2568	3523	3497	3458	3364	27221	37347	37070	36660	35663	
A	12,9	3778	4813	4706	4636	4557	40047	51023	49885	49142	48301	
A	20,9	4851	6094	5888	5785	5656	51421	64598	62410	61320 55793	59951	
B	20,9	4327	5576	5375	5264	5134	45866	59110	56971	55793	54416	

Tabel VII "Drain back rumvarmesystem" med separat radiator.

Tabel VIII "System med separat VVB".

System med separat VVB

Årlige forbrug (kWh/år)
Rumvarmebehov A. 14073
brugsvandforbrug 2547

Rumvarmebehov B 13575
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Nettoydelse		Leveret til rumvarme	Leverer til brugsvand	Varmetab tank
		$\mathrm{kWh} / \mathrm{gr}$	$\begin{gathered} \mathrm{kWh} / \mathrm{ar} \\ \mathrm{pr} \mathrm{~m}^{2} \end{gathered}$	kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{ar} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$		$\mathrm{kWh} / \mathrm{ar}$	kWh/år
A	4,3							
B	4,3							276
A	6,45	1843	286					341
A	8,6	2504	291		252			
B	8,6							458
A	12,9 20,9	$\begin{aligned} & 3545 \\ & 4964 \end{aligned}$	275 238	3087 4297	239 206			667
A	20,9 20,9							

Dækningsgrader

> Rumvarme

Brugsvand

	Solfangerareal m^{2}	$\begin{aligned} & \text { hele } \\ & \text { året \% } \end{aligned}$	$5 \mathrm{mdr} . \%$	$4 \mathrm{mdr} . \%$	$3 \mathrm{mdr} . \%$
A	4,3				
B	4,3				
A	6,45	11,1	37,2	44,7	56.4
A	8,6	15,4	51,2	60,1	73,7
B	8,6				
A	12,9	21,9	70,4	79,3	93,1
A	20,9	30,5	90,5	96,6	100,1
	20,9				

Energibesparelse
(incl. sparet tomgangstab) tomgangstab: 100 W
periode fyret er slukket

Tilladelig anlægspris omregningsfaktor: $10,6 \mathrm{kr} / \mathrm{kWh}$
periode fyret er slukket

solfangerareal	hele åref				hele faret kr	5 mdr . $\mathrm{kWh} / \mathrm{gar}$	4 mdr . kr	3 mdr. kr	pris for brugs vandsanlæg kr
m^{2}	kWh/år	$\mathrm{kWh} / \mathrm{ar}$	$\mathrm{kWh} / \mathrm{år}$	$\mathrm{kWh} / \mathrm{å} \mathrm{r}$	faret kr	$\mathrm{kWh} / \mathrm{år}$	kr		vandsanleg kr

Tabel IX "Udvidet brugsvandsanlæg" tilsluttet husets radiatorsystem, el-back up.

Udvidet brugsvandsanlæg tilslutfer husers radiatorsystem, el-back up

Arlige forbrug (kWh/år)
Rumvarmebehov A 14073 brugsvandforbrug 2547
Rumvarmebehov B 13575
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Nettoydelse		Leveret ill rumvame	Leveret til brugsvand	Varmetab tank
		$\mathrm{kWh} / \mathrm{a} \mathrm{r}$	$\begin{aligned} & \mathrm{kWh} / \mathrm{a} \mathrm{r} \\ & \mathrm{pr} \mathrm{~m} \end{aligned}$	kWh/år	$\mathrm{kWh} / \mathrm{gir}$ pr m²		kWh/år	
A	4,3	1847	430	1575	366	291	1290	271
B	4,3	1735	403	1401	326	7	1394	334
A	6,45	2345	364	1972	306	387	1591	373
A	8,6	2711	315	2264	263	500	1771	447
B	8,6	2457	286	1922	223	95	1837	535
A	12,9	3276	254	2724	211	733	1999	552
A	20,9							

Dækningsgrader
Rumvarme Brugsvand

Tabel X "Udvidet brugsvandsanlæg" med separat radiator, el-back up

Udvidet brugsvandsanlæg tilsluttet separat radiatorsystem, el back up

Arlige forbrug (kWh/år)
Rumvarmebehov A. 14073
brugsvandsforbrug 2547

Rumvarmebehov B 13575
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Nettoydelse		Leveret ril rum. varme	Leveret til brugsvand	Varmetab tank
		kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{g} \mathrm{r} \\ & \mathrm{pr} \mathrm{~m} \end{aligned}$	kWh/år	$\begin{gathered} \mathrm{kWh} / \mathrm{år} \\ \mathrm{pr} \mathrm{~m}^{2} \end{gathered}$		kWh/år	
A	4,3	1994	464	1853	431	801	1056	140
B	4,3							
A	6,45	2656	412	2436	378	1158	1282	220
A	8,6	3176	369	2894	337	1456	1441	282
B	8,6							
A	12,9	4004	310	3624	281	1978	1651	380
A	20,9							

Dækningsgrader
Rumvame
Brugsvand

	Solfangerareal m^{2}	hele året \%	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 16 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 14 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 12 \text { uger } \\ \% \end{gathered}$	$\begin{aligned} & \text { hele } \\ & \text { aret \% } \end{aligned}$	$\begin{gathered} 20 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 16 \text { uger } \\ \% \end{gathered}$	$\begin{gathered} 14 \text { uger } \\ \% \\ \hline \end{gathered}$	$\begin{gathered} 12 \text { uger } \\ \% \\ \hline \end{gathered}$
A	4,3	5,7	31,4	38,3	42,8	49,7	41.5	62,6	66,0	67,1	69,2
B	4,3										
A	6,45	8,2	42,2	49,6	54,7	61,6	50,3	75,2	78,8	79,785	82,174
A	8,6	10,3	50,5	58,5	64,4	72,1	56,6	83,1	86,0	86,6	88,4
B	8,6										
A	12,9	14,1	63,2	70,5	67,6	83,7	64,8	91,9	93,6	94,0	95,1
A	20,9										

Energibesparelse Tilladelig anlægspris
(incl. sparet tomgangstab) omregningsfaktor: $18,02 \mathrm{kr} / \mathrm{kWh}$
tomgangstab: 400 W
periode fyrer er slukker periode fyret er slukket

solfangerareal m^{2}							0 uger $\mathrm{kWh} / \mathrm{år}$	0 uger kr	pris for brugsvandsanlæg kr
A	4,3	1853	33399	26200					
B	4,3		43890	30285					
A	6,45	2436	52150	37380					
A	8,6	2894	65304	51570					
B	8,6	3624							
A	12,9								
A	20,9								

Tabel XI "Drain back rumvarmeanlæg" tilsluttet husets radiatorsystem, el-back

Drain back rumvarmeanlæg cilsluttet husets radiatorsystem, el-back up
Arlige forbrug (kWh/år)
Rumvarmebehov A 14073 brugsvandforbrug 2547
Rumvarmebehov B 13575
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Nefroydelse		Leverer til rumvarme	Leverer til brugsvand	Varmetab tank
		$\mathrm{kWh} / \mathrm{s} \mathrm{r}$	$\begin{aligned} & \mathrm{kWh} / \mathrm{alr}_{\mathrm{r}} \\ & \text { pr } \mathrm{m}^{2} \end{aligned}$	kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{l}_{\mathrm{r}} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$		$\mathrm{kWh} / \mathrm{a} \mathrm{r}$	
A	4,3	2037	474.	1796	418	555	1296	241
B	4,3	1897	441	1571.	365	230	1407	326
A	6,45	2760	428	2396	371	927	1536	361
A	8,6	3395	395	2937	342	1321	1688	457
B	8,6	3109	362	2568	299	907	1735	541
A	12,9	4380	340	3778	293	2014	1844	602
A	20,9	5647	270	4851	232	2973	1964	796
	20,9	5219	250	4327	207	2444	1965	893

Dækningsgrader
Rumvarme Brugsvand

"Drain back rumvarmeanlæg" med separat radiator, el-back up.

Drain back rumvarmeanlæg med separat radiatorsystem, el-back up

Årlige forbrug (kWh/år)
Rumvarmebehov A 14073
brugsvandsforbrug 2547
Rumvarmebehov B 13575
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukker om sommeren.

Ydelser solfanger areal m${ }^{2}$		Bruttoydelse		Nettoydelse		Leveret til rumvarme	Leveret til brugsvand	Varmetab tank
		kWh/ar		kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{ar} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$		kWh/år	
A	4,3	2202	512	2055	478	843	1226	147
B	4,3							
A	6,45	2931	454	2673	414	1239	1457	258
A	8,6	3466	403	3113	362	1547	1602	353
B	8,6							
A	12,9							
A	20,9							

Dækningsgrader
Rumvame Brugsvand

Tabel XIII "System med eksisterende varmtvandsbeholder", el-back up.

Trhel XIV
Lagring af nat-. 1

Tabel XV "Udvidet brugsvandsanlæg" til lavenergihus.

Udvidet brugsvandsanlæg til lavenergihus, naturgasiyret

Årlige forbrug (kWh/år)
Rumvamebehov A 6252
brugsvandforbrug 2547

Rumvarmebehov 8

A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Netroydelse		Leveret til xumvarme	Leveret it brugsvand	Varmetab tank
		kWh/ar	$\begin{gathered} \mathrm{kWh} / \mathrm{gr} \\ \mathrm{pr} \mathrm{~m}^{2} \end{gathered}$	kWh/ar			kWh/ar	
A	4,3	1853	431	1717	399	593	1132	136
B	4,3							
A	6,45	2463	573	2198	511	861	1347	265
A	8,6	2936	683	2565	596	1091	1483	371
B	8,6							
A	12,9	3643	847	3105	722	1464	1654	538
A	20,9							
	20,9							
Dekningsgrade		Runvarme						
					Brugsvand			

	Solfangerareal m^{2}	hele airet \%	$0 \mathrm{mdr} . \%$	$5 \mathrm{mdr} . \%$	$4 \mathrm{mdr} . \%$	$3 \mathrm{mdr} . \%$	$5 \mathrm{mdr} . \%$	$4 \mathrm{mdr} . \%$	$3 \mathrm{mdr} \%$
A	4,3	9,5	64	83	11.5	44,5	71,8	76,7	84,0
18	4,3								
A	6,45	13,8	82	100	116	52,9	83,8	87,7	93,6
A	8,6	17,4	94	103	117	58,2	90,5	93,7	97,2
B	8,6								
A.	12,9	23,4	102	106	118	65,0	97,9	98,9	99,8
A	20,9								
	20,9								

Energibesparelse (incl. sparet tomgangstab)
tomgangstab: 100 W
periode fyret er slukket

Tilladelig andegspris
omregningsfaktor: $10,6 \mathrm{kr} / \mathrm{kWh}$
periode fyret er slukket
hele 5 mor. 4 mdr. 3 mdr. pris for brugs vandsanleg kr

26200
30285
37380

51570
77970

Tabel XVI "Drain back rumvarmeanlæg" til lavenergihus.

Drain back rumvarmeanlæg til lavenergihus, naturgasfyret

Årlige forbrug (kWh/år)
Rumvarmebehov A 6252
brugsvandforbrug 2547
Rumvarmebehov B
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Energibesparelse (incl. sparet tomgangstab) tomgangstab: 100 W	Tilladelig anlægspris omregningsfaktor: $10,6 \mathrm{kr} / \mathrm{kWh}$
periode fyret er slukket	periode fyret er slukket

	solfangerareal m^{2}	hele året $\mathrm{kWh} / \mathrm{ar}$	5 mdr . $\mathrm{kWh} / \mathrm{å} \mathrm{r}$	4 mor. kWh/år	3 mdr . $\mathrm{kWh} / \mathrm{ar}$	hele året kr	5 modr. $\mathrm{kWh} / \mathrm{å} \mathrm{r}$	$4 \mathrm{mdr} .$ kr	$\begin{gathered} 3 \mathrm{mdr} . \\ \mathrm{kr} \end{gathered}$	pris for brugsvandsanlæg kr
A	4,3	1887	2017	2077	2076	19998	21377	22019	22010	26200
B	4,3									
A	6,45	2386	2660	2655	2613	25296	28197	28139		
A	8,6	2711	3016	2982	2927	28733	31974	31604	31025	37380
B	8,6									51570
A	12,9									77970
A	20,9									

Tabel XVITI "Udvidet brugsvandsanlæg" til lavenergihus, el-back up.

Udvidet brugsvandsanlæg, lavenerghus, el back up.

Årlige forbrug (kWh/ar)
Rumvarmebehov A. 6252
brugsvandiorbrug 2547
Rumvarmebehov B
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukket om sommeren.

Tabel XVIII "Drain back rumvarmeanlæg" til lavenergihus, el-back up.

Drain back rumvarmeanlæg til lavenergihus, el-back up

Årlige forbrug (kWh/år)
Rumvarmebehov A 6252
brugsvandforbrug 2547
Runvarmebehov B
A: rumvarmebehov hele sommeren, B: samme hus, radiatorer lukker om sommeren.

Ydelser solfanger areal m^{2}		Bruttoydelse		Nettoydelse		Leveret til rumvarme $\mathrm{kWh} / \mathrm{ar}$	Leveret til brugsvand $\mathrm{kWh} / \mathrm{Br}_{\mathrm{r}}$	$\begin{aligned} & \text { Varmetab } \\ & \text { cank } \\ & \mathrm{kWh} / \mathrm{ar} \end{aligned}$
		$\mathrm{kWh} / \mathrm{å}$	$\begin{gathered} \mathrm{kWh} / \mathrm{ăr} \\ \mathrm{prm}^{2} \end{gathered}$	kWh/år	$\begin{aligned} & \mathrm{kWh} / \mathrm{ar}_{\mathrm{r}} \\ & \mathrm{pr} \mathrm{~m}^{2} \end{aligned}$			
A	4,3	2124	494	1887	439	618	1302	237
B	4,3							435
A	6,45 8,6	2822 3308	$\begin{aligned} & 656 \\ & 769 \end{aligned}$	$\begin{aligned} & 2386 \\ & 2711 \end{aligned}$	555	$\begin{aligned} & 919 \\ & 1091 \end{aligned}$	1629	597
A	8,6 8,6							
A	12,9							
A	$\begin{aligned} & 20,9 \\ & 20,9 \end{aligned}$							

Drekningsgrader
Rumvarme
Bregsvand

	Solfangerareal m^{2}	hele arret \%	$\begin{gathered} 5 \mathrm{mar} . \\ \% \end{gathered}$	4 modr. \%	3 madr. $\%$	hele året kr	5 mdr . $\%$	$\begin{gathered} 4 \mathrm{mdr} \\ \% \end{gathered}$	$\begin{gathered} 3 \mathrm{mdr} . \\ \% \end{gathered}$
A	4,3	9,9	76	104	158	51,1	78	82	89
B	4,3								96
A	6,45	14,7	96	124	174	59,4	89	92	96
A	8,6	17,4	94	103	117	64,0	95	96	98
B	8,6								
A	12,9								
A	20,9								
	20,9								

Energibesparelse (incl. sparet tomgangstab) tomgangstab: 100 W	Tilladelig anlægspris omregningsfaktor: $18,02 \mathrm{kr} / \mathrm{kWh}$
periode fyret er slukket	periode fyret er slukket

	solfangerareal	hele året kWh/år	5 mdr . $\mathrm{kWh} / \mathrm{å} \mathrm{r}$	4 mdr . $\mathrm{kWh} / \mathrm{å} \mathrm{r}$	3 mdr . kWh/år	hele arret kr	5 mdr . $\mathrm{kWh} / \mathrm{å} \mathrm{r}$	4 mdr . kr	3 mdr . kr	pris for brugs vandsanlæg kr
A	4,3	1887				33997				26200
B	4,3									
A	6,45	2386				43002				30285
A	8,6	2711				48846				37380
B	8,6									
A	12,9									77970
A	20,9									

Tebel KIX Store anleg bil institutioner og boligejendomme, drain back rumvameanleg.

5 Forsøgsanlæg

Som en del af nærværende projekt, blev der opfart et forsægsanlæg til kombineret rumop-varmning- og brugsvandsopvarmning på Laboratoriets forsøgsareal.

Anlægget blev opfrrt med det formål at afprove nogle funktionsprincipper og er ikke tænkt som et prototype anlæg.

Et principdiagram af anlægget er vist på Figur 31.

Pigur 29 Forsøgshallen ved Laboratoriet for Varmeisolering. Rumvarmeanlaggets 4 solfangere er anbragt til venstre.

Anlægget er iser karakteriseret ved folgende 3 konstruktionsprincipper:

1. Low flow anlæg med udnyttelse af stratificering.
2. Lagring af solvarme i brugsvandsbeholderen og eventuelt i separat rumvarmebeholder.
3. Drain Back i solfangerkredsen.
ad 1) Anlægget er designet som et low flow system, det vil sige med lille flow i solfangerkredsen ($0,15 \mathrm{l} / \mathrm{min} \mathrm{m}^{2}$ solfanger), samt med det varme ror fra solfangeren gående ind i toppen af kappen i vamtvandsbeholderen.

Anlagget er opbygget sailedes at der forsoges etableret sả stor en temperaturstratificering som overhovedet muligt i de to beholdere.

Returroret fra radiatoreme er fort ind i et fordelerror i rumvarmebeholderen således at vandet fra dette ror vil lagre sig i det lag i beholderen som svarer til den indkommende temperatur.

Systemet er måske det forste af sin art som forsøger at udnytte low flow princippet 611 rumopvarmningsformål.
ad 2) Forsogsanlægget er opbygget med to beholdere. Ved mindre dækningsgrader vil man kunne

Figur 30

Anleggets to beholdere. VVB til venstre og solvarmelagerbeholder til hojre. Tømmebeholderen er monteret på vaggen bagved. klare sig med lagring i brugsvandet og kan derfor undvere lagerbeholderen, hvilket giver det enkleste og billigste anlæg. Ved større dakningsgrader vil lagring i brugsvandet medfare for stort et brugsvandsvolumen (vandet bliver "gammelt"). Der må derfor suppleres med ekstra lagervolumen. Ved at udfore lagring it to beholdere opnas, at der kan benyttes billige massefremstillede beholdere, samt at der kan opnas stor fleksibilitet ved opbygningen af lagervolumenet.

Dette er vigtigt da rumvarmeanlæg formentlig til en start ikke vil kunne produceres som standard anlæg med standardiserede komponent storrelser. Endvidere opnås storre muligheder for at kunne placere beholderne, idet disse kan udføres i størrelser der kan passere gennem en dar.

I forsøgsanlægget er det valgt at undersøge anlæggets funktion med to beholdere da dette er det mest komplicerede.

Varmevekslingen mellem de to beholdere sker ved selvcirkulation gennem forbindelsesrørene.
adi 3) Solfangerkredsen er udført som et lukket drain back system.
If forsøgsanlægget har dette den fordel, at der undgås varmeveksling mellem solfangerkredsen og radiatorkreds samt at der spares udgiff til glucol.

Endvidere undgås der kogningsproblemer hvilket jo kan vare specielt vanskeligt at håndtere for de anlæg til rumopvarmning som er overdimensionerede i sommerperioden med henblik på at opnå en højere dæekningsgrad. Såfremt disse anlæg udiøres uden specielle foranstaltninger, vil der vare meget stor risiko for udkogning i perioder uden rumvarmeforbrug eller risiko for at temperaturen i solfangeren kommer så hojt op, at der opstår problemer med nedbrydningen af glucolen ($110-120^{\circ} \mathrm{C}$). Ved nogle af de anlag med drain back som tidligere har været opiørt (Ejby) har der varet driftsproblemer, og det har varet et af formalene at indkredse arten af disse driftsproblemer på laboratoriebasis.

Forsøgsanlæggets drain back system er specielt ved at vere udfort som et i princippet lukket system således at trykket i systemet går op når temperaturen i solfangeren når over $100^{\circ} \mathrm{C}$.

Der er naturligvis indføjet en sikkerhedsventil i solfangerkredsen, men denne er indstillet til åbning ved 2,5 bar, altså ved en temperatur på ca. $125^{\circ} \mathrm{C}$.

Solfangeren styres således at solfangerpumpen stoppes ved temperaturer hojere end ca. $110^{\circ} \mathrm{C}$.
Fordelen ved at udføre solfangerkredsen lukket er at der undgås ilt i kredsen, og derfor ikke behøver at blive benyttet korrosionsbestandige materialer (reference [19]).

Det kan naturligvis være interessant i praksis at se om solfangerkredsen kan fungere uden åbning af sikkerhedsventilen, og dermed efterfolgende luftindræengen. Såfremt solfangerkredsen opstartes på et tidspunkt hvor solfangertemperaturen er hajere end ca. $125^{\circ} \mathrm{C}$ vil der i et fidsrum være haj temperatur og tryk i solfangeren, hvorved der skulle være fare for åbning af sikkerhedsventil og afsmidning af vand.

De praktiske erfaringer med anlægget vil blive gennemgået senere, men det skal dog allerede her anføres, at der ikke har været problemer i solfangerkredsen.

5.1 Solvarmeanlaggets komponenter

Ved opbygningen af anlægget er der for en del af komponenternes vedkommende blevet benyttet komponenter som har varet anvendt it tidligere forsøg på laboratoriet. Herved har det været muligt at opføre anlægget billigt, men nogle af komponenterne er måske ikke de ideelle til anlæg af denne type.

Da det imidlertid ikke har været hensigten at opbygge et prototype anlæg, men derimod at afprøve nogle principper, har ovennaevnte forhold været uden betydning for forsøgets gennemførelse.

5.1.1 Solfanger

Der er benyttet 4 stk. solfangere af fabrikat Dansk Solvarme (tidligere model fra Islev Solvarme).
Dæklag: 1 lag glas
Absorber: kanalplade, rustrit stål
belegning: Maxorb selektiv folie
Transparent areal: 1,93 m^{2} pr panel
Veskeindhold: 1,6 liter pr. panel
Solfangereffektivitet: (målc ved Laboratoriet for Varmeisolering)

$$
\eta=0,79-3.4 \frac{T m-T a}{I}-0,016 \frac{(T m-T a)^{2}}{I}
$$

hvor:

Den benyttede sollanger er næppe den ideelle til formâlet idet den ikke drænes helt ved tomning I forsogsperioden har dette dog ikke afstedkommet problemer. Ved nye anlæg må der imidlertid nok anbefales, en solfanger af typen med Sunstrip absorbere eller lignende, og vandret liggende manifold.

5.1. 2 Lugerbeholdere

Brugsvandsbeholder med kappe: 280 liter.
Rumvamebeholder: 200 liter.
Tommebeholderen er på 30 liter. Storrelsen er bestemt saledes, at den kan indeholde hele vaskevoluminet fra solfangerne når disse tommes, samt således at luftvoluminet ibeholderen når solfangerne er i drift er stort nok til at optage væskens ekspansion ved opvarmning uden for stor trykstigning.

5.13 Styring

Solfangerpumpen styres med en differenstermostat og en absolut termostat. (Se Figur 31, se side 70). Differenstermostaten starter pumpen når solfangeren er varmere end bunden af lagerbeholderen. Den absolutte termostat stopper solfangerpumpen hvis temperaturen i solfangeren når over $110^{\circ} \mathrm{C}$ således at der er risiko for kogning.

Herved dranes solfangerne.
Der er efter forsøgsanlaggets etablering kommet en styring på markedet som kan klare funktionerne af både differenstermostaten og den absolutte termostat iden samme styringsenhed.

5.2 Måleudstyr

Forsøgsanlægget blev opført i slutningen af august 1990, hvorefter måleudstyret blev monteret og målingerne påbegyndt den 7 . september.

Som måleudstyr blev der anvendt en Solartron datalogger.
Temperaturmålingen blev foretaget med kobber/konstantan tråd og flow blev registreret med Brunata flowmålere.

Samtlige temperaturer og flow blev udskrever hver 10. minut, og ud fra disse værdier er energimængderne udregnet.

Hilke temperaturer og flow, der er blevet målt fremgår af Figur 32 (se side 71).

5.3 Driftserfaninger

5.3.1 Funktion af sollangerkreds

5.3.1.1 Drain back system

Drain back systemet har fungeret uden problemer i forspgsperioden.
Umiddelbart efter etablering af anlægget, men før måleudstyret var etableret var der nogle dage med klar solskin, og varmt vejr.

Der blev i denne periode foretaget opstart af solfangeren midt på dagen, på et tidspunkt hvor temperaturen kan antages at have været oppe på omkring $160^{\circ} \mathrm{C}$ i solfangeren.
Ved opstarten kunne det konstateres, at der så snart væsken nåede op i solfangeren blev produceret damp.
Denne kondenserede imidlertid i tømmebeholderen uden at trykket steg udover sikkerhedsventilens åbningstryk.

Det blev ved måleserien endvidere konstateret at den normale solfangerfølerplacering i udlobsiøret fra solfangeren ikke virkede for drain back-systemet idet solfangerkredsen for placeringen blev æadret startede for sent.
Den varmetransport der sker ved selvcirkulation af luiten i solfangeren når den ikke er i drift var således ikke nok til at opvarme solfangerfoleren. Efter at folerplaceringen blev ændret til en placering på selve absorberpladen startede anlægget som det skulle.

På Figur 33 (se side 72), er vist solfanger- og lagertemperaturen for en dag med den forkerte følerplacering og en dag hvor placeringen er ændret.

5.3.1. 2 Stui in solifngerkredsen

Ved normal drift er der ikke konstateret støj i solfangerkredsen. Fordelerrøret som er indsat i tømmebeholderen er formentlig medvirkende til at der ikke høres plaskelyde fra denne.

Kun når solfangerkredsen er opstartet ved temperaturer over 100° har der kunnet høres en hvislen af damp i systemet når dette er strommet fra solfangeren til kondensering itommebeholderen.

5.3.1.3 Frost problemer

Selvom anlægget har kørt i perioder med frost, er der ikke konstateret frysning nogen steder i solfangerkredsen. Dette på trods af at ror i solfangerkredsen forlober over lange strak i det fri.

Ved tilstrækkelig lave frostgrader er der dog ikke tvivl om at der vil forekomme frysning i røret til solfangeren når anlægget opstartes, og væesken bringes til at cirkulere inor der måske er $10^{\circ} \mathrm{C}$.

Den bedste måde at undgå frysning på vil naturligvis vare hvis rorene i solfangerkredsen kan fores indendørs, men ellers vil den nemmeste måde at håndtere problemet på formenlig vare forvarmning af ror ved el-varmetråd (som startes automatisk for eksempel 10 min . for opstart af solfangerkreds), eller ved at forhindre anlægget i at starte når temperaturen når under for eksempel - $5^{\circ} \mathrm{C}$.

3.3.2 Stratificering fonken

Det er ved målingeme konstateret at temperatur stratificering finder sted itankene som forventet.

Brugsvandet tappes via et ror der er ført ind fra bunden af brugsvandsbeholderen til toppen. Det kolde vand føres ind i bunden.

På Figur 34 (se side 72), er vist hvorledes temperatur profilen ændrer sig ibrugsvandsbeholderen under tapningen. Der ses at vare god stratificering. Der er ved tapningen flow i solfangerkreds og i radiatorkreds således at stratificeringen udjævner sig efter nogen tid.

På Figur 35 (se side 73), er vist temperaturforhold i de to tanke under tilforsel af vame fra solfangeren. Det ses at der også her opnås god stratificering i begge tankene.

Ligeledes er på Figur 34 (se side 72), vist hvorledes temperaturlagdelingen der fremkommer under tapningen i brugsvandsbeholderen forplanter sig til rumvarmebeholderen.

5.4 Sammenligning aff målte og beregnede ydelser

Der er i perioder foretaget sammenligninger af de målte ydelser på forsøgsanlægget og ydelser beregnet ved hjxlp af EMGP3 modellen. De beregnede ydelser er beregnet ud fra 10 minutters klimadata målt ved Laboratoriet for Varmeisolering. Det er ikke forspgt at foretage en egentig
validering aff edb-modelopsætningen, da dette formentlig vil kræve mere detaljerede målinger end der er foretaget.

Målte og beregnede ydelser for nogle dage i november er vist på Figur 35 (se side 73).
Beregningerne er foretaget med de ovenfor anførte parametre vedrørende komponenter, samt med en samlet varmetabskoefficient for de to beholdere på $8.9 \mathrm{~W} /{ }^{\circ} \mathrm{C}$.

Med modelopsætningen er der endvidere foretaget beregninger med og uden tømmebeholder. De beregnede ydelser var dog de samme ide to tilfælde.

5.5 Samlet vurdering

Alt i alt har solfangerkredsens drain back system fungeret yderst tilfredsstillende, og det kan anbefales at arbejde videre med dette princip for at opnå flere erfaringer, idet drain back systemet har fordele iforhold til den traditionelle solfangerkreds med glucol.

Fordele ved drain back:

1. Billigere solfangerkreds
1.1 Tømmebeholderen er billigere end ekspansionsbeholder.
1.2 Der spares glucol.
2. Kogningsproblemer kan undgås, (hvilket er specielt betydende ved anlag til rumopvarming. 2.1 Nedbrydning af solfangerversken ved høje temperaturer undgås.
3. I systemet til rumopvarmning kan eventuelt spares en varmeveksler.

Ulemper:

1. Solfangerne skal placeres præcist i forhold til vandret således at de kan drænes fuldstændigt.
2. Der bør foretages nøjere bestemmelser af om der for nogle udformninger er risiko for frysning i solfangeren eller i det udvendige rorsystem.

Det benyttede drain back system er endvidere karakteriseret ved at tommebeholderen også fungerer som ekspansionsbeholder hvorved udgift til denne er sparet.
Solfangere 4. stk. Dansk Solvarme i alt $7,72 \mathrm{~m}^{2}$. (haves)
anbraft sà de kan dranes. Kappebehoider 298 1. (haves).
Rurvarmebehoider ca. 200 1. (haves). Ekspansionsbeholdar/tommebeholder 303.
xoleagregat. (haves).
Cirkulationspunpe ups 25-60 180
Civkurationspunpe. (haves).
2. stk. elvarmelegemer á 6 kr . (haves)
skueglas til observation af vandstand.
opsam1 ingsbehoider.
Manometer 0-10 Bar $\mathfrak{q . e k s .}$ ws nr. 481201.082

Shuntventil z.eks. ws nr. 408154.004 .
strengreguleringsventil f.eks. Ws nr. 406964.004. Temmotre for nanuel aflusning.
Temperaturfolere til automatisk màlesystem.
(etablezes ikke).
Tenperaturná épunkter í tank. (haves). Flowinklere. (haves).
Magnetventil \&.eks. EvSI 25. (DANFOSS),
Stregreguleringsventil.
Fordelerror.

Wurige komponenter i PTF-bygning

Solfangerkreds: Præisolerede cu ror. vi kv
Sekundar kreds: Sorte stårør. Isoleres med 40 mm strakning $\mathbb{A}-\mathbb{B}$ og $\mathbb{A}-C$, resten uisoleret.

Rør mellem tanke: Sorte stålrgr isoleres 40 mm .
romebeholderen anbringes med bund hojere end det ourige anlag samt med top minimum 20 cm lavere end solfangere. Rør fra solfanger til twmebeholderen anbringes med fald mod denne. Iuftskruer anbringes så anlægget kan udluftes.

Forsøgsanlæg, målepunkter.

Figur 32

Opstart af solfanger

Figur 33 Solfanger og lagertemperaturer ved opstart af solfanger.

Figur 34
Temperaturer i brugsvandsbeholder under tapning.

Figur 35 Temperaturer i brugsvandsbeholder og lagerbeholder under tilforsel af varme fra solfanger

Figur 36. Stratificering i varmtvandsbeholder og lagerbeholder efter tapning

Figur 37
Måle og beregnede ydelser af forsøgsanlæg

Referencer

1. Laboratoriet for Varmeisolering, Instituttet for Husbygning og Laboratoriet for Varmeog klimateknik: DTH Nul-energihus. Zero-energy-house. 1977.
2. "Solvarmeanlæg til rumopvarmning. En udredning baseret på 2 års målinger på anlæg i Greve og Gentofte". Energiministeriets solvarmeprogram. Rappont nr. 15. Svend Erik Mikkelsen, Leif Sønderskov Jørgensen, Teknologisk Institut, Varmeteknik, Laboratoriet for Varmeisolering, DTH.
3. "Solvarmeanlæg til rumopvarmning og varmt brugsvand, Demonstrationsanlægget i Ejby". Energiministeriets solvarmeprogram. Rapport nr. 41. Nick Bjom Andersen, Laboratoriet for Varmeisolering.
4. "Fordele ved små volumenstromme i solvarmeanlæg. Måling på 3 små brugsvandsanlæg".
Simon Furbo, Laboratoriet for Varmeisolering. Meddelelse nr. 188, december 1987.
5. "Hajtydende solvarmeaniæg med små volumenstromme, eksperimentelle undersøgelser". Simon Furbo, Laboratoriet for Varmeisolering, Danmarks Tekniske Hojskole. Meddelelse nr. 205, marts 1989.
6. "Små low flow solvarmeanlæg til brugsvandsopvarmning - status". Simon Furbo. Laboratoniet for Varmeisolering, Danmarks Tekniske Hojskole. Oktober 1990, Rappont nr. 90-7.
7. "Solvarmeanlæg med kombivarmelager til lagring af solvarme og nat-el". Januar 1988, Teknologistyrelsen 1984-144/001-84.047. Esbensen, Rådgivende Civilingeniorer.
8. "Demonstration af solvarmeanlæg i el-opvarmede boliger i Hillerad, Grundejerforening" en Favrholmvanget, Hillerrd". Teknologistyrelsen 1984-144/001-84.448.
9. "Måling på rumvarmeanlæg, Sol til gulvvarme". Peter Christiansen og Carsten Wesenberg. Nordvestiysk Folkecenter for Vedvarende Energi. Udfart med stotte fra Teknologirådets Styregruppe for Udvikling af Vedvarende Energi. TR-Projektnr. 860436.
10. "Målerapport for solvarmeanlag til rumvarme og brugsvand. Ans Solvarme" Thomas Genborg, Jan Erik Nielsen. Oktober 1989, Provestationen for Solvarmeanlæg, Teknologisk Institut.
11. "Solar heating in Denmark, Large Danish Solar Heating Plants".
12. "Idékonkurrence om varmeanlæg til lavenergihuse", udskrevet af Teknologiràdets Styregruppe for Vedvarende Energi, Industri- \& Handelsstyrelsen. Konkurrencesekretar: Provestationen for Solvarmeanlæg.
13. "Målerapport for solvarmeanlæg til rumvarme og brugsvand, Gudumvej 4, Slagelse". Inge Lise Clausen. Provestationen for Solenergi, Dansk Teknologisk Institut. Februar 1990.
14. V\&S Byggedata, Husbygning- brutto 1989
15. Prisbogen, Brodrene A\&O Johansen A/S, febr 1991
16. CEC: Simulation of Thermal Systems, A modular Program with an Interactive Preprocessor (EMGP3), Willie L. Dutré, Katholieke Universiteit Leuven, Belgium, 1991
17. "Videnbank- 3 huses opvarmningsbehov" Menrik Lawaetz \& Leif Senderskov Jørgensen, Laboratoriet for Varmeisolering, Intern rapport 1977.
18. "Vedvarende energianlæg med plastjernvarmenet og solvarme-sæsonlagring, Økologisk Landsbysamfund, Torup, Forprojekt," august 1990, Esbensen \& PlanEnergi
19. Samtale med Finn Yding, Korrosionscentralen vedr. korrosion i det foreslåede system. Som det er udfort vil der sandsynligvis ikke forekomme korrosion.
20. "Radiatordimensionering". Henrik Lawaetz. Teknologisk Institut, Varme- og Installationsteknik. 1984.
21. "Lavtemperatur varmeanleg, dimensionering af radiatorer". Lars Hallgreen, Otto Paulsen. Teknologisk Institut, Varmeteknik. 1982.
22. "Solvarmeanlæg til varmt brugsvand, en udredning baseret på et års målinger på to anlæg". Klaus Ellehauge, Leif Sonderskov Jørgensen, Mads Lange, Svend Erik Mikkelsen, Carsten Nielsen. Laboratoriet for Varmeisolering, Danmarks Tekniske Hojskole. Meddelelse nr. 114. Teknologisk Institut, Varme- og Installationsteknik. Energiministeriets Solvarmeprogram-rapport n. 16. September 1981. ISBN nr. 87 . 7511-110-1.
23. "Projektering af store solfangeranlæg, systemudformninger og diagrammer til beregning af ydelse og tab". Svend Erik Mikkelsen, Laboratoriet for Varmeisolering, Danmarks Tekniske Hojskole. Energiministeriets solvarmeprogram, Rapport nr. 48.

Bilag 1

Oversigt over danske projekter indenion ommadet aktive solvammeanleg till rumopvanming
I oversigten er ikke medtaget projekter indenfor området passiv solvarme: for eksempel solvægge, tagrumsolfangere m.m.

Endvidere er heller ikke medtaget projekter indenfor området solvarme til fiernvarme.
Bevillingsstørrelsen er angivet i 1000 kr .

EFP eller TR. nr. Institution Bevilling

Energiforskningsprogrammet

76-78

LfV

Demonstrationsamiag i Greve og Gentofte
Rapport: "Solvarmeanlæg til rumopvarmning, en udredning baseret på 2 års målinger i Greve og Gentofte", 1981.(reference [2])

82-85
Liv
Anleeg till rumopvarmaning (Ejby)
Rapport: "Solvarmeanlæg til rumopvarmning og varmt brugsvand, demonstrationsanlægget i Ejby", 1988. (reference [3])

88 LfV 500
Udvilkhing ar konkurrencedygtige solvarmeanlreg till kombinerei brugsvand- og rumopvarmming. (dette projekt)

Teknologiråds eller Energistyrelses projekter
84.047 E \& K 220

Solvarmeanlocg med dual varmelager
Rapport: "Solvarmeanlæg med kombivarmelager til lagring af solvarme og nat-el", jan. 1988. (reference [7])
84.448 S.Aa.Svendsen 220

Sol till eil-opvarmede boliger
Rapport: "Demonstration af solvarmeanlæg i el-opvarmede boliger i Hillerød", okt. 1988. (reference [8])
86.436

NVI-Folkecenter 113
Ydellsesmålinger på soll-rumvarmeanileg
Rapport: "Maling på rumvarmeanlæg, Sol til gulvvarme", dec. 1990. (reference [9])

87.080

ANS \& PS-TI
Nyt lagrings og styringsprincip for mindre, kombinerede anleg
Delrapport: "Målerapport for solvarmeanlæg til rumvarme og brugsvand. Ans Solvarme", okt 1989. (reference [10])

PlanEnergi
Solvarmeanlag till vamm hrugsvand og ramopvarmming pai Pomhohms Folkehgiskole (reference [11])
88.1085 KMEK \& PS-TI 50

Malleprojeht for solvame-naturgasanheg I lavenerginus
Under udførelse. (reference [12])
Provestationens bevillinger
PS.TI
M ${ }^{3}$ hinger pax solvameanleg till rumvarme og brugsvad (for Ringsted Energicenter)
Rapport. "Målerapport for solvarmeanlæg til rumvarme og brugsvand, Gudumvej 4, Slagelse", feb. 1990. (reference [13])

PS.TI
Maniuger pay Bornhoms Folkehyiskole
Under udførelse (juli 1991)

E \& K: Esbensen \& Korsgaard (Nu Esbensen)
ANS: Ans Solvarme
PS-TT: Provestationen for Solenergi, Teknologisk Institut
NVJ-Folkecenter: Nordvestiysk Folkecenter for Vedvarende Energi
S.Aa.Svendsen: Svend Aa. Svendsen sammen med grundejerforeningen Favrholmvænget

PlanEnergi: PlanEnergi Skørping
KMEK: Københavns Miljøo og Energikontor
IfV:
Laboratoriet for Varmeisolering

Bilag 2.

Beregning aff radiatorydelsen med EMGP3

IEMGP3 bestemmes radiatorydelsen ud fra en fastsat varmeoveriøringskoefficient (K.F), anført i W pr. ${ }^{\circ} \mathrm{C}$ temperaturforskel mellem radiator og stuetemperatur. Radiatorens eller varmevekslerens effektivitet η bestemmes dernæst af udrrykket:

$$
\eta=1-e-\frac{K V_{i} F}{W}
$$

Hvor η er varmekapacitetsflowet.
Radiatorens (eller varmevekslerens) effektivitet er defineret ved:

$$
\eta=\frac{T \text { frem }-T \text { retur }}{\text { Tfrem }-T \text { stue }}
$$

T frem = fremløbstemperatur til radiator.
T retur $=$ returtemperatur for radiator.
T stue $=$ stuetemperatur.
I reference [20] er angivet en formel som kan benyttes til at bestemme radiatorydelsen i relation til opgivne katalogværdier for varmeafgivelsen ved fastsatte flow og fremlobs- og returtemperatur på $90^{\circ} \mathrm{C}$ og $70^{\circ} \mathrm{C}$.

Formlen lyder:

$$
\frac{Q}{Q 0}=\left(\frac{T \text { frem }-20}{70}\right)^{n_{1}} \times\left(\frac{1,08-n}{0,8}\right)^{\frac{n_{2}}{2}}
$$

Hvor Q_{0} er radiatorens ydelse ved fremlabstemperatur og returtemperatur på henholdsvis $90^{\circ} \mathrm{C}$ $\operatorname{og} 70^{\circ} \mathrm{C}$. Q er ydelsen ved andre temperaturer og flow. n_{1} og n_{2} er radiatorkoefficienter som er specifikke for den enkelte radiator. n_{1} er typisk 1,3 medens n_{2} typisk er mellem 1,2 og 2,0.

I det folgende udføres en sammenligning mellem de to formeludtryk.
Det antages at husets årlige opvarmningsbehov er $14073 \mathrm{kWh} /$ år, og at maksimal effekten der skal afgives er 5267 W .

Det antages endvidere at husets radiatorsystem har radiatorkoefficienterne $n_{1}=1,3 \operatorname{og} n_{2}=1,4$ (panelradiatorer).

Det antages endvidere, at radiatorsystemet kan klare varmeafgivelsen ved en fremløbstemperatur pà $65^{\circ} \mathrm{C}$ og nominelt flow.

I Tabel XX er angivet returtemperaturer og flow beregnet med de to formeludtryk for andre ydelser og fremløbstemperaturer. Varmeoverføringskoefficienten ved EMGP3 formlen er sat så den giver bedst overensstemmelse mellem de to udtryk.

Her er benyttet $154 \mathrm{~W} / \mathrm{K}$.

Fremlobstempera- tur	Ydelse	Lawaetz returtemperatur		EMGP3 returtemperatur	
${ }^{\circ} \mathrm{C}$	W	${ }^{\circ} \mathrm{C}$	$1 / \mathrm{h}$	${ }^{\circ} \mathrm{C}$	$1 / \mathrm{h}$
65	5267	45	230	45	230
65	3000	29	72	26	77
65	1000	19	19	20	22
50	3000	36	183	32	141
50	1000	21	30	20	34
50	500	19	14	20	14
35	1000	26	93	22	66
35	500	21	32	20	29
30	800	26	187	22	89
30	300	21	29	20	26

Som det ses ovenfor er der i de fleste tilfæelde rimelig god overensstemmelse mellem returtemperatur og flow - bestemt ved de to beregningsformler.

