## SOLVFGGE

## MALT OG BEREGNET

## af <br> LARS OLSEN



Laboratoriet for Varmeisolering Danmarks Tekniske H申jskole Meddelelse nr. 167
Juli 1985

## FORORD

Denne rapport er resultatet af et licentiatarbejde, som undertegnede startede i sommeren 1977 ved Laboratoriet for Varmeisolering med professor Vagn Korsgaard som faglærer. Licentiatprojektets titel er: Udnyttelse af solindfaldet pa klimaskærmen til rumopvarmning.

Projektet er finansieret af et licentiatstipendium fra Danmarks tekniske Højskole og fra en fondsansættelse på Energiministeriets Solvarmeprogram. Til gennemførelse af de praktiske forsøg er der endvidere ydet støtte fra Superfos Glasuld a/s og civ.ing. Jacob Durup.

Det har været målet med afhandingen, at ogsa andre end særligt sagkyndige kan have glæde af de afsnit, der enten er generelle eller mere resultatorienterede, hvilket jsær er afsnit 2.

Til de medarbejdere fra laboratoriet, der har bistàet med praktisk hjælp, råd og vejledning vjl jeg gerne sige tak, ligesom en stor tak skal rettes til Kenneth S申rensen for rentegning af figurer og til Birthe Friis for et stort arbejde med renskrivning af manuskriptet.

## INDHOLD

Forord ..... i

1. INDLEDNING ..... 1
1.1 OVERVEJELSER VEDR $\emptyset$ RENDE SYSTEMTYPER ..... 1
1.2 PROJEKTETS FORL $\varnothing$ B ..... 6
1.3 HISTORISK UDVIKLING ..... 7
2. BEREGNINGER ..... 13
2.1 BEREGNINGER MED HUSMODEL ..... 13
2.1.1 Beskrivelse af bygning ..... 13 ..... 13
2.1.2 Varmetab fra hus ..... 17
2.1.3 Varmeakkumuleringsevnen i bygningen ..... 23
2.1.4 Brugsvarme ..... 27
2.1.5 Klimadata ..... 32
2.1.6 Energiforbrug til opvarmning af bygningen ..... 34
2.2 BEREGNINGSRESULTATER FOR HUSMODEL MED SOLVEG ..... 35
2.2.1 Solvæg med mobil isolering ..... 35
2.2.2 Brugsvarmens indflydelse pa udbyttet af en solvæg ..... 44
2.2.3 Sydvæggens absorptionskoefficienter ..... 48
2.2.4 Solvæg isoleret med hvid glasuld ..... 49
2.3 BEREGNINGSRESULTATER FOR OPTIMERET SOLVEG ..... 51
2.3.1 Dæklagsudformning ..... 51
2.3.3 Varmelagermateriale ..... 56 ..... 58
2.3.4 Solvæggens lagertykkelse
2.3.4 Solvæggens lagertykkelse
2.3.5 Horisontafskærmning ..... 59
2.3.6 Klimavariationer ..... 61
2.3.7 Indeklima ..... 63
3. FORS $\varnothing$ G ..... 67
3.1 FORS $\varnothing$ GSOPSTILLING ..... 67
3.1.1 Forsфgsrum ..... 67
3.1.2 Beskrivelse af kalksandstensvægge ..... 68
3.1.3 Solvæg isoleret med mobil isolering ..... 69
3.1.4 Transportsystem for mobilisolering ..... 72
3.1.5 Solvæg isoleret med hvid glasuld ..... 75
3.1.6 Beskrivelse af glasuld ..... 77
3.1.7 Reguleringssystemer ..... 78
3.1.8 Driftserfaringer med mobil isolering ..... 82
3.1.9 Solvægge med selektiv overflade ..... 84
3.2 INSTRUMENTERING OG MALEPUNKTER ..... 87
3.2.1 Opbygning af målesystem ..... 87
3.2.2 Temperaturmailinger ..... 91 ..... 91
3.2.3 Målepunkter i solvægge ..... 93
3.2.4 Varmestr $\phi$ msmålere ..... 95
3.2.5 Måling af solindfald ..... 97
4. MALINGER ..... 99
4.1 MALERESULTATER ..... 99
4.1.1 Måleperioder ..... 99
4.1.2 Måleresultater for solvæg med mobil isolering ..... 99
4.1.3 Solvæg isoleret med hvid glasuld ..... 106 ..... 106
4.1.4 Måleresultater for solvægge med selektiv absorberoverflade ..... 110
5. 2 SAMMENLIGNING MELLEM MÅLINGER OG BEREGNINGER ..... 117
4.2.1 Sammenligning mellem målinger og beregninger for solvæg med mobil isolering ..... 117
4.2.2 Sammenligning mellem målinger og beregninger for solvæg med hvid glasuld ..... 121
4.2.3 Sammenligning mellem målinger og beregninger for solvag med selektiv absorberoverflade ..... 126
4.3 KONDENSRISIKO ..... 134
5.1 KONKLUSION ..... 136
5.2 REFERENCER ..... 143
5.3 SYMBOLLISTE ..... 149
5.4 SUMMARY ..... 161
5.5 RESUME ..... 163
A1. TEORI ..... 167
AI. 1 VARMELEDNING ..... 167
Al.1.1 Instationær varmeledning ..... 167
Al.l. 2 Løsning af instationær varmeledningsligning ..... 168
Al.l. 3 Randbetingelser ..... 171
Al.1.4 Opstilling af varmestrømsbalance for et knudepunkt ..... 172
Al.1.5 Varmebalance for en overflade ..... 173
AI.l.6 Stabilitet ved beregning af temperatur $i$ akkumulerende lag ved overflade ..... 174
Al.1.7 Minimale lagtykkelser ..... 177
Al.l. 8 Sammenfattende om stabilitet ..... 181
Al. 2 VARMEOVERGANG I EN LUFTSPALTE ..... 181
Al.2.I Varmeovergang ved konvektion og ledning $i$ en luftspalte ..... 182
Al.2.2 Varmetab fra et hulrum på grund af termisk opdrift ..... 183
Al.2.3 Varmeovergang ved stràling i et hulrum ..... 188
Al. 3 VARMEOVERGANG VED EN FRI OVERFLADE ..... 191
Al.3.1 Udvendig overflade ..... 191
A1.3.2 Varmeovergang ved indvendig overflade ..... 194.
A1. 4 SOLSTRALING ..... 198
Al.4.1 Ekstraterrestrial solstråling ..... 198
Al.4.2 Solstralingens retning ..... 198
A1.4.3 Solindfald pà en overflade ..... 200
A1.4.4 Bestemmelse af diffus andel af solindfald ..... 202
AI. 5 TRANSMISSION GENNEM FORSKELLIGE MATERIALER ..... 205
Al.5.l Transmission, refleksion og absorption for et enkelt lag transparent materiale ..... 206
A1.5.2 Transmission gennem acryl ..... 211
Al.5.3 Beregning af ekstinktionskoefficient for hvid glasuld ..... 214
Al. 6 BEREGNING AF ABSORPTION I ET DEKLAGSSYSTEM ..... 218
Al.6.1 Generel teori ..... 218
Al.6.2 Transmissions- og absorptionskoefficient for en dobbeltplade ..... 221
Al. 6.3 Beregning af optiske data for ribber i dobbeltplade ..... 222
A1. 7 TRANSMISSION VED DIFFUS SOLSTRÅLING ..... 226
Al.7.1 Absorption af diffus stråing i dæklagssystem med ret- ningsafhængig transmission ..... 226
A1.7.2 Absorption af diffus stråling i dæklagssystem med ind- faldsvinkel afhængig transmission ..... 231
A1.7.3 Transmission gennem glasfiberarmeret polyesterplade ..... 236
A1. 8 OPSTILLING AF LIGNINGSSYSTEMER TIL BESTEMMELSE AF TEMPERA- TURER ..... 237
Al.8.1 Bestemmelse af temperaturer ved mobil isolering ..... 237
Al.8.2 Forudsætninger ved bestemmelse af temperaturfordeling i glasuld ..... 239
Al.8.3 Varmeovergang ved element med glasuld ..... 239
A1.8.4 Lagdeling i hvid glasuld ..... 241
A1. 8.5 Ligningssystem til beregning af temperaturer i hvid glasuld ..... 242
Al. 8. 6 Ligningssystem til beregning af temperaturer $i$ varmela- geret ..... 244
A2 USIKKERHEDSBESTEMMELSE ..... 246
A2.1 Usikkerhedsoverslag for måling af temperaturer ..... 246
A2.2 Usikkerhedsoverslag for måling af varmestrøm ..... 247
A2.3 Usikkerhedsoverslag for måling af solindfald ..... 248
A2.4 Usikkerhedsoverslag for måling af udbyttet ..... 250
A2.5 Usikkerhedsoverslag for máling af effektiviteten ..... 253
A3 KONTROL AF MOBILISOLERINGENS FUNKTION ..... 255
A3.1 Bestemmelse af tidspunkt for flytning af mobil isolering ..... 255
A3.2 Kontrol af differenstermostat ..... 256
Licentiatafhandlinger fra Laboratoriet for Varmeisolering ..... 261
vi

Licentiatprojektets grundidé er at udnytte bygningers klimaskærm som et energiproducerende element $i$ modsætning til normalt, hvor den betragtes som energiforbrugende element. Dette er gjort ved at udvikle et specielt udformet bygningselement kaldet en solvæg. I denne rapport omtales de fors $\phi$, der er udført med solvægge. Resultaterne fra måingerne beskrives. En beregningsmodel er opbygget, og beregninger med modellen er sammenlignet med fors $\phi$ gsresultaterne. Beregningsmodellen er anvendt til at bestemme solvægges udbytte ved varierende udformninger. I det følgende er beskrevet en række overvejelser, der ligger til grund for det udførte projekt samt en beskrivelse af de anvendte begreber.

### 1.1 OVERVEJELSER VEDR $\varnothing$ RENDE SYSTEMTYPER

Er en bygnings udvendige overflader solbestrålet, er der potentielle muligheder for udnyttelse af den indfaldne energimængde til rumopvarmning. Specielt er lodrette sydvendte overflader interessante på grund af det relativt store solindfald i vinterhalvåret, hvor solh申jden er lav.

Simplest kan solstrålingen udnyttes, ved at den transmitteres gennem transparente åbninger i klimaskærmen. Inde $i$ bygningen vil st申rstedelen af strålingen blive absorberet på overfladerne i rummet. Den absorberede varme medfører en temperaturstigning af overflader og rumluft.

Stigningens størrelse bestemmes bl.a. af ventilation og varmetransmission til det fri og af varmeudvekslingen med de materialer, der befinder sig i rummet.

Hvis temperaturen tillades at svinge frit, vil $\phi$ get varmelagring i overfladerne medføre en formindskelse af temperatursvingningerne, samtidig med at der kan lagres varme til senere brug. Denne form for anvendelse af solvarme kaldes $i$ det følgende for udnyttelse af det direkte tilskud.

Uđnyttelsen vil være begrænset af, at store vinduesarealer let giver anledning til overophedning, fordj opholdszonen populært sagt fungerer som solfanger. Tendensen til overophedning vil medfore, at der skal fjernes overskudsvarme for at holde luftog overfladetemperaturen nede på et rimeligt niveau. Ved et vist vinduesareal vil den del af solindfaldet, der bliver til overskudsvarme, være sà stor, at en $\phi$ gning af vinduesarealet ikke vil give tilstrækkelig udnyttelig solindfald til at opveje det for申gede transmissionstab gennem vinduerne.

Alternativt kan klimaskærmen udnyttes til at absorbere solstrålingen $i$ stedet for bygningens indvendige overflader. Den opsamlede varme skal, for at kunne udnyttes, transporteres ti] rummet. Da solindfaldets størrelse normalt ikke svarer til det $\phi j e b l i k k e l i g e ~ o p v a r m n i n g s b e h o v s ~ s t \phi r r e l s e, ~ e r ~ d e t ~ n \phi d v e n-~$ digt at lagre varmen et stykke tid inden afgivelsen til rummet. Dette kan ske $i$ separate lagre placeret et vilkarligt sted $i$ bygningen eller $i$ et lager integreret $i$ klimaskærmen.

Er lageret adskilt fra absorberen er det ofte nødvendigt at anvende mekanisk energi for at transportere varmen til lageret. Et sadant system svarer til det. der normalt kaldes et aktivt solvarmesystem.

Er absorberen integreret $i$ lageret, kan denne varmetransport foregå ved varmeledning. Pa tilsvarende made kan varmeafgiveren sammenbygges med lageret. Anvender man dette sidste princip, bliver opbygningen enkel, mens styringsmuligheden bliver vanskelig. Systemet kan derfor normalt ikke anvendes til fuldstændig dækning af opvarmningsbehovet, men kræver et supplerende opvarmningssystem, hvis rimelige komforttemperaturer skal kunne opretholdes.

For at der ikke skal tabes for meget af den varme, der absorberes i klimaskærmen, er det nødvendigt at varmeisolere mod det fri.

Et system som beskrevet ovenfor kaldes i det følgende for et solvægssystem (fig l.l.l). Det er hovedsageligt dette princip, der er beskrevet i denne afhandling. Ofte benyttes betegnelsen solvæg uden ventilation for at skelne mellem de i det efterfølgende omtalte systemer.

Kravet til varmeisoleringen af solvæggen mod det fri er, at den er mest mulig transparent for solstraling, samtidig med at st申rst mulig varmeisoleringsevne bibeholdes. Ved at anvende mobil isolering er det muligt at forbedre varmeisoleringevnen i tidsrum, hvor der ikke er solskin.

I systemer, hvor varmen transporteres væk fra klimaskærmen og lagres i et separat lager, vil kravet til isolering mod varmetab fra absorberen være mindre, end hvis varmen lagres i klimaskærmen. Dette skyldes i det første tilfælde, at varmeisoleringen kun er nфdvendig, nå solen skinner, mens den varmeisolerende funktion $i$ det andet tilfælde skal udnyttes hele døgnet.


Fig. 1.1.1 Princippet $i$ en solvæg

Energitransporten i. en solvæg kan nærmere beskrives ved de forskellige former for varmetransport, der sker i dette system: Den indfaldne solstråing transmitteres gennem dæklagssystemet og absorberes på ydersiden af varmelageret. Den absorberede stråling omdannes til varme og giver anledning til en temperaturforøgelse på absorberen, der er varmelagerets yderside. Størstedelen af varmen ledes ind i lageret og bliver akkumule-
ret．En del af varmen tabes dog ved varmetransmission til det fri gennem dæklagssystemet．Den akkumulerede varme vil efter－ hånden ledes igennem varmelageret og afgives på den side af lageret，der vender ind mod rummet．Her vil varmen blive afgi－ vet ved konvektion til rumluften $o g$ ved straling till rummets overflader．Varmeafgivelsen vil ske med en vis tidsforsinkelse $i$ forhold til solindfaldet．Tidsforsinkelsen er afhængig af væggens opbygning：For samme lagermateriale vil tidsforsinkel－ sen $\phi$ ges med en $\phi$ get lagertykkelse．Tidsforsinkelsen er end－ videre afhængig af lagermaterialets varmeledningsevne，var－ mefylde og massefylde．Det er muligt at vælge disse st申rrel－ ser，således at varmen hovedsagelig sker om aftenen og om nat－ ten，hvor der ikke er solindfald gennem vinduerne．Derved opnås en god kombination af udnyttelsen af solvarmen，idet sol－ indfaldet gennem vinduerne hovedsagelig kan dække opvarmnings－ behovet om dagen，mens solvæggen kan dække en del af behovet om natten．

Ovenstående gælder for lagermaterialer af faste stoffer．Er lagermaterialet vand，vil der på grund af konvektive str申mme i vandet ske en hurtig forplantning af temperaturstigningen ind igennem lageret．

I udlandet er der udført en del fors申g med et system，der kaldes en Trombé væg opkaldt efter dr．Felix Trombé（1）．Dette system er en speciel type solvag，hvor hulrummet mellem absor－ beroverflade og dæklag uanyttes til cirkulation af rumluft． Luften kan cirkulere af sig selv på grund af den opvarmede lufts termiske opdrift．

Grunden til at dette system ikke er valgt fremfor solvægssy－ stemet uden ventilation er，at der er en række problemer for－ bundet med luftcirkulationen．Luftcirkulationen er normalt tidsmæssigt sammenfaldende med solindfald gennem vinduer．Dette medfører let overophedningsproblemer i det bagvediiggende rum． Luftcirkulationen kan være svær at styre manuelt，hvorfor nogle anvender en ventilator til at cirkulere luften．Ventilations－ åbningerne til hulrummet mellem dæklag og absorber vil kunne
forventes at give anledning til problemer：kondens og snavs på indersiden af dæklaget．Trombévægge kan give et lidt st申rre energimæssigt udbytte end uventilerede solvægge（2），（3），（4）． Disse unders申gelser viser endvidere at den energimæssige fordel er beskeden ved anvendelse af dette system，når der er god iso－ lation mod varmetab til det fri．

Er varmelageret $i$ Trombévæggen erstattet af isolering，svarer den til en luftsolfanger med selvcirkulation af rumluft．Dette system kaldes ofte en ventileret solvæg．Systemet er ikke her valgt til nærmere undersøgelse pa grund af de ovenfor omtalte overophedningsproblemer，men systemet vil ifølge（5）kunne give et udbytte af samme størrelse som de i det følgende beskrevne uventilerede solvægge．

En medvirkende årsag，til at solvægge er valgt til nærmere un－ ders申gelse，skyldes de potentielle $\phi$ konomiske fordele ved，at absorber，varmelager og varmeafgiver er integreret i en enhed i modsætning til traditionelle solvarmesystemer med adskilte kom－ ponenter．

Ud over besparelsen ved at solvarmesystemet er en enhed，vil der være en besparelse，ved at en solvæg kan erstatte et tradi－ tionelt vægparti．Ved at anvende tunge byggematerialer som varmelager kan solvæggen indgå som et led i bygningens bærende konstruktion．

Solvægge medfører en ukontrolleret varmeafgivelse til de bagvedliggende rum．I denne rapport er unders申gt，hvorledes indeklimaet påvirkes af varmeafgivelsen．For at regulere rum－ luftemperaturen kan det være nødvendigt at udlufte for at fjerne overskudsvarmen．

I perioder med høje udelufttemperaturer bør solvægge helst afskærmes for at undgå opsamling af solenergi．Dette kan ske ved at anvende mobil isolering eller specielle solafskærmnin－ ger．Permanent solafskærmning i form af udhæng kan være mindre velegnet pga．reduktionen af solindfald i opvarmningssæsonen．

På grundlag af førnævnte overvejelser blev der udviklet et re－ lativt simpelt edb－beregningsprogram（6），der kunne simulere temperaturer og varmestrømme i solvægge．Med dette første pro－ gram blev der udført forskellige beregninger，der viste lovende resultater．For at kunne verificere disse beregninger var det ønskeligt at udføre målinger på solvægge．

Dette $\phi$ nske resulterede $i$ en række forslag til udførelse af solvægge．Mulighederne for at inkorporere salte i beton for at udnytte saltenes smeltevarme til akkumulering af varme blev unders申gt．Dette blev opgivet，da denne løsning ville give mange materialeteknologiske problemer．I stedet valgtes som lagermateriale kalksandsten，da dette materiale havde relativ stor varmekapacitet，og da materialet relativt hurtigt kunne udtørres $i$ modsætning til beton．Dette ville give en varme－ transport i materialet，der kun i beskeden grad var influeret af fugtvandringer．Som dæklag for solvæggen $\phi$ nskedes én udf申－ relse med og én uden mobilisolering．Til solvæggen med mobil isolering blev der undersøgt forskellige systemer．En hæveportl申sning blev unders申gt，men opgivet，da det ville give en vanskelig indbygning．Forskellige rullegardinløsninger blev opgivet på grund af deres relativt beskedne varmeisoleringsev－ ne．I stedet blev der valgt en $1 \phi$ sning，som Laboratoriet for Varmeisolering tidligere havde udført eksperimenter med：Eks－ panderede polystyrenkugler，der blev transporteret af en luftstr $\phi \mathrm{m}$ ．Denne l $\phi$ sning giver samtidig en god isoleringsevne （7）．Som dæklag blev en acryl dobbeltplade valgt，da den har en god soltransmission og god isoleringsevne samtidig med en enkel fastgørelse．

Til den anden solvæg blev der anvendt en fast isolering af hvid glasuld．Ideen ved denne konstruktion er，at noget af solind－ faldet vil blive absorberet et stykke inde i mineralulden．En del af denne varme vil blive transporteret ind til væggen og give en reduktion af varmetabet fra væggen til det fri．

Efter opbygningen af forsøget foregik der målinger i perioder i 1979. Efter en kontrol af målingerne blev disse sammenlignet med det oprindelige edb-program. Ved disse mindre justeringer blev edb-programmet tilpasset forsøgene. Beregningsprogrammet blev ændret, således at det blev muligt at regne pa solvægge indbygget $i$ en normal bygning. På grundlag af dette reviderede edb-program blev der gennemført beregninger på basis af reference vejrdata. Beregninger af solvæggene, der blev udført fors申g med, gav anledning til at foreslå en forbedret type solvæg uden mobil isolering, men med anvendelse af et antal lag glas og en selektiv absorber.

Beregningsprogrammet er benyttet til at udføre en følsomhedsanalyse af en række parametre, der har betydning for udbyttet af en solvæg. Af disse kan nævnes solvægsareal, lagermateriale, lagertykkelse og horisontafskærmning.

Senere er der udført målinger på en solvæg med en selektiv absorberoverflade med og uden V-korrugeret honeycomb mellem glasset og absorberoverfladen. Derved har det været muligt at sammenligne beregningsmetoden med målinger for en solvæg med selektiv absorber.

### 1.3 HISTORISK UDVIKLING

Udnyttelse af solindfald pa klimaskærmen til opvarmningsformål er en teknik, der har været anvendt $i$ flere ældre kultursamfund.

Pueblo indianerne i USA tilpassede orienteringen af væggene i klippehulerne, således at disse var solbeskinnede om vinteren og i skygge om sommeren.

Sokrates har beskrevet et solhus fra oldtiden, der udnytter solindfaldet på sydfacaden om vinteren og giver en vis solafskærmning om sommeren.


Fig. 1.3.1 Huler i Montezuma's Castle, hvor klipperne giver solafskærmning om sommeren, mens solindfaldet er uhindret om vinteren (8).

```
"Solarhaus-Konzeption"
von Sokrates
| Sonneneinstrahlung auf die Süd-
    fassade im Sommer
2 Sonneneinstrahlung auf die Süd-
    lassade im Winter
    3 Gedeckte Terrasse
    4 Wohnraum
    5 Vorratsraume als thermische
        Pufferzone
    6 Isolierwand gegen Norden
```



Fig. 1.3.2 Sokrates' solhus princip (9).

I vor egen kulturkreds var en af pionererne $E . L$. Morse, der i 1881 patenterede en selvcirkulerende solfanger indbygget i syd-w facaden $i$ et hus (10), (11). Systemet blev anvendt til rumopvarmning.

Ideen blev genanvendt af dr. Felix Trombé og Jaques Michel i Odeillo, Frankrig. De anvendte et system, der både udnyttede selvcirkulation af luft og varmetransmission gennem den bagvedliggende væg (1).


Fig. 1.3.3 Patenttegninger af professor Edward $S$. Morses forste solvæg fra 1881 ( $t . \mathrm{V}_{\mathrm{o}}$ ). De viser tre forskellige anvendelser. Til højre tværsnit af solvæg $i$ Morses hus i Salem, Massachusetts (11).

Efter oliekrisen i 1973 øgedes interessen for udnyttelse af solen som energikilde. Specielt $i$ USA og Frankrig er der udført et stort arbejde med at bygge, forbedre og teste solvægssystemer. I det følgende er beskrevet en række muligheder for udformning af en solvæg.

Den centrale del af solvæggen, lageret, kan udføres af gængse byggematerialer, eller lageret kan være en vandtank. En kombination er at have vand $i$ hulrum $i$ et betonelement (12).

Faseændringsmaterialex er også en mulighed (13), (14). Anvendes disse materialer, er det muligt at reducere tykkelsen af. solvæggen. Man må dog være opmærksom pa salthydraternes relativt dårlige varmeledningsevne. Det forhold kan let medføre, at den varme, der er akkumuleret pa ydersiden af vaggen, kun i begrænset omfang ledes gennem væggen til det bagvediiggende rum.

Absorberen på ydersiden af lageret kan være en mørk overflade. Den skal helst være sort, men endnu bedre vil en selektiv absorber være (15). En selektiv absorber er i stand til at absorbere størstedelen af solstråingen samtidig med, at den langbølgede varmeudstraling er begranset.

Varmeisoleringen mod det fri kan opnås på flere forskellige måder. Hindring af varmetab fra absorberen til det fri alene ved udnyttelse af den udvendige varmeovergangsisolans vil normalt ikke være tilstrækkeligt. Ved at have en eller flere lukkede luftspalter foran absorberen vil varmetabet fra absorberen blive reduceret væsentligt.

Dæklagene kan være af glas, plastplade eller en udspændt plastfolie. En forøgelse af antallet af dæklag nedsætter transmissionen af solstråing, men forøger isoleringsevnen af dæklagskonstruktionen. Et muligt plastmateriale er fx teflon, der for tynde folier har en transmission for solstråing på $96 \%$, mens transmissionen for langbølget temperaturstråing er på 58\% (16). Dette $g \phi r$, at en kombination med selektive overflader, der har en lille emission $i$ det langbølgede område, vil være at foretrække. En anden mulighed er at anvende dæklag med en paført transparent coatning. Der udføres et stort arbejde med udvikling af nye belægninger (17). Et problem er at opnå tilstrækkelig god transmission for solstråling samtidig med en tilstrækkelig lille emission af langbølget varmestråing.

Det er ogsà muligt at anvende specielle materialer mellem absorber og yderste dæklag som $f x$ noneycomb, der opdeler hulrummet $i$ et antal mindre hulrum. Honeycomb kan udformes på mange mader, af fx rør eller skiver, vandrette eller hældende (18), (19), eller som V-korrugerede flader mellem absorber og daklag (20). Opskummet akryl er en anden mulighed (19), men transmissionen af solstråling er mindre end hvad der kan opnås ved en dæklagskonstruktion af vinduesglas med samme varmetransmissionskoefficient.

Et materiale, der i fremtiden kan tænkes at blive anvendt i dæklagskonstruktioner, er silika aerogel (17), (2l), (22). Materialet har en stor porøsitet og er opbygget af en mikrostruktur af bundne fine siliciumpartikler. Ifølge (17) er transmissionen for solstråling $90 \%$ ved 5 mm tykkelse og $67 \%$ ved 20 mm tykkelse. Materialet isolerer bedre end mineraluld og har et brydningsindex, der svarer til luftens. Ekstinktionskoefficienten og dermed absorptionen af solstråling i materialet svarer til almindeligt vinduesglas.

Ovennævnte isoleringssystemer er alle gennemskinnelige og uden bevægelige dele. For at reducere varmetabet mest muligt kan varmeisoleringen $\phi$ ges ved at anvende mobil isolering. Denne kan udformes som beskrevet $i$ denne rapport med ekspanderede polystyrenkugler. Andre muligheder er isolerende gardiner, persienner og skodder (23). Isoleringsevnen kan $\phi$ ges, ved at mobilisoleringens overflader har en lav emissionskoefficient for langbølget stråing. En væsentlig fordel ved mobilisolering er, at den kan anvendes som solafskærmning i tidsrum, hvor solindfald er uønsket, men til gengæld kræves en styring af systemet.

Systemer, hvor varmetransporten mellem absorber og lager ikke foregår ved ledning, er også en mulighed. Dette kan være i form af de tidiigere omtalte ventilerede solvægge. Et andet system benytter heat pipes, der bestå af lukkede r申r, hvori der er et varmetransporterende medie, som ved hjælp af en for-dampnings-kondensationsproces er $i$ stand til at fungere som en termisk diode (18), (24).

I hovedparten af ovennævnte systemer er det nødvendigt at anvende solafskærmning i sommerperioden. Som afskærmning kan fx anvendes lameller, gardiner eller markiser. Et problem er dog betjeningen. Manuel betjening er mulig men besværlig. Automatisk regulering kan let blive dyr.

En løsning i fremtiden kan være elektrokromatiske belægninger, hvor en elektrisk spænding vil være i stand til at ændre transmissionen af solstråling gennem belægningen. Der er dog ikke i
de hidtidige forskningsresultater fremkommet belægninger, som er tilstrakkelig gode til anvendelse i praksis (17), (25).

Ovenstående viser, at der findes en lang række muligheder for at udnytte klimaskærmen som et energiopsamlende element.

## 2. BEREGNINGER

I dette kapitel er først vist resultater fra beregninger med bygningsmodeller uden solvægge. I efterfølgende afsnit vises resultater af beregninger med solvægge indbygget i tilsvarende bygningsmodeller.

### 2.1 BEREGNINGER MED HUSMODEL

Til at beregne varmebalancen for bygningsmodellerne er edb-programmet kaldet BA4 anvendt (26). BA4 kan beregne varmebalancen for et rum hver halve time igennem et år. Beregningsmodellen i BA4 er vist på fig. 2.1.1.

Forudsætningerne $i$ modellen er, at temperaturerne $i$ rummet kan beskrives ved hjælp af én rumlufttemperatur, én overfladetemperatur og én temperatur for de akkumulerende lag, et sakaldt fiktivt akkumulerende lag. Endvidere forudsættes konstante varmeovergangskoefficienter for overfladerne. Modellen er detaljeret beskrevet i ref. (26), (27), (28).

### 2.1.1 Beskrivelse af bygning

Til beregning af årsvarmebalancen tages udgangspunkt i et parcelhus på $150 \mathrm{~m}^{2}$. Grundplanen er vist på fig. 2.1.2.

Orienteringen $i$ forhold til verdenshjørnerne er valgt således, at der er gode potentielle muligheder for udnyttelse af solindfaldet pa sydfacaden. Huset er aflangt med akseretning $\phi s t-v e s t$ og med et vægareal mod syd pa $50 \mathrm{~m}^{2}$. Heraf regnes 6,8 $\mathrm{m}^{2}$ at være uudnytteligt med hensyn til solvarmeudnyttelse. Det resterende areal tænkes opdelt i 4 moduler à $10,8 \mathrm{~m}^{2}$. Hvert af disse felter kan bestå af
a) Normal væg isoleret med 200 mm mineraluld.
b) Glasfacade med 2 eller 3 lag glas
c) Solvæg.

Fig. 2.1.1 Skematisk tegning af rum med beregningsmodel til BA4.


PLAN AF HUSMODEL UDEN VINDUES- ELIER SOLVEGSAREAL MOD SYD.


LODRET SNIT I HUSMODEL

Fig. 2.1.2 Grundplan og lodret snit $i$ husmodel.

Væggene mod $\phi$ st, nord og vest er forsynet med i alt $8,4 \mathrm{~m}^{2}$ vinduer fordelt som vist på fig. 2.1.3. Dette sikrer tilstrækkeligt dagslys i de nordvendte rum.

| GLAS OG/ELLER | GLASAREAL | REDUCERET | VEGAREAL |
| :---: | :---: | :---: | :---: |
| SOLVEGSAREAL |  |  |  |
| INCL. KARM |  |  |  |
| $\mathrm{m}^{2}$ | $\mathrm{~m}^{2}$ | $\mathrm{~m}^{2}$ |  |


| Sydvæg |  |  |  |
| :---: | :---: | :---: | :---: |
| 0,0 | 0,0 | 0,0 | 50,0 |
| 10,8 | 9,0 | 8,1 | 39,2 |
| 21,6 | 18,0 | 16,2 | 28,4 |
| 32,4 | 27,0 | 24,3 | 17,6 |
| 43,2 | 36,0 | 32,4 | 6,8 |


| Vestvæg |  |  |  |
| :---: | :---: | :---: | :---: |
| 2,10 | 1,75 | 1,575 | 16,7 |


| Nordvag | 3,50 | 3,150 | $45,8 \mathrm{~m}^{2}$ heraf <br> $6,0 \mathrm{~m}^{2}$ |
| :---: | :---: | :---: | ---: |
| 4,20 |  |  |  |


| $\phi_{\text {stvæg }}$ |  |  |  |
| :---: | :---: | :---: | :---: |
| 2,10 | 1,75 | 1,575 | 16,7 |



Fig. 2.1.3 Tabel over arealer til bestemmelse af solindfald og transmissionstab i huset.

Solvæggen indpasses i huset, ved at en del af husets sydvæg erstattes med en solvæg. De termiske data for bygningen, der benyttes i dette tilfælde, er dem, der svarer til huset med et vinđuesareal lig summen af solvægsarealet og det aktuelle vinduesareal.

Som referenceværdier for husets varmetab er benyttet to typer huse:
a) Hus bygget efter bygningsreglementet fra 1982 (29)
b) Lavenergihus med et dimensionerende varmetab pa ca. $2 / 3$ af et hus bygget efter $B R-82$


Fig. 2.1.4 Data for de to husmodeller. Tallene i parentes er transmissionskoefficienter uden indvendig overgangsisolans.

De benyttede værdier for isolering og varmetransmissionskoefficienter er angivet i fig. 2.1.4. Varmetransmissionskoefficienten for mobilisolering, når den medregnes, er $0,55 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$. I Fig. 2.1.5 er angivet et eksempel på opnåelse af denne k-værdi.

|  | 3 lags rude | 2 lags rude | Enhed |
| :---: | :---: | :---: | :---: |
| Isoleringstykkelse af ekstruderede polystyrenkugler (L) <br> Isolans $\frac{L}{0,050}$ <br> Isolans af Iufthulrum <br> Overgangsisolans | $\begin{aligned} & 100 \\ & 2,00 \\ & 0,13 \\ & 0,17 \end{aligned}$ | 107 <br> 2,14 $0,17$ | mm $\begin{aligned} & m^{2} K / W \\ & m^{2} K / W \\ & m^{2} K / W \end{aligned}$ |
| Samlet isolans | 2,30 | 2,31 | $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$ |
| Karmareal <br> Varmetransmissionskoef- <br> ficient af karm | $20$ $1,0$ | $20$ $1,0$ | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| Varmetransmissionskoef- <br> ficient k <br> mob | 0,55 | 0,55 | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |

Fig. 2.1.5 Eksempel på opnåelse af en transmissionskoefficient på $0,55 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ for vinduer med mobil natisolering ( $\mathrm{k}_{\mathrm{mob}}$ ).

Der beregnes varmeoverføringsevnen ( $H_{-s y d v æ g \text { ) fra rumluft til }}$ udeluft gennem klimaskærmen, dog uden hensyntagen til $50 \mathrm{~m}^{2}$ sydvæg (se fig. 2.1.6). Denne størrelse benyttes til at beregne varmeoverføringsevnen gennem klimaskærmen, når sydvæggen anvendes til vindue eller væg (fig. 2.l.7):

$$
\begin{align*}
& H_{\text {hus }}+\text { vind }=H_{-s y d v æ g}+k_{v i n d} \cdot A_{v i n d, s}+k_{v æ g} \cdot A_{v æ g}
\end{aligned} \begin{aligned}
& =\left\{\begin{array}{lll}
B R-82 \text { hus: } 113,46+2,8 & A_{v i n d, s}+0,31 A_{v æ g} & (W / K) \\
\text { Lavenergihus: } 76,53+2,1 & A_{v i n d, s}+0,20 A_{v æ g} & (W / K)
\end{array}\right.
\end{align*}
$$



|  | Volumen | Effektivt <br> luftskifte | varme- <br> overføring | Effektivt <br> luftskifte | Varme- <br> overføring |
| :--- | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{m}^{3}$ | $\mathrm{~h}^{-1}$ | $\mathrm{~W} / \mathrm{K}$ | $\mathrm{h}^{-1}$ | $\mathrm{~W} / \mathrm{K}$ |
| Naturligt luftskifte <br> Kontrolleret luftskifte | $150 \times 2,5$ | 0,50 | 63,75 | 0,15 | 19,13 |
| Varmeoverføring ved <br> ventilation |  | 0 | 0 | $0,50(1-0,7)$ | 19,13 |

Fig. 2.1.6 Beregning af husets transmissions- og ventilationstab. Varmetransmission gennem de $50 \mathrm{~m}^{2}$ sydvæg er ikke medregnet.

| $\begin{aligned} & 5 \\ & \text { E } \\ & \text { E } \\ & \text { E } \\ & E \\ & \text { E } \end{aligned}$ |  |  |  |  | UDEN MOBTH <br> ISOLERING |  | MED MOBYI, isotering |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | vagareai <br> syad <br> $\mathrm{S}_{\mathrm{vag}}$ |  | $\begin{aligned} & \text { glas- } \\ & \text { aroa } \\ & \text { syd } \end{aligned}$ | vindues- <br> areal <br> ${ }^{\text {A }}$ vina, S | $\begin{aligned} & k_{\text {vind }} \\ & A_{\text {vind, }} S \end{aligned}$ | $\begin{aligned} & \text { H lus }^{+} \\ & \text {vind } \end{aligned}$ | $\begin{aligned} & k_{\text {mob }} \cdot \\ & A_{\text {vind, }} \end{aligned}$ | ${ }^{\text {H hus }}$ +mob | $\begin{aligned} & \text { Hustmob } \\ & \text { hus+vind } \end{aligned}$ |
|  | $: 17^{2}$ | w/k | $\mathrm{m}^{2}$ | $\mathrm{m}^{2}$ | $\omega / \mathrm{K}$ | W/K | W/K | W/K | - |
| $\begin{gathered} \underset{Z}{z} \\ \stackrel{y}{8} \\ 1 \\ 1 \\ \vdots \end{gathered}$ | 50,0 | 15,50 | 0 | 0.0 | 0,0 | 128,96 | 0.0 | 110,06 | 0,8534 |
|  | 30,2 | 12,15 | 9 | 10,8 | 30,24 | 155,85 | 5.94 | 112,65 | 0,7223 |
|  | 28,4 | 8,80) | 18 | 21.6 | 60,48 | 182,74 | 11,88 | 115,24 | 0,6306 |
|  | 17,6 | ${ }^{5}, 46$ | 27 | 32,4 | 90, 72 | 209,64 | 17.82 | 117.84 | 0,5621 |
|  | 6.8 | 2,11 | 36 | 43,2 | 120,96 | 236,53 | 23,76 | 120,43 | 0,5092 |
|  | 50, 0 | 10,00 | 0 | 0,0 | 0.0 | 86.53 | 0,0 | 73,51 | 0,8495 |
|  | 33.2 | 7,34 | 9 | 10,8 | 22,68 | 107,05 | 5,94 | 77,29 | 0,7220 |
|  | 28,4 | 5,68 | 18 | 21,6 | 45.36 | 127,57 | 11,88 | 81,07 | 0,6355 |
|  | 17.6 | 3,52 | 27 | 32,4 | 68,04 | 148,09 | 17,82 | 84,85 | 0,5730 |
|  | 6,8 | : 36 | 36 | 43.2 | 90,72 | 168,61 | 23,76 | 88,63 | 0,5257 |

Fig. 2.1.7 Beregning af varmetab fra hus med og uden mobil natisolering for vinduer. Ingen solvæg.

Her er $A_{\text {vind，}} s$ vinduesarealet $i$ sydfacade og $A_{V æ g ~ v æ g a r e a l e t ~} i$ sydfacade．

Er der mobil isolering for vinduerne，er varmeoverf申ringsevnen：

$$
\begin{align*}
& H_{\text {hus }+\mathrm{mob}}=H_{- \text {sydvag }}+k_{m O b} \cdot A_{v i n d, s}+k_{v æ g} \cdot A_{v æ g} \\
& -\left(k_{v i n d}-k_{m o b}\right) \cdot \Delta A_{v i n d, N, \varnothing, v} \\
& =\left\{\begin{array}{l}
\text { BR- } 82 \text { hus: } 94,56+0,55 A_{v i n d, s}+0,31 A_{v æ g}(W / K) \\
\text { Lavenergihus: } 63,51+0,55 A_{v i n d, s}+0,20 A_{v x g}(W / K)
\end{array}\right. \tag{2.1.2}
\end{align*}
$$

Her er $A_{\text {vind，}} N, \phi, V$ vinduesarealet mod nord，$\varnothing$ st og vest，idet der antages，at alle vinduesarealer mobilisoleres．De $\phi s t-$ ， nord－og vestvendte arealer kan evt．mobilisoleres med skodder．

Endvidere er der foretaget beregninger，hvor vinduesarealet mod syd fastholdes på $10,8 \mathrm{~m}$ ，mens solvægsarealet（ $A_{\text {Solv }}$ ）varieres op til $27 \mathrm{~m}^{2}$ ．（Fig．2．1．8）．Dette vil være realistiske st申rrel－ ser ved udnyttelse af solvægge．Vinduesarealet vil dermed være tilstrækkeligt til at kunne tilfredsstille de belysningsmæssige krav．Vinduesarealet $i$ huset udgør i alt ll\％af gulvarealet， og $56 \%$ af vinduesarealet er $i$ dette tilfælde anbragt i sydfaca－ den．

Det dimensionerende varmetab ved rumlufttemperaturen $20^{\circ} \mathrm{C}$ ，ude－ lufttemperaturen $-12^{\circ} \mathrm{C}$ og jordtemperaturen $8^{\circ} \mathrm{C}$ er beregnet． Beregningen følger Dansk Ingeni申rforenings regler for beregning af varmetab（30）．For de to hustyper er varmetabet angivet for de enkelte varmetabsandele $i$ afhængighed af vinduesarealet mod syd．（Fig．2．1．9 og 2．1．10）．

I beregningerne er der forudsat，at rumlufttemperaturen frit tillades at flyde mellem 20 og $24^{\circ} \mathrm{C}$ ．Varmeafgivelsen er beregningsmæssigt sat til at være ideel，således at temperatu－ ren holdes på præcis $20^{\circ} \mathrm{C}$ i perioder，hvor der tilføres varme fra varmesystemet．Er temperaturen ved at komme over $24^{\circ} \mathrm{C}$ ， forudsættes der beregningsmæssigt automatisk udluftning med et luftskifte på op til $4 \mathrm{~g} / \mathrm{h}$ ．

|  | A vind, $s$ | ${ }^{\text {A }}$ solv | ${ }^{\text {A væg }}$ | $\begin{aligned} & \mathrm{k}_{\mathrm{væg}} \\ & \mathrm{~A}_{\mathrm{væg}} \end{aligned}$ | ${ }^{H}$ hus <br> + vind | $\begin{gathered} \mathrm{H}_{\text {hus }} \\ \text { mob } \end{gathered}$ | $\frac{{ }^{H} \text { hus+mob }}{\mathrm{H}_{\text {hus+vind }}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{m}^{2}$ | $m^{2}$ | $m^{2}$ | W/K | W/K | $w / \mathrm{K}$ |  |
|  | 10,8 | 0,0 | 0,0 | 0,0 | 143,70 | 100,50 | 0,6994 |
|  | 10,8 | 0,0 | 39,2 | 12,15 | 155,85 | 112,65 | 0,7228 |
|  | 10.8 | 10,8 | 28,4 | 8,80 | 152,50 | 109,30 | 0,7167 |
|  | 10,8 | 21,6 | 17,6 | 5,46 | 149,16 | 105,96 | 0,7104 |
|  | 10,8 | 32,4 | 6,8 | 2,11 | 145,81 | 102,61 | 0,7037 |
|  | 10,8 | 0,0 | 0,0 | 0,0 | 99,21 | 69,45 | 0,7000 |
|  | 10,8 | 0,0 | 39.2 | 7,84 | 107,05 | 77,29 | 0,7220 |
|  | 10,8 | 10,8 | 28,4 | 5,68 | 104,89 | 75,13 | 0,7163 |
|  | 10,8 | 21,6 | 17,6 | 3,52 | 102,73 | 72,97 | 0,7103 |
|  | 10,8 | 32,4 | 6,8 | 1,36 | 100,57 | 70,81 | 0,7041 |

Fig. 2.1.8 Beregning af varmetabet fra hus med solvæg med konstant vinduesareal. (Varmetransmission gennem solvæg ikke medregnet.).


Fig. 2.1.9 Fordeling af transmissions- og ventilationstab fra "Lavenergihus" med forskellige vinduesarealer.


Fig. 2.l.l0 Fordeling af transmissions- og ventilationstab fra "BR 82" huset med forskellige vinduesarealer.

Ved beregning af bygningens varmebalance antages, at bygningens varmekapacitet beregningsmæssigt er samlet i ét fiktivt akkumulerende lag inde i bygningselementerne. I det følgende beskrives hvorledes varmekapaciteten af og varmeovergangen til dette lag kan bestemmes. Den beskrevne metode bygger hovedsagelig på de forudsætninger, der er beskrevet i ref. (27) og (31).

I beregningerne medtages de akkumulerende bygningselementer, der begrænser det sydvendte rum, idet det nordvendte rum kun i begrænset omfang vil deltage i temperatursvingningerne.

For at bestemme varmeudveksiingen mellem det fiktive lag og de indvendige overflader findes først de termiske karakteristika for hver af de indgående bygningselementer.

Det enkelte bygningselement er ofte opbygget af forskellige materialelag. Varmekapaciteten antages at ligge i midten af hvert dellag. (Se fig. 2.1.11).


Fig. 2.1.ll Skematisk tegning af bygningselement opdelt i lag af forskellige materialer.

Isolansen for det $i$ 'te lag kan beregnes af:

$$
\begin{equation*}
M_{i}=\frac{L_{i}}{\lambda_{i}} \quad\left(m^{2} \mathrm{~K} / \mathrm{W}\right) \tag{2.1.3}
\end{equation*}
$$

$\begin{aligned} \text { hvor } & L_{i} \text { er tykkelsen af lag } i \\ & \lambda_{i} \text { er varmeledningsevnen af lag } i\end{aligned}$

Varmekapaciteten for lag i

$$
\begin{equation*}
K_{i}=\frac{L_{i} \cdot \rho \cdot C_{p}}{3600} \quad\left(\text { Wh } / \mathrm{m}^{2} K\right) \tag{2.1.4}
\end{equation*}
$$

```
hvor \rho massefylden ( }\textrm{kg}/\mp@subsup{\textrm{m}}{}{3}\mathrm{ )
    Cp varmefylden (J/kg K)
```

Resulterende isolans mellem i"te akkumulerende lag og indvendig overflade:

$$
\begin{equation*}
M_{i, \text { res }}=M_{i} / 2+{\underset{j \equiv 1}{i-1} M_{j} \quad\left(m^{2} K / W\right) ~}_{\cong_{1}} \tag{2.1.5}
\end{equation*}
$$

Rumluft- og overfladetemperaturer vil ændre sig i afhængighed af bl.a. udeklimaets variationer. Den dominerende svingning af temperaturerne vil være en døgnsvingning. Tidskonstanten for denne svingning er: $\tau_{\max }=1 / \omega=24 / 2 \pi=3,82 \mathrm{~h}$, hvor $\omega$ er vinkelhastigheden for en sinusformet døgnsvingning. Et dellag vil ændre temperatur $i$ afhængighed af indvendig overfladetemperatur og tidskonstanten for svingningen af lagets temperatur.

Det i'te lags bidrag til tidskonstanten kan beregnes af:

$$
\begin{equation*}
\tau_{i}=M_{i, x e s} \cdot K_{i} \quad(h) \tag{2.1.6}
\end{equation*}
$$

Den samlede tidskonstant for lagene fra l til i kan bestemmes som summen af de første i tidskonstanter.

$$
\begin{equation*}
\tau_{i, r e s}=\sum_{j=1}^{i} \tau_{j} \quad(h) \tag{2.1.7}
\end{equation*}
$$

Ved beregning af tidskonstanterne for bygningselementerne skal der medtages sà stor en dybde, at tidskonstanten $\tau_{i}$, res ikke overstiger konstanten for en døgnsvingning, med mindre der er anbragt et isolerende lag mellem den indvendige overflade og det akkumulerende lag. Er dette tilfældet, kan der medtages så
meget af materialet, at tidskonstanten bliver 6 h . Hvis der i konstruktionen indgår et isolerende lag med en tykkelse større end 30 mm , skal dette og dybereliggende lag ikke medtages. Endvidere skal der for en symmetrisk væg kun medregnes halvdelen af væggens tykkelse fra hver side af væggen.

Den samlede varmekapacitet af et bygningselement kan bestemmes ved summation af de indgående akkumulerende lags varmekapaciteter.

$$
\begin{equation*}
K_{b e}=\sum_{j=1}^{i} K_{j} \quad\left(\mathrm{~Wh} / \mathrm{m}^{2} \mathrm{~K}\right) \tag{2.1.8}
\end{equation*}
$$

Varmeoverføringstallet mellem den indvendige overflade og det fiktive akkumulerende lag, der indeholder den samlede varmekapacitet for et bygningselement, kan bestemmes som:

$$
\begin{equation*}
h_{b e}=\frac{K_{b e}}{\tau_{i, r e s}} \quad\left(W / m^{2} \mathrm{~K}\right) \tag{2.1.9}
\end{equation*}
$$

Er bygningselementet homogent, kan den tykkelse ( $L_{1}$ ), der skal medtages, let bestemmes.

Tidskonstanten er:

$$
\begin{align*}
\tau & =M_{r e s} \cdot K_{b e}=\frac{M_{1}}{2} \cdot K_{1} \\
& =\frac{L_{1}}{2 \lambda_{1}} \cdot \frac{L_{1} \cdot \rho \cdot c_{p}}{3600} \\
& =\frac{L_{1}^{2} \cdot \rho \cdot c_{p}}{7200 \cdot \lambda_{1}} \tag{h}
\end{align*}
$$

Er den dominerende svingning en døgnsvingning, må tidskonstanten maksimalt være $\tau_{\max }=3,82 \mathrm{~h}$. Den maksimale tykkelse bliver:

$$
\begin{align*}
L_{\max } & =\sqrt{\frac{\tau_{\max } \cdot \lambda_{1} \cdot 7200}{\rho c_{p}}} \\
& =\sqrt{3,82 \cdot 7200 \cdot \frac{\lambda_{1}}{\rho c_{p}}} \\
& =166 \sqrt{\frac{\lambda_{1}}{\rho c_{p}}}=166 \cdot \sqrt{a} \tag{2.1.11}
\end{align*}
$$

hvor a ex temperaturledningstallet.

De foregaiende formler omfatter kun bygningselementer af samme type. For et rum med forskellige bygningselementer kan den samlede varmekapacitet bestemmes ved summation af de enkelte bygningselementers varmekapacitet pr. $m^{2}$ multipliceret med deres areal (Abe):

$$
\begin{equation*}
K_{\text {tot }}=\sum_{j=1}^{n}\left(K_{b e} \cdot A_{b e}\right)(W h / K) \tag{2.1.12}
\end{equation*}
$$

Middelvarmeoverføringstallet kan bestemmes ved vægtning af de enkelte bygningselementers bidrag med hensyn til deres respektive varmekapacitet:

$$
\begin{equation*}
h_{m i d}=\frac{\sum_{j=1}^{n}\left(h_{b e} \cdot K_{b e} \cdot A_{b e}\right)}{K_{t o t}}\left(W / m^{2} \mathrm{~K}\right) \tag{2.1.13}
\end{equation*}
$$

Varmeoverforingsevnen fra indvendig overflade til det fiktive akkumulerende lag kan bestemmes som:

$$
\begin{equation*}
H_{a k}=h_{m i d} \sum_{j=1}^{n} A_{b e} \quad(W / K) \tag{2.1.14}
\end{equation*}
$$

Til sammenligning af forholdene ved lette kontra tunge rum er der benyttet 3 rumtyper:
a) Tungt rum, hvor de indre bygningselementer hovedsagelig er af beton. (fig. 2.1.12).
b) Middeltungt rum med indre vægge hovedsagelig af mursten. (fig. 2.1.13).
c) Let rum med indre bygningselementer hovedsagelig af spånplader med bagvedliggende mineraluld. (fig. 2.1.14).

For de forskellige rumtyper er materialekonstanterne beregnet i fig. 2.1.15. Varmeoverføringsevnen og varmekapaciteterne for de enkelte rummodeller er beregnet som vist i fig. 2.1.16. Varmeovergangstallet for de indvendige overflader er ifølge (26) sat til $h_{\text {indv }}=3,0 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

### 2.1.4 Brugsvarme

Varmen fra personer, el-apparater, husholdning og belysning, der tilføres bygningen, kaldes i det følgende brugsvarmen.

Beregning af energien fra disse kilder er ret vanskelig at bestemme og varierer principielt ligeså tilfældigt som solindfaldet, men det må ventes, at beboere i gennemsnit følger et relativt konstant døgnmønster.

Som udgangspunkt er der i denne rapport anvendt de samme værdier som anvendt ved simulering af beboelse i de seks lavenergihuse i Hjortekær (32). Den tilførte varme varierer efter et døgnm申nster svarende til en hverdag for en familie med 2 voksne og $2 \mathrm{~b} \not \mathrm{rn}$, hvoraf den ene $\mathrm{m} / \mathrm{k}$ tænkes h jemmegående.

Varmeafgivelsen fra personerne er sat til:

| siddende og sovende person | 75 W |
| :--- | ---: |
| aktiv person | 125 W |



[^0]
Fig 2.1.12 Skematisk tegning til bestemmelse af akkumulering i tungt rum.

|  |  |  | $L_{i}$ | A | 0 | ${ }^{c} p$ | $M_{i}=\frac{L_{i}}{\lambda}$ | $\left\|\begin{array}{c} M_{i, r e s}= \\ M_{i} / 2+ \\ M_{i-1}+M_{i-2}+ \end{array}\right\|$ | $\mathrm{K}_{\mathrm{i}}=$ $\mathrm{L}_{\mathrm{i}} \cdot \rho \cdot \mathrm{c}_{\mathrm{p}}$ $\frac{3600}{}$ | $\begin{aligned} & T= \\ & M_{i, \text { res }} \\ & K_{i} \end{aligned}$ | $\begin{aligned} & T_{b e}= \\ & T_{i}{ }^{+\tau_{i-1}}{ }^{+} \end{aligned}$ | $\begin{aligned} & K_{b e}= \\ & K_{i}+K_{i-1}+ \end{aligned}$ | $\begin{aligned} & h_{b e}= \\ & K_{b e} / \tau_{b e} \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Materiale |  | Tykkelse | Varme－ lednings－ evne | Masse－ fylde | Varme－ <br> fylde | Isolans for laget | $\begin{aligned} & \text { Samlet } \\ & \text { Isolans } \end{aligned}$ | Varme－ <br> kapacitet | Tids－ konstant | Total <br> tids－ <br> konstant | Total <br> varme－ <br> kapacitet | Varme－ overfø－ ringstal |
|  |  |  | m | W／m K | $\mathrm{kg} / \mathrm{m}^{3}$ | J／kg k | $m^{2} \mathrm{k} / \mathrm{w}$ | $\mathrm{m}^{2} \mathrm{~K} / \mathrm{w}$ | Wh／m $\mathrm{m}^{2} \mathrm{~K}$ | h | h | $\mathrm{Wh} / \mathrm{Km}^{2}$ | w／ $\mathrm{Km}^{2}$ |
| 萝䨗 | Spånplader |  | 0，016 | 0.14 | 550 | 2300 | 0，114 | 0，0571 | 5.62 | 0，321 | 0，321 | 5，62 | 17，50 |
|  | $\begin{aligned} & \text { 邑 } \\ & \text { 邑 } \end{aligned}$ | Trepper <br> Eycparket <br> buft． <br> Beton | $\begin{aligned} & 0.003 \\ & 0,020 \\ & 0.050 \\ & 0.014^{*)} \\ & \hline \end{aligned}$ | $\begin{gathered} 0.050 \\ 0.170 \\ - \\ 1,6 \end{gathered}$ | $\begin{gathered} 700 \\ - \\ 2300 \end{gathered}$ | 2300 | $\begin{aligned} & 0.06 \\ & 0,12 \\ & 0.17 \\ & 0.0085 \end{aligned}$ | $\begin{aligned} & 0,12 \\ & 0,35 \end{aligned}$ | $8,34$ $7.87$ | $\begin{aligned} & 1.07 \\ & 2.75 \end{aligned}$ | 3.82 | 16，8 | 4，40 |
|  | 莒 | $\begin{aligned} & \text { Pap } \\ & \text { Gips } \end{aligned}$ | $\begin{aligned} & 0,001 \\ & 0,010 \end{aligned}$ | $\begin{aligned} & 0,07 \\ & 0,52 \end{aligned}$ | $1200$ | $1090$ | $\begin{aligned} & 0,014 \\ & 0,019 \end{aligned}$ | 0，024 | 3，63 | 0,085 | 0，085 | 3，63 | 42，71 |
|  | Ydorvagge murston |  | 0，1086＊ | 0，36 | 1050 | 800 | 0.302 | 0，1508 | 25，33 | 3，82 | 3，82 | 25，33 | 6，63 |
|  | $\begin{aligned} & \text { Moft } \\ & \text { Becton } \end{aligned}$ |  | 0，100 | 1.6 | 2300 | 880 | 0，0625 | 0.0313 | 56，22 | 1，76 | 1，76 | 56.22 | 31，94 |
|  | Vagge |  | 0，1475 ${ }^{*}$ | 1，6 | 2300 | 880 | 0，0922 | 0,0461 | 82，93 | 3，82 | 3，82 | 82，93 | 21，71 |

[^1]|  | Sol ver:"+ vinduceareal 5 yd | $\begin{aligned} & \text { Vegareal } \\ & \text { sya } \end{aligned}$ | Over-fiadeareal Hus | Varnekapacitet sydvacy | Varme- <br> kapacitet <br> Hus | Vægt-ningsfaktor sydvacg | Vægt- <br> nings- <br> faktor <br> Bus | Varmeoverf $\varnothing$ ring till akkum. lag | Varme-overføring luft/ overfl. |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | ${ }^{\text {A Syd }}$ | Abe | $\mathrm{K}_{\text {be }} \mathrm{A}$ syd | $\begin{aligned} & \mathrm{K}_{\text {tot }}= \\ & \therefore\left(\mathrm{K}_{\mathrm{be}} A_{j}\right) \end{aligned}$ | $\begin{aligned} & h_{b e} \mathrm{~K} \text { be } \\ & \text { A } \mathrm{syd} \end{aligned}$ | $\begin{aligned} & \mathrm{H}_{\mathrm{be}} \mathrm{k} \text { be } \\ & \mathrm{A}_{\mathrm{be}} \end{aligned}$ | $\mathrm{H}_{\mathrm{ak}}$ | $\begin{aligned} & \mathrm{H}_{\mathrm{ov}}= \\ & \mathrm{h}_{\text {indv }} \\ & \sum_{\text {be }} \end{aligned}$ |
|  | $4{ }^{2}$ | $m^{2}$ | $m^{2}$ | Wh/K | Wh/K | $(\mathrm{W} / \mathrm{mK})^{2} \mathrm{~h}$ | $(w / m K)^{2} \mathrm{~h}$ | W/K | W/K |
|  | 0,0 | 0.0 | 226,0 | 0 | 1270 |  |  |  |  |
|  | 0,0 | 50,0 | 276,0 | 281 | 1551 |  |  | 4830 | 828 |
|  | 10,8 | 30,2 | 265,2 | 220 | 1490 |  |  | 4641 | 795,6 |
|  | 21.6 | 28,4 | 254,4 | 160 | 1430 |  |  | 4452 | 763,2 |
|  | 32,4 | 17.6 | 243,6 | 99 | 1369 |  |  | 4263 | 730,8 |
|  | 43,2 | 6,8 | 232,8 | 38 | 1308 |  |  | 4074 | 698,4 |
|  | 0,0 | 0,0 | 226,0 | 0 | 3306 | - | 29385 | - |  |
|  | 0,0 | 50,0 | 276.0 | 1267 | 4573 | 8400 | 37785 | 2280 | 828,0 |
|  | 10,3 | 39,2 | 265,2 | 993 | 4299 | 6584 | 35969 | 2218 | 795,6 |
|  | 21,6 | 28,4 | 254,4 | 719 | 4025 | 4767 | 34152 | 2159 | 763.2 |
|  | 32,4 | 17,6 | 243.6 | 446 | 3752 | 2957 | 32342 | 2100 | 730,8 |
|  | 43,2 | 6.8 | 232,8 | 172 | 3478 | 1140 | 30525 | 204.3 | 698,4 |
| 6000 | 0.0 | 0,0 | 226,0 | 0 | 11316 | - | 263420 | - |  |
|  | 0,0 | 50.0 | 276.0 | 4147 | 15463 | 90030 | 358450 | 6398 | 828,0 |
|  | 10,8 | 39,2 | 265,2 | 3251 | 14567 | 70580 | 339000 | 6172 | 795,6 |
|  | 21.6 | 28,4 | 254,4 | 2355 | 13671 | 51130 | 319550 | 5946 | 763,2 |
|  | 32,4 | 17,6 | 243,6 | 1460 | 12776 | 31700 | 300120 | 5722 | 730,8 |
|  | 43.2 | 6,8 | 232,8 | 564 | 11880 | 12240 | 280660 | 5500 | 698,4 |

Fig. 2.l.16 Konstanter for beregning af varmeakkumulering i BA4-rummodeller.

Fordelingen af varmeafgivelsen fra personer er vist på fig. 2.1.17. Det samlede tilskud fra personer udgør 6975 Wh pr. d $\phi \mathrm{gn}$ eller 2550 kWh pr . àr.

Fra elektrisk belysning og el-apparater afgives også varme. De enkelte apparaters varmeafagivelse er angivet pa fig. 2.1.18. Diverse el angiver elforbrug til fx st申vsuger, strygejern,

hårtørrer, radio, tv m.v. Den del af opvaske- og vaskemaskinens elforbrug, der tilf申res rumene, er hestemt som $15 \%$ af værdierne i den elforbrugsoversigt NESA udgiver. Den afgivne varme fra elforbrug er ialt 11225 Wh pr. døgn eller 4 J 00 kth pr . år.

De her benyttede brugsvarmetilskud svarer til de i ref (33) anbefalede værdier $i$ vintermånederne for en husstand på 3 personer. De anførte varmeangivelser vil nok i fremtioen kunne reduceres. Der er en del muligheder for at g申re el-apparaterne mere effektive, fx tykkere isolering i frysere og køleskabe, belysningskilder med større lysudbytte o.s.v. Man må også forvente, at varme afgivet fra personer i gennemsnit vil være mindre, idet de anvendte varmeafgivelser fra personerne svarer til voksne personer, og at middelhusstandsstørrelsen er mindre end benyttet her. For at vise følsomheden af solvæggene for mindre tilskudsvarme er der i afsn. 2.2.2 beregnet eksempler, hvor den helt er fjernet.

### 2.1.5 Klimadata

I hovedparten af beregningerne er benyttet Referenceårets kiimadata (34) for udelufttemperaturer og solindfald. Der er dog sket en modificering af solindfaldet i månederne december, januar og marts. I disse måneder er det direkte solindfald på visse dage fjernet for at give bedre overensstemmelse med et middelår. De på månedsbasis benyt.tede middeludelufttemperaturer og solindfald gennem en lodret dobbeltrude ved forskellige orienteringer er vist på fig. 2.1.19. For at vurdere ændringerne ved at anvende det senere udarbejdede Danske Referencear TRY (35) er der udført enkelte sammenlignende beregninger med disse vejrdata (afsn. 2.3.6). Endvidere er disse vejrdata sammenlignet med simuleringer med vejrdata fra en 15 års periode.

I lavenergihusmodellen er vinduesarealerne beregningsmæssigt reduceret med $10 \%$ i forhold til BR-82 husmodellen. Dette skyldes den mindre transmissionskoefficient for solstråling gennem 3-lags ruder.

Der er forudsat frit udsyn i alle retninger svarende til en horisont på $0^{\circ}$. Refleksionen fra et forudsat vandret terræn uden for huset er sat til 0,25. Der er ikke regnet med skygge fra tagudhæng eller vinduesniche. Der er regnet med solindfald på ydervæggene. Absorptionskoefficienten for solstråling er ved disse overflader sat til 0,85 (26).

Varmen fra solindfald gennem vinduer og anden tilskudsvarme er fordelt med $50 \%$ tilført som stråling og $50 \%$ tilført som konvektion. Hvis rummet er tomt, vil solindfaldet hovedsagelig blive tilført stråling til rummets overflader, men da der normalt er møbler og andet inventar, der absorberer solstrålingen, vil en del af denne blive tilført som konvektiv varme.

|  | Referenceår modificeret |  |  |  |  | Dansk referenceå TRY |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Måned | Middel-udelufttemp. | Solindfald gennem 2 lags rude i $\mathrm{kWh} / \mathrm{m}^{2}$ |  |  |  | Middel-udelufttemp. | $\begin{aligned} & \text { Solind- } \\ & \text { fald } \\ & \mathrm{kWh} / \mathrm{m}^{2} \end{aligned}$ |
|  | ${ }^{\circ} \mathrm{C}$ | Nord | Syd | $\emptyset_{\text {st }}$ | Vest | ${ }^{\circ} \mathrm{C}$ | Syd |
| jan. <br> febr. <br> marts | $\begin{array}{r} 0,2 \\ -0,4 \\ 2,0 \end{array}$ | $\begin{array}{r} 3,9 \\ 8,0 \\ 16,2 \end{array}$ | $\begin{aligned} & 30,3 \\ & 55,4 \\ & 69,6 \end{aligned}$ | $\begin{array}{r} 9,5 \\ 17,8 \\ 37,0 \end{array}$ | $\begin{array}{r} 8,0 \\ 21,2 \\ 41,8 \end{array}$ | $\begin{array}{r} -0,6 \\ -1,1 \\ 2,6 \end{array}$ | $\begin{aligned} & 21,5 \\ & 41,4 \\ & 43,8 \end{aligned}$ |
| april <br> maj <br> juni | $\begin{array}{r} 5,7 \\ 11,4 \\ 16,0 \end{array}$ | $\begin{aligned} & 25,9 \\ & 36,8 \\ & 46,0 \end{aligned}$ | $\begin{aligned} & 69,8 \\ & 65,2 \\ & 65,3 \end{aligned}$ | $\begin{aligned} & 60,2 \\ & 70,0 \\ & 79,3 \end{aligned}$ | $\begin{aligned} & 58,9 \\ & 68,5 \\ & 76,3 \end{aligned}$ | $\begin{array}{r} 6,6 \\ 10,6 \\ 15,7 \end{array}$ | $\begin{aligned} & 65,8 \\ & 68,1 \\ & 71,7 \end{aligned}$ |
| juli <br> aug. <br> sept. | $\begin{aligned} & 16,4 \\ & 16,1 \\ & 13,7 \end{aligned}$ | $\begin{aligned} & 43,3 \\ & 32,2 \\ & 21,0 \end{aligned}$ | $\begin{aligned} & 66,8 \\ & 62,3 \\ & 62,7 \end{aligned}$ | $\begin{aligned} & 71,0 \\ & 57,4 \\ & 40,1 \end{aligned}$ | $\begin{aligned} & 74,9 \\ & 56,8 \\ & 39,0 \end{aligned}$ | $\begin{aligned} & 16,4 \\ & 16,7 \\ & 13,7 \end{aligned}$ | $\begin{aligned} & 66,8 \\ & 72,6 \\ & 62,7 \end{aligned}$ |
| okt. <br> nov. <br> dec. | $\begin{array}{r} 9,2 \\ 5,0 \\ -0,4 \end{array}$ | $\begin{array}{r} 11,4 \\ 5,3 \\ 3,5 \end{array}$ | $\begin{aligned} & 46,5 \\ & 30,2 \\ & 28,5 \end{aligned}$ | $\begin{array}{r} 21,6 \\ 9,5 \\ 7,3 \end{array}$ | $\begin{array}{r} 22,3 \\ 9,7 \\ 6,3 \end{array}$ | $\begin{aligned} & 9,2 \\ & 5,0 \\ & 1,6 \end{aligned}$ | $\begin{aligned} & 46,4 \\ & 30,2 \\ & 29,7 \end{aligned}$ |
| året | 7,9 | 253,5 | 652,6 | 480,7 | 483,7 | 8,1 | 620,5 |

Fig. 2.1.19 Middeludelufttemperatur og solindfald gennem en 2-lags rude i det modificerede referencear og Dansk referenceår (TRY) fordelt på måneder.

For at kunne sammenligne solvægge med vinduer er det nodvendigt at have et sæt samh申rende beregninger. Pa figur 2.1.20-2.1.23 er opvarmningsbehovet for forskellige bygningsudformninger optegnet som funktion af vinduesarealet mod syd. De angivne parametre er gennemgået $i$ de foregående afsnit.

De fire figurer er opdelt efter, om der tilføres gratisvarme til rummet fra personer og el, samt om der er anvendt mobil natisolering.

Figurerne viser, at ved en sammenligning mellem lette og tunge rum vil de tunge rum have mulighed for at fa et lavere opvarmningsbehov end de lette rum. Jo bedre isolerede vinduer, jo større er fordelen ved en $\phi$ gning af vinduesarealet. I mange tilfælde har kurverne et minimum ved et bestemt vinduesareal. Mindre tilført gratisvarme fra el og anden husholdning betyder større udbytte af vinduet som solfanger. Dette er nogle af hovedkonklusionerne ved sammenligning af kurverne.

For at bestemme den termiske komfort er antallet af halvtimer med temperaturer over $25^{\circ} \mathrm{C}$ angivet (Fig. 2.1.24-2.1.27). Rumlufttemperaturen tillades at svinge mellem 20 og $24{ }^{\circ} \mathrm{C}$. Der er ikke regnet natsænkning af rumlufttemperaturen. Hvis temperaturen er ved at komme over $24^{\circ} \mathrm{C}$, regnes med automatisk regule. ret forceret ventilation med udeluft. Det maksimale luftskifte er sat til $4 g / h$. Af kurverne fremgår, at store vinduesarealer kan give mange timer med for høje temperaturer. De tunge bygninger giver større akkumulering og dermed færre halvtimer med overtemperaturer end bygninger med lette overflader.

## 2．2 BEREGNINGSRESULTATER FOR HUSMODEL MED SOLVEG

I dette kapitel er benyttet en edb－model til at gennemregne solvægge indbygget $i$ et enfamiliehus．I edb－programmet er an－ vendt de $i$ appendix $l$ viste ligninger．

Både bygningens og solvæggens udformning varieres．Solvæggene forudsættes at være lodrette og sydvendte．Indbygningen af solvægge er beregnet således，at der fjernes et areal af den oprindelige væg，som erstattes af et tilsvarende solvægsareal．

## 2．2．1 Solvæg med mobil isolering

I det foregående er gennemgået forskellige hustyper．For at sammenligne udbyttet ved de forskellige udformninger af bygnin－ gen er der udført en serie beregninger af opvarmningsbehovet i et hus med solvægge i．sydfacaden．De solvægge，der er benyttet i dette afsnit，har samme karakteristika som den solvæg，der er udført fors $\phi g$ med $i$ anden måleperiode（se afsnit 3．1．3）Den eneste forskel er，at der i modellen er benyttet beton som la－ germateriale i modsætning til fors申gene，hvor kalksandsten blev anvendt．Dette er gjort，da beton er et meget anvendt byggema－ teriale，og da materialet giver et lidt st申rre udbytte end kalksandsten．

Fig．2．2．1 og 2．2．2 viser opvarmningsbehovet henholdsvis med og uden mobil isolering for vinduer（maksimalt $19.2 \mathrm{~m}^{2}$ vinduer incl．karm）．Solvæggene i dette afsnit er regnet mobilisoleret． Kurverne viser，at for et givet solvægsareal vil bygningsmodel－ ler med st申rst varmeakkumuleringsevne have det mindste opvarm－ ningsbehov．

I det følgende benyttes udtrykket udbytte for den forskel i opvarmningsbehov，der opnås pr． $\mathrm{m}^{2}$ solvæg ved at erstatte en normal ydervæg med en solvæg．Det skal bemærkes，at udbyttet for en given solvæg er afhængig af ydervæggens isoleringsevne og i $\phi$ vrigt hvilken bygning den anvendes i．


Fig. 2.1.20 Opvarmningsbehov af bygningsmodel med varierende tyngde og glasareal mod syd. Ingen mobil natisolering for vinduer. Normal brugsvarme fra el og personer.


Fig. 2.l.2l Opvarmningsbehov af bygningsmodel med varierende tyngde og glasareal mod syd. Mobil natisolering for vinduer. Normal brugsvarme fra el og personer.


Fig. 2.1.22 Opvarmningsbehov af bygningsmodel med varierende tyngde og glasareal mod syd. Ingen mobil natisolering for vinduer. Ingen brugsvarme fra el og personer.


Fig. 2.1.23 Opvarmningsbehov af bygningsmodel med varierende tyngde og glasareal mod syd. Mobil natisolering for vinduer. Ingen brugsvarme fra el og personer.


Fig. 2.l. 24 Antal halvtimer med rumlufttemperaturer over $25^{\circ} \mathrm{C}$ i månederne oktober til april (incl.). Ingen mobil natisolering for vinduer. Normal brugsvarme fra el og personer.


Fig. 2.1.25 Antal halvtimer med rumlufttemperaturer over $25^{\circ} \mathrm{C}$ i manederne oktober til april (incl.). Mobil natisolering for vinduer. Normal brugsvarme fra el og personer.


Fig. 2.1.26 Antal halvtimer med rumlufttemperaturer over $25^{\circ} \mathrm{C}$ i manederne oktober til april (incl.). Ingen mobil natsolering for vinduer. Ingen brugsvarme fra el og personer.


Fig. 2.1.27 Antal halvtimer med rumlufttemperaturer over $25^{\circ} \mathrm{C}$ i. månederne oktober til april (incl.). Mobil natisolering for vinduer. Ingen brugsvarme fra el og personer.


Fig. 2.2.1 Opvarmningsbehov af hus med mobilisoleret solvæg ved varierende tyngde og glasareal mod syd. Solvæg som í fors $\phi \mathrm{g}$ dog betonlager. Mobil natisolering for vinduer. Normal brugsvarme fra el og personer.


Fig. 2.2.2 Opvarmningsbehov af hus med mobilisoleret solvag ved varierende tyngde og glasareal mod syd. Solvæg som i. fors $\phi \mathrm{g}$ dog betonlager. Ingen mobil natisolering for vinduer. Normal brugsvarme fra el og personer.

Udbyttet pr．arealenhed af solvæggen er vist pa fig．2．2．3 og 2．2．4．Det ses，at solvægge $i$ lette rum giver st申rre udbytte end $i$ tunge rum．Dette kan forklares med，at den forøgede var－ mekapacitet fra solvæggen giver rummet en st申rre lagringsevne af den tilf申rte tilskudsvarme fra solindfald gennem vinduer， el－apparater，belysning og personer．Udbyttet af solvægge er st申rre $i$ BR－82 husmodellen end $i$ lavenergihusmodellen．En åsag er，at de ydervægge solvæggen erstatter er bedre isoleret $i$ lavenergihusmodellen end $i$ BR－82 modellen．Endvidere skal næsten den samme mængde tilført varme fra solvæggen dække et mindre opvarmningsbehov，og derved vil der i lavenergihusmodel－ len være flere perioder end i BR－82 modellen，hvor varmen fra solvæggen ikke kan nyttiggøres．

Benyttes et hus med vinduesareal mod syd på $9 \mathrm{~m}^{2}$ som reference－ hus，kan dækningsgraden ved de her anvendte solvægge findes som andelen af sparet rumopvarmningsbehov $i$ et hus med solvæg i forhold til opvarmningsbehovet for et tilsvarende hus uden solvæg．

Ved et solvægsareal på $27 \mathrm{~m}^{2}$ ex den relative reduktion af op－ varmningsbehovet beregnet for forskellige husmodeller（Fig． 2．2．5）．I disse tilfælde varierer dækningsgraden mellem 25 og 39\％．Det ses，at ved en formindskelse af varmetabet fra huset bliver dækningsgraden st申rre，mens udbyttet mindskes．

Sammenlignes huse med forskellige tyngder，ses at dækningsgra－ den er mindst for huse med middeltunge rum．Følgende teori kan forklare dette forhold：

Ved de lette rummodeller uden solvæg vil en betragtelig del af tilskudsvarmen blive bortventileret for at undgå for h申je tem－ peraturer．Man kan sige，at solindfaldet er for stort i forhold til varmelagringsevnen i rummets overflader．Når solvæggen anvendes $i$ denne hustype，vil det medføre en stor $\phi$ gning $i$ hu－ sets varmekapacitet．


Fig. 2.2.3 Udbytte af mobilisoleret solvag ved varierende tyngde og glasareal mod syd. Solvæg som $i$ fors $\phi$ g dog betonlager. Mobil natisolering for vinduer. Normal brugsvarme fra el og personer.


Fig. 2.2.4 Udbytte af mobilisoleret solvæg ved varierende tyngde og glasareal mod syd. Solvæg som $i$ fors $\varnothing$ g dog betonlager. Ingen mobil natisolering for vinduer. Normal brugsvarme fra el og personer.

| Vinduesisolering | Hustype | Tyngde af rum | opvarmningsbehov i. referencehus $k W h / a r$ | Besparelse <br> $\mathrm{kWh} / \mathrm{a} \mathrm{r}$ | Dækningsgrad <br> \% |
| :---: | :---: | :---: | :---: | :---: | :---: |
| Ingen <br> mobil. <br> vindues- <br> isolering | BR-82 | Let <br> Middeltung <br> Tung | $\begin{aligned} & 12210 \\ & 11120 \\ & 10590 \end{aligned}$ | $\begin{aligned} & 3400 \\ & 2780 \\ & 2670 \end{aligned}$ | $\begin{aligned} & 27,8 \\ & 25,0 \\ & 25,2 \end{aligned}$ |
|  | Lavenergihus | Let <br> Middeltung <br> Tung | $\begin{aligned} & 6630 \\ & 5880 \\ & 5500 \end{aligned}$ | $\begin{aligned} & 2420 \\ & 1970 \\ & 1910 \end{aligned}$ | $\begin{aligned} & 36,5 \\ & 33,4 \\ & 34,7 \end{aligned}$ |
| Mobil <br> vinduesisolering | BR-82 | Let <br> Middeltung <br> Tung | $\begin{array}{r} 10900 \\ 9830 \\ 9290 \end{array}$ | $\begin{aligned} & 3370 \\ & 2730 \\ & 2580 \end{aligned}$ | $\begin{aligned} & 30,9 \\ & 27,8 \\ & 27,8 \end{aligned}$ |
|  | Lavenergihus | Let. <br> Middeltung <br> rung | $\begin{aligned} & 5640 \\ & 4920 \\ & 4560 \end{aligned}$ | $\begin{aligned} & 2210 \\ & 1740 \\ & 1700 \end{aligned}$ | $\begin{aligned} & 39,2 \\ & 35,4 \\ & 37,2 \end{aligned}$ |

Fig. 2.2.5 Beregnede besparelser og dækningsgrader for en 27 $\mathrm{m}^{2}$ mobilisoleret solvæg som $i$ fors $\varnothing \mathrm{g}$ men med betonlager. Solvæggen er anbragt i hus med $9 \mathrm{~m}^{2}$ sydvendt vinduesareal.

Ved husmodellen med tunge rum forekommer den modsatte situation. De tunge rum udjævner ofte ved solindfald rumluftens temperatur så meget, at den maksimalt tilladelige temperatur ikke opnås. Dette forhold medfører, at nå der anbringes en solvæg $i$ sydfacaden, vil betonen i rummets $\phi$ vrige flader have overskydende varmekapacitet til rådighed, som tilskudsvarmen fra solvæggen vil kunne udnytte.

I de middeltunge rummodeller vil den begrænsede varmekapacitet gøre, at solvæggen kun $i$ begrænset omfang kan lagre varme i bygningens $\phi$ vrige indvendige overflader.

For at give et indtryk af indeklimaet i et hus med solvægge er antallet af halvtimer med temperaturer over $25^{\circ} \mathrm{C}$ i opvarmningssæsonen summeret (se fig. 2.2.6). Antallet af halvtimer med høje temperaturer er lille sammenlignet med et hus, hvor der er anbragt vinduer $i$ sydfacaden $i$ stedet for solvægge. (se fig. 2.1.24-2.1.27). Figur 2.2.6 viser, at antallet af halvtimer med hфje temperaturer $\phi$ ges med solvægsarealet for lette og middeltunge rum. Ved tunge rum er det ifølge beregningerne muligt helt at undga for $h \varnothing j e$ temperaturer om vinteren. I sommerhalvaret er afskærmning mod solindfald $\neq n s k e l i g$ for at undgå for høje temperaturer.


Fig. 2.2.6 Antal halvtimer med rumlufttemperaturer over $25^{\circ} \mathrm{C}$ i månederne oktober til april (incl.). Mobilisoleret solvæg som $i$ fors $\phi g$ dog betonlager. Ingen mobil natisolering for vinduer. Normal brugsvarme fra el og personer.

### 2.2.2 Brugsvarmens indflydelse på udbyttet af en solvæg

Med en BR-82 husmodel og en solvæg ligesom i fors $\phi$ gene med mobilisolering (dog varmelager af beton) er opvarmningsbehovet beregnet med og uden tilførsel af brugsvarme fra personer og
el-apparater (fig. 2.2.7). Figuren viser, at der som ventet er et $\phi$ get udbytte fra solvæggen ved en formindskelse af det ukontrollerbare varmetilskud fra andre varmekilder.

Dækningsgraden bliver dog mindre, da opvarmningsbehovet for申ges væsentligt, nå tilskudsvarmen reduceres. Da kun en del af brugsvarmen udnyttes til rumopvarmning, og da den betalte del ofte er dyrere end varme produceret af varmeanlægget, vil det være en fordel at reducere den betalte del af brugsvarmen. Endvidere vil en reduktion af den tilførte brugsvarme mindske tendensen til overophedning i solrige perioder.

På figur 2.2 .8 er fordelingen af udbyttet fra solvæggen fordelt på månedsbasis. Det ses, at der er et udbytte fra solvæggen i alle måneder. Udbyttet er ifølge beregningerne størst i februar. I månederne juni, juli og august er udbyttet i tilfældet med brugsvarme næsten 0 , mens der er et beskedent udbytte i disse måneder, når der ikke er brugsvarme.


Fig. 2.2.7 Opvarmningsbehov og udbytte for mobilisoleret solvæg $i$ hus med og uden brugsvarme fra el og personer (18,2 $\mathrm{kWh} / \mathrm{d} \phi \mathrm{gn})$. Solvæg som $i$ fors $\phi g$, dog betonlager. Hustype: BR-82 hus, mobil natisolering for vinduer, middeltungt hus, $9 \mathrm{~m}^{2}$ vinduesareal mod syd.

| $\square \square A$ | TOTALT UDBYTTE FRA | SOLVFG |  | UDEN BRUGS - |
| :---: | :---: | :---: | :---: | :---: |
|  | OPVARMNINGSBEHOV I | HUS MED | SOLVEG | VARME |
|  | TOTALT UDBYTTE FRA | SOLVEG |  | MED |
| $\begin{aligned} & 3,3 \\ & 0,6 \end{aligned}$ | OPVARMNINGSBEHOV I | I HUS MED | SOLVAG | VARME |



Fig. 2.2.8 Opvarmningsbehov på månedsbasis i hus med og uden brugsvarme og med og uden $27 \mathrm{~m}^{2}$ mobilisoleret solvæg (som i fors $\phi \mathrm{g}$, dog betonlager). Hustype: BR-82 hus, mobil natisolering for vinduer, middeltungt hus, $9 \mathrm{~m}^{2}$ vinduesareal mod syd.

### 2.2.3 Sydvæggens absorptionskoefficienter

Kndring af en overflades absorptionskoefficient medfører en ændring af den del af solstralingen, der absorberes og ledes ind gennem væggen. I dette afsnit er opvarmningsbehovet for et hus beregnet, hvor referencehusmodellen er benyttet (se fig. 2.3.2). Varmetransmissionskoefficienten er efter de sadvanlige regler bestemt til $k=0,3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Det svarer til 100 mm minem raluld og en bagvedliggende betonvag. Den sydvendte ydervegs areal er $39 \mathrm{~m}^{2}$.

Med disse forudsætninger er BA4-programmet (26) benyttet til at bestemme opvarmningsbehovet ved varierende absorptionskoefficient for ydersiden af den sydvendte væg.

Benyttes en absorptionskoefficient på 0,85 som referenceverdi, kan udbyttet ved ændringer $i$ den lodrette sydvendte facades absorptionskoefficient bestemmes (se fig. 2.2.9).

$$
\begin{equation*}
\mathrm{H}=14,8(\alpha-0,85) \quad\left(\mathrm{kWh} / \mathrm{m}^{2} \text { ar }\right) \tag{2.2.1}
\end{equation*}
$$

Ved absorptionskoefficienter mindre end 0,85 er udbyttet defineret som værende negativt. Endres konstruktionens isolans, vil udbyttet med tilnærmelse ændres omvendt proportionalt med isolansen.

For den givne væg og definition vil udbyttet af en hvid ydervæg med en absorptionskoefficent poi 0,5 være $-5 \mathrm{kWh} / \mathrm{m}^{2}$ ar.


ABSORPTIONSKOEFFICIENT

Fig. 2.2.9 Udbyttet ved at anvende overflader med forskellige absorptionskoefficienter på en lodret sydvendt vag. Varmetransmissionskoefficient: $k=0,3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ 。

### 2.2.4 Solvæg isoleret med hvid glasuld

I dette afsnit vises resultaterne af en beregning, der på åsbasis viser varmebalancen for en solvæg isoleret med hvid glasuld. De beregningsmæsige forudsætninger er beskrevet $j$ appendix Al.5.3 og Al.8.2. Bestemmelsen af udbyttet er foretaget med en varmeledningsevne af mineralulden på $\lambda=0,044 \mathrm{~W} / \mathrm{mK}$ ved $20^{\circ} \mathrm{C}$. Dette svarer til en rumvægt af glasulden pa $\rho=14.2 \mathrm{~kg} / \mathrm{m}^{3}$ anvendt i anden måleperiode. På fig. 2.2 .10 ex udbyttet for denne solvæg angivet $i$ forhold til en reference ydervæg. Denne er som i afsnit 2.2 .3 sat til at være en væg med en $k$-værdi på $0,3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ og en absorptionskoefficient på 0,85 .

Det ses, at udbyttet er proportionalt med den reciprokke værdi af ekstinktionskoefficienten for glasuld. I forhold til refe-
rencen vil solvæggen med hvid glasuld give et udbytte på ca. 20 $\mathrm{kWh} / \mathrm{m}^{2}$ år, hvis der anvendes en konstruktion svarende til den der er anvendt $i$ anden måleperiode.

Hvis glasfibrene vendes vinkelret pa overfladen eller jernindholdet i glasset nedsættes, vil ekstinktionskoefficienten mindskes med $\phi g e t$ udbytte til følge.


Fig. 2.2.10 Udbyttet af solvæg med hvid glasuld ved forskellige ekstinktionskoefficienter for glasuld med $\varnothing$ vrige parametre fastholdt. Konstruktionens varmetransmissionskoefficient er $k=$ $0,3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Som reference er en ikke gennemskinnelig overflade med absorptionskoefficient på 0,85 benyttet.

### 2.3.1 Dæklagsudformning

For at unders申ge andre muligheder for solvægge er der foretaget beregninger uden anvendelse af mobil isolering. Til beregningerne er både anvendt almindeligt glas og glas med lavt jernindhold, dvs. en ekstinktionskoefficient på $4 \mathrm{~m}^{-1}$. Udbyttet, når der anvendes selektive absorberoverflader er også beregnet. Karmudformningen er også tænkt forbedret som vist på fig. 2.3.1. Med denne udformning, hvor karmarealet udgør $20 \%$ af det totale solvægsareal er varmetransmissionskoefficienten gennem karmen pr. $\mathrm{m}^{2}$ glasareal beregnet til at være $0,13 \mathrm{~W} / \mathrm{K} \mathrm{m}_{\mathrm{glas}}{ }^{2}$ Til sammenligning har den sakaldte almindelige karmudformning et karmtab på $0,41 \mathrm{~W} / \mathrm{K} \mathrm{m}_{\mathrm{g}}^{2}$ as. Disse karmtab er beregnet ud fra de glasst申rrelser, der er anvendt i fors $\phi$ g (se fig. 3.1.4). De $\phi$ vrige koefficienter, der er benyttet, er som beskrevet i refem rencesystemet på fig. 2.3.2 og 2.3.3. I beregningerne er benyttet de $i$ appendix 1 viste ligninger.


Fig. 2.3.1 Eksempel på udformning af karm med et formindsket varmetab.

| Referencetilfælde for husmodel |  |
| :---: | :---: |
| Bygningsmodel | $\mathrm{BR}-82$ hus |
| Dimensionerende varmetab efter regler for beregning af bygningers varmetab: |  |
| Uden mobil isolering for vinduer | 7287 W |
| Med mobil isolering for vinduer | 5905 W |
| Brugsvarme fra el og personer | ja (18,2 $\mathrm{kWh} / \mathrm{d} \phi \mathrm{gn})$ |
| Vinduesareal mod syd | $9 \mathrm{~m}^{2}$ (glas) |
| Antal glaslag | 2 |
| Mobil natisolering af vinduer | ja ( $\mathrm{k}=0,48 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ ) |
| Solvægsareal mod syd | $18 \mathrm{~m}^{2}$ |
| Tyngde af rumoverflader | middeltungt |

Fig. 2.3.2 Referencetilfælde for husmodel. фvrige data som i fig. 2.1.4.

| Lagermateriale | Beton |
| :--- | :--- |
| Tykkelse | $0,228 \mathrm{~m}$ |
| Absorberoverflade | Selektiv |
| Emissionskoeff. | 0,10 |
| Absorptionskoeff. | 0,95 |
| Glastype | Lavt jernindhold |
| Ekstinktionskoeff. | $0,004 \mathrm{~mm}^{-1}$ |
| Emissionskoeff. | 0,94 |
| Antal glaslag | 4 |
| Glasafstand | $0,030 \mathrm{~m}$ |
| Glastykkelse | $0,004 \mathrm{~m}$ |
| Karm | Specialkarm |
| Varmetransmissionstab |  |
| fra karm (pr. m ${ }^{2}$ karm) | $0,49 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ |
| Karmareal i forhold | $20 \%$ |
| til total areal |  |

Fig. 2.3.3 Referencetilfælde for solvæg.

| Type | 1 | 2 | 3 | 4 |
| :---: | :---: | :---: | :---: | :---: |
| Absorberoverflade | Selektiv | Selektiv | Selektiv | Alm. |
| Glaslag | 4 | 4 | 3 | 4 |
| Karmtab pr glasareal $\left(\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right)$ | $\begin{gathered} \text { lille } \\ \mathrm{k}=0,130 \end{gathered}$ | $\begin{gathered} \text { stort } \\ k=0,414 \end{gathered}$ | $\begin{gathered} \text { 1ille } \\ k=0,130 \end{gathered}$ | $\begin{gathered} \text { stort } \\ \mathrm{k}=0,414 \end{gathered}$ |
| Hulrumstykkelse (mm) | 30 | 30 | 30 | 30 |
| Hulrum ved vag (m) | 0,44 | 0,44 | 0,44 | 0,16 |
| ¢vrige hulrum (m) | $3 \times 0,16$ | $3 \times 0,16$ | $2 \times 0,16$ | $3 \times 0,16$ |
| Udv. overgangsisolans $\left(m^{2} k / w\right)$ | 0,04 | 0,04 | 0,04 | 0,04 |
| ```\summ (excl karm) (m``` | $\begin{aligned} & 0,44 \\ & 0,48 \\ & 0,04 \\ & \hline 0,96 \end{aligned}$ | 0,96 | 0,80 | 0,68 |
| $\begin{aligned} & \mathrm{k}_{\text {vind }}(\text { excl karm }) \\ & \left(\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right) \end{aligned}$ | 1,04 | 1,04 | 1,25 | 1,47 |
| $\begin{aligned} & \mathrm{k}_{\text {vind }}(\text { incl karm }) \\ & \left(\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}\right) \end{aligned}$ | 1,17 | 1,45 | 1,38 | 1,88 |
| Karmtab i forhold til transmissionstab gennem dæklag | $13 \%$ | $40 \%$ | 10\% | 28\% |
| Isolans beton $\left(m^{2} \mathrm{~K} / \mathrm{W}\right)$ <br> Indvendig overgangsisolans ( $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$ ) | $\begin{aligned} & 0,13 \\ & 0,13 \end{aligned}$ |
| ```k total (incl betonvag) (W/m``` | 0,90 | 1,05 | 1,02 | 1,26 |

Fig. 2.3.4 Beregning af varmetransmissionskoefficienter if. varmetabsregler (30) ved forskellige udformninger af solvæg. Data for type 1 svarer til referencevæg.


Fig. 2.3.5 Udbytte af solvæg med forskellige dæklagskonstruktioner med og uden selektiv belægning afhængig af glasareal mod syd. Solvæg som referencetilfælde bortset fra absorberoverflade, karmtab og solvægsareal. Referencesolvæggen er markeret med $\square$

Isolansen for de enkelte lag i solvæggen er beregnet for visse af de valgte udformninger (fig. 2.3.4). Det ses, at isolansen fra absorberoverfladen til det fri i væsentlig grad overstiger isolansen fra absorberoverfladen og til rumluften. Dette er en forudsætning for et stort udbytte af solvæggen.

Udbyttet som funktion af solvægsarealet er vist på fig. 2.3.5. For 4 lag glas med lavt jernindhold, selektiv absorberoverflade og lille karmtab er udbyttet $155 \mathrm{kWh} / \mathrm{m}^{2}$ å ved et solvægsareal på $9 \mathrm{~m}^{2}$. Ved et $\varnothing$ get solvægsareal falder som ventet udbyttet. Ved et areal på $27 \mathrm{~m}^{2}$ er udbyttet $125 \mathrm{kWh} / \mathrm{m}^{2}$ å for ovennævnte solvæg. 巴ndres karmudformningen til "stort karmtab", falder udbyttet ved $9 \mathrm{~m}^{2}$ solvægsareal til $146 \mathrm{kWh} / \mathrm{m}^{2} \mathrm{a}$. Anvendes i. denne solvæg en "almindelig absorberoverflade" i stedet for en selektiv, formindskes udbyttet ved samme areal til $108 \mathrm{kWh} / \mathrm{m}^{2}$ år.

Forudsættes et solvægsareal pa $18 \mathrm{~m}^{2}$, kan af fig. 2.3 .6 ses udbyttet ved forskellige udformninger med varierende antal glaslag.


Fig. 2.3.6 Udbytte af solvæg ved forskellige glastyper og absorberoverflader. Forudsætninger: $B R-82$ hus, $18 \mathrm{~m}^{2}$ solvæg, lille karmtab. Referencesolvæggen er markeret med $口$.

Udbyttet $\phi$ ges for de viste tilfælde med mellem 29 og $84 \mathrm{kWh} / \mathrm{m}^{2}$ å ved at anvende den selektive belægning i stedet for den almindelige absorberoverflade. Kurverne viser, at et lag almindeligt glas og en selektiv belægning giver et pænt udbytte (105 $\mathrm{kWh} / \mathrm{m}^{2} \mathrm{ar}$ ). Selv l lag almindeligt glas med en almindelig absorberoverflade giver et positivt udbytte ( $21 \mathrm{kWh} / \mathrm{m}^{2} \mathrm{ar}$ ). Kurverne viser også, at variationen med antal glaslag er stor med den almindelige absorberoverflade, mens der kun opnås en beskeden forbedring af udbyttet ved en forøgelse af antal glaslag, når absorberoverfladen er selektiv. Af kurverne ses også, at fordelen ved jernfrit glas er st申rst ved et stort antal dæklag.

### 2.3.3 Varmelagermateriale

Med den valgte reference solvæg som grundlag er varmelagermaterialet varieret. De benyttede materialedata er angivet i appendix fig. Al.l.6.


Fig. 2.3.7 Udbytte af solvæg med forskellige typer varmelager. Varmelagerets tykkelse er $0,228 \mathrm{~mm}$. Referencesolvæggen er markeret med $\square$.

Udbyttet pr. arealenhed er optegnet på fig. 2.3.7. Kurven viser, at udbyttet med god tilnærmelse kan bestemmes som funktion
af materialets varmekapacitet pr. rumfangsenhed. Der vil dog være en vis spredning, som skyldes forskellige varmeledningsevner af materialerne. Dette kan ses for fx kalksandsten og tung tegl. For de valgte materialer varierer udbyttet mellem 104 og $154 \mathrm{kWh} / \mathrm{m}^{2}$ år. Af kurven ses, at beton er velegnet, når der ønskes et gængs byggemateriale.

Betonen kan forbedres en smule med tilslagsmaterialer af mineraler med stor varmeledningsevne og massefylde. Vand er det materiale, der giver det st申rste udbytte af solvæggen. Dette skyldes vandets store specifikke varmefylde og gode varmetransporterende egenskaber.

Antallet af halvtimer med overtemperaturer er vist på fig. 2.3.8. Kurven viser, at antallet af halvtimer $\phi$ ges med en $\phi$ gning af varmekapaciteten, dog har granit, st申bejern og vand samme antal halvtimer. Antallet af halvtimer er meget begrænset set $i$ forhold til tilsvarende vinduesarealex med direkte solindfald.


Fig. 2.3.8 Antal halvtimer med rumlufttemperaturer over $25^{\circ} \mathrm{C}$ i manederne oktober til april (incl.) ved forskellige materialer i solvæg, men med samme lagertykkelse. Forudsætninger som på fig. 2.3.6.

Med beton og vand som lagermateriale og pvrige parametre som i referencesolvaggen er lagertykkelsen varieret. Resultatet ses af fig. 2.3 .9 og viser, at der for beton opnas et maksimalt udbytte med en lagertykkelse mellem $0,2 \mathrm{og} 0,4 \mathrm{~m}$.

For beton kan kurvens form forklares med, at ved små lagertykkelser фges udbyttet ved en forøgelse af tykkelsen på grund af фgningen af varmelagringsevnen. Ved store tykkelser opnås et faldende udbytte ved фget Jagertykkelse, da væggens isolans фges og varmetransporten af solvarme gennem væggen mindskes. Dette ræsonnement gælder kun faste materialer. I vand vil der ske str申mninger, saledes at temperaturforskellene hurtigt udjævnes.


Fig. 2.3.9 Udbytte af solvæg med forskellige tyngder af varmelager afhængig af lagertykkelse. Solvæg som i referencetilfælde bortset fra lagertykkelse og lagermateriale. Referencesolvaggen er markeret med $\square$.

Med vand som varmelagringsmateriale $\phi$ ges udbyttet med en for$\not \subset g e l s e$ af tykkelsen. Ved store tykkelser ex der kun et beskedent merudbytte ved en $\varnothing$ gning af tykkelsen.

Antallet af halvtimer med overtemperaturer falder drastisk ved en $\phi$ gning af varmelagertykkelsen (se fig. 2.3.10). Dette skyldes, at temperatursvingningerne pa indersiden af væggen mindskes ved en for $\phi$ gelse af lagertykkelsen.


Fig. 2.3.10 Antal halvtimer med rumluftemperaturer over $25^{\circ} \mathrm{C}$ i månederne oktober til april (incl.) ved varierende lagertykkelse. Solvæg som $i$ referencetilfælde bortset fra lagertykkelse og lagermateriale.

### 2.3.5 Horisontafskærmning

Udbyttet af solvæggen ved varierende horisontafskærmning er vist på fig. 2.3.11. Udbyttet er fundet som differensen mellem opvarmningsbehovet for referencehuset med og uden solvæg ved varierende horisontafskærming. Der er forudsat en beregningsmæssigt uendelig fjern afskærmning pa $0^{\circ}, 10^{\circ}, 20^{\circ}$ og $30^{\circ}$. Direkte solstraling med solh申jder mindre end grænseværdien afskærmes, mens den diffuse stråling er regnet uændret uanset horisontafskærmningens st申rrelse.

Resultaterne viser et $\varnothing$ get opvarmningsbehov for husmodellen med og husmodellen uden solvæg, ved en фgning af horisontafskærmningen.


Fig. 2.3.11 Opvarmningsbehov for hus med og uden solvæg, samt udbytte af solvæg ved varierende horisontafskærmning. Referencesolvæg er anvendt, dog kun med 3 lag jernfrit glas. Solvægsareal: $18 m^{2}$. Referencesolvæg er markeret med $\square$.

Kurverne nærmer sig hinanden ved en $\phi$ gning af horisontafskærmningen. Udbyttet pr. arealenhed er også vist. Ved horisontafskærmninger mellem $0^{\circ}$ og $5^{\circ}$ er der næsten ingen forskel på udbyttet. Ved st申rre horisontafskærmninger falder udbyttet væsentligt. Mellem $20^{\circ}$ og $30^{\circ}$ flader kurven ud og bliver næsten vandret. Dette kan forklares med, at horisontafskærmningen skygger for en stor del af solstrålingen i opvarmningssæsonen, og at en $\phi$ gning af afskærmningen derved kun giver en begrænset reduktion af solindfaldet. Grunden til at kurven tilsyneladende ikke fortsætter mod nul skyldes, at den diffuse stråing regningsmæssigt er uændret.

### 2.3.6 Klimavariationer

For at kunne vurdere afhængigheden af varierende solindfald og udelufttemperaturer er referencesolvaggene simuleret pa grundlag af 15 års vejrdata målt i Tåstrup i årene 1959 til 1973. Endvidere er udført beregninger af udbyttet ved anvendelse af det danske testreferenceår (TRY), ref. (35) og det modificerede referenceår, der er benyttet til de tidiligere beskrevne simuleringer, (se afsnit 2.1.5).

Arsudbyttet er $i$ fig. 2.3.12 angivet som funktion af det på den udvendige side af lageret absorberede solindfald i opvarmningssæsonen, der her ex defineret som perioden oktober til april (incl.).

Arsagen til at det arlige solindfald ikke er benyttet er, at kun ca. $15 \%$ af årsudbyttet ligger uden for den egentlige opvarmningssæson. Derfor anses solindfaldet $i$ månederne oktober til april incl. for at være de mest relevante med hensyn til bestemmelse af udbyttet.

Af figuren ses ikke en entydig sammenhæng mellem udbytte og solindfald. Der kan dog aflæses en tendens til, at udbyttet $\phi$ ges med stigende solindfald. Variationerne kan skyldes, at solindfaldet $i$ nogle år er rimeli.g jævnt fordelt over opvarm-
ningssæsonen, mens det $i$ andre tilfælde hovedsagelig findes $i$ efterårs- eller forårsmånederne, hvor opvarmningsbehovet er moderat. Pa figuren er indtegnet middelværdien af de 15 års vejrdata og de benyttede referenceå. Det ses, at det $i$ de foregående afsnit benyttede modificerede referenceår har et st申rre solindfald og udbytte end middelværdien for de 15 års vejrdata. Udbyttet beregnet ved hjælp af det modificerede referenceå ex $6 \%$ større end middelværdien beregnet på grundlag af 15 års vejrdata.


Absorberet solindfald i. opvarmingssæson

Fig. 2.3.12 Det årlige udbytte for referencesolvæg som funktion af det absorberede solindfald i opvarmningssæsonen (oktober - april incl.) for arene 1959 - 1973 og modificeret referenceå (MR) og det danske testreferenceå (TRY). Endvidere er angivet middelværdier af arsudbytte og absorberet solindfald for de 15 ars vejrdata.

Beregninger med det danske testreferenceå TRY viser, at både solindfaldet og udbyttet er mindre end middelværdien for de 15 år. TRY-vejrdataene giver et udbytte, der er $6 \%$ lavere end 15 års middelværdien.

Temperaturerne på den indvendige side af lageret var i l $\mathrm{l}_{\mathrm{b}} \mathrm{b}$ t af de 15 ár ikke lavere end $15^{\circ} \mathrm{C}$, og der var i alt 83 timer med temperaturer mellem 15 og $16^{\circ} \mathrm{C}$. Ved beregninger med de to referenceå var temperaturerne på denne overflade ikke lavere end $16^{\circ} \mathrm{C}$. Solvægge med referencevæggens udformning vil dermed yderst sjældent give anledning til gener på grund af lave overfladetemperaturer.

### 2.3.7 Indeklima

For to bygningsmodeller er lufttemperaturforholdene sammenlignet med og uden anvendelse af solvægge. Rumlufttemperaturerne er her benyttet som et udtryk for det termiske indeklima. Ved en mere præcis bestemmelse af det termiske indeklima $b \not \subset$ der også indgå en række andre parametre, blandt andet middelstrålingstemperaturen.

Rumlufttemperaturerne i bygningsmodellerne tillades at svinge frit mellem 20 og $25^{\circ} \mathrm{C}$. Er rumlufttemperaturen ved at falde under $20^{\circ} \mathrm{C}$, tilf申res rummet varme, men hvis temperaturen ex ved at komme over $25^{\circ} \mathrm{C}$, foretages beregningsmæssigt automatisk udluftning med et ekstra luftskifte pa op til $4 \mathrm{~g} / \mathrm{h}$. Luftskiftet afpasses således at lufttemperaturen holdes på $25^{\circ} \mathrm{C}$. Luftskiftet på $4 \mathrm{~g} / \mathrm{h}$ er dog ikke altid tilstrækkeligt til at holde rumluftemperaturen nede på $25^{\circ} \mathrm{C}$ i tilfælde af stort varmetilskud fra solindfald. I beregningerne er der ikke forudsat anvendt gardiner eller anden afskærmning til reduktion af solindfaldet. I praksis vil ventilationen ofte ske ved at vinduerne abnes, og hvis dette ikke er tilstrækkeligt, vil der blive anvendt afskærmning, fx i form af gardiner, der trækkes for vinduerne.

Bygningsmodellen svarer til referencetilfældet, hvor der er forudsat, at bygningen er isoleret svarende til kravet i Bygningsreglementet (29), og at der i bygningen er anvendt vinduer med $9 \mathrm{~m}^{2}$ sydvendt glasareal. Varmeakkurnuleringsevnen svarer til den middeltunge rummodel (fig. 2.1.13), hvor hom vedparten af rummenes varmeakkumuleringsevne udgøres af 110 mm murværk $i$ de indre vægoverflader. I modellen med solvæg er referencesolvæggen anvendt med et areal på $18 \mathrm{~m}^{2}$ og med et varmelager af beton (fig. 2.3.3).

Forskellen mellem de to sæt kurver er ret lille (fig. 2.3.13 og 2.3.14). I begge tilfælde findes, at der næsten ikke forekommer lufttemperaturer højere end $24^{\circ} \mathrm{C}$ i månederne november til februar. Temperaturer højere end $26^{\circ} \mathrm{C}$ forekommer kun i månederne juni til august. Den måned, hvor der forekommer de højeste temperaturer er juni måned. I denne måned er der henholdsvis med og uden solvægge 112 og 82 timer med temperaturer over eller lig med $26^{\circ} \mathrm{C}$ samt 39 og 26 timer med temperaturer over eller lig med $28^{\circ} \mathrm{C}$.

På grundlag af ovenstående ses, at det kun er i månederne juni til august, hvor der under de givne forudsætninger kan opstå overophedningsproblemer. I disse tre måneder tilf申res rummene $i$ bygningsmodellen med solvægge en varmemængde på 3800 kWh stammende fra solindfald gennem vinduer og 2000 kWh fra solvæggen. Da størstedelen af den tilførte solvarme kommer fra vinduerne, vil en solafskærmning $i$ form af gardiner for vinduerne være $i$ stand til at reducere antallet af timer med $h \not \subset j e$ temperaturer $i$ et væsentligt omfang, idet den fra vinduerne tilførte varme sker i et væsentligt kortere tidsrum end varmen afgivet fra solvæggen.

Endvidere vil problemerne i sommermånederne kunne reduceres ved at starte den beregningsmæssigt forøgede ventilation ved en lavere rumlufttemperatur end den anvendte pa $25^{\circ} \mathrm{C}$.

Det kan konkluderes, at det potentielt vil være muligt at anvende solvægge uden afskærmning om sommeren, forudsat at
der i bygningen er sikret gode muligheder for at fjerne overskudsvarmen, og at der i bygningen ikke tilføres store mængder solvarme fra solindfald gennem vinduerne.


Fig. 2.3.13 Antal timer pr. maned med temperaturer over henholdsvis 20, $22,24,26$ og $28^{\circ} \mathrm{C}$ ved husmodel som $i$ referencetilfælde, dog uden solvæg, se fig. 2.3.2.


Fig. 2.3.14 Antal timer pr. maned med temperaturer over henholdsvis 20, 22, 24,26 og $28^{\circ} \mathrm{C}$ ved husmodel med solvæg som i referencetilfælde, se fig. 2.3.2 og 2.3.3.

## 3．FORS $\varnothing$ G

I dette kapitel beskrives de udførte fors $\phi$ med to typer solvægge．Formålet med fors申gene er at måle temperaturer og varmestrømme og benytte disse registrerede data til kontrol af et EDB－beregningsprogram．

## 3．1 FORS $\varnothing$ GSOPSTILLING

## 3．1．1 Fors申gsrum

Rummene er opbygget af en lægteskelet－konstruktion．Gulvarea－ lerne i fors $\phi$ gsrummene er $10 \mathrm{~m}^{2}$（se fig．3．1．1）．Isoleringen i de udvendige overflader er 100 mm tyk．En nærmere beskrivelse af rummene findes $i$（36）．Rummenes indvendige overflader består


Fig．3．1．1 Oversigtsplan af fors申gshus med solvægge．
af finerplader $i$ vægge, spånplader $i$ gulv og gipsplader i loftet. Luftskiftet $i$ rummene er på ca. 3 gange i timen.

I forsøgshusets sydfacade er indbygget 2 forskellige solvagge som beskrevet $i$ det følgende (se fig. 3.1.2).


Fig. 3.1.2 Solvægge $i$ fors $\phi$ gshus.

### 3.1.2 Beskrivelse af kalksandstensvægge

Inderst mod rummet er begge vægge opbygget af 228 mm tykke kalksandstensmure med sten $i$ bredt format (158 x 228 x 55 mm ). Kalksandstensvæggene $i$ de to fors申gsrum er ens opbygget og har hver et areal på $3,1 \mathrm{~m}^{2}$. Væggene fungerer som varmelager i solvæggen.

Murene er opmuret med 1 mm fuger af flisemprtel. Derved er den tilførte mængde fugt fra mørtelen begrænset. Udvendigt er murene vandskuret for at lukke eventuelle revner mellem stenene. Efter denne behanding er murene afslebet med en kalksandsten for at fjerne de største ujævnheder. Udvendigt er murene malet med sort skoletavlelak. Denne overflade udgør solvæggens absorber.

Mellem muren og siderne er udført tilpasninger af vandfast krydsfiner. Disse er udvendigt fuget med siliconefugemasse for at tætne eventuelle hulrum mellem mur, krydsfiner og stolper.

Væggenes belastning optages ved jorden af sokkelen anbragt på komprimeret stabilt grus (se fig. 3.1.4). En bjælke opkilet på sokkelstenene optager belastningen fra gulvbjælkelaget og solvæggen (se fig. 3.1.5). Kraftoverføringen er forbedret ved klodser over bjælken $i$ hulrummet mellem de enkelte gulvbjælker. Over bjælkelaget er anbragt en $90 \times 233 \mathrm{~mm}$ limtræsbjælke i murens bredde, som danner fundament for muren. Til sikring af væggenes stabilitet er væggen foroven fastgjort til remmen med specielle beslag af $2 \times 20 \mathrm{~mm}$ b申jet fladjern (sefig. 3.1.5).

### 3.1.3 Solvæg isoleret med mobil isolering

Udvendigt på varmelageret er anbragt en dæklagskonstruktion (se fig. 3.1.3-3.1.5). Den bestar $i$. 1 . måeperiode af en 16 mm plexiglasdobbeltplade anbragt $i 100 \mathrm{~mm}$ afstand fra kalksandstensvæggen. Pladen er opsat således at kanalerne er vandrette. Dobbeltpladen har kanaler med et tværsnit på $13 \times 15 \mathrm{~mm}$.

Fastgørelsen af pladen sker ved hjælp af en speciel profilsprosse bestående af en aluminiumsskinne og tilhørende PVC-afdækningsliste.

I 2. måleperiode var yderligere et dæklag bestànde af en 2 mm plexiglasplade anbragt på ydersiden af væggen tæt på absorberen. Dette er gjort for at forbedre isoleringsevnen af solvæggen $i$ perioder, hvor der ikke er mobil isolering $i$ hulrummet. plexiglaspladen er langs hele randen tætnet med sort tape for at $\varnothing$ ge lufttætheden.

Plexiglas-dobbeltpladen har fået en blivende udbøjning. Dette skyldes formentlig luftovertrykket, der opstar ved fyldning af mobil isolering $i$ hulrummet foran solvæggen. Dobbeltpladens udbøjning er målt til 21 mm .

Med en afstand på 1500 mm mellem underst申tningerne svarer udbøjningen til $2 \%$ af spændvidden. Tilnærmes udbøjningskurven til en cirkej, fås en middeludbøjning på 15 mm .

Den inderste plexiglasplade er ved randen fastholdt $i$ en afstand på 9 mm fra væggen. på grund af mindre fremspring på væggen ex den mindste afstand til væggen 1 mm. Dette giver en middelafstand til væggen pa 4 mm .


Fig. 3.1.3 Solvæg med mobil isolering under tømning.


Fig. 3.1.4 Solvæg isoleret med ekspanderede polystyrenkugler.


Fig. 3.1.5 Lodret snit i top og bund af solvæg med mobil isolering.

### 3.1.4 Transportsystem for mobilisolering

Transportsystemet er opbygget af varmgalvaniserede, spiralsnoede ventilationsrør med en diameter på 60 mm . (sefig. 3.1.6), som er samlet med tape. Luftstrommen skabes af injektorer, der drives af ventilatorer (se fig. 3.l.7). Bag dysen i injektoren dannes et undertryk. der suger kugler og luft ind j luftstrommen foran dysen. Kuglerne transporteres med luftstrommen i rørene. For enden af røxene ledes transportluften vak gennem et filter, og kuglerne lagres. Placeringen af udluftningsaboningerne kan ses af fig. 3.1.6. øverst i hulrummet foran solveggen er der to ventilationsabninger.


Fig. 3.I.6 Skematisk tegning af transportsystem for ekspanderede polystyrenkugler.

Hullet $i$ øverste modsatte hjørne af hvor kuglerne blæses ind er det største. Størrelsen sikrer tilstrækkelig luftstrøm i hulrummet til at kuglerne bliver kastet langt ind $i$ hulrummet. Når hulrummet er næsten fuldt, sikrer åbningen at også фverste højre hjørne (set udefra) bliver fyldt med kugler. Når filteret
er tilstoppet (se fig. 3.1.8), ledes hovedparten af luftstr $\phi$ mmen ud gennem ventilationsåbningen lige før solvæggen (forfilter). Der er dog tilstrækkelig hastighed af kuglerne til, at den resterende del af hulrummet fyldes.

Fra det tidspunkt, hvor hovedfilteret er stoppet og indtil hulrummet er fyldt, sker en trykstigning i hulrummet afhængig af åbningsarealet $i$ forfilteret. Under normale omstændigheder er dette mindre end $200 \mathrm{~Pa}(20 \mathrm{~mm} \mathrm{VS})$.

Når hulrummet foran solvæggen er helt fyldt, begynder tilgangsrøret at blive fyldt. Der er kun et rørstykke på ca. 20 cm før forfilteret, som fyldes, idet der sker en trykstigning i røret, saledes at injektoren ophører med at fungere, selv om ventilatoren kører. Den derved dannede prop af kugler kan under normale driftsforhold let fjernes ved næste fyldning, forudsat at hulrummet foran solvæggen er tomt.


Fig. 3.1.7 Injektor under solvæg. Alle mål i mm.


Fig. 3.1.8 Solvæg der er ved at blive fyldt med mobil isolering.

T申mningen af hulrummet sker ved en injektor anbragt under solvæggen forbundet med et rør til lagertanken. Bunden af solvæggen har en hældning pa ca. $15^{\circ}$ fra vandret. Overfladen af bunden har været genstand for eksperimenter. Der er forsøgt forskellige overfladebelægninger: Aluminiumsfolie og teflonfolie. Erfaringerne omtales senere sammen med de andre driftserfaringer.

For at hindre opladning af kuglerne med statisk elektricitet er disse påsprøjtet en opløsning med kvartære ammoniumforbindelser ca. hvert halve år. Dette er tilstrækkeligt til at undgå prom blemer. Inden denne metode blev anvendt, gav statisk elektricitet anledning til, at kuglerne blev hængende på plexiglasoverfladen.

Injektorerne drives af ventilatorer af typen Elektror AGN. Mærkeeffekten er 300 W . Fyldning og tømning af systemet tager ca. 5-8 minutter. Dette giver et flow af kugler på 4,6-2,9 $\mathrm{m}^{3} / \mathrm{h}$. Flowet er afhængigt af om der er utætheder $i$ r申ret og eventuelle forhindringer $i$ selve røret. Skønnes $i$ gennemsnit 2

- 4 tømme/fyldecykler i døgnet, fås et energiforbrug til ventilatoren på årsbasis på 7 til $14 \mathrm{kWh} / \mathrm{a}^{\mathrm{r}} \mathrm{m}^{2}$.


### 3.1.5 Solvæg isoleret med hvid glasuld

Glasulden er indbygget $i$ et element med en ramme (se fig. 3.1.9 og 3.1.10). Rammen er på hver side lukket med en plade af glasfiberarmeret polyester (fig. 3.l.11). Pladerne er fastholdt ved hjælp af lister, der er skruet fast til rammerne. Samlingen mellem plade og ramme er tætnet med fugemasse.

Elementet er anbragt $i$ en karm opbygget uden om kalksandstensvæggen. Elementet er på den side, der vender ind mod muren tætnet med skumgummilister, mens siderne af elementet er tætnet med gummiprofiler.


Fig. 3.1.9 Solvæg isoleret med hvid glasuld.


Fig. 3.1.10 Snit og opstalt af solvæg isoleret med hvid glasuld.


Fig. 3.1.11 Detalje ved top af solvæg med hvid glasuld.

### 3.1.6 Beskrivelse af glasuld

Den anvendte glasuld er specialfremstillet, således at der ikke er tilsat bindemiddel ved fabrikationen. Glasulden er leveret i lange baner i ca. 5 cm tykkelse, $i$ usammenpresset tilstand.

I den første måleperiode er anvendt 4 og 5 lag af disse baner i hver sin sektion af ramen. I den anden måleperiode er elementet ombygget således, at der overalt $i$ elementet er anvendt to baner. Dette er sket for at mindske massefylden af glasulden uden samtidig at $\phi g e$ varmeisoleringsevnen nævneværdigt. Derved vil den solstråling, der er absorberet i glasulden i middel ske $i$ st申rre afstand fra den udvendige overflade end i første måleperiode. En st申rre del af solvarmen vil dermed blive ledet ind mod lageret i stedet for ud til det fri.

For at hindre glasulden $i$ at skride ned er der $i$ anden maleperiode parallelt med dæklagene midt i hulrummet anbragt et hønsenet. Nettet er sømmet til rammerne og pasmurt kontaktlim inden ilægning af glasuld i elementet. Dette sikrer effektivt mod sammensynkning af glasulden.

For at finde massen af glasulden pr. arealenhed er der udtaget følgende pr申ver, som er blevet vejet.

| Prøve | Mål <br> mx m | Vægt <br> kg | Vægt/Areal <br> $\mathrm{kg} / \mathrm{m}^{2}$ |
| :---: | :---: | :---: | :---: |
| 1 |  |  |  |
| 2 | $0,12 \mathrm{x} 0,22$ <br> $1,92 \mathrm{x} 0,38$ | $19,48 \times 10^{-3}$ <br> 0,5168 | 0,738 <br> 0,708 |

Da usikkerheden på måling nr. 2 er mindst, vælges denne værdi for vægten pr. arealenhed. Med en afstand på $0,10 \mathrm{~m}$ mellem de glasfiberarmerede polyesterplader kan massefylden beregnes.

|  | Måleperiode | Antal lag | Massefylde |
| :---: | :---: | :---: | :---: |
| 1 | $78 / 79$ | 4,5 | $31,9 \mathrm{~kg} / \mathrm{m}^{3}$ |
| 2 | $79 / 80$ | 2 | $14,2 \mathrm{~kg} / \mathrm{m}^{3}$ |

### 3.1.7 Reguleringssystemer

Rumlufttemperaturen $i$ malerummene reguleres af termostater mea en gennemsnitlig temperatur pa $21^{\circ} \mathrm{C}$ 。 Rumlufttemperaturen er ikke tilstræbt udpræget konstant, da dens størrelse bliver måt $i$ hvert scan hver halve time. Varmen til rummene bliver leveret af elvarmepaneler med en maksimal effekt pa 600 W i $\phi$ strum og 800 W i vestrummet. Effekten er dog ikke tilstrækkelig til at opvarme rummene $i$ meget kolde perioder, saledes at temperaturen falder til ca. $16^{\circ} \mathrm{C}$.

Den mobile isolering bliver styret af en differenstermostat. Den ene temperatur, termostaten måler, er den udvendige overfladetemperatur af solvæggen. Den anden temperatur bliver målt i. en kontrolbox monteret ved siden af solvæggen. (fig. 3.1.12 og 3.1.13). Boxen har samme dæklag som solvæggen. Bag dobbeltpladen afgrænser mineraluld et lufthulrum. Pa mineralulden er anbragt en tynd aluminiumsplade med påmonterede følere. Aluminiumspladen, følerne og mineralulden udenom er sortmalet. Derved fungerer aluminiumpladen som en "pilot" absorberoverflade, idet den har en lille varmekapacitet og er godt isoleret mod varmetab til bagsiden. Er aluminiumspladen $i$ boxen varmere end absorberoverfladen på solvæggen, vil der være et positivt udbytte ved at fjerne mobilisoleringen. Hvis pilotabsorberens temperatur derimod er lavere end solvæggens absorberoverflade, vil der være et tab, hvis der ikke er mobil isolering i hulrummet.

I starten var der også påmonteret en ventilator $i$ boxen for at hindre for h申je temperaturer og sikre en hurtigere regulering. Denne er dog stoppet, da det viser sig, at solvæggen godt kan komme $h \varnothing j e r e$ end de $60^{\circ} \mathrm{C}$, som ventilatortermostaten maksimalt kan indstilles på. Ventilatoren medfører også, at kuglerne ret hurtigt bliver fyldt i igen, når solen går bag en sky. Ved at stoppe ventilatoren bliver dette tidspunkt flyttet, således at for hyppige tømninger og fyldninger kan undgås.

Differenstermostaten er indstillet på en startdifferens på 10 K og en stopdifferens på 3 K .

Opbygningen af styresystemet fremgå af diagram (fig. 3.1.14) og funktionsdiagram (fig. 3.1.15). Den sekundære driftsform, fylde-tømme drift er beregnet til anvendelse, når kuglerne skal påsprøjtes antistatisk væske. Skiftevis kørsel med fyldning og $t \not \subset m n i n g$ af solvæggen giver bedre fordeling af væsken og en hurtigere tørring af opløsningsmidlet.

Beskrivelse af hvorledes tidspunktet for flytning af mobil isolering er målt og hvorledes starttemperaturdifferensen er kontrolleret er vist i appendix A3.


SNIT AA
KONTROLBOX SET FORERA UDEN DEKIAG.


SNIII BB

Fig. 3.1.12 Kontrolbox.


Fig. 3.l.13 Opbygning af kontrolbox (før maling af mineraluld og alu-plade).

Fig. 3.1.14 Reguleringssystem for solvæg med mobil isolering. Relæpositionen er angivet
i hvilestilling.


Fig. 3.1.15 Funktionsdiagram for styresystem.

### 3.1.8 Driftserfaringer med mobil isolering

Det største problem $i$ måleperioderne har været kondens på indersiderne af dæklagene. Hovedårsagen har været overtrykket i fors申gsrummene på grund af ventilatorerne. Det har bevirket, at der er sivet fugtig rumluft ud gennem sprækker i de ellers omhyggeligt fugede samlinger. Efter måleperioden, hvor ventilationshullernes areal blev for申get, forsvandt dette problem Euldstændigt.

Ved den mobilisolerede væg bevirkede kondensen i visse perioder, at kuglerne klæbede til den indvendige side af dobbeltpladen. Dette har medført, at resultaterne fra disse perioder er udeladt. Efter maleperioden har systemet ikke fungeret $i$ en periode pà grund af kondens i injektoren. Dette problem er dog løst ved at lave et lille drænhul ca. $1 \mathrm{x} 1 \mathrm{~mm} i$ injektorens sugekanmer.

Opladning af kuglerne med statisk elektricitet kunne konsta－ teres ved，at kuglerne klæbede til dæklagsoverfladen uden at disse var fugtige．Dette gav dog ikke problemer，da kuglerne blev behandlet hvert halve år med antistatisk væske．

Som filtermateriale blev $i$ starten benyttet traditionelle ventilationsfiltermåtter．Disse har dog en tendens til at blive stoppet af fint st申v fra polystyrenkuglerne．Dette medførte $i$ visse perioder en for $\phi$ gelse af trykket $i$ hulrummet，der kombi－ neret med varmepåvirkning gav sig udslag i en blivende krumning af plexiglas－dobbeltpladen．Problemet med tilstopning af fil－ trene blev løst fuldstændigt ved at erstatte filtermatten med et filter af galvaniseret trådvav（fluenet），således at det fine polystyrenkuglest $\phi \mathrm{v}$ blev fjernet．

Når rørene var lukket $i$ den ene ende og ventilatoren k $\quad$ rote， opstod store tryk inde i r申rene（ca． 4000 Pa （ 400 mm VS ））． Dette stillede store krav til holdbarheden af r $\phi$ rtætningen．I starten blev anvendt tape med fibervæv．Dette gav ikke altid tilstrækkelig tæthed．Udendørs blev tapen nedbrudt af vejret efter ca．et års tid．Problemet blev l申st ved at anvende PVC－ tape，der var delvis elastisk，saledes at tapen var presset ind mod r申ret．Utætheder medfører，at kuglernes transporthastighed formindskes，og ved store utætheder kan der ske tilstopning af rørene．

Bunden af solvæggen gav nogle problemer．Det var hensigten med bunden，at kuglerne skulle kunne trille ved en hældning på $15^{\circ}$ ． Det viste sig，at ved en afstand på mere end 10 cm fra udsugningsåbningerne var der en begyndende ophobning af kugler． Arsagen er bl．a．，at der var ujævnheder mellem bund og sider， som kuglerne kunne hænge fast $i$ ．Derfor fors $\phi$ gtes at ændre overfladen fra en lakagtig træoverflade til en mere glat over－ flade．Der blev gjort fors $\phi \mathrm{g}$ med aluminiumsfolie og teflonfo－ lie．Det viste sig，at aluminiumsfolien var lidt bedre end de andre l $\quad$ sninger．Ved fremtidige konstruktioner kan det anbe－ fales at anvende en vandret flade pa $5-10 \mathrm{~cm}$ pa hver side af udsugningsåbningen，da der hex er en vis lufthastighed til
transport af kuglerne. Ved større afstand fra udsugningsåbningen anbefales en større haldning end de anvendte $15^{\circ}$.

Alt $i$ alt kan det siges, at det anvendte transportsystem kan anvendes under danske forhold, men at der kræves regelmassigt tilsyn og pasning.

### 3.1.9 Solvægge med selektiv overflade

Solvæggene er opbygget pa de samme kalksandstensvægge som beskrevet $i$ afsnit 3.1.2. Pa den udvendige side af lageret er der på begge solvægge klæbet en metalfolie med en selektiv belægning. For at give tilstrækkelig vedhæftning er væggen først påført en klæbemasse.

Den selektive belægning har ifølge datablade (37) en absorptionskoefficient for solstraling på $0,95-0,99$, mens emissionskoefficienten (ved $100^{\circ} \mathrm{C}$ ) for langbølget straling er angivet til 0,08-0,11.

Som karme er benyttet termolægter med dimensionerne $100 \times 150 \mathrm{~mm}$, der er beklædt med vandfast krydsfiner. Afstanden mellem den selektive folie og glasset er 150 mm . Glasset er 4 mm tykt og fastgjort med glaslister. Pa indersiden af karmene er anbragt reflekterende folie coatet med krom og beskyttet af et tyndt akryllag.

I den $\varnothing$ stilige solvæg er der mellem glasset og den selektive absorberoverflade anbragt en honeycomb-struktur. Honeycombmaterialet er opbygget af en V-korrugeret folie af $0,38 \mathrm{~mm}$ polykarbonat. Honeycomb'en danner vandrette luftspalter (fig. 3.1.16). Tværsnittet $i$ luftspalterne er ligesidede trekanter med en grundlinie på 22 mm og en højde på 150 mm . Fordelen ved den valgte honeycomb-struktur er en reduktion af varmetransmissionskoefficienten, samtidig med at reduktionen af solstråling er beskeden.

De to solvægge er vist på fig. 3.1 .17 og 3.1.18. Med disse solvægge er der udført fors $\phi \mathrm{g}$ i en periode $i$ 1983. Fors $\phi$. f . f er detaljeret beskrevet i ref. (20).


Fig. 3.1.16 Lodret snit visende udformningen af solvæg med selektiv absorberoverflade og $V-k$ korrugeret honeycomb.


Fig. 3.1.17 Solvag med selektiv absorberoverflade.


Fig. 3.1.18 Solvæg med selektiv absorberoverflade og $V$-korrugeret honeycomb.

### 3.2.1 Opbygning af målesystem

I det følgende beskrives måleudstyret anvendt i 1.0 og 2. måleperiode. I den tredje måleperiode er fors申gene beskrevet i ref. (20). Til opsaming af de registrerede måinger blev dex anvendt en datalogger af typen Esterline Angus pD2064. Hver halve time blev kanalerne scannet. Dataloggeren kunne $i$ alt måle 48 kanaler, men h申jst 43 var $i$ brug (se fig. 3.2.1). Dataloggeren var tilsluttet en papertape-perforator, der punchede de registrerede spændinger. Papertapestrimlerne blev skiftet 3 gange ugentligt. De perforerede strimler blev indlæst på regnecenteret NEUCC, hvor den videre databehanding blev foretaget. Måle- og registreringsudstyret er vist på fig. 3.2.2 og 3.2.3.

| Kanal nr. | Màling | Antal <br> málinger | $\begin{aligned} & \Pi_{\mathrm{St}} / \mathrm{Vest} \\ & \text { rum } \end{aligned}$ | Placering |
| :---: | :---: | :---: | :---: | :---: |
| 0 | T-sojle | 5 | Vest | Indvendig side mur |
| 1 | " | 5 | " | Inderst i mur |
| 2 | " | 5 | " | Midt i. mur |
| 3 | " | 5 | " | Yderst i mur |
| 4 | " | 5 | " | Udvendigt på mur |
| 5 | * | 4 | " | Mellem indv. glasfiberarmeret polyesterplade og glasuld |
| 6 | T-diff | 1 | " | 76 mm inde i glasuld |
| 7 | " | 1 | " | 57 " |
| 8 | " | 1 | " | $38 \quad$ |
| 9 | " | 1. | " | 19 " |
| 10 | " | 1 | " | 72 |
| 11 | " | 1 | " | 48 |
| 12 | " | 1 | " | 24 " |
| 13 | $T-s ø j l e$ | 4 | " | Mellem udv. glasfiberarmeret polyesterplade og glasuld |
| 14 |  |  |  | Benyttes ikke |
| 15 | T-diff | 1 | " | Rumlufttemperatur |
| 16 | T-sajle | 4 | " | Indvendig overfladetemperatur i. rum |
| 17 | $T-s ø j 1 e$ |  | " | Varmestrømsmåler på indvendig sjde af solvæg |
| 18 | " | 5 | $\emptyset_{s t}$ | Indvendig side mur |
| 19 | " | 5 | " | Inderst i mur |
| 20 | " | 5 | " | Midt i mur |
| 21 | " | 5 | " | Yderst i mur |
| 22 | " | 5 | " | Udvendige på mur |
| 23 | " | 5 | " | Indvendigt plast |
| 24 | " | 5 | " | Udvendigt plast |
| 25 | T-diff | 1 | " | Indvendigt på alu-skinne |
| 26 | * | 1 | " | Rumlufttemperatur |
| 27 | T-søjle | 4 | * | Indvendig overfladetemp. |

Fig. 3.2.1 Oversigt over målepunkter. T-s申jle betyder termosøjle, mens T-diff betyder, at der kun måles en enkelt differensmåling. Ved T-s申jle er angivet antallet af differensmålinger. Der måles differensspændingen mellem målepunkterne og den sekundære referencebox (se afsnit 3.2.2).


Fig. 3.2.1 fortsat.


Fig. 3.2.2 Måleudstyr med el-måler, datalogger med integrator og papertape-perforator.


Fig. 3.2.3 Måle- og kontroludstyr. Fra venstre kontrolbox, registrering af injektorventilatorer, primær og sekundær temperaturreference samt fordelerpanel.

Til måling af temperaturen er anvendt kobber-konstantan termoelementer af typen TT.

Opbygningen af målesystemet er vist på fig. 3.2.4. Som temperaturreference blev benyttet en reference bygget pa Laboratoriet for Varmeisolering. Den er på figuren betegnet som primær reference. Loddestedet holdes på en konstant temperatur ved hjælp af en termostat, der er indbygget $i$ en aluminiumscylinder og omgivet af isolering. Temperaturen er målt med jævne mellemrum. Middeltemperaturen er fundet til $51,0^{\circ} \mathrm{C}$, med en maksimal afvigelse på $\pm 0,3 \mathrm{~K}$.


Fig. 3.2.4 Principdiagram for opbygning af temperaturmålesystem.

For ikke at få for store længder af termoelementtråd blev der anvendt to sekundære temperaturreferencer anbragt i hvert sit fors申gsrum og indbygget i apparatkasser (se fig. 3.2.5).

Loddestederne er isoleret og anbragt inde mellem 5 stk. 1 mm aluminiumsplader, der er omgivet af minimum 50 mm mineraluld. Dette sikrer en god temperaturfordeling i hulrummet og mere afdæmpede temperatursvingninger end af rumluften.

Da temperaturen af alle loddestederne kan anses for at være ens i referenceboxen, er det kun nødvendigt at male temperaturen i boxen $i$ et loddested. Resten af malepunkterne $i$ fors申get kan således måles som en temperaturforskel mellem den sekundære referencebox og målepunktet. Temperaturen er måt med et digitaltermometer efter at dette er kalibreret med et præcisionstermometer.


Fig. 3.2.5 Snit i sekundær temperaturreference for 50 termoelementer. Mål i mm.

Termoelementerne var ved måling af overfladetemperaturer sammenloddet med en kobberplade af st申rrelsen $10 \times 10 \mathrm{~mm}$. Disse plader og mindst 500 mm ledning blev limet til overfladen for at undgå varmeudveksling gennem tilledningen.

Termoelementerne $i$ muren blev udført ved at der $i$ kalksandstenene blev savet rillex langs hele omkredsen i forskellige dybder af de sten, der skulle anvendes ved temperaturmalingerne. Loddestederne på termoelementtrådene blev elektrisk isoleret med pålimning af tynd plastfolie og anbragt i borede huller (se fig. 3.2.6).


Fig. 3.2.6 Kalksandsten monteret med termoelementtrade.

Termoelementtråden blev viklet næsten 1 gang rundt om stenen inden den blev ført ud til overfladen. Den samlede længde termoelementråde $i$ loddestedets dybde var 300 mm . Termoelementerne blev anbragt $i$ væggen $i$ sjettedelspunkterne nærmest overfladerne samt $i$ midten (se fig. 3.2.7).

I lodret plan blev termoelementerne anbragt svarende til at vaggen opdeltes $i$ fire lige store rektangler. I midten af hvert af disse, samt $j$ midten af hele væggen, blev der anbragt målepunkter (se fig. 3.2.8).


Fig. 3.2.7 Placering af målepunkter $\dot{i}$ solvæg med hvid glasuld. (vandret snit). Første måleperiode. Mål i mm.


Fig. 3.2.8 Opstalt af solvæg set fra rum. Anbringelse af målepunkter på solvæg. Mål i mm.

Temperaturen $i$ glasulden blev måt $i$ forskellige dybder. I første måleperiode blev der anbragt termoelementer mellem de enkelte lag af hvid glasuld (fig. 3.2.7). I anden måleperiode blev der kun måt temperaturer på ydersiden og i midten mellem de to lag glasuld (se fig. 3.2.9). Ved solvæggen med mobil isolering blev temperaturen målt på begge sider af dobbeltpladen.


Fig. 3.2.9 Placering af målepunkter i hvid glasuld. Anden måleperiode.

### 3.2.4 Varmestr申msmålere

Varmestrømmen mellem væg og rummet blev målt ved hjælp af varmestrømsmålere (fig. 3.2.10). Disse bestå af en 4 mm tyk plexiglasplade, hvori dex er fræset spor til to modsat snoede spiraler af henholdsvis kobber- og konstantantråd. Efter påspolingen af de to tråde er alle skæringspunkter loddet og rillerne fyldt med Araldit. Endelig er der pa hver side af måleren fræset en rille for at dele de sammenloddede krydsningspunkter i to loddesteder.

Varmestrømsmålerne er fastgjort til væggen med to beslag, der kun punktvis berører varmestrømsmåleren. Målerne er opsat med et tyndt lag varmeledende kit på bagsiden for at sikre god termisk kontakt mellem vægge og målere.


Fig. 3.2.10 Principskitse af varmestrømsmåler (38).


Fig. 3.2.11 Kalibreringskoefficientens temperaturafhængighed (38).

Varmestrømsmålerne er kalibreret $i$ et $\lambda$-apparat med beskyttelsesring. F申lgende kalibreringskonstanter er fundet:

Vestrum: $q V=15,3 \times \operatorname{PV} \times\left(1-\left(t_{V}-20\right) \times 0,0022\right)$
$\phi$ strum : $q \phi=15,2 \times \mathrm{P} \phi \times(1-(t \phi-20) \times 0,0022)$
hvor $q$ er varmestromstæthed ( $\mathrm{W} / \mathrm{m}^{2}$ )
P spænding ( mV )
$t$ varmestrømsmålerens temperatur $\left({ }^{\circ} \mathrm{C}\right)$
v, $\varnothing$ vestrum, $\varnothing$ strum

Temperaturafhængigheden er vist på fig. 3.2.11.

If $\varnothing$ lge (38) kan den relative usikkerhed på målingen af varmestr $\phi$ mmen sættes til 6\%.

### 3.2.5 Måling af solindfald

Til måing af solindfaldet blev anvendt et solarimeter af fabrikatet Kipp \& Zonen CM5. Solarimetret er opsat lodret og sydvendt, således at måleplanet er parallelt med solvæggenes overflader. Måleusikkerheden er opgivet til $\pm 5 \%$, dog minimum $\pm 10 \mathrm{~W} / \mathrm{m}^{2}$. Fejlen ved lodret placering kan være op til 3\% (39).

Målingen blev integreret kontinuert $i$ en integrator tilknyttet dataloggeren.

Solarimetrets udgangssignal er if $\phi$ lge kalibreringsattesten:

$$
\begin{equation*}
\mathrm{P}=0,0129 I_{\text {tot }} \quad(\mathrm{mV}) \tag{3.2.3}
\end{equation*}
$$

Itot er bestråingsstyrken i $\mathrm{W} / \mathrm{m}^{2}$ på solarimeteroverfladen.

For at kunne male hoor meget af solindfaldet, der har kunnet udnyttes, er der installeret en indikator til visning af kuglernes placering. Dataloggeren har scannet et udtag fra det
relæ, som hører til den ventilator der tømmer hulrummet foran solvæggen. Nå der er kugler $i$ hulrummet, er den malte spanding ca. 4 Volt, ellers er den omkring 0 Volt.

## 4．MALLINGER

## 4．1 MÅLERESULTATER

## 4．1．1 Måleperioder

Det tidsmæssige forl申b var at fors申gsopstillingen blev opbygget efterået 1978．I december 1978 blev der foretaget spredte målinger．I 1979 blev der $i$ første måleperiode måt indtil april．I enkelte uger var der funktionsfejl ved dataopsamlin－ gen og mobilisoleringen．Anden maleperiode，hvor solvæggene var blevet modificeret，startede oktober 1979 og sluttede de－ cember 1979．I dette tidsrum var der kun kortvarige afbrydel－ ser af målingerne．Til grundlag for databehandlingen blev et antal måneder med lille fejlhyppighed udvalgt．Det er månederne februar，marts，september og oktober．Den tredje måleperiode var i første halvdel af 1983．I denne periode var solvæggene ombygget，således at absorberoverfladen var selek－ tiv．

## 4．1．2 Måleresultater for solvæg med mobil isolering

Temperaturforl申bet $i$ solvæggen igennem et $d \phi g n$ er optegnet på fig．4．l．1．Om natten er der mobil isolering i hulrummet foran solvæggen．Figuren viser om morgenen kl． 9.00 en ensartet tem－ peratur i varmelageret og et temperaturfald gennem mobilisoler－ ingen．Solen begynder at skinne ca．kl．9．30，og samtidig fjernes mobilisoleringen fra hulrummet．Ved middagstid er tem－ peraturen på ydersiden af væggen steget til $42,5{ }^{\circ} \mathrm{C}$ ．Der er en stor temperaturgradient fra overfladen $o g$ ind $i$ varmelageret． K1． 15.00 er temperaturen på ydersiden af kalksandstensvæggen $\phi$ get til $52^{\circ} \mathrm{C}$ og temperaturen $\mathrm{pa}^{\circ}$ indersiden af solvæggen er фget med 5 K ．Mobilisoleringen fyldes i hulrummet ca．kl． 16．00，og kl． 18.00 er temperaturen pa ydersiden af solvæggen faldet，og der er ret små temperaturgradienter gennem solvæg－ gen．Ved midnatstid er temperturforskellene $i$ varmelageret næsten udjævnet，idet dex mellem inder－og ydersiden af solvæg－ gen er en temperaturforskel på 3 K ．Middeltemperaturstigningen fra kl． 9 om morgenen til midnat er ca． 12 K ．

Ovenstående er en beskrivelse af et typisk temperaturforløb på en dag med godt solskin. På fig. 4.1.2 er temperaturforl $\phi$ bet af varmelagerets overflader og kontrolboxen vist for den samme dag. Det ses, at i tidsrumet 9-9.30 stiger kontrolboxens temperatur brat, og at absorberoverfladens temperatur begynder at stige, idet mobilisoleringen er blevet fjernet fra hulrummet. Mellem kl. 16.00 og 16.30 falder kontrolboxens temperatur brat ned under absorberfladens temperatur. Mobilisoleringen transporteres $i$ dette tidsrum pa plads foran absorberoverfladen. Figuren viser, at på den pågaldende dag er temperaturstigningen på ydersiden og indersiden af varmelageret henholdsvis $34 \mathrm{~K} \circ \mathrm{og}$ 10 K.


Fig. 4.1.l
$24 / 2$ 1979.
Temperaturerne $i$ måleperioderne er gengivet $i$ fig. 4.l.3 ved hjælp af middel-, maksimums- og minimumsværdier. Det ses, at


[^2]den maksimale temperatur på ydersiden af solvæggen er måt til $71,6^{\circ} \mathrm{C}$. På indersiden er den maksimale temperatur måt til $36,4^{\circ} \mathrm{C}$.

| Måleperiode |  | Udelufttemperatur |  |  | Udvendig side af varmelager |  |  | Indvendig side af varmelager |  |  | Rum- <br> luft- |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Middel | Max. | Min. | Middel | Max. | Min. | Middel | Max. | Min. | Middol |
|  | Feb. 79 | -1,2 | 2.9 | -11,4 | 25,5 | 59,1 | 14,7 | 22,7 | 30.8 | 15,0* | 22,0 |
|  | Mar. 79 | 2,6 | 11,5 | -8,1 | 25,6 | 55,7 | 14,7 | 23,7 | 29,8 | 18,3 | 23.1 |
|  | Sep. 79 | 13,3 | 25,0 | 1,8 | 30,5 | 71,6 | 20,6 | 25,5 | 34,5 | 21.8 | 21,1 |
|  | Okt. 79 | 8.7 | 17,1 | -0,5 | 32,9 | 61.1 | 20,8 | 26,2 | 36,4 | 21,3 | 22,7 |

[^3]Fig. 4.l.3 Målte middel-, maksimum og minimumstemperaturer ved solvæg med mobil isolering ( ${ }^{\circ} \mathrm{C}$ ).

For februar 1979 er endvidere optegnet (fig. 4.1.4) den kumulerede temperaturfordeling. Kurverne viser, at for de nedre fraktiler er der en begrænset forskel mellem rumlufttemperaturen og den indvendige overfladetemperatur. Over ca. $40 \%$ af tiden er den indvendige overfladetemperatur højere end rumlufttemperaturen.

Temperaturerne $i$ varmelageret $o g$ dermed ogsa varmeindholdet $i$ starten af måleperioderne er ikke de samme som $i$ slutningen af maleperioden. Disse forskelle kan ækvivaleres med en middelvarmestrøm mellem lager og omgivelser fordelt over hele maleperio den. Disse varmestrømme giver anledning til en korrektion af de med varmestrømsmålerne måle middelvarmestrømme. Korrektionen er reduceret under hensyntagen til den varmeudveksling, der sker på de to sider af varmelageret.

Korrektionen for de enkelte måleperioder er angivet på fig. 4.1.5.

Varmestrømmene mellem solvæggene og det bagved liggende rum er målt．I fig． 4.1 .6 ses middelvarmestr申mene mellem solvæggen med mobil isolering og rummet angivet i 4 måneder，hvor der blev målt．For at give et indtryk af solvæggens isoleringsevne er varmetransmissionskoefficienten ved hjælp af varmetabsreg－ lerne（30）beregnet til $0.4 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ med mobil isolering og til henholdsvis 1,5 og $1,2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ uden mobilisolering $i$ første og anden måleperiode．Til sammenligning er anf申rt varmetabet gen－ nem en normal ydervæg med en $k$－værdi på $0,30 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$ og uden sol－ indfald．Det forudsættes，at temperaturforskellen over væggen er den samme som målt mellem temperaturer i fors $\phi$ gshus og ude－ Iufttemperaturen．I tabellen er også angivet varmetabet gennem den samme væg，hvis den er sydvendt og udsat for solindfald． Dette ville svare til，at solvæggen blev erstattet af en væg med mork overflade med en $k$－værdi pa $0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ ．St申rrelsen af det solindfald，der er transmitteret gennem denne referencevæg er beregnet ud fra det aktuelle solindfald på væggen．Det forudsættes，at referencevæggens overflade har en absorptions－ koefficient på $\alpha=0,85$ ．Varmebalancen for referencevæggen be－ regnes med samme varmeovergangstal som for solvæggene（se ap－ pendix Al）．

Sammenlignes middelvarmestrømmen gennem referencevæggen med den aktuelt maile middelvarmestr $\phi \mathrm{m}$ ，kan udbyttet bestemmes ved，at de to st申rrelser subtraheres fra hinanden．I fig．4．1．6 er udbyttet sammenlignet med det målte solindfald．Ved division af udbyttet med solindfaldet fremkommer en effektivitet på $21-23 \%$ i 1 ．måleperiode，mens den i 2 ．måleperiode er henholds－ vis 28 og $33 \%$ i månederne september og oktober．Forskellen i effektivitet skyldes bl．a．lidt bedre driftsforhold i anden måleperiode，idet der var problemer med kondens på indersiden af dobbeltpladen i 1. måleperiode．Dette medførte，at kuglerne klæbede til kondensvandet，saledes at de skyggede for solind－ faldet．I anden måleperiode var der ikke disse problemer i nævneværdig grad．

Det skal bemærkes，at det $i$ dette afsnit måle udbytte ikke kan nyttiggøres fuldstændigt til nedsættelse af opvarmningsbehovet．


[^4]|  |  | Tempe- <br> ratur, <br> start <br> ${ }^{\circ} \mathrm{C}$ | Temperatur, slut ${ }^{\circ} \mathrm{C}$ | ```Tempe- ratur- forskel K``` | Gennemsnitlig forskel K | Antal <br> dage | Korrek- <br> tion $\mathrm{W} / \mathrm{m}^{2}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Februar | $\begin{aligned} & B \\ & C \\ & D \end{aligned}$ | $\begin{aligned} & 18,5 \\ & 18,2 \\ & 17,8 \end{aligned}$ | $\begin{aligned} & 28,8 \\ & 30,4 \\ & 30,9 \end{aligned}$ | $\begin{aligned} & -10,2 \\ & -12,2 \\ & -13,1 \end{aligned}$ | $-11,8$ | 28 | $-1,4$ |
| Marts | $\begin{aligned} & \mathrm{B} \\ & \mathrm{C} \\ & \mathrm{D} \end{aligned}$ | $\begin{aligned} & 28,8 \\ & 30,2 \\ & 30,8 \end{aligned}$ | $\begin{aligned} & 21,8 \\ & 21,4 \\ & 21,1 \end{aligned}$ | $\begin{aligned} & 7,0 \\ & 8,8 \\ & 9,7 \end{aligned}$ | 8,5 | 31 | 0,9 |
| September | $\begin{gathered} \mathrm{B} \\ \mathrm{C} \\ \mathrm{D} \end{gathered}$ | $\begin{aligned} & 31,8 \\ & 34,0 \\ & 35,0 \end{aligned}$ | $\begin{aligned} & 22,3 \\ & 22,3 \\ & 21,2 \end{aligned}$ | $\begin{array}{r} 9,5 \\ 11,7 \\ 13,8 \end{array}$ | 11,7 | 30 | 1,3 |
| Oktober | B C D | $\begin{aligned} & 22,3 \\ & 22,3 \\ & 22,1 \end{aligned}$ | $\begin{aligned} & 21,4 \\ & 21,2 \\ & 20,9 \end{aligned}$ | $\begin{aligned} & 0,9 \\ & 1,1 \\ & 1,2 \end{aligned}$ | 1,1 | 31 | 0,1 |

Fig. 4.1.5 Korrektion af middelvarmestrøm ved den indvendige side af lager for solvæg med mobil isolering. $B$ og $D$ angiver temperaturer i sjettedelspunkterne, mens $C$ angiver temperatur midt i varmelager.

|  |  | Varmestrømstmethed $\mathrm{W} / \mathrm{m}^{2}$ |  |  |  |  |  | \% |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| $\begin{gathered} 0 \\ 80 \\ .0 \\ -1 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 00 \end{gathered}$ | $\begin{gathered} \text { Måned } \\ 1 \\ 1979 \end{gathered}$ | Beregnet varmetab gennem almindelig nordveg | Beregnet varmetab gennem sortmalet sydveg | Må $1 t$ <br> varmestrøm fra solvæg til rum | Korrektion | Udbytte | So1- <br> indfald | Effektivitet |
| 1 | $\begin{aligned} & \text { FEB } \\ & \text { MAR } \end{aligned}$ | $\begin{aligned} & -6,8 \\ & -6,0 \end{aligned}$ | $\begin{aligned} & -5,8 \\ & -5,2 \end{aligned}$ | $\begin{aligned} & 12,4 \\ & 10,2 \end{aligned}$ | $\begin{array}{r} -1,4 \\ 0,9 \end{array}$ | $\begin{aligned} & 16,8 \\ & 16,3 \end{aligned}$ | $\begin{aligned} & 80,1 \\ & 70,1 \end{aligned}$ | 21 23 |
| 2 | $\begin{aligned} & \text { SEP } \\ & \text { OKT } \end{aligned}$ | $\begin{aligned} & -2,7 \\ & -4,1 \end{aligned}$ | $\begin{aligned} & -1,6 \\ & -2,9 \end{aligned}$ | $\begin{aligned} & 23,1 \\ & 29,2 \end{aligned}$ | $\begin{aligned} & 1,3 \\ & 0,1 \end{aligned}$ | $\begin{aligned} & 26,0 \\ & 32,2 \end{aligned}$ | $\begin{aligned} & 92,4 \\ & 98,5 \end{aligned}$ | 28 33 |

Fig. 4.1.6 Målt middelvarmestrømstæthed fra solvag med mobil isolering til rum sammenlignet med en normal ydervæg med k -værdi på $0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$.

I kapitel 2.2 er detaljeret redegjort for udbyttet på åsbasis ved forskellige udformninger af solvegge.

Temperaturen gennem solvæggen på en dag med godt solskin er vist på fig. 4.1.7. Solindfaldet medfører en relativt stor temperaturstigning $i$ glasulden. Den maksimale temperatur på den viste dag er $72^{\circ} \mathrm{C}$. Temperaturstigningen $i$ varmelageret er beskeden; 2 K på ydersiden.

En oversigt over måle temperaturer er vist på fig. 4.1.8. De maksimale temperaturer i glasulden er $89^{\circ} \mathrm{C}$. De relativt lave temperaturer pa indersiden af varmelageret er udtryk for de begrænsede varmestrømme gennem solvæggen.

En kumuleret fordelingskurve af temperaturerne er vist på fig. 4.1.9. Kurverne viser, at den udvendige overfladetemperatur af lageret aldrig bliver st申rre end rumlufttemperaturen. Af kurverne kan ikke ses nogen markant indflydelse af solindfaldet på den indvendige overfladetemperatur. Temperaturen på den udvendige side af glasulden følger udelufttemperaturen inden for en temperaturforskel på $1,5 \mathrm{~K}$ op til et fraktilniveau på ca. $80 \%$. For hфjere fraktilværdier er temperaturen udvendigt på glasul-
 inde i glasulden er højere end rumlufttemperaturen i $12 \%$ af måleperioden og i dette tidsrum vil solvæggen give et nettovarmetilskud til rummet.

Ved en beregning efter varmetabsreglerne kan varmetransmissionskoefficienten af solvæggen med hvid glasuld bestemmes til henholdsvis 0,31 og $0,36 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ i første og anden måleperiode. Fig. 4.l.l0 viser en sammenligning mellem de måte varmestrømme og en normalt isoleret væg med en $k$-værdi på $0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Varmestr申mmene er korrigeret for forskelle i solvæggens lagertemperatur ved starten og slutningen af måleperioderne. Resultaterne viser, at solvæggen har et positivt udbytte i forhold til referencevæggen med undtagelse af november måned. I denne måned kan det negative udbytte forklares med det begrænsede solindfald og med at referencevæggen har en mindre varmetabskoefficient end solvæggen.

Udbyttet er meget beskedent $i$ forhold til solindfaldet．Det ser dog ud som om udbyttet er st申rre $i$ anden end $i$ første måleperiode（månederne september og oktober），til trods for at solvæggens varmetransmissionskoefficient er st申rre $i$ anden end i første måleperiode．

Dette kan forklares med den mindre massefylde af glasulden $i 2$. måleperiode og dermed，at solstråingen i gennemsnit bliver absorberet dybere inde $i$ glasulden $i 2^{2}$ måleperiode end $i$ ． måleperiode．Resultaterne viser，at der opnås et i begrænset omfang mindre varmetab ved solvæggen med hvid glasuld i forhold til en sort ydervæg med samme isoleringsevne．

Da fig． 4.1 .10 kun omfatter visse af årets måneder，er udbyttet på åsbasis s申gt bestemt i afsnit 2．2．4．



Fig．4．1．7 Temperaturforl申b gennem solvæg isoleret med hvia glasuld．24．februar 1979.

|  | $\begin{gathered} \text { Måned } \\ \text { i } \\ 1979 \end{gathered}$ | Yderside af glasuld |  |  | $\begin{gathered} \text { I glasuld } \\ 19 \mathrm{~mm} \text { fra yderside } \end{gathered}$ |  |  | Midt i glasuld |  |  | Udvendig side af varmelager |  |  | Indvendig side af varmelager |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | mid. | max | $\min$ | mid. | max | min |
| 1 | FEB | 1,2 | 43,8 | $-11,3$ | 9,3 | 88, 8 | $-4.8$ | 12,3 | 63,6 | 2,2 | 16,9 | 21,5 | 11.9 | 17,8 | 21,4 | 12,7 |
|  | MAR | 4,8 | 42,5 | -12,3 | 12,1 | 80,0 | $-5,6$ | 15,4 | 58,7 | 2,8 | 20,3 | 23,4 | 16,0 | 21,3 | 23,6 | 16,2 |
| 2 | SEP | 16,0 | 48,5 | -0,5 | - | - | - | 23,2 | 67,7 | 11,4 | 23,3 | 25,6 | 21,8 | 23,2 | 25,6 | 21,8 |
|  | OKT | 11,5 | 46,8 | $-2,6$ | - | - | - | 21,6 | 69,2 | 10,2 | 22,7 | 28,8 | 19,9 | 22,9 | 24,7 | 21,4 |
|  | NOV | 6,2 | 33,3 | 0,0 | - | - | - | 14,3 | 61,9 | 4,9 | 20,3 | 25,7 | 18,9 | 21,6 | 23,2 | 20,2 |

Fig. 4.l.8 Målte temperaturer ( $O C$ ) i solvæg med hvid glasuld.

Fig. 4.1.9 Kumuleret fordeling af rumluft-og udelufttemperatur, temperatur i granselaget mellem glasuld og polyesterplade, temperatur 19 mm inde i glasulden og udvendig overfladetemperatur af varmelager for solvæg isoleret med hvid glasuld i perioden februar

[^5]|  |  | Middelvarmestrømstathed $\mathrm{W} / \mathrm{m}^{2}$ |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Måned | Beregnet varmetab gennem nordveg | Solindfald | Beregnet varmetab gennem sydveg | Må1t <br> varmetab <br> før <br> korrekt. | Målt <br> varmetab korrig. | Forskel |
| 1 | Februar <br> Marts | $\begin{array}{r} -5,8 \\ -5,8 \\ \hline \end{array}$ | $\begin{aligned} & 30,1 \\ & 70,1 \end{aligned}$ | $\begin{aligned} & -4,8 \\ & -4,9 \end{aligned}$ | $\begin{aligned} & -5,1 \\ & -4,9 \end{aligned}$ | $\begin{aligned} & -4,5 \\ & -4,6 \end{aligned}$ | $\begin{aligned} & 0,3 \\ & 0,3 \end{aligned}$ |
| 2 | September <br> Oktober <br> November | $\begin{aligned} & -3,0 \\ & -4,2 \\ & -5,0 \end{aligned}$ | $\begin{array}{r} 92,4 \\ 98,5 \\ 8,5 \end{array}$ | $\begin{aligned} & -1,8 \\ & -3,0 \\ & -4,9 \end{aligned}$ | $\begin{array}{r} 0,4 \\ -0,5 \\ -5,2 \end{array}$ | $\begin{array}{r} 0,3 \\ -0,8 \\ -5,3 \end{array}$ | $\begin{array}{r} 1,5 \\ 2,3 \\ -0,4 \end{array}$ |

Fig. 4.1.10 Sammenligning mellem middelvarmestrømstathed gennem solvag isoleret med hvid glasuld og det beregnede varmetab for en normalt isoleret ydervæg ( $k=0,3 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$ ) udsat for samme temperaturforhold og solindfald som solveggen. Absorptionskoefficienten for solstraling er for sydvæggen 0,85 og for nordvaggen 0 .

### 4.1.4 Måleresultater for solvægge med selektiv absorberoverflade

Mailinger af temperaturer og varmestrømme er udført i 3 periom der. Resultaterne bygger på de samme målinger som i ref. (20), bortset fra at de her viste resultater bygger pa de fulde maleperioder, hvor der i ref. (20) kun er rapporteret for 3 fjortendagsperioder.

En oversigt over temperaturerne $i$ de to typer solvagge er vist på fig. 4.1.11. I fors申gsrummet bag solvaggen, der har honeycomb i hulrummet mellem absorberoverflade og glas (B), har term mostaten vere indstillet højexe end i det andet forsøgsrum (A). Derved har rumlufttemperaturen $i$ rum $B$ i middel været 1,1 til 1. 4 K højere end $i$ rum $A$. De højeste udvendige overfladetemperaturer af lageret er malt til over $70^{\circ} \mathrm{C}$ i februar/marts, men minimumstemperaturen har været $12^{\circ} \mathrm{C}$ for solvæggen uden honeycomb og $15^{\circ} \mathrm{C}$ for solvæggen med honeycomb. Den indvendige overfladetemperatur har for begge solvagge varieret mellem 16 og $36^{\circ} \mathrm{C}$. Den kumulerede fordeling af temperaturerne i måeperiom den februar/marts for de to solvagge er vist pa fig. 4.l. 12 og fig. 4.1.13. Kurverne viser, at $i$ den pågldende periode er den indvendige overfladetemperatur højere end rumlufttemperaturen i $50 \%$ og $60 \%$ af tiden for henholdsvis væg $A$ og $B$. Ved de nedre
fraktiler på figurerne ses tydeligt temperaturforskellen mellem rumluft og den udvendige side af varmelageret, mens temperaturforskellen mellem rumluften og den indvendige side af lageret er beskeden.

| Måleperiode | Solveg | Udvendig side af lager |  |  | Indvendig side af lager |  |  | Rumluft | Udelufttemperatur |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Middel | Max | Min | Midde1 | Max | Min | Middel | MiddeI | Max | Min |
| 24/2-12/3 | A <br> B | $\begin{aligned} & 23,7 \\ & 27,3 \end{aligned}$ | $\begin{aligned} & 70,9 \\ & 73,3 \end{aligned}$ | $\begin{aligned} & 12,3 \\ & 15,0 \end{aligned}$ | $\begin{aligned} & 21,0 \\ & 23,2 \end{aligned}$ | $\begin{aligned} & 34,5 \\ & 36,4 \end{aligned}$ | $\begin{aligned} & 16,2 \\ & 17,5 \end{aligned}$ | $\begin{aligned} & 19,6 \\ & 20,7 \end{aligned}$ | 2,0 | 2,9 | -5,2 |
| 19/3-5/4 | A <br> B | $\begin{aligned} & 23,2 \\ & 26,3 \end{aligned}$ | $\begin{aligned} & 58,9 \\ & 58,4 \end{aligned}$ | $\begin{aligned} & 12,6 \\ & 16,1 \end{aligned}$ | $\begin{aligned} & 20,6 \\ & 22,7 \end{aligned}$ | $\begin{aligned} & 30,2 \\ & 31,1 \end{aligned}$ | $\begin{aligned} & 16,1 \\ & 18,2 \end{aligned}$ | $\begin{aligned} & 19,3 \\ & 20,6 \end{aligned}$ | 2,5 | 11,3 | $-2,6$ |
| 10/4-1/5 | A B | $\begin{aligned} & 25,9 \\ & 28,3 \end{aligned}$ | $\begin{aligned} & 58,4 \\ & 56,4 \end{aligned}$ | $\begin{aligned} & 14,4 \\ & 17,7 \end{aligned}$ | 22,0 23,8 | $\begin{aligned} & 31,7 \\ & 31,7 \end{aligned}$ | $\begin{aligned} & 16,8 \\ & 19,1 \end{aligned}$ | $\begin{aligned} & 19,6 \\ & 21,0 \end{aligned}$ | 6,7 | 16,8 | -2, 1 |

[^6]

Fig. 4.l. 12 Kumuleret fordeling af rumluft- og udelufttemperatur samt udvendig og indvenaig overfladetemperatur for solvæg med selektiv absorberoverflade (væg A) i perioden 24/2-12/3-83.
Fig. 4.1 .13 Kumuleret fordeling af rumluft- og udelufttemperatur samt udvendig og
indvendig overfladetemperatur af varmelager for solvag (væg B) med selektiv overflade og
honeycomb i perioden $24 / 2-12 / 3-83$.

|  |  | Middelvarmestrømstæthed $\mathrm{W} / \mathrm{m}^{2}$ |  |  |  |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 윲 $\stackrel{1}{c}$ 0 0 0 | Måleperiode | Beregnet varmetab gennem nordveg | Sol- <br> indfald | Beregnet <br> varmetab <br> gennem <br> sort <br> sydvegg | Måt <br> varme- <br> strom uden <br> korrektion | Korrektion af målt varmestrøm | Udbytte | Effek- <br> tivitet <br> \% |
| $\begin{aligned} & \text { A } \\ & \text { B } \end{aligned}$ | $\begin{aligned} & 24 / 2- \\ & 12 / 3 \end{aligned}$ | $\begin{aligned} & -5,1 \\ & -5,5 \end{aligned}$ | 75,3 | $\begin{aligned} & -4,0 \\ & -4,4 \end{aligned}$ | $\begin{aligned} & 14,1 \\ & 17,6 \end{aligned}$ | $\begin{aligned} & -2,0 \\ & -2,6 \end{aligned}$ | $\begin{aligned} & 16,1 \\ & 19,4 \end{aligned}$ | $\begin{aligned} & 21 \\ & 26 \end{aligned}$ |
| A | $\begin{aligned} & 19 / 3- \\ & 5 / 4 \end{aligned}$ | $\begin{aligned} & -5,1 \\ & -5,4 \end{aligned}$ | 75,6 | $\begin{aligned} & -4,0 \\ & -4,3 \end{aligned}$ | $\begin{aligned} & 12,2 \\ & 14,4 \end{aligned}$ | $\begin{aligned} & 0,2 \\ & 0,2 \end{aligned}$ | $\begin{aligned} & 16,0 \\ & 18,5 \end{aligned}$ | $\begin{aligned} & 21 \\ & 24 \end{aligned}$ |
| A | $\begin{aligned} & 10 / 4- \\ & 1 / 5 \end{aligned}$ | $\begin{aligned} & -3,9 \\ & -4,3 \end{aligned}$ | 84,0 | $\begin{aligned} & -2,7 \\ & -3,1 \end{aligned}$ | $\begin{aligned} & 17,2 \\ & 18,0 \end{aligned}$ | $\begin{aligned} & 0,4 \\ & 0,4 \end{aligned}$ | $\begin{aligned} & 19,5 \\ & 20,7 \end{aligned}$ | 23 25 |

Fig. 4.1.14 Målt middelvarmestrømstæthed for solvægge med selektiv absorberoverflade (A) og selektiv absorberoverflade med $V$-korrugeret honeycomb (B) i tre måleperioder. Udbyttet er beregnet $p a ̊$ grundlag af den korrigerede måle varmestrøm og det beregnede varmetab gennem en normal sydvendt ydervæg med en k -værdi på $0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ 。

De måle varmestrømme i de tre måleperioder er vist på fig. 4.1.14. Varmestrømmene fra solvæggen til rummet er korrigeret for at tage hensyn til forskelle i lagertemperaturer fra starten til slutningen af perioden. I alle tre måleperioder er der i gennemsnit en positiv varmestr申m fra solvægggen til rummet. På grundlag af temperaturer og solindfald er varmetabet gennem en normalt isoleret, mørk og sydvendt ydervæg ( $k=0,30 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$ ) beregnet med og uden solindfald. Den sydvendte ydervæg med solindfald er benyttet som referencevæg ved beregning af udbyttet for de to typer solvægge. Ved at dividere udbyttet med solindfaldet er bestemt en effektivitet for solvæggen, der angiver hvor stor en del af solindfaldet der netto tilføres rummet.

Arsagen til at effektiviteten ikke er $100 \%$ skyldes dels optiske tab, dels termiske tab ved at en del af den opsamlede solvarme transmitteres til det fri gennem dæklagskonstruktionen.

Af resultaterne ses, at for de pågældende maleperioder er opnået en effektivitet pà mellem 21 og $26 \%$, og at den storste effektivitet opnas ved solvæggen med honeycomb.

Det er ikke muligt umiddelbart at overføre disse maleresultater til forholdene på åsbasis, men $j$ afsnit 2.3 er vist simuleringer af varmebalancen for solvegge med varierende udformning.

## 4．2 SAMMENLIGNING MELLEM MÅLINGER OG BEREGNINGER

## 4．2．1 Sammenligning mellem målinger og beregninger for solvæg med mobil isolering

Varmebalancen for solvæggen er beregnet ved hjælp af følgende $k l i m a p a r a m e t r e: ~ u d e l u f t t e m p e r a t u r, ~ s o l i n d f a l d, ~ i n d i k a t i o n ~ a f ~$ om der er isolering foran solvæg，rumlufttemperatur og indven－ dig middelstrålingstemperatur．Simuleringen af temperaturerne startes med aktuelle temperaturer $i$ starten af den pågældende måleperiode．Sammenligningerne af temperaturer og varmestr申mme er foretaget månedsvis．Ved beregningerne benyttes de i appen－ dix Al．8．1 angivne beregningsmodeller．

Der er to st申rrelser，som især kan tænkes at være kritiske ved bestemmelse af varmebalancerne．Det er solindfaldet og den ventilation，der sker af hulrummet for mobilisolering．申verst og nederst $i$ dette hulrum er der af hensyn til transporten af kuglerne anbragt ventilationshuller．Luftinfiltrationen gennem disse åbninger er afhængig af arealet og udformningen．Abnin－ gerne er dækket af finmasket trådvæv，hvilket formindsker luftskiftet．Ofte har hulrummet ikke været helt tømt for kug－ ler，saledes at kun hullerne $\phi$ verst $i$ solvæggen er åbne．Ven－ tilation på grund af vindtryk er også vanskelig at bestemme， specielt da vindhastigheden ikke er måt．
på grund af ovenstående er der udført sammenligninger mellem måte og beregnede værdier med forskellige abningsarealer． Varmetabet er beregnet som stammende fra naturlig opdrift med åbningsarealer $i$ både top og bund mellem 0 og halvdelen af hul－ lernes arealer uden hensyn til ristene．

De beregnede temperaturer og varmestrøme gennem solvaggen er sammenlignet med de aktuelt malte．Middeldifferensen og stan－ dardafvigelsen mellem de måte og de beregnede værdier er også angivet（fig．4．2．1）．Maledata fra månederne marts og septem－ ber 1979 er udvalgt，da de repræsenterer to moleperioder med hver sin opbygning af solvæggen．Endvidere har der været en

| MOBIL ISOLERING |  |  | ABNINGSAREAL$\text { AHUL }=3,2 \cdot 10^{-3} \mathrm{~m}^{2}$ |  |  | ABNINGSAREAL$A_{i H}=2,2 \cdot 10^{-3} \mathrm{~m}^{2}$ |  |  | ABNINGSAREAL$\text { AHUL }=1,6 \cdot 10^{-3} \mathrm{~m}^{2}$ |  |  | ABNINGSAREAL$\mathrm{AHUL}=0.0 \mathrm{~m}^{2}$ |  |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Mait | Beregnet | Afvigelse | Standard Afvigeise | Beregnet | Afvig- <br> else | Standara <br> Afvigel.se | Beregnet | $\begin{aligned} & \text { Afrivig- } \\ & \text { else } \end{aligned}$ | Standara Afvigelse | Beregnet | Afvig - else | Standarä <br> Afvigelse |  |
| ¢ | Indv. overfiade | 23,7 | 23.1 | -0,6 | 0.7 | 23.2 | -0,5 | 0,6 | 23.2 | -0,5 | 0,6 | 23,4 | -0,3 | 0,5 | ${ }^{\circ} \mathrm{C}$ |
|  | Inderste lag | 23,9 | 23.4 | -0,5 | 0.7 | 23,5 | -0,4 | 0,6 | 23.6 | $-0,3$ | 0,6 | 23,8 | $-0,1$ | 0,6 | ${ }^{\circ} \mathrm{C}$ |
|  | Midte i vag | 24,6 | 24,2 | -0,4 | 0.9 | 24,4 | -0.2 | 0,9 | 24,5 | -0, i | 0.9 | 24,5 | 0,3 | 1,1 | ${ }^{\circ} \mathrm{C}$ |
|  | Yderste lag | 25,3 | 24,9 | -0,4 | 1,3 | 25,2 | -0,3. | 1,4 | 25,4 | 0.1 | 1,4 | 25,8 | 0,5 | 1,8 | ${ }^{\circ} \mathrm{C}$ |
|  | Udv. overflade | 25.6 | 25.2 | -0,4 | 1,6 | 25,5 | -0,1 | 1,6 | 25,7 | 0.1 | 1,7 | 26,2 | 0,5 | 2,2 | ${ }^{\circ} \mathrm{C}$ |
|  | Varmestrøm | 10,1 | 9.7 | -0,4 | 3,1 | 10,4 | 0,3 | 3,2 | 10,9 | 0,8 | 3.5 | 12,3 | 2,2 | 4,6 | $\mathrm{W} / \mathrm{m}^{2}$ |
| 20-940330000 | Indv. overfiade | 25,5 | 25.2 | -0,3 | 0,5 | 25,2 | -0,3 | 0,4 | 25,3 | -0,2 | 0,4 | 25,4 | -0,2 | 0.4 | ${ }^{\circ} \mathrm{C}$ |
|  | Inderste lag | 26,3 | 26,2 | $-0.1$ | 0,5 | 26,3 | 0,0 | 0,5 | 26,4 | 0.1 | 0.5 | 26,5 | 0,2 | 0.6 | ${ }^{\circ} \mathrm{C}$ |
|  | Micite i væg | 27,9 | 28,3 | 0,4 | 0,9 | 28,4 | 0,5 | 2,0 | 28,5 | 0,6 | 1,0 | 28,7 | 0,8 | 1,2 | ${ }^{\circ} \mathrm{C}$ |
|  | yderste lag | 29,6 | 30, 3 | 0,7 | 1,4 | 30,4 | 0,8 | 1,5 | 30,5 | 0,9 | 1,6 | 30,8 | 1,2 | 1,9 | ${ }^{\circ} \mathrm{C}$ |
|  | Udv. overflade | 30,5 | 31,2 | 0.7 | 1,5 | 31,4 | 0.9 | 1,7 | 31,5 | 1,0 | 1.8 | 31,8 | 1,3 | 2,1. | ${ }^{\circ} \mathrm{C}$ |
|  | Varmestrom | 23,1 | 26,0 | 2,9 | 5.1 | 25,4 | 3,3 | 5,6 | 26,7 | 3.6 | 5.9 | 27,5 | 4,4 | 6,9 | $\mathrm{W} / \mathrm{m}^{2}$ |

Fig. 4.2.1 Sammenligning mellem beregnede og målte middelverdier af temperaturer og varmestromstæthed ved forskellige ảbningsarealer af ventilationshuller.
del solskin i måleperioderne, og mobilisoleringen har fungeret uden driftsstop.

I alle viste tilfælde (fig. 4.2.1) afviger den beregnede middeltemperatur mindre end $1,3 \mathrm{~K}$ fra den måle. Standardafvigelsen mellem temperaturerne er mellem 0,4 og $2,1 \mathrm{~K}$. For temperaturknudepunkter nær den udvendige overflade er der mindst afvigelse ved et åbningsareal mellem 1,6 og $2,2 \cdot 10^{-3} \mathrm{~m}^{2}$ i marts-målingerne. I september-målingerne er der mindst afvigelse ved åoningsarealet på $3,2 \cdot 10^{-3} \mathrm{~m}^{2}$. På den indvendige overflade er der $i$ begge maleperioder mindst temperaturafvigelse ved det mindste åbningsareal.

Gennemsnitsafvigelsen mellem den måte og den beregnede varmestrømstæthed gennem væggen ligger mellem $-0,4$ og $4,4 \mathrm{~W} / \mathrm{m}^{2}$. Standardafvigelsen ligger $i$ intervallet 3.1 og $6,9 \mathrm{~W} / \mathrm{m}^{2}$. Arsagen til de relativt store standardafvigelser må ses i det forhold, at varmeoverf申ringen mellem varmelager og rum er meget afhængig af rumluft- og overfladetemperaturen. Når disse temperaturer svinger, vil der opsta kraftige udsving af varmestrømmen.

Resultaterne tyder på, at det effektive åbningsareals ubestemthed ikke kan forklare hele afvigelsen mellem beregnede og malte værdier. En åsag kan være, at de optiske data er anderledes end forudsat. Dette kan skyldes afsætninger af snavs og st申v fra polystyrenkugler, eller at plexiglasmaterialet har overfladebelægninger og ujævnheder, der mindsker transmissionen, idet der er forudsat samme egenskaber som ved plant plexiglas.

For at unders $\phi$ ge dette er der udført beregninger, hvor det absorberede solindfald er reduceret med op til $10 \%$ (fig. 4.2.2). Det ses, at temperaturer og varmestrømme er følsomme over for små ændringer i solindfaldet. Med undtagelse af den indvendige overflade opnås en formindskelse af differencen ved at reducere den tilførte solstraling med 5\%.

| REDUKTION AF SOLINDFALD |  |  | 0\% REDUKTION |  |  | 5\% REDUKTION |  |  | 10\% REDUKTION |  |  | Enhed |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | Målt | Beregnet | Afvigelse | Standard <br> Afvigelse | Beregnet | Afvig- <br> else | Standard <br> Afvigelse | Beregnet | Afvig- <br> else | Standara Afvigelse |  |
|  | Indv. overflade <br> Midt i vag <br> Ud̄v. overflade <br> Varmestrøm | $\begin{aligned} & 23,7 \\ & 24,6 \\ & 25,5 \\ & 10,1 \end{aligned}$ | $\begin{aligned} & 23,2 \\ & 24,5 \\ & 25,7 \\ & 10,9 \end{aligned}$ | $\begin{array}{r} -0.5 \\ -0.1 \\ 0.1 \\ 0.8 \end{array}$ | $\begin{aligned} & 0,6 \\ & 0,9 \\ & 1,7 \\ & 3,5 \end{aligned}$ | $\begin{array}{r} 23,1 \\ 24,2 \\ 25,3 \\ 9,9 \end{array}$ | $\begin{aligned} & -0,6 \\ & -0,4 \\ & -0,3 \\ & -0,3 \end{aligned}$ | $\begin{aligned} & 0,7 \\ & 0,8 \\ & 1,4 \\ & 2,8 \end{aligned}$ | $\begin{array}{r} 22,9 \\ 24,0 \\ 24,8 \\ 8,8 \end{array}$ | $\begin{aligned} & -0,8 \\ & -0,6 \\ & -0,8 \\ & -1,4 \end{aligned}$ | $\begin{aligned} & 0,8 \\ & 0,9 \\ & 1,4 \\ & 2,9 \end{aligned}$ | $\begin{aligned} & \hline{ }^{{ }^{\mathrm{O}}} \mathrm{C} \\ & { }^{\mathrm{O}} \mathrm{C} \\ & { }^{\mathrm{O}} \mathrm{C} \\ & \mathrm{~W} / \mathrm{m}^{2} \end{aligned}$ |
| $\begin{gathered} \stackrel{0}{0} \\ \text { on } \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{gathered}$ | Indv. overflade <br> Midt i vag <br> UZ̉v. overflade <br> Varmestrøm | $\begin{aligned} & 25,5 \\ & 27,9 \\ & 30,5 \\ & 23,1 \end{aligned}$ | $\begin{aligned} & 25,3 \\ & 28,5 \\ & 32,5 \\ & 26,7 \end{aligned}$ | $\begin{array}{r} -0,2 \\ 0,6 \\ 1,0 \\ 3,6 \end{array}$ | $\begin{aligned} & 0,4 \\ & 1,0 \\ & 1,8 \\ & 5,9 \end{aligned}$ | $\begin{aligned} & 25,1 \\ & 28,1 \\ & 31,0 \\ & 25,2 \end{aligned}$ | $\begin{array}{r} -0,4 \\ 0,2 \\ 0,5 \\ 2,1 \end{array}$ | $\begin{aligned} & 0,5 \\ & 0,8 \\ & 1,3 \\ & 4,4 \end{aligned}$ | $\begin{aligned} & 24,9 \\ & 27,8 \\ & 30,5 \\ & 23,8 \end{aligned}$ | $\begin{aligned} & -0,6 \\ & -0,1 \\ & -0,0 \\ & 0,7 \end{aligned}$ | $\begin{aligned} & 0,7 \\ & 0,6 \\ & 1,0 \\ & 3,2 \end{aligned}$ | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \mathrm{~W} / \mathrm{m}^{2} \end{aligned}$ |
| $\begin{aligned} & \stackrel{9}{2} \\ & \stackrel{1}{4} \\ & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$ | Indv. overflade <br> Midt i vag <br> Udv. overflade <br> Varmestrøm | $\begin{aligned} & 26,2 \\ & 29,4 \\ & 32,9 \\ & 29,2 \end{aligned}$ | $\begin{aligned} & 25,9 \\ & 29,9 \\ & 33,7 \\ & 33,2 \end{aligned}$ | $\begin{array}{r} -0.3 \\ 0.5 \\ 0,8 \\ 4,0 \end{array}$ | $\begin{aligned} & 0,5 \\ & 0,9 \\ & 1,6 \\ & 6,4 \end{aligned}$ | $\begin{aligned} & 25,9 \\ & 29,6 \\ & 33,0 \\ & 31,2 \end{aligned}$ | $\begin{array}{r} -0,3 \\ 0,2 \\ 0,1 \\ 2,0 \end{array}$ | $\begin{aligned} & 0,7 \\ & 0,7 \\ & 1,0 \\ & 4,3 \end{aligned}$ | $\begin{aligned} & 25,4 \\ & 28,9 \\ & 32,4 \\ & 29,2 \end{aligned}$ | $\begin{array}{r} -0,8 \\ -0,5 \\ -0,5 \\ 0,0 \end{array}$ | $\begin{gathered} 0,9 \\ 0,8 \\ 1,2 \\ 3,1 \end{gathered}$ | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & \mathrm{~W} / \mathrm{m}^{2} \end{aligned}$ |

Fig. 4.2. 2 Sammenligning mellem malte og beregnede middelvardier af temperaturer og var-
mestomstathed, nar solindfaldet reduceres. Abningsarealet er 1,6 io-3 ma.

En reduktion på $10 \%$ af det oprindelige solindfald giver i marts en for $\phi$ gelse af middelforskelien．I månederne september og oktober formindskes middelafvigelsen mellem målte og beregnede varmestrømme ved denne reduktion，men det er kun i． 2 ud af 6 tilfælde，at middelafvigelsen formindskes．

Den måte middelvarmestrømstæthed $i$ september og oktober er 23,1 og $29,2 \mathrm{~W} / \mathrm{m}^{2}$ ．Den skønnede ubestemthed pa varmestrømsmå－ lingen er $5 \%$ ，hvilket er ca． $1 \mathrm{~W} / \mathrm{m}^{2}$ 。 Standardafvigelsen mellem den beregnede og den måte varmestrøm er væsentlig st申rre，og den målte middelværdi må derfor sk申nnes at være mere nøjagtig end den beregnede．Det må derfor antages，at den absorberede solstråling er mindre end oprindeligt antaget．Den reduktion i solindfaldet，der giver en middelafvigelse på 0 ，er dog ikke st申rre end hvad der kan forventes，når man tager hensyn til usikkerheden i de optiske data．

Forskellene mellem de beregnede og de måte temperaturer er vist på fig． 4.2 .3 til 4.2 .5 i 10 dages perioder i månederne marts，september og oktober．Kurverne er fra beregninger med abningsareal af ventilationsåbninger på $1,6 \cdot 10^{-3} \mathrm{~m}^{2}$ og med reduktion af solindfaldet．Ud fra kurverne ses en god overens－ stemmelse mellem de måle og de beregnede temperaturer．

## 4．2．2 Sammenligning mellem måinger og beregninger for solvag med hvid glasuld

Sammenligningerne foregå på samme måde som ved mobil isole－ ring．En af de faktorer，der er en vis usikkerhed på，er eks－ tinktionskoefficienten for hvid glasuld．Der er foretaget sam－ menligning med varierende ekstinktionskoefficient for marts må－ ned i 1979 （fig．4．2．6）．

Målingerne viser en gennemsnitlig varmestrømstæthed fra væg til rum på $-4,9 \mathrm{~W} / \mathrm{m}^{2}$ i denne måned．Beregningerne af varmestrømme－ ne viser ved anvendelse af en dobbelt så stor ekstinktionskoef－ ficient som forudsat，at middelafvigelsen mellem malte og be－

Fig. 4.2.3 Sammenligning mellem målte og beregnede temperaturer. Indvendig og udvendig overflade af solvæg med mobil isolering af ekspanderede polystyrenkugler, nederst solindfaldet. $5 \%$ reduktion af solindfald.

0.08


Fig. 2.5 , Sallem malte og beregnede temperaturer. Indvendig or udvendig faldet. $10 \%$ reduktg med mobil isolering af ekspanderede polystyrenkugler, nederst solind

| HVID GLASULD |  |  | EKSTINKTIONSKOEFF.$83 \cdot \mathrm{~m}^{-1}$ |  |  | EKSTINKPIONSKOEFF.$124 \mathrm{~m}^{-1}$ |  |  | EKSTINKTIONSKOEFF.$166 \mathrm{~m}^{-1}$ |  |  | ENHEDER |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Måling | Målt | Beregnet | $\begin{aligned} & \text { Afvig- } \\ & \text { else } \end{aligned}$ | Standard Afvigelse | Beregnet | Afvig- <br> else | Standard Afvigelse | Beregnet | Afvigelse | Standard <br> Afvigelse |  |
| O N $\sim$ $\sim$ n | Indv. overflade Inderste lag Midte i væg Yderste lag Udv. overflade Varmestrøm | $\begin{aligned} & 21,3 \\ & 21,0 \\ & 20,7 \\ & 20,5 \\ & 20,3 \\ & -4,9 \end{aligned}$ | $\begin{aligned} & 20,7 \\ & 20,6 \\ & 20,3 \\ & 20,1 \\ & 19,9 \\ & -3,3 \end{aligned}$ | $\begin{array}{r} -0,6 \\ -0,5 \\ -0,4 \\ -0,4 \\ -0,4 \\ 1,6 \end{array}$ | $\begin{aligned} & 0,6 \\ & 0,5 \\ & 0,5 \\ & 0,5 \\ & 0,5 \\ & 1,8 \end{aligned}$ | $\begin{aligned} & 20,6 \\ & 20,5 \\ & 20,2 \\ & 19,9 \\ & 19,7 \\ & -3,9 \end{aligned}$ | $\begin{aligned} & -0,7 \\ & -0,6 \\ & -0,6 \\ & -0,6 \\ & -0,6 \\ & -0,9 \end{aligned}$ | $\begin{aligned} & 0,7 \\ & 0,6 \\ & 0,6 \\ & 0,7 \\ & 0,7 \\ & 1,5 \end{aligned}$ | $\begin{aligned} & 20,6 \\ & 20,4 \\ & 20,1 \\ & 19,8 \\ & 19,6 \\ & -4,2 \end{aligned}$ | $\begin{array}{r} -0,7 \\ -0,6 \\ -0,6 \\ -0,7 \\ -0,7 \\ 0,6 \end{array}$ | $\begin{aligned} & 0,7 \\ & 0,6 \\ & 0,7 \\ & 0,8 \\ & 0,8 \\ & 0,8 \end{aligned}$ | $\begin{aligned} & { }^{\circ} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\mathrm{O}} \mathrm{C} \\ & { }^{\circ} \mathrm{C} \\ & { }^{\mathrm{O}}{ }^{\circ} \mathrm{C} \\ & \mathrm{~W} / \mathrm{m}^{2} \end{aligned}$ |
|  | Glasuld, inderst. 5 <br> Glasuld - " -, 6 <br> Glasuld, midt, 8 <br> Glasuld, yderst, 9 | $\begin{aligned} & 19,7 \\ & 18,8 \\ & 15,6 \\ & 12,1 \end{aligned}$ | $\begin{aligned} & 19,5 \\ & 17,8 \\ & 13,9 \\ & 11,1 \end{aligned}$ | $\begin{aligned} & -0,2 \\ & -1,1 \\ & -1,7 \\ & -1,0 \end{aligned}$ | $\begin{aligned} & 0,4 \\ & 1,3 \\ & 2,2 \\ & 2,8 \end{aligned}$ | $\begin{aligned} & 19,2 \\ & 17,1 \\ & 12,9 \\ & 10,4 \end{aligned}$ | $\begin{aligned} & -0,6 \\ & -1,7 \\ & -2,7 \\ & -1,8 \end{aligned}$ | $\begin{aligned} & 0,6 \\ & 1,9 \\ & 3,3 \\ & 4,0 \end{aligned}$ | $\begin{array}{r} 19,0 \\ 16,8 \\ 12,3 \\ 9,8 \end{array}$ | $\begin{aligned} & -0,7 \\ & -2,0 \\ & -3,3 \\ & -2,3 \end{aligned}$ | $\begin{aligned} & 0,8 \\ & 2,4 \\ & 4,4 \\ & 5,2 \end{aligned}$ | $\begin{gathered} { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \\ { }^{\circ} \mathrm{C} \end{gathered}$ |

Fig. 4.2 .6 Sammenligning mellem beregnede og malte værdier af temperaturer og var-
mestrømstæthed. Numrene efter malepunkterne i glasuld henviser til fig. 3.2 .7 .
regnede vardier er på $0,6 \mathrm{~W} / \mathrm{m}^{2}$ ．Standardafvigelsen er $0,8 \mathrm{~W} / \mathrm{m}^{2}$ ． Temperaturerne pà ydersiden af lageret kan med samme ekstink－ tionskoefficient simuleres med en afvigelse，der i middel for de tre måneder er mellem $-0,7 \mathrm{~K} \mathrm{og}-0,6 \mathrm{~K}$ ．De tilh申rende stan－ dardafvigelser ligger mellem $0,6 \mathrm{og} 0,8 \mathrm{~K}$ ．Temperaturerne $i$ glasulden viser st申rre afvigelser mellem målte og beregnede vardier．Dette kan skyldes de store temperaturgradienter kom－ bineret med，at der er nogen ubestemthed pa termoelementernes placering i glasulden．Desuden kan st申rre fugtindhold end for－ udsat，samt at glasuldens varmekapacitet ikke er medregnet， også spille en rolle．

Sammenligningen viser nogen usikkerhed på simuleringen af målingerne，når der sammenlignes med den måle varmestrøm． Dette skyldes bl．a．．at varmestrømmen igennem væggen er beske－ den $i$ forhold til solindfaldet på væggen．

En sammenligning af temperaturer er vist på fig．4．2．7．Den anvendte ekstinktionskoefficient er $83 \mathrm{~m}^{-1}$ ．

## 4．2．3 Sammenligning mellem målinger og beregninger for solvag med selektiv absorberoverflade

Denne solvagstype adskiller sig fra de foregående ved，at den langb申lgede strålingsudveksling $i$ luftspalten foran varmelage ret er vasentlig reduceret på grund af den selektive absorber－ overflade．

Målingerne vil derfor vare velegnede til kontrol af den konvek－ tive varmeovergang mellem de to parallelle flader i den lodret－ te spalte．Derfor er der i det følgende foretaget sammenlig－ ninger med forskellige formler for konvektiv varmeovergang i en luftspalte（se afsnit Al．2．1）．

Forudsætningerne for beregningerne er de aktuelle data fra forspget som beskrevet i afsnit 3．1．9 og ref．（20）．

Indvendig og udvendig


Den konvektive varmeovergang er beregnet med 3 forskellige me－ toder a）Niemanns metode（44），der er benyttet i simuleringerne i afsnit 2，b）El Sherbinys metode（46）og c）Jakobs metode （45）．

En sammenligning mellem målinger og beregninger er vist på fig． 4．2．8．

Det ses，at metode c）giver den bedste overensstemmelse mellem middelværdier af malinger og beregninger．Sammenlignes metode a）$o g$ c）er den beregnede varmestrom efter metode c） 16 til 22 \％ større end beregnet efter metode a）．Den tilsvarende konvektive varmeovergang er for de aktuelle temperaturforhold ca．15\％ st申rre ved metode $c$ ）end ved metode a）．Det ses，at varmeba－ lancen for solvæggen er meget $f \varnothing l$ som for andringer $i$ varmeover－ gangsforholdene．

Standardafvigelserne bliver ikke reduceret $i$ samme grad som forskellene mellem maile og beregnede middelværdier，hvis me－ tode c）benyttes $i$ stedet for $a)$ ．For nogle værdiers vedkom－ mende er standardafvigelsen større ved metode $c$ ）end ved metode a）．

Alligevel tyder måingerne på，at den konvektive varmeovergang er mindre end antaget if申lge de to metoder a）og b）．En for－ klaring kan være，at de fors申g，som beregningsmetoderne til bestemmelse af konvektion bygger pà，har haft væsentlig mindre fysiske dimensioner end ved de her udførte forsøg．

Forholdet mellem højde af hulrum og spaltevidde kaldes sidefor－ holdet．Er sideforholdet lille，vil tendensen til at der fore－ kommer hvirvelstrømme af luft fra den varme side af spalten til den kolde side være udpræget，mens ved store sideforhold vil tendensen være begrænset．

Ved forsøgene，der ligger til grund for formlerne，har sidefor－ holdet været lille ved spaltevidder，der svarer til de i dette fors申g anvendte．I dette fors $\phi \mathrm{g}$ er sideforholdet 13 ，og dette


ma anses for at være relativt stort．Man ma derfor forvente，at der dannes to grænselag，der kun $i$ begrænset omfang danner hvirvelstrømme，og dette forhold giver en reduceret konvektiv varmeovergang．Dette kan forklare，at den bedste overensstem－ melse opnås ved anvendelse af Jakobs metode，der giver den mindste konvektive varmeovergang ved et givet Rayleightal．Det er dog ikke muligt at konkludere，at Jakobs metode altid b申r anvendes，fx kan varmeovergangen ved den udvendige overflade i de udf申rte fors $\phi$ g være mindre end antaget $i$ beregningerne．

I beregningerne $i$ afsnit 2 er der forudsat en spaltevidde på 0.03 m ，mens spaltevidden $i$ fors $\phi$ get er 0.15 m ．Dette giver et Rayleigh tal i beregningerne，der er 125 gange mindre end i forsøgene ved samme temperaturer af overfladerne．Derfor kan de ovennævnte erfaringer ikke overføres til de $i$ afsnit 2 udførte beregninger．

For at kunne vurdere konsekvensen af ændrede varmeovergangsfor－ hold er udført sammenligninger med konstante varmeovergangs－ koefficienter．I de sammenligninger，der er vist på fig． 4．2．9，er $i$ det ene tilfælde forudsat，at varmeovergangen er beregnet som $i$ varmetabsreglerne．Isolansen mellem absorber－ overfladen og det fri er $i$ dette tilfælde bestemt til 0,51 $m^{2} K / W$ 。

I det andet tilfælde er varmeovergang mellem den udvendige side af lageret og udeluften bestemt，saledes at den malte middel－ varmestrøm nogenlunde svarer til den beregnede．

Resultaterne viser，at hvis varmeovergangstallet mellem lageret og det fri er henholdsvis $11 \%$ og $24 \%$ st申rre i de to maleperio－ der end beregnet efter varmetabsreglerne，opnås en god overens－ stemmelse mellem middelværdierne af bade varmestr申mme og tempe－ raturer．Standardafvigelserne er derimod større end ved bereg－ ningerne med variable overgangstal．

En sammenligning mellem måle og beregnede temperaturer er vist grafisk på fig．4．2．10．Kurverne viser god overensstemmelse


mellem målte og beregnede værdier. Der er dog en tendens til, at de malte temperaturer er lidt højere end de beregnede i perioder uden solindfald.

Sammenfattende kan konkluderes at udbyttet ved målingerne er 13-19\% st申rre end det umiddelbart var ventet. Dette må hovedsagelig skyldes et lavere konvektivt varmeovergangstal. Ved at benytte en alternativ beregningsmetode opnås en bedre overensstemmelse mellem måinger og beregninger. Erfaringerne kan dog ikke overf申res, hvis afstanden mellem absorberoverflade og glas er væsentlig mindre end i forsøgene.

En solvæg vil. $i$ perioder have en lavere temperatur end rumluften. Er solvæggen placeret sailedes at den ikke rammes af direkte solstråing i vintermaneder med en lav solh申jde, er der en potentiel risiko for, at der opstå kondensproblemer.

Først kan solvæggens kondensrisiko vurderes under forudsætning af, at der ikke er solindfald. Forudsættes en solvæg med en selektiv absorberoverflade, vil lagerets udvendige overflade normalt være det mest kritiske punkt på grund af metalfolien, der er påklæbet ydersiden af varmelageret. I de følgende beregninger forudsættes folien uendelig damptæt.

Benyttes varmetabsreglerne (30) til bestemmelse af de isolanser, der indgår $i$ solvæggen på samme made som i fig. 2.3.4. og forudsættes, at solvæggen har 1 lag glas, selektiv absorberoverflade og varmelager af beton, fas at den samlede isolans af solvæggen er $M_{\text {tot }}=0,77 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ mens isolansen mellem rumluften $o g$ den udvendige side af lageret er $M_{1}=0.26 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$. Forholdet mellem temperaturdifferensen mellem rumluft og udvendig overflade af lager $i$ forhold til den samlede temperaturdifferens mellem udeluft og rumluft er

$$
\frac{M_{1}}{M_{\text {tot }}}=0,34
$$

Ved anbringelse af dampspærrer i lette ydervægskonstruktioner angives ofte, at der kan tillades anbragt isolering svarende til, at $1 / 3$ af den samlede isolans $i$ konstruktionen findes pa den indvendige side af dampspærren. Den ovenfor beskrevne solvæg vil kunne honorere dette krav for den udvendige side af varmelageret.

Benyttes varmetabsreglerne til beregning af varmetransmission gennem solvæggen, kan den udelufttemperatur ( $t_{u}$ ), hvor der skex kondens på en overflade, bestemmes af

$$
t_{u}=t_{\text {luft }}-\left(t_{\text {luft }}-t_{s}\right) \frac{M_{t o t}}{M_{1}}
$$

```
hvor t }\mp@subsup{t}{\mathrm{ luft er rumlufttemperaturen}}{
    t
    er dugpunktstemperaturen for rumluften
```

Denne ligning er benyttet til at optegne figur 4．3．1．Figuren viser ved hvilken udelufttemperatur，der vil ske kondensdan－ nelse som funktion af den relative luftfugtighed af rumluften， der forudsættes at have en temperatur på $21^{\circ} \mathrm{C}$ ．

For solvæggen er tegnet en kurve for den udvendige side af var－ melageret．For vinduer er optegnet tilsvarende kurver for den indvendige side af en to－og trelagsrude（7）．Af figuren ses， at med disse forudsætninger er kondensrisikoen for solvæggen mindre end for en tolagsrude，men st申rre end for en trelags－ rude．

Det mest kritiske tidspunkt for solvæggen mht．kondens vil være tidsrummet efter montering af folien，hvor lageret，der fx er af beton，har et h申jt fugtindhold．Efterhånden vil betonen udt申rre，da lagerets temperatur i gennemsnit vil være h申jere end rumluftens．Endvidere vil lagerets temperatur i praksis yderst sjældent komme ned pa den stationære ligevægtstempera－ tur，da der de fleste dage vil være et diffust solindfald，som hæver lagerets temperatur over ligevægtstemperaturen．Dette underst申ttes af malingerne（afsnit 4．1．4），hvor den lavest malte udvendige overfladetemperatur af lageret for de egentlige solvægge er måt til $12^{\circ} \mathrm{C}$ ved en rumluftemperatur på $19^{\circ} \mathrm{C}$ og en udelufttemperatur på $-4^{\circ} \mathrm{C}$ ．

Anvendes materialer til varmelageret，der giver en for申get iso－ lans mellem rumluften og den udvendige side af varmelageret， kan den $\phi$ gede kondensrisiko reduceres ved at for $\phi$ ge antallet af dæklag．

Sammenfattende kan konkluderes，at en solvæg kan udformes saledes，at der ikke kan ventes kondensproblemer，hvis absor－ berfolien monteres på et hensigtsmæssigt tidspunkt af året，og hvis fugtforholdene i rummene kan anses for at være normale．


Fig: 4.3.1 Sammenligning mellem rumluftfugtighed ved $21^{\circ} \mathrm{C}$ og minimal udelufttemperatur, der må forekomme for at kondensdannelse kan undgås. For solvæggen er forudsat et lag glas og selektiv absorberoverflade. Kurverne er sammenlignet med 2 og 3-lags ruder.

I projektet er der uaført målinger af varmestrømme og temperaturer, som viser, at solvægge kan anvendes med positivt udbytte.

For solvæggen med mobil isolering er den maksimale temperaturvariation $i$ l $\quad$ bet af et d $\alpha$ gn med klart solskin om dagen målt op til 43 K på ydersiden af varmelageret. på indersiden af varmelageret er temperaturvariationen op til 11 K i døgnet.

Den maksimale temperatur på ydersiden af varmelageret er måt til $72^{\circ} \mathrm{C}$ på ydersiden og til $36^{\circ} \mathrm{C}$ på indersiden af varmelageret.

I februar måned er der måt en gennemsnitlig varmestrøm fra solvæggen til rummet på $11 \mathrm{~W} / \mathrm{m}^{2}$. Til sammenligning vil det gennemsnitlige varmetab gennem en normalt isoleret sydvendt ydervæg være $6 \mathrm{~W} / \mathrm{m}^{2}$, forudsat at væggen har en k -værdi på $0,3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ og er udsat for samme ude- og rumlufttemperaturer som solvæggen. I de udførte målinger varierer effektiviteten m.h.t. udnyttelse af solindfaldet mellem 21 og $33 \%$.

I den anden type solvæg, isoleret med hvid glasuld, er der måt temperaturer på op til $89^{\circ} \mathrm{C}$ i en afstand af 20 mm fra ydersiden af elementet med hvid glasuld. Den gennemsnitlige varmestr $\phi \mathrm{m}$ fra denne solvægstype til rummet er negativ i de måneder, hvor der er målt, dog med undtagelse af september. Varmetabet er dog, om end $i$ begrænset omfang, mindre end ved en mørk, sydvendt ydervæg isoleret med almindelig mineraluld af samme tykkelse. Udformningen må karakteriseres som ikke særlig velegnet som solvæg.

Der er ligeledes udført fors申g med en tredje og fjerde type solvæg, begge uden mobil isolering men med selektiv absorberoverflade. I begge typer er anvendt et dæklag af glas, men i den fjerde type er der i hulrummet anbragt V-korrugeret honeycomb af plastfolie. Med begge typer er der udført målingex i
vintermåneder, og der opnås effektiviteter på mellem 21 og 26\%, hvilket er sammenligneligt med solvæggen med mobil isolering.

I projektet or udviklet en edb-beregningsmodel til simulering af varmestrømme og temperaturer for solvægge. Sammenligninger mellem beregningsmodellen og målingerne viser en rimelig god overensstemmelse (kap. 4.2).

Beregningsmodellen er benyttet til at beregne temperaturer og varmebalancer for en solvæg indbygget $i$ et parcelhus (kap. 2.2).

Udbyttet er defineret som den reduktion af en bygnings opvarmningsbehov, der opnås ved at anvende en solvæg i stedet for en normalt isoleret ydervæg. For solvæggen med mobil isolering, der er udformet som $i$ fors申gene, bortset fra at varmelageret er af beton, viser beregningerne, at udbyttet for solvæggen varierer mellem 60 og $145 \mathrm{kWh} / \mathrm{m}^{2}$ å ved en række variationer af bygningens udformning.

Udbyttet af en solvæg er ca. $30 \%$ st申rre, hvis den er placeret i en bygning med lille varmeakkumuleringsevne (let rummodel) fremfor en bygning med stor varmeakkumuleringsevne (tung rummodel).

Endres bygningens opvarmningbehov, ændres også udbyttet af en solvæg. Udbyttet reduceres med ca. $30 \%$ ved at ændre rummodellen fra $B R-82$ til lavenergi rummodellen.

Ved anvendelse af en $27 \mathrm{~m}^{2}$ solvæg er det ifølge beregningerne muligt at reducere opvarmningsbehovet med mellem 25 og 40\%.

En solvægsudformning uden mobil isolering er også undersøgt. Solvæggen har et eller flere dæklag af glas og der er forudsat anvendt en selektiv absorberoverflade, som har en lav emissionskoefficient for langbølget stråing.

Med denne udformning er beregnet，at der ved anvendelse af et lag almindeligt glas kan opnås omtrent samme udbytte som ved den mobilt isolerede solvæg anvendt i fors申gene．Endres dæklagskonstruktionen fra 1 drelag af almindeligt glas til 3 lag jernfrit glas，vil udbyttet kunne $\phi$ ges med $40 \%$ ．

Varmelagerets betydning er også unders申gt．Er dette af beton， vil den optimale varmelagertykkelse være mellem 0，2 og 0，4 m． Anvendelse af vand som varmelagermateriale vil ved en tykkelse på $0,2 \mathrm{~m}$ фge udbyttet med $9 \% \mathrm{i}$ forhold til et betonlager af samme tykkelse．Anvendelse af massiv，tung tegl i stedet for beton vil mindske udbyttet med ca．11\％．

Betydningen af horisontafskærmning er også unders申gt．Små horisontafskærmninger har kun en beskeden betydning．Reduktio－ nen af udbyttet er ca． $4 \%$ ved en horisontafskærmning på $5^{\circ}$ ， mens reduktionen er $14 \%$ ved en afskærmning pa $10^{\circ}$ ．

Beregningsmodellen er anvendt til at beregne udbyttet af en solvæg isoleret med hvid glasuld．Det kan ventes，at der kan opnås et udbytte på op til ca． $20 \mathrm{kWh} / \mathrm{m}^{2}$ år．

Endelig er ændringer i．opvarmningsbehovet beregnet som funktion af absorptionskoefficienten for en sydvendt，normalt isoleret ydervæg med en $k$－værdi på $0,3 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ ．Ved at $\phi \mathrm{ge}$ absorptions－ koefficienten fra 0,42 til 0,97 mindskes opvarmningsbehovet med $8 \mathrm{kWh} / \mathrm{m}^{2} \mathrm{a}$ ．De to absorptionskoefficienter svarer til en hen－ holdsvis hvid og sort overflade．

Beregningerne viser，at det ved anvendelse af solvægge er mu－ ligt at opretholde rumlufttemperaturerne inden for de tilladte grænser $i$ opvarmningssæsonen udelukkende ved ekstra ventila－ tion．

Som et udtryk for det termiske indeklima er antallet af halv－ timer med temperaturer over $25^{\circ} \mathrm{C}$ i månederne oktober til april beregnet．

Antallet af disse halvtimer med hoje temperaturer varierer mel lem 0 og 13 ved et solvægsareal på $27 \mathrm{~m}^{2}$, hvis der ventileres med et ekstra luftskifte på op til $4 \mathrm{~g} / \mathrm{h}$, nảr fumlufttemperaturen er ved at komme over $24^{\circ} \mathrm{C}$. Sammenlignes med vinduer, der har samme glasareal som solvaggene, og er forholdene $i$ purigt de samme, фges antallet af halvtimer til mellem 120-500. Det store antal halvtimer med hoje temperaturer er udtryk for, at andre foranstaltninger som fx afskærmning i opvarmningssasonen er nødvendige ved anvendelse af store vinduesarealer. Om sommeren kan det være nødvendigt ogsa at afskærme solvægge mod uønsket solindfald.

Udbyttet af solvægge og vinduer er afhængigt af den varmeakkumuleringsevne, der er $i$ den bygning, som solvæggen anvendes i. Den lette og tunge rummodel må anses for at angive de grænser, der kan forekomme $i$ almindelige bygninger. I nedenstionde fig. 5.1 er ændringen af opvarmningsbehovet beregnet ved at erstatte en normalt isoleret ydervæg med vinduer uden mobil isolering, vinduer med mobil natisolering eller solvægge.

|  | Udbytte$\mathrm{kWh} / \mathrm{m}^{2} \mathrm{gr}$ |  |
| :---: | :---: | :---: |
|  | Let <br> rum- <br> model | Tung <br> rum- <br> model |
| Vinduer, 2 lag glas | $-86$ | 8 |
| Vinduer, 2 lag glas og mobil natisolering for vinduer $\left(\mathrm{k}=0.48 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}\right)$ | $-22$ | 67 |
| Mobilisolerede solvægge som i fors $\phi \mathrm{g}$, dog betonlager | 134 | 106 |

Fig. 5.1 Reduktion af opvarmningsbehov pr. glasareal af sydvendt vindue eller solvag ved at erstatte en normalt isoleret ydervæg med $18 \mathrm{~m}^{2}$ vindue eller solvægsareal. Forudsætninger: BR-82 rummodel, iфvrigt se fig. 2.1.20, 2.1.21 og 2.2.1.

Af figuren ses，at anvendelse af solvægge kan give et st申rre udbytte end vinduer．Der er markante forskelle mellem udbyttet ved den lette og den tunge rummodel．Ved vinduer er udbyttet st申rst ved en tung rummodel，mens det er omvendt ved solvægge． Dette kan forklares med，at solvæggen også kan akkumulere varme fra brugsvarme og solindfald gennem vinduer．

Resultaterne viser，at der er realistiske muligheder for at anvende solvægge $i$ Danmark．Endvidere ses，at der eksisterer en række muligheder for at udvikle og optimere udformningen af solvægge，og at det vil være фnskeligt også at udf申re af－ prøvninger i normale bygninger．
(1) Trombé, F., J.F. Robert et al. Concrete walls to collect and hold heat. Solar Age. August 1977.
(2) Sebald, A.V. et al. Performance Effects of Trombé wall Control strategies. Solar Energy, 23, pp. 479-487, (1979).
(3) Rey, Y., J.B. Gay \& A. Faist. Measurements and modellisation of a Trombé wall. Ecole Polytechnique Fédérale. Lausanne, Switzerland. Presented at Solar World Forum, ISES Congress, Brighton, England, 23-28 August 1981.
(4) Carter, C. The Trombé Solar Wall in Canada, Trent University, Ontario, Canada. Presented at Solwest 80, Joint Solar Conference, Vancouver, August 5-10, 1980.
(5) Paludan-Muiller, C.

Unders申gelse af en selvcirkulerende luftsolfanger indbygget i sydfacaden, eksamensarbejde, Laboratoriet for Varmeisolering, DTH, 1982.
(6) Olsen, L.

Resultater fra beregning af solvægge under danske klimaforhold. Laboratoriet for Varmeisolering, DTH, april 1978.
(7) Vest Hansen, T. Undersфgelser vedrørende højisolerede vindueskonstruktioner med mobil natisolering. Laboratoriet for Varmeisolering, $D T H$, meddelelse $n r .45$, januar 1977.
(8) Lebens, R.M.

An investigation of passive solar heating and cooling, ARCAED, The Commission of the European Communities Direc-torate-General XII for Research Science and Education. July 1979 .
(9) Sabady, P.R.

Haus \& Sonnenkraft. Helion Verlag, Zurich. Februar 1976.
(10) Mokray, G. Morse's air heater: An early passive system. Proceedings of the 4 th National Passive Solar Conference, Kansas City, ISES, 1979.
(11) Butti, K. and J. Perlin. A Golden Thread, 2500 Years of Solar Architecture and rechnology. Cheshire Books / Van Nostrand Reinhold, 1980.
(12) Anderson, B. The solar home book, heating, cooling and designing with the sun. Brick House Publishing Co., Inc., 1976.
(13) Swet, C.J.

Phase change storage in passive solar architecture. Prom ceedings of the 5 th National Passive Solar Conference. Amherst, October 1980.
(14) Pellegrini, G., R. Colombo. Building components with integrated latent heat storage, First E.C. Conference on Solar Heating, Proceedings of the International Conference held at Amsterdam, D. Reidel Publishing Company. April 30-May 4. 1984.
(15) Hyde, J.C.

Performance of Night Insulation and Selective Absorber Coatings in LASL Test Cells. Proceedings of the 5 th $\mathrm{Na}-$ tional Passive Solar Conference, Amherst, October 1980.
(16) Ribbans, R.C.

Teflon R FEP Film as inner glazing in flat plate solar collectors. Proceedings of "Solar Glazing", 1979, Topical Conference, Prowler, D. (ed.), June 22, 1979.
(17) Lampert, C.M.

Solar Optical Materials for Innovative Window Design, Energy Research, Vol. 7, pp. 359-374 (1983).
(18) Bähr, A., H. Piwecki.

Passive solar heating with heat storage in the outside walls. Colloque Solaire International, Experimental research with passive solar houses, Nice, France. 11-12 December 1980 .
(19) Goetzberger, A. et al. Transparent Insulation system for passive solar energy utilization in buildings.
First E.C. Conference on Solar Heating, Proceedings of the International Conference held at Amsterdam, D. Reidel Publishing Company. April 30-May 4, 1984.
(20) Olsen, L. \& C. Paludan-Muiller.

Transparent Insulation for Thermal Storage walls.
Thermal Insulation Laboratory, Technical University of Denmark, Meddelelse nr. 142. July 1983.
(2I) Boklund, H.-G. Reflekterer kortvågigt solljus men absorberer det långvariga. Energimagasinet, Sverige 1/1983.
(22) Brochure fra Airglass AB, Byggaregränd $1, S-27500$ Sjöbo, Sweden.
(23) Shurcliff, W.A.

Thermal Shutters and Shades. Brick House Publishing Company Inc., Andover, Massachusetts, 1980.
(24) de Wit, M.N., J.L.M. Hensen.

High Performance passive Solar Heating System with Heat Pipe Energy Transfer. First E.C. Conference on Solar Heating, Proceedings of the International Conference held at Amsterdam, D. Reidel Publishing Company. April 30-May 4. 1984.
(25) SERI (Solar Energy Research Institute). SERI Research Investigates Electrochromic Coatings for Windows. In Review, A SERI Research Update, September/October 1984, Volume VI, No 9.
(26) Lund, H.

Program BA4 for Calculation of Room Temperatures and Heating and Cooling Loads. Users Guide, Report no. 44, Thermal Insulation Laboratory, Technical University of Denmark. 2. ed. 1979.
(27) Andersen, B.

Aygningers varmebalance. Danmarks Ingeni申rakademi, København 1972.
(28) Becher, P.

Varme- og ventilation. 4. udg., Teknisk Forlag, København, 1971.
(29) Bygningsreglement 1982.

Publikation $n r$. 54, Byggestyrelsen, dec. 1982.
(30) Beregning af bygningers varmetab. Dansk Ingeni申rforening. Dansk Standard DS 418, 4. udgave. 1977.
(31) Lund, H. Metoder til beregning af det termiske indeklima. Forelæsningsnotat, Varmeisolering III. Laboratoriet for Varmeisolering, DTH.
(32) Aasbjerg Nielsen, A., M.R. Byberg, R.G. Djurtoft, B. Saxhof. Lavenergihusprojektet under Handelsministeriet. 6 Lavenergihuse i Hjortekær, Statusrapport l. Laboratoriet for Varmeisolering, DTH, Medd. nr. 84. Juni 1979.
(33) Johnsen, K., A. Nielsen.

Beregning af energiforbrug i småhuse, SBI-Rapport 148, Statens Byggeforskningsinstitut, 1984.
(34) Referenceåret - Vejrdata for VVS-beregninger. Statens Byggeforskningsinstitut. Rapport nr. 89. 1974.
(35) Vejrdata for vVs og energi. Dansk referenceå TRY. SBI rapport 135, Statens Byggeforskningsinstitut, 1982.
(36) Ravn-Jensen, L. Vinduer og energi. Laboratoriet for Varmeisolering, DTH. Medd. nr. 55. April 1977.
(37) Maxorb solar foil brochure Era Wiggin Electrochemical Products. Publication No 3787, Oct. 1983.
(38) Korsgaard, V., Th. Lund Madsen.

Isoleringsevnen af nogle typiske ydervægge udsat for det naturlige klima. Laboratoriet for Varmeisolering, DTH, Medd. nr. 8, 1964.
(39) Petersen, E.

Solstråing og dagslys - malt og beregnet. Rapport nr. 34. Lysteknisk Laboratorium, Oktober 1982.
(40) Carslaw, H.S., J.C. Jaeger. Conduction of Heat in Solids. Oxford University Press. 1959.
(41) Glent Ventilation, Glent \& Co. A/S. 1970.
(42) Bisgaard, N.F.

Opvarmning og ventilation. 1 Varmetransmission. Akademisk Forlag, København 1972.
(43) Gröber, Erk, Grigull.

Die Grundgesetze der Wärmeübertragung. Springer-Verlag, Berlin, Göttingen, Heidelberg, 1963.
(44) Niemann, H.

Die Wärmeübertragung durch naturliche Konvektion in spaltförmigen Hohlräumen. Gesundh.-Ing. 69 (1948) 224/228.
(45) Jakob, M.

Free heat convection through enclosed plane gas layers. Journal of Heat Transfer, Vol. 68, pp. 189-193, (1946).
(46) El Sherbiny, S.M. et al.

Heat Transfer by Natural Convection Across Vertical and Inclined Air Layers. Journal of Heat Transfer, Vol. 104; pp. 96-102. (Feb. 1982).
(47) Weston Sears, F . Thermodynamics, The kinetic theory of gases, and statistical mechanics. Addison-Wesley Publishing Company Inc.. 1970.
(48) Grimmer, D.P.

Theoretical considerations in the use of small passive solar testboxes to model the thermal performance of passively solar-heated building designs. Solar Energy, Vol. 22, pp. 343-350, (1979).
(49) Balcomb, J.D. and R.D. McFarland. Simulation analysis of passive solar heated buildings the influence of climate and geometry on performance.
The 1977 Annual Meeting Am. Section ISES, Orlando, Florida, 6-10 June 1977.
(50) Duffie, J.A., W.A. Beckman. Solar Engineering of Thermal Processes. Wiley-Interscience, 1980.
(51) Williams, J.R.

Passive Solar Heating. Ann Arbor Science, the Butterworth Group, 1983.
(52) Hadvig', S.

Termisk Stråing for ingeni申rer, I. Laboratoriet for Varme- og Klimateknik, 1980.
(53) Blomsterberg, A.K., D.T. Harrje.

Evaluating Air Infiltration Energy Losses. ASHRAE Journal. May 1979.
(54) Höglund, I.

Metod for beräkning av extreme yttemperaturer hos isolerede ytterkonstruktioner. Byggforskningen R6, 1973.
(55) McAdams, W.H.

Heat Transmission. 3rd ed, McGraw-Hill Book Co.. Inc, New York, 1954.
(56) ASHRAE Handbook of Fundamentals, 1977.
(57) Kaminski, D.A. et al.

Heat Transfer Data Book. General Electric Company. 1979.
(58) International Energy Agency Handbook. An introduction to Meteorological Measurements and Data Handing for Solar Energy Applications. Prepared by TASK IV, Solar Heating \& Cooling Program. May 1979.
(59) Petersen, E. Solindfald gennem vinduer. Laboratoriet for Varmeisolering, DTH, Meddelelse nr. 13, 1966.
(60) Lawaetz, H. Beregning af solindfald. Laboratoriet for Varmeisolering, DTH. Meddelelse nr .42 . December 1975.
(61) Petersen, E.

Solindfald og solafskærmning af vinduer. Forelæsningsnotat. Laboratoriet for Varmeisolering. Danmarks tekniske Højskole.
(62) SAS User's Guide. 1979 Edition. SAS Institute Inc.
(63) Jørgensen, G. Long-term Glazing Performance. Proc. of "Solar Glazing: 1979 Topical conference". Stockton State College, Pomona, New Jersey, June 22, 1979.
(64) Hansen, K.K.

Om refleksions- og transmissionsmåling på Optisk Laboratorium. Kursusarbejde, Laboratoriet for Varmeisolering. Januar 1978.
(65) Thekaekara, M.P.

The Energy Crisis and Energy from the sun. Institute of Environmental Sciences. Mount Prospect, Illinois, 1974.
(66) Plexiglas xt, extrudierte Platten, Rohre, Stäbe, Materialverhalten MV xt.3, ROHM, Gmbh, chemische Fabrik, Darmstadt. Dezember 1975.
(67) Rapport over unders申gelse udført af Lysteknisk Laboratorium. Prфve nr. 1815, 31/3-1971.
(68) Edwards, D.K.

Solar Absorption by each Element in an Absorber-Coverglass Array. Solar Energy, Vol. 19. pp. 401-402. (1977).
(69) Solar News, Edition 5A.

Kalwall Corporation. Manchester, New Hampshire, USA. 1978.
(70) IMSL (International Mathematical \& Statistical Libraries Inc.). Reference manual. Edition 6, 1977.
(71) Bankwall, C.G.

Värmetransport i fibrösa material. Rapport 15. Institutionen för Byggnadsteknik, LTH, Lund 1970.
(72) Esterline Angus, Model PD-2064. Instruction Manual. Indianapolis, Indiana 46224, 1975.

| a | Eksponent til h $\phi$ jden ved bestemmelse af vindhastighed | - |
| :---: | :---: | :---: |
| a | Varmediffusionstallet | - |
| a | Absorption af stråling ved passage af et lag i et transparent materiale | - |
| $\mathrm{a}_{\mathrm{n}}$ | Topabsorptionen |  |
| $a_{n+1}$ | for lag hhv. n og $\mathrm{n}+1$ |  |
| A | Areal | $\mathrm{m}^{2}$ |
| A | Absorption i et lag af et transparent materiale med hensyntagen til refleksion mellem materialets overflader og absorption | - |
| dA | Infinitesimalt arealelement | $\mathrm{m}^{2}$ |
| $A_{0}$ | Tværsnitsareal af hulrum | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{1}$ | Areal af overflade 1 | $\mathrm{m}^{2}$ |
| $A_{1}$ | Tværsnitsareal af åbning i top eller bund af hulrum | $\mathrm{m}^{2}$ |
| $\mathrm{A}_{2}$ | Areal af overflade 2 | $\mathrm{m}^{2}$ |
| $A_{\text {be }}$ | Areal af bygningselement | $\mathrm{m}^{2}$ |
| Adif | Absorptionskoefficient ved indfaldende ensartet diffus stråling | - |
| $\mathrm{A}_{i}$ | Absorption af lag i ved straling fra udvendig side | - |
| ${ }^{\text {A }}$ i | Absorption af lag i ved stråling fra indvendig side | - |
| $A_{n, ~ r e s ~}^{\text {a }}$ | Resulterende absorption i lag nummer n | - |
| Asolv | Solvægsareal | $\mathrm{m}^{2}$ |
| $A_{\text {vind, }} \mathrm{N}, ~ \varnothing, \mathrm{~V}$ | Vinduesareal mod nord, $\phi$ st, vest | $\mathrm{m}^{2}$ |
| $A_{\text {vind, }}$ | Vinduesareal mod syd | $\mathrm{m}^{2}$ |
| $A_{\text {væg }}$ | Vægareal mod syd | $\mathrm{m}^{2}$ |
| A $(\alpha, \gamma)$ | Absorptionskoefficient afhængig af retning (solhøjde og azimut) | - |
| ${ }^{\text {A }} \lambda$ | Monokromatisk absorptionskoefficient ved bølgelængde $\lambda$ | - |


| ${ }^{A}{ }_{\lambda}\left(\mu_{0}+\right.$ | Monokromatisk retningsbestemt absorptionskoefficient <br> (retning udtrykt ved cosinus til <br> indfaldsvinkel og retningsvinkel) | - |
| :---: | :---: | :---: |
| B | Sфjlevektor i ligningssystem til bestemmelse af temperatur i hvid glasuld | $\mathrm{W} / \mathrm{m}^{2}$ |
| C | Andel af absorberet stroling, der ledes til rummet | - |
| $\left.\begin{array}{l} c_{0} \\ c_{1} \\ c_{2} \\ c_{3} \end{array}\right\}$ | Konstanter i polynomium til beskrivelse af absorptionskoefficient | $\begin{aligned} & - \\ & \text { rad-1 } \\ & \text { rad } \\ & \text { rad } \\ & \text { rad } \\ & \text {-4 } \end{aligned}$ |
| $\mathrm{C}_{1}$ | Kontraktionskoefficient ved udløb fra hulrum | -- |
| $c_{p}$ | Varmefylde | $\mathrm{J} / \mathrm{kg} \mathrm{K}$ |
| F | Korrektionsfaktor for indfaldsvinkel | - |
| $E$ | Effektivitet af solvæg | - |
| Fo | Fouriertallet | - |
| Fomax | Den fastsatte $\varnothing$ vre grænse for Fouriertallet | -- |
| $\mathrm{F}_{12}$ | Vinkelforholdet fra flade 1 til flade 2 | - |
| Fdif | Andel af diffus stråling | $\cdots$ |
| $\mathrm{Fglob}^{\text {g }}$ | Forholdet mellem globalstraing ved jordoverfladen og ekstraterrestrial stråling på en given overflade | - |
| $E_{V}$ | Vinkelforhold til jord | - |
| 9 | Tyngdeacceleration | $\mathrm{m} / \mathrm{s}^{2}$ |
| Gre | Grashofs tal | - |
| H | Udbytte af solvæg | $\mathrm{kWh} / \mathrm{m}^{2}$ år |
| H | Varmeoverforingsevne mellem to knudepunkter | W/K |
| $\underline{\square}$ | Koefficientmatrice til bestemmelse af temperaturer i hvid glasuld | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{Hak}^{\text {a }}$ | Varmeoverføringsevne mellem overflade og akkumulerende lag | W/K |


| $\mathrm{h}_{1}, \mathrm{~h}_{2},--\mathrm{h}_{\mathrm{n}}$ | Varmeoverføringstal ved lagdeling | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| :---: | :---: | :---: |
| hbe | Varmeoverf $\phi$ ringstal ved ledning mellem overflade og fiktivt akkumulerende lag $i$ bygningselement | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{H}_{\text {hus }+ \text { mob }}$ | Varmeoverf申ringsevne for hus med mobilisolering | W/K |
| $\mathrm{H}_{\text {hus }}$ +vind | Varmeoverføringsevne for hus uden mobilisolering | W/K |
| $h_{\text {inf }}$ | Varmeoverføringstal for hver overflade af hulrum til udeluft | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $h_{\text {indv }}$ | Varmeovergangstal mellem overflade og rumluft | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{h}_{\mathrm{konv}}$ | Konvektivt varmeovergangstal mellem overflade og luft | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{h}_{\text {ledn }}$ | Varmeoverføringstal ved ledning mellem yderste knudepunkt og overflade i materiale | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $h_{\text {mid }}$ | Middelvarmeoverføringstal mellem overflade og akkumulerende lag | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{H}_{\mathrm{OV}}$ | Varmeoverf $\phi$ ringsevne mellem indvendige overflader og rumluft | W/K |
| $\mathrm{h}_{\text {str }}$ | Varmeovergangstal ved stråling mellem to overflader | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| H-sydvæg | Varmeoverføringsevne, hus uden sydvæg | W/K |
| j | Lagnummer | - |
| $I_{1}$ $I_{2}$ $\mathrm{I}_{n}$ | Stråing absorberet i lag med nummer hhv. $1,2,-\infty-n$ | $W / \mathrm{m}^{2}$ $"$ $"$ |
| $\mathrm{dI}^{\text {abs }}$ | Absorberet stråling i et infinitesimalt element | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {bo }}$ | Direkte stråling på en given overflade | $\mathrm{W} / \mathrm{m}^{2}$ |
| $\mathrm{I}_{\mathrm{b}, \mathrm{n}}$ | Direkte normalstråling (måt på en flade vinkelret på stråeretningen) | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{d}$ | Diffus stråling på en given overflade | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {d, }} \mathrm{h}$ | Diffus stråling på vandret (=diffus himmelstråling) | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {h }}$ | Globalstråling på vandret | $\mathrm{W} / \mathrm{m}^{2}$ |


| $I_{i}(\alpha, \gamma)$ | Radians af indfaldende retningsbestemt straling på lodret sydvendt overflade i afhængighed af solh $\phi$ jden $\alpha$ og væg-solazimutvinklen $\gamma$ | $W / m^{2} \mathrm{sr}$ |
| :---: | :---: | :---: |
| $I_{i}(\mu)$ | Indfaldende stråling, hvor $\mu$ er cosinus til indfaldsvinklen | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{j}$ | Straling absorberet i lag nummer j | $W / \mathrm{m}^{2}$ |
| $\mathrm{I}_{\mathrm{n}}^{+}$ | Udadgående bestrålingsstyrke fra n'te element | W/m2 |
| $\mathrm{I}_{1}{ }^{-}$ | Indadgående bestrålingsstyrke til $n^{\prime}$ te element. | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{0}$ | Stråling umiddelbart efter passage af yderste overflade | $W / m^{2}$ |
| $I_{0}$ | Ekstraterrestrial normalstråling | $W / m^{2}$ |
| $I_{r}$ | Reflekteret stråling | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {SC }}$ | Solkonstanten | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {tot }}$ | Totalt indfaldende stråling | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {t, }}$ | Indfaldende stråling | $\mathrm{W} / \mathrm{m}^{2}$ |
| $I_{\text {X }}$ | Straling i dybden $x$ fra overfladen | $W / \mathrm{m}^{2}$ |
| $\left.I_{x_{1}}\right\}$ | Stråling i dybderne | $W / m^{2}$ |
| $I_{x_{2}}$ | hhv. $\mathrm{x}_{1}$ og $\mathrm{x}_{2}$ | $W / m^{2}$ |
| $I_{\lambda, i}$ | Monokromatisk stråling ved b申lgelængden $\lambda$ | $W / m^{2} \mu \mathrm{~m}$ |
| $I_{\lambda, i}(\mu, \phi)$ | Monokromatisk retningsbestemt indfaldende striling i afhængighed af bølgelængden $\lambda$, cosinus til indfaldsvinklen $\mu$ og retningsvinklen $\phi$ | $\frac{W}{m^{2} \cdot \mu \mathrm{~m}}$ |
| K | Kalibreringskonstant | $\mathrm{W} / \mathrm{m}^{2} \mathrm{mV}$ |
| K | Koefficient til bestemmelse af vindhastighed | variabe1 |
| K | Ekstinktionskoefficient | $\mathrm{m}^{-1}$ |
| $\mathrm{K}_{\mathrm{be}}$ | Varmekapacitet for bygningselement | $\mathrm{Wh} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{K}_{i}$ | Varmekapacitet for lag nr. i | $\mathrm{Wh} / \mathrm{m}^{2} \mathrm{~K}$ |
| $K_{m}$ | Ekstinktionskoefficient pr. massefyldeenhed | $\mathrm{m}^{2} \mathrm{~kg}^{-1}$ |


| $\mathrm{k}_{\text {mob }}$ | Varmetransmissionskoefficient for mobilisolering | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| :---: | :---: | :---: |
| $K_{V}$ | Kalibreringskonstant for varmestrømsmå er | $\mathrm{W} / \mathrm{m}^{2} \mathrm{mV}$ |
| $\mathrm{K}_{\text {tot }}$ | Varmekapacitet i rum | Wh/K |
| $\mathrm{k}_{\text {vind }}$ | Varmetransmissionskoefficient for vindue | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| $\mathrm{k}_{\mathrm{v} æ \mathrm{~g}}$ | Varmetransmissionskoefficient for væg | $\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$ |
| L | Karakteristisk længde | m |
| L | Samlet tykkelse af laget | m |
| $\mathrm{I}_{\mathrm{a}}$ | Mindste lagtykkelse i glasuld | m |
| $\mathrm{L}_{\mathrm{d}}$ | Endring i lagtykkelse | m |
| $L_{h} \chi^{\prime}$ | Tykkelse af ribbe i dobbeltplade | m |
| $L_{i}$ | Tykkelse af lag i | m |
| $L_{\text {max }}$ | Maksimal tykkelse af lag der medtages | m |
| $L_{\text {pas }}$ | Strålevejlængde i ribbe | m |
| $L_{\text {res }}$ | Gennemsnitlig strålevejlængde i ribber | m |
| $L_{\text {rib }}$ | Ribbernes længde | m |
| $L_{\text {tyk }}$ | Tykkelse af ribbe | m |
| m | Konstant til bestemmelse af varmeovergang | - |
| m | Masse pr. $\mathrm{m}^{2}$ | $\mathrm{kg} / \mathrm{m}^{2}$ |
| m | Relativ luftmasse | - |
| $M_{i}$ | Isolans af lag i | $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$ |
| $\mathrm{M}_{\mathrm{i}}, \mathrm{res}$ | Resulterende isolans mellem i'te lag og indvendig overflade | $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$ |
| Mres | Resulterende isolans mellem indvendig overflade og fiktivt akkumulerende lag | $\mathrm{m}^{2} \mathrm{~K} / \mathrm{W}$ |
| n | Konstant til bestemmelse af varmeovergang | - |
| $\mathrm{n}, \mathrm{n}_{1}, \mathrm{n}_{2}$ | Brydningsindex | - |


| n | Antal måinger | - |
| :---: | :---: | :---: |
| n | Antal lag | - |
| N | Skydækket | oktetter |
| $\mathrm{N}_{\mathrm{Cn}}$ | Dagens nummer i aret | - |
| $\mathrm{n}_{\text {rib }}$ | Andel af stråingen, der rammer ribberne | - |
| nrib,min | Minimal andel af strålingen. der rammer ribberne | - |
| $p$ | Spænding | mV |
| $p$ | Tryk | Pa |
| Po | Tryk midt i hulrum | Pa |
| P1 | Tryk i top af hulrum | Pa |
| $\triangle \mathrm{Pl}_{1}$ | Trykforskel mellem midt og top af hulrum | Pa |
| Pr | Prandtl's tal | - |
| q | Indre varmeproduktion pr. volumenenhed | $\mathrm{W} / \mathrm{m}^{3}$ |
| Q | Varmestrøm fra en overflade til det fri | W |
| $d q$ | Varmestrøm gennem et overfladeelement | $\mathrm{W} / \mathrm{m}^{2}$ |
| $Q_{12}$ | Varmestrøm mellem to overflader | W |
| qa | Absorberet solstråling, der ledes til rummet (månedsmiddelværdi) | $\mathrm{W} / \mathrm{m}^{2}$ |
| $d q_{a b s}$ | Absorberet stråling på overfladeelement | $\mathrm{W} / \mathrm{m}^{2}$ |
| qabs | Absorberet solstråling (månedsmiddelværdi) | $\mathrm{W} / \mathrm{m}^{2}$ |
| Qabs | Varmestrom tilført et knudepunkt | W |
| $9_{0}$ | Varmestrømstæthed gennem normalt isoleret ydervæg pga. temperaturforskel mellem rum og udeluft (månedsmiddelværdi) | $\mathrm{W} / \mathrm{m}^{2}$ |
| quab | Udbyttet af en solvæg (månedsmiddelværdi) | $\mathrm{W} / \mathrm{m}^{2}$ |


| $q_{V}$ | Måt middelvarmestrømstæthed fra solvæg til rum (månedsmiddelværdi) | $\mathrm{W} / \mathrm{m}^{2}$ |
| :---: | :---: | :---: |
| $q_{y}$ | Varmetab gennem en normalt isoleret ydervæg med hensyntagen til solindfald (månedsmiddelværdi) | $\mathrm{W} / \mathrm{m}^{2}$ |
| r | Radius | m |
| R | Refleksionskoefficient for et helt lag | - |
| R | Gaskonstant for luft | $\mathrm{J} / \mathrm{kg} \mathrm{K}$ |
| $\mathrm{R}_{\mathrm{i}}$ | Refleksionskoefficienten ved stråling fra den udvendige side af lag i | - |
| $\mathrm{R}_{i}^{\prime}$ | Refleksionskoefficienten ved stråing fra den indvendige side af lag i | - |
| $\mathrm{R}_{\mathrm{n}, \text { tot }}$ | Refleksion af de yderste $n$ lag | - |
| S | Usikkerhed | Enhed <br> som <br> indices |
| T | Transmissionskoefficient gennem et helt lag med hensyntagen til refleksion og absorption mellem materialets overflader | - |
| T | Absolut temperatur i materiale | K |
| $t$ | Temperatur | ${ }^{\circ} \mathrm{C}$ |
| T | Søjlematrice indeholdende temperaturer i glasuld | ${ }^{\circ} \mathrm{C}$ |
| $\triangle T$ | Temperaturforskel mellem luft og overflade | K |
| To | Temperatur $i$ fiktivt lag | K |
| $\mathrm{T}_{0}$ | Temperatur i hulrum | K |
| $\mathrm{T}_{1}$ | Temperatur af luft uden for hulrum | K |
| $T 1$ | Yderste akkumulerende lag | $\left({ }^{\circ} \mathrm{C}\right) \mathrm{K}$ |
| $\mathrm{T}_{1}$ | Temperatur på overflade ved stràingsovergang | K |
| $\mathrm{T}_{2}$ | Akkumulerende lag | $\left({ }^{\circ} \mathrm{C}\right) \mathrm{K}$ |
| $\mathrm{T}_{2}$ | Temperatur på overflade med strolingsovergang | K |


| $\mathrm{T}_{\text {ak }}$ | Temperatur af akkumulerende lag nærmest overfladen | K |
| :---: | :---: | :---: |
| $\mathrm{T}_{i}$ | Transmissionskoefficienten for det $i$ 'te element | - |
| $T_{i}$ | Temperatur i knudepunkt j | ( ${ }^{\circ} \mathrm{C}$ ) K |
| $\mathrm{T}_{\mathrm{i}, \mathrm{j}}$ | Temperatur i lag i til tidspunktet $j$ | ( ${ }^{\circ} \mathrm{C}$ ) K |
| $\mathrm{T}_{\mathrm{j}}$ | Temperatur $i \operatorname{lag~j}$ | ( ${ }^{\circ} \mathrm{C}$ ) K |
| $\mathrm{t}_{\mathrm{k}}$ | Temperatur i kontrolbox | ${ }^{\circ} \mathrm{C}$ |
| $\mathrm{T}_{\mathrm{kn}}$ | Temperatur i knudepunkt | ( ${ }^{\circ} \mathrm{C}$ ) K |
| Tluft | Temperatur af luften | $\left({ }^{\circ} \mathrm{C}\right) \mathrm{K}$ |
| Tmid | Middeltemperatur af overflade og lufttemperatur | K |
| $t_{n}$ | Toptransmissionen | - |
| $\mathrm{T}_{\mathrm{n}+1}$ | Transmissionskoefficient for for $n+1$ te element | - |
| Tomg | Omgivelsernes middelstrålingstemperatur | $\left({ }^{\circ} \mathrm{C}\right) \mathrm{K}$ |
| Tov | Overfladens temperatur | K |
| tov | Overfladens temperatur | ${ }^{\circ} \mathrm{C}$ |
| Trib | Transmissionskoefficjent for ribbe | - |
| $\mathrm{T}_{\mathrm{u}}$ | Udelufttemperatur | K |
| $t_{u}$ | $\cdots$ | ${ }^{\circ} \mathrm{C}$ |
| V | Vindhastighed i højden $\mathbb{Z}$ | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{V}_{0}$ | Volumenstrøm | $\mathrm{m}^{3} / \mathrm{s}$ |
| $\mathrm{V}_{0}$ | Lufthastighed i hulrum | $\mathrm{m} / \mathrm{s}$ |
| V1 | Lufthastighed i indl $\phi \mathrm{b}$ | $\mathrm{m} / \mathrm{s}$ |
| $\mathrm{V}_{\mathrm{m}}$ | Vindhastighed i højden 10 m | $\mathrm{m} / \mathrm{s}$ |
| X | Stedkoordinat | m |
| x | Stralingsvejlængde fra overflade | m |
| $\Delta \mathrm{x}$ | Lagtykkelse | m |
| $\mathrm{x}_{1}$ | Laggrænse i glasuld regnet fra udvendig overflade | m |


| $\Delta \mathrm{x}_{1}$ | Lagtykkelse i yderste lag i glasuld | m |
| :---: | :---: | :---: |
| X. 2 | Laggrænse i glasuld regnet fra udvendig overflade | m |
| $\mathrm{X}_{\mathrm{i}}$ | Strålevejlængde fra udvendig overflade til infinitesimalt element | m |
| $d x$ | Strålevejlængde gennem infinitesimalt element | m |
| $\Delta X_{\max }$ | Maksimal lagtykkelse ved Fo $=1 / 2$ og given sum af varmeovergange | m |
| $\Delta \mathrm{X}_{\mathrm{min}}$ | Minimal lagtykkelse for givet Fo tal og tidsskridt | m |
| $\Delta \mathrm{x}_{\mathrm{n}}$ | Lagtykkelse af inderste lag i glasuld | m |
| Y | Stedkoordinat | m |
| Y | Spænding | mV |
| Z | H申jde $i$ et felt $i$ en dobbeltplade, hvorigennem stråingen rammer toppen af ribben | m |
| Z | Højde over jordoverflade | m |
| Z | Højde af hulrum | m |
| 2 | Stedkoordinat | m |
| z | Hфjdekoordinat i hulrum | m |
| $\mathrm{Z}_{0}$ | Højdekoordinat for midte af hulrum | m |
| 21 | Højdekoordinat for top af hulrum | m |


| $\alpha$ | Solhøjden | rad |
| :---: | :---: | :---: |
| $\alpha$ | Absorptionskoefficient | - |
| $\varepsilon_{h}$ | Hemjsfærisk emissionskoeffjcient | - |
| $\varepsilon_{h, 1}$ | Hemisfærisk emissionskoefficient for overflade 1 | - |
| $\varepsilon_{h, 2}$ | Hemisfærjsk emissionskoeffjcient for overflade 2 | - |
| $\varepsilon_{n}$ | Normalemissjonskoefficienten | - |
| $\varepsilon_{\mathrm{n}, 1}$ | Normalemissionskoefficient for overflade 1 | - |
| $\varepsilon_{\mathrm{n}, 2}$ | Normalemissionskoefficjent for overflade 2 | - |
| $\varphi$ | Profilvinklen | rad |
| $\phi$ | Retningsvinkel. | rad |
| $\gamma$ | Væg-solazimutvinkel | rad |
| $\gamma_{S}$ | Solazimutvinkel | rad |
| $\gamma_{v}$ | Vrgazimutvinkel | rad |
| $\lambda$ | Varmeledningsevne | W/mK |
| $\lambda$ | BфLgelængde | $\mu \mathrm{m}$ |
| $\lambda_{1}$ | Varmeledningsevne i yderste lag | $\mathrm{W} / \mathrm{mK}$ |
| $\lambda_{i}$ | Varmeledningsevne for lag i | $\mathrm{W} / \mathrm{mK}$ |
| $\mu$ | Cosinus til indfaldsvinklen | - |
| $v$ | Kinematisk viskositet | $\mathrm{m}^{2} / \mathrm{s}$ |
| $\omega$ | Vinkelhastighed | rad/h |
| $\partial \omega$ | Rumvinkel | sr |
| $\rho$ | Massefylde | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho$ | Refleksionskoefficient for en overflade | - |
| $\rho_{0}$ | Massefylde for luft i hulrum | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $p_{1}$ | Massefylde for luft uden for hulrum | $\mathrm{kg} / \mathrm{m}^{3}$ |
| $\rho_{j}$ | Refleksionskoefficient for jordoverfladen | - |


| $\rho_{\text {\# }}$ | Refleksionskoefficient for stråing polariseret parallelt med stråleretningen | - |
| :---: | :---: | :---: |
| $\rho_{\perp}$ | Refleksionskoefficient for stråling polariseret vinkelret med stråleretningen | - |
| $\sigma$ | Stefan Boltzmans konstant | $\mathrm{W} \mathrm{m}^{2} \mathrm{~K}^{-4}$ |
| $\tau$ | Tiden | s |
| $\tau$ | Transmissionskoefficient | - |
| $\Delta \tau$ | Tidsskridt | s |
| $\tau_{0}$ | Transmissionskoefficient <br> yderst i materialet | - |
| ${ }^{\text {a }}$ | Transmissionskoefficient med hensyntagen til absorption | - |
| $\tau_{a, r i b}$ | Transmissionskoefficient med hensyntagen til absorption i ribber | - |
| $\tau_{c}$ | Tidskonstant | h |
| $\tau_{i}$ | Tidskonstant for i'te lag | h |
| $\tau_{i, r e s}$ | Resulterende tidskonstant. for lag $j$. | h |
| ${ }^{\text {max }}$ | Maksimal tidskonstant | h |
| ${ }^{\tau}{ }_{r}$ | Transmissionskoefficient med hensyntagen til refleksion | - |
| $\tau_{r, r i b}$ | Transmissionskoefficient med hensyn til refleksion i ribber | - |
| ${ }^{T} \lambda$ | Transmissionskoefficient for bølgelængden $\lambda$ | - |
| $\theta_{b}$ | Brydningsvinkel | rad |
| $\theta_{b, v}$ | Brydningsvinkel ved passage af vandret overflade | rad |
| $\theta_{i}$ | Indfaldsvinkel | rad |
| $\theta_{i, v}$ | Indfaldsvinkel for en vandret overflade | rad |

In this report, different types of passive solar systems are described in general (direct gain, solar wall. Trombé wall). The historical development of solar walls is briefly presented.

The theoretical formulae for heat transfer is described, including heat conduction, convection and radiation. Solar radiation and transmission formulae is shown. The theory is used for calculating the solar transmission for different materials. The system of equations for solving the heat transfer through the walls is developed.

A standard house is chosen and the energy consumption and number of hours with high temperatures are shown for different building models. The calculations are based on half hour steps using the Danish Reference Year. These house models are provided with solar walls, and the performance is described. The types of cover, storage and thickness of the solar wall are changed. The sensitivity analysis shows that it is possible to obtain a net energy gain of $100-150 \mathrm{kWh} / \mathrm{m}^{2}$ from solar walls at Danish climatic conditions with an acceptable indoor climate maintained.

For the purpose of validating the simulation program of the solar wall an experiment is set up. Different solar walls are built into test cells. One of the solar walls uses movable insulation of expanded polystyrene beads. A double acrylic plate is used as cover. The regulation and transportation system is reported. The other solar wall has a fixed insulation of white glasswool. A third and a fourth type have a selective absorber surface, and a single cover of glass. In the fourth type, the cavity at the outer side of the storage is filled with honeycomb.

The solar wall systems have been provided with measuring equipment supplying information about temperatures, heat flow and solar radiation. The performance of the walls, for some months, is reported.

The accuracy of the measurements is estimated. The measured data are compared with results from the simulation model, and a good agreement between measurements and calculations is achieved. It is concluded that a simulation model which provides realistic values of the performance of solar walls has been developed and is applicable for optimisation and dimensioning of solar wall systems.

### 5.5 RESUME

I denne rapport er forskellige typer af passive solvarmesystemer beskrevet generelt. (Solindfald gennem vinduer, solvægge, Trombé vægge). Den historiske udvikling af solvægge er skitseret.

De teoretiske formler for varmeovergang er beskrevet, omfattende varmeledning, konvektion og straling. Formler for solstraling og transmission er angivet. Teorien er benyttet til at beregne transmission af solstraling for forskellige materialer. Et system af ligninger, der bestemmer varmetransmission gennem solvæggene er udviklet.

Et referencehus er valgt, og energiforbrug samt antallet af timer med høje temperaturer er bestemt for forskellige bygnjngsmodeller. Beregningerne er baseret pa halvtimes tidsskridt. Bygningsmodellerne er forsynet med solvægge, og udbyttet er beregnet med varierende udformning af daklag, varmelager og tykkelse af solvæg. Følsomhedsanalysen viser, at det er muligt at opna et udbytte pa $100-150 \mathrm{kWh} / \mathrm{m}^{2}$ af solvægge under danske klimaforhold med bibeholdelse af et acceptabelt indeklima.

For at kontrollere beregningsmodellen for solvæggen er der udført fors $\phi \mathrm{g}$, hvor forskellige solvagge er bygget ind $i$ en fors申gsbygning. I den ene af solvæggene benyttes mobil isolering af ekspanderede polystyrenkugler. En akryl-kanalplade er benyttet som dæklag. Styre- og transportsystemet er rapporteret. Den anden solvæg har en fast isolering af hvid glasuld. En tredje og fjerde type har en selektiv absorberoverflade og et enkelt lag glas som dreklag. I den fjerde type er hulrummet på ydersiden af varmelageret udfyldt med honeycomb.

Solvægssystemerne er forsynet med måleudstyr, der kan registrere temperaturer, varmestrømme og solstråling. Udbyttet af solvæggene $i$ forskellige måleperioder er rapporteret. Der er foretaget usikkerhedsbestemmelse af de foretagne målinger. De
malte data er sammenlignet med resultater fra beregningsmodellen, og der er opnået god overensstemmelse mellem måinger og beregninger. Det konkluderes, at der er opbygget en beregningsmodel, som giver realistiske værdier for solvægges yceevne, og som kan benyttes ved udvikling og dimensionering af solvægssystemer.

APPENDIX

I en solvæg forekommer der forskellige former for varmeovergang: Strålingsudveksling, varmeledning og konvektion. Her i appendix er først beskrevet den varmetransport $i$ varmelagre, som foregår ved varmeledning. Dernæst gennemgås varmeovergang i luftspalter, som findes mellem dæklag og absorber. Endelig beskrives varmeovergangen ved den udvendige og indvendige overflade. Beskrivelsen er grundlaget for de anvendte edb-programmer.

## A1. 1 VARMELEDNING

I solvægge er varmeledning og varmeakkumulering en vigtig del af varmetransporten. I det følgende gennemgås varmeledningsligningen, en numerisk metode til løsning af denne samt en metode til at undgå numerisk ustabilitet ved metoden.

## Al.1.1 Instationær varmeledning

Varmestrømme og temperaturer i et legeme varierer med stedet og tiden. Til beskrivelse af varmestrømmen dq gennem en overflade med arealet $d A$ gælder Fouriers varmeledningsligning.

$$
\begin{equation*}
d q=-\lambda\left(\frac{\partial T}{\partial x}\right) d A \tag{Al.1.1}
\end{equation*}
$$

hvor $\lambda$ er varmeledningstallet

$$
\begin{aligned}
& \frac{\partial T}{\partial x} \text { er temperaturgradienten } \\
& \text { vinkelret på overfladen }
\end{aligned}
$$

$x$ er stedkoordinaten

Inden for byggeteknikken forekommer der tilfælde af flerdimensionale varmestrømme.

Er materialet isotropt, og sker der en varmeproduktion inde i materialet, kan temperaturfeltet beskrives ved den instationære varmeledningsligning (40).

$$
\begin{equation*}
\rho c_{p} \frac{\partial T}{\partial \tau}=\lambda\left[\frac{\partial^{2} T}{\partial x^{2}}+\frac{\partial^{2} T}{\partial y^{2}}+\frac{\partial^{2} T}{\partial z^{2}}\right]+q \tag{A1.1.2}
\end{equation*}
$$

```
hvor }\rho\mathrm{ massefylden
    Cp varmefylde
    \lambda varmeledningsevmen
            T temperaturen
        x,y,z stedkoordinater
            q indre varmeproduktion
                pr. volumenenhed
    \tau tiden
```

Det er ofte tilstrækkeligt kun at betragte det endimensionale tilfælde fx gennem en væg. Derved reduceres ligningen til

$$
\begin{equation*}
\rho c_{p} \frac{\partial T}{\partial \tau}=\lambda \frac{\partial^{2} T}{\partial x^{2}}+q \tag{A1,1,3}
\end{equation*}
$$

Indføres temperatuxledningstallet a:

$$
\begin{aligned}
& \frac{\partial T}{\partial \tau}=a \frac{\partial^{2} T}{\partial x^{2}}+\frac{q}{\rho c_{p}} \\
& \text { hvor } a=\frac{\lambda}{\rho c_{p}}
\end{aligned}
$$

Leddet $\frac{q}{\rho c_{p}}$ er et udtryk for hvilken temperaturstigning varmeproduktionen ville give, hvis varmeledningstallet var 0 .

## Al.1. 2 L申sning af instationær varmeledningsligning

Til løsning af denne ligning kan i visse tilfælde findes analym tiske løsningsmetoder. Disse er dog ret vanskelige at handtere ved beregninger med varierende randbetingelser, som det er tilfældet ved simuleringer af et $̊ \mathrm{~s}$ vejrdata.

Af andre beregningsmetoder er det især de numeriske, der er generelt anvendelige.

Anvendes en central tilnærmelse til den instationære varmeledningsligning med netpunkter som skitseret på fig. Al.l.l, fås:


Fig. Al.1.1 Temperaturkurven $i$ et materiale med tilhørende knudepunkter.

$$
\begin{align*}
& \frac{T_{i, j+1}-T_{i, j}}{\Delta T}=a \frac{\frac{T_{i+1, j}-T_{i, j}}{\Delta x}+\frac{T_{i-1, j}-T_{i, j}}{\Delta x}}{\Delta x}+\frac{q}{\rho C_{p}} \\
& T_{i, j+1}-T_{i, j}=a \frac{\Delta T}{(\Delta x)^{2}}\left(T_{i+1, j}-2 T_{i, j}+T_{i-1, j}\right)+\frac{q \cdot \Delta T}{\rho C_{p}} \\
& \omega \quad T_{i, j+1}=F O\left(T_{i+1, j}+\frac{1-2 F O}{F O} T_{i, j}+T_{i-1, j}+\frac{q}{\lambda}(\Delta x)^{2}\right) \tag{A1.1.5}
\end{align*}
$$

hvor $\quad$ Fo $=a \frac{\Delta \tau}{(\Delta x)^{2}}$

Fo kaldes normalt for Fouriertallet.

En tilstrækkelig betingelse for at sikre stabilitet ved denne løsningsmtode er, at den "gamle" temperatur $T_{i, j}$ ikke indgå i beregningen af den nye temperatur med et negativt fortegn 0 :

$$
1-2 F O \geq 0 \Rightarrow F O \leq 1 / 2
$$

Dette stabilitetskriterium gælder kun for knudepunkter omgivet af lag på hver side med tilsvarende knudepunkter.

Er laget til den ene side afgranset af en adiabatisk overflade, dvs. uendelig godt isolerende lag, vil der i ligning (Al.l.5) gælde, at $T_{i+1, j}=T_{i}, j$

Forudsat at $q=0, ~ g æ l d e r$

$$
\begin{equation*}
T_{i, j+1}=F O \quad T_{i-1, j}+(1-F O) T_{i, j} \tag{A1.1.7}
\end{equation*}
$$

For at være sikker på at beregningen af $T_{i} j+1$ er numerisk stam bil skal gælde at
$1-\mathrm{FO} \geq 0 \Rightarrow F O \leq 1$

Uligheden forudsætter, at de to lag, se fig. Al. 1.2 , har samme termiske egenskaber og tykkelse.


Fig．Al．1．2 Placering af lag op ad uendelig godt isolerende materiale．

## Al．1．3 Randbetingelser

For at l申se ligning（Al．1．5）er det nødvendigt at kende tempe－ raturen ved starttidspunktet．Denne kan findes fra målinger， hvis det er sammenligning mellem beregningsmodel og målinger， som modellen skal bruges til．Ved anvendelse af modellen til beregninger pà grundlag af klimadata kan starttemperaturen sk申nnes．Hvis dette kan medføre for store fejl，kan starttem－ peraturen findes ved iteration，fx ved at sluttemperaturen ef－ ter simulering af et ås temperaturer kan benyttes som start－ temperatur．

Til l申sning af ligningen kræves endvidere kendskab til tempera－ turforløbet ved materialets overflader．

Er overfladetemperaturen $T_{o v}$ kendt，kan den＂nye＂temperatur i yderste akkumulerende lag bestemmes af lign．（Al．l．5）ved at der indlægges et fiktivt lag med temperaturen $T_{0}$ ，der har samme egenskaber som de almindelige lag $i$ væggen．


Fig. Al.1.3 Bestemmelse af det fiktive lags temperatur.

To bestemmes ved ekstrapolation ud fra $T_{o v}$ og det yderste lags temperatur (fig. Al.l.3):

$$
\begin{aligned}
T_{O} & =T_{1}+2\left(T_{O V}-T_{1}\right) \\
& =2 T_{O V}-T_{1}
\end{aligned}
$$

(A1.1.8)

Al.1.4 Opstilling af varmestrømsbalance for et knudepunkt


Fig. Al.1.4 Ligevægt for knudepunkt.

Et knudepunkt med temperaturen $T_{k n}$ udveksler varme med $n$ omgivende knudepunkter med temperaturerne $T_{i}$, hvor $i=1, n$ (fig. A1.1.4).

Varmeoverføringsevnen er af størrelsen $H_{i}, i=1, n$. Endvidere tænkes knuden tilført varme, $Q_{a b s}$, uafhængigt af knudepunktstemperaturen, fx solstråling.

Opstilles en ligning til bestemmelse af temperaturligevægt for knudepunktet, fås når dette er uden varmekapacitet:

$$
\sum_{i=1}^{n}\left(H_{i}\left(T_{i}-T_{k n}\right)\right)+Q_{a b s}=0
$$

$\oplus$

$$
\begin{equation*}
T_{k n}=\frac{\sum_{i=1}^{n}\left(H_{i} \cdot T_{i}\right)+Q_{a b s}}{\sum_{i=1}^{n} H_{i}} \tag{A1.1.9}
\end{equation*}
$$

## Al.1.5 Varmebalance for en overflade

I det generelle tilfælde vil en overflade være påvirket af konvektion og stråling. Disse varmeovergange kan normalt bestemmes ud fra varmeovergangstal ved konvektion ( $h_{k o n v}$ ) og stråling ( $h_{\text {str }}$ ), der angiver varmestrømmen pr. arealenhed divideret med temperaturforskellen mellem overfladen og henholdsvis luften ( $T_{l u f t)}$ og omgivelsernes middelstrålingstemperatur (Tomg).

Det antages, at der også absorberes solstråling ( $q_{a b s}$ ) på overfladen.


Fig. Al.1.5 Varmeovergang ved overflade.

Overfladen udveksler desuden varme med materialet inde $i$ legemet. Dette er regningsmæssigt opdelt i lag. I hvert af disse lag samles varmekapaciteten $i$ midten af det enkelte lag. Størrelsen af varmeudvekslingen mellem det yderste af disse lag og overfladen kan pr. grads temperaturforskel sættes til hledn.

$$
\begin{equation*}
h_{\text {ledn }}=\frac{2 \lambda}{\Delta x} \tag{A1.1.10}
\end{equation*}
$$

Benyttes lign. (Al.1.9), fås at temperaturligevægt for overfladen kan bestemmes af

$$
\begin{equation*}
T_{o v}=\frac{h_{s t r} \cdot T_{\text {omg }}+h_{\text {konv }} \cdot T_{1 u f t}+h_{1 e d n} \cdot T_{a k}+q_{\text {abs }}}{h_{s t r}+h_{\text {konv }}+h_{\text {ledn }}} \tag{Al.1.11}
\end{equation*}
$$

Al. 1.6 Stabilitet ved beregning af temperatur i akkumulerende lag ved overflade

Er der mindst to akkumulerende lag, kan temperaturen af det yderste lag bestemmes af:

$$
T_{1, j+1}=F O T_{0, j}+(1-2 F O) T_{1, j}+F O T_{2, j}
$$

idet der forudsættes, at der ikke sker en indre varmeproduktion i. knudepunktet. Indsættes (AI.1.8), fås:

$$
\begin{aligned}
T_{1, j+1} & =F O\left(2 T_{o v, j}-T_{1, j}\right)+(1-2 F O) T_{1, j}+F O T_{2, j} \\
& =2 F O T_{o v, j}+(1-3 F O) T_{1, j}+F O T_{2, j}
\end{aligned}
$$

Ligning (Al.1.ll) giver:

$$
\begin{aligned}
& T_{1, j+1}=\frac{2 F O\left(h_{s t r} \cdot T_{o m g}+h_{\text {konv }} \cdot T_{\text {luft }}+h_{\text {ledn }} \cdot T_{1, j}+q_{\text {abs }}\right)}{h_{s t r}+h_{\text {konv }}+h_{\text {ledn }}} \\
& +(1-3 F O) T_{1, j}+F O T_{2, j} \\
& =\frac{2 F O\left(h_{\text {str }} \cdot T_{\text {omg }}+h_{\text {konv }} \cdot T_{\text {luft }}+q_{\text {abs }}\right)}{h_{\text {str }}+h_{\text {konv }}+h_{\text {ledn }}} \\
& +\left(\frac{2 F O \cdot h_{\text {lean }}}{h_{\text {str }}+h_{\text {konv }}+h_{\text {ledn }}}+(1-3 F O)\right) T_{1, j}+F O \cdot T_{2, j}
\end{aligned}
$$

(A1.1.12)

En tilstrækkelig betingelse for at beregningen er stabil, er at koefficienten til $T_{1, j}$ er større eller lig nul. Dette er $i$ hvert fald tilfældet når:
$(1 / 3-\mathrm{FO}) \geq 0 \Rightarrow \mathrm{FO} \leq 1 / 3$.

Mere korrekt skal gælde at:

$$
\begin{aligned}
& 1-\operatorname{Fo}\left(3-\frac{2 h_{\text {ledn }}}{h_{s t r}+h_{\text {konv }}+h_{\text {ledn }}}\right) \geq 0 \\
& F O \leq \frac{1}{\left(3-\frac{2 \cdot h_{\text {ledn }}}{h_{\text {str }}+h_{\text {konv }}+h_{\text {ledn }}}\right)}
\end{aligned}
$$

(A1.1.13)

Antages at alle lagene har samme tykkelse og at der er mindst 3 akkumulerende lag, skal gælde at $F O \leq 1 / 2$. Det vil derfor være interessant at vide, hvornår denne betingelse er tilstrækkelig:

(A1.1.14)

Med andre ord ex betingelsen $F O \leq 1 / 2$ tilstrækkelig, når varmeoverføringstallet mellem to midtpunkter i to tilgrænsende lag er større end summen af konvektions- og strålingsvarmeoverføringstallet.

Af lign. (AI.1.13) fås, at med 2 akkumulerende lag vil der også være muligheder for stabilitet i intervallet:
$1 / 3 \leq$ Fo $\leq 1$ afhængig af randbetingelserne.

Ved kun et akkumulerende lag inde i materialet fås, at den nye temperatur af det akkumulerende lag kan beskrives som:

$$
\begin{align*}
T_{1, j+1} & =F O \cdot T_{0, j}+(1-F O) T_{1, j} \\
& =2 F O \cdot T_{o v, j}+(1-2 F O) T_{1, j} \\
& =\frac{2 F O\left(h_{s t r} \cdot T_{o m g}+h_{\text {konv }} \cdot T_{1 u f t}+h_{1 \text { edn }} \cdot T_{1, j}+q_{a b s}\right)}{h_{\text {str }}+h_{\text {konv }}+h_{\text {ledn }}} \\
& +(1-2 F O) T_{1, j} \\
& =\left(1-2 F O\left(1-\frac{h_{\text {lean }}}{h_{\text {str }}+h_{\text {konv }}+h_{\text {ledn }}}\right)\right) T_{1, j} \\
& +2 F O\left(\frac{h_{\text {str }} \cdot T_{\text {omg }}+h_{\text {konv }} \cdot T_{l u f t}+q_{\text {abs }}}{h_{s t r}+h_{\text {konv }}+h_{\text {lean }}}\right) \tag{A1.1.15}
\end{align*}
$$

For at være sikker på numerisk stabilitet skal gælde:

$$
\left(1-2 \mathrm{FO}\left(1-\frac{h_{\text {lean }}}{h_{\text {str }}+h_{\text {konv }}+h_{\text {lean }}}\right)\right) \geqslant 0
$$

Dette medfører:

$$
\begin{equation*}
F O \leq \frac{1}{2\left(1-\frac{h_{\text {ledn }}}{h_{\text {str }}+h_{\text {kanv }}+h_{\text {ledr }}}\right)} \tag{A1.1.16}
\end{equation*}
$$

Det ses, at uligheden altid er opfyldt, når $F O \leq 1 / 2$.

Rummodellen $i$ beregningsprogrammet BA4 (26) har netop et akkumulerende lag. Fouriertallet ved denne beregning kan findes af:

$$
F O=\frac{\Delta \tau}{(\Delta x)^{2}} \mathrm{a} \cong \frac{\Delta \tau}{\Sigma\left(A \cdot \Delta x \cdot \rho c_{p}\right)} \cdot\left(\frac{\lambda}{\Delta x} A\right)=\frac{\Delta \tau \cdot\left(H_{a k} / 2\right)}{K_{t o t}}=\frac{\Delta \tau}{\tau_{c}}
$$

Hvor $H_{a k}$ er varmeoverføringsevne fra overflade af væg til akkumulerende lag
$K_{\text {tot }}$ Den samlede varmekapacitet
$\Delta \tau \quad$ Tidsskridtet, normalt $0,5 \mathrm{~h}$
$\tau_{\mathrm{c}} \quad$ Tidskonstant $\left(=\mathrm{K}_{\mathrm{tot}} /\left(\mathrm{Hak}_{\mathrm{ak}} / 2\right)\right)$

Det er ikke altid tilfældet, at Fo $\leq 1 / 2$ ved beregninger med BA4. Da $H_{a k}$ svarer til hledn $i$ lign. (Al.l.16), og da varmeovergangen ved ledning ofte er betydelig i forhold til de øvrige varmeovergangstal, kan der som regel tillades store værdier af Fouriertallet.

I BA4 rummodellen benyttes som standard tidsskridtet $1 / 2$ time. Er tidskonstanten mindre end 1 time, kræves nærmere eftervisning af ulighed (Al.l.16) for at være sikker på numerisk stabilitet.

## Al.1.7 Minimale lagtykkelser

Antages et isotropt materiale, der er opdelt i mindst 3 lag med samme tykkelse, kan den minimale lagtykkelse af hensyn til nu-
merisk stabilitet bestemmes. Er den $\varnothing$ vre grænse på Fouriertallet $\mathrm{Fo}_{\text {max }}$ :

$$
\begin{align*}
\mathrm{FO} & =\frac{\Delta \tau}{(\Delta \mathrm{x})^{2}} \cdot \mathrm{a} \leq \mathrm{FO}_{\max } \\
& \Rightarrow \Delta \mathrm{x} \geq \sqrt{\frac{\Delta \tau \cdot \mathrm{a}}{\mathrm{FO}_{\max }}}=\Delta \mathrm{X}_{\min } \tag{Al.1.17}
\end{align*}
$$

Benyttes de $i$ fig. Al.l. 6 angivne data for byggematerialer. findes med maksimale Fouriertal pá henholdsvis $1 / 2$ og $1 / 3$ de $i$ fig. Al. 1.7 viste minimale lagtykkelser $\left(\Delta X_{\min }\right)$. Ved Fomax $=$ $1 / 2$ er begrænsningen på varmeovergangstallet fra knudepunkt til overflade ifølge (Al.1.10) og (Al.1.14)

$$
\begin{align*}
h_{\text {ledn }} & =\frac{2 \lambda}{\Delta x} \geq h_{\text {konv }}+h_{\text {str }} \\
& \Rightarrow \Delta x \leq \frac{2 \cdot \lambda}{h_{\text {konv }}+h_{\text {str }}}=\Delta x_{\max } \tag{A1.1.18}
\end{align*}
$$

Den maksimale lagtykkelse ( $\Delta X_{\max }$ ) ifølge denne ulighed er for $F O_{\max }=1 / 2$ vist i fig. Al.l.8.

De tilladelige lagtykkelser ifølge ligning (Al.l.17) og (Al.l.18) er indtegnet på fig. Al.l.9 for tre materialer.

| Materialer | $\rho$ | $\mathrm{c}_{\mathrm{p}}$ | $\rho c_{p}$ | $\lambda$ | $a=\frac{\lambda}{\rho \mathrm{C}_{p}}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | $\mathrm{kg} / \mathrm{m}^{3}$ | J/kg K | $\begin{aligned} & 10^{-3} \cdot \\ & \mathrm{~J} / \mathrm{m}^{3} \mathrm{k} \end{aligned}$ | W/m K | $10^{6} \cdot \mathrm{~m}^{2} / \mathrm{s}$ |
| Vand | 1000 | 4180 | 4180 |  |  |
| Stobejern | 7200 | 500 | 3600 | 47,0 | 13,1 |
| hamatit (jernoxyd) | 4400 | $\sim 500$ | 2200 | 8,1 | 3,7 |
| Granit | 2700 | 830 | 2240 | 3,5 | 1,6 |
| Marmor | 2740 | 800 | 2190 | 2,8 | 1,28 |
| Jernbeton | 2300 | 880 | 2020 | 1,6 | 0,79 |
| Kalksandsten | 1800 | $\sim 800$ | 1440 | 0,95 | 0,66 |
| Tegn tung, massiv | 1800 | 800 | 1440 | 0,68 | 0,47 |
| Tegl let, mangehul | 1050 | 800 | 840 | 0,36 | 0,43 |
| Porebeton (tør) | 650 | $\sim 880$ | 572 | 0,20 | 0,35 |
| Fyrretrm | 450 | 2300 | 1035 | 0,12 | 0,16 |

Fig. Al.l.6 Termiske data for forskellige materialer. (30), (41).

| Materiale | $\mathrm{FO}_{\max }$ | a | $\begin{aligned} & \Delta x_{\text {min }} \\ & \quad \text { lagtykkelse } i \mathrm{~m} \end{aligned}$ |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  |  | $\mathrm{m}^{2 / s}$ | $\begin{aligned} & \Delta \tau= \\ & 10 \text { sek } \end{aligned}$ | $\begin{aligned} & \Delta \tau= \\ & 300 \text { sek } \end{aligned}$ | $\begin{aligned} & \Delta \tau= \\ & 7200 \mathrm{sek} \end{aligned}$ |
| Beton <br> Kalksandsten <br> Tegl, tung, massiv <br> Tegl, let, mangehul <br> Porebeton <br> Fyrretra | $1 / 2$ | $\begin{array}{ll} 0,791 & 10^{-6} \\ 0,660 & 10^{-6} \\ 0,472 & 10^{-6} \\ 0,429 & 10^{-6} \\ 0,350 & 10^{-6} \\ 0,116 & 10^{-6} \end{array}$ | $\begin{array}{ll} 3,98 & 10^{-3} \\ 3,63 & 10^{-3} \\ 3,07 & 10^{-6} \\ 2,93 & 10^{-3} \\ 2,65 & 10^{-3} \\ 1,52 & 10^{-3} \end{array}$ | $\begin{array}{ll} 21,8 & 10^{-3} \\ 19,9 & 10^{-3} \\ 16,8 & 10^{-3} \\ 16,0 & 10^{-3} \\ 14,5 & 10^{-3} \\ 8,34 & 10^{-3} \end{array}$ | $\begin{aligned} 107 & 10^{-3} \\ 97,5 & 10^{-3} \\ 82 & 10^{-3} \\ 78,6 & 10^{-3} \\ 71,0 & 10^{-3} \\ 40,9 & 10^{-3} \end{aligned}$ |
| Beton <br> Kalksandsten <br> Tegl, tung, massiv <br> Teg1, let, mangehul <br> Porebeton <br> Fyrretræ | 1/3 | $\begin{array}{ll} 0,791 & 10^{-6} \\ 0,660 & 10^{-6} \\ 0,472 & 10^{-6} \\ 0,429 & 10^{-6} \\ 0,350 & 10^{-6} \\ 0,116 & 10^{-6} \end{array}$ | $\begin{array}{ll} 4,87 & 10^{-3} \\ 4,45 & 10^{-3} \\ 3,76 & 10^{-3} \\ 3,59 & 10^{-3} \\ 3,24 & 10^{-3} \\ 1,87 & 10^{-3} \end{array}$ | $\begin{array}{ll} 26,7 & 10^{-3} \\ 24,4 & 10^{-3} \\ 20,6 & 10^{-3} \\ 19,6 & 10^{-3} \\ 17,7 & 10^{-3} \\ 10,2 & 10^{-3} \end{array}$ | $\begin{array}{ll} 131 & 10^{-3} \\ 119 & 10^{-3} \\ 101 & 10^{-3} \\ 96,3 & 10^{-3} \\ 86,9 & 10^{-3} \\ 50,1 & 10^{-3} \end{array}$ |

Fig. Al.1.7 Minimal lagtykkelse ( $\Delta \mathrm{X}_{\mathrm{min}}$ ) ved givet Fouriertal $\mathrm{FO}_{\max } \mathrm{Og}$ tidsskridt $\Delta \tau$.

| Materiale | $\lambda$ | Maksimal sum af varmeovergang ved konvektion og stråling |  |  |
| :---: | :---: | :---: | :---: | :---: |
|  |  | $\Sigma h_{\text {max }}=10$ | $\Sigma h_{\max }=25$ | $\Sigma h_{\text {max }}=50$ |
|  | $\mathrm{W} / \mathrm{m} \mathrm{K}$ | $\Delta \mathrm{X}_{\text {max }}$ (m) |  |  |
| Beton <br> Kalksandsten <br> Teg1, tung massiv <br> Tegl, let, mangehul <br> Porebeton <br> Træ | $\begin{aligned} & 1,6 \\ & 0,95 \\ & 0,68 \\ & 0,36 \\ & 0,20 \\ & 0,12 \end{aligned}$ | $\begin{aligned} 320 & 10^{-3} \\ 190 & 10^{-3} \\ 136 & 10^{-3} \\ 72 & 10^{-3} \\ 40 & 10^{-3} \\ 24 & 10^{-3} \end{aligned}$ | $\begin{aligned} 128 & 10^{-3} \\ 76 & 10^{-3} \\ 54,4 & 10^{-3} \\ 28,8 & 10^{-3} \\ 16,0 & 10^{-3} \\ 9,6 & 10^{-3} \end{aligned}$ | $\begin{array}{rr} 64 & 10^{-3} \\ 38 & 10^{-3} \\ 27,2 & 10^{-3} \\ 14,4 & 10^{-3} \\ 8,0 & 10^{-3} \\ 4,8 & 10^{-3} \end{array}$ |

Fig. Al.l. 8 Maksimal lagtykkelse $\Delta X_{\text {max }}$ ved given maksimal sum af varmeovergangstal $\mathrm{i} \mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$, forudsat Fouriertal på 1/2.
mm
300

Fig. A1.1.9

Ved et isotropt materiale, opdelt i lige tykke lag, vil en eksplicit beregning altid være stabil med Fouriertallet Fo $\leq 1 / 3$.

Er der 3 eller flere lag, vil der kunne opnås stabilitet intervallet: $1 / 3 \leq$ Fo $\leq 1 / 2$ i afhængighed af varmeovergangen ved overfladen.

Kendes den maksimale sum af varmeovergangstal, vil ulighed (Al.l.14) og evt. fig. Al.l.7 og fig. Al.1.8 give mulighed for at vise, om lagtykkelsen er på den sikre side. Er dette ikke tilfældet, men $1 / 3 \leq F O \leq 1 / 2$, vil ulighed (Al.1.13) kunne vise, om der alligevel er numerisk stabilitet.

Ved 2 lag vil der $i$ afhængighed af varmeovergangstallet kunne anvendes Fouriertal op til 1 , forudsat at ulighed (Al.l.l6) er opfyldt.

Ved 1 akkumulerende lag vil der altid være numerisk stabilitet, når $\mathrm{Fo} \leq 1 / 2$. Er dette ikke tilfældet, kan numerisk stabilitet eftervises af ulighed (Al.l.16).

Ved hjælp af fig. Al.l. 8 og Al. 1.9 er det muligt, at man for et givet materiale hurtigt kan danne sig et indtryk af, om man er på sikker grund, eller om en nærmere unders申gelse er pårævet.

## A1. 2 VARMEOVERGANG I EN LUFTSPALTE

I solvægge indgår luftspalter som et element, der både er varmeisolerende og gennemskinneligt for solstråling. Varmeovergangen $i$ en spalte kan opdeles i stråling, ledning, konvektion og tab på grund af infiltration.

## Al.2.1 Varmeovergang ved konvektion og ledning i en luftspalte

Varmeovergangstallet ved konvektion og ledning mellem to planparallelle overflader med stor udstrækning i forhold til afstanden mellem overfladerne kan bestemmes af udtrykket:

$$
h_{\text {konv }}=\frac{\mathrm{Nu} \cdot \lambda}{\mathrm{~L}}
$$

```
hvor }\lambda\mathrm{ er luftens varmeledningsevne
    L er afstanden mellem overfladerne.
    Nu er Nusselt-tallet
```

Fra referencerne (42),(43),(44) kan følgende udtryk benyttes til at finde Nusselt-tallet:

$$
\begin{equation*}
N u=1+\frac{m \cdot R a^{r}}{R a+n} \tag{A1.2.2}
\end{equation*}
$$

Rayleigh tallet er bestemt ved: Ra $=G r$. Pr. For et hulrum med lodrette sider kan konstanterne sættes til:

$$
\begin{aligned}
& m=0,024 \\
& r=1,39 \\
& n=1,01 \cdot 104
\end{aligned}
$$

Det forudsættes, at hulrumnet er lukket, og at udstrækningen ex stor $i$ forhold til tykkelsen. Endvidere forudsættes, at Ra<108.

Grashofs tal kan findes af:

$$
\begin{equation*}
\mathrm{Gr}=\frac{\mathrm{g} \cdot \Delta T \cdot L^{3}}{T_{\mathrm{mid}} \cdot V^{2}} \tag{A1.2.3}
\end{equation*}
$$

| Her er | 9 | tyngdeaccelerationen |
| :---: | :---: | :---: |
|  | $\Delta T$ | temperaturforskellen mellem luft |
|  |  | og overflade |
|  | Tmid | den absolutte middeltemperatur |
|  |  | af overflade og luft |
|  | L | karakteristisk længde |
|  | v | kinematisk viskositet |

Ved regressionsanalyse er følgende udtryk for Prandtl-tallet for luft fundet med den absolutte lufttemperatur som variabel:

$$
\begin{align*}
& \operatorname{Pr}=0,742-a \cdot T_{\text {mid }} \\
\text { hvor } \quad a & =0,0001 \mathrm{~K}^{-1} \tag{A1.2.4}
\end{align*}
$$

Endvidere er den kinematiske viskositet for luft fundet til at være:

$$
\begin{align*}
& v=a \cdot T_{\text {mid }}-b \\
& \text { hyor } a=0,0976 \cdot 10^{-6} \quad \mathrm{~m}^{2} / \mathrm{s} \mathrm{~K} \\
& \mathrm{~b}=13,34 \cdot 10^{-6} \quad \mathrm{~m}^{2} / \mathrm{s} \tag{A1.2.5}
\end{align*}
$$

For at sammenligne den anvendte formel med andre undersøgelser er fra ref. (45) og (46) optegnet kurver, der viser Nu-tallet som funktion af Ra-tallet (fig. Al.2.1). Ved solvægge med en afstand mellem glasset pa $10-15 \mathrm{~cm}$ vil Ra-tallet ofte ligge mellem $5 \cdot 10^{6}$ og $2 \cdot 107$. Det er desværre et område, der er beskedent belyst, idet de udførte fors $\phi$, som formlerne er baseret på, hovedsagelig er udført ved spalteafstande mindre end 10 cm . Kurven viser forskelle mellem den konvektive varmeovergang på ca. $15 \%$ mellem de storste og mindste værdier for et givet Rayleigh tal.

## A1.2.2 Varmetab fra et hulrum på grund af termisk opdrift

For at bestemme luftskiftet $i$ hulrummet foran solvæggen med mobil isolering er her gennemgået en metode til beregning af luftskiftet på grund af termisk opdrift.


Fig. Al.2.1 Varmeovergang i en luftspalte. Nu-tallet som funktion af Ra-tallet (42), (45), (46). Forholdet mellem hфjde og bredde af spalten er 13.

I et lodret hulrum med en lufttemperatur forskellig fra den omgivende luft vil der gennem abninger ske en ventilering af hulrummet forårsaget af forskelle $i$ luftens massefylde. Til bestemmelse af luftskiftet $i$ hulrummet kan Bernoullis sætning (47) benyttes, hvis der gøres visse forudsætninger.

Luftens sammentrykkelighed ved trykændringer ses der bort fra. Massefylden ex derved uafhængig af hфjden, men afhængig af temperaturen. I hulrummet antages luften at have ensartet temperatur lig med middeloverfladetemperaturen. Forudsættes åbningerne foroven og forneden at være små i forhold til hulrummets vandrette tværsnitsareal, kan tryktabene tillades reduceret til indløbs- og udløbstab. Med de gjorte forudsætninger kan massefylden i hulrummet sættes konstant lig po og udvendigt til $\rho \mathrm{l}$ (fig. Al. 2.2).


(TRYK)

Fig. Al.2.2 Skematisk tegning af hulrum og trykfordeling i hulrum.

På fig. Al. 2.2 er trykfordelingen i hulrummet skitseret. Er der kun åbninger i top og bund i hulrummet, kan trykket i hulrummet antages at variere lineært med højden. Med lige store åbningsarealer $A_{l} i$ top og bund fås at overtrykket over atmosfærelufttrykket i toppen af hulrummet vil være lige så stort som undertrykket $i$ bunden af hulrummet.

Midten af hulrummet vil have samme tryk som i det fri i samme $h \not \subset j d e\left(p_{0}\right)$. Bernoullis ligning kan med disse forudsætninger opstilles for et snit midt $i$ hulrummet og $i$ en af åbningerne:

$$
\begin{equation*}
p_{1}+\frac{1}{2} \rho_{0} v_{1}^{2}+\rho_{0} g z_{1}=p_{0}+\frac{1}{2} \rho_{0} v_{0}^{2}+\rho_{0} g z_{0} \tag{A1.2.6}
\end{equation*}
$$

hvor $p_{l}$ er trykket ved $\phi$ verste åbning, $v_{l}$ er lufthastigheden $i$ det kontraherede tværsnit. $v_{o}$ er lufthastigheden midt i hulrummet. Denne kan med god tilnærmelse sættes til 0 . Ved hjælp af fig. Al. 2.2 fås:

$$
\begin{equation*}
p_{1}=p_{0}+p_{1} g\left(z_{0}-z_{1}\right)=p_{0}-\rho_{1} g z / 2 \tag{A1.2.7}
\end{equation*}
$$

Hastigheden i det kontraherede tværsnit kan dermed beregnes til

$$
\begin{equation*}
v_{1}=\sqrt{\frac{\rho_{1}-\rho_{0} \mid g Z}{\rho_{0}}} \tag{A1.2.8}
\end{equation*}
$$

Benyttes kontinuitetsligningen for strømningen gennem hulrumm met, fås:

$$
\begin{equation*}
v_{0} A_{0}=v_{1} C_{1} A_{1} \tag{A1.2.9}
\end{equation*}
$$

hvor
$A_{o}$ er tværsnitsarealet i hulrummet
$A_{1}$ er abningernes tværsnitsareal
$C_{1}$ er kontraktionskoefficienten

Dermed er volumenstrømmen

$$
\begin{aligned}
V_{0} & =v_{0} A_{0}=v_{1} C_{1} A_{1} \\
& =C_{1} A_{1} \sqrt{\left.1 \frac{\rho_{1}-\rho_{0}}{\rho_{0}} \right\rvert\, g \cdot z} \\
& =C_{1} A_{1} \sqrt{1 T_{0} / T_{1}-11 g \cdot z}
\end{aligned}
$$

idet:

$$
\begin{equation*}
\rho=\frac{p}{R T} \tag{A1.2.11}
\end{equation*}
$$

hvor $R$ er gaskonstanten for atmosfærisk luft. Formel (Al.2.10) er $i$ overensstemmelse med ref. (48) og (49).

If $\varnothing$ lge forudsætningerne er lufttemperaturen lig middeltemperaturen af overfladerne. Varmeovergangen for hver af overfladerne i hulrummet:

$$
\begin{align*}
H_{i n f} & =\frac{1}{2} \rho_{0} \cdot c_{p} \cdot V_{0} \\
& =\frac{k_{2}}{2} \rho_{0} \cdot c_{p} \cdot C_{1} \cdot A_{1} \sqrt{I T_{0}-T_{1} \mid \cdot g \cdot Z / T_{1}}
\end{align*}
$$

$V_{0}$ Volumenstrømmen ( $\mathrm{m}^{3} / \mathrm{s}$ )
${ }^{C}$ p Varmefylde af atmosfærisk luft (1009 J/kg K)
$\mathrm{C}_{1}$ Kontraktionskoefficient sættes til 0,8 (-)

A ${ }_{1}$ Middelværdi af åbningsareal i top og bund
$T_{O}$ Absolut temperatur i hulrum, her benyttes middeltemperaturen af de to overfladers temperatur (K)

T1 Absolut temperatur af luft uden for hulrum, normalt udelufttemperaturen (K)

9 Tyngdeaccelerationen (9,81 m/s2)

Z Hulrummets h $\phi$ jde (m)

Metoden forudsætter, at tryktabene sker i indløbs- og udløbsåbningerne, og dermed at abningernes areal er lille i forhold til tværsnitsarealet i hulrummet. Er dette ikke tilfældet, er det nødvendigt at tage hensyn til tryktabet i hulrummet, se ref. (50) og (51).

Al.2.3 Varmeovergang ved striling i et hulrum

Mellem overfladerne med forskellig temperatur overføres varme ved mørk varmestråing. Der forudsættes et lukket hulrum som vist på fig. Al. 2.3 med to områder, der hver har en ensartet temperaturfordeling. Stralingsudvekslingens størrelse fra overflade 1 til 2 kan bestemmes af (50):

$$
Q_{12}=\frac{\sigma\left(T_{1}^{4}-T_{2}^{4}\right)}{\left(1-\varepsilon_{h, 2}\right) /\left(\varepsilon_{h, 1} A_{1}\right)+1 /\left(A_{1} F_{12}\right)+\left(1-\varepsilon_{h, 2}\right) /\left(\varepsilon_{h, 2} A_{2}\right)}
$$

(Al.2.13)
hvor $T_{1} \circ \mathrm{~T}_{2}$ er de to overfladers temperatur

| $\varepsilon_{h, 1} \circ g \varepsilon_{h, 2}$ | Hemisfæriske emissionskoefficienter |
| :--- | :--- |
| $A_{1} \circ{ }^{\circ} A_{2}$ | Arealerne |
| $F_{12}$ | Vinkelforholdet fra flade 1 til 2 |
| $\sigma$ | Stefan/Boltzmanns konstant |

Stefan/Boltzmanns konstant er sat lig 5,67 $10^{-8} \mathrm{Wm}^{-2} \mathrm{~K}^{-4}$. Denne værdi er teoretisk bestemt (52). Stefan/Boltzmanns konstant kan også findes eksperimentelt, men her er bestemt en værdi, der er ca. $1 \%$ st申rre.


Fig. Al.2.3 To overflader i et lukket hulrum. Skematisk tegning af forudsætninger for formel (A1.2.13).

Forudsættes de to overflader at være siderne $i$ en spalte med uendeligt store overfladearealer er:

$$
A=A_{1}=A_{2} \quad \circ{ }^{F_{12}}=1
$$

Varmeovergangstallet ved stråling kan dermed bestemmes af:

$$
\begin{equation*}
h_{\text {str }}=\frac{Q_{12}}{A\left(T_{1}-T_{2}\right)}=\frac{\sigma\left(T_{1}^{2}+T_{2}^{2}\right)\left(T_{1}+T_{2}\right)}{1 / \varepsilon_{h, 1}+1 / \varepsilon_{h, 2}-1} \tag{Al.2.14}
\end{equation*}
$$

Ved beregning af solvægge (kapitel 2) anvendes emissionskoefficienterne 0,90 for acryl og 0,95 for maling.


Fig. Al. 2.4 Varmeovergangstallet mellem to lodrette planparalIelle overflader med emissionskoefficienten $\varepsilon_{h}=0,95$. Overfladernes temperaturer er $t_{2}=15{ }^{\circ} \mathrm{C}$ og $t_{1}$ som vist.

For to overflader med emissionskoefficienter på 0.95 er på fig. Al. 2.4 vist varmetransmissionskoefficienten ved ledning, konvektion og stråing $i$ en spalte som funktion af spaltebredden (lign. (Al.2.1) og (A1.2.14)). Den ene overflades temperatur er fastholdt på $15^{\circ} \mathrm{C}$. Af figuren ses, at varmetransmissionskoefficienten $\phi g e s$ væsentligt ved en for $\phi$ gelse af temperaturforskellen. Endvidere ses en formindskelse af varmeovergangen ved at $\phi g e$ spaltebredden indtil en vis st申rrelse. Forøgelse af spaltebredden ud over dette niveau medfører kun små ændringer i varmeovergangen. Dette niveau afhænger af overfladetemperaturerne og ligger for de viste kurver mellem ca. 15 og 30 mm .

## Al. 3 VARMEOVERGANG VED EN FRI OVERFLADE

En fri overflade udveksler varme ved konvektion og stråling. I det følgende afsnit behandles forholdene ved udvendige overflader, mens det efterfølgende afsnit behandler den indvendige overflade.

## Al.3.1 Udvendig overflade

Varmeovergangen ved en udvendig overflade er sammensat af et bidrag, der bestemmes af konvektion til udeluften, og et der bestemmes af stråingsudveksling med himlen og terrænet. Strålingsudvekslingen foregår både ved langbølget temperaturstråling og ved kortb申lget solstråling. I dette afsnit er den langbølgede strålingsudveksling behandlet, mens solstråling er behandlet i afsnittene Al.4-Al.7.

Den konvektive varmeovergang er afhængig af vindhastigheden. Vindhastigheden er afhængig af bl.a. læforhold og af overfladens højde over terrænet.

De fleste meteorologiske målestationer måler vindhastigheden. Målingerne foretages $i$ forskellig højde. Korrigeres for højden, findes en middelværdi for vindhastigheden i $10 \mathrm{~m} h \not \subset j d e$ på 4,5 $\mathrm{m} / \mathrm{s}$ gældende for landstationer (34).

For at få gennemsnitsvindhastigheden i den aktuelle højde kan følgende formel benyttes (53).

$$
\begin{equation*}
\frac{V}{V_{\mathrm{m}}}=k z^{a} \tag{A1.3.1}
\end{equation*}
$$

```
hvor V vindhastighed (m/s) i h\phijden Z
    Vm
    z aktuel h\phijde (m)
    K koefficient (se fig. Al.3.1)
    a eksponent (se fig. Al.3.1)
```

|  | $K$ | $a$ |
| :--- | :---: | :---: |
| Abent fladt landskab | 0,68 | 0,17 |
| Landskab med spredte læhegn | 0,52 | 0,20 |
| Boligområde | 0,40 | 0,25 |
| Cityomrade | 0,31 | 0,33 |

Fig. Al.3.1 Faktorer til bestemmelse af middelvindhastigheden i forskellige typer terræn ved hjælp af den meteorologiske vindhastighed $V_{m}$ målt i $10 \mathrm{~m}^{\prime} \mathrm{h} \phi j d e \mathrm{i}$ et åbent landskab.

I fors申gene (kapitel 3) er den aktuelle middelh申jde $Z=3 \mathrm{~m}$. Med (Al.3.1) fås et groft skøn over middelvindhastigheden på:

$$
\mathrm{V}=\mathrm{K} \cdot \mathrm{Za}^{\mathrm{a}} \cdot \mathrm{~V}_{\mathrm{m}}=0,40 \cdot 30,25 \cdot 5,4=2,4 \mathrm{~m} / \mathrm{s}
$$

Ved udvendige overflader er den dominerende pavirkning tvungen konvektion. I ref. (50) er angivet forskellige metoder til bestemmelse af det konvektive varmeovergangstal, og det fremgair, at der er en del usikkerhed pà bestemmelsen af denne st $\phi$ drelse. Det udvendige varmeovergangstal kan sættes til en lineær funktion af vindhastigheden $V$ :

$$
\begin{align*}
& \mathrm{h}_{\mathrm{konv}}=\mathrm{a}+\mathrm{bV} \\
& \mathrm{a}=5,7 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K} \\
& \mathrm{~b}=3,8 \mathrm{Ws} / \mathrm{m}^{3} \mathrm{~K} \tag{A1,3.2}
\end{align*}
$$

Er middelvindhastigheden $V=2.4 \mathrm{~m} / \mathrm{s}$ findes det konvektive var meoverganstal til $i$ middel at vore: $h_{\mathrm{konv}}=5,7+3,8 \cdot 2,4=$ $14,8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. I denne rapport benyttes dette konstante, udvendige, konvektive varmeovergangstal.

Ved den udvendige overflade sker der strålingsudveksiing til himmelen, til jordoverfladen og til genstande, som overfladen kan "se". Antages vinkelforholdet fra en overflade til omgivelserne at være 1 og omgivelsernes areal at være uendelig stort $i$ forhold til overfladearealet ( $A_{1}$ ) grelder, at stralingsudvekslingen er:

$$
\begin{align*}
Q & =A_{1} \cdot \varepsilon_{1} \cdot \sigma\left(T_{o m g}^{4}-T_{1}^{4}\right) \\
& =A_{1} \cdot \varepsilon_{1} \cdot \sigma\left(T_{\text {omg }}^{2}+T_{1}^{2}\right) \cdot\left(T_{o m g}^{2}-T_{1}^{2}\right) \tag{Al.3.3}
\end{align*}
$$

hvor $T_{\text {omg }}$ er omgivelsernes middelstrålingstemperatur og $T_{1}$ er overfladens temperatur.

Normeres med forskellen mellem overflade- og udelufttemperaturen, kan varmeovergangstallet bestemmes af:

$$
h_{\text {str }}=\varepsilon_{1} \cdot \sigma\left(T_{\mathrm{omg}}^{4}-T_{1}^{4}\right) /\left(T_{u}-T_{1}\right)
$$

hvor $T_{u}$ er udelufttemperaturen.

Ifølge (54) kan omgivelsernes middelstråingstemperatur for en lodret overflade bestemmes som en funktion af skydække og udelufttemperatur.

$$
\begin{equation*}
T_{\text {omg }}=\frac{9-N}{9}\left(0,1 t_{u}-5\right)+T_{u} \tag{A1.3.5}
\end{equation*}
$$

hoor $N$ er skydækket i oktetter og $t_{u}=T_{u}-273\left({ }^{\circ} \mathrm{C}\right)$

Benyttes middelværdien for skydækket i Referenceåret (34), fås $\mathrm{N}=4,9$.

Omgivelsernes middelstrålingstemperatur er i middel:

$$
\begin{align*}
T_{o m g} & =\frac{9-4,9}{9}\left(0,1 t_{u}-5,0\right)+T_{u} \\
& =1,046 T_{u}-14,9 \tag{K}
\end{align*}
$$

Indsættes værdier for udeluft- og overfladetemperaturer, hvor overfladens temperatur ligger mellem 1 og $5 \mathrm{~K} h \not \subset j e r e ~ e n d ~ u d e-$ luften fås, at den udvendige overgangsisolans bliver beregnet til værdier mellem 0,04 og $0,05 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$. Der er altså god overensstemmelse mellem den her beregnede og den $i$ Varmetabsreglerne (30) anvendte værdi på $0,04 \mathrm{~m} 2 \mathrm{~K} / \mathrm{W}$.

Ved de udvendige fors $\phi$ g forekommer der dog meget store variationer i både vindhastighed og udstråling til himmelrummet.

## Al.3.2 Varmeovergang ved indvendig overflade

Ved den indvendige overflade sker der en varmeovergang ved naturlig konvektion til rumluften og ved strålingsudveksling til rummets overflader.

Den naturlige konvektion ved den indvendige overflade er afhængig af overfladens (Tov) og luftens (TIuft) temperatur. For en lodret, plan overflade kan, under forudsætning af $0,5 \leq$ $\operatorname{Pr} \leq 200$ følgende udtryk benyttes (41), (55), (56):

$$
\begin{equation*}
h_{\text {konv }}=a\left(T_{\mathrm{ov}}-T_{\text {huft }}\right)^{1 / 3} \tag{A1,3.6}
\end{equation*}
$$

```
hvor a = 1,49 W/m}\mp@subsup{}{2}{2}\textrm{K
```

Formlen forudsætter endvidere varmeovergang ved turbulent strømning. Omslaget mellem laminar og turbulent strømning sker ifølge ref. (41), (55) ved $\mathrm{Ra}=10^{9}$, mens det ifølge ref. (56) sker ved 108. pa fig. Al.3.2 er optegnet forskellige kombinationer af temperaturforskelle mellem overflade og luft, Rayleightal og karakteristisk længde. Det ses, at antages omslag ved $\mathrm{Ra}=10^{9}$, svarer det ved en karakteristisk længde på 2 mog en middeltemperatur pa $20^{\circ} \mathrm{C}$ til en temperaturforskel på 1.2 K . Varmeovergangen mellem solvæg og rumluft vil derved som regel ske ved turbulent strømning.

Mellem den indvendige side af solvæggens varmelager og rummet bag solvæggen sker der en strålingsudveksling. Størrelsen af denne kan bestemmes ved hjælp af teorien for stråingsudveksling $i$ et lukket hulrum (afsnit Al.2.3), der er opdelt $i$ et antal felter, hver med en ensartet temperaturfordeling. Ofte vil det være muligt at tilnærme rummets indvendige overfladers temperaturer til to temperaturer. Derved kan strålingsudvekslingen bestemmes af formel (Al.2.13).


Fig. Al.3.2 Temperaturdifferens mellem overflade og luft med konvektiv varmeovergang, der svarer til en given karakteristisk længde, Rayleigh tal og middeltemperatur $\mathrm{T}_{\mathrm{m}}$.

Da varmelagerets indvendige overflade normalt er plan, er vinkelforholdet fra denne overflade til rummets $\phi$ vrige overflader $F_{12}=1$. Overfladens temperatur ( $\mathrm{T}_{1}$ ) kan tilnærmet regnes at være ensartet.

I beregningerne, hvor solvægsmodellen er koblet sammen med edb-programmet $B A 4^{\circ}$ s rummodel, benyttes den indvendige rumoverfladetemperatur ( $T_{2}$ ) til bestemmelse af varmeovergangen ved stråling.

Ved fors申gene er rummets overfladetemperatur bestemt som en simpel middeltemperatur af de overflader solvæggen kan se. Dette vil være en god tilnærmelse til middelstrålingstemperaturen, som i virkeligheden er den størrelse, der $\phi$ nskes bestemt.

Fors $\phi$ gsrummets overfladeareal er $A_{2}=48,4 \mathrm{~m}^{2}$ og varmelagerets areal er $A_{I}=3,1 \mathrm{~m}^{2}$. Emissionskoefficienterne for overfladerne er svære at bestemme nøjagtigt ud fra det tilgængelige datamateriale.

De indvendige træpaneler er matlakerede. Emissionskoefficienten er fundet til at være 0,83 ifølge (57). Gulvet er af spånplader, hvis emissionskoefficient kan sættes til 0,90. Loftet er af gipsplader beklædt med papir, som har en emissionskoefficient på ca. 0.95.

Da disse emissionskoefficienters størrelse er usikker tilnærmes rummets emissionskoefficient med en simpel arealvægtet emissionskoefficient på $\varepsilon_{\mathrm{n}, 1}=0,87$.

Ved alle ovennæunte emissionskoefficienter er udstrålingen forudsat vinkelret på overfladen ( $\varepsilon_{\mathrm{n}}$ ). Til brug i formler anvendt i afsnit Al.2.3 skal den totale eller hemisfæriske emissionskoefficient ( $\varepsilon_{h}$ ) benyttes. Ifølge (57) gælder, at for glatte overflader er forholdet mellem de to emissionskoefficienter:
$\varepsilon_{h} / \varepsilon_{\mathrm{n}}=0,95$

For de indvendige overflader bliver den totale emissionskoefficient:
$\varepsilon_{h, 1}=0,87 \cdot 0,95=0,83$

Kalksandstensvæggens emissionskoefficient er også vanskelig at bestemme. Til sammenligning er emissonskoefficienten for forskellige matexialer nævnt.

| Kalkm申rtel: | 0,92 |
| :--- | :---: |
| Puds, ra kalk: | 0,91 |
| Kvarts: | $0,78-0,93$ |
| Sand: | 0,76 |
| Brændt gips: | $0,79-0,92$ |

Kalksandstenen er fremstillet, ved at kalk og sand blandes og opvarmes $i \quad 8$ timer $i$ en autoklave ved $170{ }^{\circ} \mathrm{C}$ under mættede dampes tryk. Derved dannes calciumsilikatkrystaller og andre krystalliske forbindelser. Som middelværdi vælges $\varepsilon_{n, 2}=0,85$. For ru overflader fås ifølge (57), at $\varepsilon_{h} / \varepsilon_{n}=0,98$. Dette giver for kalksandsten: $\varepsilon_{h, 2}=0,85 \cdot 0,98=0,83$.

Indsættes de fundne værdier i (A1.2.13), fås:

$$
\begin{aligned}
Q_{12} & =\frac{A_{1} \cdot \sigma \cdot\left(T_{1}^{4}-T_{2}^{4}\right)}{\left(1-\varepsilon_{h, 1}\right) / \varepsilon_{h, 1}+1 / F_{12}+\left(1-\varepsilon_{h, 2}\right) \cdot A_{1} /\left(\varepsilon_{h, 2} \cdot A_{2}\right)} \\
& =\frac{A_{1} \cdot 5,67 \cdot 10^{-8}\left(T_{1}^{4}-T_{2}^{4}\right)}{(1-0,83) / 0,83+1 / 1+(1-0,83) \cdot 3,1 /(0,83 \cdot 48,4)} \\
& =4,66 \cdot 10^{-8} \cdot A_{1}\left(T_{1}^{4}-T_{2}^{4}\right) \quad\left(W^{-2} K^{-4}\right)
\end{aligned}
$$

Temperaturforskellen mellem overflade- og rumlufttemperaturen vil typisk variere mellem -5 K og 20 K . Ved fx en forskel på 5 K beregnes varmeovergangstallet ved konvektion til $2,5 \mathrm{~W} / \mathrm{m} 2 \mathrm{~K}$, og varmeovergangstallet ved stråling til $4,8 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, når over-
fladetemperaturerne er $20^{\circ} \mathrm{C}$ og solvæggens overfladetemperatur er $25^{\circ} \mathrm{C}$ ．Summeres de to bidrag，og antages at de 申vrige over－ flader i rummet，som solvæggen udstråler til，har samme tempe－ ratur som rumluften，er den samlede isolans mellem solvæg og rummet $0,137 \mathrm{~m}^{2} \mathrm{~K} / \mathrm{W}$ ，hvilket svarer til den $i$ varmetabsreglerne （30）anvendte indvendige overgangsisolans på $0,13 \mathrm{~m} 2 \mathrm{~K} / \mathrm{W}$ ．

## Al． 4 SOLSTRALING

## Al．4．1 Ekstraterrestrial solstråling

Uden for atmosfæren er solstrålingen næsten konstant．De vig－ tigste parametre，der påvirker denne såkaldte ekstraterrestri－ ale stråling er antallet af solpletter og afstanden mellem so－ len og jorden．

Middelværdien af den ekstraterrestriale solstråing kaldes sol－ konstanten og er ifølge ref．（58）$I_{s c}=1365 \mathrm{~W} / \mathrm{m}^{2}$ ．Andre værdier for solkonstanten er anvendt，og ifølge（39）vil en værdi på $1377 \mathrm{~W} / \mathrm{m}^{2}$ blive anbefalet som ny solkonstant af den internationale belysningskomité（CIE，teknisk komité TC－4．2）．

Variationen $i$ solens afstand til jorden giver andringer på $\pm 3,3 \%$ Middelværdien af den ekstraterrestriale stråling på dag $N_{d n}$ i o̊ret kan findes af formlen（58）：

$$
\begin{equation*}
I_{0}=I_{s c} \cdot\left(1+0,033\left(\cos \left(\frac{\left(N_{d n}-3\right) \cdot 2 \pi}{365}\right)\right)\right) \tag{Al.4.1}
\end{equation*}
$$

hvor argumentet til cosinus er angivet i rad．

Al．4．2 Solstrailingens retning

Den bane solen beskriver angives normalt ved solh申jden og azi－ mutvinklen．Solh申jden $\alpha$ er vinklen mellem solens retning og horisontalt plan．Solens azimutvinkel $\gamma_{s}$ er vinklen mellem retningen af solens projektion pa vandret plan og nord regnet positivt fra nord $i$ urets retning．En lodret flades azimut－
vinkel $\gamma_{v}$ er vinklen mellem fladens normal og nord. En lodret vægs azimutvinkel $i$ forhold til solen kaldes væg-solazimutvinklen $\gamma$ og kan findes som differensen (59):

$$
\begin{equation*}
\gamma=\gamma_{s}-\gamma_{v} \quad \text { hvor }-\pi<\gamma \leq \pi \tag{Al.4.2}
\end{equation*}
$$

Indfaldsvinklen $\theta_{i}$ for solstråingen er vinklen mellem retningen til solen og fladens normal. For en lodret flade findes:

$$
\begin{equation*}
\cos \theta_{i, 1}=\cos \alpha \cdot \cos \gamma \tag{Al.4.3}
\end{equation*}
$$



Fig. Al.4.l Indfaldsvinkel ved en lodret overflade.

Er overfladen vandret, kan indfaldsvinklen for den direkte solstråling bestemmes af:

$$
\begin{equation*}
\theta_{i, v}=\pi / 2-\alpha \tag{Al.4.4}
\end{equation*}
$$

Retningsvinklen er vinklen mellem strålens projektion i fladens plan og en given retning $i$ fladens plan. Vælges for en lodret, sydvendt overflade vandret som udgangspunkt, kan retningsvinklen $\phi$ bestemmes ved:

$$
\begin{align*}
\operatorname{tg} \phi & =\frac{\operatorname{tg} \alpha}{\sin \gamma} & & \text { for } \gamma \neq 0  \tag{A1.4.5}\\
\phi & =\pi / 2 & & \text { for } \gamma=0
\end{align*}
$$

En stråles profilvinkel til en flade er vinklen mellem vandret og et plan udspændt af strålen og en vandret linie, der bade skærer strålen og er parallel med fladen.

Profilvinklen $\varphi$ kan for en lodret flade bestemmes ved hjælp af solhøjden og væg-solazimutvinklen:

$$
\begin{equation*}
\operatorname{tg} \varphi=\frac{\operatorname{tg} \alpha}{\cos \gamma} \text { for }(\gamma \neq \pi / 2) \wedge(\gamma \neq-\pi / 2) \tag{A.1,4,6}
\end{equation*}
$$

## Al.4.3 Solindfald på en overflade

Ved passage gennem atmosfæren brydes og absorberes en del af solstralingen. Den del der rammer en overflade kan opdeles i folgende bidrag:

1) Direkte stråling $I_{b}$
2) Diffus himmelstråling $I_{d}$
3) Diffus reflekteret stråing $I_{r}$

Ofte er ved klimadata angivet den direkte normalstråing Ib, $n$ og den diffuse himmelstråling $I_{d, h}$.

På grundlag af disse data kan solstrålingen på en vilkårligt hældende flade findes (60). Er fladen lodret, kan bestrålingsstyrken af den direkte stråling, der rammer overfladen bestemmes af:

$$
\begin{equation*}
I_{b}=I_{b, n} \cdot \cos \theta_{i} \tag{A1.4.7}
\end{equation*}
$$

hvor $\theta_{i}$ er indfaldsvinklen.

Bestrålingsstyrken af den diffuse himmelstråling er angivet i ref. (60) til:

$$
\begin{equation*}
I_{d}=I_{d, h}((F-0,5)(8-N) / 8+0,5) \tag{Al.4.8}
\end{equation*}
$$

Hvor $N$ er skydækket i oktetter og ifølge (61):

$$
\begin{array}{ll}
F=0,55+0,437 \cos \theta_{i}+0,0313 \cos ^{2} \theta_{i} & \text { for } \cos \theta_{i} \geq-0,2 \\
F=0,45 & \text { for } \cos \theta_{i}<-0,2 \tag{A1.4.9}
\end{array}
$$

på grundlag af nyere målinger er andre omsætningsfaktorer fundet i ref. (39).

Globalstråling på vandret kan sammensættes af den direkte normalstråling og diffus himmelstråling:

$$
\begin{equation*}
I_{h}=I_{b, n} \cdot \sin \alpha+I_{d, h} \tag{Al.4.10}
\end{equation*}
$$

Den reflekterede stråling har bestrålingsstyrken:

$$
\begin{equation*}
I_{r}=I_{h} \cdot F_{v} \cdot \rho_{j} \tag{A1.4.11}
\end{equation*}
$$

hvor $F_{V}$ er vinkelforholdet til terrænet, normalt $0,5, o g \rho_{j}$ er jordens refleksionskoefficient for kortbølget stråling.

Bestrålingsstyrken af den totale indfaldende stråling er dermed:

$$
\begin{equation*}
I_{\text {tot }}=I_{b}+I_{d}+I_{r} \tag{A1.4.12}
\end{equation*}
$$

Ved forsøgene $i$ måleperiode 1 og 2 (kap. 3) er den totale indfaldende stråling på solvæggene målt ved hjælp af et solarimeter. Den diffuse strålingsandel af den indfaldende stråing kan ud fra denne måling ikke umiddelbart bestemmes. Da der i beregningerne (kap. 4.2.1 og 4.2.2) indgår den diffuse stråling, er der her søgt opstillet et udtryk til bestemmelse af den diffuse strålingsandel af den totale indfaldende stråling。

Med kendskab til refleksionskoefficienten for jorden og skydækket er det muligt ved hjælp af de $i$ afsn. Al.4.3 angivne form ler at bestemme fordelingen mellem de enkelte stralingsandele.

Ved hjælp af Referenceårets klimadata (34) er et udtryk for andelen af diffus stråling på en lodret, sydvendt flade bestemt.

I udtrykket indgår, indfaldsvinklen $\theta_{i}$ for den direkte stråing og forholdet $\mathrm{F}_{\mathrm{glob}}$ mellem den måte stråing og den ekstraterrestriale stråling på en overflade parallel med solvaggen:

$$
\begin{equation*}
F_{g l o b}=I_{\text {malt }} / I_{0} \cdot \cos \theta_{j} \tag{A1.4.13}
\end{equation*}
$$

Jordens refleksionskoefficient for kortbolget solstraling er skønnet til $\rho_{j}=0,25$. Ved hjælp af BA4 (26) er bestråingsstyrken af solstrålingen fundet gennem de føxste 6 mánedex i Referencearet. Disse data er benyttet til en ulineær regres. sionsanalyse. Til analysen er anvendt statistik-programmeringssproget $S A S$ (62). Pa grundlag af skønnede parametre beregnes den kvadratiske residualsum for de forskellige parameterkombinationer. Kvadratet på residualsummerne vægtes med den totale solstri̊ling for at mindske fejlen, pà den i middel absorberede stråling, mest muligt. Den mindste sum af afvigelser danner grundlag for en Gauss/Newton iterationsproces, der optimerer ud fra de skønnede parametre.

Resultatet af beregningen er, at den diffuse strålings andel kan bestemmes af følgende udtryk:

$$
\begin{equation*}
F_{d i f}=0,049+0,284\left(F_{g 10 b}\right)^{0,5} \cdot\left(\theta_{i}\right)^{1,5} \tag{Al.4.14}
\end{equation*}
$$

hvor $\theta_{i}$ indsættes i rad.

Følgende begrænsninger er anvendt:

$$
\begin{aligned}
& 0,05 \leq F_{g l o b} \leq 1 \\
& 0,05 \leq \cos \theta_{i} \leq 1 \Rightarrow 0 \leq \theta_{i} \leq 87^{\circ} \frac{\pi}{180^{\circ}}
\end{aligned}
$$

Ved beregningen er bestrålingsstyrker af den diffuse stråling mindre end $5 \mathrm{~W} / \mathrm{m}^{2}$ udeladt. Findes en værdi af Fdif st申rre end 1, nedsættes størrelsen til 1.


Fig. Al.4.2 Sammenligning for januar i Referenceåret.


Fig. Al.4.3 Sammenligning for maj i Referenceåret.


Fig. Al.4.4 Sammenligning for juni i Referenceåret.

Nøjagtigheden kan ses af fig. Al.4.2-Al.4.4, hvor den diffuse andel og residualværdierne er optegnet som funktion af den totale indfaldende stråling. Figurerne viser ved store bestrålingsstyrker en maksimal afvigelse mellem beregnet værdi af lign. (Al.4.14) og beregnet værdi fra BA4 pà omkring 0,1, mens bestemmelsen for mindre bestrålingsstyrker er mere unøjagtig. Residualværdier numerisk større end 1 findes pa figurerne ved små bestrålingsstyrker. Årsagen er, at Fdif værdien ikke, som ellers anvendt i beregningerne, er nedsat til 1.

For at kontrollere, at der er samme nøjagtighed for de sidste 6 måneder af året, er de vægtede residualsummer beregnet (fig. Al.4.5) 。

|  | Antal <br> obser- <br> vationer | Vægtet <br> kvadrat- <br> sum |
| :--- | :--- | :--- |
| Første 6 mdr. i Ref. år <br> Sidste 6 mdr. i Ref. àr | 2932 <br> 2792 | 27400 |
| 24600 |  |  |

Fig. Al.4.5 Kvadratsum af residualer vægtet med bestrålingsstyrken.

Det ses, at den sidste halvdel af året giver en vagtet kvadratsum, der svarer til den første halvdel af året, når der tages hensyn til antallet af observationer.

## A1. 5 TRANSMISSION GENNEM FORSKELLIGE MATERIALER

I afsnittene Al.5.1-Al.7.3 vises, hvordan transmission og absorption af solstråling kan bestemmes for de dæklagssystemer, der er benyttet $i$ de udførte fors申g (se kap. 3). I afsnit Al.5.1 bestemmes transmission og absorption gennem et materialelag med planparallelle overflader. Dernæst (afsnit Al.6.1) beskrives, hvordan absorptions- og transmissionskoefficienter for et antal lag med forskellige egenskaber kan sammensættes
således, at den resulterende absorption $i$ de enkelte lag kan bestemmes. Det vises (afsnit Al.6.2-Al.6.3), hvordan metoden kan anvendes ved et dæklagssystem bestående af en kanalplade og en absorberoverflade.

I afsnittene Al.7.1-Al.7.2 er absorptionen $i$ de enkelte lag bestemt ved diffus stråling.

Al.5.1 Transmission, refleksion og absorption for et enkelt lag transparent materiale


Fig. A1.5.1 Brydning ved overflade.

Betragtes en indfaldende strale på et transparent materiale, vil en del af strålingen ( $\rho$ ) blive reflekteret fra overfiaden (fig. Al.5.l). Den resterende del af stråingen vil transmitteres ind $i$ materialet. Forudsættes udelukkende spejlende refleksion, vil den transmitterede stråling, hvis indfaldsvinklen er $\theta_{i}$, have brydningsvinklen $\theta$ b, hvor denne størrelse kan beregnes af Snell's lov:

$$
\frac{\sin \theta_{i}}{\sin \theta_{b}}=\frac{n_{1}}{n_{2}}
$$

hvor $n_{1}$ og $n_{2}$ er de to materialers relative brydningsindex (se fig. Al.5.2).

| Materiale | Brydningsindex <br> $\mathfrak{n}$ |
| :--- | :---: |
| Luft | 1,000 |
| Silika aerogel (Airglass) | $1,02-1,05$ |
| Teflon (Polytetrafluoroethylen) | 1,343 |
| Kynar (Polywinylidene Fluorid) | 1,413 |
| Acryl (Plexiglas) | 1,490 |
| Polyethylen (Marlex) | 1,500 |
| Glas | 1,518 |
| Glasfiberarmeret polyester (Sunlite) | 1,540 |
| Polycarbonat (Lexan) | 1,586 |
| Polyester (Mylar) | 1,640 |

Fig. Al.5.2 Forskellige transparente materialers relative brydningsindex (63), (64).


Fig. Al.5.3 Brydningsvinklens afhængighed af indfaldsvinkel $\left(\theta_{i}\right)$ og det relative brydningsindex $n$.

Refleksionen af stråingen kan beregnes ved hjælp af Fresnels formler (50). For stråling polariseret vinkelret på planen udspændt af fladenormalen og solstrålingens retning:

$$
\begin{equation*}
\rho_{\perp}=\frac{\sin ^{2}\left(\theta_{i}-\theta_{b}\right)}{\sin ^{2}\left(\theta_{i}+\theta_{b}\right)} \tag{A1.5.2}
\end{equation*}
$$

For stråling polariseret parallelt med stråleretningen gælder:

$$
\begin{equation*}
\rho_{\#}=\frac{\operatorname{tg}^{2}\left(\theta_{i}-\theta_{b}\right)}{\operatorname{tg}^{2}\left(\theta_{i}+\theta_{b}\right)} \tag{A1.5.3}
\end{equation*}
$$

For stråling med små indfaldsvinkler kan man, idet der i solstråling normalt er lige store andele fra de to polarisationsretninger, sætte middelrefleksionen til:

$$
\begin{align*}
\rho & =\frac{1}{2}\left(\rho_{1}+\rho_{\#}\right) \\
& =\frac{1}{2}\left(\frac{\sin ^{2}\left(\theta_{i}-\theta_{b}\right)}{\sin ^{2}\left(\theta_{i}+\theta_{b}\right)}+\frac{\operatorname{tg}^{2}\left(\theta_{i}-\theta_{b}\right)}{\operatorname{tg}^{2}\left(\theta_{i}+\theta_{b}\right)}\right) \tag{A1.5.4}
\end{align*}
$$

Ved store indfaldsvinkler vil det ved beregninger som vist i det følgende (lign. (A1.5.9)-(Al.5.11)) være nødvendigt at benytte refleksionen for hver af de to polarisationsretninger i stedet for middelrefleksionen.

Når en stråle passerer et materiale, vil en del af strålingen blive absorberet. Størrelsen af den absorberede stråing ( $\mathrm{ar}_{\mathrm{abs}}$ ) vil for et infinitesimalt element være proportionalt med den passerede vejlængde ( $d x$ ), materialet og bestrailingsstyrken $I_{x}$ :

$$
\begin{equation*}
d I_{a b s}=K \cdot I_{x} \cdot d x \tag{A1.5.5}
\end{equation*}
$$

Størrelsen K kaldes materialets ekstinktionskoefficient.

Er elementet en del af et materiale (fig. Al.5.4) og sættes bestrålingsstyrken af strålingen umiddelbart efter passagen af yderste overflade til $I_{0}$, vil bestrålingsstyrken (I) efter at have passeret vejlængden $X$ igennem hele materialet kunne findes ved integration af (Al.5.5):

$$
\begin{align*}
& \int_{I_{0}}^{I} \frac{d I_{a b s}}{I_{x}}=\int_{0}^{X} K d x \\
& I / I_{0}=e^{-K X} \tag{A1.5.6}
\end{align*}
$$



Fig. Al.5.4 Absorption $i$ et materiale.

Er materialets tykkelse (L) og brydningsvinklen $\theta_{b}$ fås at transmissionen gennem materialet, når der tages hensyn til absorption, er:

$$
\begin{equation*}
\tau_{a}=I / I_{o}=e^{-K L / \cos \theta_{b}} \tag{A1.5.7}
\end{equation*}
$$

Den del af strålingen, der absorberes ved passage gennem laget, bestemmes af:

$$
\begin{equation*}
a=1-\tau_{a}=1-e^{-K L / \cos \theta_{b}} \tag{A1,5.8}
\end{equation*}
$$

Mellem overfladerne $i$ et transparent lag vil der ske gentagne refleksioner af en indfaldende stråle. I princippet vil der ske uendelig mange refleksioner, men stråingens styrke klinger hurtigt ud (se fig. Al.5.5). Den indfaldende bestrailingsstyrke

Fig. A1.5.5 Strilegang gennem et materiale.
forudsættes at være 1. Foretages en summation af de enkelte bidrag, der har passeret materialelaget kan transmissionskoefficienten for hele laget bestemmes af:

$$
\begin{align*}
T & =(1-\rho)^{2} \cdot \tau_{a} \cdot \sum_{n=0}^{\infty}\left(\rho \tau_{a}\right)^{2 n} \\
& =\tau_{a} \frac{(1-\rho)^{2}}{1-\left(\rho \tau_{a}\right)^{2}} \tag{Al.5.9}
\end{align*}
$$

På tilsvarende måde findes absorptions- (A) og refleksionskoefficienten ( $R$ ) for hele laget:

$$
\begin{align*}
& A=\frac{(1-\rho)\left(1-\tau_{a}\right)}{1-\rho \tau_{a}}  \tag{A1.5.10}\\
& R=\frac{\rho\left(1+\tau_{a}^{2}(1-2 \rho)\right)}{1-\left(\rho \tau_{a}\right)^{2}} \tag{A1.5.11}
\end{align*}
$$

## A1.5.2 Transmission gennem acryl

Transmissionskoefficienten for plexiglas er vanskelig at bestemme ud fra foreliggende målinger, da disse afviger noget fra hinanden.

For en 3 mm acrylplade er transmissionsevnen måt (64) ved en spektrofotometermåling og en monokromatormåing med b申lgelængdeintervallerne henholdsvis $0,29 \mu \mathrm{~m}-3 \mu \mathrm{~m}$ og $3 \mu \mathrm{~m}-7 \mu \mathrm{~m}$. Transmissionskoefficienten er måt kontinuert for stråing vinkelret på overfladen. Dette giver en kurve, der kan danne grundlag for bestemmelsen af transmissionskoefficienten for et bestemt solspektrum:

$$
\begin{equation*}
\tau=\frac{\int_{0}^{\infty} I_{\lambda, i}{ }^{* T} \lambda^{\cdot} \cdot d \lambda}{\int_{0}^{\infty} I_{\lambda, i} \cdot d \lambda} \tag{Al.5.12}
\end{equation*}
$$

hvor $\tau_{\lambda}$ og $I_{\lambda, i}$ er henholdsvis transmissionskoefficienten og bestrålingsstyrken ved bølgelængden $\lambda$.

Solspektret, der anvendes som udgangspunkt, (65), svarer til en byatmosfære. Solspektret afhænger af hvor meget atmosfære solstråingen skal passere. St申rrelsen, den relative luftmasse (m), er forholdet mellem den længde, solstralingen skal passere gennem atmosfæren og den længde solstralingen skulle passere, hvis solen stod $i$ zenit. $I(64)$ er der interpoleret lineart mellem bestrålingsstyrken ved en relativ luftmasse på m $=1$ og $m=4$ for at bestemme bestråingsstyrken ved $m=2$. Beregningsmetoden er ændret, idet der forudsættes en eksponentielt faldende bestrålingsstyrke ved en $\phi$ gning af den relative luftmasse:

$$
\begin{equation*}
I_{\lambda, i}=k_{1} e^{-k_{2} m} \tag{A1.5.13}
\end{equation*}
$$

hvor $k_{1}$ og $k_{2}$ er konstanter, der kan bestemmes pa grundlag af samhørende værdier af $m$ og $I_{\lambda, i}$.

Det herved fremkomne solspektrum er anvendt til beregning af transmissionskoefficienten for plexiglas efter ovennævnte integrationsmetode.

Med disse forudsetninger er transmissionskoefficienten fox en 3 mm acrylplade beregnet ved forskellige værdier af den relative luftmasse. Fig. AI. 5.6 viser, at der er en vis afhængighed af den relative luftmasse, solstrålingen skal passere gennem atmosfæren.

|  | Relativ luftmasse m |  |  |
| :---: | :---: | :---: | :---: |
|  | $\mathrm{m}=1$ | $\mathrm{m}=2$ | $\mathrm{m}=3$ |
| 3 mm acryl | 0,813 | 0,826 | 0,831 |

Fig. Al.5.6 Transmissionskoefficienter for acryl ved forskellige solspektre.

Spektrofotometermålingen antages at have en transmissionskoefficient en anelse større end måt, da udenlandske målinger (66) af den spektrale transmission her har et maksimum på 0,92, mens den aktuelle måling har et maksimum på 0,90. Den aktuelle acrylplade er ligeledes måt ved en solarimetermåling, hvor bestrålingsstyrken er måt med og uden acrylplade foran. Denne måling må antages at give for store transmissionskoefficienter, da en del af solstrålingen, der rammer fladen bag solarimetret bliver reflekteret tilbage til acrylpladen og til solarimetret. For at mindske denne refleksion ex malingen blevet gentaget med en sortmalet overflade bag solarimetret. Dette gav en reduktion i transmissionskoefficienten fra 0,88 til 0,87 .

Det skønnes, at en middelvardi af transmissionskoefficienten fundet ved ovennævnte solarimetermåling og den beregnede værdi ved relativ luftmasse 3 (fig. Al.5.6) vil give det mest korrekte resultat: $T=0,85$.

Den totale transmissionskoefficient indeholder et bidrag fra reduktion af strålingen på grund af refleksion ved materialets overflader og absorption i materialet.

Antages at acryl har et brydningsindex på $n=1,49$ som angivet i (65) kan refleksionskoefficienten ved indfald vinkelret på overfladen beregnes:

$$
\begin{equation*}
\rho=\left(\frac{1-n}{1+n}\right)^{2} \tag{Al.5.14}
\end{equation*}
$$

Indsættes $n=1,49$ i formlen, fås $\rho=0,039$. Transmissionskoefficienten fra refleksion er

$$
\begin{equation*}
\tau_{r}=\frac{1-\rho}{1+\rho} \tag{Al.5.15}
\end{equation*}
$$

Transmissionskoefficienten m.h.t absorption kan da beregnes til

$$
\begin{equation*}
\tau_{a}=\frac{T}{\tau_{r}} \tag{Al.5.16}
\end{equation*}
$$

Indsættes $\rho=0,039$. kan ${ }^{\tau} r$ bestemmes til 0.925 og ${ }^{\tau}$ a til 0,919. Antages at transmissionskoefficienten med hensyntagen til absorption kan bestemmes ved hjælp af (Al.5.7), kan ekstinktionskoefficienten for acryl sættes til

$$
\begin{equation*}
K=\frac{-\ln \tau_{a}}{L}=\frac{-\ln 0,919}{0,003}=28 \mathrm{~m}^{-1} \tag{A1.5.17}
\end{equation*}
$$

## Al.5.3 Beregning af ekstinktionskoefficient for hvid glasuld

Hvid glasuld er et materiale, der er opbygget af lange, tynde glasfibre. De optiske egenskaber vil være domineret af et antal refleksioner mellem fiberoverfladerne, før solstralingen bliver absorberet $i$ fibrene, reflekteret til det fri eller transmitteret gennem fiberlaget.

Forudsættes en ensartet struktur i materialet, dvs. en konstant koncentration af fibre pr. volumenenhed, konstant fibertykkelse og længde samt en ensartet fordeling af fiberorienteringen, kan det ventes at de optiske egenskaber for et lag af materialet kun er afhængig af tykkelsen af laget. Egenskaberne kan dermed ogsà udtrykkes som en funktion af massen pr. arealenhed af laget.

Da fiberorienteringen fortrinsvis er parallel med materialelagets plan, vil variationen af de optiske egenskaber for et givet antal fibre formodes at være begrænset, nå volumenkoncen trationen varieres inden for rimelige grænser.

Anvendes hvid glasuld $i$ store tykkelser, vil størrelsen af refleksionen til det fri være domineret af interrefleksioner mellem de fibre, der er nærmest den udvendige overflade Det må derfor ventes, at refleksionen fra den udvendige overflade kun $i$ begrænset omfang vil være afhængig af materialelagets samlede tykkelse forudsat relativt store tykkelser af materialelaget.

Transmissionen vil snarere være domineret af interrefleksioner end ubrudt transmitteret solstraling. Dette indikerer, at den transmitterede stråling vil være uafhængig af den indfaldende strålings indfaldsvinkel forudsat uændret indstråling og relativt store tykkelser.

Benyttes den i afsnit A1.5.1 udledte teori, vil transmissionen kunne bestemmes efter formlen (50):

$$
\begin{equation*}
T=\tau_{0} e^{-K_{m} \rho L}=\tau_{0} e^{-\mathrm{K}_{\mathrm{m}} \cdot \mathrm{zn}} \tag{A1.5.18}
\end{equation*}
$$

Hvor
$\tau_{0}$ er førstegangstransmission ved at gå fra luft til glasuldsmateriale
$\mathbb{K}_{\mathrm{m}}$ er ekstinktionskoefficienten pr. massefyldeenhed
$\left(\mathrm{m}^{2} / \mathrm{kg}\right)$

L er tykkelsen af laget (m)
$\rho$ er massefylden ( $\mathrm{kg} / \mathrm{m}^{3}$ )
$m$ er massen pr. $m^{2}\left(\mathrm{~kg} / \mathrm{m}^{2}\right)$

фnskes den del af strålingen, der er absorberet i glasulden (a) bestemt mellem dybderne $\mathrm{x}_{1}$ og $\mathrm{x}_{2}$ regnet fra udvendig overflade, gælder iflg。 (Al.5.18):

$$
\begin{align*}
a & =\left(\left(1-T_{x_{1}}\right)-\left(1-T_{x_{2}}\right)\right) \\
& =\tau_{0}\left(e^{-K_{m} \rho x_{2}}-e^{-K_{m} \rho x_{1}}\right) \tag{A1.5.19}
\end{align*}
$$

For at bestemme konstanterne i formel (Al.5.19) er der udført malinger med et Baum-Gartner fotometer (67). Som en kontrol er transmissionen for solstråling gennem den i fors申gene (kap. 3) benyttede hvide glasuld målt ved hjælp af et solarimeter.

Resultaterne fra begge målinger er blevet indtegnet på figur Al.5.7, idet der som abscisse er anvendt glasuldens masse pr. arealenhed.

Målingerne viser stor spredning, hvilket kan skyldes glasuldens inhomogene struktur, og at prøvningerne med Baum-Gartner fotometret er usikre på grund af den benyttede pæres spektralfordeling.


Fig. Al.5.7 Måinger af transmissionskoefficienten for hvid glasuld.

Foretages for de i (67) fundne malinger en lineær regression af ligningen:

$$
y=\ln T=\ln \tau_{0}-K_{m} \cdot m
$$

findes følgende konstanter til lign. (Al.5.18):

$$
\tau_{0}=0,43 \circ \mathrm{og} \mathrm{~K}_{\mathrm{m}}=2,6 \mathrm{~m}^{2} / \mathrm{kg}
$$

Ekstinktionskoefficienten er:

$$
\begin{equation*}
K=K_{\mathrm{m}} \cdot \rho=2,6 \cdot \rho \quad\left(\mathrm{~m}^{-1}\right) \tag{A1.5.21}
\end{equation*}
$$

Benyttes de fra fors申gene fundne massefylder (se afsnit 3.1.6), fås følgende ekstinctionskoefficienter, der er benyttet i beregningerne i afsn. 2.2.4.

| Måleperiode | Massefylde | Ekstinktions- <br> koefficient |
| :---: | :---: | :---: |
|  | $\rho\left(\mathrm{kg} / \mathrm{m}^{3}\right)$ | $\mathrm{K}\left(\mathrm{m}^{-1}\right)$ |
| 1 | 32 | 83 |
| 2 | 14 | 37 |

Fig. Al.5.8 Ekstinktionskoefficienter for hvid glasuld i de to måleperioder.

Resultaterne viser endvidere, at glasulden reflekterer 57\% af den indfaldende solstråing.

## AI. 6 BEREGNING AF ABSORPTION I ET DEKLAGSSYSTEM

Al.6.1 Generel teori


ABSORBER

Fig. Al.6.1 Dæklagssystem med tilh申rende størrelser af transmitteret stråling.

I beregningerne i kapitel 2.1 er regnet pa et antal glas som drklag. $\quad$. $n s k e s$ absorptionen $i$ disse samt $i$ absorberen bestemt. kan dette ske ved losning af et ligningssystem. En anden I申sningsmulighed er at benytte en algoritme, der bestemmer absorptionen. Denne metode er beskrevet $i$ ref. (68) og er vist i det Eølgende.

Der forudsætttes en dæklagskonstruktion med $n$ elementex, hvor element nr. 1 er absorberen. og de resterende n-1 elementer er daklag. For denne dæklagskonstruktion forudsættes den samlede refleksion $R_{n, t o t}$ at vore kendt. Det antages, at der tilføjes endnu et dæklag med element nr. ntl (fig. Al.6.1). I det følgende vises hvorledes absorptionen $i$ dette lag og refleksionen fra den modrede dæklagskonstruktion kan bestemmes.

Refleksionen for det enkelte element (i) i systemet sattes til $R_{i}^{\prime}$ og $R_{i}$ for stråling, der kommer henholdsvis indefra og udefra. Transmissionen for det $i$ 'te element kaldes $T_{i}$. Størrelsen er ens set fra den udvendige og indvendige side. For element nr. $i$ er absorptionen ved straling fra indvendige side:

$$
A_{i}^{\prime}=l-R_{i}^{\dot{1}}-T_{i}
$$

og den udvendige side:

$$
A_{i}=1-R_{i}-T_{i}
$$

Som vist på fig. Al.6.1 er den udgående bestrålingsstyrke fra det $n^{\prime}$ te element $I_{n}^{+} o g$ den indgående bestrålingsstyrke $I_{n}^{-}$. Den indkommende bestrålingsstyrke på lag nr. n+1 sættes til:

$$
\begin{equation*}
I_{n+1}^{-}=1 \tag{A1,6,1}
\end{equation*}
$$

Dermed er: $I_{n+1}^{+}=R_{n+1}$, tot

For element nr. $n$ vil det gælde, at

$$
\begin{equation*}
I_{n}^{+}=R_{n, t o t} I_{n}^{-} \tag{Al.6.2}
\end{equation*}
$$

$$
\begin{equation*}
I_{n}^{-}=T_{n+1}+R_{n+1}^{\prime} \cdot I_{n}^{+} \tag{A}
\end{equation*}
$$

Af (Al.6.2) og (Al.6.3) fås den indadgående stråling:

$$
\begin{equation*}
I_{n}^{-}=\frac{T_{n+1}}{1-R_{n+1}^{\prime} R_{n, t o t}} \tag{Al.6.4}
\end{equation*}
$$

Den uđadgående stråling for element $n$ bestemmes til:

$$
\begin{equation*}
I_{n}^{+}=\frac{R_{n, t o t} \cdot T_{n+1}}{1-R_{n+1}^{\prime} \cdot R_{n, t o t}} \tag{A1.6.5}
\end{equation*}
$$

For element $n+1$ kan den udadgående stråling bestemmes til:

$$
\begin{equation*}
I_{n+1}^{+}=R_{n+1} \cdot I_{n+1}^{-}+T_{n+1} \cdot I_{n}^{+}=R_{n+1}+T_{n+1} \cdot I_{n}^{+} \tag{Al.6.6}
\end{equation*}
$$

Ligning (Al.6.1), (Al.6.5) og (Al.6.6) giver:

$$
\begin{equation*}
R_{n+1, \text { tot }}=R_{n+1}+\frac{T_{n+1}^{2} \cdot R_{n, t o t}}{1-R_{n+1}^{\prime} \cdot R_{n, t o t}} \tag{A1,6.7}
\end{equation*}
$$

Denne ligning giver mulighed for bestemmelse af den samlede refleksion af de $n+1$ inderste elementer.

For at lette de efterfølgende beregninger indføres en hjælpestørrelse, kaldet toptransmissionen, defineret ved:

$$
t_{n+1}=I_{n}^{-} / I_{n+1}^{\infty}
$$

Ved hjælp af (Al.6.4) og da $I_{n+1}^{-}=1$ fås:

$$
\begin{equation*}
t_{n+1}=I_{n}^{-}=\frac{T_{n+1}}{1-R_{n+1}^{\prime} \cdot R_{n, t o t}} \tag{A1.6.9}
\end{equation*}
$$

En anden hjælpestørrelse, kaldet topabsorptionen indføres:

$$
\begin{equation*}
a_{n+1}=A_{n}^{1} I_{n}^{+}+A_{n+1} \cdot I_{n+1}^{-} \tag{A1.6.10}
\end{equation*}
$$

Fra (A1.6.5) og (A1.6.10) fas, idet $I_{n+1}^{-}=1:$

$$
\begin{equation*}
a_{n+1}=A_{n+1}^{\prime} \frac{R_{n, \text { tot }} \cdot T_{n+1}}{1-R_{n+1}^{\prime} \cdot R_{n, \text { tot }}}+A_{n+1} \tag{A1.6.11}
\end{equation*}
$$

Ønskes den indadgående straling bestemt gældex:

$$
\begin{equation*}
I_{n-1}^{-}=t_{n} I_{n}^{-} \tag{A1.6.12}
\end{equation*}
$$

Den resulterende absorption for lag nr. $n$ kan bestemmes af:

$$
\begin{equation*}
A_{n, r e s}=a_{n} \cdot I_{n}^{m} \tag{A1.6.13}
\end{equation*}
$$

Ovenstående ligninger kan benyttes til at bestemme de optiske konstanter for den aktuelle daklagskonstruktion. Pr. definition gælder for absorberoverfladen, at:

$$
\mathrm{R}_{1}, \text { tot }=\mathrm{R}_{1}, \mathrm{~T}_{1}=0 \text { og } \mathrm{a}_{1}=\mathrm{A}_{1}
$$

Ved hjælp af ligningerne (Al.5.9) og (Al.5.11) kan transmissionen $T_{i}$ og refleksionen $R_{i}$ for de enkelte lag bestemmes. Ved hjælp af (Al.6.7), (A1.6.9) og (Al.6.11) kan de $\phi$ vrige konstanter bestemmes successivt, startende med inderste dæklag, idet $n$ varieres mellem $l$ og det aktuelle antal elementer $i$ dæklagskonstruktionen.

Den nedadgående stråling kan bestemmes successivt ved hjælp af (A1.6.12), startende ved yderste dæklag.

Dermed er det muligt at bestemme den resulterende absorption $i$ de enkelte lag ved hjælp af (Al.6.13). For absorberen kaldes denne st申rrelse for det resulterende transmissions-absorptionsprodukt.

Forudsætningen for metoden er, at refleksionen sker ved spejlende refleksion. Dette er ofte ikke tilfældet for absorberen, hvor refleksionen er diffus. Der kan evt. korrigeres delvis for dette ved at justere refleksions- og absorptionskoefficienterne på den side af dæklagene, der vender mod absorberen.

Al.6.2 Transmissions- og absorptionskoefficient for en dobbeltplade

I forsøgene (kap. 3) er anvendt en plexiglas dobbeltplade som dæklag. I dette og følgende afsnit ex vist en metode, dex er udviklet til beregning af transmissionen gennem et sådant dæklagssystem.

Transmissionskoefficienten ved solstrailing for en dobbeltplade er ikke alene afhængig af indfaldsvinklen $\theta_{i}$, men også af pladens retningsvinkel ( $\phi$ ) dvs. vinklen mellem projektionen af solstrålingen på pladens plan og ribbernes retning.

For at kunne beregne transmissionskoefficienten deles dobbeltpladen op $i$ segmenter som vist på fig. Al.6.2. Al refleksion antages at være spejlende. Pladen deles op i 3 lag: De to yderste lag og ribberne. For en given indfalds- og retningsvin-
kel kan transmissionen og absorptionen beregnes som vist i afsnit Al.6.1 på grundlag af transmissions-og absorptionskoefficienten for det enkelte lag. Beregningen af disse størrelser ex vist i afsnit Al. 5.1 for top- og bundlaget. For ribberne er beregningsgangen vist i følgende afsnit.

A1.6.3 Beregning af optiske data for ribber i dobbeltplade

Bryaningsvinklen $\theta_{\mathrm{b}}^{\mathrm{b}}$, kan, da ribbernes plan er vandret, findes som en funktion af solhøjaen $\alpha$ og matexialets brydningsindex $n_{2} \cdot((A 1.4 .4) \operatorname{og}(A 1.5 .1))$.

$$
\begin{aligned}
\theta_{\mathrm{b}, \mathrm{v}} & =\arcsin \left(\sin \theta_{\mathrm{i}} / \mathrm{n}_{2}\right) \\
& =\arcsin \left(\sin (\pi / 2-\alpha) / n_{2}\right) \\
& =\arcsin \left(\cos \alpha / n_{2}\right)
\end{aligned}
$$

(A1.6.14)

Betragtes et lag af ribber uden top og bundplade, vil (se fig. A1.6.2) andelen af stralingen der rammer en ribbes overflade, udgpre:

$$
n_{r i b}=Z / L_{h \phi j}=\frac{L_{x i b} \cdot \operatorname{tg} \varphi}{L_{h \phi j}}
$$

Benyttes ligning (AI.4.6). galder:

$$
n_{x i b}=\frac{L_{x i b} \cdot \operatorname{tg} \phi}{x_{h \phi j} \cdot \cos \gamma}
$$

(A1.6.15)

Fox sma profilviniter $\varphi$ vil (A1.6.15) give for smà vardiex.

Den andel af stralingen, der passexer en ribbe vil minimum vere:

$$
n_{x i n, m i n}=I_{t y k} / L_{h \phi j}
$$



Fig. Al.6.2 Snit $i$ dobbeltplade og ekstra dæklag. Alle må i mm.

For et parallelt strålebundt vil den del af strålerne, der rammer ribbens top (se fig. Al.6.3) og passerer bagsiden, ikke i middel have passeret så stor en vejlængde i ribben som stråler, der rammer toppen og passerer ud gennem bunden.

Dette forhold kompenseres af at en del af stralerne rammer form siden af ribben og passerer ud gennem bunden. Fejlen ved denne kompensation stammer fra, at strålingen, der rammer forsiden, er brudt ved en lodret overflade, mens de 申vrige stråler, der rammer ribben, brydes ved en vandret overflade.

Da ribbernes tværsnitsareal udgør $7 \%$ af hele arealet, er fejlen fra den $\varnothing$ gede vejlængde gennem materialet begrænset.


Fig. Al.6.3 skematisk tegning af strålegang gennem dobbeltplade uden hensyntagen til refleksion mellem overfladerne.

Formel (Al.6.15) vil ogsa vare korrekt, med ovennævnte begransninger, selvom profilvinklen ex sà stor at strålerne i genneme snit passerer mexe end én ribbe.

Ved passage gennem ên ribbe kan en strảles vejlwngde gennem ribben bestemnes ud fra brydningsvinklen $\theta_{b} v$ efter passage af ribbens top:

$$
\begin{equation*}
L_{\mathrm{pas}}=L_{t y k} / \cos \theta_{b, v} \tag{A1.6.17}
\end{equation*}
$$

Denne værdi kan benyttes ved bexegning af, hvor meget af stxalingen dex bliver absorbexet i ribben. Pa begge overflader sker en refleksion af stralingen (se fig. Al.6.4). Den straling, der reflekteres for passage af ribben, giver ikke noget bidrag til absorptionen. Dette udignes af. at den stråing, der er reflekteret efter passage af ribben (a fig. A1.6.4) næsten har same st申rrelse som stralingen, der reflekteres før. Denne refleksion medfører en $\phi$ gning af absorptionen med næsten lige så stort et bidrag som refleksion $b$, hvis denne straling havae passeret ribben.


Fig. Al.6.4 Refleksion ved ribbeoverflade.

Den gennemsnitlige vejlængde, som strålingen passerer i ribberne, er:

$$
\begin{align*}
L_{r e s} & =n_{r i b} \cdot L_{p a s} \\
& =\frac{n_{r i b} \cdot L_{t y k}}{\cos \theta_{b, v}} \tag{Al.6.18}
\end{align*}
$$

Transmissionskoefficient med hensyn til absorption for ribberne betragtet som et lag parallelt med top og bundplade vil være:

$$
\begin{equation*}
\tau_{a, r i b}=e^{-K L_{r e s}} \tag{A1.6.19}
\end{equation*}
$$

Transmissionskoefficienten med hensyn til refleksion vil være:

$$
\begin{equation*}
\tau_{r, x i b}=1 \tag{A1.6.20}
\end{equation*}
$$

Arsagen er, at ribbernes overflader er vinkelret på top- og bundplade. Dette medfører, da der er forudsat kun spejlende refleksion, at strålingen, der reflekteres af ribberne, vil blive kastet videre ind $i$ dobbeltpladen. Den totale transmissionskoefficient for ribberne er:

$$
\begin{equation*}
T_{r i b}=\tau_{a, r i b} \cdot \tau_{r, r i b}=e^{-K L_{r e s}} \tag{A1.6.21}
\end{equation*}
$$

Al.7.1 Absorption af diffus straling i dæklagssystem med retningsafhængig transmission

I kapitel Al. 6 er en metode til beregning af transmissionskoef. ficienten ved stråling $i$ en bestemt retning beskrevet. Normalt vil der ved solindfald være en del af stralingen, der er dif. fus. Med forudsætning af en bestemt retningsafhangig stråing kan transmissionen for diffus straling bestemmes ved integration over det halvrum overfladen kan se.

I det følgende antages, at overfladen er lodret sydvendt, og at de optiske egenskaber er uafhængige af bølgelængden. Stråingen, der absorbexes fra et strålebundt, vil være proportional med den retningsafhængige absorptionskoefficient for laget $A(\alpha, \gamma)$, den indfaldende retningsbestemte stråings radians $I_{i}(\alpha, \gamma)$, cosinus til indfaldsvinklen cos $\theta_{i}$ og rumvinklen fra strålebundtets skæringspunkt med overfladen til det areal strålebundtet afskærer på en imaginær halvkugle anbragt med centrum i skæringspunktet $(d \omega)$. (Se fig. Al.7.1).

$$
\begin{equation*}
d q_{a b s}=I_{i}\left(\alpha_{\beta} \gamma\right) \cdot A(\alpha, \gamma) \cdot \cos \theta_{i} \cdot d \omega \tag{Al,7.1}
\end{equation*}
$$

Opdeles halvkuglen $i$ delelementer efter solhøjden $\alpha$ og vaga solazimutvinklen $\gamma$ kan et delelements areal udtrykkes som: (Fig. Al.7.2).

$$
\Delta \mathrm{A}=(r \cdot d \alpha)(r \cdot \cos \alpha \cdot d \gamma)
$$

(A1.7.2)

Rumvinkien til ovexfladeelementet ex:

$$
\begin{equation*}
d \omega=\frac{\Delta A}{r^{2}}=\cos \alpha d \alpha d \gamma \tag{A}
\end{equation*}
$$



Fig. Al.7.1 Opdeling af halvkugle ved integration.


Fig. Al. 7. 2 Lodret snit $i$ halvkugle.


Fig. Al.7.3 Resulterende transmissions-absorptionsprodukt for absorber og absorption i dæklag. Dæklagskonstruktion af plexiglas dobbeltplade. Solindfald ved forskellige azimutvinkler og solh申jde $=0$. Vandrette ribber $i$ dobbeltplade.

Fra (Al.7.1), (Al.7.3) og (Al.4.3) fas, at den absorberede stråling fra strålebundtet er:

$$
\begin{equation*}
d q_{a b s}=I_{i}(\alpha, \gamma) \cdot A(\alpha, \gamma) \cdot \cos ^{2} \alpha \cdot \cos \gamma \cdot d \alpha \cdot d \gamma \tag{A1.7.4}
\end{equation*}
$$

Antages materialets optiske egenskaber at være uafhængig af bølgelængden, kan absorptionskoefficienten for den diffuse stråling bestemmes ved integration af den absorberede stråing over alle retninger:

$$
A_{d i f}=\frac{\int_{-\pi / 2}^{\pi / 2} \int_{-\pi / 2}^{\pi / 2} I_{i}(\alpha, \gamma) \cdot A(\alpha, \gamma) \cdot \cos ^{2} \alpha \cdot \cos \gamma \cdot d \alpha \cdot d \gamma}{\int_{-\pi / 2}^{\pi / 2} \int_{-\pi / 2}^{\pi / 2} I_{i}(\alpha, \gamma) \cdot \cos ^{2} \alpha \cdot \cos \gamma \cdot d \alpha \cdot d \gamma}
$$

Antages den indfaldende straling at være retningsuafhængig diffus stråling med radiansen 1 , og at overfladens egenskaber er dobbeltsymmetriske, kan integrationen over vag-sol azimutvinklen udføres over en vinkel på $\pi / 2$ i overfiadens plan:

$$
\begin{equation*}
A_{d i f}=\frac{1}{(\pi / 4)} \int_{0}^{\pi / 2} \int_{0}^{\pi / 2} A(\alpha, \gamma) \cdot \cos ^{2} \alpha \cdot \cos \gamma \cdot d \alpha \cdot d \gamma \tag{A1.7.6}
\end{equation*}
$$

Denne formel kan tilnærmes en summationsformel, idet vinklerne opdeles i 90 lige store delvinkler:

$$
\begin{aligned}
& A_{d i f}=\frac{1}{(\pi / 4)}\left(\frac{(\pi / 2)}{90^{0}}\right)^{2} \sum_{\gamma=0,5^{\circ}}^{89,5^{\circ}} \sum_{\alpha=0,5^{\circ}}^{89,5^{\circ}}\left(A(\alpha, \gamma) \cdot \cos ^{2} \alpha \cdot \cos \gamma \cdot 1^{0} \cdot 1^{\circ}\right) \\
& A_{\mathrm{dif}}=\frac{\pi}{(90)^{2}} \sum_{\gamma=0,5^{\circ} \quad \sum_{\alpha=0,5^{\circ}}^{89,5^{\circ}} 89,5^{0}}\left(A(\alpha, \gamma) \cdot \cos ^{2} \alpha \cdot \cos \gamma\right)
\end{aligned}
$$



Fig. Al.7.4 Resulterende transmissions-absorptionsprodukt for absorber og absorption i dæklag. Dæklagskonstruktion af plexiglas dobbelt- og enkeltplade. Solindfald ved forskellige azimutvinkler, solhøjde $=0$. Vandrette ribber i dobbeltplade.


Fig. A1.7.5 Resulterende transmissionswabsorptionsprodukt for absorber og absorption i dæklag. Dæklagskonstruktion af plexiglas dobbelt- og enkeltplade. Solindfald ved forskellige solhøjder, azimut $=0$. Vandrette ribber i dobbeltplade.

Formlen er benyttet til at finde absorption for diffus stråling $i$ dæklagssystemet med plexiglasdobbeltpladen. Den resulterende retningsafhængige absorption $i$ det enkelte lag kan bestemmes ved hjælp af teorien fra afsnit Al.6.2 og Al.6.3. Som materialedata er benyttet resultater fra afsnit Al.5.2 samt at absorptionskoefficienten for absorberen er 0,95. På dette grundlag ex den resulterende absorption for det enkelte dæklag samt det resulterende transmissions-absorptionsprodukt for absorberen beregnet som funktion af retningen (fig. Al.7.3mAl.7.5) og tom talt ved jæunt fordelt indfaldende diffus stråling (fig. Al.7.6).

|  | Yderste <br> halvdel af <br> dobbelt- <br> plade | Inderste <br> halvdel af <br> dobbelt- <br> plade | Inderste <br> acryl- <br> plade | Absorber |
| :---: | :---: | :---: | :---: | :---: |
| Ingen acryl- <br> (lade inderst <br> (. maieperiode) | 0,065 | 0,051 | 0,000 | 0,640 |
| Med acrylplade <br> ved yag <br> 2. maleperiode | 0,068 | 0,056 | 0,044 | 0,543 |

Fig. Al.7.6 Absorption af diffus solstråling i dæklagssystem ved solvag i de to maleperioder.

Al.7.2 Absorption af diffus stråing i dæklagssystem med indfaldsvinkelafhængig transmission

I stedet for integration over solhøjde og azimutvinkel som i afsnit Al.7.1 kan integrationen foretages over indfaldsvinkel $\theta_{i}$ og retningsvinkel $\phi$.

Analogt med foregående udledning findes i (50) lign. (4.1.5) at den monokromatiske absorptionskoefficient ex:

$$
\begin{equation*}
A_{\lambda}=\frac{\delta^{2 \pi} \delta^{1} A_{\lambda}(\mu, \phi) \cdot I_{\lambda, i}(\mu, \phi) \cdot d \mu \cdot d \phi}{2 \pi \delta_{\lambda, i}^{1}(\mu, \phi) \cdot \mu \cdot d \mu \cdot d \phi} \tag{A1.7.8}
\end{equation*}
$$

hvor $\mu=\cos \theta_{i}$

Antages uafhængighed af bølgelængde $\lambda$ og retningsvinkel $\phi$, kan absorptionskoefficienten for indfaldende diffus stråling bestemmes ved:

$$
\begin{equation*}
A_{d i f}=\frac{\int_{0}^{1} A(\mu) \cdot I_{i}(\mu) \cdot \mu \cdot d \mu}{\int_{0}^{1} I_{i}(\mu) \cdot \mu \cdot d \mu} \tag{A1.7.9}
\end{equation*}
$$

Er radiansen af den indfaldende stråing retningsuafhængig $I_{i}(\mu)=1:$

$$
\begin{equation*}
A_{d i f}=2 \cdot \int_{0}^{1} A(\mu) \cdot \mu \cdot d \mu \tag{A1.7.10}
\end{equation*}
$$

Benyttes at $\mu=\cos ^{\theta}$ :

$$
\begin{equation*}
A_{d i f}=2 \int_{0}^{\pi / 2} \cdot A\left(\cos \theta_{i}\right) \cdot \cos \theta_{i} \cdot \sin \theta_{i} \cdot d \theta_{i} \tag{A1.7.11}
\end{equation*}
$$

Benyttes en summationsformel:

$$
\begin{aligned}
A_{d i f} & \simeq 2 \frac{\pi / 2}{90^{\circ}} \sum_{j=0,5^{\circ}}^{89,5^{\circ}}(A(\cos j) \cdot \sin j \cdot \cos j) 1^{0} \\
& =\frac{\pi}{90} \quad \sum_{j=0,5^{\circ}}^{89,5^{\circ}}(A(\cos j) \cdot \sin j \cdot \cos j)
\end{aligned}
$$

(A1.7.12)


Fig. Al.7.7 Resulterende transmissions-absorptionsprodukt for absorber og absorption $i$ dæklag. Dæklagskonstruktion af 1 lag almindeligt glas. Solindfald ved forskellige indfaldsvinkler.


Fig. Al.7.8 Resulterende transmissions-absorptionsprodukt for absorber og absorption $i$ dæklag. Dæklagskonstruktion af 2 lag almindeligt glas. Solindfald ved forskellige indfaldsvinkler.


Fig. Al.7.9 Resulterende transmissions-absorptionsprodukt for absorber og absorption i dæklag med dæklagskonstruktion af 3 lag almindeligt glas. Solindfald ved forskellige indfaldsvink $=$ ler.


Fig. Al.7.10 Resulterende transmissions-mbsorptionsprodukt for solvæg med dæklagskonstruktion af $2-4$ lag jernfrit glas ved forskellige indfaldsvinkler og absorption i glaslaget.

For et dæklagssystem er absorptionen af solstråling i glasset og på absorberen (A) beregnet som funktion af indfaldsvinklen. Der forudsættes en glastykkelse på 4 mm og en absorptionskoefficient for absorberen på 0,95.

Med dæklag af almindeligt glas med en ekstinktionskoefficient på $20 \mathrm{~m}^{-1}$ er der beregnet absorption for 1,2 og 3 dæklag (fig. Al.7.7-Al.7.9). Endvidere er absorptionen for dæklagssystemet med 3 og 4 dæklag af glas med lavt jernindhold beregnet (fig. A1.7.10). Ekstinktionskoefficienten er sat til $4 \mathrm{~m}^{-1}$.

På grundlag af disse kurver er der foretaget en beregning af absorptionen $i$ dæklagssystemerne ved jævnt fordelt diffus stråling. (Fig. Al.7.11 og Al.7.12). Beregningen ex foretaget ved hjælp af summationen angivet i lign. (Al.7.11).

|  | 1.1 ag | 2. lag | 3. lag | Absorber |
| :---: | :---: | :---: | :---: | :---: |
| 1 dæklag | 0,09 | - | - | 0,73 |
| 2 dæklag | 0,10 | 0,07 | - | 0,59 |
| 3 dæklag | 0,10 | 0,08 | 0,06 | 0,48 |

Fig. Al.7.11 Transmissions-absorptionsproduktet og absorption i glas ved forskellige antal dæklag af almindeligt glas for diffus indstråling. Ekstinktionskoefficient for glas: $20 \mathrm{~m}^{-1}$ og absorptionskoefficient for absorber: 0,95. Glastykkelse 4 mm.

|  | $1.1 a g$ | 2.lag | 3. lag | 4. lag | Absorber |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 2 lag glas | 0,02 | 0,02 | - | - | 0,69 |
| 3 lag glas | 0,02 | 0,02 | 0,01 | - | 0,61 |
| 4 lag glas | 0,02 | 0,02 | 0,02 | 0,01 | 0,55 |

Fig. Al.7.12 Absorption af jæunt fordelt diffus solstråing i dæklagssystem af glas med lavt jernindhold. Forudsætninger som fig. Al.7.11, dog ekstinktionskoefficient $4 \mathrm{~m}^{-1}$.

Transmissionen gennem den aktuelle plade er ikke måt, men fra (69) er transmissionskoefficienten i afhængighed af indfaldsvinklen opgivet. På grundlag af kurven bestemmes et 4. grads polynomium, der tilnærmer kurven.

$$
\begin{equation*}
T=C_{0}+C_{1} \theta_{i}+C_{2} \theta_{i}^{2}+C_{3} \theta_{i}^{3}+C_{4} \theta_{i}^{4} \tag{A1.7.13}
\end{equation*}
$$

$$
\text { hvor } \quad \begin{aligned}
\theta_{i} & =\text { indfaldsvinkel }(\mathrm{rad}) \\
\mathrm{C}_{0} & =0,8734(-) \\
\mathrm{C}_{1} & =0,0145\left(\mathrm{rad}^{-1}\right) \\
\mathrm{C}_{2} & =-0,1542\left(\mathrm{rad}^{-2}\right) \\
\mathrm{C}_{3} & =0,2208\left(\mathrm{rad}^{-3}\right) \\
\mathrm{C}_{4} & =-0,2256\left(\mathrm{rad}^{-4}\right)
\end{aligned}
$$

Den maksimale fejl ved tilnærmelsen til dette polynomium er 0,007. Kurven er vist på fig. Al.7.13.

Ved retningsuafhængigt, diffust solindfald kan transmissionen bestemmes ved integration over alle indfaldsvinkler. Benyttes metoden som angivet $i$ afsnit Al.7.2, bestemmes transmissionen til 0.749.


Fig. Al.7.13 Transmission for glasfiberarmeret polyesterplade.

I det følgende gennemgås først ligningerne ved solvæg med mobil isolering og dernæst ligninger ved solvæg med hvid glasuld.

## A1.8.1 Bestemmelse af temperaturer ved mobil isolering

For at finde varmestrømmen gennem dæklaget bestemmes temperaturen i et antal knudepunkter. Følgende punkter vælges: Ind- og udvendigt dæklag $i$ dobbeltplade, $i$ enkelt plade ved væg og udvendig overflade af væg. Se fig. Al.8.l. Temperaturen i knude-


Fig. Al.8.1 Opdeling i knudepunkter af dæklag i solvæg med mobil isolering.
punkterne bestemmes på grundlag af temperaturen i yderste akkumulerende lag ( $T_{a k}$ ) og udelufttemperaturen ( $T_{u}$ ). De enkelte knudepunkter absorberer stråling ved solindfald ( $I_{1}, I_{2}, I_{3}$, $I_{4}$ ). Den absorberede stråling er bestemt ved metoden beskrevet i afsnit Al. 6.2, Al.6.3 og Al.7.1. Varmeovergangen mellem de enkelte knudepunkter er bestemt $i$ afsnittene Al.2 til Al.3. Varmeovergangstallet som følge af infiltration af udeluft mellem dæklagene ( $h_{\text {inf }}$ ) kan bestemmes som vist i afsnit Al.2.2. Ved den udvendige overflade (afsnit Al.3.1) er der taget hensyn til konvektion og stråling til omgivelserne.

Følgende ligningssystem kan opstilles, idet der ses bort fra varmekapaciteten i dæklagene:

$$
\begin{align*}
& \left(T_{1}-T_{u}\right) \cdot h_{1}+\left(T_{1}-T_{2}\right) \cdot h_{2} \quad-I_{1}=0 \\
& \left(T_{2}-T_{1}\right) \cdot h_{2}+\left(T_{2}-T_{3}\right) \cdot h_{3}+\left(T_{2}-T_{u}\right) \cdot h_{\text {inf }}-I_{2}=0 \\
& \left(T_{3}-T_{2}\right) \cdot h_{3}+\left(T_{3}-T_{4}\right) \cdot h_{4}+\left(T_{3}-T_{u}\right) \cdot h_{\text {inf }}-I_{3}=0 \\
& \left(T_{4}-T_{3}\right) \cdot h_{4}+\left(T_{4}-T_{a K}\right) \cdot h_{5} \quad-I_{4}=0 \\
& {\left[\begin{array}{lccc}
h_{1}+h_{2} & -h_{2} & 0 & 0 \\
-h_{2} & h_{2}+h_{3}+h_{\text {inf }} & -h_{3} & 0 \\
0 & -h_{3} & h_{3}+h_{4}+h_{\text {inf }} & -h_{4} \\
0 & 0 & -h_{4} & h_{4}+h_{5}
\end{array}\right]\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{4}
\end{array}\right]=} \\
& {\left[\begin{array}{l}
h_{1} \cdot T_{u}+I_{1} \\
h_{\text {inf }} \cdot T_{u}+I_{2} \\
h_{i n f} \cdot T_{u}+I_{3} \\
h_{5} \cdot T_{a k}+I_{4}
\end{array}\right]} \tag{A1.8.1}
\end{align*}
$$

Ligningssystemet l申ses ved hjælp af en subrutine, der loser et lineært ligningssystem for en positivt definit symmetrisk bådmatrix (70). Iteration foretages for at forbedre nøjagtigheden.

Ved beregninger uden et dreklag ved varmelageret sættes varmem overgangskoefficienten mellem overflade af varmelager og acrylplade til en værdi, dex i praksis er uendelig stox. Ud fra temperaturerne bestemmes den varmestrøm, som tilføres lageret.

Ved mobilisolering $i$ hulrummet ændres varmeovergangen svarende til udelukkende varmeledning i mobilisoleringen. Samtidig sættes infiltrationstabet og absorptionen i lagene af eventuel solstråling til 0 .

Ved solvæggen med selektiv overflade er benyttet en tilsvarende fremgangsmåde som beskrevet ovenfor.

A1. 8.2 Forudsætninger ved bestemmelse af temperaturfordeling i glasuld

Glasulden opdeles $i$ lag, der hver antages at have konstant temperatur. De enkelte lags tykkelse varierer med mindst tykkelse ved udvendig side og størst tykkelse ved væggen. Dette giver, sammenlignet med en model med lige tykke lag, mulighed for et begrænset antal knudepunkter, uden at beregningsmodellens nojagtighed mindskes.

De største temperaturgradienter findes ved udvendig overflade med solindfald på denne. Da glasulden har en lille massefylde, er der ikke taget hensyn til lagenes varmekapacitet. For at sammenligne måle og beregnede temperaturer i glasulden foretages en lineær interpolation af temperaturerne $i$ beregningsknudepunkterne. Derved kan de beregnede temperaturer i målepunkterne bestemmes.

## Al.8.3 Varmeovergang ved element med glasuld

Varmeledningsevnen for glasuld kan ifølge (71) ved en middeltemperatur på $20^{\circ} \mathrm{C}$ sættes til værdierne angivet i fig. Al.8.2.
\(\left.$$
\begin{array}{|c|c|}\hline \text { Massefylde } & \begin{array}{c}\text { Varmeled } \\
\text { ningsevne }\end{array}
$$ <br>
\hline \rho <br>

\mathrm{kg} / \mathrm{m}^{3}\end{array}\right]\)| $\lambda$ |
| :---: |
| $\mathrm{W} / \mathrm{mK}$ |$|$| 10 | 0,058 |
| :---: | :---: |
| 15 | 0,043 |
| 20 | 0,039 |
| 30 | 0,035 |
| 40 | 0,032 |
| 50 | 0,031 |
| 70 | 0,031 |
| 14,2 | 0,044 |
| 31,9 | 0,034 |

Fig. Al.8.2 Varmeledningsevne for mineraluld i afhængighed af rumvægt ved $20^{\circ} \mathrm{C}$ (71).

Endringen af varmeledningsevnen kan ifølge (30) sættes til $0,8 \%$ pr. K ved temperaturændringer $i$ området $0-100^{\circ} \mathrm{C}$. Varmeovergangen ved udvendig overflade sker ved konvektion og stråling til terræn og himmel. Da der ikke er målt vindhastighed, benyttes strålingsudveksling med det fri og konvektion som angivet i afsnit Al.3.1. Varmeovergangstallet mellem yderste knudepunkt i glasulden og udeluftemperaturen bliver:

$$
\begin{align*}
h_{1} & =\left(\frac{1}{h_{\text {konv }}+h_{s t r}}+\frac{1}{h_{\text {ledn }, g}}\right)^{-1} \\
& =\left(\frac{1}{h_{\text {konv }}+h_{s t r}}+\frac{\Delta x_{1}}{2 \lambda_{1}}\right)^{-1} \tag{A1.8.2}
\end{align*}
$$

hvor $h_{\text {konv }}$ konvektivt varmeovergangstal iflg. (Al.3.2)
$h_{\text {str }} \quad$ varmeovergangstal ved straling iflg。(Al.3.4)
$h_{l e d n, g}$ varmeoverføringstal ved ledning i glasuld
iflg. ligning (Al.l.l0)
$\Delta x_{1} \quad y d e r s t e$ knudepunkts lags tykkelse
$\lambda_{1}$ varmeledningsevnen for glasulden i laget

Ved den indvendige side af glasuldelementet er der et hulrum på 10 mm . Isolansen $M_{h}$ for dette hulrum er bestemt på grundlag af varmeovergang ved stråling og konvektion $i$ et hulrum med lodrette planparallelle overflader (afsn. Al.2.l og Al.2.3). Varmeovergangstallet mellem det knudepunkt ( $n$ ) i glasulden, der er narmest vaggen og den udvendige overflade af vaggen, kan bew stemmes som:

$$
\begin{align*}
h_{n+1} & =\left(M_{h}+\frac{1}{h_{\text {ledn }}}\right)^{-1} \\
& =\left(\frac{1}{h_{\text {konv }}+h_{\text {str }}}+\frac{2 \Delta x_{n}}{\lambda_{n}}\right)^{-1} \tag{Al.8.3}
\end{align*}
$$

| hvor | $\mathrm{Mh}_{\mathrm{h}}$ | isolansen af hulrummet |
| :---: | :---: | :---: |
|  | $\mathrm{h}_{\text {ledn }}$ | varmeovergangstallet mellem inderste lag i glasuld og overflade af glasuld |
|  | $\Delta \mathrm{x}_{\mathrm{n}}$ | ex tykkelsen af isoleringslaget tættest ved væggen |
|  | $\lambda_{\mathrm{n}}$ | varmeledningsevnen af isoleringen |
|  | $h_{\text {konv }}$ | varmeovergangstal ved konvektion (Al.2.1) |
|  | $\mathrm{h}_{\text {str }}$ | varmeovergangstal ved stråling (Al.2.14) |

## Al.8.4 Lagdeling i hvid glasuld

Lagenes tykkelse bestemmes ved hjælp af en differensrække, således at mindste lag har tykkelsen $a, ~ o g ~ d e ~ n æ s t e ~ l a g ~ v o k s e r ~$ med tykkelsen d. Hele isoleringens tykkelse er:

$$
\begin{aligned}
L & =a+(a+d)+(a+2 d)+(a+3 d)+\cdots+(a+(n-1) d) \\
& =\frac{a+(a+(n-1) d)}{2} n
\end{aligned}
$$

For en given mindste tykkelse a og givet antal intervaller $n$ og samlet tykkelse L fås differensen til:

$$
\begin{equation*}
a=2\left(\frac{L}{n}-a\right) /(n-1) \tag{A1.8.5}
\end{equation*}
$$

I edb-programmet er a valgt til 5 mm og antal lag er valgt til 8 lag. Dette giver en differenstykkelse d på: 2.1 mm og en maksimal lagtykkelse på: 20 mm .

## A1.8.5 Ligningssystem til beregning af temperaturer $i$ hvid glasuld

Benyttes de i afsnit Al. 5.3 fundne konstanter kan bestråingsstyrken $i$ overfladens plan $i$ dybden $x$ fra denne bestemmes som:

$$
\begin{equation*}
I_{x}=I_{t, i} \cdot \tau_{0} \cdot e^{-K x} \tag{Al.8.6}
\end{equation*}
$$

hvor $I_{t, i}$ er bestrålingsstyrken af den indfaldende stråing. Den absorberede stråling $i$ lag nr. j, der afgrænses af overflader, der ligger $i$ dybderne $x_{1}$ og $x_{2}$ fra udvendig overflade, vil være:

$$
\begin{align*}
I_{j} & =I_{x_{1}}-I_{x_{2}} \\
& =I_{t, i} \cdot \tau_{0}\left(e^{-K x_{1}}-e^{-K x_{2}}\right) \tag{A1.8.7}
\end{align*}
$$

Opstilles en ligning med temperaturligevægt for laget, fås at:

$$
\begin{equation*}
I_{j}+h_{(j-1)-j} \cdot\left(T_{j-1}-T_{j}\right)+h_{(j+1)-j} \cdot\left(T_{j+1}-T_{j}\right)=0 \tag{A1,8,8}
\end{equation*}
$$

hvor $h(j-1)-j$ og $h(j+1)-j$ er varmeoverforingstallene til de omgivende lag med temperaturerne henholdsvis Tj-1 og $T j+1$.

Til bestemmelse af temperaturforløbet mellem udelufttemperaturen og yderste akkumulerende lag kan der opstilles et lineært ligningssystem. Lagenes numxe er skitseret på fig. Al.8.3.

$$
\begin{aligned}
& \left(h_{1}+h_{2}\right) \cdot T_{1}-h_{2} \cdot T_{2} \\
& =I_{1}+h_{1} T_{u} \\
& -h_{2} \cdot T_{1}+\left(h_{2}+h_{3}\right) \cdot T_{2}-h_{3} \cdot T_{3}=I_{2} \\
& -h_{3} \cdot \mathrm{I}_{2}+\left(\mathrm{h}_{3}+\mathrm{h}_{4}\right) \cdot \mathrm{T}_{3}-\mathrm{h}_{4} \cdot \mathrm{~T}_{4} \quad=\mathrm{I}_{3} \\
& -h_{n-1} \cdot T_{n-2}+\left(h_{n-1}+h_{n}\right) \cdot T_{n-1}-h_{n} \cdot T_{n} \quad=I_{n-1} \\
& -h_{h} \cdot T_{n-1}+\left(h_{n}+h_{n+1}\right) \cdot T_{n}-h_{n+1} \cdot T_{n+1} \quad=I_{n} \\
& -h_{n+1} \cdot T_{n}+\left(h_{n+1}+h_{n+2}\right) \cdot T_{n+1}=I_{n+1}+h_{n+2} \cdot T_{a k}
\end{aligned}
$$

Ligningssystemet kan skrives på matrixform:

$$
\begin{equation*}
\underline{\underline{H}} \underline{\underline{T}}=\underline{B} \tag{Al.8.10}
\end{equation*}
$$

hvor

$$
\begin{aligned}
& \underline{T}=\left[\begin{array}{l}
T_{1} \\
T_{2} \\
T_{3} \\
T_{n-1} \\
T_{n} \\
T_{n+1}
\end{array}\right] \quad \underline{B}=\left[\begin{array}{l}
I_{1}+h_{1} \cdot T_{u} \\
I_{2} \\
I_{3} \\
I_{n-1} \\
I_{n} \\
I_{n+1}+h_{n+2} \cdot T_{a k}
\end{array}\right]
\end{aligned}
$$

Her er $\underset{=}{H}$ en symmetrisk båndmatrix, hvilket udnyttes ved valg af FORTRAN subrutine til løsning af ligningssystemet. Der benyttes IMSL subrutinen LEQ2PB (70).


Fig. Al. 8. 3 skematisk tegning af lagdeling i glasuld.

Al.8.6 Ligningssystem til beregning af temperaturer i varmelageret

Solvaggens varmelagex er beregnet ved den eksplicitte beregningsmetode der er angivet i afsnit Al.l. Ved den indvendige overflade er der regnet med varmeovergang ved konvektion og straling som beskrevet $i$ afsnittet Al.3.2. St申rrelsen af varmeovergangene bestemmes ved måingerne af den måte rumlufttemperatur og overfladetemperatur.

Ved beregninger, hvor solvæggen er inkorporeret i edb-programmet BA4's rummodel, er denne models overflade- og rumlufttemperatur benyttet til at bestemme varmestrømmen mellem BA4-rummodellen og varmelagerets inderste akkumulerende lag. Varmeud-
vekslingen tilføres BA4-rummodellen fordelt på et konvektionsog et stralingsbidrag til varmebalancen. For den udvendige overflade er beregningsmetoden som beskrevet $i$ afsnittene Al.8.1 og Al.8.5 for henholdsvis solvæggene med mobil isolering og hvid glasuld. Ved disse metoder beregnes en varmestrøm, der tilføres eller afgives til varmelagerets yderste akkumulerende lag.

Beregningsmodellen er anvendt til sammenligning af beregninger med måinger (kap. 2). Ved disse beregninger er benyttet en inddeling af lageret $i=1$ lige tykke lag og et tidsskridt på $1 / 6$ time.

Ved beregninger med solvæggen anvendt i parcelhus (kap. 2) er antallet af lag sat til 3 og tidsskridtet sat til $1 / 2$ time. Denne ændring medførte kun ubetydelige ændringer af det beregnede årsudbytte for solvæggen.

Usikkerheden på temperaturer, varmestrømsmåinger, solindfald, udbytte og effektivitet bestemmes i det følgende.

## A2.1 Usikkerhedsoverslag for måling af temperaturer

Termoelementerne er placeret således, at loddestedet ma antages at have den korrekte temperatur. Alle tilledninger har en længde på ca. 50 cm med samme temperaturforhold som loddestedet.

Temperaturreferencen har haft en maksimal afvigelse på $\pm 0,3 \mathrm{~K}$ i l $\phi$ bet af måleperioderne.

Fra måleresultaterne ses spring i temperaturen på $0,6 \mathrm{~K}$, der skyldes, at temperaturreguleringen er mindre præcis end oprindeligt $\phi$ nsket. Svingningerne har forplantet sig til de sekundare referenceboxe til trods for deres store indvendige varmekapacitet. Dette har givet en uensartet temperaturfordeling i referenceboxen. Usikkerheden $i$ den sekundære referencebox" s temperatur sk申nnes at være $\pm 0,3 \mathrm{~K}$.

Måleusikkerheden på dataloggeren er ifølge manualen $\pm 0.04 \%$ af fuldt udslag på 40 mV . Dette svarer til $\pm 0,4 \mathrm{~K}$. Omsætningen fra mV til $k$ er ifølge (36) behæftet med en usikkerhed på $\pm 0,1 \mathrm{~K}$. Samenfattende skønnes usikkerheden på temperaturmailingen at være $\pm 0,6 \mathrm{~K}$ 。

Varmestrømmen $i$ en periode bestemmes som en middelværdi af $n$ målinger:

$$
\begin{align*}
q_{v} & =\frac{1}{n} \sum_{i=1}^{n}\left(K_{v} \cdot p_{i} \cdot\left(1-\left(t_{i}-20\right) \cdot 0,002\right)\right) \\
& \simeq \frac{1}{n} \sum_{i=1}^{n}\left(K_{v} \cdot p_{i}\right)=K_{v} p \tag{A2.1}
\end{align*}
$$

hvor $K_{V}$ er kalibreringskonstanten for varmestrømsmåleren (W/(m2 mV))
$P_{i}$ er spændingen (mV) $i$ i'te måling
$P$ er middelspændingen
$t_{i}$ er overfladetemperaturen $i$ i'te måling

Ved usikkerhedsoverslaget ses bort fra usikkerhed på temperaturkorrektionen, da dennes relative ubestemthed er omkring $1 \%$. Afvigelsen på kalibreringskonstanten må anses for at være uafhængig af målingen.

Ifølge (38) er den relative usikkerhed på $K_{V}$ :

$$
\begin{equation*}
\frac{S_{K_{v}}}{K_{v}}=0,05 \tag{A2.2}
\end{equation*}
$$

Usikkerheden på spændingsmålingen ex $0.04 \%$ af fuldt udslag, der er $40 \mathrm{mV}: \mathrm{S}_{\mathrm{P}_{i}}=0.04 \cdot 10^{-2.40}=0,016 \mathrm{mV}$.

Da den måte spænding typisk er omkring l mV, vil den relative usikkerhed på varmestrømsmålingen være lig med 5\%, der er den relative usikkerhed på kalibreringskonstanten.

## A2.3 Usikkerhedsoverslag for måling af solindfald

Solarimetret af mærket Kipp \& Zonen har ifølge fabrikken en ubestemthed på $\pm 5 \%$. Det analoge signal integreres $i$ en halvtime, hvorefter dataloggeren scanner alle kanaler og nulstiller integratoren.

Ved hvert scan "tabes" et tidsrum, hvor der ikke integreres. Scannes hver halve time, fås en fejl på $1 \%$.

Ubestemtheden på integratoren er ifølge manualen (72) $\pm 1 \%$ af fuldt udslag (10 mV):

$$
S_{P_{i}}=0,01 \times 10=0,1 \mathrm{mV}
$$

Integratoren har en integrationstid pà 1 time. Da der scannes hver halve time, kan omregningsfaktoren (K) fra integratorspænding ( $P_{i}$ ) til bestråingstyrken ( $I_{i}$ ) bestemmes af ligning (3.2.3):

$$
I_{j}=K P_{i}
$$

hvor

$$
K=\frac{2}{12,9 \quad 10^{-3}}=155 \mathrm{~W} /\left(\mathrm{m}^{2} \mathrm{mV}\right)
$$

Det antages at der i gennemsnit var 2 halvtimer pr dag, hvori mobilisoleringen blev flyttet, og at bestrålingsstyrken pã disse tidspunkter var det halve af middelbestrolingsstyrken. Ubestemtheden på varigheden af solindfaldet på disse tidspunkter er $S_{\Delta \tau_{i}}=1 / 2 \mathrm{~h}=1800 \mathrm{~s}$.

Det måte solindfald er bestemt ved:

$$
Q=\sum_{i=1}^{n}\left(I_{i} \cdot \Delta \tau_{i}\right)=K \sum_{i=1}^{n}\left(P_{i} \cdot \Delta \tau_{i}\right)
$$

Forudsættes den enkelte måleperiodes længde ( $\Delta \tau_{i}$ ) at være konstant gælder:

$$
\begin{equation*}
\mathrm{Q}=\mathrm{n} \cdot \mathrm{~K} \cdot \mathrm{P}_{\mathrm{m}} \cdot \Delta \tau_{\mathrm{i}}=\mathrm{n} \cdot \mathrm{I}_{\mathrm{m}} \cdot \Delta \tau_{\mathrm{i}} \tag{A2.4}
\end{equation*}
$$

hvor $P_{m}$ er middelspændingen og $I_{m}$ middelbestrålingsstyrken for et antal maleperioder.

De afledede er:

$$
\begin{equation*}
\frac{\partial Q}{\partial K}=\sum_{i=1}^{n}\left(P_{i} \cdot \Delta \tau_{i}\right) \tag{A2.5}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial Q}{\partial P_{i}}=K \cdot \Delta \tau_{i} \tag{A2.6}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial Q}{\partial \Delta \tau_{i}}=K \cdot P_{i} \tag{A2.7}
\end{equation*}
$$

Den relative usikkerhed kan bestemmes af:

$$
\frac{S_{Q}}{Q}=\frac{\sqrt{\left(\frac{\partial Q}{\partial K} \cdot S_{K}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial Q}{\partial P_{i}} \cdot S_{P_{i}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial Q}{\Delta \tau_{i}} \cdot S_{\Delta \tau_{i}}\right)^{2}}}{Q}
$$

$$
\begin{equation*}
=\sqrt{\left(\frac{S_{K}}{K}\right)^{2}+\frac{\sum_{i=1}^{n}\left(\Delta \tau_{i} \cdot S_{P_{i}}\right)^{2}}{\left(\sum_{i=1}^{n}\left(P_{i} \cdot \Delta \tau_{i}\right)\right)^{2}}+\frac{\sum_{i=1}^{n}\left(P_{i} \cdot S_{\Delta \tau_{i}}\right)^{2}}{\left(\sum_{i=1}^{n}\left(P_{i} \cdot \Delta \tau_{i}\right)\right)^{2}}} \tag{A2.8}
\end{equation*}
$$

I oktober 1979 var der solindfald på absorberen $i n=169$ halvtimer med en middelbestråingsstyrke på $593 \mathrm{~W} / \mathrm{m}^{2}$. Antal halvtimer, hvor kuglerne flyttes, sk申nnes at være: $n_{f}=2$. $31=$ 62. Den relative usikkerhed i denne periode kan bestemmes til:

$$
\begin{align*}
\frac{S_{Q}}{Q} & =\sqrt{\left(\frac{S_{K}}{K}\right)^{2}+\frac{n \cdot\left(\Delta \tau_{i} \cdot S_{P_{i}}\right)^{2}}{\left(n \cdot P_{m} \cdot \Delta \tau_{i}\right)^{2}}+\frac{n_{f}\left(P_{m} / 2 \cdot S_{\Delta \tau_{i}}\right)^{2}}{\left(n \cdot P_{m} \cdot \Delta \tau_{i}\right)^{2}}} \\
& =\sqrt{\left(\frac{S_{K}}{K}\right)^{2}+\frac{1}{n}\left(\frac{S_{P_{i}}}{I_{m} / K}\right)^{2}+\frac{n_{f}}{4 n^{2}}\left(\frac{S \Delta \tau_{i}}{\Delta \tau_{i}}\right)^{2}} \\
& =\sqrt{(0,05)^{2}+\frac{1}{169}\left(\frac{0,1}{593 / 155}\right)^{2}+\frac{62}{4(169)^{2}}\left(\frac{1 / 2}{1 / 2}\right)^{2}} \\
& =\sqrt{0,0025+0,000004+0,00054} \\
& =0,055 \simeq 68 \tag{A2.9}
\end{align*}
$$

A2.4 Usikkerhedsoverslag for måling af udbyttet

Udbyttet af solvæggen bestemmes som differensen mellem den maite varmestrømstæthed $\left(q_{v}\right)$ og varmetabet gennem en normalt isoleret solvæg $\left(q_{y}\right)$.

$$
\begin{equation*}
q_{u d b}=q_{v}-q_{y} \tag{A2.10}
\end{equation*}
$$

idet varme, der tilfores rummet, regnes positivt. Varmestrommene beregnes som middelværdier af perioder på 1 máned.

Varmetabet gennem en normalt isoleret ydervæg er beregnet ved hjelp af et edb-program på grundlag af det malte solindfalde rum - og udelufttemperaturer, der benytter samme metode som beskrevet $i$ appendix Al.3. For at fá et overslagsmæssigt billede af usikkerheden unders申ges, hvorledes varmebalancen for en normalt isoleret vag kan bestemmes ved simple udtryk. Varmestrømmen kan opdeles $i$ et bidrag, der skyldes varmetransmission fra rummet til det fri og et bidrag, der skyldes solindfaldet.

Bidraget fra varmetransmission på grund af temperaturforskelle kan bestemmes ved hjælp af:

$$
\begin{equation*}
q_{o}=-\frac{1}{n} k \sum_{i=1}^{n} \Delta T_{i} \tag{A2.11}
\end{equation*}
$$

hvor $\Delta T_{i}$ er temperaturforskellen mellem rumluft og udeluft og $n$ er antal måleperioder.

For at finde det andet bidrag bestemmes først middelbestrålingsstyrken af den absorberede solstråling:

$$
\begin{equation*}
q_{a b s}=\frac{1}{n} \cdot \alpha \cdot \sum_{i=1}^{n} r_{i} \tag{A2.12}
\end{equation*}
$$

hvor $\alpha$ er absorptionskoefficenten og $I_{i}$ er bestrålingsstyrken af solindfaldet. Af den absorberede solstråling afgives en del til det fri og en del til rummet. Antages konstante varmeovergangskoefficienter, vil den del af den absorberede stråling, der ledes til rummet, være lig varmeoverf申ringstallet mellem den udvendige overflade og rummet ( $h_{2}$ ) divideret med summen af varmeoverføringstallet fra udvendig overflade til henholdsvis det fri ( $\mathrm{h}_{\mathrm{l}}$ ) og rummet:

$$
\begin{equation*}
c=\frac{h_{1}}{h_{1}+h_{2}}=\frac{1 / h_{2}}{1 / h_{2}+1 / h_{1}}=m_{u} \cdot k \tag{A2.13}
\end{equation*}
$$

hvor $m_{u}$ er udvendig varmeovergangsisolans og $k$ er varmetransmissionskoefficienten for hele væggen. Den absorberede solstråling, der tilføres rummet, kan bestemmes af

$$
\begin{align*}
q_{a} & =c \cdot q_{a b s} \\
& =m_{u} \cdot k \cdot \alpha \cdot \frac{1}{n} \sum_{i=1}^{n} I_{i} \\
& =m_{u} \cdot k \cdot \alpha \cdot k \frac{1}{n} \sum_{i=1}^{n} P_{i} \tag{A2.14}
\end{align*}
$$

hvor $K$ er kalibreringskonstanten for solarimetret og $\mathrm{P}_{\mathrm{i}}$ er den målte spænding. Varmetabet gennem den normalt isolerede ydervæg kan dermed bestemmes af:

$$
\begin{equation*}
q_{y}=q_{0}+q_{a} \tag{A2.15}
\end{equation*}
$$

Udbyttet kan dermed bestemmes som:

$$
\begin{equation*}
q_{u d b}=q_{v}-\left(q_{o}+q_{a}\right) \tag{A2.16}
\end{equation*}
$$

Til bestemmelse af udbyttet kan lign. (A2.1), (A2.11) og (A2.14) benyttes.

Det forudsættes, at der ikke er ubestemthed af materialeværdierne for den normalt isolerede ydervæg. Dermed kan usikkerheden bestemmes som funktion af $\mathrm{K}_{\mathrm{V},} \Delta \mathrm{T}_{\mathrm{i}} \mathrm{og} \mathrm{K}$. F申lgende størrelser beregnes:

$$
\begin{equation*}
\frac{\partial q_{u a b}}{\partial K_{v}}=\frac{q_{v}}{K_{v}} \tag{A2.17}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial q_{u d b}}{\partial \Delta T_{i}}=\frac{k}{n} \tag{A2.18}
\end{equation*}
$$

$$
\begin{equation*}
\frac{\partial q_{u d b}}{\partial K}=\frac{-q_{a}}{K} \tag{A2.19}
\end{equation*}
$$

Den relative ubestemthed kan dermed bestemmes til:

$$
\begin{aligned}
\frac{S_{q_{u d b}}}{q_{u d b}} & =\frac{\left.\sqrt{\left(\frac{\partial q_{u d b}}{\partial K_{v}} \cdot s_{K_{v}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial q_{u d b}}{\partial \Delta T_{i}}\right.} \cdot s_{\Delta T_{i}}\right)^{2}+\left(\frac{\partial q_{u d b}}{\partial K} \cdot s_{K}\right)^{2}}{q_{u d b}} \\
& =\frac{\sqrt{\left(\frac{q_{v}}{K_{v}} \cdot s_{K_{v}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{k}{n} \cdot s_{\Delta T_{i}}\right)^{2}+\left(\frac{q_{a}}{K} \cdot S_{K}\right)^{2}}}{q_{u d b}} \\
& =\frac{\sqrt{\left(0,05 \cdot q_{v}\right)^{2}+\frac{1}{n}(\sqrt{2} \cdot 0,6 k)^{2}+\left(0,06 \cdot q_{a}\right)^{2}}}{q_{u d b}}
\end{aligned}
$$

Indsætttes talværdier, fås i de fire måneder, hvor der er målt, at den relative ubestemthed er fundet til at være mellem 0,04 og 0,05 for solvæggen med mobil isolering. Ved solvæggen med hvid glasuld, er den relative usikkerhed bestemt til at ligge mellem 6 og 11\%.

Det er hovedsagelig usikkerheden på varmestrømsmåleren, der er af betydning, mens usikkerheden på temperaturforskellen helt er uden betydning.

## A2.5 Usikkerhedsoverslag for måling af effektiviteten

For solvæggen med mobil isolering er effektiviteten $f$ beregnet som forholdet mellem udbyttet og solindfaldet.

Til beregning af usikkerhed kan $f$ bestemmes af:

$$
\begin{equation*}
f=\frac{q_{u d b}}{q_{s}} \simeq \frac{q_{v}-\left(q_{o}+q_{a}\right)}{q_{s}} \tag{A2.21}
\end{equation*}
$$

Følgende st申rrelser benyttes:

$$
\begin{align*}
& \frac{\partial f}{\partial K_{v}}=\frac{q_{v}}{q_{s} \cdot K_{v}}  \tag{A2.22}\\
& \begin{aligned}
\frac{\partial f}{\partial \Delta T_{i}} & =\frac{k}{n \cdot q_{s}} \\
\frac{\partial f}{\partial K} & =-q_{u d b} \cdot q_{s}^{-2} \frac{\partial q_{s}}{\partial K}+\frac{\partial q_{u d b}}{\partial K} q_{s}^{-1} \\
& =-q_{u d b} \cdot q_{s}^{-2} \frac{q_{s}}{K}-\frac{q_{a}}{K} \cdot q_{s}^{-1} \\
& =-\frac{1}{K \cdot q_{s}} \cdot\left(q_{a}+q_{u d b}\right)
\end{aligned} \tag{A2.23}
\end{align*}
$$

Den relative usikkerhed kan dermed bestemmes af:

$$
\begin{align*}
\frac{S_{f}}{f} & =\frac{\sqrt{\left(\frac{\partial f}{\partial K_{v}} \cdot S_{K_{v}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{\partial f}{\partial \Delta T_{i}} \cdot s_{\Delta T_{i}}\right)^{2}+\left(\frac{\partial f}{\partial K} \cdot s_{K}\right)^{2}}}{f} \\
& =\frac{\sqrt{\left(\frac{q_{v}}{q_{s} \cdot K_{v}} \cdot s_{K_{v}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{k}{n \cdot q_{s}} \cdot s_{\Delta T_{i}}\right)^{2}+\left(\frac{\left(q_{a}+q_{u d b}\right)}{K \cdot q_{s}} \cdot s_{k}\right)^{2}}}{f} \\
& =\frac{1}{q_{u d b}} \sqrt{\left(q_{v} \frac{s_{K_{v}}}{K_{v}}\right)^{2}+\sum_{i=1}^{n}\left(\frac{k}{n} \cdot s_{\Delta T_{i}}\right)^{2}+\left(\left(q_{a}+q_{u d b}\right) \cdot \frac{S_{K}}{K}\right)^{2}} \\
& =\frac{1}{q_{u d b}} \sqrt{\left(0,05 q_{v}\right)^{2}+\frac{1}{n}(\sqrt{2} \cdot 0,6 k)^{2}+\left(0,06 \cdot\left(q_{a}+q_{u d b}\right)\right)^{2}} \tag{A2.25}
\end{align*}
$$

Ved at indsætte værdierne for de fire måneder, fås en relativ usikkerhed på mellem 7 og $8 \%$. Både usikkerheden på måling af varmestrøm og solindfald har betydning.

## A3.1 Bestemmelse af tidspunkt for flytning af mobil isolering

Til at måle om der er mobil isolering $i$ hulrummet er der opsat en indikator, der måer en styrespænding i reguleringskredsløbet. Styrespændingen er vekselstrøm, og ved at anvende den på fig. A3.l viste kreds opnås, at når mobilisoleringen er i hulrummet, vil spændingen være konstant, mens, når hulrummet er tømt, falder malespændingen, idet den opladede kondensator aflades gennem dataloggerens voltmeter.

Styrespænding fra relæ


Fig. A3.1 Målekredsl $\varnothing \mathrm{b}$ til indikation af mobilisoleringens position.

Spændingen falder tilnærmelsesvis eksponentielt (se fig. A3.2), således at spændingen $y$ kan beskrives som en funktion af tiden T:

$$
\begin{equation*}
\ln (y)=k_{1}+k_{2} \cdot \tau \tag{A3.1}
\end{equation*}
$$

Hvis spandingen $y$ kendes til tidspunkterne $\tau_{2}$ og $\tau_{3}$, kan konstanten $\mathrm{k}_{2}$ findes:

$$
\begin{equation*}
k_{2}=\frac{\ln \left(y_{3} / y_{2}\right)}{\tau_{3}-\tau_{2}} \tag{A3.2}
\end{equation*}
$$

Sættes tidsintervallet mellem $\tau_{2}$ og $\tau_{3}$ til 1 , fås:

$$
\begin{equation*}
k_{2}=\ln \left(y_{3} / y_{2}\right) \tag{A3.3}
\end{equation*}
$$

Måles to spændinger $Y_{1}$ og $Y 2$, kan tidsrummet mellem målingerne bestemmes:

$$
\begin{align*}
\Delta \tau & =\tau_{2}-\tau_{1} \\
& =\frac{\ln \left(y_{2}\right)-k_{1}}{k_{2}}-\frac{\ln \left(y_{1}\right)-k_{1}}{k_{2}}=\frac{\ln \left(\frac{y_{2}}{Y_{1}}\right)}{k_{2}} \tag{A3.4}
\end{align*}
$$



Fig. A3.2 Målespænding til indikation af om der er mobil isolering i hulrum. Data fra 18/8-79.

Værdien af $\mathrm{k}_{2}$ er konstant for den enkelte måing. I fig. A3.3 er 5 dage med stabilt solskin ved solopgang udvalgt. I tabellen findes konstanten $\mathrm{k}_{2}$ for hver dag og ligeledes andelen af scanneintervallet fra flytning af mobil isolering til nærmeste efterfølgende scan. Som gennemsnitsværdi findes $k_{2, m i d d e l}=$ $-0.1429(1 / 2 \mathrm{~h})-1$.

## A3. 2 Kontrol af differenstermostat

Styringen af mobilisoleringen foregå ved hjælp af differenstermostaten. Når temperaturen i kontrolboxen overstiger den udvendige overfladetemperatur af væggen plus den indstillede
differenstemperatur, tømmes de ekspanderede polystyrenkugler fra solvæggen (se fig. A3.4).

Under forudsætning af lineær temperaturændring kan kontrolboxens temperatur ( $t_{k_{k}, s t a r t}$ ) findes ved starttidspunktet:

$$
\begin{equation*}
t_{k, \text { start }}=t_{k, 2}+(1-\Delta \tau)\left(t_{k, 3}-t_{k, 2}\right) \tag{A3.5}
\end{equation*}
$$

hvor $t_{k}, 3$ og $t_{k, 2}$ er kontrolboxens temperatur, henholdsvis efter $o g$ før starttidspunktet.

Den udvendige vægoverflades temperatur ( $t_{o v, s t a r t)}$ kan findes ved ekstrapolation af temperaturerne $t_{o v, 1}$ og tov, 2 før starttidspunktet:

$$
\begin{equation*}
t_{\mathrm{ov}, \text { start }}=\mathrm{t}_{\mathrm{ov}, 1}+(2-\Delta \tau)\left(t_{\mathrm{ov}, 2}-t_{\mathrm{ov}, 1}\right) \tag{A3.6}
\end{equation*}
$$

Startdifferenstemperaturen er dermed:

$$
\begin{align*}
\Delta T & =t_{k, \text { start }}-t_{o v, \text { start }} \\
& =t_{k, 2}+(1-\Delta \tau)\left(t_{k, 3}-t_{k, 2}\right)  \tag{A3.7}\\
& -\left(t_{o v, 1}+(2-\Delta \tau)\left(t_{o v, 2}-t_{o v, 1}\right)\right.
\end{align*}
$$

| Dato | Tids- <br> punkt | $y_{1}$ | $y_{2}$ | $y_{3}$ | $k_{2}$ | $\Delta \tau$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| AUG 10 | 9.00 | 2056 | 1862 | 1655 | $-0,1179$ | 0.841 |
| AUG 12 | 8.30 | 2055 | 1963 | 1728 | $-0,1275$ | 0.359 |
| AUG 13 | 9.00 | 2018 | 1821 | 1549 | $-0,1618$ | 0,635 |
| AUG 17 | 8.30 | 2060 | 1749 | 1463 | $-0,1786$ | 0,916 |
| AUG 23 | 8.30 | 2046 | 1976 | 1737 | $-0,1289$ | 0,270 |

Fig. A3.3 Beregning af tidsrum mellem flytning af mobilisolering og nærmeste efterfølgende $i$ scannetidspunkt.


Fig. A3.4 Temperaturforløb om morgenen $i$ kontrolbox og på udvendig overflade af mur. Scannetidspunkt er markeret med. .

Benyttes de $i$ fig. A3. 3 viste temperaturer, kan startdifferenserne findes som vist i fig. A3.5.

Det ses, at middelstartdifferenstemperaturen svarer godt til den indstillede værdi på 10 K.

|  | $\Delta T$ | $t_{k, 2}$ | $t_{k, 3}$ | $t_{k, \text { start }}$ | $t_{\text {ov, } 1}$ | $t_{o v, 2}$ | $t_{\text {ov, start }}$ | $\Delta \mathrm{T}_{\text {start }}$ |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| Dato | $\frac{1}{2} \mathrm{~h}$ | ${ }^{\circ} \mathrm{C}$ | K |
| Aug 10 | 0,841 | 27,3 | 33,0 | 28,2 | 20,0 | 20,2 | 20,2 | 8,0 |
| Aug 12 | 0,359 | 28,2 | 37.7 | 34,3 | 25,5 | 25,3 | 25,2 | 9,1 |
| Aug 13 | 0,635 | 35,6 | 47.3 | 30,2 | 29,9 | 39,9 | 29,8 | 10,1 |
| Aug 17 | 0,916 | 42.1 | 55,4 | 33,5 | 33,5 | 43,2 | 33,5 | 9,7 |
| Aug 23 | 0,270 | 30,2 | 39.3 | 26,7 | 26,6 | 36,8 | 26,5 | 10,3 |
| Middelværdi |  |  |  |  |  |  |  | 9,4 |

Fig. A3.5 Tabel over startdifferenstemperaturer ( $\Delta$ Tstart).

```
Rubinstein, Axel:
Metoder til bestemmelse af varmeledningstal, med særlig vægt på
teorien for de instationære metoder samt nogle malinger med en
termosonde af egen konstruktion. 1963.
Petersen, Erwin:
Solindfald gennem vinduer. 1966.
Lund-Hansen, Per:
Fugttransport i Byggematerialer. 1967.
Nicolajsen, Asta:
Fugttransportkoefficienter fra gasbeton. 1973.
Nielsen, A.F.:
Fugtfordelinger i gasbeton under varme- og fugttransport.
1974.
Nielsen, Peter V.:
Strømningsforhold i luftkonditionerede lokaler. 1974.
Ravn-Jensen, Lars:
Vinduer og energi. 1977.
Lawaetz, Henrik:
Solindfald og solvarmeanlæg. Beregnet og måt. 1980.
Svendsen, S.:
Solfangeres effektivitet. Målt og beregnet. 1981.
Kielsgaard Hansen, Kurt:
Luftsolfangere og varmelagring i jord. 1982.
Furbo, Simon:
Varmelagring til solvarmeanlæg. 1984.
Mфrck, Ove:
Modelling and Simulation of Solar Heating Systems. 1985.
```


[^0]:    Fig. 2.1.13 Skematisk tegning
    til bestemmelse af akkumulering

[^1]:    ${ }^{*}{ }_{\text {lnaguts }}$ tykkelse reducerct således at tidskonstanten bliver $3,82 \mathrm{~h}$ ．
    Fig．2．1．15 Materialekonstanter for forskellige typer bygningselementer．

[^2]:    Fig. 4.1.2 Måit absorberoverflade- og indvendig lageroverfladetemperatur, temperatur i Fig. ${ }^{\text {kontrolbox }}$ og solindstriling for solvag ned mobil isolering. (24/12-79).

[^3]:    ${ }^{\text {*) }}$ Denne temperatur skyldes lav rumlufttemperatur i en kold periode.

[^4]:    Fig. 4.l.4 Kumuleret fordeling af rumluft- og udelufttemperatur samt udvendig og indvendig overfladetemperatur af varmelager for solvæg med mobil isolering (februar 1979).

[^5]:    1079. 
[^6]:    Fig. 4.l. 11 Målte middel- minimum- og maksimumtemperaturer (oc) ved solvag med selektiv overflade (A) og selektiv overflade plus V-korrugeret honeycomb (B).

