Energirenovering af ældre boligblok

 med hovedvægt på udnyttelse af transparent isoleringsmateriale

Olaf Bruun Jørgensen
Claus Schmidt

Energirenovering af ældre boligblok med hovedvægt på udnyttelse af transparent isoleringsmateriale

Olaf Bruun Jorgensen
Claus Schmidt

FORORD

Dex er i denne rapport behandlet de statiske, konstruktive, varmetekniske og økonomiske forhold omkring udnyttelse af solens varmeenergi ved montering af solvægge i forbindelse med energirenovering af wldre boligbyggeri. Rapporten er udarbejdet udfra en konkret bebyggelse, men belyser ogsa en rakke problemer, man bor være opmærksom pa ved en projektering af solvægge til andre bebyggelser. Projektet er finansieret af Energiministeriet og er en del af "omrade 10: Udredninger og dokumentation m. V ." under ministeriets forskningsprogram, EFP-88. Projektets journalnr. hos Energiministeriet er 151/88-65.

Ved gennemforelsen af projektet har folgende personer og firmaer deltaget:

PROJEKTGRUPPE:

Olaf Brum Jørgensen, civilingeniar. Laboratoriet for Vameisolem ring, DTHE

Svend Aage Svendsen, civilingenior, lich. Lech. Laboratoriet for Varmeisolering, DTH.

Claus Schmidt, akademiingeniox. DANBOLIND-RÅDGIVNING A / S.

Jørgen Hogh, civilingeniør. DANBOLIND-RADGIVNING A / S.

RADGIVERE:

Per Hauschild, arkitekt. Tage Nielsens Tegnestue A / S.

Lauge Fuglsang Nielsen, civilingenior, lich. tech. Laboratoriet for Bygningsmatexialerg DTH.

Carsten Rode Pedersen, civilingenior, lich. tech Laboratoriet for Varmeisolering, DTH.

BOLIGSELSKAB:

Hans Jørgen Olesen. Det Sociale Boligselskab i Helsingør.

Afdelingsbestyrelserne. Afd. 7 - Peder Skramsvej.
Afd. 13 - Ørehøj.

KONSULENTER:

Firmaet Juliana A / S
Firmaet Outokumpu Danmark A / S
Firmaet Vitral A/S
Firmaet Alliance Pentagon A/S
Firmaet Åholm \& Christensen
Dansk Exhvervsgartnerforening
Dansk Brandvernskomite

RUSUMT

Narvarende projekt beskriver, hvordan en energirenovering for en konkret bebyggelse, med fordel kan udfores ved anvendelse af uventilerede solvagge og udvendig efterisolering. En uventileret solvag bestar af en massiv eller ringe isoleret mur (tegl el. beton), der udvendigt beklædes med glas og eventuelt et transm parent isoleringsmateriale. Projektet er baseret på et typisk 3-etagers boligbyggeri (1945) med massive mure eller dårigt isolerede hulmure, hvor en energirenovering er tiltrængt. Indledningsvis er beskrevet, hvordan solvægge og efterisolering kan kombineres. De forskellige udformningers energi- og komfortmæssige egenskaber er hereftex analyseret gennem omfattende EDBusimulering. Herudover er vurderet forskellige risici for nedbrydning af den eksisterende ydermux, som folge af de større temperatur-bevægelser ved anvendelsen af solvagge. I projektet er desuden eftervist, at de statiske krav til det skitserede solvægssystem er opfyldt. Til slut er foretaget en gkonomisk vurdering af en energirenovering v.h.a. solvegge, hvor rentabiliteten af disse er vurderet i forhold til en udvendig efterisolem ring。

Beregningen af de forventede energibesparelser viser, at energiforbruget til rumopvarmning ved en fornuftig kombination af solvagge og efterisolering kan reduceres med over 40\%. Analysex vedr. termisk komfort viser, at anvendelsen af solvægge, i kratt af hojere indvendige overfladetemperaturer, i fyringssasonen vil medvirke til en storre forbedring af indeklimaet end en eftexisolexing. Om sommeren vil forrgelsen af indelufttemperam turen være så begrænset, at anvendelsen af solvagge ikke vil medføre en uacceptabel forringelse af indeklimaet. Den akonomiske vurdering viser, at en energirenovering med solvægge, i deres nuværende og endnu forholdsvis simple design, med statstilskud er mere lønsom, end f.eks. en udvendig efterisolering med 100 mm mineraluld, hvortil der ikke længere ydes statstilskud.

SUMMARY

This project describes how an energy retrofitting of a specific built-up area, with advantage could be carried out using unvented solar walls and conventional exterior opaque insulation. An unvented solar wall consists of a massive or poorly insulated wall (bricks or concrete), which at the exterior side is covered with glass and eventually a transparent insulation material. The project is based on a typical 3-storey housing (1945) with massive walls or poorly insulated cavity walls which need an energy retrofitting. At first a description is given of how solar walls and exterior opaque insulation can be combined. The energy and comfort characteristics of the different improvements have been analysed by extensive computer simulations. Furthermore, different risks of degradation of the existing exterior wall due to temperature movements using solar walls have been estimated. In the project it is also shown that the static demands to the sketched solar wall systems have been met. Finally, an economic evaluation of an energy retrofitting using solar walls has been carried out, in which the profitableness of the solar walls has been compared to a conventional exterior opaque insulation.

Calculations of the expected energy savings show that a reduction of the energy consumption for space heating, through a rational combination of solar walls and opaque insulation, of more than 40% is possible. Analyses concerning the thermal comfort show that application of solar walls because of higher indoor surface temperatures, during the heating season will contribute to an increased improvement of the indoor climate compared to an opaçue insulation. During the summer period the increase of the indoor air temperature will be that small that the use of solar walls will not lead to an unacceptable aggravation of the thermal indoor climate. The economic evaluation shows that an energy retrofitting using solar walls in their present and yet simple design, including Governmental subsidies is far more profitable than e.g. a conventional exterior opaque insulation of a thickness of 100 mm with no Governmental subsidies.

INDHOLDSEORTEGNELSE

RESUME

SUMMARY

1. INDLEDNING 1
2. SOLVAGGES FUNKTION OG VIRKEMÅDE 5
3. ARKITEKTFORSLAG 7
4. MYNDIGHEDER / LOVKRAV 9
5. MATERIALEBESKRIVELSE 11
6. BYGNINGSBESKRIVELSE 15
7. SOLVEGSSYSTEMER 19
8. ENERGI- OG KOMFORTBEREGNINGER 21
8.1 EDB-model 21.
8.2 Beregningsforudsætninger 22
8.2 .1 Geometrisk modelering af bebyggelsen 22
8.2 .2 Termisk modelering af bebyggelsen 23
8.3 Facadeindarkninger 25
8.3.1 Solvægge 25
8.3 .2 Udvendig efterisolering 27
9. 4 Energibesparelse 28
8.4.1 Solvagge kontra udvendig efterisolering 28
8.4 .2 Skitserede projekter 32
8.4 .3 Udnyttelse af solindfald 35
8.5 Termisk komfort 38
8.5 .1 Rumlufttemperaturer 38
8.5 .2 Indvendige overfladetemperaturer 42
10. TEMPERATURBEVEGELSER I MURVERKET 49
11. FUGTMESSIGE FORHOLD 53
12. STATIK 61
13. VEDLIGEHOLDELSE 63
14. ØKONOMISK VURDERING 65
14 KONKLUSION 73
REFERENCER 77
APPENDIX 79

I fortsættelse af tidligere underspgelser på passiv solvarmeområdet indgik Laboratoriet for Varmeisolering, DTH, i foraret 89 aftale med DANBOLIND-RADGIVNING A/S om i samarbejde at udarbejde et udredningsprojekt, der kunne aktualisere rapport nr. 47 Era Energiministeriets solvarmeprogram, /1/.

Rapporten omhandler brug af solvægge i den eksisterende boligmasse og videref ϕ ces i det fælles regi til at omfatte afd. 7 og 13 hos Det Sociale Boligselskab i Helsingør. Disse bebyggelser er valgt, efter at en række bebyggelser hos forskellige boligselskaber var blevet vurderet for egnethed til at danne baggrund for udredningsprojektet.

Det forudsattes i oplægget, at udredningsprojektet skulle afklare, hvordan de arkitektoniske, statiske og termiske problemer kunne l申ses ϕk onomisk forsvarligt ved opsætning af solvægge på en bebyggelse i praksis.

Ideen med nærværende forskningsprojekt er primært at belyse, hvilke muligheder, der er for at benytte solvagge i forbindelse med ældre muret byggeri.

For at opnå maximalt udbytte af solindfaldet, er det vigtigt at dette ikke reduceres væsentligt af nabohuse, træer, buske eto. Det er samtidigt vigtigt at solvæggene indgå i et harmonisk samspil med resten af bygningen, hvorfor arkitekt Per Heushild fra Tage Nielsens Tegnestue A / S blev inddraget i arbejdet.

På basis af skitseforslag blev afdelingsbestyrelserne i de to bebyggelser orienteret på et møde, og det forudsattes, at bestyrelserne efter en måned skulle vende tilbage med deres kommentarer til forslagene samt meddele, hvorvidt de stadig onskede at medvirke i projektet ved at stille deres ejendom til rådighed.

Begge afdelinger var efter denne maned positivt stemt overfor projektet og havde ingen betænkeligheder ved fortsat at deltage, under forudsætning af, at de ikke $\phi k o n o m i s k ~ b l e v ~ b e l a s t e t . ~$

Laboratoriet for Varmeisolering valgte herefter afdeling 7 hos Det Sociale Boligselskab i Helsingør. Bebyggelsen bestå af 4 ens blokke beliggende på Peder Skramsvej.

Da dette var besluttet, indkaldte boligselskabet til beboermpde og præsenterede beboerne for idegrundlaget og, i detaljer, de arkitektoniske ændringer, det ville medføre for dem, når deres hvide pudsede bygninger blev beklædt med glaspaneler opsat pá en sort baggrund. En illustration af dette ses på side 3 .

Som illustration benyttedes en $0,8 \mathrm{~m}^{2}$ stor rude placeret pá gavlen af den ene blok, hvor der bag ruden var monteret Isoflex på en sort baggrund.

Ved direkte solindfald virkede Isoflex"en glitrende. Dette reducerede den sorte baggrund i en sadan grad, at man opnåede bred tilslutning fra beboerne til fortsat deltagelse.

Ved gennemforelsen af dette projekt har der vrexet kontakt til en række firmaer, som har udarbejdet aluminiumssystemer, som forven. tes at opfylde kravene til solvægsopbygningen. Der ex tillige i eget regi, lavet en rakke forslag til opbygning af solvagge, ud fra nogle pa markedet eksisterende standardprofiler.

Det skal bemærkes, at der i denne rapport udelukkende ex undersøgt solvægge med transparent isolering. Tidligere projekter har nemlig vist, at anvendelse af transparent isolering er nodvendig for den uventilerede solvægs rentabilitet i Danmark.

I forbindelse med projektet ex der stillet nogle krav, som man har arbejdet ud fra under hele forlobet. Disse krav opridses kort nedenfor.

Mat glas uden transparent isolering, på mork baggrund. Direkte belysning.

Mat glas med transparent isolering, (Isoflex), på mork baggrund. Skrå indfald af lys.

Krav til solvaggene:

- Detailløsninger skal være realistiske i konstruktiv og фkonomisk henseende.
- Konstruktioner skal være nemme at montere og udskifte.
- Konstruktionerne skal være tilnærmelsesvis vedligeholdelsesfri i en realistisk stipuleret levetid.
- Konstruktionen skal være фkonomisk sammenlignelig med en udvendig efterisolering med den på årsbasis tilsvarende varmebesparende isoleringstykkelse.

Rapporten skal desuden ses som anden fase i et trefases-forl $\phi \mathrm{b}$ opbygget som følger:

1. fase Forskningsprojekt udarbejdet af Laboratoriet for Varmeisolering på DTH. Rapport nr. 47:
"Solvægge i den eksisterende boligmasse" udarbejdet under Energiministeriets solvarmeprogram.
2. fase Udredningsprojekt udarbejdet af Laboratoxiet for Varmeisolering og DANBOLIND-RADGIVNING A/S. Denne rappport.
3. fase Montering af solvægge på boligblok fulgt op med et måleprogram og en afsluttende rapport over de indvundne erfaringer.

Principperne for v.h.a. solvægge at udnytte den passive solvarme til bygningsopvarmning er enkle. En solvæg består groft sagt af en ydermur, der er beskyttet mod vejrliget af en eller anden form for transparent isolering (oftest blot et eller flere lag glas). Glas har nemlig den fordel, at det tillader transmission af sollysets energirige kortbølgede strảling, samtidig med at det reducerer den fra muren reflekterede langb申lgede varmestråing, og derved forhindrer den opsamlede varme i at "blæse" væk fra den bagvedliggende mur.

Den opsamlede solvarme kan enten ventileres ind i det bagvedliggende rum (ventilerede solvægge), eller ledes ind i rummet ved varmeledning gennem murværket (uventilerede solvægge). Princippet i en uventileret solvæg er vist i fig. 2.1.

I ny-byggexi kan solvægge udføres ved, at facaden opbygges af en passende sammenstykning af traditionelt anvendte komponenter til facader og enkelte specielle komponenter som f.eks. automatiske spjæld. Sådanne solvægge vil typisk være ventilerede solvægge. Disse har en potentiel okonomisk fordel, da de integrerer to funktioner i et element. Solvæggen fungerer i dette tilfælde både som en klimaskærm og som et "passivt solvarmeanlæg".

I eksisterende byggeri vil det være fordelagtigt at benytte uventilerede solvægge. Disse udføres ved, at der på den udvendige side af massivt eller delvist massivt murværk monteres et eller flere lag transparent isolering. Herved udnyttes murværkets evne til at akkumulere varmen fra den indstrålede solenergi og gennem varmeledning at give den videre til det bagvedm liggende rum med timers forsinkelse. Uventilerede solvægge kan på en del af en bygnings ydermur være et attraktivt alternativ til en traditionel efterisolering.

Orienteringen af solvæggene skal helst være mod syd, sydøst eller sydvest, men også nordvendte solvægge med en effektiv transparent isolering giver en energimæssig gevinst sammenlignet med en efterisolering på 75 mm mineraluld.

Omgivelserne påvirker naturligvis solvæggenes placering og udformning, idet såvel eksisterende bygningsdetaljer som træer, buske og naboejendomme må inddrages i vurderingen. Placeringen af solvæggene vælges desuden ud fra den indvendige rumfordeling.

Væggene vil være mest effektive ud for gavllejligheder og mindst ud for kælder-. tag- og trapperum.

Figur 2.1. Princippet i en uventileret solvæg。

3. ARKITERTEORSLAG

DANBOLIND-RADGIVNING A/S tog i en tidlig fase kontakt med arkitektfirmaet, Tage Nielsens Tegnestue, TNT. De to bebyggelser blev "bearbejdet" af TNT, hvorved der fremkom 2 forslag for hver bebyggelse.

Arkitekten har forsøgt at bruge glasset på en made, sa dette fremstar som en spændende overflade. Sprosserne imellem de enkel. te glasfelter er benyttet til at bryde de ellers monotone glasarealer.

Tillige har arkitekten benyttet en helhedsvurdering, hvor han har arbejdet med en kombination af planteespalier, glas og isom lering, samt en mulighed for at benytte farvede dækplader i de efterisolerede felter som kontrast til de mørke glasarealex.

Glasfelterne vil fremtræde mørke, da muren bag glasset males i en mørk farve og helst sort. Dette ex nødvendigt for at udnytte den indstråede varmeenergi maximalt. Dog vil indtrykket af glasfladerne forekomme gilterende, idet muren af varmetekniske grunde beklædes med en transparent isolering, som giver et glitexende udtryk, nar solens straler rammer denne.

Pa arkitektens skitseforslag, se appendix A1, s.81, er der vist nogle omrader pà facader og gavle, der ikke er indamket af glas (de skraverede arealer) . Disse arealer bor efterisoleres med mineraluld for at opna den størst mulige energibesparelse.

4. MXNDIGHEDER / LOVKRAV

I forbindelse med montering af en udvendig efterisolering eller solvæg ændres de ydre overflader, hvorefter såvel brandmæssige som konstruktive krav skal overvejes. I den forbindelse har vi kontaktet Teknisk Forvaltning i Helsingør, Brandvæsenet i Helsingør samt Dansk Brandværns komite for at få deres udtalelse til det konkrete projekt samt en vurdering af helheden.

Såfremt man monterer beklædning på ydervægge, skal der i hht. BR 82 kap. 6 overholdes følgende krav:

- Udvendige overflader skal være klasse l beklædning.
- Uden på vægge kan anbringes en regnskærm med bagvedliggende hulrum. Regnskærmen skal udføres mindst af klasse A materiale。
- Det på væggen monterede isoleringsmateriale skal være klasse A-materiale og skal tillige være fastholdt med evt. net eller tråde i ikke brandbart materiale. Såfremt bebyggelsen er højere end 2 etager, skal den monterede ydervæg opdeles 1 brandsektioner evt. med vandrette og lodrette rigler.

I tilfælde, hvor der monteres glas som den ydre regnskærm. og hvor det kan forventes at glasset knuses, skal flugtveje sikxes mod nedfald af glasstykker. Dette kan evt. foregå ved at montere halvtage over udgange.

Brandvæsenet skal kunne opstille stiger til redning forsvarligt og uden risiko for kollaps eller fare for nedstyrtning af glas over disse.

Med hensyn til de фvrige bygningslovmæssige foranstaltninger, er følgende gældende:

- De monterede konstruktioner skal fastholdes forsvarligt.
- Man má ikke ved den monterede konstruktion påfore bygningen en ϕ get fugtbelastning.
- Konstruktionen skal eftervises statisk ud fra gældende norm mer.

5. MATERIALEBESTRRIVELSE

Dette afsnit er en kort beskrivelse af de materialer, som indgár i solvæggene samt begrundelsen for valget af netop disse.

GLAS

Glas indgar i solvægssystemet og virker primært som en regnskærm for den transparente isolering i solvæggen.

Glas har desuden den egenskab, at det tillader transmission af sollysets kortb申lgede stråler og reducerer den "reflekterede" langbolgede varmestråling og forhindrer derved den opsamlede varme i at "blæse" væk fra den bagvedliggende mur.

For at få en maximal udnyttelse af solens energi bag glasset er det forudsat, at glasset er klart, og at glastykkelsen ligger fra 4-6 mm.

Disse forhold sammen med det forhold, at der ikke sættes store krav til glasisvaliteten, medfører at prisen på glasset bliver rimelig. Man bør i de enkelte tilfælde ovexveje at benytte hærdet glas for opfyldelse af de statiske og lovmæssige krav.

ACRYLPLADER

Acrylplader hax tilnæmelsesvis de samme tekniske egenskaber med hensyn til opsamling af solens varmeenergi som glas, men prismæssigt kan acrylplader ikke konkurrere, da prisen er mere end den dobbelte af glassets.

Montagemæssigt kan anvendelsen af acrylplader medfore en besparelse, men ikke af en sadan størrelse, at det taler herfor.

Brandteknisk vil acrylplader ikke kunne overholde krav til klasse A-materiale.

ALUMINIUM

Aluminium er et velegnet materiale at benytte til montering af glasset. Materialet kan ved et lille materialeforbrug fremstilles i profiler til ethvert behov, samtidig med at det er korrosionsfast og har den fornødne lethed og styrke. Man skal dog være opmærksom på, at visse materialer kan virke aggresive over for aluminium. I sådanne tilfælde skal de nodvendige foranstaltninger troffes.

GALVANISERET STAL

Profiler af galvaniseret stå kan benyttes i stedet for aluminium, hvor dette er ϕ konomisk fordelagtigt.

RUSTFRIT STÅL

Alle former for montagebeslag, bolte, ankre m.v. skal, sà vidt det er muligt, være af rustfrit materiale. Hvor aluminium eller varmtgalvaniseret beslag kan benyttes, bør dette gøres af hensyn til prisen. Dette skyldes, at der i solvæggen, i visse perioder, kan opsta kondens, hvorved fikseringspunkter vil være udsat for korrosion.

TRE

Træ er et let forarbejdeligt materiale, som er velegnet til underlag for montering af en foranliggende plade. Træ har tilige den egenskab, at det er billigt i forhold til de fleste andre materialer.

Safremt man benytter trykimprægneret træ, skal man være opmærksom på, at der skal tages særlige forholdsregler ved kontakt mellem aluminium og det trykimprægnerede træ.

Isofles er et transparent isoleringsmateriale, som forhandes af firmaet Isoflex $A B$ (Sverige), /2/. Dette materiale forudsættes brugt i solvæggen monteret direkte på væg. Isoflex er et kunststofmateriale (cellulose-acetat) som i henhold til DANTEST's afprøvningsattest er klassificeret som et klasse A-materiale, /3/. Typen er klar, med 6 lag (30 mm).

HONEYCOMBS

Et andet transparent isoleringsmateriale er honeycombs (polycarbonat), der bestå af en masse små parallelle cellerør anbragt i hulrummet mellem mur og glas. Rørlængden er omtrent lig tykkelsen af det hulrum, hvori matexialet er anbragt, mens højden er meget mindre end længden. Herved opnås nærmest en eliminering af den konvektive varmeoverførsel mellem hulrummets to overflader. Honeycombvaggene er fremstillet i plast, og ex anvendt i solvægge i en række forskellige forskningsprojekter (Vest-Tysk- land, England, USA og Canada). I dette projekt ex set på honeycombs med rektanguiært tværsnit fra firmaet Arel Energy Ltd. (Israel), /4/.

SELEKTIV ABSORBER

I stedet for at benytte transparent isoleringsmateriale kan en lav U-værdi for dæklagssystemet opnas ved at anvende en selektiv overflade, der har en lav emittans for den langbølgede varmestråling. En selektiv absorber kan etableres ved at klæbe en selektiv folie uden pa muroverfladen. En sadan folie fremm stilles af Inco Selective Surfaces Ltd. (England), /5/.

TRTNINGSLISTER M.V.

Alle tætninger, foringer og andre former for tilsætning af kunstm stoffer skal være varmebestandige og modstandsdygtige over for UV-stråling。

ABSORBER

Som absorber benyttes en diffusionsåben halvblank sort acrylplastmaling, som paffores murværket. Malingen skal være forenelig med de omgivende materialer og må ikke virke nedbrydende på den transparente isolering (her cellulose-acetat). Malingen skal være som DYROTEX 3852 fra DYRUP, /6/, eller ligende produkt. Muren skal inden dækmalingen påføres behandles med vandig forankringsgrunder som type 3840 fra DYRUP, /6/, eller en fortyndet opløsning af dækmalingen.

6. BYGNINGSBESKRIVELSE

Kæ1der:

Kældervægge:
Vægge i kælder er 35 cm betonvægge stobt på et $35 \times 50 \mathrm{~cm}$ betonrandfundament.

Indvendige vægge i kælder består af 2 stk. langsgående 24 cm murede vægge, som står pả $35 \times 50 \mathrm{~cm}$ stribe fundamenter, og 1 stk. tværgå ende 24 cm muret væg.

Vægge omkring trappeskakt ex 16 cm murede vægge.

16
Dæk over kælder:

Kældergulv:

Etager, st. og 1. sal:

Ydervægge:

Indvendige vægge:

Dæk over kælder er opbygget af røseler $14 / 16 \mathrm{~cm}$ med puds mod kælder og 12 mm insulite, $2^{\prime \prime} \mathrm{x} 2^{\prime \prime}$ 。 Gulvstrøer og 1 1/4 x $5^{\prime \prime}$ høvlet og pløjet gulvbrædder mod etage.

Gulvet består af 8 cm råbeton direkte på jord og 6 cm afxetningsbeton hexpa.

Stuen har 36 cm fuld mur. 1. sal har 36 cm hulmur med 12 cm hulrum ($2 \times 1 / 2$ sten med 12 cm hulrum). Udmuringsareal ca. 35%.

I stuen findes 2 langsgàende murede vægge på 24 cm , hvoraf 1 stk. er gennemgående og 1 stk. tværgående væg på 24 cm . Vægge omkxing trappe ex 16 cm muxede vægge. Dvxige indv. vagge ex 8 cm traditionelle braddevagge.

1. sal har 2 langsgående murede vægge pá 16 cm , hvoraf 1 sth. er gennemgående. Vægge om trapperum es 16 cm murede vægge. Dvxige vagge er 8 cm bræddevægge.

Etageadskillelser:
Etageadskillelser er opbygget som indskudsdæk, opbygning som følger:

Rørvæv og puds på 3/4" Eorskalling. 8 x $9^{\prime \prime}$ tømmer med $I^{\prime \prime}$ indskudsbrædder og lerindskud. Herpå ex monteret 1 1/4 x $5^{\prime \prime}$ høvlet og pløjet bræddegulv.

I toiletgruppen er dak opbygget som følger: Puds pả 10 cm jernbetonplade herpå slaggebeton og texrazzobelægning.

Taglejlighed:

Vægge:

Dæk mod loftrum:

Tag:
Taget ex opbygget som 5 " 5° hane bådsspær pr. 90 cm med $11 / 2 \mathrm{x} 2$ 1/2" lægter og falstagsten.

Som omtalt i det foregående er bygningen opmuret på 36 cm betonmur, som udgør kældervægge i gavle og facader. Der er opmuret en 24 cm gennemgående teglstensmur i midten af bygningen, og pá krl. derydermuren er væggene opbygget som 35 cm teglstensmur.

Dækkene spænder mellem facaderne og er mellem-underst ϕt tet pá den gennemgående midtermur. Gavlmurene stotter sig til etageadskillelserne og er muligvis fastholdt hertil med murankre.

Hulmure i facader og gavle i l sal og taglejlighed er mellem ydermur og indermur sandsynligvis sammenholdt med faste murbindere.

Gavlmure overf申rer vindkræfter til facader, midtermur og etageadskillelser. Kræfterne bliver herefter ved skivevirkning over fort til fundamenterne. Ved vindpåvirkning på facaderne overføres kræfterne til de tværgående gavle og vægge omkring trapper samt mure i lejlighedsskel. Kræfterne vidrefores ved skivevirkning tilfundamenter.

7. SOLVMGSSYSTEMER

Der er under udarbejdelsen af denne rapport taget kontakt med en række firmaer, som har udarbejdet forslag til aluminiumskonstruktioner, som kan bruges til solvægge. Herudover er udarbejdet forslag af Danbolind Radgivning a/s og Laboratoriet for Varmeisolering i fællesskab. Nedenfor er givet en kort beskrivelse af de enkelte systemer. Snittegninger er vedlagt i appendix $A 2$. s. 94.

Forslag fra Danbolind og LfV

AIu-hat-system (5.94)

Dette system er opbygget som et traditionelt trælægteskelet monteret direkte på mur. Glasset er fastholdt til lægterne med et aluminiumsprofil, som skrues direkte ind i lægterne. Dette system er detailprojekteret og vedlagt i appendix A3, s. 102. Det anvendte aluminiumsprofil er et hatprofil, som er udviklet hos Alliance Pentagon.

Alternativt kan istedet for lægter som underlag benyttes et stal UNP-profil. Der er tillige vedlagt skitse af denne opbygning i appendisk $A 2$. s. 95.

Aluprofil med PVC-dækliste (s. 96)

Dette system er opbygget af et trælægteskelet som beskrevet oven for. På lægterne monteres aluminiumsprofilet, hvorefter glasset lægges heri og fastholdes af en PVC-dækliste, som klemmes pa axum miniumsprofilet. Profilet er fra Duka.

Drivhussystem (s. 97)

Dette system er opbygget med et tradionelt drivhusprofil, 1 aluminium, som monteres direkte på væggen, hvorefter glasset fastholdes til profilet med en kappe (dækliste) ligeledes i aluminium, som skrues fast i det underliggende aluprofil.

Juliana (s. 98)

Systemets lodrette og vandrette profiler monteres direkte på væggen, såedes at disse danner rammer, hvori glasset kan monteres. Glasset fastholdes til rammerne ved klabning med silicone langs hele anlægsfladen.

Vitral (s. 99)

Systemet monteres med vandrette gennemgàende skinner. Glasset er isat kassetter, som monteres i de vandrette skinner saledes, at kassetterne skubbes ind bag skinnen i top og fastlases herefter med et beslag i bunden, som skrues fast i den vandrette skinne som danner topskinne for det underliggende glasfelt.

Outokumpu (s. 101)

Systemet monteres med lodrette gennemgående skinner, formonteret glas i kassetter hægtes op i de lodrette skinnex, som ex forsynet med tværgående dorne. Tætning mellem kassetterne sker med gummilæber monteret på de enkelte kasetter.

8. ENERGI- OG KOMFORTBEREGNINGER

Ved vurderingen af solvæggenes betydning for bebyggelsens energiforbrug og temperaturforhold er benyttet et EDB-program. Beregningerne er foretaget på årsbasis og omfatter tre forskellige typer solvægge, samt forskellige former for udvendig efterisolem ring anvendt i en rakke forskellige kombinationer i den aktuelle bebyggelse.

8. 1 EDB-model

Det anvendte EDB-program, "SUNCODE", /7/, simulerer varmestrømme, temperaturforhold, etc., i løbet af et "normalår". I programmet benyttes udendøxs klimadata fra det danske referenceár TRY, /8/. "SUNCODE" er en PC-version af det detaljexede amerikanske "main frame" program "SERIRES", og er baseret på et termisk netværk, hvor diverse temperaturer bestemmes time for time ved en explicit metode.

Programmet ex særlig velegnet til undersøgelse af bygninger, der udnytter passiv solvarme, idet det er udformet, så der er mulighed for at foretage beregninger med glasbygninger og solvrgge. Bygningen opdeles i zoner, hvorved de forskellige rum i beregningerne behandles hver for sig, idet der regnes med varme udveksling zonerne imellem. Den termiske masse i form af de forskellige bygningskonstruktioner bliver detaljeret beskrevet. Resultaterne fra beregninger med "SUNCODE" har vist sig at give udmærket overensstemmelse med maleresultater i forbindelse med andre projekter, udfort ved Laboratoriet for Varmeisolering, /9/. /10/.

De muligheder, der på forhånd er givet, for at udfore beregninger med solvægge, er dog begrænset til nogle fa "standard-solvægge". Der er tale om ventilerede eller uventilerede Trombevagge, for hvilke dæklagssystemet er sammensat af identiske dæklag af glas eller plast. Solvægge med en anden form for transparent isolering end glas kan derfor ikke umiddelbart beskrives af programet. Endvidere forudsættes det i programmet, at diverse varmetabskoef.
ficienter ex uafhængige af temperaturforholdene. For en solvægs dæklagskonstruktion vil varmetabet ved konvektion i mange tilfælde stige betydeligt, når temperaturdifferensen mellem absorm beren og ongivelserne oges, og varmetabet ved stråling fra absorberen vil stige med øget absorbertemperatur. For solvægge med transparent isolering vil disse temperaturforskelle vare sarlig udtalte. Antagelsen vedrorende konstant varmetabskoefficient vil således i flere tilfælde være en forholdsvis grov simplifikation. For at være i stand til at regne pa de aktuelle solvægge har det derfor været nodvendigt at indfore visse tilnærmelser og "tricks", der ex narmere beskrevet i appendix A4, s. 110.

8.2 Beregningsforudswtninger

$8.2,1$ Geometrisk modellering af bebyggelse

Anvendelsen af solvagge er undersøgt for blok 2 i afd. 7 (peder Skramsvej). Bygningen er orienteret s\&ledes, at en facade vender mod vest-sydvest og en gavi vender mod syd-sydøst. Disse 2 ydervægge tænkes forsynet med solvægge.

Solindfaldet på bygningen reduceres af omkringliggende traer. buske og nabobygninger. Ved simuleringen ex det muligt at tage hojde for dette ved at definere en hoxisontafskæring bestemt ar afstanden til og hojden af eventuelle store beplantninger samt de øvrige 3 blokke i bebyggelsen.

I EDB-modellen opdeles bygningen i 5 zoner: Kwlder, stueetage, forste sal, tagetage og trappeopgang. Disse 5 zoner er alle adskilt af enten vagge, etageadskillelser eller dore. Der er set bort fra skillevagge i den enkelte zone. Pa grund af nogle begrænsninger i "SUNCODE" med hensyn til antallet af bl.a. vinduer og vægge, er disse, hvor det er muligt, samlet i en enkelt bygningsdel: $f . e k s . e x$ ramme- og karmtræ i en etage blot beskrevet som en enkelt komponent, ligesom alle vinduer i En ydervæg i en given zone beskrives som et enkelt vindue. En detaljeret bygningsbeskrivelse findes i kap. 6.

8.2.2 Termisk modellering af bebyggelse

Som grundlag for vurderingen af anvendelsen af solvagge udføres en termisk simulering af bygningen, hvorfor det er nødvendigt med en detaljeret beskrivelse af alle væsentlige termiske belastninger pa huset. Dette inkluderer en beskrivelse af husets gratisvarmetilskud samt udnyttelsen heraf. Som hovedregel er fulgt anvisninger givet i/11/. Gratisvarmetilskud til bebyggelsen udgøres af solindfald, personvarme, el-forbrug, varmtvandsforbrug, etc.

Boligens absorptans for solindfald gennem vinduer bestemmes som angivet $i / 12 /$. Ca. 25% af den absorberede solstraling kan betragtes som tilført møbler o. lign., og pga. disses meget lave varmekapacitet og store overfladeareal afgives varmen umiddelbart efter til rumluften. De resterende 75% overfores til boligens termiske masse.

I forrige afsnit er bebyggelsen inddelt i zoner svarende til boligarealet pa hver etage. Trapperummet betragtes som en fra disse adskilt zone, hvorfor der ikke regnes med konvektiv varmeudveksling zonerne imellem.

Det interne gratisvarmebidrag fra personer, el-forbrug, varmt-vands-forbrug, etc. bestemmes i henhold til /13/, idet dex i gennemsnit bor knap 2 personer i hver lejlighed. Den tilforte mængde gratisvarme udgør således $75 \mathrm{kWh} / \mathrm{døgn}$ pr. boligblok, svarende til et bidrag på ca. $120 \mathrm{~Wh} /$ døgn pr. m^{2} beboet areal.

Ifølge /14/ opvarmes lejlighederne, således at rumlufttemperaturen aldrig er mindre $20^{\circ} \mathrm{C}$, ligesom kælderen holdes opvarmet til $17{ }^{\circ} \mathrm{C}$. I vurderingen af de mulige energibesparelser ved anvendelsen af solvægge/efterisolering betragtes kælderen som uopvarmet, da dette er situationen i dag. Der ventileres med udeluft, hvis rumlufttemperaturen, i perioder med risiko for overtemperaturer, overstiger $22{ }^{\circ} \mathrm{C}$. Udenfor fyringssæsonen ventileres desuden i nattetimerne, ved at vinduerne abnes for beboerne går i seng. En sådan ventilation er vurderet til at
kunne simuleres med et luftskifte på mellem 2,0 og 5, 0 pr. time, nar rumlufttemperaturen overstiger $18{ }^{\circ} \mathrm{C}$, forudsat at udeluften er køligere end rumluften.

Som det fremgar af kap. 6, bestax ydervæggen af en massiv teglstensmur i stueetagen og en relativt ringe efterisoleret hulmur pa forste og anden sal. Ydervaggenes varmetabskoefficient er 1,46 $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ for den massive mur og $0,89 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for den isolerede huimur. Lejlighedens ventilationstab ved infiltration af udeluft simum leres med et luftskifte på $0,5 \mathrm{pr}$. time.

I de efterfalgende beregninger omtales både samlede og "normerede" energiforbrug og -besparelser. De samlede energibesparel. ser, Qb, bestemmes som forskellen mellem energiforbruget uden, $Q_{u}, ~ o g ~ e n e r g i f o r b r u g e t ~ m e d, ~ Q_{m,}$ solvægge/eftexisolering. Det normerede enexgiforbrug med eller uden solvæg/efterisolering,
 ligesom den normerede energibesparelse, qu, udtrykker besparelsen pr. m^{2} absorber, Aabs, eller efterisoleret ydermur, Aiso. Dvs.:

$$
q_{m}=\frac{Q_{m}}{A_{b o l i g}} \quad q_{u}=\frac{Q_{u}}{A_{b o l i g}} \quad q_{b}=\frac{Q_{u}-\Omega_{m}}{\Lambda_{a b s}\left(A_{i s o}\right)}
$$

Endvidere angives den relative energibesparelse, \mathbb{R}_{s} dex ex defineret ved:

$$
R=\frac{Q_{u}-Q_{m}}{Q_{\mathrm{U}}}
$$

I tab. 8.1 er opstillet dels de v.h.a. "SUNCODE" beregnede, dels de i /14/ angivne værdier for henholdsvis det totala og det normerede netto energiforbrug til rumopvarming for anvenclelsen af solvægge/efterisolering. Disse 2 storrelser indeholder begge energiforbruget til opvarming af kwlder. Dexfor ex itab. 8.1. desuden angivet det beregnede netto-energiforbrug, nar kalderen er uopvarmet, som det er tilfældet i dag. I /14/ er angivet et brutto-energiforbrug på $128,5 \mathrm{Gcal} / \mathrm{g} r$ baseret på forbruget af m^{3} fjernvarmevand pr. ax. Heraf ex varmtvandsforbruget af VKOkonsulent skønnet til at udgøre ca. 25\%. For fjernvarme-varmeveksleren regnes ifølge /15/ med en virkningsgrad pa 0,92, idet
varmecentralen er placeret i en uopvarmet kælder, hvorfor varmetabet fra varmeveksleren kun i beskedent omfang medvirker til opvarmning af boligarealet.

		Q_{u} $[\mathrm{kWh} / \mathrm{gr}]$	q_{u} $\left.\mathrm{kWh} / \mathrm{m}^{2} \mathrm{~g} r\right]$
Opvarmet Kzılder	Beregnet Malt	97048 103233	158
Uopvarmet kzlder	Beregnet	79846	130

Tabel 8.1. Beregnede og målte værdier for det totale samt det normerede netto-energiforbrug før anvendelsen af solvægge eller efterisolering.

Det ses af tabellen, at der er en god overensstemmelse mellem det malte og det beregnede energiforbrug (afvigelse pa blot 7\%).

8. 3 Facadeinddxkninger

Som beskrevet i kap. 3 består facadeinddakningen dels af en solvæg dels af en traditionel efterisolexing. I det falgende ex forskellige principielle udformninger af hhv. solvægge og efterm isolering beskrevet. De forskellige udformninger er undersggt for at kunne bestemme en energi- og komfortmæssig samt arki.. tektonisk optimal kombination af solvagge og udvendig eftexisclem ring.

8.3.1 Solvagge

I dette projekt er analyseret 3 forskellige typer uventilerede solvægge, der alle ex opbygget af materialer, som findes pa markedet i dag. Lave varmetransmissionskoefficienter for dwklagssystemet, hvilket er pakrævet ved anvendelsen af uventilerede solvægge i Danmark, er opnået dels ved anvendelse af transparente isoleringsmaterialer (type A og B) dels ved anvendelse af en selektiv absorber (type C).

Dæklagssystemernes egenskaber vedr. soltransmittans og varmetab er vist i tab. 8.2. Det effektive transmittansmabsorptans produkt er angivet for dixekte straling (ta)e,dir, og diffus stram ling, (ta) e, dif. Dæklagets varmetabskoefficient, U_{L} svarer til en forskel pa $20{ }^{\circ} \mathrm{C}$ mellem absorberen og omgivelserne, idet omgivelsernes temperatur er ca. $10{ }^{\circ} \mathrm{C}$. Der er regnet med en vindhastighed pa $5 \mathrm{~m} / \mathrm{s}$. I den angivne verdi for U_{L} ex medregnet kuldebroeffekten fra rammesystemet. Denne ex sat til $0,2 \mathrm{~W} / \mathrm{K}$ pr. m^{2} absorber.

Dæklag	$(\tau \alpha)_{e, d i r}$	$(\tau \alpha)_{\mathrm{e}, \mathrm{dif}}$	U_{L} $\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$
A	0,63	0,35	1,9
B	0,72	0,52	1,1
C	0,84	0,76	2,8

De undersøgte solvagges principielle udformning er skitseret i fig. 8.1.

8.3.2 Udvendig efterisolering

PQ den del af bygningens ydervagge, der ikke forsynes med sol... vagge, kan i stedet etableres en udvendig eftexisolering. y beregningerne ex betragtet forskellige tykkelser mineraluld (so - 200 mm) med en varmeledningsevne pá $39 \mathrm{mw} / \mathrm{mk}_{\mathrm{B}}$ for dels at kunne variere facadens udtryk og geometrig dels at vurdere energibesparelsen sammenholdt med mermudgiften ved en pget isoleringstyklelse.

Tro-andelen i det inhomogene lag ved en udvendig efterisolering ex typisk 10%, hvilket ogsa ex benyttet i dette projekt vaform ningen af den udvendige facadebekladning ex skitseret i kap. 3. Varmetabskoefficienten. 0 , for hhv. massiv mur og ringe isoleret

Type A:

1) Hærdet jernfrit glas
2) Lufthulrum
3) Isoflex (30 mm)
4) Alm. matsort absorber
5) Ydermur

Type B:

1) Hærdet jernfrit glas
2) Honeycombs (100 mm , tvarsnit $3 \times 4 \mathrm{~mm}$)
3) Lufthulrum
4) Alm. matsort absorber
5) Ydermur

Type C:

1) Hærdet jernfrit glas
2) Lufthulrum
3) Selektiv absorber
4) Ydermur

Figur 8.1 Principiel udformning af solvægge der er undersøgt i dette projekt.
hulmur før og efter forskellige typer efterisolering er angivet i tab. 8.3.

	tykkelse af efterisolering, [mm]					
ydermur	0	50	75	100	150	200
massiv	1,46	0,46	0,37	0,31	0,23	0,19
"hulmur"	0,89	0,39	0,32	0,27	0,21	0,17

Tabel 8.3 Varmetabskoefficient, $\left[\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right]$, for bygningens yodermure far og efter en udvendig efterisolering.

8. 4 Energibesparelsex

I det folgende ex de forventede energibesparelser ved forskellige kombinationer af solvægge og udvendig efterisolering beregnet.

8.4.1 Solvagge kontra udvendig efterisolering

Den energimæssige gevinst ved at anvende uventilerede solvægge i stedet for en udvendig efterisolering i et byggeri, som det her undersøgte, er beskrevet nedenfor. Vurderingen er foretaget ved at beregne den årlige energibesparelse px. m^{2} solvæg eller efterisoleret mur. Ved vurderingen er solvaggene placeret bade pa en vest-sydvest-vendt facade og på en syd-sydest-vendt gavi. Samenligningen er foretaget ved en tilsvarende placering af den udvendige efterisolering. Resultatet af beregningerne ex vist is fig. 8.2. De beregnede besparelser, g_{b} er vagtede middelvardier for solvægge eller efterisolering placeret foran hhv. en masciv mur eller en ringe isoleret hulmur. For solvagge er den ariige besparelse beregnet for baide 50 og 100 mm honeycombs (type B).

Af figuren fremgår, at solvaggene generelt resulterer i starre besparelser end en udvendig efterisolexing, samt at sidstnavnte skal være meget tyk ($>150 \mathrm{~mm}$) for at give besparelser, der er storre end, hvad der opnås med de skitserede solvægge (type A).

Figur 8.2 Arlig middelenergibesparelse pr. m^{2} inddakket yder mur for forskellige facadeinddækninger. $A_{8} B_{\text {, }} \mathrm{C}$: Sol. vagge: $50,75,100,150,200$: Tykkelse af mineralw uld ved udvendig efterisolering (mm).

I stueetagen bestar ydermuren af massivt murværk, mens yodermuren pa forste og anden sal er en ringe isoleret hulmur med faste binderkolonner. Der kan derfor forventes et ringere udbytte for solvægge placeret på første sal i forhold til solvægge placeret i stueetagen. Herudover kan der pga. forskellig solindstrảling, skyggeforhold og orientering for gavl og facade forventes form skellige energibesparelser, afhængigt af solvæggens placering.

Disse forhold er vurderet, og resultatet heraf er vist ifig. 8.3. Ved vurderingen er benyttet en solvæg med Isoflex (type A). der er sammenlignet med en udvendig efterisolering med 100 mm mineraluld.

Det fremgår af fig. 8.3, at solvægge giver en storre energibesparelse end en udvendig efterisolering, både når bagmuren er en massiv teglstensmur (stueetage), og når den bestar af en ringe isoleret hulmur (forste sal). Den relative forskel er typisk mellem 20 og 40% i solvæggenes favør. Det ses dog ogsá, at der er stor forskel pa, om bagmuren er isoleret eller ej.

Umiddelbart ser det ud til, at en placering i gavlen giver det største udbytte pr. m^{2} solvæg. Dette kan dog være misvisende, da det pga. visse begrænsninger i simuleringsprogrammet, som allerede nævnt hax været nødvendigt at beskrive hver etage som en sammenhængende zone. Herved vil solvægge placeret i gavlen. ved simuleringerne kunne afgive varme til alle de bagvedliggende lejligheder på den pågældende etage, og ikke kun den lejlighed ud for hvilken solvæggen er placeret. Det vises imidlertid i afsnit 8.4.3, at disse uventilerede solvægge primært fungerer som en effektiv eftexisolering, og kun i begrænset omfang giver et energitilskud til boligen.

Det er derfor rimeligt for denne bebyggelse at forvente et storre udbytte pr. m^{2} solvæg, når disse placeres i gavlen fremfor it facaden. En placering i gavlen vil desuden være betydeligt simplere at udfore, da der her er tale om en mere regular og ubrudt overflade med kun to vinduer. Dette omtales namere i afsnit 8.4.2.

Ud fra et arkitektonisk og socialt synspunkt kan det være attrak tivt at placere solvæggene i facaden i stedet for i gavlen. En sådan placering giver flere muligheder for at gore huset levende gennem et varieret facadeudtryk, og giver desuden husets beboere indtryk af en mere "retfærdig" fordeling af energibesparelsexne.

WIA: Solvæg med Isoflex (type A)
: Efterisolering (100 mm mineraluld)

Figur 8.3 Arlig energibesparelse pr. m^{2} inddækket ydermur, Gbs for solvægge eller efterisolering placeret i stueetage eller på første sal i gavl og/eller facade.

8.4.2 Skitserede projekter

Forslag_1 og 2

I kap. 3 ex givet 2 forslag til, hvordan solvægge kan kombineres med en udvendig eftexisolering. Forslagene betegnes hhv. forslag 1 og forslag 2. For begge forslag er foretaget beregninger for alle de i afsnit 8.3 beskrevne typer facadeinddækning. Forventet energiforbrug og besparelse samt relativ besparelse er vist i. tab. 8.4.

Hovedkonklusionen af beregningerne er, at den starste energibesparelse opnås ved en kombination af solvægge og efterisolering som beskrevet i forslag 2.

En solvæg med et drklag bestaende af 1 lag glas og en selektiv absorber (type C) er knap 10% dyrere end en solvag med Isoflex og en almindelig matsort absorber (type A). En solvag med honeym combs (type B) er ca. 20% dyrexe end en solvag med Isoflex. Da energibesparelsen for solvægge af type A eller type C er stort set ens, vil en solvæg med enten Isoflex eller honeycombs vare bedst egnet. Hvilken type, der bor anvendes, vil vare bestent af hvor store akonomiske ressourcer dex er til radighed wed en projektering.

Af beregningerne fremgar desuden, at dex ikke ex stor forskel ph de opnåelige energibesparelser, når den udvendige isolexing ar hhv. 50, 75, 100 eller 200 mm tyk. Dette skyldes, at en stox del af de ydervægsarealer, der ikke dækkes af solvagge, i form vejen er hulmursisolerede. Ved en projektering vil valget af isoleringstykkelse derfor dels være bestemt af, hvilken tykkelse der er den okonomisk mest rentable, dels hvilke axkitektoniske ønsker der kan være til forskellige "spring" i facaden.

Hvis der ikke benyttes solvagge, men i stedet foretages en udm vendig efterisolering af hele byggeriet med hhv. 50, 75, 100, 150 og 200 mm mineraluld, udgar de respektive relative energibesparelser $27,30,32,35$ og 36%.

Forslag	Solvæg	Udvendig isolering [mm]	$\begin{gathered} Q_{\mathrm{m}} \\ {[\mathrm{kWh} / \mathrm{air}]} \end{gathered}$	$\begin{gathered} Q_{b} \\ {[k W h / g r]} \end{gathered}$	R [\%]
1	Honeycomb	50	50811	29035	36
1	∞	75	49359	30487	38
1	-	100	48658	31188	39
1	-	200	46893	32953	41
1	Isoflex	50	56550	23296	29
1	-	75	55046	24800	31
1	-	100	54320	25526	32
1	-	200	52491	27355	34.
1	Selektiv absorber	50	56953	22893	29
1	-	75	55455	24391	31
1	-	100	54732	25114	31
1	-	200	52911	26935	34
2	Honeycomb	50	48356	31490	39
2	-	75	47152	32694	41
2	-	100	46368	33478	42
2	-	200	44746	35100	44
2	Isoflex	50	54500	25346	32
2	-	75	53250	26596	33
2	-	100	52436	24410	34
2	-	200	50754	29092	36
2	Selektiv absorber	50	54956	24890	31
2	-	75	53711	26135	33
2	\cdots	100	52901	26945	34
2	-	200	51226	28620	36

Tabel 8.4 Energiforbrug, Q_{m}, og -besparelse, Q_{b}, samt relativ besparelse, R_{ℓ} for forskellige kombinationer af solvægge og udvendig efterisolering.

Fuldskalaforsgg

For at afprgve de her skitserede ideer i praksis, forventes dette projekt i løbet af 1990 fulgt op af et fuldskalaforsøg. Det vil ikke vare muligt indenfor de akonomiske rammer, der er udsigt til at blive bevilget, at opfare bade solvagge og en udvendig efterisolering, hvorfor et fuldskalaforsøg alene vil koncentrere sig om solvægge.

For at kunne inddække sa mange kvm. ydervæg som muligt, vil det være fordelagtigt at placere solvæggene pa hele den syd-sydostm vendte gavl, da der i denne kun findes 2 vinduer. Det vil saledes ikke være nødvendigt at foretage mange og fordyrende inddakninger i gavlen, hvorimod en inddrkning af facaden vil være betydeligt dyrere pr. inddækket m^{2}.

For at kunne vurdere de temperaturafhængige bevægelsex og frlgerne heraf, nar ydermuren forsynes med solvagge, vil det vare fornuftigt ogsa at inddække den del af den vest-syd-sydvestvendte facade, der støder op til gavlen. Som det fremgar af kap. 13, vil den gennemsnitlige anlægspris uden statstilskud være ca. 1330 kr . pr. m^{2} solvæg (type A). I gavlen kan placeres ca. $67 \mathrm{~m}^{2}$ solvæg. Det vil således være muligt, hvis der modtages den forventede bevilling på godt 150.000 kr . til materialerg at inddakke ca. $46 \mathrm{~m}^{2}$ af facaden svarende til ca. 45% af facadearealet.

Udgangspunktet for et fuldskalaforsøg er saledes en inddakning af hele den syd-sydost-vendte gavl samt den sydligste halvdel af den vest-sydvest-vendte facade. En sådan inddakning vil. foruden en vurdering af energiforbruget, give mulighed for at vurdere evt. gener i form af overtemperaturer i en lejlighed med en stor inddækningsgrad (gavilejlighed), sammenlignet med en lejlighed med en lille inddækningsgrad (lejlighed placeret "midt i facade").

Udover at benytte solvægge med Isoflex, kunne det overvejes at benytte honeycombs af tykkelsen 50 mm , hvilket vil give en
solvæg, der har omtrent samme dimension som en solvæg med Isoflex, hvorfor samme inddækningssystem kan benyttes. En solvæg med 50 mm honeycombs er ca. 125 kr . dyrere pr. m^{2} end en solvag med Isoflex, hvorfor kun ca. 35% af facaden kan inddækkes.

Varmetabskoefficient og soltransmittans for et daklagssystem med 50 mm honeycombs er: $U_{L}=1,8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}, \quad(\tau \alpha)_{\mathrm{e}, \mathrm{dir}}=0,77 \mathrm{og}$ $(\tau \alpha)_{e, d i f}=0,52$. De forventede besparelser for de ovenfor beskrevne inddækninger er vist i tab. 8.5. For sammenligningens skyld er desuden vist de forventede besparelser for en inddokning med 100 mm mineraluld. Denne koster ca. 1000 kr . pr. m^{2}, hvorfor det vil være muligt at inddække $150 \mathrm{~m}^{2}$ ydermur svarende til hele gavlen samt 80% af facadearealet.

Solvæg el. efter- isolering	Q_{m} $[\mathrm{kWh} / \mathrm{Ir}]$	q_{b} [kWh/m²r]	R $[\%]$
Isoflex 50 mm honeycombs 100 mm mineraluld	68889	97	14

Tabel 8.5 Forventet energiforbrug, $Q_{m,}$ og -besparelser pr. m^{2} inddækning, $q_{b,}$ samt relativ besparelse, $\mathbb{R}_{\text {g }}$ ved gennemførelse af et fuldskalaforsøg med solvagge.

Af tabellen fremgår, at det for en given sum penge vil vare lige attraktivt, mht. opnaelige energibesparelser, at benytte solvægge eller en udvendig efterisolering.

8.4.3 Udnyttelse af solindfald

I det følgende ex undersøgt, hvor stor besparelsen pr. m^{2} solvæg ex i forhold til solindfaldet. Desuden er det undersøgt, hvorvidt solvæggene blot har en isolerende effekt, eller om de i fyrings sæsonen ogsa tilfører huset energi til rumopvarmning og i givet fald, hvor stor den tilforte effekt er.

Solvægge placeret pa gavlen eller facaden udsættes, som vist i fig. 8.3, for omtrent den same mængde solstraling og resulterer i lige store besparelser. Undersøgelsen kan derfor begrænses til kun at omfatte solvægge placeret på facaden i hhv. stueetagen og på 1. sal.

"Udnyttelsesgrad"

Solvæggens "udnyttelsesgrad" eller evne til at udnytte solindstralingen, I, er udtrykt ved den normerede energibesparelse, Gb, der er defineret i afsnit 8.2.2. "Udnyttelsesgraden" for solvagge placeret pa den vest-sydvest-vendte facade i hhv. stueetagen og pả 1. sal, er vist ifig. 8.4. Der er benyttet en solvæg med Isoflex.

Figur 8.4 Solindstraling, I, og udbytte, q_{b}, for solvægge, type A, placeret i vest-sydvest-vendt facade i hhv. stueetagen og pa 1. sal.

Det ses, at besparelserne er nogenlunde jæunt fordelt over fyringssæsonen, men at solvæggene giver storst udbytte i forårsog efterårsmånederne. Det ses desuden, at der i vintermånederne er tale om ganske hoje udnyttelsesgrader (op til 92\%). Det skal understreges, at udnyttelsesgraden ikke repræsenterer en egentlig effektivitet for solvæggens evne til at tilføre energi til de bagvedliggende rum. En stor del af udbyttet kan tilskrives solvæggens isolexende effekt. Omfanget heraf er beskxevet nedenfor.
"Isolerende og tilskudsgivende effekt"
Ved anvendelse af solvægge optræder 3 forskellige typer varmestrømme. 1: Solvæggene bevirker en reduktion af boligens varmetab gennem deres eget areal (isolerende effekt). 2: Solvaggene dokker noget af varmetabet gennem andre ydervægge ved i princippet at virke som radiatorer (tilskudsgivende effekt). 3: Solvæggene kan medføre en overopvarmning af rumluften i særlig varme og solrige perioder. Den samlede energibesparelse (defineret i afsnit 8.2.2) er summen af pkt. 1 og 2.

At uventilerede solvægge med transparent isolexing, i deres nuvarende form, skulle kunne bidrage vasentligt til opvarmning af boliger i Danmark, er efter forfatternes vurdering en fox optimistisk antagelse. Det er derfor undersøgt, dels hvor stor en del af den samlede energibesparelse der skyldes solvaggenes isolerende effekt, dels i hvor høj grad solvæggene medvirker til en opvarmning af boligen. Ved vurderingen er benyttet en solvæg med Isoflex.

Bexegninger viser, at størrelsen af det samlede varmetilskud fra solvæggene, pkt. 2 + pkt. 3, i fyringssæsonen swarer til godt 30% af den samlede energibesparelse. En stor del af dette varmetilskud (pkt. 3) bevirker imidlertid, at indetemperaturen overstiger $20^{\circ} \mathrm{C}$. Det er saledes kun en del af den fra solvæggene tilførte effekt, der medvirker til en energibesparelse. Den tilførte effekt reduceres derfor, sa kun den del, der reelt bevirker en energibesparelse (pkt. 2), medregnes. Herefter udgøx solvæggens tilskudsgivende effekt knap 20% af den samlede energim
besparelse. Det fremgår således, at uventilerede solvægge med transparent isolering, anvendt i Danmark, primært har en isolerende effekt. Denne stammer dels fra solvæggens isolerende dæklag, dels fra den i muren lagrede solvarme, der hæver temperaturen i ydermuren og derved reducerer transmissionstabet gennem denne.

8. 5 Termisk komfort

Ved opsætning af solvægge vil der være risiko for overtemperaturer i perioder med kraftigt solindfald. Derudover vil solvæggene i fyringssæsonen kunne medvirke til et forbedret indeklima i kraft af hojere overfladetemperaturer pa indersiden af de ydervægge, der forsynes med solvægge. Disse forhold er undersøgt $i \operatorname{det} f ø l$ gende.

8.5.1 Rumlufttemperaturex

Det er undersøgt, i hvor hoj grad anvendelsen af solvægge vil tilfore boligen s\& meget overskudsvarme, at det i perioder med megen sol vil være problematisk ved abning af vinduer og dore at bortventilere den varme indeluft til sikring af termisk komfort. Indelufttemperaturen, T_{i}, i en særlig varm og solrig periode (dagene omkring $8 / 6$ ifølge $/ 8 /$) er beregnet, nar der anvendes både solvagge og efterisolering (forslag 2 med solvag type A og 100 mm mineraluld). Derudover er $T_{i,}$ far og efter anvendelsen af solvægge eller efterisolering, nar disse placexes i hele den vest-sydvest-vendte facade, beregnet.

Overtemperaturer kan i et vist omfang undgås ved enten at benytte sæson-skyggegardiner, udvendig solafskærmning eller ved at udforme solvæggen, så den kan ventileres med udeluft. For en sådan "ventileret" solvæg vil det være hulrummet mellem glasset og den transparente isolering, der ventileres. Reduktionen af indelufttemperaturen vil være begrænset, da muren stadig vil blive opvarmet af solen, ligesom den transparente isolering vil reducere varmetabet fra den opvarmede mur. Det er dexfor kun effekten af at anvende sæson-skyggegardiner eller udvendig
solafskærmning, der er relevant. Anvendelsen af sådanne vil betyde, at prisen på solvæggene stiger. Dette omtales nærmere i kap. 13. I perioder med risiko for overopvarmning simuleres en rget ventilation som beskrevet i afsnit 8.2.2.

Resultatet af beregningerne er vist ifig. 8.5 og 8.6. Beregningerne er foretaget for et rum på 1. sal. Tilswarende forhold, dog med mindre ekstrema, er gældende for stueetagen.

- Udetemperatur
————: Indelufttemperatur med solvæg
$-\infty-\infty$: Indelufttemperatur uden solvæg/efterisolering
\qquad : Indelufttemperatur med efterisolering
Figur 8.5 Middelude- og indelufttemperatur på en varm sommerdag med og uden efterisolering og solvægge som beskrevet i forslag 2.

——Udetemperatur
$-\infty-\infty$: Indelufttemperatur med solvæg
-->-->->: Indelufttemperatur uden solvæg/eftexisolering
............... : Indelufttemperatur med efterisolering
Figur 8.6 Middelude- og indelufttemperatur pa en varm sommerdag med og uden efterisolering (100 mm mineraluld) eller solvæg (type A).

Det ses af fig. 8.5, at den maksimale indelufttemperatur ved en inddækning svarende til forslag 2 stiger $1,9{ }^{\circ} \mathrm{C}$ pa en varm sommerdag i forhold til, hvis der ingen inddækning foretages. For en udvendig efterisolering sker en forbgelse af indelufttemperaturen pa $0,2{ }^{\circ} \mathrm{C}$. Beregningex viser, at samme beskedne temperaturstigning vil kunne opnas ved anvendelse af solvagge med sæson-skyggegardiner.

Af fig. 8.6 ses, at hvis der kun foretages en energirenovering v.h.a. solvægge placeret i facaden fás en temperaturstigning på $1.3^{\circ} \mathrm{C}$, mens en tilsvarende udvendig efterisolering giver en stigning på $0,1{ }^{\circ} \mathrm{C}$. Som det også var tilfældet ved en inddækning af hele bygningen, viser beregninger, at anvendelsen af sæsonskyggegardiner vil bevirke samme lave overtemperaturer, som en inddækning, der udelukkende består af en efterisolexing.

Hvorvidt de hajere indetemperaturer vil medføre termisk diskomfort afhænger af personernes paklædning og aktivitet samt den relative lufthastighed. Disse termiske indeklimaparametre kan bestemmes i henhold til/16/. Om sommeren vil beklædningen typisk svare til en isolans p\& $0,08 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \approx 0,5 \mathrm{clo}$, og typisk indendors aktivitet til et stofskifte på $70 \mathrm{~W} / \mathrm{m}^{2} \approx 1,2$ met. Det kraftige luftskifte pga. abnede vinduer og dore svarer til en relativ lufthastighed pa ca. $0,4 \mathrm{~m} / \mathrm{s}$. Hermed kan den termiske komfort vurderes, idet antallet af utilfredse ved en given indelufto temperatur kan bestemmes. Denne sammenhæng er vist i tab. 8.6. hvor PPD angiver antallet af utilfredse $i \%$. For $T_{i} \leq 22{ }^{\circ} \mathrm{C}$ er luftskiftet i bygningen 0,5 pr. time, hvorfor der ex benyttet en relativ lufthastighed på $0,13 \mathrm{~m} / \mathrm{s}$ samt en beklædning svarende til en isolans på 0,75 clo.

$\mathrm{T}_{\mathrm{i},}\left[{ }^{\circ} \mathrm{C}\right]$	22	24	26	26,2	27	27,5	28,1	29
$\mathrm{PPD}_{,}[\%]$	7	20	5	5	6	9	14	25

Tabel 8.6 Antal utilfredse, PPD, i. forhold til indelufttemperaturen, T_{i}.

Ifølge /16/ opfylder en tilstand, hvor antallet af utilfredse ex mindre end 10% kravet til termisk komfort. Der er saledes ikke tale om termisk diskomfort før solvægge og efterisolering monteres. Ved en inddækning som foreslatet i forslag 2 , forøges den maksimale indelufttemperatur blot fra $26,{ }^{\circ}{ }^{\circ} \mathrm{C}$ til $28,1{ }^{\circ} \mathrm{C}$.

Hvis ikke der benyttes sæson-skyggegardiner, vil termisk diskomfort i form af overtemperaturer saledes forekomme i en kort periode sidst på eftermiddagen. Dette vil imidlextid ske så sjældent, at beboerne kun vil opleve termisk diskomfort i begrænset omfang. Desuden gælder det, at oplevelsen af det temiske indeklima let kan ændres ved åbning (eller lukning) af vinduer og døre, eller ved en ændret beklædning. Det vil saledes ikke vare et absolut krav for opnåelse af termisk komfort at benytte sæson-skyggegardiner.

Hovedkonklusionen, hvad angår det termiske indeklima, er således, at en energirenovering gennem en efterisolering og opsætning af solvægge uden solafskærmning ikke vil betyde en uacceptabel forringelse af indeklimaet i sommerperioden.

8.5.2 Indvendige overfladetemperaturer

Nar solvægge anvendes som ydervægge i en bygning, vil temperam turerne pa indersiden af muren i længere perioder vare hojere, end hvis ikke der sker nogen inddækning af muren. Det samme er tilfældet, når der foretages en efterisolering af ydervæggen. Denne temperaturstigning vil i fyringssæsonen kunne medvirke til et forbedret termisk indeklima. Beregningerne ex foretaget for de i tab. 8.7 viste typer vejrlig. Solvæggenes og efterisom leringens indflydelse på de indvendige overfladetemperaturer på ydervaggen er vist i fig. 8.7-8.10. Kommentarer til beregningsresultaterne gælder for solvægge og efterisolering anvendt både i stueetagen (massiv teglstensmur) og på 1. sal (xinge isoleret hulmur), idet forskellen pa de beregnede overfladetemperaturer, for og efter anvendelsen af solvægge ellex efterisolering, vil være mindre på 1. sal i forhold til i stueetagen.

Vejrlig	Simuleret periode
A - Kolde vinterdage uden sol	28/1-30/1
B - Kolde vinterdage med sol	$24 / 2-26 / 2$
C - Varme forårs- og efterårsdage uden sol	17/4-19/4
D - Varme forårs- og efterårsdage med sol	24/4-26/4
E - Kolde forårs - og efterårsdage med sol	28/4-30/4
F - Varme sommerdage med sol	6/6-8/6
G - Varme sommerdage uden sol	$24 / 7-25 / 7$
H - Kolde forårs- og efterårsdage uden sol	29/10-31/10

Tabel 8.7 Vejrlig og periode, hvor indvendige ovexfladetemperaturer er simuleret.

Af fig. 8.7-8.10 fremgăr, at der, når der anvendes solvægge, i sommerhalvaret er stor forskel pa ydervæggens indvendige overfladetemperatur, i forhold til et ikke-isoleret hus. Den indvendige overfladetemperatur er i huset med solvægge ca. 5 oc højere end rumlufttemperaturen, hvilket kan give anledning til termisk diskomfort. Forskellen kan elimineres, hvis der monteres sæsonskyggegardiner foran solvæggene. Det skal dog bemærkes, at forskellen pà den maksimale indelufttemperatur, som allerede omtalt, om sommeren blot er $1,9{ }^{\circ} \mathrm{C}$, hvorfor det sandsynligvis ikke vil være nodvendigt at benytte sæson-skyggegardinex.

Ifyringssasonen er der 2 principielt forskellige foxlob af overfladetemperaturen. I meget kolde vinter-perioder med sol (B) ex overfladetemperaturen i en stuelejlighed, når der benyttes solvægge, $5-6{ }^{\circ} \mathrm{C}$ hojere ($T_{0} \approx 20-21{ }^{\circ} \mathrm{C}$). end hvis der ikke foretages nogen inddækning. For en udvendig efterisolering er forskellen godt $4{ }^{\circ} \mathrm{C}\left(T_{0} \approx 19-20^{\circ} \mathrm{C}\right)$. I lidt varmere vinterperioder uden sol, (A), medforer en udvendig efterisolering en forøgelse af overfladetemperaturen paca. $3^{\circ} \mathrm{C}$, mens solvæggene
medfører en stigning på ca. $2{ }^{\circ} \mathrm{C}$. Der er saledes ikke stor forskel på, om der i vinter-perioden benyttes solvæggge ellex efterisolering. Dette er også tilfældet for forårs- og efterarso perioder uden sol.

I forårs og efterårs-perioder med sol er der derimod stor forskel på de indvendige overfladetemperatur. Når der benyttes solvægge, er forskellen i forhold til et uisoleret hus $8{ }^{\circ} \mathrm{C}$ $\left(T_{0} \approx 27^{\circ} \mathrm{C}\right)$, mens forskellen for en efterisolering ex ca. $1^{\circ} \mathrm{C}$ $\left(T_{0} \approx 20^{\circ} \mathrm{C}\right)$. I samme periode varierer den rumlufttemperatur, der vil give færrest utilfredse, mellem $22 \mathrm{og} 25^{\circ} \mathrm{C}$. Det vil saledes give samme ændring af den termiske komfort, hvad enten der benyttes solvægge eller en udvendig efterisolering. For begge gælder, at der vil være tale om en forbedring af det termiske indeklima.

Figur 8.7 Indvendig overfladetemperatur med og uden solvæg i en lejlighed i stueetagen.

Figur 8.8 Indvendig overfladetemperatur med og uden efterisolering i en lejlighed i stueetagen.

Figur 8.9 Indvendig overfladetemperatur med og uden solvzg i en lejlighed pa 1. sal.

Figur 8.10 Indvendig overfladetemperatur med og uden efterisolering i en lejlighed på 1. sal.

Ved analysen af temperaturafhængige bevægelser i murværket er benyttet en solvag med Isoflex (type A).

Ved maximalt solindfald på solvæggen kan opnås en temperaturforskel mellem ydersiden og indersiden af muren pa $65^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$ $=45^{\circ} \mathrm{C}$.

Den på ydersiden beregnede temperatur på $65^{\circ} \mathrm{C}$ er beregnet for en særlig solrig dag (6/6-8/6 if申lge/8/), og vil kun sjæl dent optræde i praksis. Dog vil vi bruge denne temperatur som extremum for vores videre beregninger af væggenes temperaturudvidelser. Det skal nævnes, at man under ingen omstændigheder vil kunne få hele det murværk, der er dækket af glasset opvarmet ensartet til samme temperatur, så derfor vil vi i de følgende beregninger skonne et arealforhold mellem extremumtemperaturer og lavere temperaturex.

Vi beskæftige os med gavlarealerne, da disse udsættes for en større solbestråing end facaderne.

DATA

Gavlen bestå af 36 cm murværk funderet på en betonkaldervæg. Gavlen er massiv mur i stueetagen og ringe isoleret hulmur pá 1. sal og tagetagen. Afstand mellem for- og bagmur er 12 cm . Etagem adskillelsen spænder mellem facader, hvorved gavlen kan regnes som selvstændig konstruktion for lodret last kun belastet af sin egen vrgt. Gavlen er muret sammen med de murede facader, som af stiver gavlen vandret, tillige med den gennemgående murede vag midt i bygningen fra gavl til gavl. Disse vandrette afstivninger har betydning fox gavlen ved pavirkning af vindlast.

Ved beregninger af de murede vægges udvidelse, benyttes den fra normen, DS 414, angivne udvidelseskoefficient pas $5 \times 10^{-6}{ }^{\circ} \mathrm{C}^{-1}$ 。

Gavlens geometriske forhold er vist i fig. 9.1.

Figur 9.1. Gavlens geometriske forhold.

Tænker vi os, at hele denne gavl opvarmes fra $0^{\circ}{ }^{\circ} \mathrm{C}$ i en vintersituation til $65^{\circ} \mathrm{C}$ i sommerperioden opnår vi et ekstremt temperaturinterval, som vil give en vandret udvidelse af murværket i forhold til de $0^{\circ} \mathrm{C}$ pa:

$$
\begin{aligned}
\Delta t & =65^{\circ} \mathrm{C} \\
1 & =10.000 \mathrm{~mm} \quad \text { (gaviens bredde) } \\
\Delta 1 & =65^{\circ} \mathrm{C} \times 10.000 \mathrm{~mm} \times 5 \times 10^{-6} 0^{-1} \\
& =3.25 \mathrm{~mm}
\end{aligned}
$$

Denne udvidelse vil fordele sig jævnt over tværsnittet, sailedes at der vil forekomme en opsummeret vandret udviddelse på $1 / 2$ * $3,25=1,63 \mathrm{~mm}$ i hver side, af det betragtede areal.

Dette ex tilstrækkeligt til, at der vil opstå et vandret tryk på facademurene vinkelret på deres plan. Disse vandrette kræfter vil medføre, at facaderne vil revne i murværket i overgangen fra gavlmurene. Såfremt dette skal undgås, skal murværket have en udvidelsesmulighed, hvilket kan etableres ved at fræse en lodret rille i murværket i gavlen, som udfyldes med fugemasse.

Det skal herudover bemærkes, at de øverste indakkede felter mod tag er kritiske, da der her er meget lidt masse til at optage såvel de lodrette som de vandrette kræfter (udvidelser). Dette má disse steder uvilkårligt medføre, at de yderste rækker mursten vil slå fra (blive løse), samt at tagsten og forskælingen vil gå løs.

Det ϕ verste stykke murværk, som ligger ud for et uopvarmet tagrum, vil revne, da dette murværk vil være koldt i forhold til det inddækkede murværk herunder.

Som omtalt i begyndelsen af dette afsnit bør man ved beregning af den i praksis forekommende udvidelse skønne et areal, hvor den maksimale temperatur forekommer.

Hvis vi sk申nner, at ca. 50% af det inddækkede areal på gavlen bliver opvarmet til de $65^{\circ} \mathrm{C}$, og det resterende areal bliver opvarmen til mellem $40-50^{\circ} \mathrm{C}$, vil udvidelserne blive som følger:

Vandret udvidelse:

$$
\begin{aligned}
\Delta t & =45^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}=45^{\circ} \mathrm{C}, \quad t=65^{\circ} \mathrm{C}-0^{\circ} \mathrm{C}=65^{\circ} \mathrm{C} \\
I & \left.=10.000 \mathrm{~mm} \quad \text { (gaviens bredde) }{ }^{\circ}{ }^{-1}-10^{\circ} \mathrm{C}+65^{\circ} \mathrm{C}\right) \\
\Delta I & =\left(10.000 \mathrm{~mm} \times 0.5 \times 5 \times 10^{-1} \mathrm{C}+6.75 \mathrm{~mm}\right. \\
& =2.20 .
\end{aligned}
$$

Dette svarer til en udvidelse i hver side $\mathrm{på} \Delta 1=1,38 \mathrm{~mm}$. Dette medfører, at man skal tage højde for disse udvidelser ved at etablere dilatationsfuger med fugemasse på de kritiske steder.

Lodrette bevægelser ex på de glasinddækkede arealer storre end på de ikke glasindækkede, hvorved der vil opstá forskydningskræfter i overgangszonerne. For at undgå revner i murvarket disse steder etableres lodrette dilatationsfuger med fugemasse.

De termiske bevægelser er vurderet af Laboratoriet for Bygningsw materialer på Danmarks Tekniske Højskole, vurderingen er vedlagt i appendix A5 s. 113.

10. IUCHMESSTGE FORHOHD

Fugt kan tilfores konstruktionen på to måder. Dels kan udeluftens fugt afsættes i den ventilerede luftspalte, hvis den passerer folde flader, dels kan der ske en diffusiv transport gennem den oprindelige murværkskonstruktion af fugt fra indeluften.

I visse perioder af året vil der forekomme kondensdannelse på den indvendige side af solvaggens glasflader. Dette kan eksempelvis forekome om natten, nar glasfladerne kan blive koldere end luftens dugpunktstemperatur.

Denne kondens skal bortledes eller ventileres bort fra konstruktionen på andre tidspunkter af dagnet, således at man undgár, at de i solvæggen indgående materialer optager fugten - med deraf falgende skader.

I solvægssystemet ex der taget højde herfor ved ventilering af de tværgående alu-sprosser, se appendix A6, s. 116.

Potentialet for ophobning af fugt fra indeluften opstå fordi damptransporten vil være udadrettet i perioder, hvor absorberfladens temperatur er lavere end indeluftens dugpunkt. Fugten vil enten ophobes i teglstenene bag absorbermalingen, da denne har en vis diffusionsmodstand, eller fugten vil trænge ud it spalten mellem absorbermaling og Isoflex-profilet. Da Isoflex'en ideelt set er damptat, vil fugten ophobes på dets inderside. Her vil kondensvandet eventuelt labe ned og gere skade pá trem lægterne.

For at vurdere denne risiko nøjere er der foretaget fugtbereg ninger af den del af konstruktionen, der ligger mellem absorberfladen og indeluften (den oprindelige teglvægskonstruktion). Sadanne beregninger er foretaget for såvel en førstesals ydervæg (fig. 10.1) som en stueetages ydervæg (fig. 10.2).

Figur 10.1 1. og 2. sal.

Figur 10.2 stuen.
UDV.

10-15 mm puds
110 mm tegl
130 mm isolering
110 mm tegl
Absorberfarve
30 mm Isoflex
$38 \times 56 \mathrm{~mm}$ trælægter 30 mm luft
5 mm hærdet glas

10-15 mm puas
350 mm tegl
Absorberfarve
30 mm Isoflex
$38 \times 56 \mathrm{~mm}$ trælagtes
30 mm luft
5 mm hærdet glas

Figur 10.3 Ind- og udvendige overfladetemperaturex af ydervagge for solvægge placeret pà 1. sal.

Frrst er de ind- og udvendige overfladetemperaturer af de to ydervægge beregnet ud fra referenceảrets data med "SUNCODE". Minimum-, middel- og maximumværdier for alle grets dage fremgar for førstesalens vedkommende af fig. 10.3. Udsvingene er en anelse mindre for stueetagen, da den ligger lidt mere i skygge end forstesalen, og da den ikke ex mineraluldsisoleret og derved har en større termisk masse og bedre termisk kontakt med indeluften.

De indendors fugtighedsforhold er beregnet ud fra referencearets oplysninger om udeluftens fugtindhold plus et tilskud, der skyldes fugtproduktionen indendors. Med gennemsnitligt 7,5 beboere pr. zone á $211 \mathrm{~m}^{2}$ fås et indendørs fugttilskud pa 664 g/h (vurderet ud fra/17/). I størstedelen af opvarmningssæsonen antages et luftskifte på 0,5 gange i timen, der giver en fugtkoncentration indendørs, der er $2,5 \mathrm{~g} / \mathrm{m}^{3}$ hojere end udendors. I den resterende del af året er luftskiftet højt (5 gange itimen) en stor del tiden, og så fảs en forskel i fugtkoncentration inde og ude på bare $0,25 \mathrm{~g} / \mathrm{m}^{3}$. Fig. 10.4 viser den resulterende relative fugtighed ved den indvendige muroverflades temperatur som daglige minimum-, middel- og maximumværdiex over året for forstesalens vedkommende.

Fugtbevægelserne er beregnet med det transiente fugtberegnings. program MATCH, /18/, med brug af de ovennævnte temperaturer og relative fugtigheder som randbetingelser. Det l-dimensionale program regner frem i tidsskridt pa en time ad gangen og tager hensyn til hvert enkelt lags evne til at akkumulere fugten hygroskopisk.

Den oprindelige teglmurs yderside er regnet helt tat, og fugtw indholdet i det yderste lag tegl (1 cm) bliver da et udtryk for hvor meget, der i det værst tænkelige tilfælde vil kumne ophobes i dette område. Programmet ex kørt uden hensyntagen til fugttransport pa vrskeform for at undga virkningerne af eventuel tilbagesugning af væske fra overfladen. Denne modifikation vil ikke influere på ophobningens størrelse - kun pa dens beregningsmæssige lokalisering.

Pigur 10.4 Relativ fugtighed ved den indvendige muroverflade for solvagge placexet pa 1.sal.

Af fig. 10.5 ses de beregnede forlob af fugtkoncentrationerne i såvel stue- som forstesalens ydervagge (andet beregningsar er vist for at eliminere indsvingningseffekter). Deres variationer i fugtindhold af det yderste lag er mindre end $30 \mathrm{~g} / \mathrm{m}^{2}$ fra sommer til vinter. En sådan fugtmængde er helt ubetydelig og vil stadig ligge indenfor teglets hygroskopiske område. Der vil altså praktisk taget ikke forekomme kondens i absorberområdet.

Dette skyldes, som det ses af fig. 10.3, at absorberens temperatur om vinteren ligger i størrelsesordenen tat pa $10^{\circ} \mathrm{C}$ - omtrent som indeluftens dugpunkt. Derimod er udtørringspotentialet om sommeren ganske betydeligt pa grund af de høje temperaturer, der opnås ved absorberen.

Af fig. 10.5 ses ogsa fugtindholdet af den inderste centimeter tegl bag pudslaget. Der ses ingen tendenser til, at de store temperaturimpulser fra ydersiden driver så meget fugt indad på kort tid, at det kan give anledning til noget, der tilnærmelsesvis ligner sommerkondens her. Dette må formodes ogsa at være konklusionen, selvom den indvendige overflade skulle være beklædt med et mere eller mindre tæt materiale, da der ikke transport eres større fugtmængder udefra, end hvad der kan optages hygrom skopisk i pudslaget.

Figur 10.5 Fugtindhold i yderste og inderste cm tegl i sfavel stue- som forstesalens ydervægge efter en inddækning med solvægge.

11. STATIK

De statiske forhold omkring monteringen af solvægge er her undersøgt for den konkrete bygning, og bygningens sammenhæng er vurderet. En lignende unders申gelse b ϕ foretages i hvert enkelt tilfælde, hvor man vil montere solvægge, da betingelserne for monteringen kan variere.

Vi har unders ϕ gt f \varnothing Igende:

- Vurdering af den udvalgte bygnings statiske sammenhæng, se bygningsbeskrivelse.
- Vurdering af temperaturbevægelser i det eksisterende murværk, og eventuelle følgevirkninger heraf, behandlet ikap. 9.
- Beregninger af vindpåvirkning, egenvægt på og fastgørelse af en foreslået opbygning af solvægge på eksisterende ydervægskonstruktioner.

De virksomheder, som har medvirket i projektet, har gennem deres systemer sikret den statiske stabilitet, hvorfor dette ikke behandles i denne rapport.

Statiske beregningex er vedlagt i appendix A7 s. 118.

Det bor under projektering af solvægge overvejes at benytte hardet glas i alle glasarealer, hvilket giver mulighed for storxe felter af glas samtidig med, at brugen af hærdet glas kan vare et sikkerhedskrav fra byggemyndighedernes side.

12. VEDLIGEHOLDELSE

Som allerede beskrevet i indledningen skal man strabe efter at få så minimal en vedligeholdelse som muligt.

Man kan ved en glasbekiædning af lodrette flader sammenligne tilsmudsningen af disse med almindelige vinduer.

Forskellen mellem et vindue og en solvag er, at man ikke skal kunne se igennem solvæggen, men at solens stråler skal kunne passere gennem glasset. At glasset er tilsmudset medforer en reduktion af solindfaldet gennem glasset, men reduktionen er så lille, at det kun har ringe betydning.

Såfremt glassets ydre overflade bliver så tilsmudset, at en afvaskning bliver nødvendig, vil dette kunne foretages fra en lift uden de store udgifter. Tilsmudsning af glassets indvendige overflade vil derimod medføre en storre udgift, hvis glasset skal aftages og herefter renses.

Når man kun åbner konstruktionen mod det fri i et omfang, så en bortventilering af fugt kan foregá, er cirkulationen af luft bag glasset så lille, at en tilsmudsning her vil ske så langsomt, at denne praktisk talt ingen betydning har.

Ved beklwaning af facaderne med et materiale som glas, vil den nuværende reparation af puds m.v. og vedligeholdelse såsom maling være vak.

Nå man beklader gavle og facader med glas helt ned til rundament, vil man kunne fả problemer med glasset på den forste 1 $1,5 \mathrm{~m}$ over terræn, hvor glasset vil være specielt udsat for siag. ridser og ligende.

Dette problem kan løses ved, at der monteres hærdet glas i denne zone, hvilket er dyrere, men kan medfore en gevinst i den sidste ende.

13. OKONOMISK VURDERING

Under udarbejdelse af nærvarende rapport har en række firmaer udarbejdet forslag til solvægge samt overslagspriser herpá. De申vrige solvagssystemer, som indgå i rapporten, er udviklet i eget regi og er prissat ud fra priser indhentet pá de enkelte indgående komponentex samt priser fra V \& S prishandbog $89 / 19 /$ for bygningsarbejder. Alle priser pà de enkelte solvagssystemer er omregnet til en kvadratmeterpris, der benyttes som sammenligningsgrundlag. Iilsvarende er udregnet en kvadratmeterpris for en efterisolexing med 100 mm mineraluld. Denne pris benyttes som sammenligning.

En sammenligning af solvagge med en efterisolering kan være vanskelig, da efterisoleringens regnskærm skal være sammenlignelig med en regnskærm af glas.

Vi har valgt at benytte en regnskærm af NY ETERNTT med en tykkelse på 6 mm . Opbygningen af efterisoleringen er som følger og danner prisgrundlaget i det folgende.
på eksisterende væg montexes traskelet udfyidt med 100 mm mineraluld. Lagter og mineraluid dakkes med en vindpap, og der monteres Iister uden pá vindpappet til friholdelse af dælpladen saledes at konstruktionen udluftes bag dakpladen. Drkpladen bestar af 6 mm NY ETERNIT. Denne opbygning ex traditionel og ma betragtes som et rimeligt sammenligningsgrundlag. Prisudregninger fox de enkente solvægsopbygninger er vedlagt i appendix A8, s. 136.

Kvadratmeterpriserne er opstillet i tab. 13.1 og $13.2 . \operatorname{og}$ alle priser er hándvarkerpriser excl. moms, idet der er regnet med hærdet glas.

Det ses af tab. 13.1, at ingen af solvægssystemenne uden stats... tilskud kan konkurrere med en eftexisolexing. Axsagen til dette skal findes i prisen pá Isoflex. (den transparente isolering. som benyttes i solvaggene), i forhold til 100 mm mineraluld.

TRANSPARENT ISOLERTNG 30 MM TSOETEX

SYSTEM	PRIS $\mathrm{Kr} . / \mathrm{m}^{2}$ u.tilskud	$\begin{aligned} & \text { PRIS } \\ & \text { Kx./m2 } \\ & \text { m.tilskud } \end{aligned}$	BEMERKNTNG
JULTANA	1.233	869	AIuminiumsprofiler.glas castholdes med sim Itcone
VITRAE	2.589	2.224	Aluminiumssammex med isat glas
OUTOKUMPE	1.855	1.490	Alumantumscammex med iknabet glas
Trolagte/aluhatromet glasliste	1.328	963	Alumprofll fra ALIIANCE pentagon.
Tralegte/aluPVCmarekliste	1.341	976	Alumprofil m. PVe drkliste DUCA
Dxtwhussystem	1.333	968	Alumintumsprosts med aluminiums dakliste.
Efterisolering	1.008		```100 mm minereluld i treskelet og etemitplade```

Tabel 13.1 kvm. priser for solvegge og efterisolering.

TRANSPARENT ISOLERING 50 MM HONEYCOMB

SYSTEM	PRIS $\mathrm{Kr} . / \mathrm{m}^{2}$ u.tilskud	PRIS $\mathrm{Kr} \cdot / \mathrm{m}^{2}$ m.tilskud	BEMERENING
JULIANA	1.358	994	Aluminiumsprofiler,glas Eastholdes med silicone
VITRAL	2.723	2.201	Aluminiumstammer med isat glas
OUTOKUMPU	1.980	1.458	Aluminiumstammer med iklwbet glas
Trælægte/aluhatprofil glasidste	1.453	1.017	Alu-profil Era ALLIANCE pentam gon
Trælægte/alu-PVC-profil	1.466	1.026	Alu-profil m. pVe dakliste DUCA
Drivhussystem	1.458	1.021	Aluminiumsprofil med aluminiumsdakliste.
Efterisolering	1.008		100 mm mineraluld i træskelet og eternitolade

Tabel 13.2 Kvm. priser for solvagge og efterisolering

Andre arsager er en nodvendig fastholdelse af glasset langs hele dets rand,glassets pris i forhold til prisen pa dæpladen foran isoleringen samt en merpris på forbehandling af murvarket inden montexing af solvagge.

Fordele ved solvagge frem for en efterisolering er de mindre konstruktionstykkelser, samtidig med at solvæggen (type A) enexgimæssigt kan sammenlignes med en efterisolexing med 150 mm mine. raluid. Ydermere kan der ved opførelsen af solvægge søges om tilm skud i henhold til /20/. Dette tilskud betyder, at priser for de skitserede solvagge ifølge /21/kan reduceres med en faktor på 4.5 gange energibesparelsen $i k w h$, men dog maximalt 30% af anlrgsprisen. De reducerede priser fremgár af tab. 13.1 og 13.2.

I kap. 8 om energi.- og komfortberegninger ses, at den største energibesparelse opnas ved anvendelse af 100 mm honeycombs som transparent isolering i solvæggen. Prismassigt fordyrex dette solvæggen 1 en sadan grad, at inversteringen ikke er rentabel. Dette skyldes dels merprisen pa honeycombs i forhold til Isoflex, dels merpris på det bærende ramesystem. Ved benyttelse af honeycombs på 50 mm vil ramesystemet ikke blive dyrere end for Isoflex, men honeycombs ex ca. 125,00 kr. dyrexe end Isoflex pr. m ${ }^{2}$.

Tilbagebetalingstid

Ved at betragte en beregning af den simple tilbagebetalingstid, kommer vi frem til følgende:

Energibespareisen pr. m^{2} solvag ex beregnet til $81 \mathrm{kwh} / \mathrm{m}^{2}$ ar (solvæg type A) og $116 \mathrm{kWh} / \mathrm{m}^{2}$ ax (solvæg type B, 50 mm honeycombs). Energibesparelsen pr. m^{2} efterisolering med 100 mm mineraluld es for en tilsvarende placering beregnet til $75 \mathrm{kWh} / \mathrm{m}^{2}$ ar. Se fig. 8.2.

Der regnes med en virkningsgrad pa 92% for fjexnvameforsyningen i vores bebyggelse og en pris pá $0,45 \mathrm{kx} / \mathrm{kWh}$ excl. moms. Hillexpd kommune, $/ 22 /$. Besparelser og tilbagebetalingstid er vist itab. 13.3 pá naste side.

System	Besparelse kr./m² àr	Besparelse $\mathrm{kWh} / \mathrm{m}^{2}$ ar	Pris kr./m2 m. tilskud	Tilbagebetalingstid i år
Solvæg type A. Alu-hat-system	39.62	81	963	24
Solvæg 50 mm honey combs alu-hat-system	56,74	116	1017	18

System	Besparelse $\mathrm{kr} \cdot / \mathrm{m}^{2} \mathrm{a} \mathrm{x}$	Besparelse $\mathrm{kWh} / \mathrm{m}^{2}$ å x	Pris kr. $/ \mathrm{m}^{2}$ u. tilskud	TilbagebetaIingstid i år
Efterisolering 100 mm	36,68	75	1008	28

Tabel 13.3 Tilbagebetalingstider og besparelsex ved en simpel beregning.

Tilbagebetalingstid udregnet pa denne måe ex ikke realistisk oc skal kun betragtes som et fingexpeg om, hvorvidt det ene system ex mere rentabelt end det andet. Ved en egentiig beregning af tilbagebetalingstiden kan vi se, at lanerenten skal vare meget lille, for at den arlige energibesparelse blot skal kunne betale de arlige renteudgifter. Ved beregning af tilbagebetalingstid skal man derfor vurdere mere detaljeret, for at fa det rigtige billede.

Den arlige udgift (Eqx solvagsopsætningen) til vedilgeholdelse af puas og maling bor modregnes i solvaggens og efterisolem ringens kvadratmeterpxis. Safremt dette medtages og vediigeholdelsesprisen skonnes til, 6000,00 kr/ar, svarende til en kvadratmeterpris pa $17{ }_{2} \mathrm{kr} / \mathrm{m}^{2}$ ar, kan man reelt betragte en besparelse pa $39,62 \mathrm{kr} / \mathrm{m}^{2}$ ar $+17,00 \mathrm{kr} / \mathrm{m}^{2} \mathrm{ar}=56,62 \mathrm{kr} / \mathrm{m}$ ar, altsa energibesparelsen plus vedilgeholdelsesudgiften pr kvadratmeter for en solvag type A og $53,68 \mathrm{kr} / \mathrm{m}^{2}$ ar for isolexing.

Hvis vi forualswtter, at der laves et indexlån på 2% p.a. vil dette ved en renteberegning medfore en tilbagebetalingstid på 22 ár for solægge med tilskud (alu-hat-system), og tilsvarende vil en efterisolering have en tilbagebetaling på 24 ar. Hvis vi ligeledes sex på en solvag med 50 mm honeycombs, fås en besparelse på $73,74 \mathrm{kx} / \mathrm{m}$ ar og derved en tilbagebetalingstid pá 17 air (alu-hat-system) .

Udfra disse tal kan man konkludere, at solvæggen med 50 mm honeycombs ex den mest rentable, selvom anlægsprisen herfor er storre end for en solvag med Isoflex. Det er saledes rentabelt at benytte "avancerede" og dyrer solvægge, hvilket er il overensstemmelse med tididgere undexspgelser på solvægsomradet. /1/. Det skal dog bemærkes, at pxisen pa honeycombs ex baseret pa et skøn og kan være meget storre end antaget.

Tilbagebetalingstidex for de underspgte systemer ved indexian med rente pas 2% er angivet i tab. 13.4 og 13.5 .

For at undgá overophedning i de varmeste maneder af amet kan det i visse tilfalde vare nødvendigt at indbygge skyggegardinex i solvaggene som omtalt i kap. 8. Safxemt dette biver nodvendigt, må man xegne med, at anlagsprisen for solvægge vil stige med 300 - $400 \mathrm{kr} / \mathrm{m}$, hvilket vil medfore, at rentabiliteten reduceres ti.... svarende. I vores tilfelde har beregningerne vist, at skyggegardinex ikke er nodvendige, og udgifter hertil er derfor ikke medregnet i vores priser.

SYSTEM	$\mathrm{Kr} \cdot / \mathrm{m}^{2}$ Isoflex m.tilskud	$\mathrm{kr} . / \mathrm{m}^{2}$ 50 mm honeycomp.m.tils	Tilbagebet. m.Isoflex	Tilbagebet. m. Honeycomb.
JULIANA	869	994	19 àr	17 år
VITRAL	2224	2201	85 ar	463 x
OUTOKUMPU	1490	1458	39 ar	26 år
Hat-profil	963	1017	22 åx	17 ar
Alu-pvc profil	976	1026	$223 r$	17 ar
Drivhussystem	968	1021	22 arr	17 år

Tabel 13.4 Kvm.-priser og tilbagebetalingstider for solvægge.

System	pris $\mathrm{kr} / \mathrm{m}^{2}$	gribagebet.
Efterisolering	1008	24 ar

Tabel 13.5 Kvm.-priser og tilbagebetalingstider for efterisolexing.

Idealpris

Safremt der fremover bliver stor anvendelse af solvagge i boligmassen, vil dex med fordel kunne udvikles et profil specielt til dette formail. Safremt et sadant profil fremstilles, lagerfores og sælges som standardvare i de almindelige byggemaxieder, og uden monopol. vil dette prismasigt kunne konkurcexe med de i denne rapport underspgte profiler. Pxisen pà et sadant profil skonnes til $50 \mathrm{kr} / \mathrm{m}$ 。

Glasset til solvagge kan med fordel importeres i storxe mangder, hvorved prisen kan reduceres med $100 \mathrm{kx} / \mathrm{m}^{2}$ i forhold til den pris. vi har benyttet i priseksemplerne. Importeret glas vil kunne fas til $70 \mathrm{kr} / \mathrm{m}^{2}$ 。

Benyttex man de ovenfor navnte priser pá glas og profiler, og udregner prisen pá en solvreg pá vores prøvehus, med samme forudsætninger som for de pvrige solvagssystemer, fås en pris på 1070 $\mathrm{kr} / \mathrm{m}^{2}$ for en solveg med Isoflex. $091195 \mathrm{kr} / \mathrm{m}^{2}$ for en solvag med 50 mm honeycombs. Disse prisex vil med tilskud kunne reduceres til hhv. $700 \mathrm{kr} / \mathrm{m}$ med Isoflex $09836 \mathrm{kr} / \mathrm{m}^{2}$ for honeycombs.

Tilbagebetalingstiden for et indexian med rentesats pä 2% og med priser pa solvagge som ovenfor, med tilskud, kan beregnes til 15 ár for solvegen med Isoflex, og 11 ar for solvegen med 50 mm honeycombs.

Opsummering:

Under udarbejdelsen af dette udredningsprojekt har der rejst sig en række spørgsmål, som er søgt belyst i rapporten.

- Hvad sker dex med de eksisterende konstruktioner ved opvarm ning af disse, når solvagge monteres ?
- Hvordan skal man sikre glasset, hvor dette er udsat for mekanisk påvirkning ?
- Hvordan kan man indpasse solvægge på en skånsom og naturlig måde i det eksisterende bybillede?
- Hvordan kan en glasbeklædning af ydervæggene rent praktisk udføres ?
- Hvor store energibesparelser kan forventes ved anvendelsen af solvægge?
- Hvordan ændres det termiske indeklima i bygningen, når denne forsynes med solvægge?
- Ex en beklædning med solvægge rentabel, sammenlignet med en traditionel udvendig efterisolering ?
- Hvordan vil beboerne se på en beklædning med solvægge af deres bebyggelse?

Konklusion:

Efter montering af solvægge vil der ske en opvarmning af den bagvedifggende konstruktion, som kan medføre revnedannelse af pudsede vægge. Derfor skal man inden montering af solvægge fjerne puds.

Som omtalt i notat Exa Laboratoriet for Bygningsmaterialer pa DTH, se appendix A5, vil selve murværket ikke fá væsentilgt andrem de betingelser, men man vil få problemer i overgangen mellem vag med solvag og vog uden. Disse steder må man etablere en udvidelsesmulighed eventuelt ved udfræsning af en xille i muren, som udfyldes med en elastisk Eugemasse.

Temperaturbevagelserne kan tillige medfore, at murbindere i hule mure vil knokke, hvorfor det er nodvendigt, disse steder at foretage en fastgorelse af solvægge helt ind i den indvendige mur.

Ved montering af glas på ydermure skal man være opmærksom pá mekanisk belastning af dette i en vis højde. For at undgå $\phi d e l æ g-$ gelse af glasset foreslås, at der monteres hærdet glas i det nedexste glasband.

Ud fra en brandteknisk vurdering kan solvaggene ikke overholde de kxav, der er stillet i lovgivningen. Derfor má vi på nuværende tidspunkt konkludere, at der i hvert enkelt tilfælde ma søges om dispensation hos byggemyndighederne. Man ma forvente, at byggemynaighederne af sikierhedsmæssige arsager vil kræve, at glasset er hærdet.

Den arkitektoniske udformning har vist sig at være mangfoldig. Arkitektens oplzg hax vist, at man ved at lege med glassets spejleffekter og sammenkobling med traditionelle bekladninger, kan skabe nogle spandende bebyggelsex.

Inddragelsen af en rakke firmaer har vist, at kun fed af de nuværende materialer, som benyttes pa maxkedet, kan indpasses fin brug for solvagge. Vi har vist forskellige formex for montagew systemer som hver isxr hax deres fordele/ulemper. Billigere indamkingsprofiler vil kunne $\phi g e$ rentabiliteten af solvagge væsentilgt.

Hvis der foretages en inddakning med solvægge og efterisolering af hele bebyggelsen, viser vore bexegninger, at energiforbruget til rumopvamming i nogle tilfælde vil kunne reducexes med over 40\%. Solvæggene vil desuden resultere i storre besparelser end en udvendig efterisolering med 100 mm mineraluld, både nå bagmuren ex en massiv teglstensmux, og nå den bestár af en ringe isoleret hulmur. Den relative forskel er typisk mellem 20 og 40% 1 solvæggens favør.

Hvad angå det termiske indeklima viser analyserne, at anvendelsen af solvagge, i kratt af højere indvendige overfladetemperaturer på ydervaggene, i fyringssasonen vil medvirke til en støxre forbedring af indeklimaet end en udvendig efterisolering. Om sommeren vi1 forøgelsen af indetemperaturen være sa begrænset, $1,9{ }^{\circ} \mathrm{C}$, at anvendelsen af solvægge ikke vil medfore en uacceptabel foxrin gelse af det cermiske indeklima.

En prismæssig sammenligning mellem efterisolering og solvagge er vanskelig, idet der for solvæggen er nogle fordele fremfor isolering, samtidig med at solvaggene materialemæssigt ex dyrere. Solvægge er varmebesparelsesmæssigt bedre end en 100 mm isolering, hvorved der fås en kortere tilbagebetalingstid på Iån.

En anden fordel ved solvægge fremfor en efterisolering er tykkel... sen af den monterede konstruktion. Hvor solvæggen kan holdes i en tykkelse på $50-60 \mathrm{~mm}$, vil en enexgibesparelsesmæssigt tilsvarende eftexisolering med 150 mm mineraluld have en tykiease på 170 mm 。

Det må dog siges, at solvagge ikke er totalt vedingeholdelsesfre, da disse med nogle airs mellemrum bor afvaskes udvendigt for at fá en maksimal udnyttelse.

Det skal ogsa bemærkes at dex ldag gives tilskud til udnyttelse af passiv solvame, hvorved rentabiliteten af solvægge i den ua-
formning de har idag, foxpges yderligere i forhold til en efterisolering.

Under udarbejdelsen ar projektet har beboerne i de omtalte bebyggelser været lobende orienteret om projektet. De fremlagte skitseforslag blev meget positivt modtaget af beboerforeningerne, som under hele forløbet har været meget interesseret i projektet.

RELERENEHR

/1/	"Solvagge i den eksisterende boligmasse". C. Paludanm Muller, O.B. Jorgensen. Enexgiministeriets solvarmeforsko ningsprogram rapport nr. 47. Meddelelse nr. 193, LfVg DTH, 1988.
$12 /$	"Dår lyuset går in gar våmen ut". Brochure fra Isofles $A B$.

$/ 3 /$ Dantest provningsrapport, $F-6125$ af Isoflex 1989.
/4/ "Thermode. Thermal diode systems". Brochure Era Arel Energy Itd. 1987.
/5/ "The best under the sun". Brochure fxa Inco selective Surfaces Ltd. 1984.
$/ 6 /$ "DYROTEX 3852 (Acrylplastmaling). Vandig forankringsm grundex 3840". Brochure fra DYRUp, 1989.
$/ 7 /$ "SUNCODE - PC". T. Wheeling, I. Palmiter. Ecotope Group, Seattle, WA, 1985.
/8/ "Vejxdata Eor VVs og Enexgi. Dansk referencear TRx". B. Andersen m.fl. SBI-rapport 135 , Statens Byggeforskningsinstitut, 1982.
/9/ "EDB-programmer til beregning af passiv solvarme". T. F_{B}. Christensen. Meddelelse nx. 185 , LEV, DTH; 1985.
/10/ "Performance of passive solar houses in Ladakh India". C. Paludanmiullex. Rapport nr. 88-5. LfV, DTH, 1988.
/11/ "SUNCODE-PC.A program usex's manual". M.J. De La Hunt. Ecotope, 1985.
/12/ "Solar engineering of thermal processes". J.A. Duffie, W.A. Beckman, by John Wiley \& Sons, 1980.
/13/ "Beregning af energiforbrug i småhuse". A. Nielsen, K. Johnsen. SBI-xapport 148. Statens Byggeforskningsinstitut, 1984.
/14/ "Varmesynsrapport for afdeling 7 i Det Sociale Boligm selskab i Helsinger". Radg. ing. V. Engstrom, 1984.
/15/ "Danmarks Enexgistromme, 1987". Energistyrelsens axsopgerelse, 1988.
/16/ "DS/ISO 7730: "Termisk miljo. Moderate omgivelsex. Bestem melse af PMV- og PpD-index og betingelserne for termisk komfort". Dansk Standardiseringsråd, 1986.
/17/ "Fugt i boligen". A.P. Koch et. al. "Byggeteknik. Teknologisk Institut, 1985.
/18/ "Combined Heat an Moisture Transfer in Building Construcw tions". C.R. Pedersen. Meddelelse nr. 214, LfV. DTH, 1990.
/19/ "V \& S prishåndbog for bygningsarbejdex". 1989.
/20/ "Passiv Solvarme". Information om tilskud vedr. passity solvame. Enexgistyrelsen, 1989.
/21/ Samtale med Jorn Mork Thomsen, Teknologisk Inseitut, januar 1990.
/22/ "Energipriser, solenergi og graddage". Erik Larsen, vVs 2. 1990.

A1.

A2.

A3.
A.

A5.

A6.

A7.
28.136

Al. Arkitektforslag til glasinddækning af Peder Skramsvej og Ørehøj.

- Besyggabsesplaren

Sobucgern aremberes bethe mox syeb elior mod isytaist on syplevest. Sa nortuende freader kemeut. supptercs mea efteraiolering.
Onquáblsehne binocoiveer pés saseíggerar placerning og codformuing.

- Ebageplomen

Brhagger, giv storser guire mee farle lionerate, Jom har mest yoterid.
 bineres meat gterisolsring.

- Snittel

Sotivesperny your stion gaum ser

 Gagrem er vistesingern minabe.

To Adsbillelse
Solugggen betragies Eove en
 rese med solfargene of parabobauterner eller some eb ste. kightechareiteetam qlas op seite fa den Eradibignele ucformede buprivingénop. Sblaggere deprestor sammer Ravigende pada.

2, Jredpasraing
Solucagernbe ophareges, sove "Silleters pos en cish" dés veder hicon dem er pliads.
Sowcegpene inogpasioes som Stysinutestituce, riveruen mos.
 gem bu courgge wib denet. siese byquing er noiaderdíge, fles
 elles maling.
3. Jrapakining

Bygningery indéblecteo hele
 firmet som bien sammererorgyende frade, virove ecot indera.
 ckterisabering ellers plaverasioncè. Billextet at dan eprindebíys Sy. ucise forsurinctor hée leber opro

PRINGIPRER FRP FELUT．
NUG VEO VMBUESEAUS

Fowbiscurelig indaberning．

Ahtititeing osed yoirne of

Afsuctring fion pats．

85

$$
\begin{aligned}
& \text { : ESE日ixbtiog }
\end{aligned}
$$

Solcaygens yotre bestememes usd somspille mellem uggene hovedssicanddele:
(1) Glas
(2) 5:sossepsosil
(3) 1astikiter
(4) Besleg
(3) Isoflextolie be lag)
(a) Assorber
(7) Eissisterance mur

Vancret sinit i locret sprosse

- Glaj30
 eo makiofaletsieine sic rexme-r-anomescions, nekasiste evere.

clusser kure uelyes col fra:
- Oceofiadens ars dene es blas. mat, ornamencireb, Nestele rerode eller spagibede".
- Farmere.
- Stiober, aces. madestandsyy. Ghed over by metanese picrifiving, sambe clem goraitbige sperndicidad.

- Priblisitenct

Requbsystase kan uopions:
 allunesinceres.
Overfladebenandtingron der ésuer
osdeyenindelate bin curafin.
Clavering, pulosibébrivg lukneisicion j elter galu nobieriong (jem) Eave forbeweis.

Te ina pio granc al kat eb

- Abcurgeratro

Kraver sit aserbemen er at cter
 Mot som ep bexsh, men andes Faroe ban anurndes.
Makiricele kan vare nealing eller bing incoes pucks.

Snit 1:100
ARD. VII, PEDER SKRAMSVET
vencleang

$$
\text { Gavl mod syadist } 1: 100
$$

Eachaeudsnit mod sydvest
AFD. XIII. DREHDJ

Gavi mod sydøst $1: 100^{\circ}$

Facadeudsnit mod sydyest
AFD. KIII. ØREFDI

A2. Snittegninger af de undersøgte inddækningssystemer.

ALU-HAT-SYSTEM m. UNP - profil.

ALUPROFIL MED PVC-DEKLISTE

NT:

$\frac{\text { A3 Detailtegninger af forslag til inddækningssystemer for }}{\text { solvæge. }}$
 ALU-HAT-SYSTEM

YANORET S.NTT

HJORNEAFSLUTNING-VANORET SNIT

vindue

INDAKNING OM VINDUE LODRET SNIT

LODRET SNIT

A4. Beskrivelse af solvagge i EDB-model

I SUNCODE-manualen, /11/, er forklaret, hvordan programmets algom ritmer er udformet. Herunder er det forklaret, hvordan programet udforer beregninger for de simple "traditionelle" opbygninger af solvagge. I det folgende er nævnt de generelle tilnæmelser. dex gores ved programets solvægs-beskrivelse. Endvidere ex omtalt de "tricks", som er gjort i forbindelse med undersøgelsen af de mere avancerede solvægge i dette projekt. Betydningen af de benyttede symboler er som i kap. 8.

I programmet er det ikke muligt at angive nogen sammenhæng mellem U_{L} og forskellen mellem middel-absorbertemperaturen, T_{p} og middel-lufttemperaturen, T_{a} pả trods af, at der ofte vil være tale om en betydelig forøgelse af U_{L}, når temperaturforskelleng T_{p} - T_{a} øges. Nar der er solindfald om dagen, vil man typisk have en forskel pa mellem $20 \mathrm{og} 40{ }^{\circ} \mathrm{C}$. I fyringssasonen vil forskellen, i situationer med varmetab gennem vaggen, om natten typisk være mellem $5 \mathrm{og} 20^{\circ} \mathrm{C}$. I dette projekt er de benyttede vardier for solvaggenes U_{L} beregnet ved en temperatur pa $20{ }^{\circ} \mathrm{C}$. Dette medfører, at U_{I} ofte vil være lidt for lav om dagen og lidt for hoj om natten. Herved sker en lille undervurdering at solvaggens energibesparende egenskaber.

Ved beregning af transmittansen for et dæklagssystem, forudsettes det i programet, at systemet er sammensat af et vist antal identiske simple dæklag. Dette er imidlertid ikke tilfaldet for de fleste af de i dette projekt undersøgte daklagssyrtemex dvs. systemerne med transparent isolering (Isoflex samt 50 og 100 mm honeycombs). For dxklagssystemer med transparent isolexing er transmittansen beskrevet v.h.a. et ækvivalent dæklagssyatem. Dette er bestemt ved at sammenligne beregnede værdier af (ta) for forskellige dæklag opbygget af x lag alm. glas, med malte værdier for det pagældende dæklagssystem. I simulexingerne er benyttet et brydningsindex pa 1,0 for bedre at kunne simulere den stærke vinkelafhængighed for de forskellige typer transparent isolering. Herudover er specificeret en reduktionsfaktor, SC,
der bevirker, at den i programmet beregnede ($\tau \alpha$) får en passende reduktion. Den benyttede værdi af SC er bestemt af:

$$
S C=0,5 \cdot \frac{(\tau \alpha)_{e, 1, n}}{(\tau \alpha)_{e, 0, n}}+\frac{(\tau \alpha)_{e, 1, d}}{(\tau \alpha)_{e, 0, d}}
$$

hvor indices $1,0, n$ og d angiver, at der er tale om de korrekte værdier for hhv. det aktuelle dæklagssystem med transparent isolering, det ækvivalente dæklagssystem med x lag alm. glas, solstrgling med normal-indfald og diffus solstraling.

De beregnede og málte værdier for ($\tau \alpha)_{e}$ er sammenlignet ifig. A.1. De forskellige kurver er beskrevet nedenfor:

A - Transmittans for dæklag med Isoflex simuleret som i/1/.
B - Transmittans for drklag med Isoflex simuleret som 4 lag alm. glas incl. reduktionsfaktor, $S C$, og med et brydningsindes på 1,0.
C - Transmittans for dæklag med Isoflex simuleret som 6 lag alm. glas incl. reduktionsfaktor, $S C$, og med et brydningsindex pà 1,0 .
D - Målte værdier for dæklag med Isoflex.

Energi- og komfortberegninger i kap. 8 er baseret pa simuleringse model C.

Programmets tilnærmede beregning af $(\tau \alpha)_{e}$ vil generelt give lidt for lave vardier ved sma indfaldsvinkler og lidt for hofe værdier ved store indfaldsvinkler samt ved diffus stråling.

Figur A.8.1 Sammenligning mellem målte og simulerede vardier af $(\tau \alpha)_{e}$ for et dæklagssystem med Isoflem.

As. Notat fra Laboratoriet for Bygningsmaterialer vedr. temperaturbevagelser i murvark.

LABORATORIET FOR BYGNINGSMATERIALER. DANMARKS TEKNISKE HOUSKOLE
BUILDING MATERIALS LABORATORY - THE TECHNICAL UNIVERSITY OF DENMARK

23.08.1989

Solvagge of murvark

Placering af solvagge pze eksisterende murvark giver anledning ti eksuapâvirninger af decte. Laboratoriet for Bygningsmaterialer er blevet bedr om sir umiddelbare skprover, hvorvidt disse ekstrapaivinninger kan Eremkalde skader i murvarke.

Det akuelle solvzgsarrangement er som beskreves "Udredningsprojekt for solvzgge: Skiseforslag il Peder Skamsvej, afd 7 og Ørehøj, afd. 13, D.s.b.s. i Helsingø". DANBOLIND A/S. 16. maj 1989.

Skadesvurderingen bviler pa mumemperamer som de er beregnede af Laboracoriet for Varmeisolening for en swilig varm og sohig sommerdag. De anveadte vinterremeranuer er narvarende forfaters skgn.

BÅVIRKNIVGER OG SRADER

11 Endring af eksisterende phivirningstupe

For opseming af solvagge er den maksimale temperaturvarianion om sommeren pa frers af
 ilsvarende variacion ocu vinteren skones at vare giver ved $T_{\mathrm{B}}=-20^{\circ} \mathrm{C}$ og $\mathrm{T}_{\mathrm{i}}=25^{\circ} \mathrm{C}$ Vamia bionerne skrives

$$
\Delta_{\text {sammas }} \approx 15^{\circ} \mathrm{C} \quad \Delta_{\text {rinem }}=-45^{\circ} \mathrm{C}
$$

Efter solvagsopseming er dilvarende $\left(T_{w} T T_{i}\right)(63,25)^{\circ} \mathrm{C}$ om sommeren og - pa dea sikn side $-\left(X_{\text {ия }} T_{i}\right)=(-20,25)^{\circ} \mathrm{C} \mathrm{om} \mathrm{vincerea}$.

$$
\Delta_{\text {sammes }} 3840^{\circ} \mathrm{C} \quad \Delta_{\text {tineap }}=-45^{\circ} \mathrm{C}
$$

Nimerisk set vil opseming af solvagge altsa inke invoducere søøre cemperarurdifferncer gẻ tvems of raurvarker end dert i forvejea er "vans" in.

For en massiv num forekomner der pt denne baggrund ikke sandsyoligt, ar anbringelse at solvagge vil frenkalde ekstraskader pa trees i murverket.

Med hensyn al hulmur skal anføres, at der ikke kan afvises, at det forggede udsving i temperaturvariationer mellem sommer og vinter kan fremkalde en slags fatigue-virkning i murbinderne - specielt de faste (murede) - med brud til følge.

2) Nv pue pávirkning

En ny type belastning er den, der påøres murvarket pả langs ifacaden ved temperaturdifferenser oukring solvæggens kant.

Skønnes det, at temperaturen $=1 / 2$ sten under facadeplan under solvag (det "varme" felt) ved vintertid er $T_{u, 1}=35^{\circ} \mathrm{C}$, mens den udenfor solveggen (det "kolde" felt) er $\mathrm{T}_{\mathrm{u}, 2}=-15^{\circ} \mathrm{C}$ kan der opstå er 氏æk i murværker lige udenfor solvæggen af størrelsesordenen

$$
\sigma \approx 0.5^{*}\left(T_{B, 1}-T_{u, 2}\right)^{*} \alpha^{*} E=2.5 M P Q
$$

lavor elasticitetsmodulen, $\mathrm{E}=10^{4} \mathrm{MPa}$ og varmeudvidelseskoefficienten, $\alpha=10^{-5} \mathrm{p} \mathrm{C}$.
Udtrykker galder for et lille varnt felt iet uendeligt stort koldt felt. Jo støre det varme felt bliver i forhold til det kolde felt, jo større bliver rakspændingen i dette.

Da solvæggen skal kunne placeres arbitrart mả vi regne med ovennavnte spanding some en mindste størrelsesorden, der derved (med normal murværksstyrke) forudsiger, at rourvzrket må pazegnes atrevne omking solvægge. Ved relativt store vame felter, med utilsurakeligtmodiryk fra et koldt felt, kan revnerne opná deres maximumsvardi,

$$
\varepsilon \approx \infty^{* *}\left(T_{u, l}-T_{u, 2}\right)^{* 1} 1000=0.5 \mathrm{~mm} / \mathrm{m}
$$

bvilket langs vandrette solvægskanter kan regnes optager jævnt fordelt i murtuger.
Teorecisk opstar der langs de lodrette solvægskanter mulighed for, at nogle sten indrages : revnedannelsen. I praksis skønes der dog, at den lodrent murbelastoing reducerer en sedan risiko til der negligérbare.

Under den her betragtede pâviskuingstype (2) mả uilfojes, at de navne revner gennem frost-b-cycler i kondensvand langs solvagskanter kan danne udgangspunkt for nedbrydning af murværkers fuger.

- FORANSTALTNINGER MOD SKADER

1) Til imodegåelse af skader, der kan trenkes at opstå som følge af de under punkr 1 nevme påvirkninger kan der anbefales, at fastgørelsen af solvagge på hulmur sker med ankre, der griber ind i bagmuren og derved virker som erstaning for defeke bindere.

Ingen foranstalminger skonnes nødvendige ved montering pat massiv mur.
2) Til imødegảelse af de skader, der kan tankes at opstả som følge of pårirningstype 2 kan det foreslas, langs solvagskaner at erstatte mantlen i den nermeste fuge (ien halv steas dybde) med eftergivelig fugemasse.

Foranstalmingen føres forbi solvæggens hjømer med en afstand lig solvæggens halve dimension ifugeremingen - eller il sammenlob med lignende foranstalming hos nabo-solvag - eller al murábning eller -kant.

En solvag opfates idenne forbindelse ogsà som flere solvægselementer-blot afstanden mellem dern er lille nok til at opfatte der samlede arrangement somér varmı felt.

Foranstalmingeme med eftergivelig fuge galder bade massiv og hul mur.
Som tidligere antydet er undersøgelsen at opfatte som er umiddelbart skøn vedrørende skader og foranstalminger mod deres konsekvenser. En mere nøjagtig analyse forudsatter detaljerer kendskab il den encelige placering af solvagge i forhold il den akuelle bygning.

Det skal i den forbindelse anføres, at selv den mest omfatende teoretiske analyse i dag, dybest set mà karakteriseres som et skøn. Ideén med at placere solvægge p\& eksisterende bygninger ex stadig sâ ny, at der ikke er er tilstrakkeligt omfattende erfaringsmateriale at bygge pa

Ved opsæming af solvægge vil det vare at betydelig forskningsmæssig og praktisk værdi, at efterlade koncrollerede vegfelter, hvor der ikke er foretaget nogea form for impdegaelse af skader.

Lauge Fuglsang Nielsen
Lektor, LBM
c.c. Lektor Sv.Aa. Svendsen og
Civ.ing. Olaf B. Jgrgensen

Laborrorier for Varmeisolering

A6. Forslag til ventilering af solvagge med alu-hat system eller drivhussystem.

NOTE:

Gummilister afbrydes
på $2 \times 2 \mathrm{~cm}^{\text {i }} \mathrm{s}$ langde
pr. glasfelt

A7. Statiske beregninger for forslag til inddakning meo solvagge Alu-hat-system.

SOLVEGSSYSTEM

OPBYGNING:

1. Eksisterende teglmur
2. Absorber farve, sort
3. 30 mm Isoflex
4. $38 \times 56 \mathrm{~mm}$ tralægte
5. 26 mm luft
6. 5 mm hærdet glas
7. Aluminiums-profil

GEOMETRI AF GAVL

Densiteter:

Glas	$27 \mathrm{KN} / \mathrm{m}^{3}$
Træ	$5 \mathrm{KN} / \mathrm{m}^{3}$
Aluminiums	$27 \mathrm{KN} / \mathrm{m}^{3}$
Isoflex	$0.11 \mathrm{KN} / \mathrm{m}^{3}$

Vindlastbexegning:

Forme1: $\quad=Q \cdot C \cdot A \quad \Psi=0,5 \quad$ DS $410 / 409$

$$
\begin{gathered}
Q=\text { hastighedstryk } \\
\frac{1}{2}^{2} \cdot \rho \cdot \mathrm{~V}^{2}
\end{gathered}
$$

$C=$ konstruktionsafhængig
faktor

Formel:

$$
A=\text { belastet areal }
$$

$$
Q=3_{2} \cdot \rho \cdot v^{2} \quad \rho=1,28 \mathrm{~kg} / \mathrm{m}^{3}
$$

DS $409 / 410$
16.1.1.

Forme1: $\quad \mathrm{V}=27 \mathrm{~K}_{\mathrm{t}} \cdot\left(\mathrm{LN} \frac{z}{Z_{\mathrm{o}}}+1,3\right)$ DS $409 / 410$
16.1.d.

Terxæn: $\quad z_{0}=0,3 \mathrm{~m}, K_{t}=0,22$ DS $409 / 410$ $\mathrm{Z}=12 \mathrm{~m}$

Tabel 16.1.3.a

Vindlast pr m^{2} :

$$
\begin{aligned}
& V=27 \cdot 0,22 \cdot\left(\ln \frac{12}{0,3}+1,3\right)=29,63 \mathrm{~m} / \mathrm{s} \\
& Q=1 / 2 \cdot 1,28 \cdot 29,63^{2} \cdot 10^{-3}=0,562 \mathrm{KN} / \mathrm{m}^{2}
\end{aligned}
$$

Den storste forekomne hastighedsfaktor C sættes til 1,1

Arealet A sxttes til $1 \mathrm{~m}^{2}$
$W_{k}=0,562 \cdot 1,1 \cdot 1=0,618 \mathrm{kN} / \mathrm{m}^{2}$
$W_{X}=1,3 \cdot 0,618=\underline{0,804 \mathrm{KN} / \mathrm{m}^{2}}$

Den dimensionerende vindlast på såvel facade som gavl regnes som værende $0,804 \mathrm{KN} / \mathrm{m}^{2}$ for både tryk og sug.

Beregningerne er lavet for det største forekomne glasfelt. Beregningerne er udført for forslag 2 i arkitekt projektet.

STORSTE GLASFELT

LEGTE DIMENSION

$$
\begin{aligned}
& A=2128 \mathrm{~mm}^{2} \\
& W_{Y}=19,85 \cdot 10^{3} \mathrm{~mm}^{3} \\
& W_{Z}=13,50 \cdot 10^{3} \mathrm{~mm}^{3} \\
& I_{Y}=0,556 \cdot 10^{6} \mathrm{~mm}^{4} \\
& I_{Z}=0,256 \cdot 10^{6} \mathrm{~mm}^{4}
\end{aligned}
$$

Konstruktionstra

Bøjning
Forskydning
Elasticitetskoeficient

K24 Fugtklasse IU
$f_{m d}=16 \mathrm{~N} / \mathrm{mm}^{2}$
$f_{\mathrm{Vd}}=1.7 \mathrm{~N} / \mathrm{mm}^{2}$
$\mathrm{E}=7000 \mathrm{~N} / \mathrm{mm}^{2}$

ALUMINIUMS PROFIL

$$
\begin{aligned}
\mathrm{A} & =90 \cdot 10^{-6} \mathrm{~m}^{2} \\
\mathrm{f}_{\mathrm{Yd}} 0,2 & =125 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{E}^{2} & =70.000 \mathrm{~N} / \mathrm{mm}^{2} \\
\mathrm{E}_{\mathrm{d}} & =44.872 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

EGENVAGTP

$$
\begin{array}{ll}
G_{Y, ~ G l a s ~}=1,0(27 \cdot 0,005) & =0,135 \mathrm{KN} / \mathrm{m}^{2} \\
G_{Y, ~} A l u=1,0 \cdot 27 \cdot 90 \cdot 10^{-6} & =0,002 \mathrm{KN} / \mathrm{m} \\
G_{\text {I, Lagte }}=1,0 \cdot 5 \cdot 2,128 \cdot 10^{-3} & =0,011 \mathrm{KN} / \mathrm{m}
\end{array}
$$

LEGTE 2-2

LODRET LAST LAGTE (2-2)

Glas $=0,135 \cdot(1,0 \cdot 1,3 \cdot 0,5+1,8 \cdot 0,5 \cdot 1,0)=0,209 \mathrm{KM} / \mathrm{m}$

Alu
$=0,002 \mathrm{KN} / \mathrm{m}$

Træ
$=0.011$ Ke/m

G lodret
$=0,222 \mathrm{TV}$

Her forudsættes at de lodrette lægter optager hele den lodrette last.

Denne lodrette last overfores til de tværgående bolte.

BOLTEDIMENSION:

Der valges en M8 Bolt pr. m overklipningsbæreevne $=14,5 \mathrm{KN}$

VINDLAST OVERFORT TIL LODRET LEGTE (2-2)

$W_{r}=0,804 \mathrm{KN} / \mathrm{m}^{2}$

Det forudsættes, at kun de lodrette lagter optager vindlast

Vindlast:

$q=1,8 \cdot 0,5 \cdot 0,804+1,3 \cdot 0,5 \cdot 0,804=1,25 \mathrm{KN} / \mathrm{m}$

Bolt: M8 pr meter Trækbæreevne $=15,7 \mathrm{KN}$

Udbøjning:

Lægten regnes indspændt i enderne for en spændvidde på 1 m.

$U_{\max }=\frac{1}{384} \cdot \frac{q \cdot l^{4}}{E \cdot I_{y}}$
$U_{\max }=\frac{1}{384} \cdot \frac{1,25 \cdot 1000^{4}}{7000 \cdot 0,556 \cdot 10^{6}} \quad=0,84 \mathrm{~mm}$

FORSKYDNINGSUNDERSQGELSE Lægte
$\max V_{d}=\frac{1}{2} q \cdot l=\frac{1}{2} \cdot 1,25 \cdot 1=0,63 \mathrm{KN}$
$\tau_{d}=1,5 \frac{V_{d}}{A}=1,5 \frac{0,63 \cdot 10^{3}}{2128}=0,44 \mathrm{~N} / \mathrm{mm}^{2}<f_{v_{d}}=1,70 \mathrm{~N} / \mathrm{mm}^{2}$

BØININGSUNDERSØGELSE Lagte

$$
\begin{aligned}
& M_{d}=\frac{1}{8} \cdot P \cdot l^{2}=\frac{1}{8} \cdot 1,25 \cdot 1^{2}=0,16 \mathrm{KNm} \\
& \sigma=\frac{M_{d}}{W_{y}}=\frac{0,16 \cdot 10^{6}}{19,85 \cdot 10^{3}}=8,06 \mathrm{~N} / \mathrm{mm}^{2}<f_{m d}=16 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

LEGTE B-B

$$
g_{g l a s}+g_{a l u}+\text { Iægte }
$$

LODRET LAST

Det forudsættes at den vandrette lægte optager hele glasfeltets vagt.
$\mathrm{G}_{\text {r }}$ Glas $=0,005 \cdot 27 \cdot 1,4 \cdot 1,0 \quad=0,189 \mathrm{KN} / \mathrm{m}$

G,Lægte + Alu $=1,0 \cdot 27 \cdot 90 \cdot 10^{3} \cdot 5=0,013 \mathrm{KN} / \mathrm{m}$
G_{x} Total
$=0.202 \mathrm{KN} / \mathrm{m}$

BØJNINGSUNDERSØGELSE

$M_{r}=\frac{1}{8} \cdot G \cdot l^{2}=\frac{1}{8} \cdot 0,202 \cdot 1,800^{2}=0,082 \mathrm{KNm}$
$\sigma=\frac{M_{r}}{W_{z}}=\frac{0,082 \cdot 10^{6}}{13,50 \cdot 10^{3}}=6,07 \mathrm{~N} / \mathrm{mm}^{2}<f_{m d}=16 \mathrm{~N} / \mathrm{mm}^{2}$

FORSKYDNINGSUNDERSQGELSE
$V_{r}=\frac{1}{2} \cdot G \cdot L=\frac{1}{2} \cdot 0,202 \cdot 1,8=0,182 K N$
$\tau_{d}=1,5 \frac{V_{r}}{A}=1,5 \frac{0,182 \cdot 10^{3}}{2128}=0,128 \mathrm{~N} / \mathrm{mm}^{2}<f_{v d}=1,70 \mathrm{~N} / \mathrm{mm}^{2}$

NEDBØJNINGSUNDERSØGELSE

$$
\begin{aligned}
& U_{\max }=\frac{1}{384} \cdot \frac{G \cdot l^{4}}{E \cdot I_{z}} \\
& U_{\max }=\frac{1}{384} \cdot \frac{0,202 \cdot 1800^{4}}{7000 \cdot 0,256 \cdot 10^{6}}=3,08 \mathrm{~mm}
\end{aligned}
$$

Dex monteres en bolt saledes at spændet halveres
$1=0,9 \mathrm{~m}$
$U_{\max }=\frac{1 \cdot 0,202 \cdot 900^{4}}{384 \cdot 7000 \cdot 0,256 \cdot 10^{6}}=0,192 \mathrm{~mm}$

VINDLAST

Vindlasten regnes optaget af de vandrette lægter alene

Vindlast $W_{r}=0,804 \mathrm{kN} / \mathrm{m}^{2}$

Vindlast som overfores til lægterne:
$q=0,804 \mathrm{KN} / \mathrm{m}^{2} \cdot 1,4 \mathrm{~m}=1,13 \cdot \mathrm{KN} / \mathrm{m}$

BØJNINGSUNDERSØGELSE

Der regnes med en spændvidde på $0,9 \mathrm{~m}$ ifølge nedbøjningsundersøgelsen for lodret kxaft.

$M_{r}=\frac{1}{8} \cdot q \cdot l^{2}=\frac{1}{8} \cdot 1,13 \cdot 0,9^{2}=0,114 K \mathrm{Nm}$
$\sigma=\frac{M_{r}}{W_{y}}=\frac{0,114 \cdot 10^{6}}{19,85 \cdot 10^{3}}=5,74 \mathrm{~N} / \mathrm{mm}^{2}<f_{m d}=16,0 \mathrm{~N} / \mathrm{mm}^{2}$

OK

FORSKYDNINGSUNDERSØGELSE
$\max \quad V_{d}=\frac{1}{2} \cdot q \cdot l=\frac{1}{2} \cdot 1,13 \cdot 0,9=0,51 \mathrm{KN}$

$$
\tau_{d}=1,5 \cdot \frac{V_{d}}{A}=1,5 \cdot \frac{0,51 \cdot 10^{3}}{2128}=0,36 \mathrm{~N} / \mathrm{mm}^{2}<f_{y d}=1,70 \mathrm{~N} / \mathrm{mm}^{2}
$$

$U_{\max }=\frac{5}{385} \cdot \frac{q \cdot l^{4}}{E \cdot I_{y}}$
$U_{\max }=\frac{5 \cdot 1,13 \cdot 900^{4}}{384 \cdot 7000 \cdot 0,556 \cdot 10^{6}}=2,48 \mathrm{~mm}$

Lægten kan regnes indspændt i enderne, hvorved man får følgende udbojning.

$$
\begin{aligned}
& U_{\max }=\frac{1}{384} \cdot \frac{q \cdot l^{4}}{E \cdot I_{y}} \\
& U_{\max }=\frac{1 \cdot 1,13 \cdot 900^{4}}{384 \cdot 7000 \cdot 0,556 \cdot 10^{6}}=0,49 \mathrm{~mm}
\end{aligned}
$$

Det næststørste felt har en spændvidde på $1,3 \mathrm{~m}$

LODRET LAST PA VANDRET

LEGTE

BØJNINGSUNDERSøGELSE

$M_{r}=\frac{1}{8} \cdot 0,202 \cdot 1,3^{2}=0,043 \mathrm{KNm}$
$\sigma=\frac{M_{r}}{W_{z}}=\frac{0,043 \cdot 10^{6}}{13,50 \cdot 10^{3}}=3,19 \mathrm{~N} / \mathrm{mm}^{2}<f_{m d}=16,0 \mathrm{~N} / \mathrm{mm}^{2}$

OK

FORSKYDNINGSUNDERSDGELSE
$V_{d}=\frac{1}{2} q \cdot l=\frac{1}{2} \cdot 0,202 \cdot 1,3=0,13 K N$
$\tau_{d}=1,5 \frac{V_{d}}{A}=1,5 \frac{0,13 \cdot 10^{3}}{2128}=0,09 \mathrm{~N} / \mathrm{mm}^{2}<f_{y d}=1,70 \mathrm{~N} / \mathrm{mm}^{2}$

OR

UDBØJNING

Lxgten regnes indspandt i enderne
$U_{\max }=\frac{1 \cdot 0,202 \cdot 1300^{4}}{384 \cdot 7000 \cdot 0,256 \cdot 10^{6}}=0,84 \mathrm{~mm}$

VINDLAST

Vindlasten regnes optaget i de vandrette lægter alene
$W=0,804 \mathrm{KN} / \mathrm{m}^{2}$
$q=1,4 \cdot 0,804=1,13 \mathrm{KN} / \mathrm{m}$

B $\emptyset J N I N G S U N D E R S \emptyset G E L S E$

$$
\begin{aligned}
& M_{r}=\frac{1}{8} \cdot q \cdot l^{2}=\frac{1}{8} \cdot 1,13 \cdot 1,3^{2}=0,24 \mathrm{KNm} \\
& \sigma=\frac{M_{r}}{W_{y}}=\frac{0,24 \cdot 10^{6}}{19,85 \cdot 10^{3}}=12,09 \mathrm{~N} / \mathrm{mm}^{2}<f_{m d}=16,0 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

FORSKYDNINGSUNDERSØGELSE

$$
\begin{aligned}
& V_{d}=\frac{1}{2} \cdot q \cdot l=\frac{1}{2} \cdot 1,13 \cdot 1,3=0,74 \mathrm{KN} \\
& \tau_{d}=1,5 \cdot \frac{V_{d}}{A}=1,5 \cdot \frac{0,74 \cdot 10^{3}}{2128}=0,52 \mathrm{~N} / \mathrm{mm}^{2}<f_{u d}=1,70 \mathrm{~N} / \mathrm{mm}^{2}
\end{aligned}
$$

UDBOJNING

Den vandrette lægte regnes indspændt i enderne
$U_{\max }=\frac{1 \cdot 1,13 \cdot 1300^{4}}{384 \cdot 7000 \cdot 0,556 \cdot 10^{6}}=2,2 \mathrm{~mm}$

ALUMINIUMSLISTE LODRET

Vindlasten (sug) er den dimensionerende
LAST

$$
W r=0,804 \mathrm{KN} / \mathrm{m}^{2}
$$

Dex regnes med at de lodrette lister optager kræfterne alene Spænd mellem de lodrette lægter $=1,8 \mathrm{~m}$

$$
\begin{aligned}
& \mathrm{P}_{1}=1,8 \cdot 0,804=1,45 \mathrm{KN} / \mathrm{m} \\
& \mathrm{P}_{2}=\frac{1_{2}}{2} \cdot 1,45=0,73 \mathrm{KN} / \mathrm{m}
\end{aligned}
$$

Der regnes på 1 m liste
$M_{r x}=0,012 \cdot 0,73=8,76 \cdot 10^{-3} \mathrm{KNm}$
$W_{x}=$ Modstandsmoment i snit x
$W_{x}=\frac{1}{6} \cdot l \cdot t^{2}=\frac{1}{6} \cdot 1000 \cdot 2^{2}=666,67 \mathrm{~mm}^{3}$
$\sigma=\frac{M_{r x}}{W_{x}}=\frac{8,76 \cdot 10^{3}}{666,67}=13 \mathrm{~N} / \mathrm{mm}^{2}<f_{y d 0,2}=125 \mathrm{~N} / \mathrm{mm}^{2}$

Listerne monteres med skruer som skal kunne overfarer $P_{1}=1,45$ KN

Der vælges skruex med diameter 6 mm som monteres pr. 30 cm d.v.s. 3 stk. pr. 1 m 。

Skrueforankringslængde $=20 \mathrm{~mm}$

Udtrækningsstyrke $=48 \mathrm{~N} / \mathrm{mm} \cdot 20=0,96 \mathrm{KN}>\mathrm{P}_{1} / 3=0,48 \mathrm{KN}$

OK

Listens spændvidde er 300 mm mellem fastgørelserne

UDBOJNING

Listens inerti moment: $I_{Y}=643,9 \mathrm{~mm}^{4}$
Kraften (kontinuerlig) $P_{1}=1,45 \mathrm{KN} / \mathrm{m}$
$U_{\max }=\frac{1 \cdot 1,45 \cdot 300^{4}}{384 \cdot 44.872 \cdot 643,90}=0,99 \mathrm{~mm}$

OR

Ealuminium $=70.000 \mathrm{~N} / \mathrm{mm}^{2}, \quad E_{\mathrm{d}}=70.000 / 1.45=44.872 \mathrm{~N} / \mathrm{mm}^{2}$

ALUMINIUMSLISTE VANDRET

Lodret spænd $=1,4 \mathrm{~m}$
$P_{1}=1,4 \cdot 0,804=1,13 \mathrm{KN} / \mathrm{m}$
$P_{2}=1,13 \cdot 0,5=0,56 \mathrm{kN} / \mathrm{m}$

Der regnes med en liste på 1 m
$W_{\mathrm{x}}=666,67 \mathrm{~mm}^{3}$
$M_{Y}=0,56 \cdot 0,012=6,72 \cdot 10^{-3} \mathrm{KNm}$
$\sigma=\frac{6,72 \cdot 10^{3}}{666,67}=10.08 \mathrm{~N} / \mathrm{mm}^{2}<f_{y d 0,2}=125 \mathrm{~N} / \mathrm{mm}^{2}$

OK

GLASSTDRRELSER

Maximale felt $=1,8 \cdot 1,4 \mathrm{~m}$
Korteste side $=1,4 \mathrm{~m}$
Side forhold $=1800 / 1400=1,3$
$t^{2}=\beta \cdot q \cdot \frac{b^{2}}{\sigma_{B}}$
$\mathrm{b} \quad=1,4 \mathrm{~m}$
$\mathrm{s}_{\mathrm{B}}=50 \mathrm{MN} / \mathrm{m}^{2}=510 \mathrm{KP} / \mathrm{cm}^{2}$ Hærdet glas
$b=0,41$
$\mathrm{q}=0,804 \cdot 102=82 \mathrm{kp} / \mathrm{m}^{2}$
$t=\sqrt{0,41 \cdot 82 \cdot \frac{1,4^{2}}{510}}=0,36 \mathrm{~cm} \sim 4 \mathrm{~mm}$

Der vælges en glastykkelse på 5 mm , Hærdet glas.

DRIVHUSPROFIL. ROA-3137

LODRET BELASTNTNG

$$
W_{x}=\frac{1}{6} \cdot 1000 \cdot 1^{3}=166 \mathrm{~mm}^{3}
$$

Gg glas $=0,135 \mathrm{KN} / \mathrm{m}^{2}=0,19 \mathrm{KN} / \mathrm{m}$ 1.4

Gg alu	$=0,013 \mathrm{KN} / \mathrm{m}$
G Ialt	$=0,202 \mathrm{KN} / \mathrm{m}$

$M_{X}=0,202 \cdot 0,045 \quad=0,009 \mathrm{KNm}$
$\sigma=\frac{M_{x}}{W_{x}}=\frac{0,009 \cdot 10^{6}}{166}=54.22 \mathrm{~N} / \mathrm{mm}^{2}$

$$
<f_{\mathrm{Yd}} 0,2=125 \mathrm{~N} / \mathrm{mm}^{2}
$$

UDBOJNING

$$
U_{\max }=\frac{1}{3} \frac{G \cdot l^{3}}{E \cdot I}=\frac{1}{3} \cdot \frac{0,202 \cdot 45^{3} \cdot 1,45}{70.000 \cdot 83}=\sim 0 \mathrm{~mm}
$$

A8. Prisudregning.

Prisudregningen bygger på følgende grundlag:
Der regnes på arkitektforslag nr. 2.

Inddæket areal	$154.4 \mathrm{~m}^{2}$
Arbejdets varighed	30 dage
Inddæninger sættes til lev. + mont.	$100 \mathrm{kr} . / \mathrm{m}$

Priserne er baseret på indhentede priser fra leverandører, og priser hentet fra V \& S prishåndbog 89.

Alle priser er håndværkerpriser excl. moms.

MENGDER:

AREALER:
=======
Facade $\quad 28,5 \mathrm{~m} \times 5,0 \mathrm{~m}=148,50 \mathrm{~m}^{2}$
Fradrag:
Vinduer
$=\quad-29,12 \mathrm{~m}_{2}^{2}$
Altaner 1. sal
$=\quad-11,40 \mathrm{~m}_{2}$
Altaner stuen
$=\quad-7.84 \mathrm{~m}_{2}$
Midterfelt
$=\quad-2,24 \mathrm{~m}$

Gavi
$10,0 \mathrm{~m} \times 5,2+8,0 \mathrm{~m} \times 2,0 \mathrm{~m}$
$68,00 \mathrm{~m}^{2}$
Fradrag:
Vinduer
$=\quad-5,46 \mathrm{~m}^{2}$

Inddakket areal ialt

$=============0=5==$
SOFLEX:
$\pm= \pm====$

LENGDER:

INDDEKKNINGER:

$=\approx= \pm= \pm== \pm=$
Facade vinduer

$=$	$86,40 \mathrm{~m}$
$=$	$9,50 \mathrm{~m}$
$=$	$28,00 \mathrm{~m}$
$=$	$13,60 \mathrm{~m}$
$=$	$34,20 \mathrm{~m}$
$=$	$15,60 \mathrm{~m}$
$=$	$5,60 \mathrm{~m}$

Ialt
$=$
192.90 m

LEGTER:

$======$

Facade lodr	
Gavi vandre	
Gavl lodret	
Gavl skrå	
Ialt	
GLASLISTER: $==========$	

$=$	$142,40 \mathrm{~m}$
$=$	$130,00 \mathrm{~m}$
$=$	$55,00 \mathrm{~m}$
$=$	$52,00 \mathrm{~m}$
$=$	$5,60 \mathrm{~m}$

$\pm= \pm= \pm====$
$==========25=10 \mathrm{~m}$

ANTAL FASTHOLDELSESPUNKTER:

Facade, 1.stk./meter lagte

Gavl
$=155 \mathrm{stk}$.

Ekstra
$=58$ stk.
$=\quad 15 \mathrm{stk}$

Ialt
$=-229 \mathrm{sts}$.

PRIS
EFTERISOLERING
$==============$

Lægter	385，10 m x	40，00 kr．	$=$	15．404，00 kr．
Bolte	229 stk．x	2，24 kr．	$=$	513，00 kr．
Klæbepatroner	229 stk．${ }^{\text {d }}$	$7,77 \mathrm{kr}$ 。	$=$	$1.779,00 \mathrm{kr}$ 。
Boring af huller	229 stk． x	124，00 kr．	＝	$28.396,00 \mathrm{kr}$ 。
Mineraluld	154，40 m ${ }^{2}$	75，00 kr．	$=$	11．580，00 kr．
Vindpap	154，40 m m	$30,00 \mathrm{kr}$ ．	$=$	4．632．00 kr．
Inddækninger	192，90 m ${ }_{2}$	100，00 kr．	$=$	19．290，00 kr．
Nyeternit plade	$154,40 \mathrm{~m}$＊	$140,00 \mathrm{kr}$ ．	$=$	21．616，00 kr．
Liftleje	30 dage x	1500，00 kr．	$=$	$45.000,00 \mathrm{kr}$ ．
Sum			$=$	148．210，00 kr．
Byggepladstillæg			$=$	7.410 .50 kr ．
Pris for $154,40 \mathrm{~m}$			$=$	155．620，50

Pris pr．m^{2}

PRIS
$\stackrel{\text { TRELEGTESYSTEM MED ALU-/PVC-PROFIL (DUKA) }}{==============================}$

Pris pr. m^{2}
$=====\stackrel{1.341,00 \mathrm{kx}}{==}====$

PRIS
TRELRGTESYSTEM MED ALU-HAT-PROFIL

PRIS

DRIVHUS-PROFIL

PRIS

VITRAL
=ㅡ====

Vitrals pris
$=301.000,00 \mathrm{kr}$.
Tillæg:
Indazkninger
Murværk forb.
Liftleje
$192,90 \mathrm{~m}_{2} \mathrm{x} 100,00 \mathrm{kr}=19.290,00 \mathrm{kr}$.
$154,40 \mathrm{~m}_{\mathrm{kr}} \mathrm{x} 100,00 \mathrm{kr}=15.440,00 \mathrm{kr}$.

Sum
Byggepladstillæg 2_{2}°
Pris for $154.40 \mathrm{~m}^{2}$
$=45.000,00 \mathrm{kr}$.
30 dage $\$ 1500,00 \mathrm{kr}$.
$=380.730,00 \mathrm{kx}$ 。
$=19.037,00 \mathrm{kr}$.
$=399.767,00 \mathrm{kx}$ 。

Pris pr. m^{2}
$=2.589,00 \mathrm{kr}$.

$\stackrel{\text { Outokumpu }}{=}========$

Outokumpus pris
$=1.000,00 \mathrm{kx} \cdot / \mathrm{m}^{2}$
Til1æg:
Isoflex
Inddækninger
Murvark forb.
Hardet glas
Liftleje
Sum
Byggepladstillæg 5\%
pris prom

PRIS
JULIANA
$= \pm= \pm=$

Julianas pris
$=700,00 \mathrm{kr} \cdot / \mathrm{m}^{2}$
Tillæg:
Hærdet glas
$=100,00 \mathrm{kr} \cdot / \mathrm{m}_{2}^{2}$
Isoflex
Murvark forb.
Inddækninger
Sum
Byggepladstillæg 5%
Pris pr. m
$=150,00 \mathrm{kr} \cdot / \mathrm{m}^{2}$
$=100,00 \mathrm{kr} / \mathrm{m}^{2}$
$=100,00 \mathrm{kr} \cdot / \mathrm{m}_{2}^{2}$
$=\quad 125,00 \mathrm{kr} \cdot / \mathrm{m}_{2}^{2}$
$=1.175,00 \mathrm{kr} \cdot / \mathrm{m}_{2}^{2}$
$=\quad 58,00 \mathrm{kr} \cdot / \mathrm{m}^{2}$
$==1.233,00 \mathrm{kr} \cdot / \mathrm{m}$

