HYGRODIODE

HYGRODIODE ANVENDT SOM DAMPBREMSE TIL FLADE TAGE MED KOLDT ELLER VARMT DAK
 HYGRODIODE VAPOUR RETARDER FOR COLD AND WARM DECK FLAT ROOF

VAGN KORSGAARD
CARSTEN RODE PEDERSEN

HYGRODIODEN ANVENDT SOM DAMPBREMSE TIL FLADE TAGE MED KOLDT ELIER VARMT DAEK

Vagn Korsgaard
Carsten Rode Pedersen
Laboratoriet for Varmeisolering
Danmarks Tekniske Hejskole
Marts 1991

rorord

Nærværende rapport sammenfattex resultaterne af måinger og beregninger pá kolde og varme flade tage med en ny type damp bremse - Hygrodioden. Dampbremsen er udviklet, să den tillader udtørring af sabdanne tagkonstruktionex samtidig med at den ved sin dampbremsende effekt forhindrer ny opfugtning. Herved forhindres nedbrydning af konstruktionerne samtidig med at tarre konstruktioner sikrer maksimale varmeisolerende egenskabex.

Projektet hax vaxet financieret under Energiministeriets energiforskningsprogrammer EPP-85 og EPP-87. Projektet har derudover varet stattet af A/S Jens villadsens Fabriker og Tasinge Tra A/S.

Hygrodioden og forsøgsresultater med den som dampbremse har varet omtalt iflere inden- og udenlandske axtikler og papers. Disse. der er medtaget i litteraturlisten. supplerer de i rapporten prasenterede resultater.

TNDHOMDSEORTRGNETGER

FORORD i
TNDHOLDSEORTEGNETSE ii
RESUME i.
SUMMARY iv

1. TNDLEDNTNG 1
1.1 Forms. 1
1.2 Baggrund 1
2. HYGRODIODEN 3
3. FUGTRRANGPORTEARAMEMEE EOR KYGRODIODEN 5
3.1 Maling af tor vandampmodstand 5
3.1.1 Aluminiumsbakkex som kopper 5
3.1 .2 Store kopper at aluminiumsplade 5
3.2 Msitng af udtentingsevne 6
3.2.1 Udtering ved vegevirkning 7
3.2.2 Hygrodiodens draningskapacitet 7
3.3 Maling as luttgennemgangstal 8
4. MALINGER I FORSOGSEUS 10
4.1 Beskrivelse af forsogshus 10
4.2 Forsegsxesultater 15
4.2.1 Temperatumaninger 15
4.2.2 Fugtmalinger 18
4.2.3 EDB-simuleringer af fugtiorlobene 23
5. MALTNGER PA VTREELTGE TAGE 24
5.1 Bygning 116, Danmankg Tekniske Hojskole 24
5.1.1 Broblemstiling 24
5.1.2 Forsegsxesultater 26
5.2 Andre Byggexier 29
6. KONKLUSION 31
LITTERATUR 33

RESUME

Der er i projektet foretaget forsog med en ny type dampbremse Hygrodiodemembranen dex med fordel kan anvendes i stedet for en sædvanlig polyethylenfolie i de fleste konstruktioner af flade tage. Hygrodioden ex udrormet, sa den uden synderlig modstand lader vand pà vaskeform passere igennem. mens den stadig har en ganske god damporemsende effekt - 4 -vardien er $75-100 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ (150-200 PAM). Herved opnas at sommerkondens, dex optreder mellem damporemsen og isoleringen, kan blive ledt ud af konstruktionen. Der kan seledes vatorees op til $120 \mathrm{~g} / \mathrm{m}^{2} \mathrm{pr}$ dag. I vintersesonen er der cort pe det sted i konstruktioneng hvor Hygrodioden ligger. og dexfor ydes en vasentilg modstand mod optrangen af fugt rac indeluften.

Med en Hygrodiode som campbremse er eventuel fugt i et taghulrum ikke langere indespacret mellem to tatte membraner, tagdakningen og dampbremsen, som i tyaditionelt opbyggede flade tage, og det ex derfor ikke nodvendigt at ventilexe taghulrumet gennem udm luftringsabninger og taghatter. Mexved er muligheden for konco vektiv opstromang af fugtig luft til taghulrummet valukket.

I xapporten beskelves matngex af Hygrodiodens basale egenskaber: Dampdiffusionsmodstand, uataxingsevne og luftgennemtrangelighed.

Endvidere beskriwes, hyordan fygrodioden dels har varet anvendt på Danmarks Tekniske Hojskole som dampbremse i sma tagfelter i et forsøgshus over savel et fugtigt rum som ovex et rum med typisk boligkiima. Dels har den varet anvendt i forbindelse med en renovering af et af hojskolens ilade tage over en auditoriebygning. Forgøgene dekkede savel uventilerede, kolde som varme tage med typiske kombinationer af byggematerialer. 1 alle tila falde blev det vist, at vand, der var tilfort for at illudere byggerugt, kunne torres ud gennem Hygrodiodemembranen, og at kxitisk genoprugtning om vinteren foxhindredes al membranenc damporemsende egenskaber.

SUMPMR

The project deals with experimental investigation of a new kind of vapour retardex, the Hygrodiode membrane, which may be used instead of a polyethylene vapour retarder in most ilat roof constructions. The Hygrodiode is designed so as to let liquid water pass through easily while it still retains a good vapour retarding effect - the vapout resistance is $75-100 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ ($150-200$ ST-PAM) . This way it is achieved that condencate formed between the insulation and the vapour retardex under summer conditions will be led out of the construction. Up to $120 \mathrm{~g} / \mathrm{m}^{2}$ per day may be dried out this way. As the Hygrodiode is located below the insulation it will be dry duxing the heating season and it will therefore provide a substantial resistance against the migration by diffusion of moisture into the roof.

With a Hygrodiode as vapour cetaxder excessive moisture in the cavity of a roof will no longer be trapped between two impermeable layers as is the case in a conventional flat coof - the roof membrane and the vapour retarder. It is thexetoxe not necessary to ventilate the root cavity through vents in the eaves and in the roof surface. This also means that moisture migration by convection of moist indooz asx into the roof system is practically eliminated.

The report describes measurements of the basic properties of the Hygrodiode: Water vapour mesistance, drying capacity and air permeance.

Further, the Hygrodiode has been cested at the Technical university of Denmark used as vapous retarder in mall root sections of a test hut over a humid room as well as over a room which was maintained at typical dwelling conditions for the indoor climate. It was also tested when used as vapour retaxdex in the renovation of a flat roof over one of the buildings of the university. These tests of the Hygrodiode included cold as well as warm deck roof constructions whe different typtcal combinations of construction materials. In all of the tests it was shown that water that was added deliberately when the roofs were assembled, as if it were construction molstures was able to dry out through the Hygrodiode membrane, and that the vapour resistance of the memo brane prevented critical remoistening of the matexials during the winter.

1. TNDLEDNING

1. 1 Formå

Projektets formal har varet at afprove Hygrodiodemembanens egenskaber og virkemade i flade tagkonstruktioner as den kolde og den varme type. Dette belyses dels ved laboratoxieforsog. der giver membranens basale transportparametre som resultat. Dels proves Hygrodioden i tagelementex over et foragghus i det frig hvor elementernes overfladetemperaturer og Tagtindhold kan calges noje. Endelig er fugtforlobene fulgt under anvendelsen af Hygrodioden som dampbremse ved renovexing as taget ovex en eksisterende bygning.

1.2 Baggrand

Erfaringer har vist, at dex i mange flade tage er sket kraftige ophobninger af fugt, Ealedes at isclexingsevnen er vasentiigt forringet, og at indgáende konstruktionsdele ex udsatte for en betydelig nedbrydningsfare. Rad ellex syampedannelse i tra og korrosion af dele af stal (dak og mekaniske berastigelser) forudsætter tilstedevarelse af fugt for at kune forlobe. Fugten kan vare tilstede fra byggexiets fardiggexelse som byggefugt, eller Kan komme ind i taget ved diffusion og lonveltion fra indeluften. Endeligt kan regnvand trange ind, hvis tagdakningen ikke ex tat. Betingelserne for at sadan fugt kan kome ud af taget har hidtil ikke varet gode, da fugten i reglen har waret indesparret mellem to tatte membraner, nemilg tagdakningen og dampbremeen.

Indtil for fa ax siden vax det en udbredt opfattelse blandt byggeteknikere, at Eugtophobning i. kolde tage kunne undgås ved at anbringe en damplomse af plastrolie eller lignende under iso lexingslaget og udlufte hurrumet ovex isolevingen til det fri. Erfaringen hax imidlextid vist, at det ukke i praksis er muligt at udicere dampremsen tilstrakkelig lufteat. "Na dette ikke er muligt, forvarrer udurtningsabningex og taghattex foxholdene " idet de foroger opstromangen af fugtig luft i tagkonstruktionen pa grund af skorstensvirkingen og det vindfremkaldte undertrylk pa tagets overside. En stor del af fugten i denne luft vil Fondensere, náx den nåx den kolde side af isolexingen.
pa trods af at metoden med at ventilere taghulrummet ex angivet i bygningsreglementet, BR 22 , som en anvendelig forholdsregel mod skadelig fugtophobning i tage, dex delvist bestar af træ, har mange eksempler fra praksis vist at det ovennavnte skadesbillede med opstroming af fugtig rumlutt let kan finde sted. Dette har eksempelvis waret tilfwildet med tagene fra gardhusbebyggelsen i Albertshund (Rorsgaard et 21.01984).

Opstromning af tumluft vil Kume undgás ved ifke at etablere udluftningssbninger ved tagudhanget eller hattex i tagiladen, idet man ved at have en helt lufttat tagbelagning undgar lufttxyks. forskelle over dampbremsen. När Bygningsweglementet trods denne kendsgerning anbefaler ventilationsabningex i taget, skyldes det
frygten for at have fugt indelukket mellem to næsten damptatte lag, idet eventuel byggefugt eller fugt fra utatheder i paplaget vanskeligt kan tørre ud og derfor vil virke nedbrydende pă tagkonstruktionen.

Ideen i Hygrodiodemembranen, der skal exstatte den sædvanlige dampbremse, ex, at den skal udfores rimeligt luft-og diffusionstæt, men muliggore, at frit vand kan transporteres igennem membranen. Membranens funktion ex således, at den fugt, som i lobet af en vintex tranger op i tagkonstruktionen og af solen i sommermånederne drives ned og kondenserer som frit vand pà den relativt kolde membrans overside, transporteres igennem til undersiden, hvorfra den kan fordampe ned i det underliggende rum. Herved bliver det muligt at undlade udluftningsabninger og taghætter. saledes at selve tagfladens lufttathed udnyttes.

Varme tage har i reglen ikke sà store problemer som de kolde med opstromning af luft indefra. Dels udfores disse tage ikke med egentlige ventilationshatter, da der ikke er træ tilstede i taghulrummet, dels vil det varme dak, hvis det udfores af beton eller letbeton med tatte fuger, i sig selv forhindre luftopstramning over storstedelen af arealet. En vis konvektiv fugtopstromning kan dog stadig opstå på grund af utætte samlinger, hvor ovenlys og installationer gennembryder dækket, da tagmembranen i reglen er forsynet med mindre trykudligningshætter. Også i disse tage kan Hygrodioden anvendes som dampbremse udlagt pa den varme side af isoleringen. Dels vil den begrænse den diffusive opstromning af fugt nedefra, dels vil den opstrommede fugt kunne udtørres nedadtil, hvor den i farste omgang afgives til dækket.

2. HYCRODTODER

Den basale idé i Hygrodiodemembxanen ex at den skal yde en hoj modstand mod transport af vanddamp samtidig med at kondensexet fugt let skal kunne transporteres igennem.

Membranen bestax af et tyndt hag ar vandsugende $f 11 t\left(80 \mathrm{~g} / \mathrm{m}^{2}\right)$. hvorpa der pa begge sider isggex striber st polyethylentolie (40 $\mathrm{g} / \mathrm{m}^{2}$). Disse striber er placeret forskadt i forkold til hinanden sBledes at de over lapper hinanden pa et stykice filten er salem des eksponeret pe begge sider ar membranen mellem plaststriberne. men de eksponerede omrder ligger aldrig lige over hinanden. Figur 1 viser et twarsnit af Hygrodiodemembranen, hvox tykkelsen ex meget overdrevet.

Striber af polyethylen

Pigur 1 Tvarsnit ar hygrodiodemembxamen De vigtigste transportveje ex dndtegnet tox henholdsyis dampdiffusion og kapiliax trassport.

Diffusion af vanddamp gennem membranen kan overvejende ske par tre mader som vist pa figuren. Vanddampen kars passexe igennem mem branen ved diffusion gennem filsen og et lag plaststribe (A) eller genmem filten og to lag plast (e). Endvidere kan dampen gennemtrange membranen ved en tvargaende transport it den tynde kanal af filt (C) uden at skulle igennem nogen af plaststriberne. Sekundare transportveje (ikke indtegnet) gax pa Iangs gennem en del af filten og gennembxyder en af plastiolierne i det omxade, hvor dex ex owex lap. Der resulterende diffurionsmodstand af membranen viser sig at vare af samme sturuelse som en tynd $(0,05$ mm) ideel polyethylentolie.

Náx der optradex kondens pámembranen, vil den del dex konderm serer pa den ubeskyttede filt, hutigt blive opsuget af membra nen. Rondensatet fordelex sig i hele filten og dermed ogse i det omxade, der er eksponeret nedadtil. Dex vil herertex ske en fordampning fra undersiden eller fugten vil blive midlextidigt absorberet i det underliggende materiale og langsomt blive frigie vet til det underifggende rum. En vasentiag del af den fugt der Kondenserex pe membranens ovexside vil i toxste omgeng samles pe plaststriberne. Herfra má kondensatet enten transporteres sidew Varts i isoleringens nedexste fibre ellex i spalten mellem isom lering og nembran, ellex det ma igennem en cyklus med genfoxdampo ning og transport op i de overliggende materialer. ved naste
dags kondensation pa Hygrodiodemembranen vil atter en del af kondensatet kunne ná den ubeskyttede filt.

Ved at justere pá filttykkelsen, bredden af plaststribernes overlap, bredden af det omrade, hvor filten ex ubeskyttet, samt ved at ændre på plaststribernes diffusionsmodstand kan man opnå en ønsket diffusionsmodstand af Hygrodiodemembranen. Korsgaard (1987) viser resultatet af en teoretisk udregning af hvilke diffusionsmodstande, der kan opnås ved forskellige sådanne variationer.

Membranen er ikke en diode i den forstand, at den ex opbygget uens pa de to sider, og dexved ikke lader txansporten den ene vej foregă pà same vis som transporten den anden vej. Nár Hygrodioden indbygges, er det ligegyldigt hvad vej, den vendes. Diodem virkningen fremkomer ved membranens funktion, nåx den indbygges på den varme side af isolexingen. Den opadrettede transport, der foregar, nax tagoverfladen er koldere end rumluftens dugpunkt det vil sige om vinteren og pa kolde sommernatter - vil ske ved langsom diffusion, da membranen er tor under disse betingelser. Transporten er nedadrettet pă gode sommerdage, hvor fugten i taghulrummet vil kondensere pas membranen, og hvor dex derfor ex mulighed for en hurtig, udtorxende transpoxt ved kapillarledning.

Selvom membxanen skal vare vad for at have sin gunstige udtorrende effekt i en tagkonstruktion, er det altsa en situation, der kun optrader forholdsvis fe timer om aret - og kun indtil taget er udtørret. I almindelighed skulle der altsà ikke pa Hygrodiodens overside være betingelser tilstede for de nedbrydende mekanismer, der følger af forhojede fugtindhold. Visse skadesbilleder kan være karaktexiseret af konstant hoje fugtindhold i taget - eksempelvis hvis der ex hul i tagmembranen. Dette vil signaleres ved at der efterhánden optræder fugtskjolder pa loftsbeklædningen nedenfor det skadede omrade. Den situation mas være at foretrakke, fremfor at vandet bliver opsamlet over en langere grrokke pa en plastdamporemse med nedbrydning af isoleringen og isoleringsevnen til folge. Sadan fugt viser sig gexne ved at det drypper fra loftet, men da kan skaden have stàet på længe, og dryppene kan forekome et helt andet sted end der, hvor utætheden ex.

Hygrodioden ex, mens dette projekt har forlobet, blevet kommercielt tilgængelig, idet den markedsfores af \mathbb{A} / S Jens Villadsens Fabriker. I denne version af Hygrodioden ex plaststriberne af polyethylen ca. 18 cm brede og ligger med et overlap pà ca. 6 cm . Derved bliver de ubelagte striber af filten ogsa ca. 6 cm brede. Filten, der bestar af polypropylen og rådbehandlede cellulosefibre har en tykkelse på ca. $0,3 \mathrm{~mm}$. Det er denne og en tidligere version, hvor filten udelukkende bestod af polypropylen, der har indgået i de forsøg, der beskrives i de folgende afsnit.

3. FUGYTRANSPORTYARAMETRE FOR HYGRODTODEA

I dette afsnit beskrives resultatet af laboratorieforsog, der har haft til formal at finde Hygrodiodens basale transportparametre. Disse udgeres af en vandampmodstand, henholdswis nar membranen er tør og våd, samt af en udtarringeevne og et luftgennemgangstal.

3.1 Mer ining as tere wandiamhmodstand

Materialers vandampmodstand bestemmes i regien ved kopforsag. En "kop" er en linle fiad beholder, hvori der haldes et torremiddel, en mattet saltophaning ellex vand. Materialet lægges pa koppen som lag med en god forsegling, og det hele sattes i et klimakamer ellex i et tum med en konstant temperatur og relativ fugtighed. Nax der bruges et tarremiddel optager koppen fugt ved diffusion gennem materialet, mens den vil afgive Eugt, hvis der var benyttet rent vand. Forskellige saltoplasninger ex i ligem vægt med forskellige relative fugtigheder, silades at transporten af vanddamp enten vil ware rettet ud eller ind gennem matexialet. Ved jævnligt at veje koppen og sammenholde wagtwndringerne pr. tid og proveaceal med damptykstoxsmlien, kan matextalets vanddampmodstand bestemmes.

I reglen er sådame kogoer ikke meget storxe end ca. 10 cm i diameter. Det vil ifke vaxe muligt med sadane kopper at bestemme en koxxekt dampodstand af Hygrodioden, da den ikke er et homogent materiale. Man vil saledes ikie kwane fa malt betydningen af den sidevarts transport itiltlaget parigtig vis. Til disse forsgg er dex derfor dels anvendt bakler ar aluminiums folie, der maler ca. 25×31 cm, dels store koper af aluminiumsplade med malene $50 \times 100 \mathrm{~cm}$. Med foliekopperne ex det muligt at tilpasse et provestykke af Hygrodioden s\&ledes, at der bliver en ubelagt filtstribe pa den ene side af proven og to pa den anden.

3.1.1 Aluminummbakiar somingopex

Seks provestykker af Hygodioden blev udklippet pa forskellig made og tilpasset til "kopperne". Som taremiddel blev der anvendt silicagel, og lopperne var anbragt i et flimakammer ved $21^{\circ} \mathrm{C}$ og $90 \% \mathrm{RE}$. Vagtandringeme blev malt ovex 25 dogn. pag denne tid optog kopperne $3-4$ gram fugt, dex blev registreret pá en vagt med en nojagtighed pa 0.01 gram. Den fundne dampodstand eller 4 -vardi var i genmemsnit $02 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$, svarende til 171 PAM (mmig $\mathrm{m}^{2} \cdot \mathrm{~h} / \mathrm{g}$) . Den hojeste og den laveste vardi var pa henholdsvis $66 \mathrm{og} 99 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ 。

3.1.2 Store Topper ar almminmmplade

Disse "koppex" blev anvendt i et kalderlokale, der holdt en rimelig konstant temperatur og relativ fugtighed. Som torremiddel blev der benyttet silicagel. Over 505 timex (i april/maj 1989) vax den gennemsnithige temperatur i. kalderlokalet $20^{\circ} \mathrm{C}$ og
den relative fugtighed var 32\%. Der blev testet to bakker, der i. perioden optog henholdsvis 11,7 og 14,4 gxam fugt. Regnes med en relativ fugtighed over torremidlet pa 5% fas dampmodstande af Hygrodioderne pả henholdsvis 49 og $40 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}(102 \mathrm{og} 83 \mathrm{PAM})$ 。

Disse tal ligger væsentligt under værdierne opnået med de mindre bakker. Forsøget blev derfor gentaget to efterfalgende gange. Forste gang blev der af txe forskellige provestykker fundet dampmodstande pa 75,77 og $89 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ - altsa noget hojere end det tidligere fundne. Dette forsag foregik i samme kelderlokale i juli 1989. I den anden gentagelse af forsøget (i oktober/a november 1990) blev to kopper sat op i et rum, der konstant var befugtet til $60 \% \mathrm{RF}$. Der blev nu fundet dampmodstande pa 41 og $51 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ - som i det forste forsøg.

Sidelobende med den sidste gentagelse af forsoget blev der i samme rum opstillet to prover af Hygrodiodeng der var foldet som konvolutter med málet $1 \times 1 \mathrm{~m}$ og tapet rundt langs kanterne. Konvolutternes sider var holdt fra hinanden indefra med et par kryds af aluminium. Der blev haldt silicagel i bunden af konvolutterne og de blev sat pa hojkant pa gulvet som en slags alternative "kopper". Herved opnåedes dampmodstande på henholdsvis 95 og $122 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ - det vil sige mindst lige sa godt som med kopfor søgene i de mindre kopper.

Det har således ikke varet muligt nojagtigt at fastsla Hygrodiodens torre dampmodstand. Værdien vil formodentligt ligge op mod $100 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ g da der principielt altid vil blive malt for lave værdiex hvis der er fejl ved randforseglingen - hvad dex for modentligt hax varet i nogle af de beskrevne forsøg. Uanset hvor i intervallet modstanden ligger, ex den imidlertid tilstrakkelig stor til at forhindre en kritisk opfugtning af en konstruktion over vintersæsonen. Kombineret med membranens evne til om sommeren at udtørre eventuelt overskydende fugt má det konkluderes, at Hygrodiodens dampbremsende evne er tilstrakkelig. Dex forestar imidlertid endnu et arbejde med at forklaxe de opnåede divergenser i diffusionsforsøgene.

Endeligt skal det nævnes, at Statsproveanstalten i en provning efter ASPM metode C96 mellem 0 og 50% RF har bestemt Hygrodiodens diffusionsmodstand til $110 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$ (Statens Byggeforskningsinstitut, 1990).

3.2 Máling ar udtorxingsewne

Til at male Hygrodiodens udtarringsevne blev der fremstillet nogle små rammer, hvori man i laboratoriet kunne simulere form holdene i et Eladt tag under sommerbetingelser, hvor der optrader kondens pà membranen.

Forsøgsramernes opbygning fremgår af figur 2. En aluminiums ramme, der udvendigt er isolexet med extruderet polystyren udger de damptatte sider i det simulexede tag. Rammens indvendige mål er $32 \times 59 \mathrm{~cm}$. Hygrodioden er monteret til den nederste ombukning af aluminiumspladen. Hexpa blev der lagt 60 mm Rockwool og et

Pigur 2 Tvarsnit af testrame til mading af mygrodiodens udtonrimgspotentiale.
lag filtrexpapir. Eiftrexpapiret staxtede med at vare vadt for at simulere en tilstand med kondensfugt under tagmembranen. Som afslutning var der henover ramen og filtcerpapiret monteret en aluminiumplade med en varmefolie. Hale dette system var en selvstandig enhed. dex blev sat lest ovenp\& en 25 min plade af trabeton, dex illuderede lotwsbekwedning. Derved vax det muligt at veje denne enhed og bestemme andringeme ifugtindhold.

3.2.1 Udtcruing yed vagewimhning

Der blev tilsat omtrent 300 gram wand til filtrexpapiret, svarende til $1,6 \mathrm{~kg} / \mathrm{m}^{2}$ "og tilfort effert til vamepladeng sa den havde en konstant temperatur på $50^{\circ} \mathrm{C}$. Den tilsatte fugtmængde fordampede fra filtrerpapiret, migrerede gennem isoleringen og kondenserede pà Hygrodioden. Udtørringen foregik derefter over ca. en halvanden uges tid som vist pa Eigur 3. De forste trefire dage er der en betydelig mangde kondens pà membranen, og udtorringsraten er her bestemt till $13.3 \mathrm{~g} / \mathrm{m}^{2} \mathrm{~h}$. Det vil saledes krave 75 timer med konstant nedadrettede gradienter at udtarre 1 kg fugt pr. kvadratmeter tag. Dette svarer till omtrent 10 sommerdage med godt solindrald.

Ved at sammenholde den fundne udtamringerate med de drivende potentialexs sturrelse Eindes en efrektiw "diffusionsmodstand"
 er altsa en betydelig forskel i Hygrodiodens fugtbremsende effekt fra dens vade til dens tome tilstand.

3.2.2 Hygrodiodens draningekapacitet

De samme rammex blev benyttet uden isoleringmateriale, filtrexpapir og varmeplade og uden at vare understattet af trabetonen til at undersgge Hygrodiodens drmingskapacitet. Der blev hældt vand i rammen, sa Fygrodioden var helt dokket med op til 10 mm vand. Et kar blev sat op under opstillingen til at opsamle den

Figur 3 Udtørringsforløbet med konstant hoj "tagtemperatur" i forsøgsrammen.
mængde vaske, dex dryppede igennem. Karret stod på en vagt, der blev aflæst jæunligt. Efter nogle minutter begyndte vandet at lobe igennem membranen og efter en halv time var dræningsraten konstant pa $1200 \mathrm{~g} / \mathrm{m}^{2} \mathrm{~h}$. Selv et beskedent vandtryk giver altsa en betydeligt storre strom af fugt gennem membranen end der kan opnäs ved vagevirkningen alene.

Vandgennemgangen uden hydrostatisk tryk er malt ved kun at halde så meget vand i rammen, at Hygrodioden blev gennemvåd. Rammen blev afdæket med plastfolie og anbragt pa en tar plade af trabeton. Med jevne mellemrum blev xammen loftet af og vejet. Hygrodiodens udtarringsevne ved kapillar sugning (vagevirkning) blev saledes bestemt til cixka $40 \mathrm{~g} / \mathrm{m}^{2} \mathrm{~h}$.

3.3 Meling af luftgennemgangstal

En opstilling som vist i figux 4 blev benyttet til at finde luftgennemgangstallet for Hygrodioden. Hygrodioden var monteret som et tatsluttende $189 \mathrm{p} 360 \times 60 \mathrm{~cm}$ pa en i øvxigt tat aluminiums kasse. For undgä nedbojning var den understgttet over det meste af arealet af en plade af trabeton (der er et meget mere permeabelt materiale end Hygrodioden). Et variabelt sugeaggregat var tilsluttet via en gasmaler og parallelt hermed malte et manometer trykforskellen mellem kassens indre og det omgivende laboratorium. Der blev mált lineare sammenhange mellem undertryk i kassen og luftstrømsrate gennem membranen, nar sugeaggregatet blev justeret til at give undertryk på $10,15,20$ og 25 mmvs.

Der blev udfort forsøg pa i alt syv Eorskellige provestykker. Den gennemsnitlige permeans var $89 \mathrm{l} /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot \operatorname{mmvs}\right)$ med minimums-og maksimumsvardier pă henholdsvis 74 og $1001 /\left(\mathrm{h} \cdot \mathrm{m}^{2} \cdot \mathrm{mmvs}\right)$. Ved division med luftens dynamiske viskositet ved $20^{\circ} \mathrm{C}$ og omregning til SImenheder fas en specifik permeans pa s.5. $10^{-11} \mathrm{~m}$.

Hygrodiode

Tert aluminiumskasse

Gasmåler

Variabefit sugeaggregat

Figur 4 Opstilling til bestemmelse af luftgennemtrangelighed af Hygrodiodemembranen.

4. MÅLINGER I FORSOGSHUS

For at teste Hygrodiodens virkemåde under mere realistiske forhold end i laboratoriet, blev der opfort et forsøgshus pa et udendars forsøgsområde ved Danmarks Tekniske Hojskole. Huset ses pa fotografiet, figur 5. Dette afsnit vil dels beskrive husets opbygning og dets instrumentering samt vise resultater fra form søgene.

Iigur 5 Udendørs forsøgshus til undersøgelse af Hygrodiodens funktion i en konstruktion, der udsattes for det danske 'klima.

4.1 Beskrivelse af forsøgshus

Fosøgshuset máler ca. $5 \times 3,5 \mathrm{~m}$ og har en indvendig loftshojde pa ca. 2.1 m. Bygningen har den strorste udvendige dimension langs den øst-vestlige akse og ex opdelt på langs i to separate rum. I det sydlige rum holdes en temperatur pa mindst $20^{\circ} \mathrm{C}$ og rumluften befugtes til et fugtindhold, der nogeniunde svarer til almindeligt boligklima. I det nordlige rum holdes der ligeledes mindst $20^{\circ} \mathrm{C}$, men her fastholdes den relative fugtighed på 60% aret igennem. Dette svarer til rumklimaklasse 3 (dampkoncentration $\left.>10 \mathrm{~g} / \mathrm{m}^{3}\right)_{\text {. }}$ og er altså ganske fugtigt. Om sommeren vil fugtigheden vare omtrent den samme i de to rum.

Begge rum er forsynede med en termostatstyret elmadiator, der holder temperaturen mindst pe de onskede $20^{\circ} \mathrm{C}$. Om sommeren kommer der imidlertid et vist warmetilsind til bygningen, nar solen skinner på de udvendige flader. Detie forstarkes af, at maleudstyret med tilhorende PC er opsat i det sydilge rum der derfor i perioder bliver op til cixka 30° varmt. Der er ikke etableret koling i nogen af rummene.

Befugtningen vacetages af en forstomingsbefugtex i hvert rum. Disse styres af hygrostatex. Dex ex seledes ogsa her tale om en envejsregulering, da det inke er multgt at fjexne fugt fua nogen af rummene. Fugtniveavet i rummet hyor der simuleres boligklima, reguleres hver maned se den relative Gugrighea er i over ensstemmelse med menedsmiddelvardien at fuxven figux 6, der er Era SBT-anvisning 139,1984 . Detce svarex oper det meste af aret til et fugttilskud til indelusten pe cimka 3 g/m i forhold til udeluften. Der ex dkke kompencexet for at den virkelige indendors tempecatur om sommeren kan vare nogle grader hojere end forudsat i SBI-anvisningen. Diffusion af fugt genmem den gipsbekladte treskeletvag, der adskiller mumene, bevixkex i praksis, at der ikke befugtes i mumet med boligklime i vintemanederne mens der omvendt fur betugtec med beskedne mangdex i rummet med Eastholdt RE i. somnermenederne.

Figur 6 Typiske variationer af inden-og udendoxs relative og absolutte fugtsoncentrathoner ved noxmalt boligklima. Det er forudsatg at fugttilforshen indendors medforer et vanddampindhold, som es $3 \mathrm{~g} / \mathrm{m}^{3}$ hojere inde end ude, dog ikke i sommexmanedexne hvor der forudsattes en hajere udluttning ar boligen. Indetemperaturen er regnet til $23^{\circ} \mathrm{C} i$ juli og august. $22^{\circ} \mathrm{C}$ i juni og sepm tember og $20^{\circ} \mathrm{C}$ sesten as sret. Fra SBTmanvisning 139 , 1984.

Der er opsat termohygrografex i begge rum til inaling af den relative fugtighed og temperatur i cirka 1 meters hojde. Tem
peraturen under loftet males endvidere pa det dataopsamlingsudstyr, dex omtales nedenfor.

Loftet ovex bygningen bestar af fire fag af tagkassetter, der ligger i den nord-sydgảende retning pa tvars ax bygningen. Taget har en haldning pa 1:40 mod nord. I hver af kassetterne, der er fugt- og vameisolerede pa sædvanlig vis, er der udsparet fire hullex pa 35 \% 40 cm . To af disse hullex sidder over rumet med boligklima, mens de to andre sidder over rummet med konstant relativ fugtighed. I disse huller monteres de egentlige forsøgselementer med de forskellige materialer og damporemser. Et twærsnit af en tagkassette ses af figux 7. Over taghassettens krydsfinersdak ligger en stålplade, der optager lasten over udsparingerne til forsagselementerne. Som afslutning ex der anvendt skiferbestroet tagpap.

Figur 7 Tvarsnit gennem tagkassetten pa et sted, hwor der er udsparet et hul til et forsogselement.

Hivert forsøgselement er indbygget i en pose af $0,15 \mathrm{~mm}$ polyethym lenfolie, der passex i udsparingen i tagkassetten. Herved opnås. at forsøgselementet er fugtmæssigt adskilt fra resten af tagkassetten, mens de termiske forhold stadig er nogenlunde endimensionale, da tagkassetten er isoleret omtrent som forsøgselementet. Posen ex Iben torneden, salledes at matexialexne, der fyldes i forsøgselementet er eksponerede for klimaet i det underliggende rum. Der, hvor dampbremsen indlagges i posen, tapes den omhyggeligt til posens indvendige sider, sa fugten forhindres i at diffundere udenom.

Formalet med at opbygge forsogselementet i en plastpose er at elementet let kan trakkes ud af tagkassetten, således at ændringer i fugtindholdet kan bestemmes ved vejning.

Figur 8 Fordeling af materialex i de enkelte forsagselemen tex samt deres placering over de to rum. Tallene angiver materialetykkelsex $‥$ man filten var et ca. 1 mm tykt lag Fibextex, polystyrenen vax expanderet, betonen var af en grov ivalitet (finsebeton). og endelig bestod staldakket af kormgerede, perforerede pladex. Whlte middeldensiteter fox Rockwool: 83 $\mathrm{kg} / \mathrm{m}^{3}$ og for polystyren: $18 \mathrm{~kg} / \mathrm{m}^{3}$.

Forsøgselementerne ex opbygget som typiske varmttagskonstruktioner med materialer, dex illuderer det barende dak, under iso leringen og dampremsen. En undtagelse er feltet, nx. 7, dex har en krydsfinersplade som koldt dak over isoleringen. Dette tagelement er placeret over rummet, dex holder en konstant hoj relativ fugtighed. I prxigt ex det tilstrabt, at elementopbygningen i de to rum ex parris ens, sa samme type element findes over begge rum. Figur 8 visex de enkelte elenentere samnenswining og deres lokalisering over hvert enkelt rum. Ved corsogets start blev der benyttet en Hygrodiode som dampbremse i alle forsøgselementerne. Den anvendte Hygrodiode var den pa forsøgenes starttidspunkt nyeste kommercielt tilgangelige, hvor den syntetiske filt bestod af polypropylen. Den 1. november 1988, det vil sige efter at forsøget havde stat pa i trekvart gr, blev Hygrodioden exstattet med en polyethylenfolie ifelt nr. 12 samt i felt nr. 11 med en polyethylenfolie med et cirkulart hul, $y=10$
mm, midt i. Disse elementer, der begge var placeret over det fugtige rum, blev anvendt til sammenligning med elementexne med Fygrodiode-dampbremser.

Der blev målt temperaturex pá stglpladens undexside over hvert enkelt forsøgselement samt direkte pa dampbremsen. Endvidere blev der malt temperaturer i rumluften i begge rum umiddelbart under taget, samt en udelufttemperatur. Endelig blev der som en orienterende maling regjstreret globalstraling ar et solarimeter med samme haldning som tagfladen. Termoelementerne der var af kobber-konstantan (Cu/Ro). samt solarimeteret blev aflæst af et udstyr omfattende et MP-3455A digitalt voltmeter og en HP-3495A scanner. Malexesultater blev opsamlet og HP instrumenterne styxet via et GPIB (General Purpose Interface Bus) adapterkort, der sad som indstik i en TBM PS/2-30 pexsonlig computer. Endvidere indgik en temperaturreferencebos med et indbygget Cu/ko termoelement, der holdt $47,0^{\circ} \mathrm{C}$. Málekanalerne blev scannet hvert 30 'te sekund og hver halve time blev middelvardien af malingerne lagret pa diskette. BASIC-måleprogrammet er en modificeret version af et program, der indgaende er beskrevet af Jensen (1988).

Formålet med temperaturmalingerne har dels varet at give en orientering om hvilke temperaturer, der har varet drivende for transporten af vanddamp gennem forsøgselementerne. Dels ex målingerne blevet benyttet som input til simulexinger af fugttilstanden i elementerne med beregningsprogrammet MATCH for koblet fugto og varmetransport (Pedersen, 1990).

Målingerne har strakt sig fra februar 1988 til oktober 1989. Ved opsatningen af elementerne blev der ikke tilsat fugt. Forskellige forsøg med vigtigheden af en omyygelig tætning omkring dampbremsen blev gjort i de forste mảneders forsag. I den forste maned, hvor der slet ingen tatning vax, ophobedes der betydelige mangder fugt i tagelementerne - mere end der med rimelighed kunne tilskrives diffusion gennem dampbremserne. Tatringen blev dexefter forbedret og forst i maj blev der tilsat fugt til elementerne ved at filten i oversiden af isoleringen i varmt-dæks konstruktionerne blev gennemvadet med vand. Krydsfineren fra konstruktionen med det kolde dak blev ligeledes opfugtet ved at ligge neddyppet i et kar med vand i cirka en halv time. I genm nemsnit blev der saledes tilfort 57 gram vand ($407 \mathrm{~g} / \mathrm{m}^{2}$) til hvert af elementerne udover det, der allerede måttet være optaget tidligere eller vare indeholdt hygroskopisk ved forsøgets start.

Poserne blev nedtaget og vejet cirka hver måned. Ved disse vejninger indgik poserne med indhold, det vil sige isoleringsmaterialer og dampbremse, men ikke det underliggende dæk/loftsbeklwdning. Ved vejningerne til og med den 4 . januar 1989 blev alle materialerne udtaget af poserne og vejet hver for sig. Dette kravede anvendelse af en tape til forseglingen mellem dampbremse og pose, der kunne tages af uden at odelægge matexialerne. For at opna starre sikkerhed for at denne tape sluttede tat, blev den erstattet med en kraftigere type med bedre klmbeevne ved vejningen den 4. januar 1989. Felterne blew herefter ikke sbnet for forsøgets afslutning. Endeligt blev materialerne vejet, ovnter-
ret ved $105^{\circ} \mathrm{C}$ og vejet igen ved Eorsogets afslutning. Derved vax det muligt at regne tilbage og besteme tagelementernes absolutte fugtindhold gennem forsoget.

4. 2 Forsagsicesultater

Dex skal ikke her redegmes fuldstandigt for resultatet af temm peraturmalingerne, I etedet vises nogle figurer, dex dels illum strerer nogle typishe forlab i savel en kold som en varm periode dels vises en oversigt over temperaturxandbetingelsexne over det meste af maleperioden for et af felterne. Det udvalgte felt er nr. 5, dex sidder over det sydilige rum. er isoleret med 150 mm Rockwool og hax trobetondak.

Figur 9 Temperaturex i det sydvendte xum, under og over isoleringen i et af felterne (nr. 5) samt i udeluften i december 1988, der var målepexiodens koldeste måned.

Figur 9 viser de malte temperaturer i det sydlige xum, hvor der holdes boligklima, sammen med Hygrodiodemembranens og stalpladens temperaturex for felt n. 5 " samt udeluftens temperatur. Den viste periode ex de faxste 30 dage af december 1988 - den koldeste af de máneder, der ex blevet malt. Det ses, hvordan temperaturen af indeluften ex tat pa $20^{\circ} \mathrm{C}$ hele perioden. Hygrodioden
er kun adskilt fra indeluften af trobetonen og temperaturfaldet herover er kun pa et par grader. Udeluftens temperatur variexer 5-10 ${ }^{\circ} \mathrm{C}$ omkring frysepunktet det meste af perioden. stalpladeng der ligger iige under tagpappeng ex for det meste koldere end udeluften ${ }^{\text {da }}$ tagfladens udstraling tilsyneladende er mere vae sentlig end det beskedne solindfald der kan komme i december. Dette kan give et beskedent ekstra potentiale for opadgáende fugtvandring om vinteren.

Higur 10 Temperaturex i det sydvendte rum, under og over isoleringen i et af felterne (nr. 5) samt i udeluften i juli 1989" dex var en af maleperiodens varmeste má neder.

Figur 10 viser temperaturerne malt de samme steder som i figur 9 for juli maned 1989. Indeluftens temperatur kan ikke her holdes nede på $20^{\circ} \mathrm{C}$, men varierer i stedet mellem cirka 23 og $33^{\circ} \mathrm{C}$, afhangigt af hyilket tidspunkt pa dognet det er, og hvordan vejret har varet i de foregaende dogn. Disse overtemperaturer er omtrent halvt sa hoje i det nordvendte rum (ikke vist). Hygrodiodens temperatur varierex et par grader omkring indelufo tens. Udeluftens cemperatur afspejler, at sommeren 1989. var ganske "god". Kun sfaldent kommer nattemperaturen under $10^{\circ} \mathrm{C}$, mens dagtemperaturene ofte topper mellem $20 \mathrm{og} 30^{\circ} \mathrm{C}$. Da tagm fladen ex mork, komex stalpladens temperatur mange dage op over $60^{\circ} \mathrm{C}$ midt på dagen, nar sollyset absorberes. En gråvejrsperiode midt i máneden ses tydeligt. Tagfladens nattemperatur kan til gengrld godt komme noget under udeluftens (manedens minimum er

figur 11 Daglige minimums- maksimums- og middelvexdiex gennem det meste at măleperioden fox temperaturene på hygrodioden ifels nr. 5.
tæt på frysepunktet, da der skex en vis udstraling til himmelm rummet. Udstrilingen ex nammigt stor i de klare degn, hvor også indstralingen om dagen ex stor.

Figur 11 viser de daglige minimuns-, middel-og maksimumstemperaturer for hele perioden pa Eygrodioden ifelt nu. 5. Eigur 12 viser de tilswarende tempexturex i oversiden af det same tagelement. Ved at samenholde de to figurex frengar det at ovexsiden af feltet gennem hele vinteren fonstant er $15-20^{\circ} \mathrm{C}$ foldere end undersiden. Under disse betingelser kan der ske en opadrettet fugttransport, og des vil dannes kondens gverst i feltet. Fra april til september er der daglige spidstemperaturer af feltets overside, der overstiger Hygrodiodens temperatur. Midt pa sommeren er tagoverfladens middeltemperatur omtrent ligesom Hygrodiodens. Da isolexingens underside s\&ledes periodevis er det koldeste sted inde i felteme, vil fugten i disse perioder kondensece pa Hygrodiodeng og der ex da mulighed for at der kan ske en udtarring. p\& grund af matningsdamptryktets narmest eksponentielle stigning ned temperaturen virker de hoje tagtemperaturex sarligt effektive med henblik pa at tilvejebringe en nedadrettet damptryksgradient.

Figux 12 Daglige minimumse, maksimums- og middelvardier genw nem det meste af maleperioden for temperaturene i oversiden af felt nr. 5.

4.2.2 Fugtmálinger

pá de folgende figurer vises vejeresultaterne for grupper af fire elementer ad gangen. De fire elementer har siddet i samme tagkassette (to i hvert rum) og hax i reglen samme type varmt dxk. Resultaterne fra for fugtilsatningen i maj 1988 vises ikke, da de betragtes som indledende proveforsøg. Vejeresultaterne er blevet omxegnet til absolutte fugtindhold som kg fugt pr. kvadratmeter tagareal for hvert af forsogsfelterne.

Figur 13 viser resultaterne for konstruktionerne med betondæk. Den tilfarte fugtmængde udtrrres indenfor de frrste ca. 3 máneder i de to felter, der ex mineraluldsisolerede. I de to felter, der er isolerede med polystyren gax udtmrringen noget langsommere, således at det tagex $5-6$ måneder for felt 2 at udtorres, mens felt 4 over det fugtigere rum stadig indeholder lidt af den tilsatte fugt sidst pà efteraret. Der sker en vis opfugtning i lobet af den efterfolgende vinter. Opfugtningen er særligt stor for felt nr. 3 , der ex isoleret med mineraluld og sidder over det fugtige rum. Vinteropfugtningen ex mindst for felt nr. 2, der har polystyrenisclering og sidder over rumet med boligklima. Anden sommer torrex alle felter ud til kun at indeholde hygroskopisk fugt.

Pigur 13 Udtarringsforlob for de fire tagieltex med betondæk.

Feltexne nr. 5, 6 og 8, der ses at figux 14 opfarex sig overvejende som felteme fra den foregaende figur. De polystyrenisolerede felter udtorrer dog lidt hurtigere, and da der var beton under Hygrodioden. og opnax derfox begge at udtwrxe helt ferste sommer. Skalaen pá ordinataksen er andret i denne figur for at give plads til resultaterne fra felt ${ }^{\prime}$ der har et kxydsfinexsdæk. Krydsfineren indeholdex en del hygroskopisk fugt, der i princippet ikke kan eller behøver tares helt ud. Det afgorende ex at fetwafugtigheden moder 20 vagtwo der betragtes som faregrænsen for begyndende swampeangreb, nåx temperaturen samtidigt ex starxe end $5^{\circ} \mathrm{C}$. Krydsfinerens fugtighedsprocent er derfor ogsa angivet i nogle ar punkterne pa kurven. Som det ses, torrer krydseineren ud pa $3-4$ maneder den forste sommer. Til gengæld er opfugtningen ganske stox den efterfalgende vinter. sá fugtinde holdet kommer op omkxing faregransen. Dette sker i en periode, hvor frydsfinerens temperatur stadig er forholdsvis lav. Den store genopfugtning skyldes dels at feltet er isoleret med mineraluld og er placeret over det Eugtige rum men ogsa at trwet absorberex fugten ved en lavere relativ fugtighed end 100%, hvorved der bliver en storre damptryksforskel til at drive den opadrettede transport.

Figur 14 Udtorringsforløb for tre tagfelter ned dwk/loftsbeklædning af trabeton og et med bræddedre. Felt syy har endvidere et "koldt" krydsfinersdæk pal oversiden af isoleringen.

Figur 15 omandler fugtforlobene i felterne med perforeret stål dwk. Udtoxringen den forste sommer gar meget hurtigt for felter. ne med mineraluld, men ogsa de to andre felter, der hver ex isoleret med bade mineraluld og polystyren, torrer ud inden for et par maneder den farste sommer. pa figuren er det markeret hvornå Hygrodioderne i felterne 11 og 12 blev erstattet med henholdsvis en hullet og en hel polyethylen dampbremse. Tilsyneladende har der stadig varet mulighed for fugtdiffusion ind i felterne, da deres fugtindhold stiger en del de eftexfølgende to måneder. 4 . januar 1989 forbedres tapen, der tatner dampbremserne til plastposerne, og det har tilsyneladende en markbar effekt - i det mindste pa felt nr. 12. Det er derfor ikke umu ligt, at der i et vist omfang har varet en utilsigtet diffusion af fugt rundt om dampbremserne i hele 1988, savel i disse to felter som i de øvxige. I 1989 ses fugten i. felt nr. 12 med en ideel dampbremse at vare ganske godt indesparret, mens selv det ene hul, der er i dampbremsen i felt nr. 11 , muligger at fugten

Figur 15 Udtorringsforlob for de fire tagfelter med dak af perforerede. Korrugerede stillplader. $\quad \mathrm{MDM}=$ Hygrodiodemembran.
kan slippe bade ind og ud. Utatte dampremser lader altsá ikke blot fugt komme igennem ved konvektiong hvis der er lufttryksforskelle i konstruktionen, men som det ses her, hvor den konvektive transport ikke ex mulig. foraxsager huller og sprakker ogsa en vasentiog formgelse af den diffunderede mangde.

Figur 16 visex fugtforlobene i de sidste fixe felter, der enten har gips eller krydsfiner under Hygrodioden. Tendenserne ex de samme som for de foregående feltex: Den tilsatte fugt tarrer ud den farste sommer, men omtrent dobbelt ss hurtigt, nax der anvendes minexaluld, som hvis der anvendes polystyren. vinteropfugtningen er starst over det fugtige rum, saxligt nar der isoleres med mineraluld.

Folgende konklusioner kan drages ud af forspgene, omend det kan være usikkert on der eventuelt hax varet en utilsigtet diffusion af damp rundt om dampremserne indtil tatningen blev forbedret i januax 1989:

pigur 16 Udtarxingsforlob Eor tagfelter med gips ellex krydsfiner som underlag for Hygrodioden.

- I modsetning til nar der anvendes en tat og ideal polyethylen dampbremse, giver Hygrodioden mulighed for at fugt i taghulrummet kan slippe ud. Der er udtorret op til 450 gram fugt pr. kvadratmeter tagareal pá 23 dage mellem de forste to vejninger efter Eugttilsatningen (felt 12).
- Udterringen gáx hurtigst, nar der anvendes en damppermeabel isolexing eksempelvis mineraluld fremfor polystyren. Herved kondenserex dex mest fugt pa Hygrodioden i dagnets solskinstimer.
- Wil gengald sker vinteropfugtningen ogsa hurtigst, nar der anvendes mineraluldsisolering. Polystyrenisoleringen har altsd en vis dampbremsende effekt også nå gradienterne er opadrettede.
- Udtorringen sker bedst, nar Hygrodiodens underlag er permeabelt. Den fugmmengde, dex kommer gennem Hygrodioden zan umiddelbart diffundere gennem eksempelvis de perforexede
stelplader, mens den forst midextidigt maphobes i dreket. nax det ex af beton.

4.2.3 MDB- \% muleringer af fugtrowlobere

Sidelobende med Hygrodiodeprojektet har der ved Iaboratoriet for Varmeisolexing loxt et licentatprojekt med emet "Koblet fugtog varmetransport i bygningskonstruktioner". En central del af dette licentiatarbejde hat bestăet it at udarbejde en bexegningsmodel. Matcr, for den kolblede tugt og vametransport. Modellen tagex hensyn til matexialelagenes fugtophobning og indeholder en detaljeret beskrivelse at den gensidige kobling mellem cemperam tur- og fugtforlobene. Kerved representerer den en betydelig forbedring i forhold till den sadvanliges stationare Glaser's metode (Glaserg 1959) til beregning at tugttordelingen i konm struktioner. Samtidig ex Matci den hidtill eneste beregningsmetode, hvor dex ex taget hensyn til difeusionsmodstandens bratte ændring nar Mygrodioden bliver vad. mextly kraves en detaljeret, instationar beregning ar formoldene patygrodiodens overflade for at kunne sige hvornar membranen vixker som en permeabel henholdsvis en tat damporemse. Procrammet. der korer pa en sædvanlig PC , benyttex enten ceferencedxets vejxatata somput eller aktuelle máninger af overfiadetamperaturex. Matu ex beskrevet i detaljer i Iicentiatarhandingen (Pedexseng 1990).

Et afsnit af licentiatafhandingen omhandex fugtproblemer i flade tage, og et underafant beakxiver Hygrodiodemembxanen som en mulig losning pa de i praksis foxekomende problemer. I afsnittet ex nogle af de malte xesultater fya figurexne ovenfox sammenholdt med tisvaxende beregningex med March. Dex opnås en tilfredsstillende overensstemmelse, nar Hygrodiodens torae dampmodstand nedjusteres noget (til omtrent. $35 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$) samtidig med at den vade modstand opjusteres (til $8 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$) i forhold til estimatet fra afsuit 3.2.1. Disse justeringerg der svarer til et mindre gunatigt fowhold mellem de tarre og vade transportparametre for Kygrodioden karn dels torklaves med den mulige darlige tatning omkring myrodioden : Loxsogets farste ar, dels at den anvendte Hygrodiode var den tidigere version hvor filten bestod af rent polypropylex. der havde en tendens til nogle gange at blive vandskyende.

Andre simhexinger at Elade tagkonstmktioner med Hygrodiode og andre dampremser ex wist i samme afsnit savel som i nogle af artiklerne, der naves i littexaturlisten. Ril disse beregningex er der anyendt vejudata fxa det danske test referencear, gry.

5. Mitunger Pi virkerige reage

Det ex naturligwis afgoxende, at Hygrodiodens egenskabex ikke Jun kan eftervises ved mailinger i laboratoriet og i mindre forsøgs tagmoduler som de i kapitel 4 nxvate, men at membranen ogas fungerer, nax den er monteret i virkelige tage ifelten. I dette kapitel vises og omtales eksempler på sadanne feltmalinger.

5.1 Bygning 116, Danmarks Tekniske Højskole

Anvendelsen af Hygrodioden forudsættex, at den indbygges i konstruktionen på det sted, hvor den sadvanlige dampbremse skulle have ligget. Dette kan naturligyis let sikxes i en nykonstruktion, hvor membranen enten indbygges pa det rigtige sted i fabriksfremstillede tagkassetter eller let kan udlegges, narr konm struktionen udferes pả byggepladsen. Lidt svarere blivex det, nax eksisterende tage skal renoveres, da man sa er nodt til at adskille konstruktionen til det sted hvor dampbremsen ligger eller skulle ligge. Da der findes mange fugtskadede flade tage på danske byggerier fra de sidste 20-30 ars tid, hvor det var god latin at "klare" fugtproblememe ved udlufrning af taghulrumet, ligger der et stort anvendelsespotentiale for Hygrodioden, hvis den ogsả kan anvendes i forbindelse med tagrenovering. Korsgaard og Bunch-Nielsen (1990) navnex et eksempel på at man har benyttet Hygrodioden i en renovexing af et koldt tag ved at fjerne loftsbekladningen og den gamle dampbremse nedefra og satte en Hy grodiode op i stedet. I dette aisnit omtales en renovexingssag af et varmt tag på Danmarks Tekniske Hajskole, hvor det har været nødvendigt at gribe ind fra tagets overside.

5.1.1 Problenstilling

Det oprindelige tag der var beliggende over bygning 116 pa Danm marks Tekniske Hojskole i Lyngby ex vist itvarsnit pa figur 17. Bygningen, dex indeholder auditorier og tegnestuer, er opfart omm kring 1970. Tagets samlede areal er ca. $5500 \mathrm{~m}^{2}$. Det barende drok er af ruplojede bræder, hvoxundex loftet er nedhangt (ikke vist). pa dokket var der oprindeligt pasammet et lag bitumenpap med alumolie, der har udgjort et meget tat dampbremsende lag. Herover var isolexingen udlagt, der bestod af 75 mmineraluld, og der var afsluttet med 3 lags built-up med dækasfalt, hvori der var udlagt artesten.

Den tatte dampbremse har effelcivt foxhindret at eventuel fugt. der matte vare aklumuleret inde i taget kunne trænge ned om sommeren. Det ma formodes, at der til gengald heller ikke hax varet nogen vasentlig opadgáende fugttransport om vinteren. Dampbremsens almene tathed har imidlertid ikke forhindret at tagets uheldige fugtmassige tilstand har vist sig ved dryp fra loftet enkelte steder, hor wandet alligevel har fundet sig et hul i membranen. Man må således forestille sigg at en stor del af tagarealet hax varet gennenvadt. for det drypper ned i de underliggende rum. Ved en proveudtagning af isolering fra et omrade af taget, dex formodedes at være hardt fugtbelastet var

Built-up med cartesten
Mineraluid (75 mm)
Bitumenpap a alt-rofie Braddedark

Figur 17 Twarsmit at taget ovex bygning 116 pa dru fox xenoweringen.
isolexingens fugtindhola da ogsa på 395 vagt-\%. De uatagne provestykker var helt desintegrede, og isoleringsverdien har naturligvis varet vasentigt rompinget.

Da dampbremsen som sagt má anses for at have varet tat, er fugten nappe kommet nederra. Der vil enten vare tale om fugt. der stammer helt fra byggerasen ellex om nedbor. dex ex kommet igennem utathedex i tagpappen.

Renoveringeng der blev udfort pá starstedelen ar taget var ar en traditionel kaxakter. Den bestod a at lomalisere de omader af isolexingen hvor fugtindholdet ansak for at vare sexligt hajt. Hex blev isoleringen udmkiftet. De game artesten blev skxabet af. og ovenpa den gamle cagpap blev der lagt ny isolexing af kileskaret, expanderet polystyren. Taget blev arsluttet med en EPDM-dug med sostencballast. Ved renoveringen blev den varste fugt fjernet, og den oprincelige isolering fom til at ligge varmere, hvilket alt andet lige vil give fugten et vist potentiale for at slippe ud, hyis der vel at marke ex nogle diffusionsm veje. Den oprindelige isolering er imidextid indesparret mellem to for damptransporten tatte membraner. Det samme gridex for den nye del af isolexingen. Bade den tilbageblevne fugt og eventuel fugt, der matte kome gennem utatheder 1 den nye tagdug, vil derfor ikle kune finde veje at slippe ud ar taget. Den udfarte renovering reprasenterer altsă ikke en principielt sundere konm struktion end den gamle.

Et ca. 100 kvadratmeter stort omade af taget blev udvalgt til en alternativ renovering med Hygrodioden. Her blev den gamle built-up og isolering kasseret og astaltmembxanen. der var summet pa tredwkets overside, blev fjernet, for at Hygrodioden kunne virke Kygrodioden blev lagt ud son damphemse dicekte pa tradakket. Herpa kom der 150 mm mineraluld med tvarstillede fibre og en traderast mineraluldsplade per orexsiden. Som tagardakning blev der brugt samme EpDM-dug med ballact som pâ resten af caget. Mellem isolexingen og EPDM-dugen blev der lagt et lag fibexter. Inden taget blev Iukket den 20. november 1987 , blev fibertesen vædet med en haveslange, se figur 18. Dex blev herved tilfart ca. 1 kg vand px. kvadratmeter, omend rordelingen nok har været noget uensartet.

Pigur 18 Tilsatning af vand til den del aft taget, dex blev renoveret med en Hygrodiode som dampbremse.

Der blew indbygget fugtmảlerondeller fra fimaet Bygge og Miljom teknik a/s bėde for oven og forneden to forskellige steder i isoleringen. Fugtmalerondellerne bestar af en krydsfinexsskive med en tykkelse pa $12,5 \mathrm{~mm}$ og en diameter pa 5 cm . Den elektriske modstand mellem to som, der er slaet ind iskiven, kan ved hjwlp af en kalibrexingskurve omsattes til fugtindhold i træet. Ronm dellerne giver i reglen gode resultater i det hygroskopiske omrade, mens der ikke er nogen god oplesning at resultateme nax fugtindholdet kommer over fibermatning i traet. Her ma man nojes med at konstatere, at fugtindholdet liggex pa et for hojt, men ukendt niveau.

Det ene sted, hvor rondelleme var indbygget, blev ballasten på EPDM-dugen skubbet til side i et cirka 2 * 2 meter felt den 15. juli 1988, og dugen blew vasket af for stenstov. Det andet malem felt var fortsat dakket af stenene og opnåede derfor kun mere nodexate overtemperaturer om sommeren.

5.1.2 rormagremultater

Fugtmalerondelleme ex blevet aflast ca. 1 gang ugentligt siden renoveringens udfarelse. Der er saledes radighed over knap 3 ars maledata. Bade sommexen 1988 og 1989 har der i pexioder været tilslutcet en skxiver til texmoelementex der var monteret pá
fugtrondellerne. Herved E as en idé om hyordan somertemperam turerne har varet med de to forskellige cagoverilader.

Pigur 19 Malte temperaturer i oversiden af isolexingen uden (1) og med (3) ballast samt i undersiden af isoleringen de tilsvarende steder (henholdsvis (4) $\operatorname{og}(2))$.

Figur 19 viser de malte temperaturer pa en af de bedste sommerdage i 1989. I oversiden ax isoleringen under den morkegra EpDM dug bliver der op til 63° varmt. mens den tilsvarende maksimumse temperatur i den del af taget. der har en stenballast, bliver knap $45^{\circ} \mathrm{C}$. Man ser i purigt, hvordan ballasten forsinker tem peraturprofilets udbredelse med ca. en time. Nattemperaturen nar ned omkxing $10-15^{\circ} \mathrm{C}$ - koldest nar der ikke ex ballast. Temperam turen i undersiden af isoleringen vaxierer pà den pagaldende dag mellem $23^{\circ} \mathrm{C}$ sidst pa natten og knap $35^{\circ} \mathrm{C}$ om dagen. Med sten ballast er temperaturgradienterne Iige meget op- som nedadrettem de, mens der er overvagt af de nedadrettede gradienter, nar dugen er ubeskyttet. Onregnes der ved hjelp af matningsdamptrykskurven til damptryksgradienter, vil der i begge tilfalde vare storst
potentiale for den nedadrettede fugttransport, omend dette navnligt vil gare sig galdende for det ubeskyttede tag.

Figur 20 Malte fugtindhold af rondelleme i overo og undersiden af isoleringen både med og uden ballast på den overliggende EPDM-dug.

Figur 20 viser foxlabet af fugtindholden i fugtrondellexne de fire målesteder. Rondellen i toppen af det ubeskyttede tag bliver Eugtig med det same efter tagets lukning. Fugtniveauet holder sig hajt den farste sommex og naturligvis ogss i den efterfolgende vinter. Forst anden sommer torrer fugten ud, og fugtindholdet holder gig så til gengæld pa et sikkext lavt niveau resten af maletiden. Rondellen i bunden af isoleringen ligger tort storstedelen af tiden. Kun om somexen fugter den op, da den da modtager noget af fugten fra oversiden. Dette sommertilskud har varet mindre i 1990 , da der ikke har været nævnevardige fugtmangder i toppen. Arsagen til, at udtarringen forst sker anden sommex, liggex dels i at ballasten ikke blev skovlet til side for godt hen pa den forste sommer, men skyldes måske især et ca. $=1 \mathrm{~cm}$ hul i EPDM-dugen, der blev opdaget mindre end en meter framalestedet i september 1988. Dette hul må vare opstået da ballasten blev skovlet ud pa taget i forbindelse med renoveringen og kunne eftexlade et spargsmal om hvor mange lignende huller, der er rundt om pa taget. Ved udtagning af provestykker af materialerne i taget omkxing dette målested, ligeledes i september 1988 , fandtes et samlet fugtindhold pa ca. $1,6 \mathrm{~kg} / \mathrm{m}^{2}$, altsá mindst lige så meget, som der blev tilfort fra starten. Der blev ligeledes udtaget provestykker den 3. juli 1990. Hex
blew isoleringens fugtindhold bestemt til mellem 1.1 og 2. 5 vagt\%, svarende til et omtrentligt fugtindhold pa $0,27 \mathrm{~kg} / \mathrm{m}^{2}$. Det må formodes, at der ved denne wejning kan var hygroskopisk fugt tillbage ${ }^{\text {i taget. }}$

Rondellen i toppen as isolexingen pá det andet malested hvor tagdugen er beskyttet, har operat sig lidt utorklarligt. Ber steg atherningen ikke lige med det samme eqter at fugten var tilfort, og taget lukket. Det aflaste fugtindhold i rondelien steg i stedet gradvist over det torste are tid, men sia har der hverken forste ellex anden sommer wacet tegn pa en udearing. Rondellen i bunden ligger oges her tort det meste af maleperioden men modtagex lide fugt fra ovexstden om someren - dog ikke så meget som dex, hvor tagdugen ex ubeskyter. Det tyder altsa pas at dex med de lavere overfladetemperamuex ikke ex store kraiter til at drive fugten ned i taget om sommeren og ej hellex til at drive den wo igenmen Bygrodioden. Det sidsce lille ars tid af máleperioden sex det no som om dex ex en taldende tendens for fugtindholdet i toppers af taget.

Ved proveudtagningen fra demne del as taget $\frac{1}{2}$ september 1988 fandtes et fugtindhold po $3,2 \mathrm{~kg} / \mathrm{m}^{2}$. Yed Gbningen af taget i sommeren 1990 indeholdt provercykez at isclexingen mellem is og 2,5 vagtm fugt svaxende til et giconot fugtindhold pa 0,32 $\mathrm{kg} / \mathrm{m}^{2}$. Dette tagrelt mả altas ligeledes ware tat pa at ware hygroskopisk tart. De hoje aflamninger gxa den aperste rondel i dette felt kan maske forklares ved, at rondellen udgm det eneste materiale i taget med vasertily hygros?opisik kapacitet. Den smuie fugt, der ex i taghlrummet wil dexfor koncentrexes i rondellen og bliwe dex, til taget ex torrer masten helt ud.

Det hax i disse forsgg varet noget neltkert, om taget pa grund af utatheder i RPDmodugen hax varet tilfort mere vand end tilm sigtet ved den bevidste vanding af taget. for det blev lukket. Det ser imidrenth ur trig at det mblested, hyor eppmodugen ex
 sommer erter at muligheden son utathedex ar dugen indenfor maleomradet ex blevet udelukket. Der ex ogsa tegn pa en udtorring ved det andet malested, men her er taget tisymeladende forst blevet toxt i sommeren 1990 m to th tre soma efter Eugten ex tilsat. Det max altsa forventes at ndtomingen forluber noget langsommere, ner der ligger sten pé tagetg da de veesentligt reducerec de overtemperaturex, man kan opne pa soltige sommerdam ge. It andet lige, wil Hycrodioden altaa have sin bedste udm tarmende etfekt, nax tagovertiaden ar ubeskyttet og mork.

5.2 Andre byggeriex

Financieret uden om norvarende projekt har der varet flexe tilfalde af praktimke anvendelser at Hygrodioden patage i felteng hvor dex er foretaget milinger for at eftervise membranens runktionserne. Sadanne foregg ombales i en artikel af forsgaard og BunchoNielsen (1990), og resumeres hex for at illustrexe den praktiske anvendelighed af xesultaterne fra narvarende projekt.

Det forste af de i artiklen nevnte foxsug ex roxetaget ovex sommeren 1989 af P. Collet, det daverende Teknologisk Institut Tastrup. Der ex foretaget fugtmalinger i tagkassetter, der blev anvendt over en fabrikshal. Kassetterne var tilfort 51 vand/m² tagflade og havde en Hygrodiode som dampbremse. Til trods for at taghladen 1 is i skygge til kl. 13.00 hver dag. rapporteredes det, at den tilfarte vandmangde var forsvundet over de 18 uger. som forsoget strakte sig over.
ps statens Byggeforskningsinstitut's (SBT) foxsogshus i Harsholm har man malt pa et Eladt tag med varmt krydsinersdak over en vinter og to somre 1 pexioden $1988 / 89$. I forsogene blev dex dels undexsøgt opbygninger helt ucen dampbremse, nogle med polyethym lenfolie og endelig nogle med Hygrodiode som dampbremse Nogle sektioner af beget var isolerede med Rockwool, mens andre havde skumplast (PTR Iagt overpe polystyren). Alle vaxianter var yderligere opdelt, saledes at en del af taget 18 i skygge mens en anden del var eksponexet for solen. Det blev funcet for begge typer isoleringsmaterialeg at den tirforte fugtmangde i de tagm sektioner der var eksponerede rox sol, torrede va, nar Mygrodiom den anvendtes som dampbremse.

Supplexende til axtiklens oplysninger kan det her navnesg at der pa foranledning ar Dansk roxening for Skadesforsikring, med forsogstart i juli 1990 , undexsgges fugtiorholdene i uventilerede tagkassetcer over samme torsegshus pa sBI. Disse kassetter har enten dakket pe den udvendige side ar isoleringen eller er isom lerede savel over som under deklet. Bn udtoxring fica disse kassetter forventes forst at vise sig i lobet af sommexen 1991.

I fomnevnte artikel omeales endvidene at firmaet Bygge og miljoteknik a/s har anvendt Hygrodioden i renoveringen af fugt skadede tagkonstruktioner , som exstatning for plastdamploremser. Melinger pa disse byugerier pagar stadig.

6 RONELUSIOR

Hygrodiodemembranen bestar af en filt af fungicid impregnerede syntetiske og organiske fibre, dex er palagt striber af damptat plast forskudt pa filtens to sider. Rerved haves et produkt, der alt i alt er ligesà damptat som en tynd polyethylentolie, og som derfor kan anvendes som dampbremse i eksempelvis konstruktioner af flade tage. Ved at udnytte filtens vandsugende evne ex det endvidere miligt at udtarce eventuel overskydende fugt in sadan Konstruktion under forhold, hvor der optracer sommerkondens p\& membranen. Da fugten seledes ikke, som nax en traditionel dampbremse anvendes, er sparret inde mellem co tatte lag, er det ikke langere nodvendigt at ventilexe taghulcumet med udelutt, og derved ex faren for en konvektiv cilersel af fugt nedefra elimi nexet.

Der er foretaget malingex af Eygrodiodens basale fugttransportparametre. I den corre tilstand yder Hygrodioden en dampdiffusionsmodstand pa omkxing $100 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}(200 \mathrm{PAM})$. Dette syarer omtrentligt til modstanden af en 0,05 m polyethylenfolie. Nar Hygrodioden ex wad, leder den fugten igennem i vaskeform. I forseg er modstanden mod denne transport fundet at kume wkvivaleres med en dampdiftusionsmodstand pá cirka $2 \mathrm{GPa} \cdot \mathrm{m}^{2} \cdot \mathrm{~s} / \mathrm{kg}$. Den våde, udtørrende transport kan derfor ske mindst en storrelsesorden hurtigere end den diffusionstransport, der vil opfugte et tag.

Med disse effektive transportmodstande ex der foretaget talrige beregninger af fugtforholdene i kolde og varme, uventilerede tage, der har Hygrodioden som dampbremse. Sadanne beregninger viser, at hygrodioden ex i stand til ifke blot at udtorre den fugtmængde, der tranger ind i taget ved diffusion om vintexen, men yderligere at kume udtarre typisk forekomende mangder byggefugt indenfor den farste eller anden sommersæson af byggeriets levetid.

Po Damarks Tekniske Hojskole hax Hygrodioden dels varet anvendt som dampbremse i mad tagfelter over et Corspgshus, dels har den varet anvendt i forbindelse med en renovering af et eksisterende varmt tag.

De små tagfeltex befandt sig over et rum med boligklima (vaxierende fugtindhold over gret) og over et andet rumg der holdt et konstant hojt fugtindhold, svarende til rumklimaklasse 3. 15 af de i alt 16 tagrelter simulexede sme varme tage, der havde form skellige materialer som dak, og som enten vax isolerede med mineraluld ellex polystyren ellex med kombinationer heraf. Et enkelt tagfelt havde et koldt krydsfinersdak. Felterne kunne tages ned og vejes pa en nojagtig vagt, og forlobet af deres totale fugtindhold blev fulgt i halvandet ax efter tilsæning af ca. 400 gram vand pr. kvadratmeter tagareal i maj måned det forste ar. Denme fugtmangde torxede ud af elementerne indenfor ganske fa sommexmaneder. Den mindre genopergtning i labet af den efterfolgende vinter blev ligeledes torret ud i lobet af de forste maneder af den anden somer.

Ved renoveringen af taget over en auditoriebygning pa DTH bley Hygrodioden lagt oven pa det eksisterende bxeddedzk. Hexpă blev der lagt ny minexaluldsisolering, hvorpa der blev lagt en filt, der var vadet med cirka 1 kg vand pr. kvadratmeter. Fugtmaleronw deller blev brugt til at folge fugtforlobene i toppen og bunden af isoleringen sevel et sted, hvor den afsluttende epDMadug var moxk og ubeskyttet som et sted, hvor den var beskyttet at en stenballast. Der sas ingen udtorxing det forste gxs tid, hvilket en inspektion af tagdugen gav foxklaringen pa m dex blev fundet et hul i den. Anden sommer torrede omradet under den moxke dug ud, mens der efter den tredje sommer ex tegn pá at det samme ex sket for omadet under stenballasten.

De forskellige Eorsag og beregninger viser alle, at Hygrodioden er i stand til at udtare byggerugt fra kolde og varme, uventim lexede konstruktioner ar flade tage. Den har youligere en tilstrakkelig stor diffusionsmodstand, til at opfugtningen om vinteren ikke kan blive kritisk og ikke større end at denne fugt let forsvinder forst pe sommeren. Ved at sammenholde forsogse og beregningsresultater fra forskellige typer ar tage kan dex opstilles folgende betingelser fox en optimal vixlming af Hygrodioden:

- Tageladen bor være mørk og fri for skygge, sa der fas hoje ovextempexaturer om sommeren. sadanne heje temperaturer og dermed damptryk medvirker til at drive fugten ned gennem isoleringen til kondensexing pa Hygrodioden.
- Isoleringen bor have en hoj damppermeabilitet (mineraluid).
- Underlaget for hygrodioden (dakket eller loftsbekiadningen) bor enten vare permeabelt ellex have gode evner til midm lextiajgt at kunne absorbere fugten.

LTHPRERATUR

BR 82. "Bygningsreglementet 1982" Byggestyrelsen. 1982.
Glaser, H:" "Graphisches Verfahren zur Untersuchung von Diffue sionsvorgågen" Kältetechnik, 11 hert 10, po. 345-349, 1959.

Jensen. S. 0. "Male og styresystem i et eksperimenthus med en tagrumssolfangex" Laboratoriet Tekniske Hojskole, rapport nr. $88-2,1988$.

Korsgaard, V. Prebensen, F . E Bunch-Nielseng w. "Ventilation af Elade tage" "CowTconsult" publ. n土. 42 . 1984.

Korsgaard, V. "Hygro Diode Membrane: A New Vapor Retarder" ASHRAE/DOE/BTRCC Conserence: "Thermal Performance of the esterior Envelopes of Buiddings ITT" Cleaxwater Beach Floxida "December $2=5,1985$

Korggaard, V. "Hygro Dioden - en ny dampbremse" Byggeindustrien 6/7, 1987.

Korsgaard, V. \& Pedersen, C. R, "Transient Moisture Distribution in plat Rooss with Hygro Diode Vapox Retarder" ASHRAE/DOE/ BTECC/CTBSE Conference: "Thermal Pexformance of the exterior Envelopes of Buildings IV" Orlando Florida, December 4-7. 1989.

Korsgace, V. \& BunchaNielsen, T. "Det kolde tag vil fr en renassance" Byggeindustrien 4 . 1990.

Pederseng C.R. "Combined Heat and Moisture pransfer in Building Constructions" LLicentiatafhandilng Laboratoriet for Varmeiso lexing, Danmarks Tekniske Hojskole, medolelse 214, 1990.

SBImanvisning 139, "Bygningers Eugtisolering" statens Bygge forskningsinstitut, 1984 .

Statens Byggerorskningsinstitut, SBI-Agrement $90-9$ for Icopal Hygrodiode, 1990.

Fabriksfremstilling af uventilerede lukkede træ-tagkassetter med Hygrodiode dampbremse.
Factory production of unventilated cold-deck roof cassette with Hygrodiode vapour retarder.

