SMÅ LOW FLOW SOLVARMEANLAEGS YDELSER

SIMON FURBO PETER FAGERLUND CARLSSON

MEDDELELSE NR. 221 AUGUST 1991

LABORATORIET FOR VARMEISOLERING DANMARKS TEKNISKE HØISKOLE

SMÅ LOW FLOW SOLVARMEANLAEGS YDELSER

SIMON FURBO PETER FAGERLUND CARLSSON

MEDDELELSE NR. 221 AUGUST 1991

LABORATORIET FOR VARMEISOLERING DANMARKS TEKNISKE HØJSKOLE

Forord

Denne rapport beskriver arbejdet, som er gennemført under projektet: "Værktøj til optimering af solvarmeanlæg med små volumenstromme". Projektet, som er finansieret af Energiministeriet, er en del af programområde 5: "Energianvendelse i bygninger" under ministeriets forskningsprogram EFP-90. Projektets journal-nr. er 1213/90-0004.

Projektet er gennemiørt på Laboratoriet for Varmeisolering, DTH, med deltagelse af medarbejderne:

Simon Furbo, civilingeniør, Ph.D.
Peter F. Carlsson, civilingenior
Peter Berg, civilingeniør, Ph.D.
Martin Dandanell, maskinarbejder
Christina D. Zimmermann, assistent
Birthe Friis, korrespondent
Malene Haslev Jacobsen, teknisk tegner elev

Resumé

Der er gennemført detaljerede målinger for et lille low flow solvarmeanlæg til brugsvandsopvarmning under laboratoriemæssige forhold.

En detaljeret matematisk model, som simulerer driften af små low flow solvarmeanlæg med en kappebeholder som varmelager, blev valideret ved hjelp af målingerne.

På basis af undersøgelserne vurderes det, at størstedelen af den matematiske model er sæerdeles velegnet til at beregne ydeisen af små low flow anlæg. Således simuleres de termiske forhold i kappebeholderen og i solfangerkredsens rørsystem udmærket. Kun kniber det lidt med at simulere de termiske forhold for solfangeren helt korrekt.

Med den matematiske model blev det undersøgt, hvorledes anlægsydelsen påvirkes af variationer i bestrålingsstyrken forarsaget af skyer. Der er udarbejdet en figur, som angiver hvor stor den ekstra årlige ydelse for low flow anlæg er, når der tages hensyn til variationerne i bestrålingsstyrken i stedet for at benytte referenceårets vejrdata, som er gennemsnitlige værdier for her time igennem året. Navnlig for low flow anlæg med små dækningsgrader og med små forhold mellem varmtvandsforbrug og solfangerareal er ekstraydelsen forårsaget af variationerne af stor betydning.

Ydelser for low flow anlæg og for traditionelle solvarmeanlæg blev beregnet. Jo mindre anlæggets dækningsgrad er, og jo mindre forholdet mellem varmtvandsforbrug og solfangerareal er, des større er merydelsen for low flow anlæg i forhold til traditionelle solvarmeanlæg.

Målinger har vist at beregningerne undervurderer merydelsen for low flow anlæg. Forklaringen herpå er sandsynligvis at de eksisterende matematiske modeller for de traditionelle solvarmeanlæg overvurderer anlægsydelsen. Modellerne tager nemlig ikke hensyn til den uhensigtsmæssige opblanding, som forekommer it toppen of det traditionelle anlægs varmelager mellem varmt vand opvarmet af den supplerende energikilde og koldere vand, som sættes i bevægelse når det opvarmes af solfangeren.

Med den validerede matematiske model for low flow anlæg er der gennemifrt en rakke beregninger med forskellige anlægsudformninger. På basis af disse beregninger er der udarbejdet figurer, som angiver den årlige ydelse for forskelligt udformede low flow solvarmeanlæg.

Swamary

Detailed measurements for a small low flow solar heating system for domestic hot water supply have been carried out.

A detailed mathematical model simulating the thermal behaviour of a small low flow solar heating system based on a mantle heat storage was validated by means of the measurements.

Most parts of the mathematical model are extremely suitable for the purpose. The thermal behaviour of the heat storage and of the pipe system of the solar collector loop is simulated correctly. However, the solar collector model needs to be improved.

By means of the model it was investigated how the thermal performance of low flow systems is imfuenced by variations of the solar irradiance caused by clouds. A figure showing the extra yearly thermal performance of low flow systems caused by these variations has been prepared. The yearly thermai performance of the low flow system is determined in the following way. First the yearly thermal performance is calculated with the model and the Danish Test Reference Year, which is based on average hourly weather data for all hours during the year. Then the extra thermal performance caused by variations in the solar irradiance is determined by means of the above mentioned figure. Especially for small solar fractions and small ratios between the hot water consumption and the solar collector area the extra performance caused by the variations is of great importance.

The thermal performances of low flow systems and of traditional solar heating systems have been calculated. Especially for small solar fractions and for small ratios between the hot water consumption and the solar collector area the extra performance of the low flow system compared to the performance of the traditional solar heating system is great.

Measurements show that the extra performance of low flow systems is calculated too small. Most likely, this is caused by the fact that the model for the traditonal systems overestimates the thermal performance. The model does not take the inappropriate mixing between hot water heated by the auxiliary energy source and colder water heated by the solar collector into consideration. This mixing occurs in the top of the heat storage of the traditional system.

By means of the validated mathematical model a number of calculations with different system designs have been carried out. Based on these calculations figures showing the yearly thermal performance of differently designed low flow systems have been prepared.

Indholdsfortegnellse

Forord i
Resumé ii
Summary iii

1. Indledning 1
2. Forsøg 1
2.1 Forsøgsanlæg 1
2.2 Målinger 5
3. Validering af matematisk model 8
3.1 Solfangerkreds 8
3.2 Varmelager 10
3.3 Solfanger 14
3.4 Komplet anlag 17
3.5 Ydelsens afhængighed af variationer i bestrålingsstyrken 22
4. Ydelsen af low flow solvarmeanlæg og af traditionelle solvarmeanlæg 32
5. Anlægsudformningens betydning for ydelsen 35
5.1 Solfangerareal 36
5.2 Solfangerens maksimaleffektivitet 39
5.3 Solfangerens koefficient til korrektion for indfaldsvinklen 39
5.4 Solfangerens varmetabskoefficient 41
5.5 Solfangerens varmekapacitet 41
5.6 Solfangertypen 42
5.7 Solfangerhældning 43
5.8 Lagervolumen 43
5.9 Vandvolumen over elpatronen 44
5.10 Elpatronens termostattemperatur 44
5.11 Kappens udstrækning 45
5.12 Kappens tykkelse 45
5.13 Beholdermateriale 46
5.14 Lagerisolering 47
5.15 Varmelagerets kuldebroer 47
5.16 Volumenstrøm i solfangerkredsen 48
5.17 Styresystemets startdifferens 49
5.18 Styresystemets stopdifferens 51
5.19 Solfangerkredsens kuldebroer 51
5.20 Varmtvandsforbrugets størrelse 51
6. Konklusion 52
Referencer 53

1. Hadledming

Eksperimentelle undersøgelser har vist, at solvarmeanlæg med sm\& volumenstromme arligt yder $10-20 \%$ mere end "traditionelle" solvarmeanlæg, [1], [2], [3]. Merydelsen for low flow anlag afhænger stærkt af anlæggets dækningsgrad. Jo mindre dækningsgraden er, des storre er den ydelsesmæssige fordel ved low flow solvarmeanlægget.

Da prisen for solvarmeanlæg med små volumenstrømme desuden kan reduceres i forhold til prisen for "traditionelle" solvarmeanlæg, er low flow solvarmeanlæg sardeles atraktive.

Pa Laboratoriet er der udviklet en detaljeret matematisk model, som simulerer driften af pumpedrevne solvarmeanlæg med en lille volumenstrom i solfangerkredsen og med en kappebeholder, hvori temperaturlagdelingen opbygges under opvarmning, [4].

I dette projekt er der gennemfort detaljerede målinger for et lille low flow forsogsanleg på Laboratoriets forsøgsareal. Målingerne er beskrevet i afsnit 2.1 afsnit 3 er den matematiske model valideret ved hjælp af målingerne, i afsnit 4 er ydelsen af low flow solvameanixg og traditionelle solvarmeanlæg sammenlignet, og i afsnit 5 er der på basis af beregninger med den validerede model opstillet figurer, som angiver anlægsudformningens betydning for ydelsen af low flow anlæg.

2. Forsgg

2. 1 Torsqusarieg

Det afprøvede solvarmeanlæg og det benyttede måleudstyr er vist skematisk på figur 1. Anlægget er placeret på et målehus på Laboratoriets forsøgsareal.

Figur 1. Skematisk illustration af forspgsanlzgget og mảleudstyret.

Varmelageret, som er placeret i målehuset, er en opretstående kappebeholder fra Sdr. Højrup Maskinfabrik A/S. Varmtvandsbeholderens volumen er 197 l , diameteren er 46 cm og højden 121 cm . Kappen, som omgiver en del af varmtvandsbeholderen, har et volumen på 271 . Kappens diameter er 51 cm og kappehøjden er 84 cm . Afstanden mellem toppen af kappen og toppen af varmtvandsbeholderen er 22 cm , og afstanden mellem bunden af kappen og bunden af varmtvandsbeholderen er 15 cm .

Varmtvandsbeholderen er forsynet med en elpatron på ca. 1000 W . Elpatronen er placeret vandret i beholderen 21 cm fra toppen af beholderen.

Beholderen er isoleret med mineraluld. Isoleringstykkelsen for toppen af beholderen og for kappen er 50 mm . Isoleringstykkelsen for varmtvandsbeholderen over og under kappen er 75 mm . Bunden af beholderen er uisoleret.

Anlægget er forsynet med en 3-trins Grundfos cirkulationspumpe type UPS $15-35 \times 20$. I måleperioderne er pumpens trin 1 benyttet, således at pumpens effektforbrug er 35 W .

Pumpen er styret af en differenstermostat med en temperaturfaler placeret $\emptyset v e r s t$ i solfangeren og en temperaturføler placeret i bunden af kappen. Pumpen startes når temperaturforskellen bliver større end 8 K og pumpen stoppes igen når temperaturforskellen bliver mindre end 2 K . Vand er benyttet som solfangervæske.

Anlægget er forsynet med et $4,04 \mathrm{~m}^{2}$ solfangerelement fra Aidt Miljø ApS. Solfangeren, som er placeret på målehusets tag, vender mod syd og solfangerhældningen er 45°. Solfangerens absorber er en 200 m lang sammenhangende 16 mm polypropylen ribberørslange, som snor sig igennem hele solfangerens bredde fra bunden til toppen af solfangeren.

Solfangerens transparente lag er en 6 mm dobbeltvægget polykarbonatplade. Effektiviteten af en solfanger, udformer som den benyttede solfanger, er målt i [5]. Den på denne måde gennemmålte solfanger er mindre end solfangeren, som er benyttet i forsøgsanlægget, således at en indendørs afprøvning i Laboratoriets solsimulator er mulig. På basis af afprøvningen vurderes det, at effektiviteten af forsøgsanlæggets solfanger kan bestemmes af

$$
\eta=0,74-5,4 \cdot \frac{(T m-T)}{E}-0,018 \cdot \frac{(T m-T)^{2}}{E}
$$

Solfangeren har en særdeles stor varmekapacitet. Ved $20^{\circ} \mathrm{C}$ indeholder solfangerelementet således 26,7 I vand svarende til $6,61 / \mathrm{m}^{2}$ solfanger. Ved højere temperaturer kan absorberen på grund af ribberørets udvidelse indeholde mere solfangervæske. Eksempelvis indeholder solfangerelementet ved $40^{\circ} \mathrm{C} 28,11$ vand svarende til $7,01 / \mathrm{m}^{2}$ solfanger. Det skal her bemærkes at absorberens udvidelse vil afhænge af de trykforhold, som solfangeren udsættes for. For trykløse systemer vil udvidelsen være mindre end angivet her.

Solfangerkredsen består af $21,7 \mathrm{~m} 12 / 10 \mathrm{~mm}$ kobberrør isoleret med polyethylencelleplast. Solfangerkredsen er forsynet med ventiler, som muliggør en præcis indstilling af volumenstrømmen i solfangerkredsen.

Termostattemperaturen for elpatronen i varmelagerets top er indstillet på $50^{\circ} \mathrm{C}$. Derfor kan der altid tappes varmt vand fra beholderen ved den ønskede tappetemperatur.

Koldt vand tilføres bunden af beholderen, mens varmt vand tappes fra toppen af beholderen. Et automatisk tappesystem sørger for at hver tapning startes med en blindtapning. Herved sikres,
at der holdes en konstant lav koldtvandstemperatur igennem hele tapningen.
Tappesystemet er forsynet med en kalibreret elektronisk energimåler, Combimeter type E50 fra ISS Clorius. Ved hjælp af energimåleren måles den tappede vandmængde og energimængde under hver tapning. Så snart den ønskede energimængde er tappet fra lageret, afbrydes tapningen. Varmtvandsforbruget simuleres derfor på en realistisk måde.

Måleudstyret, som skematisk er vist på figur 1, gør det muligt detaljeret at følge anlæggets drift. Under driften måles hele tiden volumenstrømmen i solfangerkredsen og effekten, som overføres fra solfangerkredsen til varmelageret ved hjelp af en kalibreret elektronisk energimåler, Combimeter type E50 fra ISS Clorius.

Varmelagerets elpatrons energiforbrug måles ved hjælp af en kWh -måler og det registreres om cirkulationspumpen er i drift eller ej.

Det totale solindfald og den diffuse stråling på solfangeren registreres ved hjælp af to kalibrerede solarimetre, hvoraf det ene er forsynet med en skyggering. Udelufttemperaturen og temperaturen af rummet, hvor lageret er placeret, registreres ved hjælp af termoelementer.

Som det fremgår af figur 1 registreres temperaturen i 7 forskellige niveauer i lagertanken. Desuden måles temperaturen af solfangervæsken både ved indløbet til solfangeren og lageret og ved udløbet fra solfangeren og lageret.

Alle øjebliksmålingerne registreres af en 30 -kanal skriver og opsamles af en PC -er. De summerede volumenmængder og energimængder aflæses manuelt.

Figur 2 viser det afprøvede solvarmeanlægs solfanger og lagertank. Anlæggets solfanger er den midterste af de tre solfangere, som er placeret på målehusets tag.

Figur 2. Solvarmeanlæggets solfanger og lagertank.

2.2 Målinger

Der blev gennemført fortløbende målinger i to perioder med forskellige vejrtyper. I den første periode fra 12.9.90 til 15.9.90 var der mange skyer, mens der i den anden periode fra 22.10.90 til 26.10 .90 var forholdsvis få skyer. De målte vejrdata for de to perioder fremgår af figur 3 og 4.

Der blev tappet varmt vand fra lagertanken 4 gange dagligt. Under hver tapning tappes en på forhånd bestemt energimængde fra beholderen. Denne energimængde var i forste periode 1,83 kWh , mens den blev ændret to gange iløbet af den anden afprovningsperiode. Figur 5 viser målte anlægstemperaturer den 22. oktober 1990. Tre lagertemperaturer og solfangervæskens fremlobstemperatur til og returtemperatur fra lagertanken er vist.

De vigtigste målte energimængder for anlægget samt driftstiden for cirkulationspumpen fremgår af tabel $1 \operatorname{og} 2$ for de to perioder.

Med det i [4] udviklede edb-program blev hver enkelt del af anlægget gennemregnet og beregningerne blev sammenholdt med målingerne for begge perioder. Disse undersøgelser er beskrevet i afsnit 3 .

Figur 3. Målt udelufttemperatur samt total og diffus bestrålingsstyrke på solfangerplanen i perioden 12.9.90-15.9.90.

Figur 4. Målt udelufttemperatur samt total og diffus bestrålingsstyrke på solfangerplanen i perioden 22.10.90-26.10.90.

Zigur 5. Målte lagertemperaturer og solfangervæskens fremløbstemperatur og returtemperatur for lagertanken den 22 . oktober 1990.

Dag	Energi til elpatron kWh	Solvarme til- fort lager kWh	Tappet energi kWh	Driftstid	
12.9 .1990	2,53	3,94	h		
13.9 .1990	2,88	4,94	7,32	7,42	Netom
14.9 .1990	4,74	3,24	7,31	7,25	ydelse
15.9 .1990	1,76	7,19	7,32	7,25	8,33

Tabel 1. Målte energimængder og driftstider i perioden 12.9.1990-15.9.1990.

Dag	Energi til elpatron kWh	Solvarme til- ført lager kWh	Tappet energi kWh	Driftstid
h				
22.10 .1990	2,26	5,70	7,32	6,42
23.10 .1990	2,83	5,05	7,44	6,50
24.10 .1990	3,03	5,13	7,81	6,23
25.10 .1990	3,37	4,85	7,81	6,47
26.10 .1990	4,30	3,62	7,81	5,80

Tabel 2. Malte energimaengler og aniftstider i perioden 22.10.1900-26.10.1990.

3. Validering a matematisk model

Alle dele af den ilajudiklede matematiske model blev undersøgt hyer for sig: Sohfangerkredsen fra lageret til solfangeren og fra solfangeren til lageret, solfangeren og varmelageret. Endelig blev hele modellen for anlægget underspgt. Beregnede og målte temperaturer og energimangder blev sammenlignet i undersogelseme for begge afprovningsperioder.

3. Soliangerdreds

Med den matematiske model blev temperaturen ved indlobet til solfangeren T_{10} beregnet med den malte volumenstrom og den malte udlobstemperatur fra kappen T, for alle perioder med solfangerdrift. Forskellen mellem den måke og beregnede indlobstempeatur til solfangeren er altid meget lille. Et eksempel herpå ef vist pá figur 6 for den 24. oktober 1990.

Figur 6. Målt og beregnet indløbstemperatur til solfangeren den 24. oktober 1990.

Endvidere blev for alle perioder med solfangerdrift indløbstemperaturen til kappen T_{8} beregnet med den målte volumenstrøm og den målte udløbstemperatur fra solfangeren T_{11}. Forskellen mellem den målte og beregnede indlobstemperatur til kappen er altid meget lille. Et eksempel herpå er vist på figur 7 for den 24. oktober 1990.

Figur 7. Målt og beregnet indløbstemperatur til varmtvandsbeholderens kappe den 24. oktober 1990.

På basis af undersøgelserne må det konkluderes, at modellen beregner de termiske forhold i solfangerkredsen korrekt.

32 Varmelager

Der blev med den matematiske model foretaget beregninger pâ basis af den mảite voiumenstrøm gennem kappen, den måte indløbstemperatur af solfangervæsken til kappen T_{8}, den måte tappede vandmangde fra varmelageret, den målte koldivandstemperatur og lageromgivelsernes temperatur. Lagertemperaturerne og udlobstemperaturen fra kappen T, blev beregnet for begge afprovningsperioder. Desuden blev følgende energimangder beregnet: Tappet energi fra varmelageret, energi tiført elpatronen samt energien, som solfangervesken tili申rer vanmelageret.

I begge afprøvningsperioder er der rimelig god overensstemmelse mellem mảte og beregnede temperaturer. Dette fremgår af figur 8 og 9 , som viser mâlte og beregnede lagertemperaturer og udløbstemperaturer fra kappen for henholdsvis den 13. september 1990 ag den 24. oktober 1990.

Det bemarkes dog, at det ikke har varet muligt beregningsmassigt helt at efterligne de lidt varierende temperaturer, som optreder i toppen af tanken. Dette skyldes, at temperaturfoleren for elpatronens termostat er indoygget $\dot{1}$ elpatronen på en sädan måde, at den registrerer en temperatur, som kke er identisk med temperaturen i toppen af tanken.

De malte og beregnede energimengder or anfort itabel 3 og 4 for de to perioder. Der er god overensstemmelse mellem måhe og beregnede storetber for begge perioder. Enkelte dage er der dog forholdsvis store uoverensstemmelser mellem den mále og beregnede energimengde, som tiffores elpatronen. Det vurderes, at disse uoverensstemmelser er forirsaget af de i toppen af tanken varierende temperaturer, som det ikke har varet muligt at etterligne beregningsmæssigt.

På basis af underspgelseme må det konkluderes, at modellen beregner de temiske forhold for varmelageret korrek.

Temperaturer i kappebeholder

ind- og udløbstemperaturer for kappen

Figur 8.
Målte og beregnede lagertemperaturer den 13. september 1990.

Ind- Og udlabstemperaturer for kappen

Figur 9. Målte og beregnede lagertemperaturer den 24. oktober 1990.

Dag	Energi til elpatron kWh		Solvarme tilfort lager kWh		Tappet energi kWh	
	målt	beregnet	målt	beregnet	målt	beregnet
12.9 .1990	2,53	2,57	3,94	3,57	7,32	7,69
13.9 .1990	2,88	3,15	4,94	4,93	7,31	7,62
14.9 .1990	4,74	4,07	3,24	3,29	7,32	7,24
15.9 .1990	1,76	1,99	7,19	7,22	7,32	7,50
SUM	11,9	11,8	19,3	19,0	29,3	30,0

Tabel 3. Målte og beregnede energimængder med lagermodellen for perioden 12.9.90-15.9.90.

Dag	Energi til elpatron kWh		Solvarme tilført lager kWh		Tappet energi kWh	
	målt	beregnet	målt	beregnet	målt	beregnet
22.10 .90	2,26	2,49	5,70	5,57	7,32	7,56
23.10 .90	2,83	2,96	5,05	4,97	7,44	7,58
24.10.90	3,03	3,19	5,13	5,08	7,81	7,96
25.10 .90	3,37	3,50	4,85	4,86	7,81	7,93
26.10 .90	4,30	4,18	3,62	3,65	7,81	7,79
SUM	15,8	16,3	24,3	24,1	38,2	38,8

Tabel 4. Målte og beregnede energimængder med lagermodellen for perioden 22.10.90-26.10.90.

33 Sobanyar

Der blev med den matematiske model toretaget beregninger pả basis af den målu volumenstrøm isolfangerkedsen, den måte fremløbstemperatur til solfangeren T_{10}, udeluftemperaturen, den difuse samt den totale bestrålingsstyrke på solfangerplanen. Returtemperaturen for solfangeren og den af solfangeren producerede varmemængde blev beregnet for perioder med solfangerdrift i begge afpravaingsperioder.

I begge afprpvingsperioder er der rimelig god overensstcmmelse mellem malte og beregnede temperaturer. Dette fremgar af figur 10 og 11, som foruden frempbstemperaturen for solfangeren viser mătre og beregnede returtemperaturer fra solfangeren for henholdsvis den 13. september 1900 og dea 24 . oktober 1990. Om morgeneme i perioden fra den 2210.1990 til 26.10 .1990 er den beregnede returiemperatur dog noge hofers end den maite. Det skyldes, at den udvendige side af sollangerens daklag efter de kolde kare netter er drkket af en vandfilm. Denne film skal fordame for solons straler uhindret kan nå solfangerens overllade. Solfangerens effektivitet er derfor reduceret macrkbaxt om morgenen.

Forst efter ca. 1 times sothongedrift or overtaden atter tor. Der er ikke gior forspg på beregningsmassigt at korigere for dette forhold. Derfor er den beregnede solfangerydelse for deme periode storre end den mălte, mens der i perioden 12.9 .1990 til 15.9.1990, hvor fienomenet ikke optrader, er god overenstemmelse mellen mâte og beregnede solfangerydelser. Dette fremgăr af tabel 5 og 6 , som angiver mâte og beregnede sollangerydelser for de to perioder.

Pà basis af undersogelseme má det konkuderes, at soffangermodellen er rimelig god for den benyttede solfanger. Det vil dog vare ønskeligt at validere modellen med målinger fra here perioder uden der omtake kondensproblem. Desuden bor det her navnes, at den benyttede solfanger har en usadvanlig stor vamekapacitet og at solfangeren ogsă med hensyn til absoberudformniogen adskiller sig markant tra de pvrige markedsiorte solfangere.

Endelig skal det bencorkes, at den i modellen benytude solfangereffektivitet er bestemt på basis af en solfangerprovning med en vindhastighed på ca. $5 \mathrm{~m} / \mathrm{s}$. Vindhastigheden er i storstedelen af forspgsperioderne betydelig mindre end $5 \mathrm{~m} / \mathrm{s}$. Det måtte derfor forventes, at solfangereffektiviteten i virkeligheden er idt store end den imodelien benytuede solfangereffektivitet. Dette synes dog ikke at vere tilfeldet.

På basis af undersøgelseme må det anbefales at ivarksatte både teoretisk og eksperimentelt arbejde med forskellige solfangertyper for at klarlagge, hyonledes de termiske forhold for solfangere med små volumenstromme bedst simuleres.

Figur 10. Måte og beregnede fremlfbs- og returtemperaturer for solfangeren den 13. september 1990.

Figur 11. Målte og beregnede fremløbs- og returtemperaturer for solfangeren den 24. oktober 1990.

Dag	Solfangerydelse kWh malt	beregnet
12.9 .1990	4,17	4,10
13.9 .1990	5,29	5,13
14.9 .1990	3,34	3,50
15.9 .1990	7,70	7,70
SUM	20,5	20,4

Tabel 5. Målte og beregnede solfangerydelser med solfangermodellen for perioden 12.9.1990-15.9.1990.

Dag	Solangerydelse kWh mål	beregnet
22.10 .1990	6,26	6,47
23.10 .1990	5,55	5,81
24.10 .1990	5,57	5,75
25.10 .1990	5,22	5,37
26.10 .1990	3,90	3,98
SUM	26,5	27,4

Tabel 6. Målte og beregnede solfangerydelser med solfangermodellen for perioden 22.10.1990-26.10.1990.

3.4 Komplet anleg

Der blev med den matematiske model foretaget beregninger på basis af anlægsudformningen, den målte udelufttemperatur, den målte diffuse og totale bestrålingsstyrke på solfangerplanen, den målte tappede vandmængde fra varmelageret, den målte koldtvandstemperatur og lageromgivelsestemperaturen. Lagertemperaturer, solfangerkredsens temperaturer, cirkulationspumpens driftstid samt følgende energimængder blev beregnet for begge afprøvningsperioder: Tappet energi fra lager, energi tiført elpatronen og varme tilført lageret fra solfangervæsken.

For begge måleperioder er der rimelig god overensstemmelse mellem målte og beregnede anlægstemperaturer. Dette fremgår af figur 12 og 13 , som viser målte og beregnede anlægstemperaturer for henholdsvis den 13.9.1990 og den 24.10.1990.

Det bemærkes dog, at det ikke har været muligt beregningsmaessigt at efterligne de lidt varierende temperaturer, som optræder i toppen af tanken. Som nævnt i afsnit 3.2 skyldes det, at elpatronens termostat er indbygget i elpatronen på en sådan måde, at den registrerer en temperatur, som ikke er identisk med temperaturen i toppen af tanken. Endvidere bemærkes det, at de beregnede returtemperaturer fra solfangeren om morgenen den 24. okiober er hojere end de målte og det beregnes, at solfangerdriften denne dag starter tidligere end den gor. Begge dele skyldes det i afsnit 3.3 omtalte kondensproblem.

De måle og beregnede energimængder og driftstider for cirkulationspumpen er anfort i tabel 7 og 8 for de to perioder. Desuden er nettoydelsen for perioderne angivet. Den af Provestationen for Solenergi benyttede definition af nettoydelsen er anvendt:

Nettoydelse $=$ Tappet energi - Energi til elpatron - Energi til cirkulationspumpe.
Der er rimelig god overensstemmelse mellem de målte og beregnede størrelser for begge perioder. Enkelte dage er der dog forholdsvis store uoverensstemmelser. Det vurderes, at disse uoverensstemmelser forst og fremmest er forårsaget af vanskelighederne med at beregne temperaturen i toppen af lagertanken korrekt. For perioden 22.10.1990-26.10.1990 spiller det omtalte kondensproblem også ind.

På basis af undersøgelseme vurderes det, at den benyttede matematiske model med god nøjagtighed kan beregne solvarmeanlæggets ydelse.

Fremlobs- og returemperaturer for solfanger

Figur 12. Målte og beregnede anlægstemperaturer den 13. september 1990.

Fremlabs- og returtemperaturer for solfanger

Figur 13. Målte og beregnede anlægstemperaturer den 24. oktober 1990.

Tabel 7. Målte og beregnede størrelser for perioden 12.9.1990-15.9.1990.

Tabel 8. Målte og beregnede størrelser for perioden 22.10.1990-26.10.1990.

35 Ydelsens afhengighed ar waintioner i bestrollingstyurem

De i afsnit 3.1-3.4 omtalte beregninger er alle foretaget med tidsskridt på $2,7 \mathrm{~min}$ og med solfangeren opdelt i 17 lag med hver sin temperatur. Tidsskridtet for beregningerne er valgt til 2,7 min, idet de termiske forhold for kappebeholderen herved simuleres bedst muligt med den benyttede volumenstrom igennem kappen. Beregningerne i afsnit 3.3 og 3.4 er gememført på basis af madhe 2 min gennemsnitsværdier for udeluftemperaturen, den diffuse og den totale bestrålingsstyrke på solfangerplanen.

Ireferenceăret angives vejrdata som bekendt sorm gememsnitlige vardier for hver time igennem året. De store variationer i bestrålingsstyrken, som forarsages af skyer, tages derfor ikke i beregning, når anlaggydelser beregnes med referenceårets vejrdata.

For at undersoge om disse vartationer påvirker den beregnede anlegsydelse er der gennemiføt forskellige beregninger baseret på de måke 2 min vejrdata. De målte vejrdata er midlet over perioder af forskellig varighed: $10 \mathrm{~min}, 20 \mathrm{~min}, 30 \mathrm{~min}$ og 60 min .

For begge forsøysperioder er anlagsydelserne altså beregnet med 5 forskellige tidsskridt for verdataene. Desuden er beregningerne gennemiort både med solfangermodellen opdelt il og 17 lag.

Beregningsresultateme fremgår af tabel 9 og 10 for de to afprøvningsperioder og af figur 14 , som viser den beregnede ekstra nettoydelse for anlegget som funktion af der benyttede tidsskridt for vejrdataene og af antallet af lag i solfangermodellen. Den beregnede nettoydelse med 1 lag i solfangermodellen og et tidsskridt for vejrdataene på 60 min er sat til 100%, idet årsydelsen normalt beregnes med disse forudsatninger på basis af referenceårets vejrdata.

For de to afprovningsperioder beregnes nettoydelsen altså ca. 3% for lille når der benyttes th vardier for vejrdataene og en model, som ikke tager temperaturlagdelingen i solfangeren i beregning. Den ene halvdel af deme reduktion af anlægsydelsen er forårsaget af den grove solfangermodel og den anden halvdel er forårsaget af tidsskridtets størrelse. Solvameanlæggets beregnede dakningsgrad, defineret som (tappet energi - energi til elpatronen)/tappet energi, er for de to perioder henholdsvis $60,9 \%$ og $59,8 \%$.

Antal lag i solfangermodel	Tidsskridt for vejrdata min	Energitil elpatron kWh	Solvarme tilfort lager kWh	Tappet energi KWh	Drifistid h	Nettoydelse kWh
1	2	11,9	18,8	29,9	31.3	16,9
	10	11.9	18,8	29.9	31,3	16,9
	20	11,9	18,8	29,9	31,1	16,9
	30	11,9	18,7	29,9	31,4	16,9
	60	12,1	18,6	29,9	31,3	16,7
17	2	1 1.8	19,0	30,0	29,6	17%
	10	11,8	19,0	30,0	29,8	17,2
	20	11,8	19,0	30,0	29,7	17,2
	30	11,8	18,9	30,0	30,2	17,2
	60	11.9	18,7	30,0	29,3	17,0

Tabel 9. Beregnede størrelser for perioden 12.9.1990-15.9.1990 med forskellige lag is solfangermodellen og forskellige tidsskridt for vejrdata. De i afsnit 3.4 beregnede størrelser er fremhævet.

[^0]

Figur 14. Beregnet ekstra nettoydelse for anlægget i afprovningsperioderne som funktion af det benyttede tidsskridt for vejrdata og antallet af lag i solfangermodellen. Nettoydelsen for anlægget med 1 lag i solfangermodellen og et tidsskridt for vejrdata pả 60 min er sat till 100%.

For at undersøge om indflydelsen af tidsskridtet for vejrdataene på den beregnede anlagsydelse afhənger af vejrtypen, af forholdet mellem varmtvandsforbrug og solfangerareal og af daknings. graden blev der foretaget beregninger med vejrdata målt på laboratoricts solmålestation for seks forskellige uger. De seks udvalgte uger fremgår af tabel 11.

Periode	Totalt solindfald på sydvendt 45° hældende flade $\mathrm{kWh} / \mathrm{m}^{2}$	Diffust solindfald på sydvendt 45° haldende flade
$01.06 .90-07.06 .90$	36,3	$\mathrm{kWh} / \mathrm{m}^{2}$
$01.07 .90-07.07 .90$	26,4	
$25.07 .90-31.07 .90$	44,0	18,3
$11.12 .90-17.12 .90$	6,6	13,4
$01.02 .91-07.02 .91$	15,1	12,8
$20.04 .91-26.04 .91$	19,9	1.4

Tabel 11. Målte vejrdata for de seks udvalgte uger.

For de seks udvalgte perioder er der genemfort bercgninger af ydelsen af et solvarmeanlag. Anlegget adskiler sig fra det alprovede anleg på to puntrore Der er benytut en mindre cirkulationspumpe meả et effektiororug på 30 W , mod viouigere 35 W , og solfangerarealet er reduceret fra $4,04 \mathrm{~m}^{2}$ til $3,84 \mathrm{~m}^{2}$. I beregningerne, som er gennemiort med fem forskellige soifangere med cidsskridt for vejrdata på 2 min og 60 min og med 1 og 16 lag i solfangermodellen, er forudsat et dagligt varmtvandsforbrug på 200 L . Solfangerne, som tages i beregning, har forskellige effektiviteter og varmekapaciteter.

Beregnongsesuitateme er sammenfattet ifigur 15 , som for de forskellige perioder og solfangere som funktion af drikningsgraden viser den beregnede ekstraydelse, som opnås ved: at benytte en delalyeret solfangermodel i stedet for en grov solfangermodel (øverst), at reducere tidsskridet for vejrdata tha th 42 min (imidten), og bade at reducere tidsskidtet for vejrdata fra 1 h til 2 min og benytte en detaljeret soliangermodel (nederst).

Det ses, at den beregnede netroydelse for solvarmeaniægget ikke forøges særligt meget når der anvendes en detaljeret matematisk solfangermodel opdeit i mange lag med hver sin temperatur i siedet for at benytie en simplere model, som ikke er lagdelt. For små dakningsgrader og termisk tunge solfagere bliver forggelsen dog mærkbar.

Endvidere ses, at forpgelsen af den beregnede anlægsydelse ved at reducere tidsskridtet for vejrdataene ta th iil 2 min afhenger kraftigt af solvarmeanleggets dakwingsgrad. Jo mindre drekingegraden er des swme of fordgelsen. For store dakninggrader er fordgelsen bille, og fordgelsen vokser krafigt nảr dxaningsaden bliver ille.

Drkningsgraden of atså aigorende for betydningen af tidsskidtet for vejrdataene, og der er intet som tyder pă at ovemnavote forhoid paivirkes navnevardigt at vejrypen eller af solfangerens effekivitet eller vamekapacitet.

Nederst på figur 15 ses, hvonedes den beregnede anlægsydelse forpges når der både benyttes en detaljeret solfangermodel og smă tidsskridt for vejrdataene. For små dakningsgrader forøges den beregnede anlagsydelse altså betydeligt når der benytres en detaljeret beregningsmodel med detalyerede vejrdata. Dette er sandsynligvis hovedårsagen til de store forskelle som i [4] navnlig for små dakningsgader er konstateret mellom malte og beregnede merydelser for low flow anleg i forhold til amindelige anleg.

Beregninger med in vejrdata undervurderer altex anlegsydelsen. Arsagen er, at den gunstige temperaturlagdeling, som etableres i varmelageret under solfangernes drift, undervurderes. På grund af skyer varierer returtemperaturen fra solfangeren nemilg ofte stærkt og disse variationer resulterer i en íoroget temperaturlagdeling i varmelageret. Disse variationer tages ikke i beregning, năr der benyttes for store tidsskrid for vejudataene.

For tre perioder: 25.7.90-31.7.90, 11.12.90-17.12.90 og 1.2.91-7.2.91 blev beregningerne desuden foretaget med daglige varmtvandsforbrug pa $501,1001,300 \log 4001$ for at undersøge, hvorledes varmivandsforbruget påvirker forholdene.

Beregningsresultaterne er vist på figur 16. Figuren viser den beregnede ekstra ydelse, som opnås ved at reducere tidsskridtet fra 1 h til 2 min og ved at benytte en detaljeret solfangermodel i stedet for en simpel solfangermodel, som funktion af varmtvandsforbruget og dækningsgraden. Resultaterne er angivet for forskellige solfangere.

Også her er langt størstedelen af den beregnede ekstra ydelse forårsaget af reduktionen af̂ tidsskridtet for vejrdataene. Det ses, at både varmtvandsforbrugets størrelse og dakningsgraden
er afgørende for betydningen af tidsskridtet for vejrdataene, mens vejr- og soliangertype ikke påvirker forholdene nævnevæerdigt. Forogelsen af den beregnede anlægsydelse ved at reducere tidsskridtet for vejrdataene fra 1 h til 2 min affrenger altsả̉ kraftigt af solvarmeanlaggets dækningsgrad og af varmtvandsforbrugets størrelse. Jo mindre dækningsgraden og varmtvandsforbruget er des større er den procentvise forøgelse.

Beregningsresultaterne er sammenfatter i figur 17. Figuren viser tilnærmede kurver gaeldende for forskellige dakningsgrader for den beregnede ekstra nettoydelse, som opnås ved både at reducere tidsskridtet for vejrdataene fra 1 h til 2 min og ved at anvende en detaljeret matematisk solfangermodel i stedet for en simpel solfangermodel. Den beregnede ekstra ydelses afhængighed af forholdet mellem varmtvandsforbruget og solfangerarealet er angivet.

Kurverne kan benyttes for perioder af vilkanlig varighed, feks. perioder af 1 uges, 1 måneds eller 1 Ås varighed.

Figur 15. Beregnede ekstra nettoydelser for et $3,84 \mathrm{~m}^{2}$ solvarmeanleg med et dagligt varmtvandsforbrug på 2001 som funktion af dækningsgraden for forskellige solfangere og perioder opnået ved:
guerst: at anvende en detaljeret solfangermodel i stedet for en simpel solfangermodel.
imidten: at reducere tidsskridtet for vejrdata fra 1 h til 2 min .
nederst: både at anvende en detaljeret solfangermodel i stedet for en simpel solfangermodel og at reducere tidsskridtet for vejrdata fra 1 h til 2 min .

Daxkingsgraden er beregnet på basis af ydelserne beregnet med 1 lag i solfangermodellen og et tidsskridt for vejrdata på 1 h .

Figur 16. Beregnede ekstra nettoydelser for et $3,84 \mathrm{~m}^{2}$ solvarmeanlæg som funktion af dækningsgraden og varmtvandsforbruget for forskellige
 i stedet for en simpel solfangermodel.

Dækningsgraden er beregnet på basis af ydelserne beregnet med 1 lag i solfangermodellen og et tidsskridt for vejrdata på 1 h .

Figur 17. Beregnet ekstra nettoydelse for et low flow solvarmeanleg som funktion af forholdet mellem varmtvandsforbrug og solfangerareal og anlæggets dækningsgrad opnået ved at reducere tidsskridtet for vejrdata fra 1 h till 2 min og ved at anvende en detaljeret solfangermodel i stedet for en simpel solfangermodel.
Drekningsgraden er beregnet på basis af ydelsene beregnet med 1 lag i solfangermodellen og et tidsskridt for vejrdata på 1 h .

Eksempelvis kan figur 17 benyttes til at bestemme anlægsydelsen af et low flow aniog på følgende måde. Anlaggets årlige dækningsgrad og ydelse beregnes med den i de foregãonde afsnit validerede matematiske model med referenceârets vejrdata.

Den herved beregnede anlægsydelse er for lille, idet der ikke benyttes tilstrækkeligt små tidsskridt for vejrdataene. Med den beregnede dakningsgrad og forholdet mellem varmtvandsforbrug og solfangerareal allases af figur 17, hvor mange procent anlegsydelsen forpges på grund af de benytiede "grove" vejrdata.

Higuren kan benyttes indtil der er udviklet et nyt referenceâr med mindre tidsskridt for vejrdataene. Dette nye referenceăr er påkrævet hvis det skal vare muligt direkte at beregne anłegsydelsen for low flow solvarmeanlæg med små dakninggrader og/eller små forhold mellem varmevandstorbrug og solfangerareal.

4. Yulelsen af low flow solvarmeanlay og af tradicionelle solvamiamilag

1[1], [2] Og [3] er der gennemíprt måinger aî ydelsen af ei low flow solvameanlæg og af et traditionelt solvarmeanlæg under ensartede betingelser. Anlæggene havde hver et solfangerareal på ca. $4 \mathrm{~m}^{2} \mathrm{og}$ det daglige varmtvandsforbrug var i størstedelen af afprovningsperioden 2001.

Low flow anlægget med en kappebeholder som varmelager yder mere end det traditionelle anlæg, som har en varmtvandsbeholder med en indbygget varmevekslerspiral som varmelager. Dette fremgår af figur 18 , som viser måleresultater for anlæggene. Low flow anlæggets relative ydelse, defineret som forholdet mellem netroydelsen for low flow anlægget og nettoydelsen for det traditionelle anlæg, er vist som funktion af dækningsgraden for det traditionelle anlag.

Viser et målepunkt at den relative ydelse er 1,20 , betyder det at ydelsen for low flow anlaugget er 20% større end ydelsen for det traditionelle anlag i den pågaidende periode, som er af 1 uges varighed. Det ses, at merydelsen for low flow anlæg afhænger starkt at dxkningsgraden. Jo mindre dakningsgraden er des større er den ydelsesmaessige fordel ved low flow anleg.

Anlegsydelsen for det i afsnit 3.5 omtalte $3,84 \mathrm{~m}^{2}$ low flow solvarmeanleg er beregnet med måle veirdata for de tre udvalgte uger: 1.6.1990 - 7.6.1990, 25.7.1990-31.7.1990 og 1.2.1991 7.2.1991. I beregningerne er benyttet en detaljeret solfangermodel og et tidsskridt for vejrdataene pa 2 minutter. Der er gennemfort beregninger med fem forskellige solfangere og med daghige varmtvandsforbrug på $1001,2001,300 \log 4001$.

Med den samme model er ydeiserne desuden beregnet for et traditonelt solvammeanikg baseret pà en varmivandsbeholder med en indbygget varmevekslerspiral. I disse beregninger er en thlpasset version af den matematiske model anvendt. Kappen er flyttet ned til et niveau nederst Hageret hvor varmevekslerspiralen typisk or anbragt. Der er benyttet en varmeoveriforingsevne mellem kappen og beholderen på $100 \mathrm{~W} / \mathrm{K}$ svarende til en veldimensioneret varmevekslerspiral, der er benyttet en volumenstrøm på ca. $0,8 \mathrm{l} / \mathrm{min} \mathrm{m}^{2}$ solfanger i solfangerkredsen og differenstermostatens stopdifferens er reduceret til 1 K .

Ved hixlp af de beregnede ydelser for de to anlæg er det muligt at bestemme den beregnede relative ydelse for low flow anlegget. Resultaterne er sammenfattet ifgur 19. Figuren viser tilnarmede kurver for den beregnede relative ydelse for low flow anlag galdende for forskellige dxkningsgrader for det traditionelle anlag. Den relative ydelses athangighed af forholdet mellem varmtvandsforbruget og solfangerarealet er angivet.

Det ses, at den ydelsesmassige fordel ved low flow anlag er storst nair daknuggeraden er ille og/eller når varmtvandsforbruget pr. m^{2} solfanger er lille.

I princippet bor kurverne kunne benytes for perioder af vilkarlig varighed, fy perioder af 1 uges, 1 måneds eller 1 års varighed. Forelpbig må det imidlertid frarådes at benytte kurverne, idet der kan vare forholdsvis store forskelle mellem de beregnede kurver og malte storrelser. Eksempelvis er i [3] målt en årlig merydelse på 17% for er low fiow anlag i forhold til et traditionelt solvarmeanlæg, som i måleåret havde en dækningsgrad pa 41%. Af figur 19 ses, at den beregnede relative ydelse for dette low flow anlæg er ca. 1,11. Altso er den beregnede merydelse ca. 6% mindre end den målte merydelse. Sammenholdes figur 18 og 19 , ses det at de målte merydelser for low flow anlæg kan være op til 14% storre end de beregnede merydelser.

Figur 18. Målt relativ ydelse for low flow anlægget som funktion af dækningsgraden for det traditionelle solvarmeanlæg.

Figur 19. Beregnet relativ ydelse for low flow solvarmenalsg som funktion af fortholdet mellem varmtvandsforbrug og solangerareal og af dekningsgraden for det traditionelle aniæg.

Hovedårsagen til forskellen mellem beregnede og måke merydelser er sandsynligvis at ydelsen af det traditionelle solvameanleg beregnes for stor. Den matematiske model for det traditionelle anlæg tager nemlig ikke hensyn til den opblanding, som forekommer i toppen af lagertanken meilem varmt vand opvarmet af elpatronen og koldere vand, som sattes i bevagelse når det ved hjxip af varmevekslerspiralen opvarmes af solfangerne. Denne opblanding reducerer ydelsen for det traditionelle anlag. Det er vanskeligt at vurdere hvor stor denne reduktion er. \$kal kurveme derfor kunne benyttes till at bestemme merydelsen for low flow anlag i forhold ail traditionelle solvarmeanixg, og skal man i øvrigt beregningsmæssigt kume bestemme ydelsen af traditionelle anlæg, er der behov for at forbedre den matematiske model for det traditionelle anleg således at opblandingen mellem varmt og koldere vand itoppen af lagertanken simuleres. Det kan derfor anbefales at der ivarksettes underspgelser på dette område.

I ovigt kan en anden årsag til forskellen mellem målte og beregnede merydelser måske vare, at solfangereffektiviteten for smà volumenstromme mader dyamiske forhold er større end solfangereffektiviteten under stabile forhold. Det må anbefales også at iværksætte undersøgelser på dette omaide.

5. Andegradfomangens betaining for ydelser

Fofgende fremgangsmăde til bestemmelse af den årlige anlogsydelse er benyttet: Forst beregnes den andige ydelse for low tlow anlegger med den i afsnit 3 validerede matematiske model med referencearets verrdata. Herefter benyttes figur 17 som beskrevet i afsnit 3.5 il at bestemme hor meget den beregnede ydelse skal forøges for at korigere for referenceảrets "grove" vejrdata.

Som udganspunkt for beregningeme benytes et low how solvarmeanlag, som markedsføres af Aidt Milp Aps. Anlæggets data fremgatr af tabel 12, og det benytede varmtvandsforbrug fremgetr af tabel 13.

Varmelageret adswiller sig lidt fra det i [6] afprovede lager. Kappediameteren er lidt større end angivet 101 . Isoleringstykkelsen for kappens sider er lidt mindre, og lagerets varmetabskoefficient lide store end angivet i 10 . Varmelageret er forsynet med en varmevekslerspiral, som er placeret i soppen af varmivandbeholderen. Ved hixlp af varmevekslerspiralen kan brugsvandet pparmes om vinteren, saledes at varmelageret altid kan levere tilstrakkeligt varmt vand. Det forudsettes i beregningerne at opvarmningen af lagerets top ved hiælp af varmevekslerspiralen om vinteren foregå på samme måde som opvarmningen med elpatronen om sommeren.

Ydelsen af det itabel 12 angivne refcrenceaniæg bestemmes. Desuden undersøges enkelte parametres indilydelse på solvarmeanlægets ydelse. Anlægsydelsen med forskellige størrelser af den enkelte parameter bestemmes. Bortset fra vaviationer af storrelsen af den enkelte parameter benyttes i pvrigt referenceanlaggets data fra tabel 12 i beregningeme.

Beregaingsresultateme er i det følgende angivet som anlæggets årlige nettoydelse og som anlæggets tilskud, beregnet efter de nuvarende tilskudsregler. Den årlige nettoydelse beregnes som anlæggets årlige bruttoydelse \div årligt energiforbrug til pumpe \div energiforbrug til elpatron om sommeren \div energiforbrug til vintersupplering via varmevekslerspiralen.

Anlæggets tilskud beregnes af formlen:
(årlige nettoydelse +300) $\cdot 5 \mathrm{kr}$.

SOLFANGER	
Fabrikat	Aidt Miljo Aps
Type	LF4
Solfangerareal	3,84 m^{2}
Solfangereffektiviter for små indfaldsvinkler	$\eta=0,74-6,5 \cdot \frac{T_{m s}-T_{u d e}}{1}$
Varmekapacitet for solfangeren	$32000 \mathrm{~J} / \mathrm{m}^{2} \mathrm{~K}$
Solfangerhældning	45°
Solfangerorientering	sydvendt
Solfangervæske	30% propylenglykol/vandblanding
Volumenstrom i solfangerkreds	0,151/min m² solfanger
KAPPEBEHOLDER	
Fabrikat	Aidt Milyo ApS
Type	Model 300
Varmivandsbeholder	
Volumen	2801
Diameter	500 mm
Hojde	1432 mm
Godsmateriale	St 37.2
Godstykkelse	3 mm
Kappe	
Volumen	191
Diameter	535 mm
Hojde	821 nmm
Vandvolumen over kappen	1001
Godsmateriale	St 37-2
Godstykkelse	3 mm
Elpatron	
Effekt	1100 W
Vandvolumen over elpatronen	901
Termostattemperatur	$50^{\circ} \mathrm{C}$
	tabel 12 fortsættes

Isolering	
Isoleringsmateriale	PUR skum
Isoleringstykkelse bund	ca. 20 mm
sider	32.50 mm
top	70.115 mm
Varmetabskoefficient ved $60^{\circ} \mathrm{C}$ under drift	2,4 W/K
Lageromgivelsestemperatur	$20^{\circ} \mathrm{C}$
SOLPANGERKREDS	
Rørmateriale	kobber
Ydre diameter	15 mm
Indre diameter	13 mm
Isoleringsmateriale	glasuld
Isoleringstykkelse	10 mm
Længde af fremlobsror til lager udendørs	1,25 m
Læengde af returror fra lager udendørs	1,25 m
Længde af fremløbsror til lager indendørs	$3,75 \mathrm{~m}$
Langde af returror fra lager indendørs	$3,75 \mathrm{~m}$
Cirkulationspumpeeffekt	30 W
STYRESYSTEM	
Differenstermostatstyring med en foler i bunden af kappen og en i solfangere	
Startdifferens	6 K
Stopdifferens	2K

Tabel 12. Data for solvarmeanlægget, som tages i beregning.

Koldtvandstemperatur	$10^{\circ} \mathrm{C}$
Varmtvandstemperatur	$45^{\circ} \mathrm{C}$
Dagligt varmtvandsforbrug	2001
Hver dag tappes 33,31	k.. $8,12,16,18,20$ og k. 22

Tabel 13. Varmtvandsforbruget.

5.1 Sollangermeal

Anlæggets ålige nettoydelse og tilskud er vist på figur 20 for forskellige solfangerarealer. Naturligvis forøges ydelse og tilskud når soliangerarealet gøres større.

Figur 20. Anlægets ahlige nettoydelse og tilskud som funktion af soliangerarealet.
Referenceanłeggets yodse og tilskad er beregnet til henholdsvis $1212 \mathrm{kWh} /$ år og 7560 kr .
Disse beregnede storrelser er mindre end de af Provestationen for Solenergi bestemte ydelser og tilskud, som i dag er geldende for det af Aidt Milp Aps markedsforte anlæg.

De af Provestationen for Solenergi bestemte ydelser og tilskud for low flow anlag er baseret på ydelsesberegninger for traditionelle anixg og måte merydelser for low flow anlog. Som omtalt i afsnit 4 overvurderer de eksisterende matematiske modeller ydelse og dermed tilskud for tadtionelle anlag. Dertor vil ydelse og tilskud for low flow anlag ogsi blive overvurderet når ovennæynte metode benyttes.

5.2 Solfangerens maksimaleplekivitet

Anlæggets ålige nettoydelse og tilskud er vist på figur 21 for forskellige maksimaleffektiviteter. Jo større maksimaleffektivitet, des større ydelse og tilskud.

Fgyr 21. Anlxggets andige netoydelse og diskud som funktion af maksimaleffektiviteten.

Yed beregning af referenceanlaggets ydelse or benytet folgende formel til bestemmelse af koefficienten til korrektion for indaldsvinklen: $\mathrm{E}_{\mathrm{ts}}(\theta)=1-0,20 \cdot\left(\frac{1}{\cos \theta}-1\right)$, hoor θ er
indfaldsvinken. $\mathbb{K}_{\text {ra }}(0)$ er bestemt med forholdsvis stor usikkerhed. Derfor er der gennemfort beregninger med forskellige størrelser af $\mathbb{K}_{\text {qu }}(0)$.

Referenceanleggets solfangers dxklag er en 6 mm ribbeplade af polykarbonat. Hollandske målinger af indfaldsvinklens indtydelse på transmittansen for dette daklag [7] er anvendt som udgangspanke for en supplerende beregning.

Også iforbindelse med et kursusarbejde udfor i juli 1991 på Laboratoriet for Varmeisolering er indfaldsvinklens indflydelse på transmittansen for dette dxklag blever målt. Disse mâlinger er benyttet som udgangspunkt for yderligere en beregning.

Endelig er ydelsen beregnet med folgende formel:
$\mathbb{K}_{\text {ru }}(\theta)=1-0,10 \cdot\left(\frac{1}{\cos \theta}-1\right)$, som svarer til forholdene, hvis droklaget havde bestået
et glaslag.
Figur 22 viser beregnede ydelser og tilskud for anlægget med de 4 forskellige størrelser af $K_{\tau \psi}(\theta)$.

Det må anbefales at udvikle en prøvemetode til bestemmelse af koefficienten til korcktion for indfaldsvinklen for solfangere. Metoden bor benyttes iforbindelse med standardprovningen af markedsførte solfangere.

Korrektion for indfaldsvinklen baseret på:
1: Skønnet formeludtryk for 6 mm ribbeplade af polykarbonat
2: Hollandske målinger
3: Målinger på Laboratoriet for Varmeisolering
4: Formeludtryk gældende for et glaslag
Figur 22. Anlæggets årlige nettoydelse og tilskud for forskellige koefficienter th korrektion for indfaldsvinklen.

5.4 Solfangerens yarmeabiskoeflicient

Anlæggets årlige nettoydelse og tillkud er vist på figur 23 for forskellige varmetabskocfficienter. Jo mindre varmetabskoefficient, des større ydelse og tilskud.

Figur 23. Anleggets årlige nettoydelse og tilskud som funktion af solfangerens varmetabskofficient.

5.5 Solfongerems varmekapaciter

Anleggets årlige nettoydelse og tilskud er vist på figur 24 for forskellige storrelser af solfangerens varmekapacitet. Jo mindre varmekapacitet, des storre ydelse og tilskud. Ydelsens afhrongighed af varmekapaciteten er dog forholdsvis beskeden.

Figur 24. Anlæggets årlige nettoydelse og tilskud som funktion af solfangerens varmekapacitet.

5.6 Solfangertyen

Anlæggets årlige netroydelse og tilskud er vist på figur 25 med forskellige markedsførte solfangere. Det er forudsat at solfangereffektiviteten for små volumenstrømme er den samme som for almindelige volumenstrømme. For hver enkelt solfanger bør det undersøges om denne forudsætning holder, idet solfangerudformningen jo har afgørende betydning for volumenstrømmens indflydelse på solfangereffektiviteten.

$\begin{aligned} & \text { SOLFANGER } \\ & \text { Nr. Fabrikat } \end{aligned}$	solfanger-	MAKSMALL EFFEK tiviter	Varmetabs womericient	VARME- KAPACTIET KAPACTIE $\mathrm{k} 3 / \mathrm{m} 2 \mathrm{~K}$	daklag
1 ALDT MLIØ ApS	$\begin{aligned} & 3,84 \mathrm{~m}^{2} \\ & 7,68 \mathrm{~m}^{2} \end{aligned}$	0,74	6,5 W/m2K	32	Dobbelverget polykarbonat plade
$\begin{aligned} & 2 \text { DANSK } \\ & \text { SOLVARME A/S } \end{aligned}$	$\begin{aligned} & 2,04 \mathrm{~m}^{2} \\ & 4,08 \mathrm{~m}^{2} \end{aligned}$	0,86	5,0 W/m²K	16	GLas
3 BATEC	$\begin{aligned} & 2,19 \mathrm{~m}^{2} \\ & 4,38 \mathrm{~m}^{2} \end{aligned}$	0,77	5,4 W/m²	7	gias
4 SOLAHART Scandinavia ApS	$\begin{aligned} & 1,86 m^{2} \\ & 3,72 m^{2} \\ & 3, \end{aligned}$	0,91.	6,3 W/m23K	1.5	glas
5 ARCON Solvarme ApS	$\begin{aligned} & 2,51 \mathrm{~m}^{2} \\ & 5,02 \mathrm{~m}^{2} \end{aligned}$	0,82	4,6 W/m²K	7	GLAS
6 ARCON Solvarme ApS	$\begin{aligned} & 2,51 \mathrm{~m}^{2} \\ & 5,02 \mathrm{~m}^{2} \end{aligned}$	0,68	3,1 W/mK	10	Dobbelvagget polykarbonat plade

Wigur 25. Anlæggets årlige nettoydelse og tilkud som funktion af solfangertypen.

5.7 Solfangerhaoldning

Anlæggets årlige nettoydelse er vist på figur 26 som funktion af solfangerhældningen. Solfangerhældninger mellem $30^{\circ} \mathrm{og} 60^{\circ}$ fra vandret resulterer i de største anlægsydelser.

Figur 26. Anlxggets årlige nettoydelse som funktion af solfangerheldningen.

5:3 Lagervolmmen

Anlæggets Arlige netoydelse og tilskud er vist på figur 27 som funktion af kappebeholderens vandyotumen. Volumenet er beregningsmessigt varieret ved at variere på hajden af den del af vamtvandsbeholderen, som er omgivet af kappen. To støre lagervolumen, des storre ydelse og thskud. Beregwingsresultaterne for små lagre bor dog tages med et vist forbehold, da udtormangen for disse lagre bliver urealistisk.

Figur 27. Anlæggets årlige nttoydelse og tilskud som funktion af lagervolumenet.

5.9 Vandvolumen over elpatronen

Jo højere oppe i varmivandsiveholderen elpatronen er placeret, des storre bliver anlaggets ydelse og tilskud, som det ses af figur 28. Til gengald reduceres komfortniveauet når elpatronen fiyttes opad i tanken. Derfor bør elpatronen placeres så højt itanken som komforkravet tillader.

Figur 28. Anlaggets årlige nettoydelse og tilskud som funktion af vandvolumenet, som er placeret over varmelagerets elpatron.

S. 10 Epatronens fermostattemperatur

Jo lavere elpatronens termostattemperatur er, des storre bliver anleggets ydelse, som det fremgår aff figur 29. Til gengeld reduceres komfortniveauet når elpatronens termostattemperatur reduceres. Derfor bor de supplerende energikilder opvarme toppen af varmtvandsbeholderen til så lavt et temperaturniveau som komfortkravet tillader.

Figur 29. Anlæggets årlige nettoydelse som funktion af elpatronens termostattemperatur.

5.11 Kappens udstrakning

Jo større udstrækning kappen omkring varmtvandsbeholderen har, des større bliver anlæggets ydelse og tilskud. Dette fremgar af figur 30. Placeringen af bunden af kappen er fastholdt i beregningerne, således at variationerne af kappens udstrækning opnås ved at ændre placeringen af toppen af kappen.

Figur 30. Anlaggets årlige nettoydelse og tilskud som funktion af kappens udstrækning.

5.12 IK appens tykkelse

Figur 31 viser kappetykkelsens betydning for den beregnede anlægsydelse og for anlæggets tilskud. Beregningerne viser at kappetykkelsen ikke påvirker anlægsydelsen navneværdigt.

Kappetykkelsen afgor hvor længe solfangervæsken opholder sig i kappen i perioder med soffangerdrif. Det forekommer derfor besynderligt at kappens tykkelse næsten ingen indflydelse har på anlægsydelsen.

De i beregningeme benyttede varmeovergangstal for varmetransporten mellem kappen og varmtvandsbeholderen er bestemt ved forsøg med én standard kappebeholder. De herved bestemte varmeovergangstal er i beregningerne også benyttet for kappetykkelser, som er forskellige fra kappetykkelsen for den afprovede kappebeholder. Da varmeovergangstallene sandsynligvis vil afhænge strorkt af kappetykkelsen, må beregningsresultaterne med kappetykkelser, som afiviger stærkt fra kappetykkelsen af standardbeholderen, tages med forbehold.

Figur 31. Anłeggets ådige netoydelse og tilskud som funktion af kappens tykkelse.

5it Beholdermateriale

Som nævat i tabel 12 er beregningerne genaemfort med St 37.2 som beholdermateriale. Desuden er der gennemfor en beregning, hoor rustrit stăl er benyttet som beholdermateriale. Beregningerne viser, at ved at erstatte stàlbeholderen med en rustri stäbeholder kan den årlige netroydelse forpges med ca. 4% fra $1212 \mathrm{kWh} / \mathrm{ar}$ til $1262 \mathrm{kWh} / \mathrm{ar}, ~ o g$ anlæggers tilskud forøges fa 7560 kr . til 7810 kr . Arsagen til forggelserne er, at den gunstige temperturlagdeling opreholdes bedre i en rustfri stålbeholder end i en stålbeholder, idet varmeledaingsevnen for rustrit stal er betydelig mindre end varmeledningsevnen for stål.

5.14 Lagerisolering

Jo større varmelagerets isoleringstykkelse er, des større bliver anlæggets ydelse og tilskud. Dette fremgår af figur 32.

Figur 32. Anlaggets årlige nctoydelse og tilskud som funktion af lagerets isoleringstykkelse.

5.15 Vamelagerets kuhdebroer

Figur 33 viser hvorledes varmelagerets kuldebroers størrelse og placering påvirker anlægsydelsen og anlæggets tilskud.

Storelsen af en kuldebro placeret i toppen af varmelageret har afgorende betydning for anlaggets ydelse og tilskud. Derfor bør varmetabet fra toppen af tanken reduceres til et minimum. Dette sikres ved en grudig isolering af beholderens dverste del uden nogen form for gennembrydning af isoleringen. Det kan anbefales at placere alle rortilslutninger i den nederste del af beholderen.

Storrelsen af en kuldebro placeret i bunden af varmelageret har mindre betydning for anlæggets ydelse og tilskud. Jo større denne kuldebro er, des større er ydelsen og tilskuddet. Arsagen hertil er at temperaturen i bunden af tanken istorstedelen af året er lavere end temperaturen af lagerets omgivelser.

Som det fremgar af figuren er det med de nuværende tilskudsregler vigtigt, at fordelingen af varmetabskoefficienten på lagerets overflader kendes med rimelig nøjagtighed. Navnlig hvis varmetabskoefficienten for varmelageret er stor, har disse forhold afgørende betydning. Det anbefales derfor at den i [8] foreslảede prøvemetode til bestemmelse af fordelingen af varmetabskoefficienten benyttes i forbindelse med afprovningen af markedsførte varmelagre.

Figur 33. Anlæggets årlige nettoydelse og tilskud som funktion af størrelsen og placeringen af varmelagerets kuldebro.

516 Volunenstrom isolingerkredsen

Figur 34 viser hvorledes volumenstrømmen i solfangerkredsen påvirker anlægsydelsen og anleggets tilskud. Det ses at der findes en optimal volumenstrom pă ca. $0,15 \mathrm{l} / \mathrm{min} \mathrm{m}^{2}$ solfanger. Både hvis volumenstrømmen gøres større og mindre reduceres ydelsen. Navnlig vil for små volumenstromme reducere ydelsen markant.

De i beregningerne benyttede varmeovergangstal for varmetransporten mellem kappen og varmtvandsbeholderen er bestemt ved forsøg med én standard kappebeholder og en volumenstrøm, som er tæt på referenceanlæggets volumenstrøm. De herved bestemte varmeovergangstal er i beregningerne også benyttet for andre volumenstrømme.

Da varmeovergangstallene sandsynligvis vil afhænge stærkt af volumenstrømmen, må beregningsresultaterne med volumenstrømme, som afviger stærkt fra referenceanlæggets volumenstrom, tages med forbehold.

Figur 34. Anlæggets årlige nettoydelse og tilskud som funktion af volumenstrommen i solfangerkredsen.

517 Styresystemets stardifierens

Figur 35 viser hvorledes differenstermostatstyringens startdifferens påvirker anlæggets ydelse og tilskud. Største ydelse og tilskud opnås når starttemperaturdifferensen er 10 K . Dog påvirkes ydelse og tilskud ikke nævnevardigt af startdifferensen så længe startdifferensen er mindre end 30 K .

Figur 35. Anlæggets årlige nettoydelse som funktion af styresystemets startdifferens.

5ol Sturesystemets stonninerems

På figur 36 ses , at differenstermostatstyringens stopdifferens næsten ikke påvirker anlaggets ydelse og tilskud.

Figur 36. Anleggets arlige netoydelse og tilsku som funkton af styresystemets stopdifferens.

5.12 Solfangerkredsens kuldebroer

Figur 37 viser hvorledes solfangerkredsens kuldebroers størrelse og placering påvirker anlægsydelsen og anlæggets tilskud. Kuldebroen er placeret indenførs enten lige før eller lige efter varmelageret. Størstedelen af solvarmeanlæggets hjælpeudstyr er jo normalt placeret i solfangerkredsen i forbindelse med varmelageret. Af figuren ses, at det er mest hensigtsmæssigt at placere alt hjælpeudstyret i solfangerkredsen umiddelbart efter varmelageret.

Figur 37. Anlæggets årlige nettoydelse og tilskud som funktion af størrelse og placering af solfangerkredsens kuldebroer.

5.20 Varmivandsforbrugets storelse

Den årlige anlægsydelse er på figur 38 vist som funktion af det daglige varmtvandsforbrug. Jo storre varmivandsforbruget er, des storre er ydelsen.

Figur 38. Anlæggets årlige nettoydelse som funktion af varmtvandsforbrugets størrelse.

6. Konklusion

Der er gennemført sável eksperimentelt som teoretisk arbejde med de højtydende og attraktive low flow solvarmeanlæg.

Der er foretaget detaljerede målinger for et lille low flow solvarmeanlxg til brugsvandsopvarmning, og en matematisk model for små low flow anlæg er valideret ved hjælp af målingerne.

Modellen er særdeles velegnet i forbindelse med beregning af ydelsen af små low flow solvarmeanlæg. Dog er der behov for at forbedre en enkelt del af modellen, nemlig selve solfangermodellen. Det anbefales derfor at iværksætte såvel teoretisk som eksperimentelt arbejde med forskellige solfangertyper for at klarlægge hvorledes de termiske forbold for solfangere med små volumenstrømme bedst simuleres.

I denne forbindelse bor det nævnes at der også er behov for at udvikle provemetoder - for solfangere, varmelagre og for komplette anlæg - som er velegnede tillow flow anlæg. Det er nemlig ikke muligt med de nuvarende prøvemetoder at bestemme de karakteristika, som er nodvendige input til low flow modellen.

Det blev klarlagt, hvorledes den beregnede ydelse for små low flow anlag påvirkes af variationer i bestrålingsstyrken forårsaget af skyer. Der blev således udarbejdet en figur, som angiver hvor stor den ekstra årlige ydelse for low flow anlæg er, når der tages hensyn til variationeme i bestrålingsstyrken istedet for at benytte referenceàrets vejrdata, som jo er gennemsnitige verdier for hver time igennem året. Navnlig for low flow anlæg med små dakningsgrader og med små forhold mellem varmtvandsforbrug og solfangerareal er ekstraydelsen forårsaget af variationerne af stor betydning. Skal det være muligt direkte at beregne ydelsen for sådanne anlæg med modellen, er der behov for et nyt referenceår med mindre tidsskridt for vejrdataene.

Beregninger viste at low flow anlæg yder mere end traditionelle solvarmeanlag. Jo mindre dækningsgraden for anlægget er, og jo mindre forholdet mellem varmtvandsforbrug og solfangerareal er, des større er merydelsen for low flow anlæg i forhold til traditionelle anleg.

Endvidere viste målinger, at beregningerne undervurderer merydelsen for low flow ankeg. Forklaringen herpå er sandsynligvis, at de eksisterende matematiske modeller for de traditionelle solvarmeanlæg overvurderer anlægsydelsen. Modellerne tager nemlig ikke hensyn til den uhensigtsmæssige opblanding, som forekommer i toppen af det traditionelle anlægs varmelager mellem varmt vand opvarmet af den supplerende energikilde og koldere vand, som sattes i bevagelse når det opvarmes af solfangeren.

Der er altså behov for at iværksætte arbejde for at udvikle en lagermodel, som kan tage deme opblanding i beregning. Før denne model er udviklet, er det ikke muligt at beregne ydelsen for traditionelle anlæg og merydelsen for low flow anlæg korrekt.

Med den validerede matematiske model for low flow anlæg er der gennemfort en reake beregninger med forskellige anlagsudformninger. På basis af disse beregninger er der udarbejdet figurer, som angiver den årlige ydelse for forskelligt udformede low flow solvarmeanlæg. I denne forbindelse skal det fremhæves, at det er af særlig stor betydning for en korrekt bestemmelse af anlægsydelsen at kende fordelingen af varmelagerets varmetabskoefficient på lagerets overflader med rimelig nøjagtighed. Det er derfor vigtigt at tilrettelxgge afprovningen af varmelagre således, at denne størrelse bestemmes.

Endelig er der behov for eksperimentelt at undersøge, bvorledes kappetykkelsen og volumenstrømmen påvirker de varmeoverforingsmæssige forhold for kappebeholdere, si̊ledes at det kan klarlægges, hvorledes kappetykkelse og volumenstrøm påvirker anlægsydelsen.

Referencer

[1] "Fordele ved små volumenstrømme i solvarmeanlog. Måling på 3 små brugsvandsanlag". Simon Furbo. Laboratoriet for Varmeisolering. Meddelelse nr. 188, december 1987.
[2] "Højtydendesolvarmeanlægmedsmå volumenstrømme. Eksperimentelle undersøgelser". Simon Furbo. Laboratoriet for Varmeisolering. Meddelelse nr. 205, marts 1989.
[3] "Små low flow solvarmeanlæg til brugsvandsopvarmning - status". Simon Furbo. Laboratoriet for Varmeisolering. Rapport nr. 90-7, oktober 1990.
[4] "Højtydende solvarmeanlæg med små volumenstrømme. Teoretiske undersøgelser". Peter Berg. Laboratoriet for Varmeisolering. Meddelelse nr. 209, marts 1990.
[5] "Effektivitetsprøvning af solfanger foretaget for Prøvestationen for Solvarmeanlæg. Fabrikat: Aidt Miliø ApS". S. Svendsen, Laboratoriet for Varmeisolering, november 1988.
[6] "Afprøvning af lagertank til solvarmeanlæg AIDT Model 300". Ivan Katic. Prøvestationen for Solenergi, maj 1991.
[7] Oplysninger fra Aart de Geus, TNO, Holland, juni 1991.
[8] "Final report on the activities of the Solar Storage Testing Group. Final document. Volume II". H. Visser and H.A.L. van Dijk, TNO, Holland. December 1989.

[^0]: Tabel 10. Beregnede siørelser for perioden $22.10 .1990-26.10 .1990$ med forskellige lag i solfangermodellen og forskellige tidsskridt for vejrata. De iafsnit 3.4 beregnede størelse er fremhævet.

