VINDUER OG SOLV AEGGE MED
 MONOLITISK SILICA AEROGEL

Karsten Ingerslev Jensen

VINDUER OG SOLV AEGGE MED MONOLITISK SILICA AEROGEL

Karsten Ingerslev Jensen

FORORD

Denne rapport har to funktioner. Den er afslutningen på mit licentiatarbejde, som er udfort i årene 1989-1991 ved Laboratoriet for Varmeisolering, Danmarks Tekniske Hajskole, under vejledning af lektor Svend Svendsen. Desuden er den slutrapport på LfV's delprojekt af fællesprojektet: "Transparente isoleringsmaterialers fremstilling og anvendelse i bygninger", journalnr.: 1213/88-1. Projektet er finansieret af "Energiforskningsprogram 88, område 5: Energianvendelse i bygninger" under Energiministeriet.

Delresultater fra projektet er beskrevet i et paper: "Transparent cover based on evacuated monolithic silica aerogel". Dette paper vil blive præsenteret på ISES 1991 Solar World Congress i Denver, Colorado, USA, i august 1991, og er medtaget som appendiks 2.

Endelig vil jeg gerne takke Svend Svendsen for vejledning, Bodil Fauerskov for skrivning af rapporten og Martin Dandanell for håndværkerassistance. Desuden tak til en stor del af det gvrige personale ved Laboratoriet for hjælp på forskellige stadier af forlabet.
Resumé 1
Summary 2

1. Indledning 3
1.1 Projektets formål 3
2. Baggrund for projektet 5
2.1 Passive solvarmesystemer 5
2.2 Transparente isoleringsmaterialer (TIM) 6
2.3 Om aerogel 7
3. Vinduer og dæklag med aerogel 9
3.1 Opbygning 9
3.2 Soltransmittans 10
3.3 Varmetab 11
3.3.1 Varmetransport i aerogel 11
3.3.2 Kuldebroeffekt af kantforsegling 16
4. Prototyper 17
4.1 Kantudformning 17
4.1.1 Kantdesign I 17
4.1.2 Kantdesign II 18
4.1.3 Kantdesign III 19
4.1.4 Kantdesign IV 19
4.2 Fremstilling 20
4.3 Generelle erfaringer 22
5. Eksperimentelle undersggelser 25
5.1 Forsegsopstillinger og måleprincipper 25
5.2 Forsegsresultater 32
6. Teoretiske undersogelser 41
6.1 Beregning af U-værdi 41
6.2 Sammenligning af måle og beregnede værdier 45
6.3 Forslag til ramme- og karmsystemer 49
7. Beregnet udbytte 53
7.1 Forudsætninger 53
7.2 Beregningsresultater 55
7.3 Dagslysvægge 58
7.4 Fremtidige teknikker 60
8. Holdbarhed og gkonomi 61
8.1 Holdbarhed 61
8.2 $\emptyset \mathrm{k}$ onomi 61
Konklusion 65
Referencer 67
Symbolliste 69
Figurliste 73
Tabelliste 75
Licentiatafhandlinger fra Laboratoriet for Varmeisolering 77
Appendiks 1 79
Appendiks 2 81

RESUMÉ

Rapporten beskriver et eksperimentelt og teoretisk arbejde vedrorende anvendelsen af evakueret monolitisk silica aerogel som transparent isoleringsmateriale i ruder til vinduer og i dæklag til solvægge.

Modeller til bestemmelse af varmetransporten gennem aerogel er omtalt, og formler til samme er vist. På grund af materialets egenskaber må det beskyttes i en termorudelignende konstruktion. Fire prototyper i storrelser op til $1 \mathrm{~m} \times 1 \mathrm{~m}$ er fremstillet med forskellige kantforseglinger, og de er undersagt teoretisk og eksperimentelt. Specielt kantforseglingens kuldebrovirkning, hvor resultaterne fra en analytisk model og målinger stemmer godt overens. Kuldebroeffekten kan være meget betydelig i denne sammenhæng. Den sidste og største prototype blev forsynet med karm, og målinger blev foretaget i en guarded hot-box opstilling. Desuden er der udført simuleringer på årsbasis med aerogelkonstruktionen anvendt dels som dæklag i solvægge på en ældre lejlighed og på et nyt lavenergihus, og dels som ruder i vinduer i et almindeligt parcelhus. En aerogelrude forventes at få en total varmetabskoefficient på ca. 0,5 Wm-2K-1 og en soltransmittans på op til 75%. Da silica aerogels nuværende udsynskvalitet ikke er høj nok til at erstatte traditionelle vinduer, er der foretaget beregninger på aerogelkonstruktionens energibalance ved anvendelse som en dagslysvag, der er orienteret mod nord. Sluttelig er der foretaget beregninger på aerogelkonstruktionens højst tilladelige pris, hvis en anvendelse som rude eller solvægsdæklag skal være privatøkonomisk lønsom, og det viser sig, at en aerogelrude kan koste op til $2700 \mathrm{kr} . / \mathrm{m}^{2}$ betinget af energibesparelsen.

SUMMARY

Windows and solar walls with monolithic silica aerogel

This report deals with the experimental and theoretical work concerning application of evacuated monolithic silica aerogel as a transparent insulating material for window panes and covers for solar walls.

Models for determination of the heat transfer through the aerogel have been mentioned and the relevant equations given. Because of the nature of the material it will have to be protected in a construction similar to that of an insulating glazing. Four prototypes of up to $1 \mathrm{~m} \times 1 \mathrm{~m}$ have been made with 4 different kinds of sealing of the edge, and they have been investigated both theoretically and experimentally with special interest to the cold bridge effect of the sealing of the edge for which the results of an analytical model and measurements correspond very well. The cold bridge effect can be important in this context. For the last and biggest prototype a frame was mounted and measurements were made in a guarded hot-box. Furthermore, simulations have been made for a period of 12 months of the aerogel construction both used as a cover for solar walls for an old appartement and a new low-energy house and as windows in an ordinary house. The expected total heat loss of an insulated glazing window with aerogel will be about $0.5 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ and the solar transmittance will be 75%. As the visibility through an aerogel window is not good enough for the time being to replace ordinary windows, calculations have been made of the energy balance of the aerogel window when used as a daylight wall facing north. Finally an estimate has been made of the price of the aerogel window when used in a window or as a cover for a solar wall. The result is that the price of an aerogel window may be as high as $2700 \mathrm{dkr} . / \mathrm{m}^{2}$ to be profitable for private houses dependent of the energy saving.

1. INDLLEDNING

Som falge af de sidste to årtiers skiftende energikriser og senest de miljørelaterede betænkeligheder ved anvendelse af fossile brendstoffer er der både talt meget om - og gjort en del for at oge udnyttelsen af solvarme. Gennembruddet ser imidlertid ud til at lade vente på sig. Årsagen hertil kan ses som værende af økonomisk art. Grunden er givetvis, at anvendelse af solvarme ikke er okonomisk optimal, i modsat fald ville valget være oplagt.

En måde til at forbedre økonomien i aktive og passive solvarmesystemer kan være at øge udnyttelsesgraden af den indfaldende solstråling. En undersøgelse af en almindelig solfanger vil vise, at det kritiske sted i termisk henseende er det transparente areal, da siderne og bagsiden kan beklædes med en rimelig mængde traditionelt isoleringemateriale. Dæklaget vil derimod være det kritiske sted idet det indeholder en konflikt mellem ønskerne om så hoj soltransmittans som mulig og så lille varmetab som muligt. De måder, hvorpå varmetabet reduceres gennem dæklaget, bevirker typisk, at soltransmittansen reduceres.

Denne modsætning vil nu kunne loses et langt stykke hen ad vejen ved anvendelse af materialer, der under ét betegnes som transparente isoleringsmaterialer (TIM). Der er sket en stor udvikling af disse materialer i lobet af firserne, og det mest spændende materiale ser ud til at være monolitisk silica aerogel. Silica Aerogel er et finporet, hajporøst kvartsmateriale, som pga. opbygningen er gennemsigtig. Soltransmittansen er haj, og ved et groft vakuum (ca. 90%) er varmeledningsevnen usædvanlig lille. Det ser ud til at være et virkelig lovende materiale til i hvert fald delvist at lukke det termiske hul i det transparente areal.

I håb om at age læsevenligheden vil navnet monolitisk silica aerogel her blive benæunt aerogel. I tilfælde hvor den granulerede form af silica aerogel optræder, vil betegnelsen dog blive skrevet fuldt ud for at undgå misforståelser.

1. 1 Projektets formål

Projektet omhandler brugen af monolitisk silica aerogel som transparent isolering til solvarmeformål. Inden for dette brede felt er der lavet en afgrænsning til området termoruder og solvægge. Konstruktioner hertil er, eksperimentelt og teoretisk, undersøgt mht. varmetab. Specielt kuldebroerne kan være meget kritiske pga. aerogelens store termiske isolans. Der er opbygget prototyper i flere storrelser, så der har været mulighed for at undersøge kuldebroer i realistiske størrelser. Når den højisolerende komponent skal monteres, det være sig som rude eller dæklag, vil eksisterende ramme-/karmsystemer have en for ringe isolans. Denne er måske op til flere gange lavere end for det transparente areal. Der er derfor teoretisk udarbejdet og undersegt forslag til ramme-/karmsystemer. Ved hjælp af EDB-simuleringer er der givet et bud på det termiske udbytte af brugen af aerogel i ruder og dæklag. Sluttelig vurderes holdbarhed og økonomi.

2. BAGGRUND FOR PRONEKTET

2.1 Passive solvarmesystemer

Solvarmesystemer deles som regel op ito hovedgrupper, nemlig aktive og passive systemer. De aktive systemer er indrettet med mekaniske og elektroniske komponenter til regulering og transport af det varmebærende medium. Derimod er passive systemer karakteriseret ved at varmetransporten kun foregår ved naturlige processer så som konvektion, ledning og evt. stråling. Denne opdeling er dog ikke skarpere, end at den overskrides, hvorved man får et såkaldt "hybridt solvarmesystem". Det kan fx være en solvæg med elektronisk styret solafskærmning.

I gruppen af passive solvarmesystemer kan der skelnes mellem tre hovedtyper: 1) vinduer, 2) glastilbygninger og 3) solvægge.

Vinduer tilfører bygningen solvarme ved transmission af solstråling som direkte tilskud. Det giver primært et bidrag til dækning af det øjeblikkelige varmebehov. En bevidst udnyttelse af det direkte tilskud kan vare, at bygningens vinduer fortrinsvis placeres sydvendt. Samtidig har rummene bag vinduerne stor termisk masse, hvorved svingningerne i rumtemperaturen dæmpes.

Glastilbygninger er kendetegnet ved, at klimaskarmen stort set bestar af ruder, fx enkelt- eller to-lags. Den termiske masse kan være et betongulv og en tung væg, der adskiller rummet fra resten af bygningen. Rummet bør ikke tilføres varme fra andre kilder ud over evt. transmissionstab fra tilstødende rum, således at det faktisk kun er den tilførte solenergi, der benyttes. Rummet kan benyttes til ophold en stor del af året. Derved kan den samlede bygning ses som delvis zoneopdelt.

En solvæg er en ydervæg, hvor en del af den indfaldende solstråling nyttiggares i det bagvedliggende rum. Yderst er der placeret et transparent dæklagssystem foran en absorber. Denne er typisk overfladen af en sortmalet mur. Den absorberede solstråling lagres i muren og kan fx ved ledning transporteres til det bagvedliggende rum. Tidsforskellen mellem solindfaldet og rummets varmetilførsel afhænger af murens udformning.

I dette projekt behandles glastilbygninger ikke specielt i modsætning til vinduer og solvægge. Dog kan den undersøgte aerogelrudeudformning også benyttes til glastilbygninger. Traditionelt kan ruder og dæklag, anvendt i de ovennævnte tre hovedtyper, karakteriseres ved en stor soltransmittans og samtidig en ringe isolans i forhold til resten af klimaskærmen. For at bøde på den ringe isolans er der benyttet flere teknikker. Forst og fremmest ved at bruge flere lag glas, og endvidere lavemissionsbelægninger og gasfyldninger. Problemet med de to første er, at soltransmittansen reduceres, til tider meget. En anden vej er de såkaldte transparente isoleringsmaterialer, på engelsk forkortet til TIM.

2.2 Transparente isoleringsmaterialer (TIM)

Denne samling af materialer kan karakteriseres ved, at den traditionelle modsætning mellem høj soltransmittans og stor termisk isolans sages overvundet. Ikke alle materialer er relativt nye, nogle har været fremme i mange år, men det nye ligger mere i grupperingen og fokusering på en målrettet anvendelse af disse materialer. En af drivkrafterne inden for TrM-området er Fraunhofer Institut für Solare Energiesysteme i Freiburg, Tyskland, hvor der har været afholdt flere workshops om emnet ($/ 1 /, / 2 /$). Derfra er der foreslàet en opdeling af TIM i fire hovedtyper (/3/): 1) Absorber parallel, 2) absorber normal, 3) cellestruktur og 4) homogen (se figur 2.1).

Figur 2.1 De fire hovedtyper af transparente isoleringsmaterialer. 1) absorber parallel, 2) absorber normal, 3) cellestruktur og 4) homogen

Den forste hovedtype, absorber parallel, dækker bl.a. flere lag glas eller plastfilm samt glas med lavemissionsbelægning. Stor optisk reflektion begrænser antallet af lag. Den "absorber normale" type omfatter fx honeycomb- og kapillarmaterialer (Arel). Her kan de optiske tab reduceres, idet den indkommende stråling bliver reflekteret og transmitteret af materialet indad. Det optiske tab er begranset til lidt spredning og absorption i det faste stof. En kombination af de to forste typer resulterer i den tredie type eller struktur. Det kan være ribbeplader, acrylskum eller flerlags bolget celluloseacetatfolie (Isoflex). Den sidste type, homogene, ligner type tre, men de optiske egenskaber er resultatet af andre fysiske mekanismer, nemlig absorption og spredning grundet Rayleigh-effekter. Her findes aerogelerne både i den monolitiske og i den granulerede udgave. For sidstnævntes vedkommende er der mere tale om et kvasihomogent materiale, da det er kugler i storrelsen 1-10 mm af silica aerogel.

Ud over at ovennævnte inddeling kan være for firkantet både for eksisterende og fremtidige materialer, kan selve betegnelsen virke misvisende om ikke andet så her i landet. Ved transparent forstås normalt gennemsigtigt, dvs. uforstyrret udsyn dog måske med en farvetoning. Dette er kun tilfældet for klare flerlags glas eller plastfilm (type 1) og delvist for monolitisk silica aerogel (type 4). For hovedparten af materialerne i de 4 hovedtyper er udsyn praktisk taget umulig. Derfor ville betegnelsen gennemskinnelig eller translucent nok være mere korrekt. Herved vil den transparente gruppe også være dækket. En skelnen mellem transparent og
translucent vil selvfølgelig kun være påkrævet, når der er tale om vinduer, hvor der kræves fuldt udsyn. Idet betegnelsen transparent er den, der benyttes internationalt, har det nok lange udsigter at få indført den mere korrekte betegnelse translucent.

2.3 Om aerogel

Silica aerogel er et materiale, der er meget porrst og skort. Der er to forskellige udgaver, nemlig den monolitiske og den granulerede eller kugleformede. Det faste stof består næsten 100% rent af silicadioxid, også kendt som kvarts. Fremstillingen er forskellig for de to former. Den monolitiske silica aerogel begynder med en sol-gel-proces, heri opbygges silicadioxid molekyler, som går sammen og danner klynger. Man mener, at disse kædes sammen, grener sig ud og får kontakt med andre kæder. Således er der dannet en gel bestående af skelettet og alkohol. Fjernelsen af alkohol sker enten ved superkritisk tørring eller ved en substitution med kuldioxid, som så fjernes ved superkritisk torring. Denne er nødvendig, idet gelstrukturen ellers ville ødelægges pga. overfladespændiger i porerne. For den granulerede type sker fremstillingen ved at sprojte kemikalierne ind i en beholder, hvor kugleme dannes, vaskes og torres superkritisk. Sidstnævnte fremstillingsproces er enklere og billigere.

Fremstilling af silica aerogel i de to former sker pa pilot- og forsogsanlæg hovedsagelig tre steder i verden. Airglass AB i Sverige fremstiller skiver i storrelser op til 60 cm x 60 cm . Den superkritiske torring fjerner alkohol fra gelen. På Lawrence Berkley Laboratoriet i Californien fremstilles skiver med en diameter på op til et par og tyve centimeter. Her er det kuldioxid, der fjernes superkritisk. Endelig fremstiller BASF i Tyskland silica aerogel kugler med diametre op til ca. 10 mm .

Aerogel er som tidligere nævnt porast. Det kan fremstilles med en porøsitet i området fra 86% til 97% svarende til en densitet i området $70-300 \mathrm{~kg} \mathrm{~m}^{-3}$. For den granulerede type er densiteten $200 \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{og}$ afhængig af kornstørrelsesfordelingen er bulkdensiteten ca. $140 \mathrm{~kg} \mathrm{~m}^{-3}$. Kernerne er typisk $4-7 \mathrm{~nm}$ store og porediameteren er typisk $10-20 \mathrm{~nm}$. Materialet har en trykbrudstyrke på ca. 3 bar, hvorimod trækbrudstyrken er forsvindende. Ud over trak kan aerogel også ødelægges af flydende vand, hvis nedbrydende effekt skyldes overfladespændinger i porerne. Materialets kontakflade med vand bliver hvid og dermed uigennemsigtig. Almindelig rumlufts fugtindhold ser ikke ud til at påvirke materialet irreversibelt. Det kan tilfojes, at for den granulerede silica aerogel har BASF udviklet en delvis hydrofobisk udgave. Holdbarhed og levetid for denne foreligger der ikke i øjeblikket oplysninger om.

For silica aerogel er de to nggleegenskaber soltransmittans og termisk isolans. Med hensyn til den monolitiske form behandles disse egenskaber nærmere i kapitel 3, så her bliver begge udgaver kun kort skitseret. Soltransmittansen for monolitisk silica aerogel er her på Laboratoriet for Varmeisolering målt til 90% for en tykkelse på 2 cm . For granuleret silica aerogel er soltransmittansen ikke så entydig, da den afhænger af fx kornstørrelsesfordelingen, kornmiddeldiameteren etc. Men en typisk værdi for et lag alene på 1 cm er ca. 80%. Et materiales isoleringsevne karakteriseres normalt ved en varmeledningsevne, λ 。 Det er nok ikke helt korrekt at
gøre det samme med silica aerogel, fordi en varmeledningsevne her ikke kun afhænger af materialet men fx også af begransningsfladernes emissivitet, og derfor betegnes varmeledningsevnen ofte som tilsyneladende. I det byggetekniske temperaturområde kan man dog for det meste med sindsro benytte en fast værdi svarende til λ_{10}-værdien for traditionelle isoleringsmaterialer. Monolitisk silica aerogel med en densitet på $100 \mathrm{~kg} \mathrm{~m}^{-3}$ vil have en λ-værdi på $20 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$, og granuleret silica aerogels λ-værdi er $23 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$. Hvis aerogelen evakueres sailedes, at der ikke sker varmeledning gennem luften men kun gennem skelettet samt varmestråling, reduceres λ-værdien betragteligt. For monolitisk silica aerogel med densiteter på $200 \mathrm{~kg} \mathrm{~m}^{-3}, 150 \mathrm{~kg} \mathrm{~m}{ }^{-3}$ og $100 \mathrm{~kg} \mathrm{~m}^{-3}$ vil de tilsvarende λ-værdier være $12 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}, 10 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$ og $8 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$. For at eliminere luftedning skal luftrykket være under ca. 100 mbar, hvilket er betinget af porediametre i materialet. Det kritiske luftryk for granuleret silica aerogel er ca. $0,1 \mathrm{mbar}, \mathrm{og}$ det skyldes de hulrum, der bliver mellem de enkelte aerogelkugler. Dette langt lavere tryk og dermed mere besværlige forsegling i forhold til den monolitiske type er nok årsagen til, at der ikke rigtig er set forslag til anvendelser af evakueret granuleret silica aerogel.

Ved brug af monolitisk silica aerogel i vinduer er den nuværende kvalitet en hindring. Materialet udviser effekt af Rayleigh-spredning. Det kommer af inhomogeniteter i materialet. Disse er mindre end det synlige lys' belgelængder men afbojer de korteste belgelængder mest. Resultatet er, at udsynet gennem materialet er gulfarvet mod en lys baggrund og blåfarvet mod en mørk baggrund. Der er delte meninger om, hvorvidt det er muligt at fremstille monolitisk silica aerogel, som ikke udviser effekter af Rayleigh-spredning, så det må tiden vise. Endvidere kan der forekomme sløring af udsynet. Det ser ud til at afhænge of forholdene, når gelen dannes. Det er tilsyneladende relativt simpelt at slippe af med dette. Farvningen af udsynet vil have betydning for udbredelsen af aerogelvinduer. Ved den nuværende kvalitet vil anvendelsen nok være begrænset til såkaldte "sekundære vinduer". Hermed menes vinduer, hvor der ikke kræves frit udsyn fx i badeværelser, ovenlys etc. Det er således klart, at en optisk kvalitet af aerogel på niveau med almindeligt vinduesglas er onskelig.

Den for tiden mest udbredte anvendelse af aerogel er i Cerenkov-detektorer. Det er et apparatur, som benyttes til detektering af elementarpartikler, som er accelereret op til meget haje hastigheder. En anden laboratorieanvendelse er i fussionsforskningen. Her bruges aerogel til at holde sammen på brint i et magnetfelt samtidig med, at det beskydes med store lasereffekter. Der er endvidere tanker om aerogel som katalysatorbarer, idet dets indre overflade er i størrelsesordenem $600-800 \mathrm{~m}^{2} / \mathrm{g}$. Det nok mest kuriase forslag hidtil er at bruge knust aerogel til termitbekæmpelse. Forholdet skulle være det, at termitter ånder gennem huller i skjoldet. Det område er belagt med et lag vand. Da aerogel er strrkt vandsugende, skal det knuste materiale drysses ud over termitteme, som derved får udtørret åndedrætsorganeme og kvæles. Det skulle ikke vare muligt for termitterne at udvikle resistens over for denne metode, som det er tilfældet med de kemiske systemer. Desuden vil affaldet fra metoden være kvarts, som i forvejen findes i store mængder i naturen. Teknikken vil altså vare helt økologisk - helt i tidens ånd.

3. VINDUER OG DAEKLAG MED AEROGEL

3.1 Opbygning

Aerogel i den monolitiske udgave har, som tidligere nævnt, nogle egenskaber, der bliver dimensionerende, når materialet skal tages i praktisk anvendelse. Det drejer sig om den meget lille trækbrudstyrke og følsomheden over for flydende vand. Disse kan overkommes ved at indeslutte aerogelen i en termorudelignende konstruktion. Materialet er herved mekanisk beskyttet af glas på hver side, som sammen med en kantforsegling giver vandtatheden. Kantforseglingen skal ud over den umiddelbare vandtæthed selvfolgelig også være tæt over for vanddamp. Det er fordi, det kan tænkes, at luffugtigheden i konstruktionen bliver så høj, at der i nattetimerne kan ske kondensation på det kolde glas imod aerogelen, som derved nedbrydes.

Forholdet med kantforseglingens tæthed over for vand og fugtig luft giver sig selv, da aerogelen her skal være evakueret. Fordelene er herved flere, bl.a. vil komponenten blive et stift sandwichelement, da aerogelen virker som afstandsmateriale over hele arealet. Herved bliver aerogel udsat for en slags forspænding og er mindre udsat for ødelæggende trækspændinger. Kantforseglingen er mindre mekanisk belastet end i en almindelig termorude, som normalt består af et aluminiumprofil og fugemateriale, der både skal holde glassene sammen og fra hinanden. Det klares her af henholdsvis atmosfæretryk og aerogelen. Tilbage er alene funktionen som luftiætning, det medfører, at kantforseglingen kan raffineres, så den tilhørende kuldebrovirkning kan minimeres. Den helt store gevinst ved evakuering af aerogelen er en mere end halvering af varmetabskoefficientens centerværdi. For en rude med 20 mm aerogel, densitet lig $100 \mathrm{kgm}^{-3}$, betyder det en reduktion af varmetabskoefficientens centerværdi fra $0,85 \mathrm{Wm}^{-2 \mathrm{~K}}-1$ til 0,37 $\mathrm{Wm}^{-2 \mathrm{~K}}-1$. Endelig vil en evakuering af aerogelen have den fordel, at glassene ikke bøjer ud pga. den indesparrede lufts udvidelse ved temperaturstigninger. Derimod holdes glassene i deres plan af aerogelen og atmosfæretrykket. Herved bliver fugematerialet i kantforseglingen udsat for at optage mindre bevægelser vinkelret på rudens plan, end hvis aerogelen ikke evakueres.

Princippet i kantforseglingen kan valges ud fra to forskellige hovedmuligheder. Den forste er at lave en fuldstændig hermetisk forsegling, og så er valget begranset til en kantforsegling helt af glas eller metal. Det betyder, at der skal laves glas-glas- eller glas-metal-samlinger i kanten. Disse er omstændelige og besværlige at udfore og måske bedre, end det kræves ved det aktuelle vakuum. En anden mulighed er at anvende en kantforsegling med en begrænset utæthed. Det kan ske ved, at aerogelen evakueres ned til fx 1 mbar. Luftrrykket i aerogelen vil derefter stige i lobet af konstruktionens levetid, fx 20 år, til ca. 100 mbar pga. kantforseglingens utæthed. Det åbner for andre materialer end glas og metal såsom plast, fugemasser etc. Dog opstår der et problem ved dimensionering af kantforseglingens lufttæthed, og da der mangler værdier for de forskellige materialers luftræthed. Det har faktisk kun været muligt at fremskaffe tal for ét materiale nemlig butylfugemasse.

Kantforseglingen er her valgt udført med en begrænset utæthed. Opbygningen af kantforseglingen er et rustfrit stålprofil, som forbindes til de to glas med butylfugemasse, se fx figur 4.1, s. 17. Det betyder, at utætheden er begrænset til fugen og med kendskab til materialets specifikke luftrethed, kan fugen dimensioneres til en levetid for konstruktionen mht. porelufttryk.

For en 1 mx 1 m konstruktion med 20 mm aerogel er der i/4/ beregnet dimensionerne for butylfugerne ved et begyndelsesluftryk i aerogelen på 1. mbar og et slutluftryk på 100 mbar , da det er niveauet, hvor der begynder at optrade varmeledning i aerogelens poreluft. Resultatet er, at for en fugebredde på 10 mm og en samlet tykkelse for de to fuger på $2,5 \mathrm{~mm}$ vil trykforggelsen tage mere end 30 år. For disse fugedimensioner vil tidsrummet afhænge af konstruktionens areal. Fx vil det tage ca. 37 år, inden den samme trykstigning er sket ved et areal på 1 mx 2 m .

Den anden del af kantforseglingen er, som nævnt, valgt som et rustrit stålprofil. Da utæetheden er begrænset til fugerne, skal materialet være glas eller metal, da disse materialer kan regnes for at være vanddamp- og lufttætte pà betingelse af, at de er fejl- og porefri. Glas er valgt fra, fordi trakbrudstyrken er lille, og fordi det er besværligt at udforme et fornuftigt profil i termisk henseende og mht. fugeme. Af metallerne har rustfrit stål den laveste varmeledningsevne og samtidig en termisk udvidelseskoefficient, der er tret på den for glas. Det sidste har betydning for højere temperaturer, idet der ellers kan optrade store forskelle mellem udvidelseme af glas og kantprofil. Mht. den termiske udvidelseskoefficient for aerogel, anses den for at vare omtrent som for glas, men det ser ikke ud til at være undersøgt til bunds på nuvarende tidspunkt.

Udformningen af kantforseglingen giver mulighed for at optage i hvert fald noget af den termisk betingede differensudvidelse mellem de to glas. Samtidig vil anvendelsen af butyl give en begrænsning på arbejdstemperaturen på op til $80-100^{\circ} \mathrm{C}$. Andre fugemasser har meget hojere temperaturbestandighed, op til $200^{\circ} \mathrm{C}$, men generelt er forholdet det, at jo hajere temperaturbestandighed for en fugemasse desto mindre luftræthed, og butyl er den mest lufttrtte af fugemasserne.

3.2 Soltransmittans

Den solstråling, som rammer monolitisk silica aerogel, bliver dæmpet på forskellig vis i materialet. En stor del af den indfaldende stråling bliver transmitteret såkaldt direkte-direkte. En anden del bliver absorberet, og en del bliver spredt. Heraf bliver en del spredt bagud og en del fremad. Denne del er direkte-diffust transmitteret. Den overfladereflekterede del af strålingen er forsvindende, idet brydningsindekset for aerogelen er meget tat pà 1.

Måling og beregning af monolitisk silica aerogels soltransmittans har ikke fået samme opmærksomhed, som det er tilfældet med dets termiske isolans. Under IEA-samarbejdet Task 10 , subtask C, er der i de deltagende lande bl.a. målt soltransmittans pà aerogel. Dette var 12 mm tykt og fremstillet af Airglass AB . For en tykkelse pà 20 mm er der tilsynelandende kun to kilder. Den forste $/ 5 /$ går ud fra målinger af den spektrale transmittans for acrogel fremstillet på Lawrence Berkley Laboratories. På grundlag af disse målinger opstilles en model for soltransmittansen i aerogel. Et af resultateme er, at soltransmittansen, ved 20 mm tykkelse og normal indstro̊ling, er beregnet til 86%. Dette er for direkte-total-transmittans. Den anden kilde er, at der på Laboratoriet for Varmeisolering er foretaget målinger på flere aerogelskiver, ca. 20 mm tykke, fra Airglass AB . Målingerne er foretaget i solsimulatoren, og resultaterne blev en direk-te-total-soltransmittans på 90% i gennemsnit med afvigelser på op til 2%.

Soltransmittansen for aerogelkonstruktionen afhænger af de tre lag, aerogelen og 2 lag glas. Hvis der anvendes 4 mm tykke glas, som typisk kan have en ekstinktionskoefficient på $20 \mathrm{~m}^{-1}$, vil soltransmittansen for et enkelt lag være $84,5 \%$. Ud fra målingerne på aerogel fra Airglass AB , vil den resulterende soltransmittans for konstruktionen være ca. 64% ved en indfaldsvinkel på 0°. Hvis der i stedet blev benyttet såkaldt jernfrit glas, vil den samlede soltransmittans kunne gges betragteligt. Fx vil et 4 mm glas med en ekstinktionskoefficient på $2,5 \mathrm{~m}^{-1}$ have en soltransmittans på ca. 91%. Hermed opnås en soltransmittans for konstruktionen på ca. 75%. Det ses klart, at jemfrit glas er at foretrakke samtidig med, at det kan kobes i udlandet til en konkurrencedygtig pris.

3.3 Varmetab

Varmestrommene gennem en aerogelkonstruktion sker på lignende måde, som tilfældet er for en almindelig termorude. Der er først og fremmest en én-dimensional varmestrøm vinkelret på konstruktionens plan. I gængse ruder i dag er det den dominerende varmestrom, men det ser ud som om, det er den eneste, der tages alvorligt. Det bor nok ændres efterhånden, som rudemes isolans forbedres. Det skyldes kantforseglingens kuldebrovirkning, som øges i takt med, at isolansen mellem de to glas vokser. Desuden vil glassene virke som finner for kuldebroen og lede varmen til og fra kantforseglingen. Kuldebroens indflydelse på rudens varmetabskoefficient, U-værdi, afhænger af flere ting. Det er fx udformningen af selve kantkonstruktionen altsà isolansen deri. Desuden forholdet mellem rudens omkreds og areal, idet jo storre rude jo mindre forhold og dermed mindre effekt af kuldebrovirkningen. Samtidig med denne to-dimensionale varmestrom er der en tre-dimensional, som finder sted i hjømeme af ruden. Dens indflydelse på rudens totale U-værdi er i endnu højere grad bestemt af forholdet mellem rudens omkreds og areal, end det er tilfældet for den to-dimensionale varmestrom. Dog ser det ud til, at der normalt kan ses bort fra den tre-dimensionale varmestrom.

3.3.1 Vammetranspori i aerogel

Varmetransporten gennem aerogel kan foregå på tre måder: 1) ledning i skelettet, 2) ledning i poreluften og 3) stråling. Der kan ikke forekomme konvektion, da porediametrene er for små. Som tidligere nævnt, anvendes aerogelen her evakueret. Det kan dog tilfojes, at i/ $6 / \mathrm{er}$ det vist, at poreluftens tilsyneladende varmeledningsevne, λ-værdi, kan anses for at være konstant i området $20-380^{\circ} \mathrm{C}$. Værdierne er de samme for de to undersøgte densiteter, $110 \mathrm{kgm}^{-3}$ og 270 kgm^{-3}.

Ledningen i aerogelskelettet afhænger af densiteten og er meget lidt temperaturfolsom. Bidraget er meget lille, og det menes at vare betinget af strukturen, som vist er lange kæder med indbyrdes punktvis kontakt. I/ $6 /$ er varmeledningsevnen bestemt for aerogelskelettet, λ_{s}, ved ca. $-120^{\circ} \mathrm{C}$, og resultatet blev en λ_{s} på $3 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$ for densiteterne 70 og $110 \mathrm{kgm}^{-3}$ samt 10 $\mathrm{mWm}{ }^{-1} \mathrm{~K}^{-1}$ for en densitet på $270 \mathrm{kgm}^{-3}$. I /7/ bestemmes λ_{s} for densiteterne $75,105 \operatorname{og} 270$ kgm^{-3} i temperaturområdet $0-100^{\circ} \mathrm{C}$ til $4,4 \mathrm{og} 13 \mathrm{mWm}^{-1 \mathrm{~K}^{-1}}$, respektive. Det er disse værdier, der vil blive anvendi her.

Modsat ledning i poreluft og skelet er varmetransporten ved stråling meget kompleks. Arten af strålingen er infrared, og i det aktuelle temperaturområde er aerogel op til et par cm i tykkelse at betrage som et optisk tyndt materiale. Det resulterer i, at varmetransporten gennem aerogel ikke kun er bestemt af materialet selv men også af̃ dets tykkelse og grensefladernes emissivitet. Drmpningen af den infrarade stråling gennem materialet sker kun ved absorption, idet spredning kun forekommer i det synlige lys' bolgelængdeområde, jf. afsnit 3.2. Den til absorptionen korresponderende ekstinktionskoefficient er kraftigt belgelængdeafhængig, som det ses på figur 3.1, hvor den specifikke ekstinktionskoefficient, α / ρ, er vist som funktion af balgelangden.

Figur 3.1 Den specifikke ekstinktionskoefficient som funktion af bølgelængden for monolitisk silica aerogel opvarmet til $400^{\circ} \mathrm{C}$ i 3 timer under vakuum (-). (-) materialet udsat for atmosfarisk luft i $1 / 2$ time, 12 timer, 2 dggn. Fra $/ 8 /$.

Af figur 3.1 ses, at den specifikke ekstinktionskoefficient har to markante bånd. For belgelængder over ca. $8 \mu \mathrm{~m}$ er absorptionen stor. Ved ca. $20^{\circ} \mathrm{C}$ har det infrarode spektrum sit maksimum omkring $10 \mu \mathrm{~m}$, så der er varmetransporten ved stråling godt dæmpet. For stigende temperaturer går strålingens maksimum mod mindre bolgelængder. Det andet bånd for absorptionen er mellem $3 \operatorname{og} 5 \mu \mathrm{~m}$ også betegnet "transmissionsvinduet". Her vil der kunne forekomme en direkte strålingsudveksling mellem de to begransningsflader, som er de to lag glas. Som det ses af figur 3.1 kan det tilsyneladende "lukkes" vha. fugtig luft. Dog vil "transmissionsvinduet" ikke få nogen særlig betydning i det aktuelle temperaturområde.

Varmestrålingen gennem aerogel afhænger altså af tykkelsen og grænsefladernes emissivitet. Da aerogelen er at betragte som et optisk tyndt materiale, vil der være en kobling mellem stråling og ledning. Hvis der er grænseflader med lav emissivitet, vil strålingsfluxen tæt på være lille og stige langere inde i aerogelen pga. infrarad emission. Når den totale termiske flux er konstant gennem aerogelen, betyder det, at temperaturgradienten nær granseflademe er store og mindskes mod midten. Det giver en stor ledningsflux ud af den totale nær grensefladerne og en relativ mindre mod midten. Storrelsen af den samlede varmetransport ved kombineret stråling og ledning afhænger generelt af begrensningsfladernes temperatur og emissivitet, forholdet mellem lednings- og strålingsfluxen og den optiske tykkelse.

Beregninger af varmetransporten gennem aerogel valideres med målinger, der langt overvejende er udfart af prof. J. Fricke og hans gruppe på Würzburg Universitet - se fx $/ 6 /, 17 / \mathrm{og} / 8 /$. K. Kamiuto har i $/ 9 /$ præsenteret en teoretisk model for varmetransporten i aerogel. Beregningsresultater bliver sammenlignet med måleresultater fra Würzburg (/7/ og /10/) og viser god overensstemmelse, jvf. figur 3.2.

Figu: 3.2 Sammenligning af målte og beregnede λ-vardier for evakueret aerogel. λ_{i} : tilsyneladende (total) varmeledningsevne, λ_{s} : varmeledningsevne for skelettet, y_{0} : tykkelse, ϕ : porrsitet, ϵ : emittans af granseflader og T_{m} : middeltemperatur. Fra 19/, sammenligning er foretaget med målinger fra $/ 7 / \mathrm{og} / 10 /$.
A. Nordgaard har i $15 /$ ligeledes opstillet en beregningsmodel, hvor det er muligt at benytte meget forskellige emissionstal for de to grenseflader. Det vil fx være aktuelt ved en aerogelrude med en lav-emissionsbelægning. Bl.a. denne facilitet fremhæves i forhold til den model, der er
foreslảet af Würzburg-gruppen, /8/. Nordgaard sammenligner beregningsresultater med måleresultater fra $18 /$, og der opnås god overensstemmelse, jvf. figur 3.3. Ordinaten, T_{R}, i figur 3.3 er fundet af formlen

$$
T_{R}=\left[\frac{1}{4}\left(T_{1}^{2}+T_{2}^{2}\right) \cdot\left(T_{1}+T_{2}\right)\right]^{\frac{1}{3}}
$$

hvor T_{1} og T_{2} er gransefladernes kelvintemperaturer.

Figur 3.3 Sammenligning af beregnede og målte λ-vedier for aerogel. λ_{i} : tilsyneladende varmeledningsevne, T_{R} : middelstråingstemperatur. Acrogeltykkelsen er 22 mm og densiteten er $105 \mathrm{kgm}^{-3}$. Fra $/ 5 /$, màleresultaterne er fra $/ 8 /$.

Den foromtalte model fra Würzburg-gruppen /8/ tager som de to foregående hensyn til koblingen mellem lednings- og strålingsfluxen. Det sker ved at anvende en såkaldt effektiv emittans, der afhrenger af den optiske dybde og forholdet mellem lednings- og strålingsfluxen. Begransningen er, at grænsefladernes emittans skal være om ikke ens så meget tæt på hinanden, og at temperaturforskellen over aerogelen ikke er over ca. 30 K . Fordelen ved metoden er, at for aerogeldensiteter i området $95-140 \mathrm{kgm}^{-3}$, kan modellen håndregnes. Den er blevet sammenlignet med numeriske beregninger med folgende parametre: variationer i den optiske dybde varierede mellem $0,1 \operatorname{og} 10$, emittanseme mellem 0,01 og 1,0 og lednings-/strålingsfluxforholdet var enten $10,1,0,1$ eller 0,01 . Resultatet var en fejl i gennemsnit på 5% og en storste afvigelse på 15%. En sammenligning mellem målte og beregnede λ_{i}-værdier er vist i figur 3.4
(fra /8/), og der ser ud til at vare en fornuftig overensstemmelse i hvert fald op til en middelstrålingstemperatur på over 400 K . Dermed er det aktuelle temperaturområde klart dækket ind. Middelstrålingstemperaturen, T_{R}, er bestemt ved samme formel som ifigur 3.3.

Figur 3.4 Sammenligning af beregnede og målte λ_{i}-vardier. (-): beregnede λ_{i}-værdier med effektiv emittans, (---): beregnede λ_{i}-værdier uden effektiv emittans. λ_{i} tilsyneladende varmeledningsevne, T_{R} : middelstrålingstemperatur, emittans $\operatorname{lig} 0,5$, : emittans $\operatorname{lig} 0,05,+:$ måleresultater fra/11/. Fra $/ 8 /$.

Om de tre beregningsmodeller kan siges følgende. De to EDB-baserede modeller (Kamiuto, Nordgaard) krever et stort programmeringsarbejde, og Nordgaards kom endvidere på et sent tidspunkt i dette projekts forlob. De ser ud til at give gode muligheder for at undersage aerogels isolans især ved hajere temperaturer, end det er tilfaldet her. Til daglig brug er de måske for omstændelige at benyte, så derfor skulle der måske på grundlag af disse to modeller udvikles fx en relativ simpel potensformel egnet til håndregning. Würzburg-gruppens model er let at anvende og giver rimelige resultater. Desuden er der for anvendelse af aerogel i ruder og det tilhorende temperaturniveau stor enighed i refenceme om λ-værdien. Würzburg modellen benyttes videre frem, og i kapitel 6 er formlerne opstillet.

3.3.2 Kuldebroeffek af kantforsegling

Til teoretisk undersagelse af den to-dimensionale varmetransport i en aerogelkonstruktion, hidrørende fra kantforseglingens kuldebrovirkning, benyttes en tidligere udviklet analytisk model, /4/. Ideen i modellen er at betragte kantforseglingen som et legeme med en kendt isolans pr. længdeenhed. Dette legeme har i begge ender kontakt med to finner, dvs. glassene, som leder varme til og fra kantforseglingen. Samtidig hermed foregår en varmetransport vinkelret på finnemes udstrakming. Modellen er nem at arbejde med og specielt velegnet til sammenligning af forskellige udformninger af kantforseglingen. Formleme er vist i kapitel 6.

Modellen er blevet sammenlignet med numeriske beregninger fra $/ 20 /$. Undersogelser er foretaget på en almindelig 4-12-4 termorude i fire størrelse fra $0,25 \mathrm{~m} \times 0,25 \mathrm{~m}$ til $1 \mathrm{~m} \times 1 \mathrm{mog}$ med en almindelig kantforsegling, hvis kuldebrovirkning er beregnet som en relativ forogelse af rudens U-værdi. Dvs. den relative forggelse af rudens center U-værdi der skal til for at blive lig rudens totale eller resulterende U-værdi. Resultaterne er vist i tabel 3.1, hvoraf det fremgår, at der er meget god overensstemmelse mellem den analytiske og den numeriske models resultater.

Tabel 3.1 Beregnet effekt af kantforseglingens kuldebrovirkning. Forggelse af center Uværdi til resulterende U-værdi for en 4-12-4 termorude beregnet med analytisk model og numerisk model.

Rudestørrelse $(\mathrm{m} \times \mathrm{m})$	$0,25 \times 0,25$	$0,5 \times 0,5$	$1 \times 0,5$	1×1
Forøgelse (\%)				
Analytisk model	40	20	15	10
Numerisk model	42	21	16	10

4. PROTOTYPER

Til brug for de eksperimentelle undersøgelser er der fremstillet fem prototyper på aerogelkonstruktioner, hvoraf de fire kumne bruges. De tre farste har ydre mål og dermed glasmål på 60 cm $\times 60 \mathrm{~cm}$, og den sidste er af storrelsen $1 \mathrm{~m} \times 1 \mathrm{~m}$. Deres formål har været at give mulighed for dels praktiske erfaringer med fremstilling af forskellige udformninger af kantorseglingen og dels termiske undersøgelser af især kantforseglingens kuldebrovirkning.

Det, der adskiller de fire prototyper i konstruktionsmæssig henseende, er selve udformningen af kantorseglingen eller kantdesignet. De øvrige komponenter er så at sige givet nemlig to lag glas 4 mm tykke og aerogelen ca. 20 mm tyk. Endelig er der indsat to $10 / 8 \mathrm{~mm}$ kobberrar til brug under evakuering af aerogel samt trykmåling i konstruktionen.

4. 1 Kantudformning

Som tidligere nævnt er årsagen til interessen for kantudformningen (kantdesignet), at isolansen er bestemmende for kuldebroeffekten. Udformningen er begranset til butylfuger og et rustrit stålprofil. Fugerne skal overholde nogle mål af hensyn til lufttatheden, dvs. de hver må være ca. 1 mm tykke, og skal være mindst 10 mm brede. Så vil en 1 mx 1 m konstruktion med 20 mm aerogel og et startporelufttryk på 1 mbar være mere end 30 år om at nå et poreluftrryk på 100 mbar, jvf. /4/. Der er altså kun det rustfri stålprofil at spille på, når kantorseglingens isolans skal forøges. Det kan gøres dels ved at reducere godstykkelsen og dels ved at age vejlængden, som varmen skal tilbagelægge for at komme fra det varme glas til det kolde glas. Sidstnævnte mulighed er til stede, fordi luften og evt. stattematerialer har en meget lavere varmeledningsevne end rustfrit stål (rfs), som så er langt den dominerende varmeleder. I det folgende bliver de fire prototyper og deres tilhorende kantdesign benævnt med romertallene I, II, III og IV.

4.1. 1 Kantdesign II

Figur 4.1 Kantdesign I. Rfs-U-profil, $13 \mathrm{~mm} x 16,5 \mathrm{~mm}$, godstykkelse lig $0,75 \mathrm{~mm}$ og stotteliste af tra, $15 \mathrm{~mm} \times 6 \mathrm{~mm}$. Bagstopning: gummirundsnor $\varnothing 1,3 \mathrm{~mm}$ og rfs-tråd, $\varnothing 0,8 \mathrm{~mm}$.

Det forste kantdesign var et U-profil, $13 \mathrm{~mm} \times 16,5 \mathrm{~mm}$, af rustrit stål med en godstykkelse på $0,75 \mathrm{~mm}$. I hjømeme er U-profileme stødt sammen og svejset. Da det ikke var starkt nok til at holde geometrien under samlingen og evakueringen, blev det afstivet med en traliste, 15 mm x. 6 mm . Fugen har tidligere givet anledning til problemer, jvf. $/ 4 /$, da butylen kunne blive suget ind på enkelte steder under evakueringen af aerogelen, hvorved tatningen var gået tabt. Derfor er en lasning med en bagstopning forsagt fundet, som har til formål at stoppe butylen mekanisk. Det er en rundsnor, $\varnothing 1,3 \mathrm{~m}$, af gummi, der under evakuering trykkes oval mellem glas og U-profil. Til styring af rundsnoren indtil evakueringen er der loddet en rfs-tråd, $00,8 \mathrm{~mm}$, fast på U-profilet. Bagstopningen virker efter hensigten, og det kan konstateres, at der ikke er nogen steder rundt langs kanten, hyor butylen er trengt ind over rundmoren. Dog er bagstopning besvarlig at lave, og rundsnoren hopper nemt af. Derfor er der også benyttet en langt enklere metode ved de næste prototyper.

4.1.2 Kantdesign II

Figur 4.2 Kantdesign II. Rfs-bælg-profil, vejlangde lig 50 mm , belgehojde lig 8 mm , godstykkelse lig $0,2 \mathrm{~mm}$. Bagstopningen er en $3 \mathrm{~mm} \times 1,6 \mathrm{~mm}$ PUR-liste.

I forhold til kantdesign I er der her dels en mindre godstykkelse, $0,2 \mathrm{~mm}$, og dels en oget vejlængde, metallængden fra fuge til fuge, så den er kommet op på 50 mm . Som bagstopning benyttes i stedet for rundsnor og tråd en kixbende elastisk $3 \mathrm{~mm} \times 1,6 \mathrm{~mm}$ PUR-skumliste. Den er meget nem at have med at gøre og klaber tilstrakkelig al at holde butylen på plads. Som det ses af figur 4.2 har rfs-profilet et bælglignende tværsnit. Princippet itvarsnitter fastholdes videre frem. Her fastlægges i gurigt betegnelsen bolgehojde, som er den vandrette dimension på bælgtværsnittet, jvf. figur 4.2. Den er i dette tilfælde 8 mm . Det, der har bestemt udformningen, er måden, hvorpå hiømesamlingeme er udfort. Der er brugt 90° cirkeludsnit af en metalbælg fra. en kompensator til varmerør. Disse udsnit og de rette rfs-profillængder er blevet loddet sammen. Det er således metalbælgens tværsnit, der har bestemt profilemes tvarsnit. Som kantforsegling virkede det godi nok, men en aerogelrude med de runde hjømer kan nok ikke anvendes, da det kunne give vinduet et maritimt look, som er for aparte til at blive accepteret.

4.1.3 Kantdesign III

Figur 4.3 Kantdesign m. Rfs-bælgprofil, vejlængde lig 65 mm , bølgehøjde lig 12 mm og godstykkelse på $0,2 \mathrm{~mm}$. PUR-liste på $3 \mathrm{~m} \times 1,6 \mathrm{~mm}$.

Som det ses, er kant-design III meget lig kantdesign II. Bagstopning, fuger og godstykkelse er uforandret. Vejlængden er aget til 65 mm , og bolgehojden er 12 mm . Dette har kunnet lade sig gre, fordi der er anvendt en anden hjamesamlingsmetode end i det foregaiende. Balgprofillængderne er skåret i smig, stodt sammen og samlet med et plastprofil. Dette er lavet ved udfræsning i en plastklods, således at tværsnittet er et dobbelt E-profil, og klodsen er desuden skåret ud retvinklet. Derved passer det ind i de to bælgprofiler og dækker deres samling. Inden monteringen af plastprofilet fyldes en passende mængde butyl i, således at mellemrummet mellem bæig- og plastprofil er helt udfyld med butyl. Udformningen af kantdesignet gav ikke anledning til problemer under fremstillingen. Dog er der et problem mht. luftratheden, da det kan vare noget usikkert, hvordan butylfugerne mellem plasklods og bælgprofil ser ud og dermed den ekstra lakage. Men hjomesamlingsmetoden kan ses som et alternativ til lodning og svejsning, som måte opgives i den aktuelle godstykkelse, da passende udstyr ikke var til rådighed.

4.1.4 Kantdesign IV

Figur 4.4 Kantdesign IV. Rfs-bælgprofil, vejlængde lig 114 mm , balgehajde lig 16 mm og godstykkelse på $0,2 \mathrm{~mm}$. PUR-liste på $5 \mathrm{~mm} \times 1,6 \mathrm{~mm}$.

Det sidst realiserede kantdesign har i forhold till og III fảet en ekstra bolge. Et forsøg blev giort med en godstykkelse på $0,1 \mathrm{~mm}$, men den kvalitet båndstål, der blev benyttet, var for fjedrende. Så da profilet var blevet foldet, ville det ikke holde faconen. Det er muligt, det var gået med en anden kvalitet, men i hvert fald er det tidligere benyttede $0,2 \mathrm{~mm}$ båndstảl valgt. Vejlængden og bølgehøjden er øget til hhv. 114 mm og 16 mm . Bagstopningen er også gort storre nu $5 \mathrm{~mm} x$ $1,6 \mathrm{~mm}$. I de enkelte belger er der desuden lagt strimler á 1 og 2 mm tykkelse som stottemateriale. Dette materialet er lavet af fibre og har udseende som filt. Det bruges normalt til teknisk isolering og kaldes KERLANE 50 papir. Samlingen af hjornerne blev forsagt loddet. Der blev lavet en lille prove på en aerogelkonstruktion med målene $20 \mathrm{~cm} \times 20 \mathrm{~cm}$. Bælgprofileme blev skåret i smig og tildannet, så der blev et overlap på $1-2 \mathrm{~mm}$. Lodningerne så ud til ved visuel inspektion at være i orden, men proven var ikke tæt. Metoden har den fordel, at hjorneme ligesom bælgprofileme er fleksible. For at være sikker pà helt tæite hjornesamlinger blev profileme også tildannet med smig og overlap. Men i stedet for lodning blev profilerne sat i et fikstur og trykket sammen til endelig højde. Derefter blev hvert hjome dyppet i flydende loddetin og faktisk stobt ud. Sluttelig blev der med en minifraser fjernet loddetin, så udstobningen strakker sig $7-8 \mathrm{~mm}$ ud over overlappet. Resultatet blev tatte men ufleksible hjømer og en storre kuldebro i forhold til loddede hjørner.

4.2 Fremstilling

Ved fremstilling af prototyperne blev metalprofilrammen farst lavet og monteret med de to $10 / 8$ mm kobberrar. Dernæst blev rammen affedtet med oplasningsmiddel, og butylen lagt på. Derefter blev det forste glas affedtet rundt langs kanten, hvor fugen vedhæfter, og rammen blev presset let ned mod glasset. Derved sikredes, at butylen havde en vis vedhæftning til ramme og glas. Aerogelen havde varet i en ovn ved ca. $140^{\circ} \mathrm{C}$ i mindst 24 timer inden samling af konstruktionen for at drive evt. fysisk bundet vand ud af materialet. Tildannelsen af aerogelen skete umiddelbart efter, at det var taget ud af ovnen. Som regel skulle kanteme rettes af, og for prototype IV blev fire skiver skåret til og lagt ind i konstruktionen. Der er brugt en almindelig båndsav ved tilskæring af aerogelskiverne. For at undgå ridser i overfladen af skiven, når den skubbes hen over landet, blev skiven lagt på en 10 mm polystyrenplade, som så også blev skåret igennem, jvf. figur 4.5. Metoden er meget enkel og giver pæne snifflader.

Håndtering af aerogelskiven, fx når den skal lægges i konstruktionen, sker ved hjælp af et løfteværktøj med håndtag og en plade, hvorpå der er monteret nogle små plastbælge. Værktøjet har endvidere monteret en trykluftdrevet vakuumpumpe, som suger på bælgene, og en reduktionsventil til justering af trykket i bælgene. Ved at lade bxlgene suge pà aerogelskiven, kan deme herved laftes op og flyttes rundt, se figur 4.6. Sugetrykket skal ngje afpasses, da skiven ellers falder af under flytningen, eller bælgene efterlader ringformede aftryk på aerogelen.

Figur 4.5 Tildannelse af aerogelskive med båndsav.

Figur 4.6 Ved hjælp af løfteværktøjet placeres den første tildannede aerogelskive i prototype IV.

Efter ilægning af aerogelen affedtes metalrammen og kanten af glasset, butylen lægges på metalrammen, og glasset monteres. Derefter blev det sidste glas trykket lidt ned langs hele kanten, så butylen havde rimeligt fat under transporten af aerogelkonstruktionen til det sted, hvor evakueringen fandt sted. Som det ses på figur 4.6, er de to studse monteret i metalrammen midt på siden og modsat hinanden.

På den ene studs monteredes et LEYBOLD, type TR 201, målerør, som tilsluttedes et viserinstrument, LEYBOLD type THERMOVAC TM 220 S 2 , hvorpå der var en 10 V udgang til skriver. Denne var en KIPP \& ZONEN BD9. Til den anden studs sluttedes en lamelvakuumpumpe af mærket LEYBOLD, type TRIVAC A DB8, med en oplyst nominel pumpehastighed på på $10 \mathrm{~m}^{-3 \mathrm{~h}} \mathrm{~h}^{-1}$ og et sluttryk på 0,013 mbar. Den er påmonteret udstadnings-- og indsugningsfilter og har endvidere en indbygget kontraventil, som forhindrer, at olien slar tilbage i konstruktionen ved stop. Opstillingen er vist ifigur 4.7.

Figur 4.7 Evakuering af prototype I.

4.3 Generelle eriaringer

Når aerogelskiverne modtages fra producenten er de svagt dobbeltkrumme forstået på den måde, at de yderste par cm på skiven bukker opad. Det er lidt det samme udseende, som en skive rugbred har, når det er blevet for tort. At aerogelskiveme ikke er helt plane betyder, at der opstår revner i materialet under evakueringen typisk et par cm fra kanten hele vejen rundt. Andre revner i prototypernes aerogel kunne forekomme overalt i materialet. De kom, hvis porelufttrykket efter evakuering igen steg for hurtigt. Det kunne fx ske, når studsen, der var forbundet meul vakuumpumpen, skulle loddes til. Så blev der sat et klemmevarktoj på studsen, og slangen blev taget af. Flere gange skete det, at kobberroret ikke var trykket fuldstændigt sammen, der blev suget luft ind, og aerogelen begyndte at revne harligt. Arsagen hertil må være, at pga. de
små porediametre kan trykket ikke fordele sig hurtigt nok med spændingsforskelle i aerogelen til fflge. Da aerogels trakbrudstyrke er meget lille, opstår revnerne. Disse skonnedes i øvrigt at være uden betydning for undersagelserne.

Når man forste gang har et stykke ubeskyttet aerogel mellem hænderne, kommer man til at ødelægge det i mindst ni af̂ti tilfælde, det er i hvert fald erfaringen her på Laboratoriet. Det kan derfor vare med bange anelser, at man påbegynder arbejdet med aerogelskiver i størrelsen 60 $\mathrm{cm} \times 60 \mathrm{~cm}$. Ikke bare skal de flyttes rundt men også skæres til. Så det er på sin vis overraskende, hvor smertefrit det går. Som nævnt er aerogelskiver blevet skåret til i de onskede mål med en almindelig båndsav. Endvidere er der tidligere boret med et almindeligt 8 mm metalbor ind i aerogelen uden problemer.

Ud over lækager, som resulterede i revnedannelse i aerogelen, var der under arbejdet med prototyperne også mindre lakager. En enkelt var så stor, at det var muligt at lytue sig frem til den. Ellers blev der fx brugt en lille mængde butyl, som placeredes pà kritiske steder, som kunne vare loddede samlinger. Metoden er meget usikker, og det virkede tulfældigt, om lækagen blev lokaliseret. Et særligt svagt sted var, hvor studsene er sat på metalrammen specielt de belgformede kantdesign. Som det kan tankes var kantdesign IV det mest problematiske. Det lykkedes dog til sidst at ordne studsproblemet, men det siger sig selv, at en bedre losning er onskelig videre frem.

For prototype IV's vedkommende blev en noget speciel lakagesggningsmetode anvendt, som på en måde kan betegnes som destruktiv. Problemet var, at lækagen var måtelig men ikke til at finde. Som den sidste udvej blev prototypen lagt i et kar, som bley fyldt med vand, jvi. figur 4.8 .

Figur 4.8 Lækagesøgning på prototype IV.
Prototypen blev trykket ned under vandet, og reaktionen kom ajeblikkelig. Ude ved metalrammen groede nogle hvide popcomlignende gevakster ind i aerogelen. Prototypen blev trukket op med det samme, men alligevel nåede noget af aerogelen, op til ca. 1 cm ind fra rammen og ca. 5 cm langs denne, at blive ødelagt. Det var en fejl i båndstålet, der var årsagen til lækagen, og det var det sidste sted, det var ventet. Fejlen i båndstålet kan enten vare sket under fabrikationen eller være en folge af bukkeprocessen, da bælgprofilet skulle laves. Ved sidstnævnte mulighed kunne det måske forventes, at samme fejl også optrådte på de andre sider i rammen, da de var fremstillet på samme måde og med det samme værktoj. Skaden blev udbedret med butyl, men det var besværligt pga. kantdesignet. Det så dog ud til, at lukningen var tilstrækkelig til, at de termiske undersøgelser kunne udføres.

5. EIKSPERIMENTELIE UNDERSOGELSER

De eksperimentelle undersøgelser falder ito dele. Den første er en undersggelse af prototypeme I-III. Disse typer er blevet undersøgt mht. center varmetabskoefficient, herefter benævnt Uværdi, og kuldebroeffekt af kantkonstruktionen. Den anden del drejer sig om prototype IV. Denne type er også undersøgt mht. center U-værdi samt soltransmittans. Desuden er den blevet monteret i en trakarm og undersggt for kuldebroeffekt af kantkonstruktionen samt total Uværdi. En måling af den totale U-værdi er blevet foretrukket på prototype IV i stedet for en af de andre, fordi storrelsen, ca. $1 \mathrm{~m} \times 1 \mathrm{~m}$, er nærmere en typisk vinduesstorrelse end prototypeme i størrelsen $60 \mathrm{~cm} \times 60 \mathrm{~cm}$ er. Dermed er de forskellige varmestromme måske også i et mere naturligt indbyrdes forhold.

5.1 Forsegsopstillinger og måleprincipper

Cemter U-vrerdi. Den forste prototype blev testet i Laboratoriets λ-apparat, $/ 12 /$, hvor den lige passede i storrelsen. For prototyperne II og MI's vedkommende kunne de ikke gå i apparatet, da studsene var blevet bukket af hensyn til evakueringen, og prototype IV er meget storre end λ-apparatets provestorrelse. En mere fleksibel metode blev derfor anvendt. I dette tifælde blev prototypen lagt på en elektrisk vamefolie, der blev reguleret med en variotrafo, og oven på prototypen placeredes et isoleringsmateriale med omtrent samme isolans som prototypen. Endvidere blev nogle termoelementer monteret, sailedes at temperaturdifferencene over de to emner kunne måles. En passende effekt afsættes i varmefolien, og når der er stationære forhold, er varmestrommen gennem prototypen og isoleringsmaterialet den samme. Med kendskab til ovennævnte temperaturforskelle og isoleringsmaterialets isolans kan prototypens isolans bestemmes.

Soltransmittans. Til brug for soltransmittansmålinger indendars i den kunstige sol eller udendars benyttes en opstilling som beskrevet i/12/. Det er et stativ med en ramme på 60 cm x 60 cm , som kan drejes om en lodret og en vandret akse. Under rammen i en afstand af ca. 5 cm fra måleemnet er et Kipp \& Zonen CM 10 pyranometerer monteret. Først indstilles stativet, så indfaldsvinklen ved målingen bliver som ønsket. Først måles solbestrålingsstyrken, og når udslaget har været stabilt i en passende tid, lagges prototypen på rammen, og der måles, indtil udslaget har været stabilt i ca. samme tidsrum som for. Derefter tages prototypen af, og der måles igen en passende tid med stabilt udslag. De målte bestrålingsstyrker for og efter måling på prototypen skal stort set være ens, så det kan ses, om bestrålingsstyrken ser ud til at være konstant. Målingerne med og uden prototypen kan gentages et passende antal gange, hvilket giver et bedre indtryk af, hvor konstant bestrålingsstyrken er.

Kuhdebroefiekt. Princippet i undersogelsen er det, at kantforseglingens kuldebrovirkning bestemmes ud fra temperaturgradienten i glasset. Prototypen udsættes for forskellige temperaturer på hver side, og når stationære forhold er opnået, registreres temperaturfordelingen, jvf. s. 27 og 28 , i fx det varme glas. Herved kan temperaturgradienten i glasset ved kantforseglingen bestemmes og dermed varmestrommen i glasset til kantforseglingen. Med antagelse af passende adiabatiske flader og måling af temperaturforskellen over kantforseglingen kan kantforseglingens isolans bestemmes.

I realiteten drejer disse forsgg sig om fastlæggelse af temperatureme i prototypernes varme glas fra kantforseglingen g ind mod midten. For at opnå temperaturdifferens i prototyperne, er de placeret i væggen til et kuldekammer. Registreringen af temperaturfordelingen i det varme glas er sket på én måde for prototyperne I-III og på en anden måde for prototype IV.

En kølekasse er blevet fremstillet til undersogelseme af prototyperne I-III. Den er udstyret med en koleflade, som sluttes til en kolemaskine og ventilatorer til cirkulering af luften. Prototypen monteres i et hul i frontpladen, salledes at det ene glas koles af luften i kassen, og det andet glas er i kontakt med rumluften. Kolekassen er vist ifigur 5.1.

Kalekassen er en boks lavet af 12 mm krydsfinér og med ydre dimensioner på 0,41 m x 1,07 $\mathrm{m} \times 1,32 \mathrm{~m}$. Indvendigt er flademe beklædt med 100 mm polystyren. Frontpladen er lavet af 12 mm krydsfinér, som er beklædt udvendigt med 20 mm polystyren. Midt i frontpladen er der et hul på $60 \mathrm{~cm} \times 60 \mathrm{~cm}$, hvori prototyperne monteredes. Prototyperne og frontpladen er således omtrent lige tykke. Sprækken mellem prototypens og frontpladens kantflader var meget lille og dækket af tape. På bagveggens øverste halvdel i kolekassen er to serieforbundne koleflader monteret, som blev sluttet til en kolemaskine af mærket HETORRIG model CB8. Under kølefladerne er to tværstrømsventilatorer placeret, som kan reguleres vha. en variotrafo, jvf. figur 5.1. Foran kolefladerne og ventilatoreme er der sat en skillevag, så der er en 5 cm spalte ved bund og top. Luften bliver således af ventilatoreme fort ned gennem kølefladerne og op langs frontpladen og prototypen.

Gennem boksens topplade er ti kobber-konstantan termoelementledninger fort igennem. Termoelementerne tilsluttedes et FLUKE 2176A digital termometer. Alle gennemføringer er forseglet med polyuretanskum. Bestemmelsen af kant-og centertemperatureme på den varme og kolde side skete ved termoelementer. Temperaturfordelingen blev registreret med termovisionsudstyr. Dette er et AGA THERMOVISION 782, som har indbygget en $31 / 2^{\prime \prime}$ sort-hvid monitor, der har en noget begrænset billedkvalitet. For at bode på dette er der tilsluttet en AGA DISCON, som kan overffre signalet til en $12^{\prime \prime}$ farvemonitor. Da det ønskede billede fremkom på monitoren, blev det frosset, og affotograferet med et almindeligt spejlreflekskamera med makrolinse. Der blev brugt en diasfilm, så billedet kunne projiceres op på et lærred. Derfra blev temperaturintervalleme opnålt. Metoden virkede efter hensigten, men det er et storre apparat at få op, når termovisionsudstyret skal anvendes. Desuden er der en vis ventetid med at få fremkaldt diasfilmen, og det er en usikker fornemmelse, man har af måleresultaterne i mellemtiden. Derfor blev det besluttet at anvende en anden teknik ved undersagelsen af prototype IV.

Figur 5.1 Snit i kølekasse. Boksen der blev benyttes ved undersagelse af kantforseglingens kuldebroeffekt. Målene er i cm.

Figur 5.2 Prototype monteret i kølekassen.
På grund af prototype IV's storrelse kunne kolekassen ikke bruges til undersøgelse af kantforseglingens kuldebroeffekt her. Laboratoriets solvægsprovestand blev i stedet benyttet, beskrevet i /13/. Opstillingen består af tre mobile sektioner, som er en kold boks, en isoleret ramme og en varm boks. Ved denne undersggelse blev kun de to farste sektioner benyttet, idet prototypen med karm blev monteret i den isolerede ramme, som blev koblet sammen med den kolde boks. Så også her var prototypens varme glas vendt mod rumluften. Målingen af temperaturfordelingen blev foretaget ved hjælp af kobber-konstantantermoelementer. For at påvirke varmestrammene mindst muligt, blev der brugt konstantantråd med en diameter på $0,25 \mathrm{~mm}$ og kobbertråd med en diameter på $0,22 \mathrm{~mm}$. Termoelementerne blev limet fast på glasset for at opnå bedst mulig termisk kontakt. Der blev monteret otte termoelementer i afstande på $0-20 \mathrm{~cm}$ fra kantforseglingen. Endvidere blev der målt temperaturer på den kolde side af kantforseglingen samt midt på prototypen og af den kolde og varme luft. Termoelementerne blev tilsluttet to FLUKE 2176A digital termometre. I forhold til at benytte termovisionsudstyret var målingen nemmere og hurtigere, når først teroelementerne var monteret. Dog skal der udvises en del omhu, når termoelementerne limes på glasset, da der registreres for høje temperaturer, hvis den termiske kontakt er dårlig.

Figur 5.3 Termoelementer limet på prototype IV's varme glas.
Totall Ueverdi. For at bestemme den totale eller resulterende U-vardi for prototype IV, blev den placeret i karmen i den isolerede ramme i solvægsprovestanden. Derudover blev der fremstillet en såkaldt målekasse, som pracist dakkede prototypen med karm. Forsaget blev udfort som en guarded hot box-teknik, idet der blev afsat en effekt i målekassen, således at temperaturen i målekassen var den samme som i den varme boks. Herved var den afsatte effekt i målekassen lig den effekt, som gik gennem prototypen med karm.

Karmen, som prototypen blev sat i, er lavet af tre og har et tværsnit på $67 \mathrm{~mm} \times 42 \mathrm{~mm}$. Det ydre mål er $1092 \mathrm{~mm} \times 1092 \mathrm{~mm}$. Glaslisterne har et tvarsnit på $17 \mathrm{~mm} \times 25 \mathrm{~mm}$, og tatningslisterne er $10 \mathrm{~mm} \times 4 \mathrm{~mm}$. Som afstandsklodser er benyttet plaststykker med en tykkelse på 3 mm . Samlingerne i karmen og den ene glasliste blev af hensyn til luftratheden påfort ekspanderende polyuretanlim. I den isolerede ramme var der sat en træfiberbetonplade som skillevæg, centralt i denne blev der skåret et hul med en kantlængde, som var 20 mm storre end karmen. Pa den kolde side af pladen blev der rundt orm hullet sat en lægteramme. Karmen blev sat i hullet og holdt af otte treskruer, som blev skruet gennem lagterammen og ind i karmen. Denne sad nu plant med pladen på den varme side. Luftspalten mellem karm og pladen/lægterammen blev skummet ud med polyuretan. Efter det var hærdet af, blev skruerne fjernet, og hullerne ligeledes skummet ud. Den kolde side af træfiberbetonpladen blev beklædt med 50 mm polystyren. Der blev lavet udsparinger i karmen og i lægterammen til studsene, og prototypen blev sat i karmen. Derpå blev den sidste glasliste med tatningsliste monteret.

Figur 5.4 Fiksering af karmen ilægterammen inden udskumning af luftspalten.
Målekassen er fremstillet af 50 mm polystyrenskum og med indvendige mål: $400 \mathrm{~mm} \times 1082$ $\mathrm{mm} \times 1082 \mathrm{~mm}$. Alle samlinger og gennemforinger er tatnet med ekspanderende polyuretanlim. Kanten rundt langs kassens åbning er skåret under en vinkel på 45°, således at kanten mod karmen kun er 10 mm bred. For at minimere infiltrationen er der påsat en tætningsliste på 5 mm x. 10 mm . Kanten træder således 5 mm ind på karmen og 5 mm ud på polyuretanudskumningen. For at spænde målekassen ind mod karmen er der rundt langs kanten af målekassen sat stigetræ, $21 \mathrm{~mm} \times 42 \mathrm{~mm}$. Med otte oskner i træet og tilsvarende i pladen kunne målekassen ved hjælp af 8 vantskruer spændes jævnt ind mod prototypen, så den ønskede tæthed kunne opnås. To slanger var fort igennem kassens bagside. Den ene blev sluttet til en gasmåler og en støvsuger, som reguleredes med en variotrafo. Den anden slange blev sluttet til et U-rorsmanometer. Der kan således findes samhørende værdier af flow og trykforskel mellem målekassen og den varme boks.

Varmelegemet er placeret i bunden af målekassen og helt ud mod bagvæggen. Det har en vinkel i forhold til bunden på ca. 40°. Det består af to trelister, $22 \mathrm{~mm} \times 22 \mathrm{~mm} \times 1078 \mathrm{~mm}$ med en indbyrdes afstand på 225 mm , som ovenpå har en række tætsiddende papsøm. Frem og tilbage mellem disse som er selve varmelegemet vundet, dette varmelegeme er af rustfrit båndstål, 0,1 $\mathrm{mm} \times 15 \mathrm{~mm}$ med en total længde på ca. 34 m . Varmelegemets samlede overflade er således godt $1 \mathrm{~m}^{2}$. Gennem de to trælister er der sat 5 stk .8 mm gevindstænger med møtrikker. Derved kunne afstarden mellem de to trælister øges, så der ikke var nogen kontakt mellem de enkelte vindinger. Båndstålets dimensioner gorde, at varmelegemets elektriske modstand var
tilstrakkelig til, at lavvoltspænding kunne benyttes. Stromforsyningen var en HH Electronic Power Supply 03P. Spændingsfaldet over varmelegemet blev målt, umiddelbart hvor ledningerne kom ud på ydersiden af målekassen, og der blev brugt en Kipp \& Zonen BD9-skriver. Stromstyrken blev måt med et DATA PRECISION 2480R-multimeter. I forhold til at benytte netspænding var den afsatte effekt meget stabil her. Fordelen ved varmelegemets store overflade er, at der er god mulighed for en jævn varmeoverforing til luften. Derved undgås de store overtemperaturer på varmelegemet i forhold til resten af målekassens indre, der kunne forårsage urealistiske strålingsforhold.

Udformningen og placeringen af varmelegemet var betinget af, at der termisk ikke var plads til ventilatorer til omroring af luften i målekassen, da effektbehovet var i storrelsesordenen 20 W ved forsagene. Det var derfor nodvendigt, at lufttransporten skete ved naturlig konvektion.

Figur 5.5 Varmelegemet til målekassen.
Al temperaturregistrering foregik ved hjælp af kobber-konstantan termoelementer. De kan deles op i to grupper efter deres funktion. Den forste er måling af temperaturforskellen over målekassens vægge. Ideelt skulle der være samme temperatur i målekassen og i den varme boks, altså målekassens vægge skulle være adiabatiske, således at den afsatte effekt i varmelegemet var lig varmestrømmen gennem prototype og karm. Dette blev dog aldrig opnået, men varmelegemets effekt blev styret mod mindst mulig temperaturforskel over målekassens vægge. Der var placeret et termoelement på begge sider af målekassens side-, bund- og topvægge. På bagvaggen blev midt mellem bund og top og en fjerdedel fra sidevæggene sat to termoelementer på hver side. I alt blev altså tolv termoelementer placeret til måling over målekassens vagge. Termoelementerne til måling af luftemperaturen i målekassen var strålingsbeskyttede med et blankt metalrør, der var 45 mm i diameter og 95 mm langt. Sådanne tre var ophængt i en snor 30 cm fra bagvæggen og midt for. Termoelementerne blev sat i fjerdedelspunkteme. Sluttelig var der sat et termoelement på hver side af prototypen og et i den kolde boks til måling af den kolde luftemperatur.

Figur 5.6 Målekassen set forfra og monteret i den isolerede ramme.
Måling af temperaturforskellen over prototypen skete med en Kipp \& Zonen BD9-skriver, og resten af temperaturerne blev mailt med to FLUKE 2176A digitaltermometre. Proceduren for at nả stationære forhold var den, at farst blev der valgt temperatumiveauer i den kolde og den varme boks, dernæst blev strømforsyningen indstillet til en effekt efter bedste evne. Når temperaturerne på begge sider af målekassens vægge var konstante, blev stromforsyningens effekt justeret, som regel flere gange, for at opnå mindst mulig temperaturforskel over målekassens vægge. Når dette syntes opnået, blev den endelige måling foretaget, når temperaturfaldet over prototypen var konstant.

5.2 Forsøgsresultater

Cemter U-vardi. Bestemmelsen af center U-værdien foregik som beskrevet i 5.1 , side 25. Polystyrenpladen, som blev benyttet til målingerne, var 50 mm tyk, og dens varmeledningsevne var blevet mảlt til $33 \mathrm{mWm}-1 \mathrm{~K}^{-1}$ i λ-apparatet. Middeltemperaturen var $15^{\circ} \mathrm{C}$. Ifolge $/ 14 / \mathrm{kan}$ materialets λ-værdi anses for at vokse med $0,4-0,5 \%$ pr. ${ }^{\circ} \mathrm{C}$. Her er regnet med $0,5 \% \mathrm{pr}$. ${ }^{\circ} \mathrm{C}$. Resultaterne fra forsogene er vist itabel 5.1. U_{0} er bestemt af den fundne isolans for prototyperne og med tillæg af de sædvanlige ind-og udvendige overgansisolanser.

Tabel 5.1 Mảle værdier af prototypemes center U-værdi. d_{a} : aerogelens tykkelse. ρ_{a} : aerogelens densitet. λ_{a} : aerogelens varmeledningsevne. $U_{0}:$ prototypens center U-vardi.

Prototype nr. $(-)$	d_{a} (mm)	ρ_{a} $\left(\mathrm{kgm}^{-3}\right)$	λ_{a} $\left(\mathrm{mWm}^{-1} \mathrm{~K}^{-1}\right)$	U_{0} $\left(\mathrm{Wm}^{-2} \mathrm{~K}^{-1}\right)$
I	17,3	200	11,6	0,60
II	19,3	200	12,4	0,58
III	19,7	200	11,5	0,53
IV	18,1	150	10,4	0,52

Det fremgår, at λ-vardien bestemt for prototyperne 1 - MI er ca. $12 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$, hvilket også er det forventede $/ 15 /$. Med hensyn til målingen på prototype 1 , blev den også foretaget $i \lambda$-apparatet med næsten samme værdi som i tabellen, så den er ikke medtaget. Det er altså samme metode for alle fire prototyper.

Soltransmittans. Målingeme blev udfort udendors i solskin på en skyfri dag. Der blev anvendt et Kipp \& Zonen CM11 pyranometer. Prototype IV's soltransmittans blev målt ved at sætte den ind foran og fjerne den fra pyranometeret ved forskellige indfaldsvinkler. Solstrålingens intensitet var ca. $1020 \mathrm{~W} / \mathrm{m}^{2}$ med ca. 10% diffus stråling. Glassene på prototypen er 4 mm hærdet glas fra ScanGlas. I solsimulatoren blev den direkte-total-soltransmittans for et glas målt til $84,4 \%$ for normal indstråling. Resultateme fra den udendørs prøvning er vist i tabel 5.2.

Tabel 5.2 Malt soltransmittans for prototype IV ved forskellige indfaldsvinkler.

Indfaldsvinkel (grader)	Soltransmittans $(\%)$
0	62,9
15	62,9
30	62,1
45	60,1
60	54,0

Under forudsætning af at den diffuse stråling er isotropisk, vil dens transmittans svare til transmittansen for direkte stråling ved en indfaldsvinkel, i, på 60°. De i tabel 5.2 målte værdier for i lig 0 og i lig 60° kan da benyttes til at bestemme transmittansen for direkte stråling, T_{0}, renset for den diffuse indstråling. Idet den diffuse andel var 10% bruges udtrykket:

```
    \(T=T_{0} \cdot 0,9+T_{60} \cdot 0,1\)
\(\Downarrow\)
\(T_{0}=\frac{T-T_{60} \cdot 0,1}{0,9}\)
```

T_{0} bliver dermed lig $63,8 \%$. For at bestemme transmittansen af aerogelen er der gjort folgende. Da brydningsindekset for den anvendte aerogel er omtrent 1 , beregnes transmittansen mht. refleksion som for en to-lagsrude. Den bliver med de benyttede glas $84,5 \%$. Herudfra og fra T_{0} bliver transmittansen mht. absorption så lig 75,5\% for prototypen. Glassenes ekstinktionskoefficient er $20,4 \mathrm{~m}^{-1}$, og for aerogelen kan den beregnes til $6,5 \mathrm{~m}^{-1}$. Dvs. at transmittansen for aerogelen er $88,9 \%$.

Kuldebroeffekt. De temperaturer, som blev målt ud over temperaturfordelingen i glasset fra kantforseglingen mod midten, var: den varme luf, $T_{l v}$, midt på det varme glas, $T_{g v}$, den varme kant (lig glastemperaturen oven på kantforseglingen), $T_{k v}$, den kolde kant, $T_{k k}$, midt på det kolde glas, $T_{\text {gk }}$, og den kolde luft, $T_{\text {lk }}$. Der ses bort fra glassets isolans normalt på dets udstrakning. Temperaturen anses for at vare uniform i den retning, og det er rimeligt, da glassenes isolans er forsvindende i forhold til aerogelens. De måle vardier af ovennavnte temperaturer er vist i tabel 5.3

Tabel 5.3 Temperaturmålinger ved kantundersagelse.

Prototype $\mathrm{nr} .(-)$	I	II	II	IV
Temperaturer $\left({ }^{\circ} \mathrm{C}\right):$				
T_{lv}	27,5	23,2	23,5	22,8
$\mathrm{~T}_{\mathrm{gv}}$	25,4	20.8	21,2	20,9
$\mathrm{~T}_{\mathrm{kv}}$	19,4	18,8	17,8	17,3
$\mathrm{~T}_{\mathrm{kk}}$	14,0	0,1	1,3	3,9
$\mathrm{~T}_{\mathrm{gk}}$	0,0	$-0,8$	$-2,2$	1,60
$\mathrm{~T}_{\mathrm{lk}}$	$-1,4$	$-2,6$	$-4,2$	1,10

Som tidligere nævnt, er temperaturfordelingen i det varme glas registreret ved hjælp af termovisionsudstyr for prototyperne I, II Og M. Termovisionsbillederne viser forskellige områder inden for temperaturintervaller, som her typisk var $0,5 \mathrm{~K}$. Dette er dog ikke det sande temperaturspænd, så for at korrigere er udgangspunktet de målte temperaturer på glasset oven på kant og midt på og så forgge temperaturintervaller. Det viste sig, at hvis disse blev udvidet med $1 / 3$, fx i stedet for $1^{\circ} \mathrm{C}$ så $11 / 3^{\circ} \mathrm{C}$, var der fin overensstemmelse mellem de målte temperaturforskelle fra midt på glasset og ud til kanten, og antallet af temperaturintervaller på termovisionsbillederne. Dette galder alle tre prototyper. Disse problemer var der ikke med prototype IV, da der blev målt i et antal faste punkter. Temperaturmålingerne med tilhørende kurveffit er vist i figur 5.7.

Figur 5.7 Målte glastemperaturer på prototypeme. x: afstand fra kantforsegling. $\Delta T=T_{g v}(x)-T_{k v}$

Kurvefitene er af formen $T_{g v}(x)=Y 1(1-\exp (-Y 2 \cdot x))$, hvor $T_{g}(x)$ er glastemperaturen til stedet x , som er afstanden tilkantforseglingen. Y1 og Y2 er konstanter. Den første afledte bliver da:
(5.1) $\frac{d T_{g v}(x)}{d x}=Y 1 \cdot Y 2 \exp (-Y 2 \cdot x)$

$$
\left(\mathrm{Km}^{-1}\right)
$$

Varmestrommen i det varme glas ud til kanten bliver da:
(5.2) $\quad q_{v}=-\left.\lambda_{g} \cdot e_{g} \frac{d T_{g v}(x)}{d x}\right|_{x=0}$
$\left(W m^{-1}\right)$
λ_{g} er glas' varmeledningsevne som sattes til $0,8 \mathrm{Wm}^{-1 \mathrm{~K}^{-1}}$, e_{g} er glassets tykkelse, som er lig 4 mm. Med (5.1) i (5.2) for $x=0$ fås:

$$
q_{v}=-\lambda_{g} \cdot e_{g} \cdot Y 1 \cdot Y 2 \exp (-Y 2 \cdot 0)
$$

\downarrow
(5.3) $q_{v}=\lambda_{g} \cdot e_{g} \cdot Y 1 \cdot Y 2$
$\left(W m^{-1}\right)$
q_{v} for de fire kurvefit blev som folger:

Prototype	I: $q_{\mathrm{v}}=0,8 \cdot 0,004 \cdot 6,0 \cdot 50$	$=0,96 \mathrm{Wm}^{-1}$
Prototype	II: $\mathrm{q}_{\mathrm{v}}=0,0032 \cdot 2,0 \cdot 34$	$=0,22 \mathrm{Wm}^{-1}$
Prototype	II: $\mathrm{q}_{\mathrm{v}}=0,0032 \cdot 3,4 \cdot 25$	$=0,27 \mathrm{Wm}^{-1}$
Prototype	IV: $\mathrm{q}_{\mathrm{v}}=0,0032 \cdot 3,55 \cdot 42$	

For I-II gælder, at glasstriben over kantforseglingen ikke var dækket af glaslister el. lign. under forsogene. Der sker derfor også en varmeoverføring fra rumluften til kantorseglingen den vej. Hivis samme varmeovergangstal antages over hele ruden, kan glasstribens bidrag, q_{s}, beregnes. Resultaterne er vist itabel 5.4.

Tabel 5.4 Bidrag til kuldebroeffekt på grund af uisoleret glas over kant. R_{k} og R_{v} er overgangsmodstandene på den kolde og den varme side. Δb_{g} er glasstribens bredde, dvs. fra aerogelen til kanten af glasset. q_{s} er varmestrommen, der overføres fra rumluften til glasstriben.

Prototype nr.	$(-)$	I	I	II
T_{lv}	$\left({ }^{\circ} \mathrm{C}\right)$	27,5	23,2	23,5
$\mathrm{~T}_{\mathrm{kv}}$	$\left({ }^{\circ} \mathrm{C}\right)$	19,4	18,8	17,8
R_{k}	$\left(\mathrm{m}^{2} \mathrm{KW}-1\right)$	0,08	0,13	0,15
R_{v}	$\left(\mathrm{m}^{2} \mathrm{KW}-1\right)$	0,12	0,17	0,17
Δb_{g}	$(\mathrm{~mm})$	10	22	12
q_{g}	$\left(\mathrm{Wm}^{-1}\right)$	0,66	0,56	0,41
q_{v}	$\left(\mathrm{Wm}^{-1}\right)$	0,96	0,22	0,27
$\mathrm{q}_{\mathrm{s}}+\mathrm{q}_{\mathrm{v}}$	$\left(\mathrm{Wm}^{-1)}\right.$	1,62	0,78	0,68

Som det ses af tabel 5.4, er det betydelige bidrag fra den uisolerede glasstribe. Som aerogelrude vil glasstriben være dækket af en glasliste, og dermed vil q_{s} være praktisk taget nul, medens q_{v} vil stige markant formentlig svarende til q_{s}.

For at kunne give et fingerpeg om kanforseglingernes kuldebroeffekt, kan man se på isolansen pr. længdeenhed, her kaldet r_{k}. Den bestemmes som forholdet mellem temperaturforskellen over kanten og varmestrommen gennem denne. Temperaturforskellen er her mellem det varme og det kolde glas på skillefladen mellem kantforsegling og aerogel.

Tabel 5.5 Kantforseglingens isolans. q er lig $q_{s}+q_{v}$ for I-III og q_{v} for IV.

Prototype nr. (-)	T_{kv} $\left({ }^{\circ} \mathrm{C}\right)$	T_{kk} $\left({ }^{\circ} \mathrm{C}\right)$	q $\left(\mathrm{Wm}^{-1} \mathrm{~K}^{-1}\right)$	r_{k} $\left(\mathrm{mKW}^{-1}\right)$
I	19,4	14,0	1,62	3,33
II	18,8	0,1	0,78	23,97
III	17,8	1,3	0,68	24,26
IV	17,3	3,9	0,48	27,92

Det ses, at r-værdien er næsten tidoblet fra prototype I til prototype IV. At r for II og III begge er ca. 24 er på sin vis skuffende, da der ikke er nogen særlig effekt af den øgede vejlængde for kantdesign III i forhold til kantdesign II. Årsagen til dette er nok, at på prototype II er glasstriben næsten dobbelt så bred som på prototype m , og det giver så et noget andet forhold mellem $\mathrm{q}_{\mathrm{s}} \mathrm{og}$ q_{v}. Det kan betyde noget, da q_{v} er bedre bestemt end q_{s}. Endvidere er bestemmelsen af q_{v} for prototype II, den mest usikre af de fire på grund af de få målepunkter, jvf. figur 5.7.

Total U-vardi. Ved brug af guarded hot-box opstillingen må to fejlmuligheder holdes for øje. Den ene er infiltration for målekassen, og den anden er korrektion for ikke adiabatiske flader i målekassens vægge.

Målekassens lufttæthed blev først undersøgt inden montering i den isolerede ramme. Det skete ved at spænde målekassen op mod en termorude, der var større end målekassens åbning. Med gasmåler, manometer og variotrafo-reguleret støvsuger blev der sat overtryk på målekassen. Der blev valgt overtryk, da det er værste tilfælde af over- og undertryk. Undertryk vil i nogle tilfælde kunne forårsage reduktion af utætheder, fx. klemme målekassens tætningsliste mod anlægget. Med ragprovningsudstyr blev der lokaliseret to utætheder, som skyldtes for dårlig udskumning af gennemforinger. Disse fejl blev udbedret, og fem samhørende værdier af trykforskel og luftflow blev målt. Den mindste trykforskel var 11 mmVS og gav et flow på 54,63 $1 \mathrm{~h}-1$. Den strrste trykforskel var på $59,5 \mathrm{mmVS}$, som resulterede i et flow på $175,50 \mathrm{lh}^{-1}$. Da målekassens volumen er godt 450 1, vil det største flow svare til et luftskifte på ca. $1 / 3 \mathrm{~h}-1$. Hvis der antages laminart flow og følgende lineare sammenhæong mellem flow og trykforskel: $V=k \cdot \Delta p$, hvor k er en konstant, så fås denne til $3,3 \mathrm{lh}^{-1} \mathrm{mmVS}^{-1}$. Da ruden, som målekassen var sat op imod, var plan og tor, gav målingerne en idé om det opnåelige niveau for lufttætheden. Efter monteringen i den isolerede ramme, over prototype IV med karm, blev lufttæthedsforsøget gentaget. Der blev lavet syv målinger med mindste og største trykforskel på hhv. 22 mmVS og 63 mmVS , og det resulterede i minimum- og maksimumflow på $57,85 \mathrm{lh}-1$ og $143,64 \mathrm{lh}^{-1}$. Her fås $k \operatorname{lig} 2,3 \mathrm{hh}^{-1} \mathrm{mmVS}^{-1}$. At der blev en bedre lufttæthed ved den endelige montering, må skyldes en bedre mulighed for ensartet opspænding samt hårdere opspænding af målekassen.

Betydningen af målekassens lufttæthed er forbundet med infiltrationens storrelse. Hvis luftemperaturen i målekassen fx er 1 K over luftemperaturen i den varme boks, og der samtidig er utætheder i toppen og bunden af måleboksen, er der mulighed for skorstenseffekt. Højden er lig
målekassens højde, $1,08 \mathrm{~m}$, og det resulterer i en trykforskel på $0,0043 \mathrm{mmVS} / 17 /$. Med farnævnte k -vardi på $2,3 \mathrm{lh}^{-1} \mathrm{mmVS}^{-1}$ giver det et flow på $0,010 \mathrm{lh}^{-1}$ eller $2,7 \cdot 10^{-6} 1 \mathrm{~s}^{-1}$. Det svarer til et varmetab fra målekassen på
$\Delta T \cdot \rho \cdot c \cdot V=1 \cdot 1,205 \cdot 1,005 \cdot 2,7 \cdot 10^{-6} W=3,3 \cdot 10^{-6} \mathrm{~W}$.
Hvis utæthederne havde været fra og til den kolde boks i stedet, ville temperaturforskellen være af størrelsesordenen 25 K , og det resulterer i et varmetab på $2,3 \mathrm{~mW}$. Den afsatte effekt i målekassen er af størrelsesordenen 20 W , så de to varmetab vil udgøre hhv $1,7 \cdot 10-5 \%$ og $0,01 \%$. Der ses derfor bort fra infiltrationen ved disse forsog.

Transmissionsarealet for måleboksen regnes lig $1,092 \mathrm{mx} 1,092 \mathrm{~m}$, som er karmens udvendige mål, da målekassens åbning er $1,082 \mathrm{~m} \times 1,082 \mathrm{~m}$, og den 10 mm brede kant gik 5 mm ind på karmen og 5 mm ud på den udskummede fuge. Som varm luftemperatur benyttes middelværdien af de tre målte luftemperaturer i målekassen. Der var kun ét målepunkt for den kolde lufttemperatur, og det var placeret midt ud for prototypen. Resultaterne fra forsogene er vist i tabel 5.6.

Tabel 5.6 Måling med guarded hot-box på prototype IV med karm. E E er den målte spænding, I er stramstyrken, og P er den afsatte effek. U_{m} er varmetabskoefficienten bestemt ud fra målingerne uden korrektion.

Måling nr. $(-)$	E_{s} (V)	I (A)	$\mathrm{P}=\mathrm{E}_{\mathrm{s}} \mathrm{I}$ (W)	T_{gv} $\left({ }^{\circ} \mathrm{C}\right)$	T_{gk} $\left({ }^{\circ} \mathrm{C}\right)$	T_{lv} $\left({ }^{\circ} \mathrm{C}\right)$	T_{lk} $\left({ }^{\circ} \mathrm{C}\right)$	U_{m} $\left(\mathrm{Wm}-2 \mathrm{~K}^{-1}\right)$
1	19,44	1,053	20,47	23,0	2,3	25,6	1,6	0,72
2	19,34	1,041	20,13	27,0	6,3	29,3	6,1	0,73
3	18,6	1,017	19,28	31,2	11,5	33,6	10,7	0,71

Korrektionen for ikke adiabatiske flader i målekassens findes ved hjælp af arealet og temperaturforskellen. Væggene er 50 mm tykke undtagen langs åbningen, hvor de er skåret i smig under en vinkel på 45° ned til 10 mm tykkelse. De 40 mm i bredden det drejer sig om, regnes i stedet som 24 mm med en tykkelse på 50 mm . Kassens indvendige mål bliver da $0,384 \mathrm{~m} \times 1,082 \mathrm{~m}$ x $1,082 \mathrm{~m}$. Arealet splittes op i seks elementer: to sidevægge, en bund- og en topvæg samt to bagvægge, som er bagvæggen delt lodret. Hver af delarealerne har centralt på hver side monteret et termoelement, og det antages, at de målte temperaturer er representative for deres respektive vægflader. Målekassens indvendige areal er efter kantkorrektionen $2,83 \mathrm{~m}^{2}$, og det udvendige areal er $3,45 \mathrm{~m}^{2}$. For at kompensere for de store hjornearealer i forhold til flademe, vælges et areal svarende til midt i målekassens vægge med en størrelse på $3,13 \mathrm{~m}^{2}$. Hver del i bagvaggen er da $0,641 \mathrm{~m}^{2}$, og de resterende er hver $0,463 \mathrm{~m}^{2}$. Idet alle samlinger er tatte og limede, kan polystyrenens λ_{10}-værdi sættes lig $30 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$, jvf. $/ 16 /$, og temperaturafhængigheden sættes $\operatorname{lig} 0,5 \% \mathrm{~K}^{-1}$.

Korrektionen for ikke adiabatiske vægge i målekassen foretages efter formlen:

$$
\begin{equation*}
\Delta P=\frac{\lambda_{p}}{d}\left(\sum T_{s} \cdot A_{s}+\sum T_{b} \cdot A_{b}\right) \tag{W}
\end{equation*}
$$

hvor $\triangle P$ er korrektionen af den elektrisk afsatte effekt i målekassen. λ_{p} er varmeledningsevnen i polystyrenen temperaturkorrigeret. d er vægtykkelsen, $50 \mathrm{~mm} . \mathrm{A}_{\mathrm{s}}$ og A_{b} er arealet af fx en sidevæg hhv en bagvæg, $0,463 \mathrm{~m}^{2} \operatorname{og} 0,641 \mathrm{~m}^{2}$. Da de fire delarealer, bund-, top- og de to sidevægge er lige store, og de to bagvægge også er lige store, summeres temperaturforskellene i de to grupper. Derved fas ΣT_{s} og ΣT_{b}. Resultaterne af korrekionerne er vist i tabel 5.7.

Tabel 5.7 Korrektion for ikke-adiabatiske flader i målekassen. \bar{T}_{p} er middeltemperaturen af væggen i målekassen.

Måling nr.	$(-)$	I	II	III
P	(W)	20,47	20,13	19,28
\bar{T}_{p}	$\left({ }^{\circ} \mathrm{C}\right)$	25	28	33
λ_{p}	$\left(\mathrm{mWm}^{-1} \mathrm{~K}^{-1}\right)$	32,3	32,7	33,5
ΣT_{s}	$\left({ }^{\circ} \mathrm{C}\right)$	$-1,7$	$-1,1$	$-0,1$
ΣT_{b}	$\left({ }^{\circ} \mathrm{C}\right)$	0,2	0,5	1,2
ΔP	$(\mathrm{~W})$	$-0,43$	$-0,12$	0,48
$P_{k}=P+\Delta P$	$(\mathrm{~W})$	20,04	20,01	19,76
ΔT_{l}	$\left({ }^{\circ} \mathrm{C}\right)$	24,0	23,2	22,9
U_{k}	$\left(\mathrm{Wm}^{-2 \mathrm{~K}-1)}\right.$	0,70	0,72	0,72

Det ses, at den største korrektion er $0,48 \mathrm{~W}$, hvilket er under $21 / 2 \%$, sà ved disse forsog har det ikke været nadvendigt. En sidste korrektion er for overgangsisolanserne, R_{i} og R_{u}, som ud fra forsøgene er beregnet til noget højere værdier end de sædvanlige. U-værdien efter korrektion til de normale overgangsmodstande er vist i tabel 5.8.

Tabel 5.8 U-værdien korrigeret til de sædvanlige overgangsisolanser

Måling nr. $(-)$	U_{k} $\left(\mathrm{mWm}^{-2} \mathrm{~K}^{-1}\right)$	\mathbb{R}_{u} $\left(\mathrm{mWm}^{\left.-2 K^{-1}\right)}\right.$	\mathbb{R}_{i} $\left(\mathrm{mWm}^{2} \mathbf{K}^{-1}\right)$	U $\left(\mathrm{mWm}-2 \mathbf{K}^{-1}\right)$
1	0,70	0,06	0,22	0,76
2	0,72	0,05	0,19	0,76
3	0,72	0,07	0,21	0,79

6. TEORETISKE UNDERSQGELSER

6. 1 Beregning af U-vaerdi

Bestemmelsen af U-værdien inkluderer flere varmestrømme. For en aerogelkonstruktion alene er det varmestrømmen vinkelret gennem aerogelen og varmestrommen som følge af kantforseglingens kuldebrovirkning. For det færdige element, aerogelkonstruktionen monteret, skal der naturligvis inkluderes varmestrammen gennem karmen eller rammesystemet.

Varmetransport genmem evakueret aerogel. Som tidligere nævnt benyttes her termen tilsyneladende varmeledningsevme, λ_{t}, for aerogel. Den kan findes ved at addere varmeledningsevnen for skelettet, λ_{s}, og en korrigeret for stråling. I det aktuelle temperaturområde er λ_{s} på $4 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$ for densiteter, $\rho, \operatorname{lig} 75$ og $105 \mathrm{kgm}^{-3}$ og λ_{s} lig $13 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$ for $\rho \operatorname{lig} 270 \mathrm{kgm}^{-3}$, 17/. λ_{s} er proportional med densiteten i en potens, β, større end 1 . I/10/ er β foreslået til ca. 1,7. Ud fra de ovennævnte tal i/7/ giver β lig 1,8 det bedste kurve-fit, og felgende formel kan da opstilles:
(6.1) $\lambda_{s}=4,44 \cdot 10^{-4} \cdot \rho^{1,8}+2,57$

$$
\left(m W m^{-1} K^{-1}\right)
$$

Varmestrømmen ved stråling findes af formelen (fra /8/):
(6.2) $q_{s t}=n^{2} \sigma\left(T_{v}^{4}-T_{K}^{4}\right) /\left(2 / \epsilon-1+\tau_{0} 3 / 4\right)$

$$
\left(W m^{-2}\right)
$$

n er aerogels brydningsindeks, og det er i/8/ vist, at n afhænger af densiteten:
(6.3) $n=1+0,21 \cdot \rho \cdot 10^{-3}$
σ er Stefan-Boltzmanns konstant. T_{v} og T_{k} er kelvintemperatureme af den varme og den kolde begrænsningsflade. ϵ ' er det effektive emissionstal, som er indfort for at tage hojde for den tidligere omtalte kobling mellem lednings- og strålingstransport. Udtrykket for ϵ 'er også fra 18/:

$$
\begin{equation*}
\epsilon^{\prime}=1-(1-\epsilon) \exp \left(-N(2 N+0,04) \cdot \arctan \left(\tau_{0}\left(1+\frac{0,02}{N}\right)\right)\right) \tag{6.4}
\end{equation*}
$$

eer begrensningsfladernes emissionstal.
I (6.4) indgår N, som en parameter, der beskriver forholdet mellem ledning og stråling.

$$
\begin{equation*}
\text { (6.5) } \quad N=\frac{\lambda_{s} \bar{\alpha}}{4 \sigma T_{v}^{3}} \tag{-}
\end{equation*}
$$

\bar{a} er middelekstinktionskoefficienten, som omtales senere. Hvis N er større end 0,1 , er det i/8/ angivet, at ϵ ' kan skrives som:
(6.6) $\epsilon^{\prime}=1-(1-\epsilon) \exp \left(-\arctan \left(\tau_{0} / 2\right)\right)$
τ_{0} der indgår i (6.2), (6.4) og (6.6) er den optiske dybde, der er givet ved:
(6.7) $\tau_{0}=\bar{a} \cdot d$
d er aerogelens tykkelse. Aerogel er et ikke-gråt materiale i strålingshenseende, altså ekstinktionskoefficienten er stærkt belgelængdeafhængigt og dermed temperaturafhængigt, jvf. figur 3.1, s. 12.I/18/ er den belgelængdeafhængige, specifikke ekstinktionskoefficient tranformeret til specifik middelekstinktionskoefficient, $\frac{\bar{a}}{\rho}$, som afhænger af en middelstrålingstemperatur, T_{r} $1 / 4 /$ er faigende udtryk bestemt for $\bar{\alpha}$:
(6.8) $\bar{a}\left(T_{r}\right)=20 \cdot \rho \cdot\left(\frac{T_{r}}{319}\right)^{-2.6}$

Udtrykket gælder for brydningsindeks mellem 1,020 og 1,030, dvs. densiteter i områder 95-143 kgm^{-3} (jvf. 6.3).

Middelstrålngstemperaturen er giver i/18/ som:
(6.9) $T_{r}^{5,6}=\frac{T_{v}^{6,6}-T_{k}^{6,6}}{6,6\left(T_{v}-T_{k}\right)}$

$$
\left(K^{5,6}\right)
$$

I det byggetekniske temperaturområde vil T_{r} være meget tæt på middelværdien af $T_{v} \circ g T_{k}, T_{m}$. For T_{m} mellem 270 K og 370 K er forskellen mellem T_{r} og T_{m} kun $0,2-0,3 \mathrm{~K}$ for $\mathrm{T}_{\mathrm{v}}-\mathrm{T}_{\mathrm{k}}$ lig 20 K . For $\mathrm{T}_{\mathrm{V}}-\mathrm{T}_{\mathrm{k}}$ lig 60 K er $\mathrm{T}_{\mathrm{r}}-\mathrm{T}_{\mathrm{m}}$ steget til $1,8-2,5 \mathrm{~K}$ i området.

Kantiforseglingens kuldebrovirkning. Princippet i denne mekanisme er en varmestrom, som foregår samtidig med varmetransporten gennem aerogelen. På den varme side af aerogelkonstruktionen overføres varmen fra luften til det varme glas. Hovedparten ledes videre gennem aerogelen, men på grund af at kantforseglingen er termisk bedre ledende end aerogelen, vil en del af varmen i det varme glas ledes ud imod randen. Her ledes den igennem kantforseglingen til det kolde glas, som derved varmes op langs randen i forhold til resten af glasset. Afgivelsen til luften sker så samtidig med, at der sker en ledning mod centrum af glasset.

For at forenkle opstilling og lasning af model for kantforseglingens kuldebrovirkning er der lagt et skilleplan ind i aerogelen, som derved deles i to lige tykke stykker. Dette plan har temperaturen T_{m}, som er middeltemperaturen af $T_{g v}$ og $T_{g k}$. Begge glas har tykkelsen e_{g} og varmeledningsevnen λ_{g}. For det varme glas modtages varmen fra luftemperaturen T_{v} ved varmeoverføringskoefficienten h_{i}, der er lig $1 / R_{i}$. Varmen, der ledes ud i aerogelen fra glasset, bestemmes af varmetransmissionskoefficienten h_{f} og modtagelsestemperaturen or T_{m}. h_{f} er lig $2 / R_{\mathrm{a}}$, altså det dobbelte af den reciprokke aerogelisolans. Glastemperaturen varierer i stedet x regnet fra kantforseglingen og benævnes T_{gv} (x). Det antages, at den er konstant langs med kantforseglingen og i glassets tykkelse. x er lig nul i glasset over skillefladen mellem aerogel og
kantforsegling og midt på glasset er x lig $\mathrm{b} / 2$, som er den halve afstand mellem kantforseglingerne. $T_{g v}(0)$ er lig T_{kv} og $\mathrm{T}_{\mathrm{gv}}(\mathrm{b} / 2)$ er lig T_{gv}. Tilsvarende gælder for det kolde glas, at der fra midt i aerogelen ledes varme til glasset fra temperaturen $\mathrm{T}_{\mathrm{m}} \mathrm{og}$ med varmetransmissionskoefficienten $h_{t} \operatorname{lig} h_{f} \operatorname{lig} 2 / \mathbb{R}_{\mathrm{a}}$. Og fra glasset med varmeoverføringskoefficienten h_{u}, lig $1 / \mathbb{R}_{u}$, til den kolde luft med temperaturen T_{lk}. Sluttelig er $\mathrm{T}_{\mathrm{gk}}(0) \operatorname{lig} \mathrm{T}_{\mathrm{kk}} \circ \mathrm{og} \mathrm{T}_{\mathrm{gk}}(\mathrm{b} / 2) \operatorname{lig} \mathrm{T}_{\mathrm{gk}}$. Kantforseglingen leder varme fra det varme glas, som har temperaturen T_{kv}, til det kolde glas, der har temperaturen T_{kk}, og modstanden i kantforseglingen er r_{k}. Vinkelret herpå ledes varme fra aerogelen og gennem kantforseglingen. Sidstnævnte ses der bort fra her, således at der parallelt med kantforseglingen og ved glassenes frie ender er en adiabatisk flade. Af ovenstaiende ses, at den adiabatiske flade udstrækkes til også at dække glasstriben over kantforseglingen. Vamestrommen i det varme glas til kantforseglingen kaldes q_{v}. Den gennem kantforseglingen kaldes q_{r}, og varmestrømmen fra kantforseglingen ud i det kolde glas kaldes q_{k}. Det antages, at h_{i}, h_{f}, h_{t} og h_{i} er konstante og ikke varierer med stedet.

I/4/ er modellen opstillet, og der er fundet en analytisk losning. Resultatet blev for varmestrommen i det varme glas til kantforseglingen:

$$
\begin{align*}
& \text { (6.10) } q_{v}=-b / 2\left[\left(h_{i}+h_{f}\right) T_{k v}-h_{i} T_{l v}-h_{f} T_{m}\right] F_{v} \tag{-1}\\
& \text { hvor } F_{v}=\frac{\tanh \left(m_{v} \cdot b / 2\right)}{m_{v} \cdot b / 2} \tag{-}\\
& \quad \text { og } m_{v}^{2}=\frac{h_{i}+h_{f}}{\lambda_{g} \cdot e_{g}}
\end{align*}
$$

For det kolde glas fandtes q_{k} til:
(6.11) $q_{k}=b / 2\left[\left(h_{t}+h_{u}\right) T_{k k}-h_{t} T_{m}-h_{u} T_{l k}\right] F_{k}$ $\left(W m^{-1}\right)$

$$
\begin{equation*}
\text { hvor } F_{k}=\frac{\tanh \left(m_{k} \cdot b / 2\right)}{m_{k} \cdot b / 2} \tag{-}
\end{equation*}
$$

$$
\operatorname{og} m_{k}^{2}=\frac{h_{t}+h_{u}}{\lambda_{g} e_{g}}
$$

$\left(m^{-2}\right)$

Varmestrommen gennem kantforseglingen findes af:
(6.12) $q_{r}=\frac{T_{k \nu}-T_{k k}}{r_{k}}$
$\left(W m^{-1}\right)$
F_{v} og F_{k} kan opfattes som finnefaktorer.
Hvis man ser på (6.10), er tælleren i F_{v} af formen tanh y. I denne forbindelse kan tælleren sættes $\operatorname{lig} 1$, da fejlen herved er mindre end $0,01 \%$. Det ses af, at $0,01 \%$ giver tanh y lig 0,9999 , og så er y lig med $\mathrm{m}_{\mathrm{v}} \cdot \mathrm{b} / 2 \operatorname{lig} 4,952$. Det værste tilfælde her er $\mathrm{b} / 2 \operatorname{lig} 0,28 \mathrm{~m}$ (prototype II) og $\lambda_{g} \cdot e_{g}$ er $0,0032 \mathrm{WK}^{-1}$ så der fås:

$$
\tanh \left(m_{v} \cdot b / 2\right) \geq 0,9999
$$

\downarrow

$$
m_{v} \cdot b / 2 \geq 4,95
$$

\Downarrow

$$
m_{v} \geq 17,69
$$

\Downarrow

$$
m_{v}^{2} \geq 312,78
$$

\Downarrow

$$
h_{i}+h_{j} \geq 1,00
$$

Da h_{i} er lig $1 / R_{i}$, og R_{i} typisk er $0,13 \mathrm{~m}^{2} \mathrm{KW}-1$, er substitutionen i orden. Ligningen bliver da:

$$
q_{v}=-b / 2\left[\left(h_{i}+h_{f}\right) T_{k v}-h_{i} T_{l v}-h_{f} T_{m}\right] F_{v}
$$

\downarrow

$$
q_{v}=-b / 2\left[\left(h_{i}+h_{f}\right) T_{k v}-h_{i} T_{l v}-h_{f} T_{m}\right] \frac{1}{m_{v} \cdot b / 2}
$$

\Downarrow
(6.13) $q_{v}=-\sqrt{\frac{\lambda_{g} e_{g}}{h_{i}+h_{j}}}\left[\left(h_{i}+h_{f}\right) T_{k v}-h_{i} T_{l v}-h_{f} T_{m}\right]$
$\left(W m^{-1}\right)$

Og tilsvarende for (6.11)'s vedkommende:
(6.14) $q_{k}=\sqrt{\frac{\lambda_{g} e_{g}}{h_{t}+h_{u}}}\left[\left(h_{t}+h_{u}\right) T_{k k}-h_{t} T_{m}-h_{u} T_{l k}\right]$
$\left(W m^{-1}\right)$

De ovennævnte forudsætninger gar, at de tre varmestromme er lige store.
(6.15) $q_{v}=q_{r}=q_{k}$

Ud over varmestrømmene er T_{kv} og T_{kk} ubekendte. Hvis (6.13), (6.12) og (6.14) skrives som:

$$
\begin{aligned}
& q_{v}=-A T_{k v}+B \\
& q_{r}=C\left(T_{k \nu}-T_{k k}\right) \\
& q_{k}=D T_{k k}-E,
\end{aligned}
$$

kan T_{kv} og T_{kk} bestemmes ved:
(6.16) $T_{k k}=\frac{\frac{B+E}{A}+\frac{E}{C}}{1+\frac{D}{C}+\frac{D}{A}}$
(6.17) $\quad T_{k v}=\frac{(C+D) T_{k k}-E}{C}$

Ud fra aerogelkonstruktionens energibalance kan dens resulterende varmetabskoefficient, U_{r}, findes på folgende vis, når der tages hensyn til kantorseglingens kuldebrovirkning:

$$
Q_{r}=Q_{a}+Q_{k}
$$

\Downarrow

$$
U_{r} \cdot A_{t} \cdot\left(T_{l v}-T_{l k}\right)=U_{0} A_{a}\left(T_{l v}+T_{l k}\right)+P \cdot q_{r}
$$

\Downarrow

$$
\begin{equation*}
U_{r}=U_{0} \frac{A_{a}}{A_{t}}+\frac{P \cdot q_{r}}{A_{t}\left(T_{l v}-T_{l k}\right)} \tag{6.18}
\end{equation*}
$$

$$
\left(W m^{-2} K^{-1}\right)
$$

6.2 Sammenligning af mailte og beregnede vaerdier

Thilsyneladende varmeledningsevne. For en aerogeldensitet på $100 \mathrm{kgm}^{-3}$ er den tilsyneladende varmeledningsevne $8 \mathrm{mWm}^{-1} \mathbb{K}^{-1}$, hvoraf de $4 \mathrm{mWm}^{-1} \mathbb{K}^{-1}$ er λ_{s}, i det aktuelle temperaturområde. Den i afsnit 6.1 omtalte model er kun gældende op til en densitet på $143 \mathrm{kgm}^{-3} \mathrm{og}$ dækker derfor ikke de i prototyperne anvendte densiteter på hhv. $200 \mathrm{og} 150 \mathrm{kgm}^{-3}$. Dog er der formel 6.1 for λ_{s}, som giver $6,2 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$ for $\rho_{a} \operatorname{lig} 150 \mathrm{kgm}^{-3}$ og $\lambda_{s} \operatorname{lig} 8,7 \mathrm{mWm}^{-1} \mathrm{~K}^{-1}$ for en ρ_{a} på $200 \mathrm{kgm}^{-3}$. Så hvis den strålingsbetingede varmeledningsevne, λ_{r}, forventes faldende ved øget densitet, da ser det ud til, at den tilsyneladende varmeledningsevne for aerogelen, λ_{α}, er ca 10 og $12 \mathrm{mWm}^{-1 \mathrm{~K}^{-1}}$ for ρ_{a} lig $150 \mathrm{og} 200 \mathrm{kgm}^{-3}$ som bestemt ved forsagene, jvf. afsnit 5.2 .

Kantiorseglingens isolans. Beregningen af isolansen sker på to måder. Generelt bliver kantforseglingen betragtet som en isolans per længdeenhed, der har kontakt med begge glas. Forskellen på de to måder er, hvordan kantforseglingens isolans i praksis fremkommer. På den ene måde ses rfs-profilet som den dominerende leder, og der ses bort fra ledning i luft og evt. støttematerialer. Metallets isolans regnes fra fuge til fuge. Den anden måde medtager luftens og evt. støttematerialers isolans. Det sker ved at se modstandene for luft, træliste og rustfrit stål i kantdesign I, som parallelle modstande i serie med modstandene for fugerne. Ved kantdesign II - IV er der to parallelle modstande, som er for metallet og for luften/KERLANE. I sidstnævnte tilfæide regnes med samme λ-værdi i vakuum som udenfor. Dimensionerne er bølgebredden og afstanden mellem flangerne på profilet. Der er altså set bort fra, at metallet går på tværs et antal gange, fordi dets isolans på den led er forsvindende.

De benyttede λ-værdier for materialerne der indgår i prototypernes kantforsegling er folgende: butyl: $0,2 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$; PUR-liste: $0,2 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$; rustfrit stål: $14 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$; træ: $0,12 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}(\mathbb{I})$; KERLANE 50 -papir: $0,022 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ (IV) og luftisolans på $0,7 \mathrm{~m}^{2} \mathrm{KW}-1$. De beregnede $\mathrm{r}_{\mathrm{k}^{-}}$ værdier, når der kun tages hensyn til stålprofilet, metode 1, er vist i tabel 6.1 og efter metode 2 i tabel 6.2.

Tabel 6.1 Beregnet r -værdi for kantorsegling, metode 1.

Kantdesign nr. $(-)$	Fuger	r_{f}	rfs -profil $\mathrm{e} \times 1$	r_{s}	$\mathrm{r}_{\mathrm{k}}=\mathrm{r}_{\mathrm{s}}+\mathrm{r}_{\mathrm{f}}$
$(\mathrm{mm} \times \mathrm{mm})$	$(\mathrm{mKW}-1)$	$(\mathrm{mm} \times \mathrm{mm})$	$(\mathrm{mKW}-1)$	$(\mathrm{mKW}-1)$	
I	1×12	0,83	$0,75 \times 16,5$	1,57	2,40
II	1×11	0,91	$0,2 \times 50,0$	17,86	18,77
II	1×13	0,77	$0,2 \times 65,0$	23.21	23,98
IV	1×18	0,56	$0,2 \times 114,0$	40,71	41,27

Tabel 6.2 Beregnet r-værdi for kantforsegling, metode 2.

Kantdesign nr.	Luft		Materiale nr.2		$\left(\frac{1}{r_{s}}+\frac{1}{r_{t}}+\frac{1}{r_{2}}\right)^{-1}$	r_{k}
$(-)$	dim. (mmxmm)	r_{1} $(\mathrm{mKW}-1)$	dim (mmxmm)	r_{2} $(\mathrm{mKW}-1)$	$(\mathrm{mKW}-1)$	$(\mathrm{mKW}-1)$
I	7×15	89,29	6×15	20,83	1,44	2,27
II	13×17	54,49	-	-	13,45	14,36
III	14×18	53,57	-	-	16,19	16,96
IV	2×16	333,33	16×13	36,93	18,30	18,86

De beregnede r-værdier kan så benyttes i beregningen af prototypernes resulterende U-værdier ved hjælp af formlerne i afsnit 6.1. Der anvendes de under forsggene gældende forhold, og r_{k}-værdi fra både tabel 6.1 og 6.2 samt de målte værdier. Endvidere er U-vardien fundet korrigeret til de sædvanlige ind- og udvendige overgansmodstande. Kuldebroeffekten fra hjørnefelterne skønnes her at være uden betydning. Mellemresultaterne er vist i appendiks 1 .

Tabel 6.3 Beregnet U-vardi for prototypeme ved beregnet og målt isolans for kantforsegling.

Ved en sammenligning af de tre U_{r}-værdier for hver prototype er det ikke samme billede, der går igen. For I er der ikke stor forskel på de tre værdier, men den målte værdi er lavere end begge de beregnede. Når r_{k}-værdien er så lav, har selv relativt store ændringer ikke den voldsomme indflydelse på U-værdien, hvilket også ses af tallene. Angãende prototype II er der målt en meget hojere r_{k}-værdi end beregnet. Åragen hertil bor sages i, at målingen ikke har været udfart særlig godt. Mere lid kan der nok fastes til resultaterne for prototype MI, da der kom et rimeligt antal målepunkter ved forsøget. Den herved fundne isolans er faktisk lig den beregnede ved metode 1, altså at stålprofilet er den dominerende varmeleder. Desuden er antagelsen om luftmodstand ækvivalent med et rektangulært tværsnit måske ikke holdbar, da en vis overgangsmodstand kan forventes for luften inde mellem bolgerne i profilet. Derved bliver modstanden for luften endnu storre, og den resulterende modstand for parallelkoblingen nærmer sig værdien for metallet. I kantdesign IV er der som nævnt lagt filtmateriale ind mellem balgerne, og under evakueringen blev det klemt i profilet. Det vil givetvis forhindre direkte kontakt mellem enkelte bolger, men pà den anden side har det givet en god termisk kontakt mellem filt og metal. Samtidig vil den klemte filt nok få en storre λ-værdi end opgivet. Derved har der været en delvis termisk kortslutning i balgtværsnittet, og det forklarer, hvorfor den eksperimentelt fundne r_{k} ligger midt mellem de beregnede ved metode $1 \log 2$.

Kantdesign IV's stærkt agede vejlængde i forhold til III bliver ikke belannet i form af en markant forbedret kantforseglingsisolans. Den store fordel ved IV sammenlignet med II og III
er så, at flagerne mod fugerne meget bedre holdes parallelt. Samme stottemateriale kan anvendes i II og III, men det betyder så formentlig en reduktion i kantforseglingens isolans, jvf. ovenstående.

Med udgangspunkt i den målte r_{k} på $28 \mathrm{mKW}-1$ på prototype IV så vil det give folgende kuldebrobidrag på en $1 \times 1 \mathrm{~m}^{2}$ rude med 20 mm evakueret aerogel, der har densiteten $100 \mathrm{kgm}^{-3} . \mathrm{U}_{\mathrm{o}}$ bliver $0,37 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. T_{lk} sættes $\operatorname{lig} 0^{\circ} \mathrm{C}$ og $\mathrm{T}_{\mathrm{lv}} \operatorname{lig} 20^{\circ} \mathrm{C}$. Det giver $\mathrm{T}_{\mathrm{gk}} \operatorname{lig} 0,3^{\circ} \mathrm{C}$ og T_{gv} på $19^{\circ} \mathrm{C}$. U bliver da $0,44 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$, og det er 18% højere end U_{0}.

Total U-værdi. Som i kapitel 5 blev der målt total U-værdi på prototype IV med karm ved tre forskellige temperaturniveauer. Kantforseglingens r_{k}-værdi sættes lig $28 \mathrm{Wm}-1 \mathrm{~K}^{-1}$ som ovenfor, og resultatet af beregningerne er vist itabel 6.4.

Tabel 6.4 Beregnet U-værdi for prototype IV, korrigeret for kuldebroeffekt. Temperaturforhold som ved total-U-værdimålinger.

Måling nr. $(-)$	ΔT_{1} ${ }^{\circ} \mathrm{C}$	T_{m} ${ }^{\circ} \mathrm{C}$	$\mathrm{R}_{\mathrm{i}}+\mathrm{R}_{\mathrm{u}}$ $\left(\mathrm{m}^{2} \mathrm{KW}^{-1}\right)$	U_{o} $\left(\mathrm{Wm}^{-2} \mathrm{~K}^{-1}\right)$	U_{r} $\left.\mathbf{W m}^{-2} \mathrm{~K}^{-1}\right)$
1	24,0	12,7	0,28	0,50	0,54
2	23,2	16,7	0,24	0,51	0,55
3	22,9	21,4	0,28	0,50	0,54

Tværsnittet af karmen var $67 \mathrm{~mm} \times 42 \mathrm{~mm}$, og en λ-værdi på $0,12 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ giver en U-værdi på $1,63 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ for måling 1 og 3 , og $\mathrm{U} \operatorname{lig} 1,74 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ for måling 2 . Prototypen er klodset op, så der er en luftspalte rundt langs prototypen, i snit 3 mm bred og 33 mm dyb. Spalten afgrenses af de to 17 mm tykke glaslister. Det giver en U-værdi for dette delareal på 0,55 $W^{-2} \mathrm{~K}^{-1}$ (1\&3) og $0,56 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ (2) for en isolans for luften på $1,3 \mathrm{~m}^{2} \mathrm{KW}-1$. Den totale U-værdi bestemmes ved at arealvægte U-værdieme. De tre arealer er: $0,176 \mathrm{~m}^{2}, 0,016 \mathrm{~m}^{2} \mathrm{og}$ $1,00 \mathrm{~m}^{2}$. De beregnede og målte totale U-værdier for de tre målinger er vist i tabel 6.5 .

Tabel 6.5 Måte og beregnede totale U-vardier for prototype IV med trækarm.

Måling nr.	U-værdi			
	center $(-)$			
	incl. keregnet			
$\left(\mathrm{Wm}^{-2} \mathrm{~K}^{-1}\right)$	total $\left(\mathrm{Wm}^{-2} \mathrm{~K}^{-1}\right)$	mål		
1	0,51	0,54	0,70	total
2	0,50	0,55	0,73	0,72
3	0,51	0,54	0,70	0,73

Det fremgår, at overensstemmelsen mellem de måle og beregnede værdier er meget fin. De forskelle, der opstræder, er ikke større, end at de kan skyldes variationer i overgangsmodstandene. Resultaterne viser altså, at det er muligt med den anvendte model at give et kvalificeret bud på kantforseglingens kuldebrovirkning. Desuden ser guarded hot-box opstillingen også ud til at fungere efter hensigten.

6.3 Forslag till ramme- og kammsystemer

Når aerogelkonstruktionen er fardig med en kantforsegling med en moderat kuldebrovirkning, må karmen eller rammesystemet, hvori ruden eller daklaget skal monteres ikke glemmes. Hvis man ser på måling 2 i tabel 6.5 , viser det sig, at kuldebrovirkningen af kantforseglingen er ca. 7% af den totale U-vardi. Karmens bidrag derimod er 25%, selv om den arealmæssigt kun udgar ca. 15%. Mere generelt kan man sige, at når der er tale om superisolerende ruder eller dæklag og tilharende karm- og rammesystemer, er det de sidstnævnte, der pludselig er det termiske hul i klimaskærmen. Hvis man ser på vinduessiden, er det kun ruden, der har været under udvikling. Med hensyn til karmen er der benyttet plast i stedet for træ, men det lader til kun at være af vedligeholdeseshensyn. I termisk henseende har karmen måske været bedre end eller på niveau med ruden, men det er ved at være slut med den nye generation af ruder. Desværre ser det ikke ud til at vare nogen videre udvikling i gang på dette område.

Med udgangspunkt i karmen til prototype IV kunne der måske udvikles en bedre isolerende udgave. Der kunne fx indfores en kuldebroafbrydelse i form af PUR-skum, jvf. figur 6.1.

Figur 6.1 Snit i karm, prototype IV samt forbedringsforslag. Kuldebroafbrydelsen er Purskum. Alle målene er i mm.

Med de sadvanlig ind- og udvendige overgangsisolanser og en varmeledningsevne for træ på $0,12 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$, har karmen en U-værdi på $1,98 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. Prototype IV med karm har så en total U-værdi på $0,76 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$, når der vægtes efter areal, jvf. afsnit 6.2. Hvis det antages, at forbedringsforslaget i figur 6.1 kan virke statisk, og λ-værdien for PUR-skummet sættes lig 25 $\mathrm{mWm}-1 \mathrm{~K}^{-1}$, bliver U-værdien for prototype IV med karm lig $0,60 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. Altså en reduktion
over 20%. At PUR-striben kun er 18 mm tyk, lig aerogeltykkelsen, skyldes, at så kan opodsningen til aerogelruden hvile af på træet. Der bliver et problem ved montering af karmen i ıdueshullet, idet PUR-skummet kan vise sig for svagt til at bære de sædvanlige skruer. ssuden vil der være de tilfælde, hvor vinduet har en gående ramme, som kræver beslag monet midt i karmen. Disse problemer skal loses, frr udformningen kan anvendes. Men som lene indikerer, er der måske en del at hente ved en beskeden raffinering af karmdelen, og det nok vare low-tech udvikling i forhold til rudedelen. Endelig ville der vare en fordel ved skiftning af karme, da den synlige del stadig er af træ, så der ændres ikke ved karmenes kitektoniske udtryk.
odsat vinduessiden er der ikke for solvægge et standard rammesystem. Det hænger ivfolgelig sammen med, at udbredelsen af solvægge er noget begrenset. Derved mangler andlaget for udvikling og industriel fremstilling af rammesystemer. I stedet er der typisk bettet profilsystemer til drivhuse og glastilbygninger, som er af aluminium og med tilhørende aftig kuldebrovirkning. Sammenlignet med vinduer er der den fordel ved solvægdæklag, at det usparente areal ofte er en del større, hvorved rammesystemet kommer til at udgøre en relativ indre del af det samlede areal.
ed udgangspunkt i et profilsystem til glastilbygning er der forsøgt givet et bud på størrelsesdenen af kuldebrobidraget for rammesystemet til solvægsdæklag. En modificeret udgave af Jfilet er vist ifigur 6.2. Det er lavet af aluminium og består af et I-profil med en udkraget del pppen. Heri kan dæklisten skrues fast. Dæklaget, der benyttes, er et aerogeldæklag, $1,20 \mathrm{~m} \mathrm{x}$ 40 m , med 20 mm evakueret aerogel, $\rho=100 \mathrm{kgm}^{-3}$, og en kantforsegling med en r_{k}-værdi $28 \mathrm{mKW}-1$. Afstanden mellem mur og dæklag er 73 mm . En termisk forbedring af profilstemet er vist i figur 6.3.

ur 6.2 Snit i standardprofil til to-lags ruder. Modificeret til EDB-beregning. Kun et halvt profil er vist.

Figur 6.3 Deklagsprofil med brudt kuldebro. Kun et halvt profil er vist.
For at bryde kuldebroen i profilet fra mur til daklag, er det sat op på en tralagte. Det er desuden den fordel, at hvis der er tale om opsætning af solvæg på en ældre mur, kan rammesystemet få el plant underiag ved at rete lagteme op.

Til undersogelserne er det to-dimensionale beregningsprogram Kobru86, $/ 22 /$, anvendt. Det er sket ved, at dæklaget med rammesystem er delt op i et center- og et kantareal. For centerarealet er varmestrommen en-dimensional og beregnes på normal vis. For kantarealet er varmestrommen forudsat at vare to-dimensional, idet de tre-dimensionale varmestromme i hjomeme negligeres, og her benyttes beregningsprogrammet. Af hensyn til dette er det nødvendigt at bestemme en ækvivalent λ-vardi for luftspaten mellem dæklag og mur. Ud fra beregning af varmetransporten ved konvektion og stråling ved en middeltemperatur på $40^{\circ} \mathrm{C}$ og forskellige temperaturspand, blev en ækvivalent varmeledningsevne pà ca. $40 \mathrm{mWm}-1 \mathrm{~K}-1$ bestemt. Som reference blev benytet et tvarsnit helt uden profilsystem. Den beregnede varmetransportkoefficient fra muren og ud til den omgivende luft blev for referencen, profilet ifgur 6.3 og profilet i figur $6.2(1,2 \& 3): 0,27 \mathrm{Wm}^{2} 2 \mathrm{~K}^{-1}, 0,61 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ og $0,86 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. Centervardien for daklaget bliver $0,23 \mathrm{Wm}-2 \mathrm{~K}^{-1}$. Efter vagtning efter areal, hvor arealet langs kanten og centerarealet or hhv. $1,12 \mathrm{~m}^{2} \mathrm{og} 1,83 \mathrm{~m}^{2}$, fäs falgende varmetransporthoefficienter: (1) $0,24 \mathrm{Wm}^{-2 \mathrm{~K}}{ }^{-1}$, (2) $0,37 \mathrm{Wm}^{-2 \mathrm{~K}^{-1}}$ og (3) $0,47 \mathrm{Wm}^{-2 \mathrm{~K}^{-1}}$. Det giver en relativ forggelse fra center- til totalværdien pa:: (1) 6%, (2) 63% og (3) 104%. Hvis det antages, at disse vardier kan relateres direkte til daklagets center U-vardi giver det folgende totale U-vardier for de to profiler og dæklag: (2) $0,61 \mathrm{Wm}^{-2 K} \mathrm{~K}^{-1}$ og (3) $0,76 \mathrm{Wm}^{-2 K}-1$. Det ser altså ud til at have en betydning, at kuldebroen brydes. Samtidig er det klart, at der bor ske en udvikling af rammesystemer, således at den termiske isolans kommer på niveau med dæklaget.

7. BEREGNET UDBYTTE

For at få en idé om, hvad anvendelsen af aerogel som transparent isolering i vinduer og solvægsdæklag vil betyde energiokonomisk, er det ideelt at foretage målinger i fuld skala i passende tidsrum. Det er desværre uden for dette projekts budget-og tidsramme. I stedet for er der brugt et EDB-baseret beregningsprogram og udfort simuleringer på årsbasis. Desuden er der sammenlignet med mere almindeligt benyttede komponenter og teknikker, salledes at det relative udbytte af aerogelkonstruktioneme kan bedommes.

7.1 Forudseetninger

Beregningsprogrammet SUNCODE $/ 21 /$, som kan simulere de termiske forhold i en bygning, er benyttet. Det danske referenceår, TRY, er brugt som referencear. Tre forskellige boligerer er blevet undersagt. Den første er en ældre lejlighed i et aldre etagebyggeri med massive ydermure. De to sidste er principielt det samme parcelhus, hvor blot isoleringsgraden er forskellig. Det ene er, hvad der måske kunne være et typisk parcelhus fra begyndelsen af firseme, hvorimod det andet er et lavenergihus med storre isoleringstykkelser og lavenergiruder. En undersagelse er foretaget af solvægge anvendt pà lejligheden og lavenergihuset, og af forskellige vinduer anvendt i standard parcelhuset. Endvidere sammenlignes med en udvendig efterisolering for lejlighedens vedkommende.

Boligheskivelser. Lejligheden er beliggende i en vestvendt gavl med vinduer, to-lags, i nordog sydfacaden. Den er placeret over stueetagen og under øverste etage. Etageadskillelserne er af træ, og ydermuren er $11 / 2$-stens teglmur med en tykkelse på 36 mm . Brutto- og nettoetagearealet er hhv. 70 og $61 \mathrm{~m}^{2}$. Beregningsmæssigt er lejligheden delt op i en nord- og sydzone, som er lige store og adskilles af en $1 / 2$-stens teglmur. Solvæggene og efterisoleringen placeres på sydfacaden. Vinduesarealet er $11,2 \mathrm{~m}^{2}$ fordelt med $6,7 \mathrm{~m}^{2}$ i sydfacaden og $4,5 \mathrm{~m}^{2}$ i nordfacaden og en glasprocent på 65. Der er natsænkning på varmesystemet. Det dimensionerende varmetab for lejligheden er 4048 W.

Parcelhuset er orienteret øst-vest og er íé plan med et brutoetageareal på $210 \mathrm{~m}^{2}$ og et nettoetageareal på $167 \mathrm{~m}^{2}$. I beregningerne er huset dell op i fire lige store zoner. Skillevaggene er $1 / 2$-stens tegl. Vinduerne udger $25,3 \mathrm{~m}^{2}$, som er fordelt med $10,4 \mathrm{~m}^{2} \mathrm{mod}$ syd, $4,3 \mathrm{~m}^{2}$ både mod ast og vest samt $6,3 \mathrm{~m}^{2}$ mod nord. I det normale parcelhus er vinduerne med almindelige to-lags termoruder, og i lavenergihuset er det to-lags ruder med en lav-emissionsbelagning og gasfyldning. Væggene er isolerede teglhulmure, gulvet er tragulv på straer, og loftet er isoleret mellem sparbjelkerne. I lavenergihuset er der natsænkaing på varmesystemet. Det dimensionerende varmetab for det almindelige parcelhus er 6928 W og for lavenergihuset 4586 W .

I simulexingene er flere ting felles for de tre boliger. Fyringssasonen går fra 15. september til 15 maj. Varmetabskoefficienten for vindueskarmene er sat til $1,6 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. Der er regnet med en horisontafskzring på 15° hele vejen rundt. Soltransmittansen for vinduerne er reduceret med 10% som kompensation for gardiner og potteplanter. Infiltrationen er sat til $0,5 \mathrm{~h}^{-1}$, dog er der
for lavenergihusets vedkommende mekanisk ventilation, som i fyringssasonen er tilkoblet genvinding, hvorved det effektive luftskifte bliver $0,3 \mathrm{~h}^{-1}$. Endelig er det forudsat, at overtemperaturer i lejligheden bortventileres med udeluft, hvis dennes temperatur er lavere end rumluftens. Det sker ved, at vinduerne forudsættes åbnet ved rumtemperaturer over $24^{\circ} \mathrm{C}$. Luftskiftet, der opnås herved, er sat til $3,0 \mathrm{~h}^{-1}$.

Solvægsheskuivelser. Der sammenlignes med tre forskellige daklagssystemer, og solvæggene er konstrueret som uventilerede solvægge. For lejlighedens vedkommende bruges ydermuren som absorber, og der sammenlignes desuden med udvendig efterisolering i form af 100 mm mineraluld. Det transparente areal for deklagene $o g$ arealet af efterisoleringen er $7 \mathrm{~m}^{2}$, salledes at de beregnede energibesparelser kan sammenlignes direkte. Ilavenergihuset er hele sydfacaden undtagen vinduerne solvæg med et transparent areal på $36,7 \mathrm{~m}^{2}$. Muren i solvæggen er 15 cm beton. Uden solvægge er sydfacaden en teglhulmur med 150 mm mineraluld som de tre andre facader.

Da solvægge er meget lidt udbredt her i landet, er der skelet til udlandet med hensyn til valg af dæklagssystemer. Den første solvæg er et enkelt lag glas med selektiv absorber. Den er valgt, fordi det lader til at være en af de mest anvendte konstruktioner. Den anden solvæg har ét lag glas, 100 mm honeycombs som transparent isolering og sortmalet absorber. Det er en af de hajestydende udformninger, og for ikke så længe siden er salget begyndt i Tyskland af dæklaget som en færdig konstruktion. Den sidste solvægstype har et dæklag med 20 mm evakueret aerogel (densitet lig ca. $100 \mathrm{kgm}^{-3}$) jernfrit glas og en sortmalet absorber.

Der er i simuleringeme anvendt en varmetabskoefficient, som har fået et tilleg for rammesystemets varmetab. De benyttede U-værdier og effektive transmittans-absorptans-produkter, $(\tau \alpha)_{\rho}$ for indfaldsvinkel, $i, \operatorname{lig} 0^{\circ}$ og 60° for de tre dæklagssystemer er vist i tabel 7.1.

Tabel 7.1 Værdier for de tre dæklagssystemer.

Dæklag		U	$(\tau \alpha)_{e}$	
nr.	type		$\mathrm{i}=0^{\circ}$	$\mathrm{i}=60^{\circ}$
$(-)$	$(-)$	$(-)$	$(-)$	
1	ét lag glas + sel. absorber	2,8	0,86	0,76
2	100 mm honeycomb	1,2	0,77	0,52
3	20 mm evak. aerogel	0,6	0,72	0,58

Rudebeskrivelser. Der foretages en sammenligning af tre principielt forskellige ruder. Udgangspunktet er almindelige to-lags termoruder, som nok er den mest brugte type her i landet. Varmetabskoefficienten er givet et tillæg for kantforseglingens kuldebrovirkning, og U-værdien er sat til $3,3 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$, ud fra tabel 3.1 , for alle termoruderne. Transmittansen er sat til 76%. Den anden rudetype er en tre-lags rude med to lav-emissionsbelægninger og kryptonfyldning. En sådan rude skulle være introduceret på det tyske marked. Den er valgt, fordi det er den bedste, der kan købes i dag. Efter korrektion for kantforseglingens kuldebrovirkning er U-værdien sat
til $1,0 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$. Dette er et skon, da konstruktionen ikke kendes i detaljer endnu. Transmittansen skulle være 51%, og denne værdi er benyttet. Den tredie rude bestå af 20 mm tykt, evakueret aerogel, og den korrigerede U-værdi er sat til $0,5 \mathrm{Wm}-2 \mathrm{~K}-1$. Det forudsattes, at udsynskvaliteten aff aerogelruderne er på hajde med de to ovennævnte typer, således at de kan anvendes i hele huset. Der simuleres med to udgaver af aerogelruden, og det er dels med almindeligt jernholdigt glas og dels med såkaldt jemfrit glas. Transmittansen for de to ruder er hhv. $67,5 \%$ og 75% 。

7. 2 Beregningsresultater

Solvagge. Resultaterne fra simuleringerne pả lejligheden er vist itabel 7.2. Det årlige energibehov til rumopvarmning er beregnet for de fem situationer: reference, dæklag 1, 2 og 3 samt udvendig efterisolering. Desuden er der vist den årlige besparelse per m^{2} solvag/efterisolering og den relative samlede besparelse.

Tabel 7.2 Beregnet energibesparelser for lejlighed.

	Arlig energiforbr.	Arlig besparelse	
	(kWh)	$(\mathrm{kWhm}-2)$	$(\%)$
Reference	6795	0	0
Dæklag 1	6106	98	10
Dæklag 2	5609	169	17
Dzklag 3	5522	182	19
Efterisolering	6095	100	10

Tilsvarende vardier er funder for solvaggene på lavencrgihusets sydfacade og vist i tabel 7.3.
Tabel 7.3 Beregnet energibesparelser for lavenergihus.

	Anlig energiforbr.	Arlig besparelse	
	(kWh)	$(\mathrm{kWhm} 2)$	$(\%)$
Reference	7748	0	0
Drklag 1	8771	-28	-13
Drklag 2	6149	44	21
Drklag 3	5548	60	28

Det fremgår af tabel 7.2 og 7.3 , at solvaggen med ét lag glas og selektiv absorber giver kiart laveste udbytte. I lejligheden er udbyttet af samme stomelse som den udvendige efterisolering, hvorimod der i lavenergihuset er et direkte tab. Det skyldes, at U-vardien for daklaget er for haj, og det kan ikke opvejes her af den haje transmittans. Det kunne tyde på, at daklaget har ringe muligheder i fremtidigt boligbyggeri. Med hensyn til anvendelse i den eksisterende, ældre
boligmasse lader det til at solvægstypen skal kunne konkurrere med den traditionelle efterisolering på anlægsprisen. Hvis der ses på honeycomb og aerogeldæklaget i lejligheden, er der ikke stor forskel på ydelsen, som er op til ca. $180 \mathrm{kWhm}^{-2}$. For lavenergihusets vedkommende er aerogeldæklagets ydelse ca. 1/3-del hæjere end for honeycomb dæklaget. Men de specifikke ydelser er kun 1/3-1/4-del af ydelserne for dæklagene i lejligheden. Åsagen til dette er at for lejlighedens vedkommende er klimaskærmens isolans ringe, og daklagene vil derfor øge isolansen markant lokalt. Samtidig er det transparente areal beskedent i forhold til boligens effektbehov, så varmen fra solvæggene kan nyttiggøres fuld ud i en stor del af tiden. Derved kan den hojere U-vardi for dæklag 2 næsten helt kompenseres med den hojere transmittans sammenlignet med aerogeldæklaget. I lavenergihuset er situationen den, at den resterende del af klimaskærmen har en meget lavere U-værdi end honeycombdæklaget. Aerogeldæklaget når en større del af vejen ind med hensyn til U-værdi, og derved ages den relative forskel pà de to dæklag. Ud fra en økonomisk betragtning er de specifikke udbytter, der er vist i tabel 7.3 nok for små til at vare rentable. Det beror på det store solvægsareal i forhold til husets energibehov. Så ved en reduktion af solvægsarealet ages det specifikke udbytte medens dækningsgraden mindskes. I forbindelse med honeycombdæklaget kan det bemærkes, at der ved udforte projekter flere steder i udlandet er observeret problemer med kondens i og tilsmudsning af honeycombmaterialet. Der er vist endnu ikke fundet en endelig losning på disse forhold, som formentlig vil påvirke solvæggenes ydelse negativt.

Der er i simuleringerne ikke regnet med nogen som helst form for solafskærmning af solvæggene ud over den konstante 15° 's horisontafskæring. Resultatet er som forventet, at en del overskudsvarme skal fjernes. De varmemængder, som er forudsat bortventileret ved åbning af vinduer, er vist itabel 7.4.

Tabel 7.4 Beregnet overskudsvarme for lejlighed og lavenergihus.

	Lejlighed	Lavenergihus
	$\left(\mathrm{kWhå}^{-1}\right)$	(kWhår-1)
Reference	676	2664
Dæklag 1	1216	8952
Dæklag 2	1853	13638
Dæklag 3	1758	11376
Efterisolering	735	-

Det valgte luftskifte ved åbne vinduer på $3,0 \mathrm{~h}^{-1}$ er ikke nok til at holde rumluftemperaturen på højst $24^{\circ} \mathrm{C}$ i lejligheden. Til illustration af de problemer, der skabes ved de store mængder overskudsvarme, er de største og mindste rumluftemperaturer ilobet af et døgn i hhv. sydzonen i lejligheden og sydvestzonen i huset vist i tabel 7.5. Det døgn, der er valg, er den 8. juni i referenceåret, da det ligger i en både varm og solrig periode.

Tabel 7.5 Rumluftemperaturer for lejlighed og lavenergihus den 8. juni.

$\begin{gathered} \mathrm{T}_{1} \\ \left({ }^{\circ} \mathrm{C}\right) \end{gathered}$	Lejlighed		Lavenergihus	
	min.	maks.	min.	maks.
Reference	23,7	25,2.	18,1	23,6
Drklag 1	24,0	25,2	21,5	29,4
Drklag 2	24,0	25,2	23,3	31,1
Drklag 3	24,0	25,2	22,4.	29,6
Efterisol.	23,7	25,2	-	-

Minimumtemperatureme forekommer ca. k. 3-4 i lejligheden og omtrent kl. 5 i lavenergihuset. Maksimumtemperaturene ligger ca. $1 / 2$ dogn senere. Af tabel 7.5 fremgair det, at det er langt alvorligst med overtemperaturer i lavenergihuset, og det skyldes selvfolgelig forudsatningen om lukkede vinduer og dore i modsætning til lejligheden, den manglende solafskarmning, at forholdet mellem solvagge og boligareal er mere end dobbelt så stort i huset som i lejligheden, samt forskellen i specifikt, dimensionerende varmetab. Det er kdart, at rumluftemperaturer på $30^{\circ} \mathrm{C}$ er uacceprable, og det bar kunne undgås på to måder. Dels vil en detaljeret projektering af solvægudformningen øge mulighederne for en optimal konstruktion. Dels kan en effektiv solafskarmaing th solvagge nedbringe overskudsvarmen. Den sidste foranstaltning har endnu ikke varet genstand for den store udviklingsindsats, men der er ingen twivl om, at der mà gores noget på et tidspunkt, da solvaggene bliver stadig mere effektive. En solafskæmning, der er i brug nu, er nærmest et motordrevet rullegardin, som er elektronisk styrét. På langt sigt kunne elektro-, opto- og termokromiske teknikker tankes anvendt, men det bliver selvffigelig også et økonomisk spørgsmå. En sidste form for solafskarmning kume være lovfaldende traer og planter, som netop har stor skyggevirkning, hvor problemerne med overtemperaturer topper.

Vinduer. Resultateme fra simuleringeme pà det typiske parcelhus er vist i tabel 7.6. Som for solvaggenes vedkommende er husets årlige energiforbng samt den samlede relative besparelse vist. Endelig er besparelsen pr. m^{2} rude angivet. Der er regnet med en glasprocent i vindueme på 78 , og da vinduesarealet er $25 \mathrm{~m}^{2}$ bliver rudearealet $19,7 \mathrm{~m}^{2}$. I tabel 7.6 kaldes aerogelruden med almindeligt glas aerogel 1, og tilsvarende kaldes aerogeluden med jernfit glas aerogel 2.

Tabel 7.6 Beregnet airligt energiforbrug samt besparelser pr. m² mude og relativt for de fire rudetyper i parcelhus.

Rudetype	Arligt forbrug	Arlig besparelse	
$(-)$	(kWh)	$\left(\mathrm{kWhm}^{2}\right)$	$(\%)$
Alm.termorude	16498	0	0
Lavenerginude	13615	146	17
Aerogel 1	11883	234	28
Aerogel 2	11693	244	29

Som det fremgår af tabel 7.6 er der her tale om betydelige besparelser ved udskiftning af almindelige termoruder med lavenergiruder eller aerogelruder. En forøgelse af besparelsen på over 60% vil blive opnået ved at gå fra lavenergiruder til en af de to aerogelrudetyper. At der kun er 1 procentpoint forskel i den relative besparelse mellem aerogelruder med og uden jernfrit glas, skyldes orienteringen af vinduesarealeme. Der er storre vinduesareal mod nord end mod øst og vest, og det har selvfelgelig indflydelse pa mængden af direkte solindfald.

Temperaturvariationen over dagnet den 8. juni representeret ved minimum- og maksimumtemperatureme for parcelhusets sydvestzone ved de fire forskellige rudetyper er vist i tabel 7.7.

Tabel 7.7 Rumluftemperatur for sydvestzonen i parcelhus den 8. juni.

Rudetype	T_{1}	
$(-)$	min.	maks. $\left({ }^{\circ} \mathrm{C}\right)$
Alm.termorude	24,6	28,1
Lavenergirude	23,4	25,6
Aerogel 1	25,2	28,0
Aerogel 2	25,7	28,6

Svingningerne i temperaturerne er meget lig hinanden, og minimumtemperaturerne ligger alle omkring kl. 4-5, og maksimumtemperatureme forekommer et halvt døgn senere. Det ses af tabel 7.7 , at med almindelige termoruder stiger temperaturen op over $28^{\circ} \mathrm{C}$, hvis der ikke skabes yderligere ventilation ved fx åbning af vinduer, som det normal vil ske. Lavenergiruden har en maksimal værdi, der er $2,5^{\circ} \mathrm{C}$ lavere end i reference-situationen. Her er årsagen den lave transmittans, der altså virker som solafskærmning. For aerogelrudernes vedkommende er der kun en forggelse i tilfældet med jernfrit glas og det kun på ca. $0,5^{\circ} \mathrm{C}$. Så der bliver tilsyneladende ikke tale om nogen signifikant forværring af problemerne med overtemperaturer ved anvendelse af aerogelruder i stedet for almindelige termoruder. Den termiske komfort eller mangel på samme bliver stort set uforandret uden for fyringssæsonen. Om vinteren derimod bliver den indvendige glastemperatur formget, og det reducerer dels det kolde nedfald ved vinduerne og dels strålingsasymmetrien. Det betyder en forøgelse af boligarealet, hvor der er tilfredstillende termisk komfort i fyringssæsonen.

7.3 Dagsliysvæge

Det, der her menes med udtrykket dagslysvæg, er den del af en klimaskærm, der kun har én af vinduets to funktioner: at give udsyn og at give lys, dvs. kun den sidste funktion er opfyldt i dette tilfælde. Idéen er, at med aerogelens nuværende udsynskvalitet er anvendelsen af materialet som transparent isoleringsmateriale i ruder begrænset til såkaldte sekundære vinduer altså steder uden krav om udsyn så som entréer, badeværelser, ovenlys etc. Derfor er der så i stedet lavet en væg, der i realiteten er en stor aerogelrude, som er lavet med lettere matterede glas, der kun skal tilføre rummet bagved lys. De steder i væggen, hvor der normalt ville være vinduer, er
der ingen ændringer. Som tidligere nævnt, vil en aerogeltykkelse pă 20 mm , evakueret, give en U-vardi på $0,37 \mathrm{Wm}^{-2} \mathrm{~K}^{-1}$ (ρ lig $100 \mathrm{kgm}^{-3}$) og en soltransmittans pà ca. 75% med jernfrit glas. Varmetabskofficienten vil vere omtrent den samme som vardien for en nyere ydermur. I modsatning hertil vil en sädan dagslysvag give et varmetilskud iform af transmiteret solstråling. En anden del af idéen er så at placere "væggen" mod nord. Derved bliver lysintensiteten mere jgevn over dagen og ikke sà hoj som ved andre onienteringer, da det faktisk kun er diffust solindfald fra himlen og reflekteret fra jord og omgivelser, der kommer ind. Ved en orientering mod nord er spargsmaiet, hvordan energibalancen bliver for er sadan udformming.

For at belyse dette emne er der foretaget simuleringer med SUNCODE. Udgangspunktet er det almindelige parcelhus og lavenergihuset, som også blev benytter i beregningeme ovenfor. Den forste andring er, at ydermuren mod nord regnes praktisk taget adiabatisk. Det er sket ved at give toghulmurens isoleringsmeterale en termisk modstand på $10.000 \mathrm{~m} 2 \mathrm{KW}-1$, hvilket svarer til et nesten 400 m tykt lag mincrahld. Derved fas energiforbruget ved en neutrat energibalance for ydermuren uden difust sollys. Ved simuleringen af aerogelvag i nordfacaden er det forudsat, at det ex store elementer, sailedes at kantorseglingens kuldebroeffekt er så lille, at den resulterende U -vardi for det transparente areal er $0,45 \mathrm{Wm}-2 \mathrm{~K}-1$. Pa grund af de store aerogelelementer saettes rammesystemet til kum at udgore 5%. Dets 0 -vardi er sat til $1,6 \mathrm{Wm}^{2 \mathrm{~K}}-1$ som for de almindelige vindueskarme. Med hensyn til aerogelelementeme er der forudsat: ρ lig 100 kgm^{-3}, en tykkelse af den evakuerede aerogel pai 20 mm og jernfit glas. Det samlede areal, det drejer sig om, er $40,8 \mathrm{~m}^{2}$, hvoraf den transparente andel udgar $38,8 \mathrm{~m}^{2}$. Resultateme af simuleringeme er vist i tabel 7.8.

Tabel 7.8 Beregnet energiforbrug i almindeligt parcelbus (1) og lavencrgihus (2).

Hustype	Nordfacade	Energiforbrug	Besparelse	
$(-)$	$(-)$	$\left(\mathrm{kWhå} \mathrm{r}^{-1}\right)$	$\left(\mathrm{kWhm}-\mathrm{arar}^{-1}\right)$	$(\%)$
1	reference	16.498	0	0
	adiabatisk	14.848	40	10
	aerogelveg	14.155	57	14
	reference	7.748	0	0
	adiabatisk	7.050	17	9
	aerogelvag	6.984	19	10

Som det fremgar af tabellen, ser det ud ti, at en saidan aerogelvag i begge de her viste tilfalde vil give et positive bidrag til rumopvarmningen på ârbasis. Om det også vil vare tiffeldet i praksis, er nok vanskeligt at afgre ud fra beregningen alene, men det yder på, at en aerogelveg orienteret mod nord kan blive energineutral på årsbasis. Ved sammenligaing af tallene på månedsbasis for den adiabatiske vag og aerogelvaggen viser det sig, at for begge huse or energiforbruget storst for acrogelvaggen i perioden fa november til og med februax. Den starste afvigelse er ikke overraskende if fbuur, da det er en kold og solfattig mảned i referenccarret. For det almindelige parcelhus er metororuget på 684 kWh , og i lavenerghuset er talle 712 kWh .

Disse forskelle bør kume reduceres ved en mere detaljeret udformning af aerogelvæggen fx ved at øge aerogeltykkelsen. Eksemplet her er kun taget med for at illustrere en af de muligheder, der kan ligge i anvendelsen af aerogel som transparent isolering i det fremtidige byggeri.

7.4 Fremtidige teknikiker

Den tidligere omtalte tre-lags rude med to lav-emissionsbelægninger og krypton-fyldning skulle akkurat vare kommet i fri handel. Ruden er et eksempel på anvendelse af de gangse teknikker. Teoretisk set kan U-værdien blive så lav, som det måte ønskes på denne vis. Dog kan tykkelsen af ruden blive et problem, og udsynet og soltransmittans kan blive for ringe. I stedet for ekstra lag glas med lav-emissionsbelægninger kan HEAT MRRORS, som er plastfolier med lav-emissionsbelægninger, anvendes. Derved er vagtforogelsen af ruden meget beskeden, men transmittansforringelsen skulle være noget storre ved folieme end ved glas med belægning.

En anden måde er vakuumruder, som er to lag glas, der er forseglet rundi i kanten og evakueret i mellemrummet. For at holde de to glas fra hinanden er der med en afstand af ca. 5 cm placeret små afstandselementer. De skal være så små, at på en vis afstand af ruden, skulle de ikke genere udsynet. Idéen blev udviklet i USA, /23/, hvor der blev brugt laser til kantforseglingen og til fastgarelse af afstandselementerne. Afstandselementerne er glaskugler, som foråsager store spendinger i glassene. Det lader til, at projektet er sat i bero. Direkte inspireret af den amerikanske vakuumrude er en australsk variant under udvikling, /24/. Her benyttes "solder-glass"teknik i stedet for laser, og afstandselementerne er piller, hyorved spændingeme i glassene skulle blive mindre kritiske. Det lader til, at styrken af kantforseglingen er så begranset, at den tilladelige temperaturforskel over ruden udelukker brug i solvægge. Forelobige resulater tyder på en U-vardi af storrelsesordenen $0,6 \mathrm{~m}^{-2 \mathrm{~K}} \mathrm{~K}^{-1}$ og en transmittans på omtrent 55%.

En lidt anden udvikling er ruder eller lag i ruder, som kan regulere soltransmittans og tildels den termiske isolans. De deles op i tre hovedtyper, som er elektro-, opto- og termokromiske. Forskellene bestâr i den principielle virkemåde. De elektrokromiske reguleres af en påtrykt elektrisk spanding. Det kendes fra flydende krystal display på fx ure og lommeregnere. De optokromiske reguleres af lysintensiteten, og det benyttes fx som glas i svejsehjelme og i brilleglas. Endelig reguleres de termokromiske af temperaturniveauet, og et eksempel herpå er at finde i /1/. Endnu er der meget udviklingsarbejde tilbage med disse teknikker, men hvis de bliver færdigudviklet og almindeligt økonomisk tilgængelige, kune de sammen med de nye superisolerede ruder og dæklag, fx med aerogel, lose problemerne med overtemperaturer og kolebehov uden for fyringssæsonen.

8. HOLDBARHED OG KKONOMI

8. 1 Hollibarhed

Hvis aerogelkonstruktionens delkomponenter undersgges hver for sig, er de meget bestandige under enkelte forudsetninger. Der tages i det falgende udgangspunkt i måden, som prototype IV er udformet på. Glassene er ikke forskellige fra dem der bruges i almindelige ruder med undtagelse af, at jemindholdet geme må vare meget lavt. De er meget holdbare men dog med en forhoidsvis beskeden trakstyrke, som dog ikke forventes at blive noget problem her. Metalrammen med balgtvarsnittet, som indgå i kantforseglingen, ex lavet af rustrit stal og samlet ved haxlp af lodning evt. svejsning. Dette skulle både vare et materiale og samlemetode, der er modstandsdygtigt overfor det milja, som aerogelkonstruktionen placeres i. Kravet til rammen er, at den er helf uden huller, da kantforseglingens begransede lakage forudsættes lokaliseret i fugeme alene. Strttematerialet, som indlagges i rammeprofilets bolger, er et inorganisk filtmateriale, KERLANE 50 papir. Det er beregnet til teknisk isolering og kan således tåle meget hoje temperaturer. Der er ikke brugt nogen bindemidler, som kan frigives og risikere at forurene aerogelen. Der findes uden tvivl andre materialer, som kan opfylde funktionen som stottemateriale ligeså godt. Butyl er valgt som fugemateriale, da det er det mest luftratte af fugemasserne. Desværre ser det ud til, at netop luftzetheden af fugemasser er meget lidt undersogt. Der sker tilsyneladende ingen aldersbetinget nedbrydning af butyl, så lenge temperaturen ikke kommer over $90-100^{\circ} \mathrm{C}$ eller det udsættes for UV-stråling. Til bagstopning i fugerne kreves kun en enkelthrobnde elastisk liste, fx af et skummateriale, der mindst kan tâle samme temperaturer som fugemassen. Tilbage er kum aerogelen. Det kan tale temperaturer op til $750^{\circ} \mathrm{C}$, tryk op til ca. 3 bar og paivirkes ikke af UV-stråling. Det er et relativt nyt materiale, som endnu ikke kendes til bunds. Fx om der sker en krybning under lang tids pres. Det er der dog ikke noget, der tyder på for tiden ifolge Würzburggruppen, men på den anden side er problemet ikke underspgt specilh. If forbindelse med den begrensede lakage i fugeme er det et sprogsmảlet, hvor meget vanddamp, der trenger igenem. Det kume vare, at koncentrationen bliver sà stor, at der ved lavo temperaturer kune ske en kondensation med pdelaggelse af aerogelen th folge. På den anden side kan det måke tenkes, at vanddampen fordeles javnt og bindes fysisk i aerogelstukturen. Endelig er der poreluftrykket i aerogelen, hvor stigningen athænger af fugeudformningen, og som for en aerogelkonstruktion på $1 \mathrm{~m} \times 1 \mathrm{~m}$ ser ud til at kume dimensioneres til en levetid på 30 år eller mere. Alt $\mathfrak{a l t}$ ser det for mieblikket ud til, at der ikke shalle vere noget til hinder for, at en aerogelkonstruktion har en levetid med hensyn til transmitans og termisk egenskab pằ over 30 år, såfremt problemet med studsenes placering og beskyttelse loses tilfredsstillende.

8.2 Dikomami

Prisen for ef ferdigt vindue med aerogelrude kan kun anslas med nogen usikkerhed. Det skyldes selvffigelig, at der ikke sker nogen industriel produktion af aerogel men kun fremstilling på forsagsbasis. Desuden er det generelt svart at spå om okonomiske udsigter. Derfor er problemet
forsegt angrebet på to måder. Den ene er at give et bud på, hvad en aerogelrude vil koste i forhold til lavenergiruder, som findes på markedet. Den anden måde er, hvad en aerogelrude maksimalt mà koste, for at det er privatokonomisk fornuftigt.

Indikation af fremstillingspris. $1 / 25 /$ er resultater af pkonomiske beregninger på produktionsprisen for aerogel angivet. De er udfrort på grundlag af erfaringeme med forsagsproduktionen i Airglass AB i Sverige. Omkostningeme til ravarer, produktionspersonale og investeringer i produktionsanlæg er medregnet, hvorimod omkostninger til grund, bygninger og administration ikke er medtaget. Resultatet af beregningerne vil vare en fremstillingspris for aerogel på under $165 \mathrm{~km}^{-2}$ for en tykkelse på 1 cm . Heraf udgør råvarerne cirka 70%. Under forudsætning af lineariter mellem tykkelse og pris vil fremstillingsprisen her vare under 330 krm^{-2} for en tykkelse på 2 cm . Prisen for glassene er den samme som for almindelige ruder, hvilket også galder for fugeme. Tilbage i kantforseglingen er rammen af rustrit stål og støttematerialet. Sammenlignet med en normal termorude, der har et aluminiumprofil fyldt med fugtsugende materiale, kræver aerogelrudens ramme lidt mere bearbejdning, men det er formentlig en beskeden udgift, som bliver relativt begranset. Lavenergiruder har en gasfyldning af argon eller krypton, som den tidligere omtalte tre-lags rude. Aerogelruden krever en evakuering, hvilket medfarer udgifter til forrentning af pumpeanlæg. Kostprisen på coatning af glas er uofficielt oplyst til ca. $150 \mathrm{krm}^{2}$. Argon til gasfyldning har stor udbredelse, da den er en del billigere end krypton. Indkabsprisen på krypton er i $/ 2 /$ angivet til ca. $5.80 \mathrm{krl}{ }^{-1}$, så for en "4-9-4-9-4" rude koster en fyldning godt 100 kr . Ved en sammenligning mellem en aerogelrude og en tre-lags rude med to lav-emissionsbelagninger opvejer aerogeludgiften omtrent de to lav-emissionsbelægninger. Udgiften til det tredie glas samt krypton kan nok dække udgifterne til håndtering og evakuering af aerogelen samt eventuelle merudgifter på kantforseglingen. Det ser altså ud til, at prisen på en aerogelrude kan blive den samme som på den omtalte lavenergirude. I tilgift opnås en mere energigkonomisk rude.

Privatokomomisk pris. Nuværdimetoden, /26/, er benyttet til at undersage, hvilken pris en aerogelkonstruktion kan bære for at investeringen skal være privatøkonomisk lonsom. Der er forudsat en levetid på 20 år. Lånerenten antages at vare 15% og skattefradraget for renteudgifter er sat til 50%. Inflationen settes til 4% og energiprisstigningen sættes til 0 og 3% større end inflationen. Der regnes med rumopvarmning ved oliefyret centralvarme med en middelvirkningsgrad på 0,85. Energiprisen er fastsat ud fra $/ 27 /$ til $420 \mathrm{kr} / \mathrm{MWh}$, hvilket giver en besparelse på $420 \mathrm{kr} / 0,85 \mathrm{lig} 494 \mathrm{kr}$. per sparet MWh.

Solvægge. I tabel 7.2 er de årlige energibesparelser per m^{2} ved fire forskellige tiltag vist. Det er tre dæklagssystemer, et lag glas og selektiv absorber, et lag glas med 100 mm honeycomb og sortmalet absorber samt aerogeldaklag med sortmalet absorber og sluttelig 100 mm udvendig efterisolering. Resultateme af beregningeme er vist itabel 8.1.

Tabel 8.1 Resultat af nu-vardiberegninger for lejlighed. Tallene er ovre granse for investeringen.

	Energiprisstigning pr. ar $\left(\mathrm{kr} \mathrm{m}^{2}\right)$	
Et lag glas og sel. abs.	697	7%
100 mm honeycomb	1201	923
aerogeldaklag	1294	1591
100 mm efterisolering	711	1713

Priserne i tabel 8.1 skal ikke kun dakke dæklaget men også arbejdslon til montering og rammesystemet. For lavenergihuset var de specifikke ydeiser noget mindre på grund af det store solvagsareal. Udformingen med el lag glas og selektiv absorber gav oget energiforbrug, så den lades ude af betragning her. Resultateme blev som vist itabel 8.2.

Tabel 8.2 Resultar af nu-verdiberegning for lavenergihus. Tallene er gure grense for investeringen.

	Energiprisstigning pr. år	
	$\begin{gathered} 4 \% \\ \left(\mathrm{kr}_{2} \mathrm{~m}^{-2}\right) \end{gathered}$	$\begin{gathered} 7 \% \\ \left(\mathrm{kr} . \mathrm{m}^{2}\right) \end{gathered}$
100 mm honeycomb aerogeldaklag	$\begin{aligned} & 313 \\ & 427 \end{aligned}$	$\begin{aligned} & 414 \\ & 565 \end{aligned}$

Solvaggene forventes her at indgà i nybyggeri, hvilket betyder, at den isolerede hulmur skal erstattes med dæklaget og en 15 cm betonmur. Hvis prisen på den traditionelle mur sates til $3700 \mathrm{krm}^{-2} \mathrm{incl}$ moms, må solvaggen med acrogeldaklag haist koste hhv. $4127 \mathrm{krm}^{-2} 0 \mathrm{~g} 4265$ krm^{2} for at vare privatakonomisk lonsom. Da en betonmur vil vare en del billigere end en isoleret hulmur, kan aerogeldæklaget altsa koste det mere end angivet i tabel 8.2 .

Vinduer. Tilsvarende for vinduer med lavenergi- og aerogelruder placeret i et almindeligt parcelhus er resultaterne af nu-verdiberegning for energibesparelsen iforhold ti almindelige ecrmoruder vist i tabel 8.3, fra tabel 7.6.

Tabel 8.3 Nu-vardiberegning af energibesparelsen ved udskiftning af termoruder med lavenergi- og aerogelruder.

Rudetype	Energiprisstigning pr. år	
$\left(\begin{array}{c}4 \% \\ (\mathrm{kr.m-2})\end{array}\right.$	7%	
	$(\mathrm{kr.m-2)}$	
lavenergi	1038	1374
aerogel	1663	2203

Tallene kan ses på to måder. Den ene er, at termoruderne udskiftes med en af de to typer for at spare energi. I det tilfalde skal der ud over ruden ogsà betales for nye karme samt selvíligelig montering. Den anden er, at de eksisterende termovinduer skal udskiftes pà grund af konstruktionens dårlige stand, derfor skal udgitteme til arbejdet og et nyt termovindue under alle omstandigheder afholdes. Under antalgelse af at karmudgiften er af samme størrelsesorden for aerogelruden som for termoruden og en pris for en almindelig termorude på ca. $500 \mathrm{krm}^{-2} \mathrm{incl}$. moms, kan en aerogelrude koste hhv. 2163 og 2703 kr . pr. m-2, og investeringen vil være privatokonomisk lonsom. Sluttelig kan det ses af tabel 8.3, at aerogelruden kan bære 6-800 km^{2} mere end den tre-lags rude med to lav-emissionsbelægninger og kryptonfyldning.

KONKLUSION

Brugen af monolitisk silica aerogel som transparent isolering i ruder til vinduer og i dæklag til solvægge tegner lovende. Dex ser ud til at vare mulighed for at udforme en fornuftig konstruktion, salledes at der drages nesten fuld fordel af materialets termiske egenskaber. Samtidig er soltransmittansen høj, så den normale modsætning mellem hoj transmittans og stor isolans er overvundet ef godt stykke af vejen. Det, der for tiden ser ud til at vare den storste hindring for brugen af materialet i ruder til vinduer, er udsynskvaliteten, som forhabentig udvikles til et niveau, som for almindelige termoruder.

Der er fremstillet fre prototyper, hvoraf tre er $60 \mathrm{~cm} \times 60 \mathrm{~cm}$ og den sidste $1 \mathrm{~m} \times 1 \mathrm{~m}$, som en slags termorude med aerogel mellem glassene, kantforseglet og evakueret. Forskellene på prototypeme er udformningen af kantorseglingen, som blev udviklet for at reducere kuldebrovirkningen. Det er lykkedes at konstruere en kantforseging, som dels ser ud til at virke i mekanisk henseende, og dels har en kuldebrovirkning på et beskedent niveau. Endvidere ser metodeme til bedammelse af kantorseglingens kuldebrovirkning ud til at vare iorden.

Prototyperne blev undersagt med hensyn til center U-værdi og kantforseglingen. Den store prototype blev forsynet med en trakarm og blev yderligere undersagt med hensyn til total Uværdi. Måleresultateme blev sammenlignet med beregnede vardier, og der var god overensstemmelse. Den totale U-vardi for prototypen inklusiv karm blev bestemt til $0,72 \mathrm{Wm}-2 \mathrm{~K}^{-1}$, for aerogelkonstruktionen alene er U-værdien $0,55 \mathrm{Wm}^{2} \mathrm{~K}^{-1}$, og center U-værdien er pă 0,51 Wm-2K-1. Aerogeldensiteten or $150 \mathrm{kgm}^{-3}$ i prototypen, hvis den havde varet $100 \mathrm{~kg} \mathrm{~m}^{-3} \mathrm{og}$ tykkelsen 2 mm starre, ville U-vardien for acrogelkonstruktionen have varet $0,44 \mathrm{Wm}-2 \mathrm{~K}-1$. Soltransmittansen er blevet målt til 64%, hvilket svarer til en transmittans på ca. 90% for aerogelen alene. Efterhånden som ruder til vinduer og daklag til solvægge bliver bedre isolerende, bor U-vardien for karme og rammesystemer undersoges og evt. forbedres, så disse kommer ned på niveau med det transparente element i konstruktionen.

Der er udfort simuleringer på årsbasis for aerogelkonstruktionen anvendt dels som daklag på solvagge, og dels som ruder i vinduer. Beregningene viser udbytte på op til ca. $180 \mathrm{kWhm}^{-2}$ i uventilerede solvagge $0 \mathrm{~g} \mathrm{ca} .240 \mathrm{kWhm}^{-2}$ i vinduer. Ved sidstnævnte anvendelse tyder det ikke på storre problemer med overtemperaturer end ved normale termoruder. Endelig er der foretaget indledende beregninger på aerogelkonstruktionen anvendt som dagslysvag og orienteret mod nord. Det ser ud til , at en sådan vag vil vare tabsfri set over fyringssesonen.

Prisen på en aerogelkonstruktion er fundet på to måder. Den forste er, at sammenligne med en kendt konstruktion, og der ser det ud til, at fremstllingsprisen for en aerogelrude vil vare af samme storrelse som for en tre-lags rude med to lav-emissionsbelrgninger og kryptonfyldning. Den anden er at bestemme den maksimale pris på aerogelkonstruktionen, hvor investeringen stadig er privatakonomisk lonsom. For solvegsdrklagets vedkommende kan de koste op til ca. $2400 \mathrm{krm}^{-2}$ inclusiv montering og rammesystem, og en aerogelrude kan koste op til $2700 \mathrm{krm}^{-2}$.

REIFERENCER

"T2, TRANSPARENT INSULATION". Proceedings fra den 2. internationale workshop, Freiburg, Tyskland. 1988.
"T3, TRANSPARENT INSULATION TECHNOLOGY". Proceedings fra den 3. internationale workshop, Titisee/Freiburg, Tyskland. 1989.
"Transparent Insulation". V. Wittwer et.al. SOLAR TODAY, januar-februar 1991.
"Hgjisolerende transparent dæklag". Karsten I. Jensen. Laboratoriet for Varmeisolering, DTH. Medd. nr. 204. 1989.
"Performance prediction of solar thermal systems and the use of monolithic silica aerogel to improve collector efficiency". Atle Nordgaard, doktor ingeniøravhandling, Institutt for Varme- Ventilasjons og Sanitærteknik. Norges Tekniske Högskole. 1991.
"Thermal Transport in Monolithic silica aerogel". R. Caps, G. Döll, J. Fricke, U. Heinemann og J. Hetfleisch. Proceedings fra 2nd International Symposium on Aerogels (ISA2), Montpellier, Frankrig. 1989.
"Thermal conductivity of SiO_{2}-aerogel tiles". D. Büther, R. Caps, U. Heinemann, E. Hümmer, A. Kaduer, P. Scheuerpflug og J. Fricke i "Aerogels", red. J. Fricke, Springer Verlag, Heidelberg, New York. 1986.
"Apparent thermal conductivity of evacuated SiO_{2}-aerogel tiles under variation of radiative boundary conditions". P. Scheuerpflug, R. Caps, D. Bütner og J. Fricke. Int. J. Heat Mass Transfer 28, pp. 2299-2306. 1985.
"Theoretical model for coupled heat transfers through evacuated transparent silica aerogel tiles". K. Kamiuto. Proceedings fra ISES-kongres 1989, Kobe, Japan.
"Thermal loss coefficient of low-density silica aerogel tiles". D. Bütner, R. Caps, U. Heinemann, E. Hümmer, A. Kadur og J. Fricke. Solar Energy, 40, pp. 13-15. 1988.
"Thermal conductivity of evacuated highly transparent silica acrogel". D. Bütner og J. Ficke. Int. J. Solar Energy, 3, pp. 89-94. 1985.
"Interlaboratory testing transparent insulation materials". Working Document. IEA task 10, subtask C. 1991.
"Undersagelse af solvægge ved hjælp af en indendors forsogsopstilling". Casper Paludan-Müller. Laboratoriet for Varmeisolering, DTH, Medd. ar. 179. 1987.
"Beregning af bygningers varmetab". Dansk Standard DS418.
Samtale med D. Büttner, Würzburg Universitet, Tyskland.
"Oversigt over varmeisoleringsmaterialer tilsluttet varmeisoleringskontrollen". VIF og Varmeisoleringskontrollen. 1990.
$117 /$ "Modulsolvægge". CowiConsult. 1991.
/18/ "Production of silica aerogel". S. Henning og L. Svendsen. Physica Scripta, 23, pp. 697-702. 1981.
"Infrared radiative heat transfer in highly transparent silica aerogel". R. Caps og J. Fricke. Solar Energy, 36, pp. 361-364. 1986.
"Thermal and solar properties of windows. Expert guide". IEA Annex XII, windows and fenestration. 1987.
"SUNCODE - PC. A program user's manual". M. J. De La Hunt. Ecotape. 1985.
"Kobru 86, manual". Physibel Building Physics. 1990.
"Vacuum window glazing for energy efficient buildings". D.K. Benson og C.E. Tracy. SERI/PR-2901. 1986.
124. "Evacuated glazing". R.E. Collins og S.J. Robinson. Solar Energy, 41, pp. 27-38. 1991.

125/ "Airglass-Silica aerogel. A transparent heat insulator". Sten Hemning. Swedish Council for Building Research, Stokholm. D7. 1990.

126/ "Økonomisk vurdering af energibesparende foranstaltninger". Keld Johnsen, Michael Kvetny og Hans Skifter Andersen. SBI anvisning 132. 1982.
/27/ "Energipriser, solenergi og graddage". VVS 8. 1991.

SYMBOLLISTE

A	konstant	($\mathrm{Wm}^{-1 \mathrm{~K}^{-1} \text {) }}$
A_{a}	areal af aerogel	$\left(\mathrm{m}^{2}\right)$
A_{b}	areal af bagvæg i målekasse	(m^{2})
$\mathrm{A}_{\text {s }}$	areal af sidevæg i målekasse	$\left(\mathrm{m}^{2}\right)$
A_{t}	totalt areal	$\left(\mathrm{m}^{2}\right)$
b	glasbredde	(m)
Δb_{g} :	bredde af glas over kantforsegling	(m)
B	konstant	(Wm^{-1})
c	specifik varmekapacitet	$\left(\mathrm{Jkg}^{-1} \mathrm{~K}^{-1}\right)$
C	konstant	($\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)
d	tykkelse	(m)
$d_{\text {a }}$	aerogeltykkelse	(m)
D	konstant	($\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)
e_{g}	glastykkelse	(m)
E	konstant	(Wm^{-1})
$\mathrm{E}_{\text {s }}$	elektisk spænding	(V)
F_{k}	finnefaktor for det kolde glas	$(-)$
F_{v}	finnefaktor for det varme glas	$(-)$
h_{f}	varmetransmissionskoefficient	($\mathrm{Wm}^{2} \mathrm{~K}^{-1}$)
h_{i}	varmetransmissionskoefficient	($\mathrm{Wm}^{-2 \mathrm{~K}^{-1} \text {) }}$
$h_{\text {t }}$	varmetransmissionskoefficient	($\mathrm{Wm}^{-2 \mathrm{~K}} \mathrm{~K}^{-1}$)
h_{u}	varmetransmissionskoefficient	($\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$)
i	indfaldsvinkel	$\left({ }^{\circ}\right)$
1	stramstyrke	(A)
k	konstant	(1h-1mmVS-1)
m_{k}	$\operatorname{lig}\left(\left(h_{t}+h_{u}\right) /\left(\lambda_{g} e_{g}\right)\right)^{1 / 2}$	(m^{-1})
m_{v}	$\operatorname{lig}\left(\left(h_{i}+h_{f}\right) /\left(\lambda_{g} e_{g}\right)\right)^{1 / 2}$	$\left(m^{-1}\right)$
n	brydningsindeks	$(-)$
N	forhold mellem ledning og stråling	$(-)$
$\Delta \mathrm{p}$	trykforskel	(mmVS)
P	effekt	(W)
P	perimeter	(m)
$\Delta \mathrm{p}$	effektforskel	(W)
P_{k}	korrigeret effekt	(W)
9	varmestrom pr. længdeenhed	(Wm^{-1})
q_{k}	varmestrom fra kantforsegling ud i det kolde glas	(Wm^{-1})
q_{r}	varmestrom gennem kantforsegling	(Wm^{-1})
$\mathrm{q}_{\text {s }}$	varmestrom fra luft til glas over kantforsegling	(Wm^{-1})
$\mathrm{q}_{\text {st }}$	varmestrom ved stråling	(Wm^{-2})
qv	varmestrom i det varme glas tilkantforsegling	(Wm^{-1})
Qa	varmestrom gennem aerogel	(W)
Q_{k}	varmestrom gennem kantforsegling	(W)

$\mathrm{Q}_{\mathrm{r}} \quad$: resulterende varmestrom
$r_{1} \quad$: isolans pr. længdeenhed for luft
r_{2} : isolans pr. længdeenhen for stottemateriale
(mKW -1)

- isolans pr langdeenhed for fugerne
I_{f} : isolans pr. langdeenhed for fugerne
r_{k} : kantforseglingens isolans pr. langdeenhed
$r_{s} \quad$: isolans pr. længdeenhed for rfs-profil
R_{a} : aerogelens isolans
R_{i} : indvendig overgangsisolans
$\mathrm{R}_{\mathrm{k}} \quad$: overgangsisolans pà den kolde side
$R_{u} \quad$: udvendig overgangsisolans
$R_{\mathrm{v}} \quad$: overgangsisolans på den varme side
T : soltransmittans
T_{60} : soltransmittans for indfaldsvinkel lig 60°
$\triangle \mathrm{T}:$ temperaturforskel (K)
$\mathrm{T}_{1}, \mathrm{~T}_{2}$: grænsefladetemperaturer
$\Sigma \mathrm{T}_{\mathrm{b}}$: summen af temperaturforskellene over bagvæggene i målekassen
T_{gk} : temperatur af koldt glas
T_{gv} : centertemperatur af varmt glas
$\mathrm{T}_{\mathrm{gv}}(\mathrm{x})$: temperatur af varmt glas til stedet x
T_{k} : temperatur af kold grænseflade
(K)
T_{kk} : temperatur af kold kant
$\begin{array}{lll}T_{\mathrm{kv}} & : \text { temperatur af varm kant } \\ \mathrm{T}_{1} & : \text { rumluftemperatur } & (\mathbb{K}) \\ (\mathbb{K})\end{array}$
$\Delta \mathrm{T}_{1} \quad$: lufttemperaturforskel
$\mathrm{T}_{\mathrm{lk}} \quad$: temperatur af kold luft
$\mathrm{T}_{\mathrm{lv}} \quad$: temperatur af varm luft
T_{m} : middeltemperatur
$\bar{T}_{p} \quad:$ middeltemperatur af målekassens vægge
T_{r} : middelstrålingstemperatur
$\Sigma \mathrm{T}_{\mathrm{s}}$: summen af temperaturforskellene over sidevaggene i målekassen
T_{v} : temperatur af varm grenseflade
U : varmetabskoefficient ($\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$)
U_{0} : center for varmetabskoefficient (Wm-2K-1)
$\mathrm{U}_{\mathrm{k}} \quad$: korrigeret varmetabskoefficient
($\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$)
$\mathrm{U}_{\mathrm{r}} \quad$: resulterende varmetabskoefficient
($\mathrm{Wm}^{-2 \mathrm{~K}^{-1}}$)
$\dot{V} \quad:$ luftflow
($\mathrm{lh}^{-1} \mathrm{mmVS}^{-1}$)
$y \quad: \quad \operatorname{lig} m_{v} \cdot b / 2$
Y1 : konstant ved kurvefit
Y 2 : konstant ved kurvefit $\quad\left(\mathrm{m}^{-1}\right)$
Ø : diameter

Graske symboler etc.

$\alpha \quad$: ekstinktionskoefficient $(-)$
$\bar{\alpha} \quad:$ middelekstinktionskoefficient $\quad(-)$
$\epsilon \quad:$ emittans (-)
ϵ, : effektiv emittans
λ : varmeledningsevne
($\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)
λ_{10} : varmeledningsevne ved middeltemperatur på $10^{\circ} \mathrm{C}$ ($\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)
$\lambda_{\alpha} \quad$: varmeledningsevne for aerogel
λ_{g} : varmeledningsevne for glas
($\mathrm{Wm} \mathrm{m}^{-1} \mathrm{~K}^{-1}$)
$\lambda_{p} \quad$: varmeledningsevne for polystyren
($\mathrm{Wm}^{-1} \mathrm{~K}^{-1}$)
λ_{s} : varmeledningsevne for aerogelskelettet
λ_{t} : tilsyneladende varmeledningsevne for aerogel
Λ : belgelængde
$\rho \quad$: densitet
$\rho_{a}:$ densitet af aerogel
σ : Stefan-Boltzmanns konstant
$\tau_{\text {。 }}$: optisk dybde
$\phi \quad:$ porasitet $(-)$
$(\tau \alpha)_{e}:$ effektivt transmittans-absorptansprodukt

FIGURLISTE

2.1 De fire hovedtyper af transparente isoleringsmaterialer.
3.1 Den specifikke ekstinktionskoefficient som funktion af bolgelangden for monolitisk silica aerogel opvarmet til $400^{\circ} \mathrm{C}$ i tre timer under vakuum.
3.2 Sammenligning af målte og beregnede λ-værdier for aerogel.
3.3 Sammenligning af beregnede og målte λ-værdier for aerogel.
3.4 Sammenligning af beregnede og måle λ-værdier.
4.1 Kantdesign I.
4.2 Kantdesign II.
4.3 Kantdesign IM.
4.4 Kantdesign IV.
4.5 Tildannelse af aerogelskive med båndsav.
4.6 Ved hjælp af løfteværktøjet placeres den første tildannede aerogelskive i prototype IV.
4.7 Evakuering af prototype I.
4.8 Lækagesagning på prototype IV.
5.1 Snit i kelekasse.
5.2 Prototype monteret i kolekassen.
5.3 Termoelementer limet på prototype IV's varme glas.
5.4 Fiksering af karmen ilægterammen inden udskumning af luftspalten.
5.5 Varmelegemet til målekassen.
5.6 Målekassen set forfra og monteret i den isolerede ramme.
5.7 Målte glastemperaturer på prototyperne.
6.1 Snit i karm, prototype IV samt forbedringsforslag.
6.2 Snit i standardprofil til to-lags ruder.
6.3 Dæklagsprofil med brudt kuldebro.

TABELLISTE

3.1 Beregnet effekt af kantforseglingen kuldebrovirkning.
5.1 Måle værdier af prototypernes center U-værdi.
5.2 Målt soltransmittans for prototype IV ved forskellige indfaldsvinkler.
5.3 Temperaturmålinger ved kantundersøgelse.
5.4 Bidrag til kuldebroeffekt på grund af uisoleret glas over kant.
5.5 Kantforseglingens isolans.
5.6 Måling med guarded hot-box på prototype IV med karm.
5.7 Korrektion for ikke-adiabatiske flader i målekassen.
5.8 U-værdi korrigeret til de sævanlige overgangsmodstande.
6.1 Beregnet r -værdi for kantforsegling, metode 1.
6.2 Beregnet r-værdi for kantforsegling, metode 2.
6.3 Beregnet U-værdi for prototyperne ved beregnet og målt isolans for kantforsegling.
6.4 Beregnet U-værdi for prototype IV, korrigeret for kuldebroeffekt.
6.5 Målte og beregnede totale U-værdier for prototype IV med trakarm.
7.1 Værdier for de tre dæklagssystemer.
7.2 Beregnet energibesparelser for lejlighed.
7.3 Beregnet energibesparelse for lavenergihus.
7.4 Beregnet overskudsvarme for lejlighed og lavenergihus.
7.5 Rumluftemperatur for lejlighed og lavenergihus den 8. juni.
7.6 Beregnet årligt energiforbrug samt besparelser $\mathrm{pr} . \mathrm{m}^{2}$ rude og relativt for de fire rudetyper i parcelhus.
7.7 Rumluftemperatur for sydvestzonen i parcelhus den 8. juni.
7.8 Beregnet energiforbrug i almindeligt parcelhus (1) og lavenergihus (2).
8.1 Resultat af nu-værdiberegningerne for lejlighed.
8.2 Resultat af nu-værdiberegningerne for lavenergihus.
8.3 Nu-værdiberegning af energibesparelser ved udskiftning af termoruder med lavenergi- og aerogelruder.

LICENTIATAFHANDLINGER FRA LABORATORIET FOR VARMEISOLERING

Rubinstein, Axel:
Metoder til bestemmelse af varmeledningstal, med særlig vægt på teorien for de instationære metoder samt nogle målinger med en termosonde af egen konstruktion. 1963.

Petersen, Erwin:
Solindfald gennem vinduer. 1966.
Lund-Hansen, Per:
Fugtransport i Byggematerialer. 1967.
Nicolajsen, Asta:
Fugttransportkoefficienter for gasbeton. 1973.
Nielsen, A.F.:
Fugtfordelinger i gasbeton under varme- og fugttransport. 1974.
Nielsen, Peter V.:
Stromningsforhold i luftkonditionerede lokaler. 1974.
Ravn-Jensen, Lars:
Vinduer og energi. 1977.
Lawaetz, Henrik:
Solindfald og solvarmeanlæg. Beregnet og målt. 1980.
Svendsen, S.:
Solfangeres effektivitet. Mallt og beregnet. 1981.
Kielsgaard Hansen, Kurt:
Luftsolfangere og varmelagring i jord. 1982.
Furbo, Simon:
Varmelagring til solvarmeanlæg. 1984.
Mrrck, Ove:
Modelling and Simulation of Solar Heating Systems. 1985.
Olsen, Lars:
Solvægge, målt og beregnet. 1985.
Paludan-Müller, Casper:
Undersøgelse af solvagge ved hjalp af indendørs forsogsopstillinger. 1987.
Christensen, Jørgen Erik:
Edb-programmer til beregning af passiv solvarme. 1987.
Berg, Peter:
Simulering af termiske forhold i solvarmeanlæg med sæsonlagring. 1988.

Pedersen, Carsten Rode:

Combined heat and moisture transfer i building constructions. 1990.

APPENDIKS 1

Mellemresultater fra tabel 6.3

Prototype nir. (-)		II	11	III	IV
$\mathrm{T}_{1 \mathrm{v}}$	$\left({ }^{\circ} \mathrm{C}\right)$	27,5	23,2	23,5	22,8
T_{gv}	$\left({ }^{\circ} \mathrm{C}\right)$	25,4	20,8	21,2	20,9
T_{gk}	$\left({ }^{\circ} \mathrm{C}\right)$	0,0	-0,8	-2,2	1,6
$\mathrm{T}_{1 \mathrm{lk}}$	$\left({ }^{\circ} \mathrm{C}\right)$	-1,4	-2,6	-4,2	1,1
T_{m}	$\left({ }^{\circ} \mathrm{C}\right)$	12,7	10,0	9,5	11,3
$\mathrm{h}_{\mathrm{i}}=1 / \mathrm{R}_{\mathrm{V}}$	$\left(\mathrm{Wm}^{-2 \mathrm{~K}}{ }^{-1}\right)$	8,3	5,9	5,9	5,8
$\mathrm{h}_{\mathrm{u}}=1 / \mathrm{R}_{\mathrm{u}}$	($\mathrm{Wm}^{-2} \mathrm{~K}^{-1}$)	12,5	7,7	6,7	22,2
$h_{\text {f }}=h_{\text {f }}$	$\left(\mathrm{Wm}^{-2} \mathrm{~K}^{-1}\right)$	1,3	1,3	1,2	1,1
m_{v}	$\left(\mathrm{m}^{-1}\right)$	54,77	47,43	47,10	46,44
m_{k}	(m^{-1})	65,67	53,03	49,69	85,33
P	(m)	2,32	2,22	2,30	3,84
A_{a}	$\left(\mathrm{m}^{2}\right)$	0,336	0,309	0,332	0,922
A_{t}	$\left(\mathrm{m}^{2}\right)$	0,360	0,360	0,360	1,000
U_{0}	$\left(\mathrm{Wm}-2 \mathrm{~K}^{-1}\right)$	0,60	0,58	0,53	0,52
Metode 1					
r_{k}	($\mathrm{mKW}-1)$	2,40	18,77	23,98	41,47
q_{r}	(mKW-1)	1,99	0,69	0,63	0,37
U_{r}	($\mathrm{Wm}^{-2 \mathrm{~K}^{-1} \text {) }}$	1,00	0,66	0,63	0,55
U	($\mathrm{Wm}^{2} \mathrm{~K}^{-1}$)	1,03	0,72	0,70	0,56
Metode 2					
r_{k}	(mKW-1)	2,27	14,36	16,96	18,86
q_{r}	(mKW-1)	2,00	0,81	0,78	0,66
U_{r}	($\mathrm{Wm}^{-2 \mathrm{~K}} \mathrm{~K}^{-1}$)	1,01	0,69	0,67	0,60
U	($\mathrm{Wm}^{2} \mathrm{~K}^{-1}$)	1,04	0,76	0,74	0,61
Målit					
r_{k}	($\mathrm{mKW}{ }^{-1}$)	3,33	23,97	24,26	27,92
q_{r}	(mKW-1)	1,85	0,59	0,62	0,51
U_{r}	($\mathrm{Wm}^{-2 \mathrm{~K}^{-1} \text {) }}$	0,97	0,64	0,63	0,57
U	($\mathrm{Wm}^{2} \mathrm{~K}^{-1}$)	1,00	0,70	0,70	0,58

APPENDIKS 2

TRANSPARENT COVER BASED ON EVACUATED MONOLITHIC SILICA AEROGEL

Karsten I. Jensen

Thermal Insulation Laboratory Technical University of Denmark Building 118, DK-2800 Lyngby Denmark

ABSTRACT

Monolithic silica aerogel is a highly insulating transparent material. The application of the material as transparent insulation has a large potential in the solar design. This paper describes the work carried out developing a highly insulating transparent cover for use in solar walls, windows, sunspaces etc.

KEYWORDS
Monolithic silica aerogel, transparent insulation, passive solar components, cold bridge effect.

INTRODUCTION

The monolithic silica aerogel has excellent properties concerning solar transmittance and thermal insulation. The two most serious disadvantages of the monolithic silica aerogel is that it will be damaged by liquid water, and that its ultimate tensile stress is very small.

Because of the disadvantages of monolithic silica aerogel it is necessary, when using the material, to make a unit consisting of two layers of glass with one layer of monolithic silica aerogel between them and seal the unit by an appropriate sealing of the edges. Used in a solar wall a unit of this type will improve the output considerably.

MONOLITHIC SILICA AEROGEL
The chemical composition of the material is $99.99 \% \mathrm{SiO}_{2}$ or quartz. The material can be made with a density of $70-250 \mathrm{~kg} \mathrm{~m}^{-3}$ which corresponds to a porosity in the range from about 0.97 to 0.87. Aerogel consists of a network of silicon dioxide grains and open pores. The typical dimensions of the pores and the grains are much smaller than the wavelength of the solar radiation therefore the material is transparent though it is porous. Temperatures below $750^{\circ} \mathrm{C}$ are no problem and neither are pressures up to about 3 bar. But the ability to withstand tension is small
and therefore the aerogel will be damaged at contact with liquid water due to surface tensions. Humid air does not seem to have a irreversible impact on the material.

For 20 mm thick silica aerogel tile, the normal solar transmittance has been measured to 90% with a variation of $\pm 2 \%$. The thermal conductivity depends among other things on the density, the mean temperature, the optical thickness and the emissivity of the boundary surfaces. For monolithic silica aerogel with a density of about $100 \mathrm{kgm}^{-3}$ the thermal conductivity is $0.020 \mathrm{Wm}^{-1} \mathrm{~K}^{1}$ at room temperature and at atmospheric pressure. Due to the open pores the material can be evacuated. At a gas pressure below $50-100$ mbar. thermal conduction in the gas will be eliminated and then the thermal conduction of the material is reduced to $0.008 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. Similarly for densities of $150 \mathrm{kgm}^{-3}$ and $200 \mathrm{kgm}^{-3}$ the values are $0.010 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$ and $0.012 \mathrm{Wm}^{-1} \mathrm{~K}^{-1}$. At present the complex mechanism of heat transfer in monolithic silica aerogel does not seem to be fully explained. Extensive thermal measurements have been carried out by prof. Fricke and his group at Würzburg University, FRG, see e.g. Buittner and co-workers (1988). A theoretical model is developed by Kamiuto (1989).

The production of monolithic silica aerogel is made by the Swedish company, Airglass Ltd. . that holds patents on the process. For the time being the company only runs a pilot production of $60 \mathrm{~cm} \times 60$ cm tiles, but it is expected to be possible to make tiles with larger dimensions and a production price of about $25 \mathrm{US} \$ / \mathrm{m}^{2}$ for 2 cm thick tiles.

The view through the material is slightly hazed and slightly yellow against a bright background and slightly blue against a dark background. This will not influence the use of the material as transparent insulation $e . g$. in solar walls, but in windows where full view is required these disturbances will not be accepted. Airglass Ltd. is still developing the production process and expects to further improve the optical quality of the monolithic silica aerogel.

THE COVER
The cover consists of 20 mm monolithic silica aerogel placed between two 4 mm layers of low iron glass. Hereby it seems possible to have a solar transmittance of about 75%. The aerogel is evacuated to obtain the best possible insulation capacity. For an aerogel density of $100 \mathrm{kgm}^{-3}$ the center value of the heat loss coefficient (U value) for the cover is as low as $0.4 W^{-2} \mathrm{~K}^{-1}$. As the material acts as a spacer, it gives a mechanically strong and rigid sandwich construction which reduces the mechanical demand for the sealing. This is proposed to be a combination of a stainless steel profile and a quality butyl sealant. The sealing can be worked out so that the air leakage in the butyl will be at a level which gives the cover a lifetime of at least 20 years concerning no thermal conduction of the gas in the pores. Due to the organic sealant, the maximum temperature of the cover is restricted to about $80-100^{\circ} \mathrm{C}$.

PROTOTYPES OF AEROGEL COVER

Several prototypes have been constructed and some tested during the last years. At first the size of the prototypes was 20 cm 820 cm . Many different designs of the sealing of the edges were studied and the aerogel attempted evacuated, usually with limited success. Later on when the 60 cm * 60 cm tiles were available, the design of the sealing was set to be the earlier mentioned combination of a stainless steel profile and a butyl sealant. The evacuation of the aerogel was far more successful at these prototypes.

The silica aerogel tiles were almost not affected by the evacuation. The tiles withstood the pressure fxom the glass. A few racks occurred along and $2-5 \mathrm{~cm}$ from the edges during the evacuation and the reason is, that at the moment, the tiles are curved slightly at the edges.

The aerogel tiles had a density of about $200 \mathrm{~kg} \mathrm{~m}^{3}$ and a thickness of $17-20 \mathrm{~mm}$ after evacuation. The centre values and the thermal cold bridge effects of the edges were measured. The stainless steel profiles were optimized in order to reduce the cold bridge effect of the edges.

The latest prototype is $1 \mathrm{~m} x \mathrm{~m}$ and made of 4 tiles. The aerogel density is about $150 \mathrm{kgm}^{-3}$ and the thickness is 18 mm . The cover is mounted in a wooden frame. The center v value is measured and the total heat loss coefficient for the cover and the frame is measured by means of a guarded hot bos technique.

THERMAL BRIDGE AT THE EDGE
The heat transfer through the cover takes place in 3 ways. first there is the one dimensional heat transfer normal to the cover. The second is two dimensional, as a fraction of the heat flows in the warm glass to the edge and through and out into the cold glass. The third is a three dimensional heat transfer and works like the two dimensional ones except that it only takes place at the four corners of the cover. In most cases the three dimensional heat transfer can be omitted.

The one dimensional heat transfer can be determined in the usual way. In order to calculate the thermal cold bridge effect of the edges an analytical model has been developed in which it has been taken into account that the glasses act as fins.

The contribution from the cold bridge effect depends on three things. The first thing is the actual design of the sealing of the edge or more precisely its thermal resistance. The second thing is the ratio of the perimeter and the area of the cover. For a given sealing the cold bridge effect decreases as the area of the cover increases. The last thing is the center heat loss coefficient. When it is lowered, the cold bridge effect gets more pronounced, relatively as well as absolutely.

The model has been compared with a numerical model and the agreement was good. Furthermore, the model has been validated by an experimental set up based on a cold box in which the air was circulated. The prototypes were mounted in the front of the box and
cooled air was blown along the inner glass. The outer glass was exposed to still indoor room air. By means of a thermo vision equipment the temperature distribution of the warm glass was investigated and based on the temperature gradient in the glass near the edge, the cold bridge effect was determined.

The experimental and theoretical investigation of the influence of the cold bridge effect on the total heat loss coefficient has shown a great reduction. For the earlier mentioned cover with 20 mm thick evacuated monolithic silica aerogel, an aerogel density of $100 \mathrm{kgm}^{-3}$ and an area of $1 \mathrm{~m} \mathrm{k}_{\mathrm{lm}}$, the result of equipping the cover with the first tested edge design is a cotal heat loss coefficient which is 83% higher than the center value. For the latest tested edge design the level reached for total heat loss coefficient is only 25% higher than the center value.

It must, however, not be forgotten that the frame in which the cover is placed, must be made with a heat loss coefficient similar to that of the cover.

CALCULATED PERFORMANCE

In Paludanmuiller and Jorgensen (1988) a comparison by means of the simulation program SUNCODE, has been made between different types of covers. They were placed on the same building and the weather data of the Danish Test Reference Year were used. Among other things the following three types of covers were studied: a) One layer of glass, b) Two layers of glass and c) Evacuated aerogel cover. The useful yearly output covers were: (cover a) 234 MJ , (cover b) 414 MJ and (cover c) 785 MJ . So it seems clearly that in this application the aerogel cover will double the output compared to the double glazing cover. The use of an aerogel cover demands an analysis of the need for preventing over-temperatures during summertime e.g. an appropriate shading device.

The utility of monolithic silica aerogel as transparent insulation in window glazings depends on the optical quality of the material. On the assumption that aerogel will be as clear as glass in the near future, and that a complete replacement of the existing glazings with evacuated monolithic silica aerogel glazings in the Danish housing stock takes place, the energy consumption for space heating in the building stock can be reduced by 18% (Jørgensen, 1989). This is equivalent to a mean annual saving of almost 800 MJ per quare meter window or 23,400 TJ total. Furthermore the temperature of the interior surface of the window increases in the heating season which improves the thermal comfort in the houses.

CONCLUSION

The first $1 \mathrm{~m}^{2}$ prototype of a cover with evacuated monolithic silica aerogel is constructed and tested. The design of the sealing of the edge seems to have a reasonable solution in a combination of a stainless steel profile and a butyl sealant. This will give an adequate airtightness for 20 years and reduce the thermal cold bridge effect to an acceptable level. The thermal frame, in which the cover is placed, must be made without cold bridges.

The prospects of using evacuated monolithic silica aerogel as a transparent insulation material for solar walls and glazing in windows are very promising. Calculations have shown significant improvements of the thermal performance for solar walls and windows.

ACKNOWLEDGEMENT

These investigations have been made in cooperation with Airglass Ltd., Sweden, and they have been funded by the Danish Ministry of Energy.

REFERENCES

Büttner, D., Caps, R., Heinemann, U., Kümmer, E., Kadur, A. and Fricke, J. (1988). Thermal loss coefficient of lowadensity silica aerogel tiles. Solar energy, 41, 13-15.

Kamiuto, K. (1989). Theoretical model for coupled heat transfer through evacuated transparent silica aerogel tiles. proc.ISES. Kobe, Japan.

Jorgensen, O. B. (1989). Silica aerogel windows in the Danish housing stock. Proceedings 3rd. workshop on Transparent Insulation Technology. Titisee/Treiburg, FRG.

Paludan-Mioller, C. and Jørgensen, O. B. (1989) Solar walls with transparent insulation for the existing building stock. Proc. ISES, Kobe, Japan.

