VARMELAGRING TIL SOLVARMEANLIEG

AF

SIMON FURBO

LABORATORIET FOR VARMEISOLERING DANMARKS TEKNISKE HØJSKOLE

MEDDELELSE NR. 162
SEPTEMBER 1984

FORORD

Denne rapport maxkerer afslutningen af mit licentiatstudium ved Laboratoriet for Varmeisolering, Danmarks Tekniske Højskole, med professor Vagn Korsgaard som vejleder. Midlerne til studiet er forst og fremmest stillet til radighed af Undervisningsministeriet, men en del arbejde udfprt med EFmidler og Energiministerielle midler ex ogsa medtaget fox fuldstandighedens skyld.

Mange har direkte medvirket i Eorbindelse med projektets genm nemforelse. Endnu flere har ydet værdifuld vejledning og inspiration.

Metro A/S har udvist sarlig stor velvilje. Beholdere og nyttig information vedrorende beholdere er stillet til radighed.

Erik Pedersen fra H.C. Drsted Instituttet har varet en stor støtte i forbindelse med de kemiske forhold for smeltevarmelagrene.
pa Laboratoriet for Varmeisolexing vil jeg først og fremmest takke min vejleder Vagn Korsgaard og det inspirerende forskningsmiljø indenfor solvarmeomxidet pa Laboratoriet for Vameisolering. En speciel tak rettes til Svend Svendsen for den støtte, radgivning, hjelp og inspiration, som jeg har faet igennem projektet. Endvidere takkes Ole Ravn, Peter Berg, Søren \emptyset stergaard Jensen og otto Dymum fox dexes medvirken.

For det eksperimentelle arbejde har jeg god grund til at takke Michael Ramskov, Laxs Schou Pedersen, Eigil Andreaser og Flemming Nielsen. For tegning af figurer takkex jeg Kenneth Sørensen. For renskrivningen af rapporten kan jeg takke Kirsten Weishaupt, som med stor omhu hax udføxt dette tid krævende arbejde.

Mange flexe kunne navnes - alle, som har medvirket til projektets gennemførelse, takkes.

Rapporten omhandler varmelagring i forbindelse med solvarmeanlæg til brugsvandsopvarmning. Der er endnu behov for forskning inden for dette omxade. De hovedomrader, hvor forskningsindsats sarlig er pakrevet, er:

- udvikling af billigt og simpelt styresystem
- optimexing af udformingen af solvarmeanlaggene
- undersøgelse af muligheden for at anvende eksisterende varmtvandsbeholdere som solvarmeanlaggenes varmelagre
- udvikling af velegnede varmelagre
- udvikling af kombibeholdere
- udvikling af smeltevarmelagre

Der er saledes stadig mange muligheder for gennem forskning og udvikling at medvirke til at forbedre forholdet mellem ydelse og pris for sma solvarmeanlæg til brugsvandsopvarmning betydeligt.

Naturligvis er korttidslagring ikke det eneste vigtige omrade inden for solvarmeomradet. Solfangeromradet og langtidslagring er ligeledes vigtige omrader, hvor forskning og udvikling ex påkrevet.
"Solvarme kan kun give lidt lunkent vand om sommeren". Morten Lange, formand for det Radgivende Energiforskningsudvalg og Enexgirådet. Januar 1984. "Det ex tvivlsomt, om solfangere i dette arhundrede bliver økonomisk kokurrencedygtige med andre opvarmingsformer". Energi og Danmark. Energimisteriet. 1983. Disse udtalelsex stammer fra de eksperter, som radgiver vore politikere inden for energiomradet. Alle som arbejder seriøst inden for solvarmeomradet, har den modsatte mening.

Der ex kun forsket i solvarme i sma 10 ar i Danmark. pa trods heraf er udviklingen godt i gang. De første rentable solvarmeanlæg ser solens lys netop i disse år. Der er stadig store

[^0]Simon Furbo
September 1984

INDHOLDSEORTEGNELSE

RESUME 1

1. TNDLEDNTNG 2
1.1 Varmelagring til solvameanlag 2
1.2 Varmefyldelagre 4
2. 3 Faseandringslagre 6
I. 4 Kemiske Lagre 7
3. PRØVEMETODER 9
2.1 Danske prøvemetoder 10
2.1.1 Varmetabskoefficient for vamelageret under solfangexdrift 10
2.1.1.1 Beskrivelse 10
2.1.1.2 Malefejl og målenøjagtighed 12
2.1.1.3 Exfaring og vurdexing 17
2.1.2 Varmetabskoefficient for varmelageret under et afkølingsforlob 18
2.1.2.1 Beskrivelse 19
2.1.2.2 Målefejl og målenøjagtighed 20
2.1.2.3 Exfaring og vurdering 25
2.1.3 Varmelagringskapacitet og vammelagrings- effektivitet 25
2.1.3.1 Beskrivelse 26
2.1.3.2 Målefej1 og målenøjagtighed 27
2.1.3.3 Erfaring og vurdering 31
2.1.4 Varmeoverføringsevne fra solfangerveske til varmelager 32
2.1.4.1 Beskrivelse 32
2.1.4.2 Målefejl og mailenøjagtighed 34
2.1.4.3 Erfaring og vurdering 37
2.1.5 Dynamiske forhold for vaxmelageret 37
2.1.5.1 Beskrivelse 37
2.1.5.2 Målefejl og målenøjagtighed 41
2.1.5.3 Erfaring og vurdexing 43
2.2 Europaiske metoder 44
2.2.1 Varmelagerets varmeindhold som funktion af temperaturen 44
2.2.1.1 Beskrivelse 44
2.2.1.2 Exfaring og vurdering 45
2.2.2 Varmelagerets varmeindhold i design temperaturomyodet 47
2.2.2.1 Beskrivelse 47
2.2.2.2 Erfaring og vurdering 47
2.2.3 Varmetabskoeficient for varmelageret under solfangerdrift 48
2.2.3.1 Beskrivelse 48
2.2.3.2 Exfaring og vurdexing 49
2.2.4 Varmetab for varmelageret under et afkolingsforl bb 50
2.2.4.1 Beskrivelse 50
2.2.4.2 Erfaring og vurdering 51
2.2.5 Varmelagerets varmeoverføringsmessige forhold 51
2.2.5.1 Beskrivelse 52
2.2.5.2 Erfaring og vurdering 54
2.2.6 Varmelagerets effektivitet 55
2.2.6.1 Beskrivelse 55
2.2.6.2 Erfaring og vurdering 55
4. PRDVESTANDE 57
3.1 Statisk provestand 57
3.2 Dynamisk provestand 59
3.3 Målesystem 63
3.3.1 Nøjagtighed af temperatummailing 66
3.3.2 Nøjagtighed af temperaturmåling i varmelager 67
3.3.3 Nojagtighed af effektmaling 72
5. VANDLAGRE 76
4.1 Lagertyper 76
4.1.1 Benyttelse af eksisterende varmtvands- beholder 76
4.1.2 Kombitanke 78
4.1.3 Separat vandlager til solvarmeanleg 78
4.2 Varmetab 80
A.2.1 Transmissionstab 80
4.2.2 Kuldebro 84
4.3 Varmeoverforingseme 86
A.4 Tempexaturlagdeling 94
4.4.1 Forsøg til bestemmelse af varmetabet for varmtvandsbeholder 95
4.4.2 Matematisk model til simulexing af temperaw turlagdeling i vaxmtvandsbeholdere 111
4.4.2.1 Varmeledning 113
4.4.2.2 Vametab og vandstromaing i varmtvandsbeholderen 113
4.4.2.3 Vandtapning 117
4.4.2.4 Varmebalancer for lagene i perioder uden varmetilførsel 119
4.4.2.5 Vandets udvidelse og sammentrakning 121
4.4.3 Forsøg til validering af simuleringsmodel for temperaturlagdeling i varmtvandsbeholdere 125
4.5 Standardprovning 134
4.6 Matematisk model til simulering af varmelagerets dxift 144
4.6.1 Korrektioner forarsaget af vammevekslex- spiralen 144
4.6.2 Varmetilforsel fra solfangexkreds til varmelager 145
4.6.3 Varmevekslexspiralens varmeoverføring 152
4.6.4 Varmebalance for varmelageret under solfangerdrift 152
4.6.5 Beregning af lagexets og solfangexkredsens temperaturex under solfangerdxift og tapning 153
4.6.6 Bexegning af ydelsen for solvarmeanlxgget 158
4.7 Lagerudformningens betydning for små solvammeanlags ydelse 160
4.7.1 Data for solvarmeanlagget, som tages i bexegning 160
4.7.2 Tidsspring 164
4.7.3 Antal Lag i varmelagermodellen 164
4.7.4 Solfangerareal 168
4.7.5 styresystem 168
4.7.5.1 styresystemets staxtdifferens 168
4.7.5.2 Styresystemets stopdifferens 168
4.7.6 Lagervolumen 175
4.7.7 Vaxmevekslerspixal 175
4.7.8 Volumenstrom 179
4.7.9 Varmelagerets hojde/diameter-Eorhold 179
4.7.10 Varmelagerets vametab 182
4.7.10.1 Topisolexingens tykkelse 182
4.7.10.2 sideisolexingens tykkelse 182
4.7.10.3 Bundisolexingens tykkelse 182
4.7.10.4 Kuldebro i toppen af varmelagexet 182
4.7.10.5 Kuldebro i bunden af vammelageret 182
4.7.11 Varmelagexets godstykkelse 187
4.7.12 Varmelagerets tappesystem 187
4.7.13 Ekstra tank for brugsvandet 192
4.7.14 Betydning af vandstrdmning langs beholdexsiden 193
4.7.15 Forøget temperaturlagdeling i varmelagexet 196
4.7.16 Vammelagerudformning 197
6. SMELTEVARMELAGRE 198
5.1 Varmelagringsmaterialer 198
5.1.1 Uorganiske salthydrater 198
5.1.1.1 Smeltemade 199
5.1.1.2 Ekstxa-vand princippet 202
5.2 Lagerudformninger 205
5.3 Smeltevarmelagex til solvaxmeanleg til brugsvandsopvarming 208
5.3.1 $\quad \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} / \mathrm{Vand}-\mathrm{blanding}$ 210
5.3.2 Prototyper 216
5.3.3 Fortsat udviklingsarbejde 236
5.4 Status 238
7. KONKLUSION 240
SUMMARY 243
SYMBOLIISTE 245
LITTERATURLISTE 257

Figurliste

Figur 1 Massefylde og varmefylde for 50% (vegt 8) vand/propylenglycol blanding som funktion af temperaturen 13
Figur 2 Skematisk skitse af et varmelager med ind- bygget varmevekslerspiral og et udsnit af varmevekslexspiralen 13
Figur 3 Beregnet måleubestemthed for varmetabs koefficienten som funktion af varmetabs- koefficienten og lagextemperaturniveauet 16
Figux 4 Beregnet relativ ubestemthed for varme- tabskoefficienten som funktion af varme tabskoefficienten og lagertemperaturm niveauet 17
Figux 5 Skematisk skitse af varmelager med ind- bygget vammevekslerspiral og udsnit af varmevekslexspixalen 32
Eigur 6 Beregnet maleubestemthed for varmeover- føringsevnen som funktion af varmeoverm foringsevnen 36
Figur 7 Solintensitet på solfangeren og udeluft tempexaturen, som benyttes ved den dyna- miske provning 38
Figur 8 Skematisk illustration af statisk provestand 58
Figur 9 statisk provestand 59
Figur 10 Skematisk illustration af dynamisk provem stand 60
Eigur 11 Solfangersimulatox og mikroprocessor 62
Figur 12 skematisk illustration af malestav til temperatummaling i varmelageret 64
Figur 13 Udstyr til maling af tempexaturdifferens 65
Figur 14 Udsnit af proveopstilling til kontrol af glasstavens egnethed til temperaturmailing i varmelagre 68
Eigur 15 Måle temperaturer i Eorskellige niveauer i røret ved stabil temperaturlagdeling 70
Figux 16 Måte temperaturer under og efter tapning 71
Figur 17 Skematisk illustration af varmeoverforings- system til et solvammeanlog med udnyttelse af den eksisterende varmtvandsbeholder 77
Figur 18 Skematisk illustration af cylinderformet tank med isolering 81
Figur 19 Varmelagerets varmetabskoefficient for forskellige varmelagervolumener og isoleringstykkelser 83
Eigur 20Varmetabskoefficenten for et 200 l lager
isoleret med 5 cm isoleringsmateriale med$\lambda=0,045 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ som funktion af $\mathrm{h} / \mathrm{d}_{y}$forholdet.83
Figur 21 Varmetabsmalingex for markedsfoxte varmem lagre 85
Figur 22 Varmeoverføringsevnen som funktion af lagextemperaturen 88
Figur 23 Varmeoverføringsevnen som Eunktion af forskellen mellem solfangerveskens frem lobstemperatur og lagertemperaturen 89
Figur 24 Varmeoverforingsevnen som funktion af effekttilførslen 90
Eigur 25 Varmeoverforingsevnen som funktion af volumenstrømmen 91
Figur 26 Varmeoverføringsevnen som Eunktion af langden af varmevekslerspiralen 92
Figur 27 Vaxmeovexforingsevnen som funktion af varmevekslerspiralen 93
Figur 28 Varmtvandsbeholder 96
Figur 29 Varmtvandsbeholderens udformning 98
Eigur 30 Endebunde til varmtvandsbeholder 99
Figur 31 Varmelagerets top med og uden kuldebro 103
Figur 32 Skematisk illustration af proveopstillingen 104
Figur 33 Forsøgskasse og varmtvandsbeholder 105
Figur 34 Tvarstrømsblxsere og varmepanel i den isolerede forsogskasse 105
Figux 35 Maleopstilling til bestemmelse af for- delingen af varmelagerets varmetabs- koefficient 106
Eigur 36 Massefylde og vammefylde for vand ved Eorskellige temperaturer 111
Figur 37 Skematisk illustration af varmtvands beholdexen under tapning 118
Figur 38 Skematisk illustration af lagerets vand- bevagelser igennem tidsspxinget 122
Figux 39 Lagerets vandtemperaturex for og efter vandtapning 126
Figux 40 Lagerets vandtemperaturer for og 0, $1,6,12$ og 24 timer efter vandtamingens slutring 128
Figur 41 Lagexets vandtemperaturer for og 0, 1, 6, 12 og 24 timer efter vandtapningens slutning 130
Figur 42 Lagerets vandtemperaturer ved provningens start og efter 1. 6, 12 og 24 timer 131
Figur 43 Vandtemperaturer for lageret med kuldebro i toppen ved provningens start og eftex 1. 6, 12 og 24 timer 133
Figur 44 Iagexets vandtemperaturer for og $0,1,6,12$ og 24 timer eftex vandtapningens slutning 135
Figur 45 Lagerets vandtemperaturer før og 0, $1,6,12$ og 24 timer efter vandtapningens slutning 136
Figur 46 Lagerets vandtemperaturer under et afkølings- foxløb 138
Figux 47 Maleforhold og malte varmeoverforingsevnex 140
Figur 48 Maleforhold og malte vaxmeoverforingsevnex 141
Eigur 49 Temperaturforlpbet under den dynamiske provning 142
Figur 50 Principskitse af solvarmeanlag til brugs- vandsopvarmning 157
Figur 51 Arlige varmemangaer tilført, tappet og tabt Era varmelageret, den arlige pumpeenergi brugt til cirkulation af solfangervasken. samt den arlige varmebalance for varme* lageret som funktion af tidsspringet 165
Figur 52 Solvarmeanlxggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til xeferenceanlaggets arlige nettoudbytte og besparelse som funktion af tidsspringet 166
Figur 53 Solvarmeanlwggets axlige nettoudbytte ogbesparelse samt den procentvise andring afsolvarmeanlaggets grlige nettoudbytte ogbesparelse i forkold til referenceanlaggetsarlige nettoudbytte og besparelse somfunktion af antallet af lag i varmelager-modellen167
Figur 54 Solvarmeanlaggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til referenceanlaggets axlige nettoudbytte og besparelse som funktion af solfangeraxealet 169
Figur 55 Solvarmeanlaggets axlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til refexenceanlaggets arlige nettoudbytte og besparelse som funktion af styresystemets startdifferens 170
Figur 56 Solvarmeanlaggets arlige nettoudbytte og besparelse samt den procentvise rndring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold iil referenceanlaggets grlige nettoudbytte og besparelse som funktion af styresystemets stopdifferens 171
Figur 57 Solvarmeanleggets arlige nettoudbytte, besparelse og energiforbrug til cirkulation af solfangervesken som funktion af styre- systemets stopdifferens 173
Figur 58 Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til refexenceanlaggets arlige nettoudbytte og besparelse som funktion af lagexvolumenet176

Figur 66	Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlæggets àrlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af størrelsen af kuldebroen i toppen af varmelageret 18
Eigur 67	Solvarmeanlaggets axlige nettoudbytte og besparelse samt den procentvise andring af solvameanlaggets arlige nettoudbytte og besparelse iforhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af størrelsen af kuldebroen i bunden af vamelageret
Figur 68	Solvarmeanlaggets aixlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlaggets arlige nettoudbytte og besparelse iforhold til referenceanlaggets arlige nettoudbytte og bespaxelse som funktion af godstykkelsen af endebundene 189
Figur 69	Solvarmeanlæggets ålige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af godstykkelsen af svobet 190
Figur 70	Solvarmeanlaggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af den del af lageret, hvor koldt vand opblandes fuldstandigt med lagervand under tapning
Figur 71	Skematisk illustration af lageret og koldtvandstilførselsrøret 19
Figur 72	Solvarmeanlæggets årlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets axilige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af lagervolumenet af den ekstra tank

Eigur 73 Solvarmeanlæggets Irlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlaggets arlige nettoudbytte og besparelse iforhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af beregningsmetoden for tempe- raturlagdelingen i lageret 195
Figur 74 Varmeindhold af et ideelt virkende inw kongruent salthydrat, en saltvandsblanding baseret pa ekstra-vand-princippet og vand i temperaturintervallet $0-100{ }^{\circ} \mathrm{C}$ 203
Figur 75 Varmeindhold af forskellige saltvands- blandinger 204
Figur 76 Skematisk illustration af tre smelte- varmelagre 206
Figux 77 Oplpselighed af $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ i vand 214
Figur 78 Massefylden for saltwandsblandingen be- staende af $61 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ og 39% vand (vagt \%) i temperaturintervallet $0-120^{\circ} \mathrm{C}$ 215
Figur 79 Skematisk illustration af prototype 1 217
Eigux 80 Prototype 1 med varmevekslexspiralex 218
Figur 81 Måeforhold og målte temperaturer for opvarmningsforlpbet 221
Figur 82 Varmeindholdet af prototype 1 i tempera- tuxintervallet $0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$ 222
Figur 83 Máleforhold og malt og teoretisk beregnet varmeoverføringsevne 224
Figur 84 Temperaturforlobet undex den dynamiske provning 226
Figur 85 Lagertemperaturer under tappeforsøg med $T_{i, 1}=29,9^{\circ} \mathrm{C}$ 229
Figur 86 Lagertemperaturer under tappeforsøg med $T_{i, 1}=49,8^{\circ} \mathrm{C}$ 230
Figur 87 Lagertemperaturer under tappeforsøg med $T_{i, 1}=79,9^{\circ} \mathrm{C}$ 231
Figur 88 Skematisk illustration af prototype 2 233
Figur 89 Prototype 2 med varmevekslerspiraler 234
Tabel 1 Varmefylde og varmelagringskapacitet pr. volumenenhed for en rakke materialex 5
Tabel 2 Omdannelsesvarme ved fast-fast strukturm manding for en rakke materialex 7
Tabel 3 Anvendte maileubestemtheder 15
Tabel 4 Vametabskefficient for forskellige varme- lagre målt hhv. ved lagertemperaturer på omtrent $30^{\circ} \mathrm{C}$ og $80^{\circ} \mathrm{C}$ 18
Tabel 5 Eksemplex pe̊ størxelsen af $S_{K_{S}}$ 24
Tabel 6 Varmetabskoeficient for forskellige varme lagre ved lagertemperatur pà omtrent $80^{\circ} \mathrm{C}$ mailt hhvo under solfangexdxift og undex stilstand 25
Tabel 7 Eksemplex pä storxelsen af S_{1} 30
Tabel 8 Eksemplex pa størxelsen af S_{n} 31
Tabel 9 Malte varmelagringskapacitetex og varmew Iagringseffektiviteter for markedsforte varmelagre 31
Tabel 10 Eksempler pa storrelsen af varmeoverforingso evnens maleubestemthed 36
Tabel 11 Data benyttet ved beregning af rorsystemets varmetab og varmelagringskapacitet for et typisk solvammeanleg 39
Tabel 12 Eksemplex pa størrelsen af den relative ubestemthed for Q_{t} og Q_{V} 43
Tabel 13 Nøjagtighedsforsøg for temperaturmalinger 67
Tabel 14 Vametab for varmepatronkassen 72
Tabel 15 Varmeeffektmalinger for maleudstyx nx. 1 74
Tabel 16 Varmeeffektmalinger for maleudstyr nr. 2 75
Tabel 17 Relativ ubestemthed af Q_{u} for forskellige 73 ${ }^{T} T_{f}=T_{r}$
Tabel 18 Data for referencevarmevekslerspiral og referencedriftsbetingelser 87
Tabel 19 Data for varmtvandsbeholdex 100
Tabel 20 Data for varmtvandsbeholder med varmem vekslerspiral 100
Tabel 21 Data for varmtvandsbeholder med varmem legeme 101
Tabel 22 Data for beholderform ved $20^{\circ} \mathrm{C}$ anvendt i beregningsmodel 101
Tabel 23 Varmetabskoefticientmalinger 102
Tabel 24 Malexesultater for fordeling af varmetabs koefficienten 108
Tabel 25 Ubestemtheder for malte vametabs koefficienter 110
Tabel 26 Varmetabskoefficienter og deres male- ubestemthedex for varmtvandsbeholderen uden kuldebro i toppen 110
Tabel 27 Anvendte symbolex ved beregning af lagenes virkelige vammetab 115
Tabel 28 Maling af varmetabskoefficienten for varmt- vandsbeholderen med den indbyggede varme- vekslerspiral 137
Tabe1 29 Data for varmevandsfoxbruget under den dynamiske provning 143
Tabel 30 Daglige og totale varmemangder for varmta vandsbeholderen under den dynamiske provning 143
Tabe1 31 Data benyttet ved beregning af solvarme- anlags ydelse 161
Tabel 32 Data for referenceanlag 163
Tabel 33 Data For attraktive salthydrater 199
Tabel 34 Materialedata for vaxmelagringsmaterialet 212
Tabel 35 Varmeindhold af saltvandsblandingen be- stående af $61 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ og 39% vand (vaegt\%) i temperaturintervallet $0-120^{\circ} \mathrm{C}$ 213
Tabel 36 Data for prototype 1 219
Tabel 37 Malte vametabskoefficienter for protom type 1 219
Tabel 38 Maleresultater for opvarmingsforlobet 220
Tabel 39 Data for varmtvandsforbruget under den dynamiske prøvning 227
Tabel 40 Daglige og totale vamemangder for vame- lageret under den dynamiske prøvning 227
Tabel 41 Data for tre tappeforsøg 228
Tabel 42 Data for prototype 2 235

RESUMÉ

Danske og europæiske prøvemetoder for varmelagre til solvarmeanlæg er udviklet og beskrevet. Egnetheden af prøvemetoderne er vurderet ved hjælp af teoretiske beregninger af prøvemeto dernes målenøjagtighed og af de exfaringer, som er indvundet gennem prøvningsarbejdet.

Prøvestande til prøvning af varmelagre til solvarmeanleg til brugsvandsopvarmning er opbygget. Malenøjagtigheden for provestandenes måleudstyr er detaljeret undersøgt.

Varmelagertypen, bestående af en varmtvandsbeholder med en indbygget varmevekslerspiral, ex nøje undersøgt. En detaljeret matematisk model, som simulerer denne lagertypes drift, bade i perioder med og uden varmetilførsel. er opstillet. Beregningsmodellen er valideret dels ved hjælp af specielle eksperimenter og dels ved hjælp af de udviklede prøvemetoder.

Den årlige ydelse for små solvarmeanlæg til brugsvandsopvarmning er beregnet med referencearets data og med den validerede beregningsmodel med forskellige udformninger af solvarmeanlæggets styresystem og varmelager. Herved klarlægges egnetheden af forskellige udformninger af solvarmeanlæggets styresystem og varmelager. pa basis af beregningerne er det muligt at optimere varmelagerets udformning.

Problemerne vedxørende smeltevarmelagres stabilitet ex beskrevet. Et princip, som løser stabilitetsproblemet, ex udviklet. Forskellige lagerudformninger, hvor det udviklede princip anvendes, er omtalt. To smeltevarmelagre til solvarmeanlæg til brugsvandsopvarmning er udviklet. Disse smeltevarmelagre er undersøgt ved hjælp af prøvninger i de opbyggede prom vestande. pa basis heraf vurderes det, hvorledes arbejdet vedrørende udvikling af et velegnet smeltevarmelagex til solvarmeanlæg til brugsvandsopvarmning kan fortsættes.

1. INDLEDNING

Der ex ofte tidsforskelle mellem de pexioder, hvor der er varm mebehov og de perioder, hvor varmen kan producexes billigt. ved hjalp af varmelagxing kan varme produceret billigt i perioder med et lavt forbrug lagres til den senere anvendelse.

Effektive lagringssystemer kan ofte medføre saivel økonomiske som ressourcemassige besparelser, idet kapaciteten af energiproducerende anlæg ofte kan udnyttes bedre, når der er mulig hed for varmelagring.

Varmelagring ex derfor swrdeles vigtigt, uanset hvilke energikilder vi anvender os af.

1. 1 Varmelagring til solvarmeanlag

Varmelagring er en nødvendig forudsætning for en effektiv udnyttelse af solenergi til boligopvarmning og/eller brugsvands* opvarmning. Solintensiteten pa en solfanger varierer bade igennem året og igennem døgnet. Variationen er forarsaget dels af den årlige og den daglige cyklus, dels af det uforudsigelige vejr. Varmebehovet. som ønskes dækket ved hjælp af solvarme" anlægget, hvad enten der er tale om boligopvarmningsbehov og/ eller brugsvandsopvarmningsbehov, varierer også savel igennem aret som igennem døgnet. Store solindfald er kun sjaldent tidsmæssigt sammenfaldende med store varmebehov. Ved hjælp af varmelagre kan varme produceret i perioder med et lavt varmebehov lagres til senere anvendelse. Lagringstiden kan baide vare lang og kort, afhangig af solvarmeanlaggets formal.

Skal et solvarmeanlag dakke en meget stor del af det totale bolig- og brugsvandsopvarmningsbehov, er der brug for store varmelagre og lange lagringstider. Solvarmeanlæg. som ex beregnet til at dække boligopvarmaingsbehovet foxar og eftexar og brugsvandsopvarmningsbehovet forå, sommer og efterar, har brug for mindre varmelagre og kortere lagringstider. ønsker man at begranse solvarmeanlagget til kun at dække bxugsvands -
opvarmningsbehovet om sommeren, ex der bxug for sma varmelagre og korte lagringstider. Varmelageret aflades og oplades altsa med storre eller mindre mellemrum, og det deltager aktivt i solvarmeanlæggets virkemade.

Den maksimale temperatur, som kan nås i solvarmeanlag med noxmale solfangere er omtrent $100-150^{\circ} \mathrm{C}$. Temperaturen af det kolde brugsvand, som tilføres varmtvandssystemet, ex omtrent $10^{\circ} \mathrm{C}$. For varmelagring til normale solvarmeanlag er temperaturintervallet $10-150^{\circ} \mathrm{C}$ derfor det mest interessante.

Ved udformningen af varmelageret skal der tages en rakke hensyn. Nogle af disse hensyn skal nævnes her. Varmelagexet skal veje og fylde sa lidt som muligt, altsa skal varmelagringskapaciteten pr. masse-enhed og pr. volumen-enhed vere sa stor som mulig. Varmeoverforingsevnen til og fra varmelageret skal vare stor. Lageret skal udformes, sà det indgar i solvarmeanlagget pà en sadan made, at temperaturlagdeling i lageret udnyttes i storst mulig udstrakning til forbedring af ydelsen fra solvarmeanlægget. Varmetabet fra varmelageret skal være sa lille som muligt. Varmelagerets texmiske egenskaber ma ikke andres med tiden. og varmelagerets levetid skal vere lang. Prisen for varmelageret skal være lille, og myndighedskravene skal vare opfylat.

De ovenfor navnte hensyn er ofte modstridende. Det er derfor særdeles vanskeligt at bestemme en optimal varmelagerudformning, og naturligvis eksisterer der ikke et varmelager, som fuldstændigt tilgodeser alle de navnte hensyn.

Principielt kan varmelagre opdeles i tre hovedtyper: VarmeEyldelagre, faseændringslagre og lagre, der benytter kemiske reaktioner, se [1]. I varmefyldelagre benyttes en temperaturstigning af det varmelagrende materiale ved varmelagringen. Ved faseandringslagre forstå varmelagre, hvor en stor del af den akkumulerende varmemængde afgives eller optages under varmelagringsmaterialets faseandxing. I sadanne varmelagre er det muligt at opbevare store varmemængder i et meget lille tempera-
turinterval omkring omdannelsestemperaturen. Da lagertemperam turen bide i varmefyldelagre og faseandringslagre normalt er højere end den omgivende temperatur, vil der vere varmetab foxbundet med disse lagringsformer. Ved kemisk vaxmelagring benyttes en kemisk proces ved varmelagringen, og varmelagringskapaciteten kan vare stor for lagre, dex benytter sadanne prom cesser. Desuden abner anvendelsen af sadanne lagre mulighed for tabsfri varmelagring, idet lagextemperaturen og den omgive ende temperatur kan være den samme under lagringsperioden. De enkelte lagextyper skal kort omtales i det følgende.

1. 2 Vamefyldelagre

Varmefyldelagertyper ex den mest anvendte lagertype. I forbindelse med solvarmeanlæg ex dex i Danmark endnu kun installeret varmelagre af denne type. Som vammelagringsmacexiale benyttes enten en vaske ellex et fastfase stof. Varmelagringsmaterialets vamefylde og varmelagringskapacitet pr. volumenenhed har afgørende betydning for lagerets volumen. I tabel 1 er angivet varmefylde og varmelagringskapacitet pr. volumen enhed for en række materialex. Stofvardiexne ex taget fra [1] $\operatorname{og}[2]$.

Vand har den største varmelagringskapacitet bade px. vagtenhed og pr. volumenenhed. Volumenkxavet til et vaxmefyldelagex bestemmes imidlextid ikke udelukkende af varmelagringskapaciteten for det varmelagrende materiale. Volumenkravene til varmeovere Efringssystemet, beholdermatexialet og dsolexingen skal ogsa tages i betragtning, nax volumenbehovene for forskellige varmelagre sammenlignes. Da varmeoverfoxingssystemet i et vand lager kan udformes kompakt, og da vand endvidere er let tile gangeligt, billigt og urarligt, er vandlagre sardeles velegnede som varmelagre, og nesten alle solvarmeanleg, som er installeret 1 Danmark, benytter dexfor et vandlager som varmelager. Vandlagre bekandles detaljeret i kapitel. 4.

I USA er der installexet mange solvarmeanleg, hvox luft ex det

Materiale	Varmefylde $J / 9^{\circ} \mathrm{C}$	Varmelagringskapacitet pro volumenenhed $\mathrm{J} / \mathrm{cm}^{3} \mathrm{C}$
vand	4,2	4,2
paraffin	2,9	2,6
glas	0,8	2,0
tra	1,8	0,9
beton	0,9	2,1
granit	0,8	2,1
sand	0,8	1,2
magnetit	0,8	4,1
stil	0,5	3,8
aluminium	0,9	2,5
kobber	0,4	3,5
glasuld	0,7	0,03

Tabel 1. Varmefylde og varmelagringskapacitet pr. volumenenhed for en rokke materialer.
varmetransporterende medium. I sadanne anlæg benyttes ofte stenlagre som varmelagre, og luft transporterer varmen fra solfangeren til varmelagexet. Varmeoverføringssystemet og dermed lageret skal udformes således, at varmeoverføringsevnen til og fra lageret er tilstrækkelig stor, uden at tryktabet over varmelageret bliver for stort. Det er således vanskeligt at optimere udformningen af et stenlager. Normalt bliver varmeoverføringssystemet i stenlagre temmelig pladskrævende. Stenene optager saledes ofte kun omtrent to trediedele af det totale lagervolumen [3]. Lagexvolumenet for stenlagre bliver derfor omtrent tre gange større end lagervolunenet for vandlagre. I [4]. [5], [6] og [7] er omtalt såvel teoretiske som praktiske forhold for stenlagre.

Endnu er der kun gjort få exfaringex med stenlagre i Danmark. I [8] er erfaringerne fra et stenlager til udnyttelse af overskudsvarme i et lavenergihus omtalt。 og i [9] ex et forsøgsw stenlager og enkelte malinger fra dette lager beskrevet. Sten lagre synes at vare mest attraktive i huse med luftsolfangere og med et luftopvarmingsanlæg.

1.3 Faseandringslagre

Den vaxmemangde, som optages og afgives ved et materiales faseandring, kan udnyttes ved varmelagring. Eoxskellige faseandringer kan udnyttes. se [1] og [3]. Der kan enten vare tale om egentlig faseandring af varmelagringsmaterialet eller struk tuxændring i varmelagringsmaterialet uden en egentifg fasean dring. Noxmalt er omdannelsesvarmemangderne ved sadanne strukturendringer sa sma i væskex, at vaske-vaske strukturandringen ex uintexessant i forbindelse med varmelagring. Omdannelsesvarmemængderne ved East-fast strukturendxingen er nommalt storxe. Til gengrld sker strukturxndxingen kun for fa materialer i det for solvarmeanlag intexessante temperaturintexval $10^{\circ} \mathrm{C}-150^{\circ} \mathrm{C}$. I tabel 2 er strukturendringstemperaturen og omdannelsesvarmemængden angivet for forskellige faste materialer med fastofast strukturxndring mellem $10^{\circ} \mathrm{C}$ og $150^{\circ} \mathrm{C}$. Vex dieme er taget fra [1], [3] og [10].

Omannelsesvarmen for disse strukturandxinger er typisk mindre end smeltevarmen, omdannelsesvamen for fast-vaske faseandxingm en.

Faseandringen fast-vaske ex den mest undexspgte faseandring i forbindelse med varmelagring til solvarmeanleg. Dette skyldes, at der findes en lang rakke billige materialer med stoxe smelw tevarmer og med smeltepunkter i temperaturintervallet $10^{\circ} \mathrm{C}$ $150^{\circ} \mathrm{C}$ 。 Bade smeltevarmelagermaterialer og smeltevarmelagerud formninger behandles detaljeret i kapitel 5.

Omdannelsesvarmexne, som ex knyttet til fast-gas og vaskewgas faseandringerne, er normalt meget store. Disse faseandringex er mest underspgt i forbindelse med egentlige kemiske lagre. hvor faseomdannelsesvarmen udgox en betydelig del af det totale varmeindhold. De kemiske lagre omtales kort i afsnit 1.4. Desvarre er der store praktiske problemex med udnyttelsen af den rene faseandxing, idet gasfasen pa grund af den kraftige ekspansion ved fasemaringen stiller store krav til lagertanken.

Materiale	Omdannelsestemperatur ${ }^{\circ} \mathrm{C}$	Omdannelsesvarme	
		$\mathrm{kJ} / \mathrm{kg}$	$\mathrm{MJ} / \mathrm{m}^{3}$
Ees	138	27	131
tværbundet polyethylen	120-140	192	192
KNO_{3}	128	51	106
$\mathrm{NH}_{4} \mathrm{NO}_{3}$	125	53	90
$\mathrm{Cu}_{2} \mathrm{~S}$	103	35	197
Pentaglycerin	89	139	170
$\mathrm{NH}_{4} \mathrm{SCN}$	88	43	56
$\mathrm{V}_{2} \mathrm{O}_{4}$	72	52	222
$\begin{aligned} & \text { Neopentyl } \\ & \text { glycol } \end{aligned}$	48	119	126
$\begin{aligned} & 60 \% \text { neopentyl } \\ & \text { glycol } \\ & 40 \% \text { penta- } \\ & \text { glycerin } \end{aligned}$	26	76	85

Tabel 2. Omdannelsesvarme ved fast-fast strukturændring for en rakke materialer.

Endnu er dex kun installeret fo faseandringslagre i solvarme anlag. De mest udbredte er smeltevarmelagrene, som i visse egne af USA benyttes i en vis udstrakning. Sammenfattende kan det siges on fasemdringslagrene, at der ex behov for et udviklingsarbejde, før disse lagre kan introduceres på markedet.

1. 4 Kemiske lagre

I kemiske lagre udnyttes en kemisk proces's reaktionsvarme ved varmelagringen. Ved varmetilførsel forskydes den kemiske reaktion i én retning, ved afladning forlpber reaktionen i den nodsatte retning under afgivelse af varme. Som nernt i afsnit 1. 3 benyttes i kemiske lagre, foruden en egentlig kemisk proces, ogsà ofte en faseandring, hvor gas er den ene fase.

Faseandringsvarmen udgpr i disse lagre normalt den storste del af det totale varmeindhold af lageret. For det svenske Tepidus energilager, som er baseret pá natriumsulfid og vand, og detaljexet beskrevet i [11], [12], [13] og [14], udgor faseandringsvarmen saledes omtrent 70% af det totale vammeindhold af lagem ret.

Undex opladning og i lagringsperioden vil man som regel fraskille og opbevare et af de reaktionsprodukter, der dannes ved den varmeabsorberende proces. Ved at holde dette produkt iso leret fra de ϕ vrige, hindxes den vameafgivende proces i at finde sted, hvorved lageret er tabsfrit i den egentlige lagm ringsperiode. Der vil kun være termiske tab fra lageret i perioder med op- og afladning samt ved nedkølingen fra arbejdsw temperaturen til omgivelsernes temperatur ved starten pa langere lagringsperioder. Varmelagringskapaciteten for kemiske lagre vil typisk være 5-10 gange storre end for vandlagre, og varmetabet vil normalt vere meget lille. Kemiske varmelagre synes saledes at være en lovende mulighed i forbindelse med sason lagring af solvarme. Der kreves dog et betydeligt arbejde inden for dette omrade med hensyn til udvikling af holdbare, effektive, palidelige og rimeligt billige lagre. Inden for de sidste par ar er der verden over igangsat en lang rakke forsk ningsprojekter inden for dette omrade. En del af disse projekter og generelle betragtninger vedrorende kemiske lagre ex beskrevet i [1], [13], [14], [15], [16] og [17].

2. PR \varnothing VEMETODER

Formalet med at foretage provninger af varmelagre til solvarme anleg ex at skaffe oplysninger. som kan anvendes af varmelager producenterne til produktudvikling, af solvarmeproducenterne og solvarmeinstallatorerne til valg af varmelager og udformning af solvarmeanlæg og endelig af forbrugerne til valg af varmelager og solvarmeanlæg. Endvidere udvides den generelle viden vedrørende varmelagre gennem provningerne. Der ex i lobet af de sidste $4-5$ ar udviklet prøvemetoder bade i Dammark og i udlandet. Provemetoderne må betragtes som foreløbige, saledes at erfaringer, som indhøstes under provearbejdet, kan udnyttes til forbedring af provemetoderne.

De danske prøvemetoder er udviklet pa Laboratoriet for Varme isolering. Udviklingsarbejdet financiexes dels af Energiministeriets varmelagerprojekt, dels af Energistyrelsens Provestation for solvarmeanlag. Da dex i Danmark endnu kun markedsEøres vandlagre, hvor varme tilfores lageret ved hjalp af en væske, som pumpes genmem varmelageret, ex den danske prøvemetode udelukkende beregnet til sadanne lagre. Endvidere er prøvemetoderne basexet pa temperaturmalingex savel i som uden for varmelageret, som foruden selve beholderen normalt ogsa indeholder hjalpeudstyret til solvaxmeanlag.

Der er ogsa udviklingsarbejde i gang i Europa og uSA. I Europa financiexes arbejdet af EF, og formalet er at udvikle prove metoder til forskellige lagertyper. I disse prpvninger males temperaturerne ikke i varmelageret. Provningerne kaldes derfor black box tests, og de basexes udelukkende på temperaturmåinger uden for vamelageret. I USA er der ligeledes udviklet foreløbige provemetoder, bade til varmefyldelagxe og til smeltevarmelagre. I det følgende beskrives de danske og eurom pæiske prøvemetoder. De forelobige provemetoder omtales, og der foretages en vurdering af de enkelte provemetoder.

2.1 Danske provemetoder

Prøvemetodeme ex udviklet Igennem en arrakke pa Laboratoriet for Varmeisolering. I [18]. [19]. [20] og [21] beskxives udviklingen frem til de prøvemetoder, som anvendes i dag i Prфvestationens regie. Disse provemetoder er beskxevet i [22]. I [18], [19] og [21] ex exfaringerne fra forskellige provning er ogsa beskrevet. Prøvemetoderne er ximeligt lette og hurtige at udføre. Varmelageret, som afprøves, indeholdex normalt foruden selve beholderen ogsa hjalpeudstyret til solvameanleg. Lageret placeres i Laboratoriets provehal, hvor temperaturen normalt ligger i omradet mellem $20^{\circ} \mathrm{C}$ og $25^{\circ} \mathrm{C}$. Hallens betongulv har normalt en overfladetemperatur pá $18^{\circ} \mathrm{C}-20^{\circ} \mathrm{C}$. Som solEangervaske benyttes en 50% (efter vagt) vand/propylenglycol blanding. provestande, maleudstyr og måleprocedure er bew skrevet i kapitel 3.

2.1.1 Varmetabskoefficient fox varmelageret under solfangerdrift

Varmetabet fra et varmelager udtrykkes normalt som produktet af lagexets varmetabskoefficient og temperaturdifferencen mellem lagexet og omgivelserne. Varmetabet og dermed varmetabskoefficienten er sammensat af transmissionstabet gennem isolexingsmatexialet og tabet fra gennembxydninger gennem isoleringsmaterialet. Varmelagerets varmetabskoefficient under solfangerdrift K_{d} males under stabile temperaturform hold uden temperaturforskelle i varmelageret.

2.1.1.1 Beskrivelse

Solfangervasken cirkuleres frem til varmelageret med en volum menstrom v pa omtrent $1,5 \mathrm{l} / \mathrm{min}$ og med konstant Exemlobstemperatur T_{f}. Vametabskofficienten K_{d} males ved to forskellige fremløbstemperaturer: $30^{\circ} \mathrm{C}$ og $80^{\circ} \mathrm{C}$. Inden provningens start skal temperaturen overalt i lageret vare mindst $5^{\circ} \mathrm{C}$ lam vere end solfangervæskens fremlobstemperatur.

Efter et stykke tid opnas stabile temperaturforhold i hele lageret, mens solfangervæskens returtemperatur fra lageret T_{r} indstiller sig pa en konstant temperatur, lidt lavere end Eremlobstemperaturen. Nar alle temperaturer er stabile, fastholdes de stabile forhold i mindst to timer. Herefter kan varmetabskoefficienten beregnes ved det pagældende temperaturniveau.

Under de stabile stationære forhold ændres varmelagerets varmeindhold Q_{1} ikke. Den tilførte effekt til varmelageret Q_{u} er lige sà stor som varmetabet fra varmelageret $Q_{t a b} O g$ varmebalancen for varmelageret under de stabile forhold udtrykkes ved ligningen:

$$
\frac{d Q_{1}}{d \tau}=Q_{u}-Q_{t a b}=0
$$

hvor τ er tiden.

Da differencen mellem solfangervæskens fremløbs- og returtemperatur er lille, antages det, at massefylden ρ og varmefylden C_{p} for solfangervasken er ens ved fxemlobstempexaturen og returtemperaturen. Varmetabet bestemmes af ligningen:

$$
Q_{t a b}=Q_{u}=v \cdot \rho \cdot C_{p} \cdot\left(T_{f}-T_{x}\right)
$$

Massefylden ρ og varmefylden C_{p} afhængex af solfangervæskens temperatur. Her benyttes middeltemperaturen mellem solfangervæskens fremløbs- og returtemperatur til og fra varmelageret.

Varmetabskoefficienten \mathbb{K}_{d} for varmelageret under drift beregnes da af:

$$
K_{d}=\frac{V \cdot \rho^{\circ} C_{p} \cdot\left(T_{f}-T_{r}\right)}{T_{I}-T_{0}}
$$

hvor T_{1} er lagerets gennemsnitstemperatur og T_{o} er omgivelsernes temperatur.

Ved hjxlp af ovennævnte formel beregnes varmetabskoefficienten hver halve time igennem provningen. De malte vardiex, som benyttes ved beregningen, er middelvardier igennem den halve time. I takt med at der opnås stabilitet vil der beregnede varmetabskoefficient kun zendxe sig lidt fra halvtime til halvtime. Nar varmetabskoeficienten andres mindre end $0,05 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ fra en halvo time til den eftexfølgende halvtime antages andringen at vare uvasentlig. Nar fire perioder a $1 / 2$ time med sa små uvasentlige madringer har efterfulgt himanden, antages stabiliteten at være opnaiet, og varmetabskoefficienten beregnet for den sidste af disse fixe perioder benyttes som resultatet af mainingen af varmetabskoefficienten for varmelageret under drift.

2.1.1.2 Målefejl og målenфjagtighed

Malemetoden ex kun behæftet med fa systematiske fejl. Malingen af differencen mellem solfangervaskens fremlobstemperatur til varmelageret og returtemperaturen fra varmelageret er beskrevet
i kapitel 3. Malepunkterne for temperaturdifferencen ex placeret så tæt pa lagerets tilslutningsstudse som muligt. Resultatet korxigeres for varmetabet fra slangestykkerne, som be finder sig mellem målepunkterne og lagerets tilslutningsstudse. Varmetabet fra disse slangestykker findes ved at kortslutte slangexne ved studsene og udfore en maling som beskrevet i afsnit 2.1.1.1. Den systematiske fejl, som opstar pa grund af den fejlagtige placexing af målepunkterne for temperaturdiffe rencen, er saledes forsvindende $1 i l l e$.

Som solfangervæske benyttes en 50% (eftex vagt) vand/propylen glycol blanding. Som det ses af figux L, afhanger både sol= fangerveskens massefylde og varmefylde af tempexaturen. Stofo værdierne er taget fra [23]. Produktet af massefylde og varo mefylde er svagt, nesten retlinet, voksende i temperaturinter vallet fra $0{ }^{\circ} \mathrm{C}$ til $100^{\circ} \mathrm{C}$. Era $0^{\circ} \mathrm{C}$ til $100^{\circ} \mathrm{C}$ vokser produktet mindre end 2%. Normalt er forskellen mellem fremlobstemperaturen og returtemperaturen mindre end $5^{\circ} \mathrm{C}$ i disse måingex. og variationen i produktet af massefylde og varmefylde mindre end 1%. Figur 2 visex en skematisk skitse af et varmelager med

Figur 1. Massefylde og varmefylde for 50% (vagt \%) vand/propylenglycol blanding som funktion af temperaturen.

Figur 2. Skematisk skitse af et vaxmelager med indbygget varmevekslexspixal og et udsnit af varmevekslerspiralen.
en indbygget varmevekslerspiral, et udsnit af varmevekslexspiralen og varmestrømmene, som med solfangervasken føres ind og ud af det lille udsnit. Solfangervaskens temperatur i udsnittet kaldes T ved indlobet og $T+d T$ ved udlobet. Massefylden og varmefylden antages at vare konstante i det lille udsnit. Effekten ovexføx fxa solfangervasken til lageret i udsnittet ex da:

$$
V \cdot \rho \cdot C_{Q} \cdot T=V \cdot \rho \cdot C_{Q} \cdot(T+d T)=-v \cdot \rho \cdot C_{p} \cdot d T
$$

Integrexes ovex hele varmevekslexspiralen fas den totale ef.m fekttilforsel fra solfangervasken til lageret:

$$
Q_{u}=\int_{T_{f}}^{T_{X}}-v \cdot \rho \cdot C_{p} d T=-v \int_{T_{E}}^{T_{x}} \rho \cdot C_{p} d T
$$

Som ovenfor navnt er det rimeligt at antage, at produktet $\rho \cdot C_{p}$ er en retlinet funktion af solfangervaskers temperatur $T:$ $p \cdot C_{p}=a+b \cdot I$. Med denne antagelse fas:

$$
\begin{aligned}
& Q_{u}= V \int_{T_{f}}^{T_{r}}(a+b T) d T=-V \cdot\left[a\left(T_{r}-T_{f}\right)+\frac{1}{2} b \cdot\left(T_{r}^{2}-T_{E}^{2}\right)\right]= \\
& V \cdot\left(T_{f}-T_{r}\right) \cdot\left(a+b \cdot \frac{T_{f}+T_{r}}{2}\right)
\end{aligned}
$$

Den tilforte effekt kan altsa, nar produktet $\rho \cdot C_{p}$ er en retlinet funktion af temperaturen beregnes med massefylde- og varmefyldevardierne taget ved middeltemperaturen mellem Erem l $\phi \mathrm{bs}-\mathrm{og}$ returtemperaturen for solfangervasken. Da produktet $\rho \cdot C_{p}$ som navnt kun afviger meget lidt fra en retinet funktion af temperaturen i det lille temperaturinterval mellem ${ }_{x}$ og T_{f} kan fejlen, som opstar ved anvendelse af stofvardiex ne ved middeltemperaturen mellem \mathbb{T}_{E} og \mathbb{T}_{r} negligeres. De systematiske fejl, som ex knyttet til malingen, kan således negligeres. Tilfældige fejl foraxsagex en ubestemthed af den malte varmetabskoefficient. Storrelsen af denne vurderes i det Élgende.

Varmetabskoefficienten K_{d} bestemmes af formien:

$$
K_{d}=\frac{V_{0} \rho \cdot C_{p} \cdot\left(T_{I}-T_{r}\right)}{T_{I}-T_{0}}
$$

K_{a} beregnes altså pa basis af en rokke registrexinger eller
 er indbyrdes uafhængige, og de er alle behæftede med en ubea
 af varmetabskoeficienten $\bar{S}_{\mathrm{K}_{\mathrm{d}}}$ findes af formlen, se [24] og [25]:

$$
\begin{aligned}
& S_{K}=\sqrt{\left(\frac{\partial K_{d}}{\partial V} \cdot S_{V}\right)^{2}+\left(\frac{\partial K_{d}}{\partial \rho} \cdot S_{\rho}\right)^{2}+\left(\frac{\partial K_{d}}{\partial C_{p}} S_{C_{p}}\right)^{2}+\left(\frac{\partial K_{d}}{\partial\left(T_{E}-T_{X}\right)} \cdot S_{\left(T_{E}-T_{x}\right)}\right)^{2}+} \\
& \overline{\left(\frac{\partial K_{d}}{\partial T_{1}} \cdot S_{T_{1}}\right)^{2}+\left(\frac{\partial K_{d}}{\partial T_{0}} \cdot S_{T_{0}}\right)^{2}}= \\
& K_{d} \cdot \sqrt{\left(\frac{S_{V}}{V}\right)^{2}+\left(\frac{S_{\rho}}{\rho}\right)^{2}+\left(\frac{S_{p} C_{p}}{C_{p}}\right)^{2}+\left(\frac{{ }^{S}\left(T_{E}-T_{X}\right.}{T_{E}-T_{X}}\right)^{2}+\left(\frac{{ }^{S} T_{1}}{T_{1}-T_{0}}\right)^{2}+\left(\frac{S_{0}}{T_{1}-T_{0}}\right)^{2}}
\end{aligned}
$$

Måleudstyret og malenøjagtighederne er beskrevet i kapitel 3. I beregningen af målenøjagtigheden benyttes her de i tabel 3 angivne maleubestemtheder.

Ubestemthed af temperaturmaling	$\mathrm{S}_{\mathrm{T}}=0,5^{\circ} \mathrm{C}$
Ubestemthed af temperaturdifferensmaling	$\mathrm{S}_{\Delta_{\mathrm{T}}}=0,1^{\circ} \mathrm{C}$
Relativ ubestemthed af volumenstrøm	$\frac{\mathrm{S}_{\mathrm{V}}}{\mathrm{V}}=0,01$
Relativ ubestemthed af solfangervæskens varmefylde	$\frac{\mathrm{S}_{\mathrm{C}}}{\mathrm{C}_{\mathrm{p}}}=0,02$
Relativ ubestemthed af solfangervæskens massefylde	$\frac{\mathrm{S}_{\rho}}{P}=0,02$

Tabel 3. Anvendte maleubestemthedex.
Med de i tabel 3 angivne maleubestemtheder, solfangervaskens volumenstrom $V=1,5 \mathrm{l} / \mathrm{min}$ og lagerets omgivelsestemperatur $T_{o}=20^{\circ} \mathrm{C}$ er størrelsen af maleubestemtheden og den relative ubestemthed for varmetabskoefficienten vist pa figur 3 og 4

Figur 3. Beregnet måleubestemthed for varmetabskoefficienten som funktion af varmetabskoefficienten og lagertemperaturniveauet.

for forskellige varmetabskoefficienter. For små varmetabs koefficienter er maleubestemtheden relativ stor ved det lave temperaturniveau. For alle andre forhold må malenøjagtigheden betragtes som tilfredsstillende.

2.1.1.3 Exfaring og vurdering

Erfaringer har vist, at det anvendte stabilitetskriterium sikrer, at stabilitet opnås, uden at forspgsperioden bliver for langvarig. Normalt ex prøvningen let og hurtig at gennemføre. Malingen ved lagertemperaturen $30^{\circ} \mathrm{C}$ kan dog være langvarig, idet der om dagen kan vare forholdsvis store variationer i omgivelsernes temperatur. Dette medfører, at stabilitetso kriteriet som regel først opfyldes om natten, når ongivelsernes temperatur er konstant.

Varmetabskoefficienter for forskellige varmelagre målt ved henholdsvis omtrent $30^{\circ} \mathrm{C}$ og $80^{\circ} \mathrm{C}$ er angivet i tabel 4. Malingerne er taget fra [19], [26], [27], [28], [29], [30], [31]. [32], [33], [34], [35], [36], [37], [38] og [39].

Vammetabskoeficient $w /{ }^{\circ} \mathrm{C}$ ved ontrent $30^{\circ} \mathrm{C}$	2.9	$8_{8} 0$	281	1.9	2.2	5.9	2.0	2.6	3.6	5.4	3.2	2.7	2.3	3.2	2.4	3.6	2.6
Vametabskoeffjcient $1 \%^{\circ} \mathrm{C}$ ved oncrent $80^{\circ} \mathrm{C}$	3.2	5,5	2.8	2.2	2.4	7.1	2.6	3.2	4.6	6.9	3.5	2.9	2.0	3.3	2.5	9.6	4.0

Tabel 4. Varmetabskoefficient for forskellige vamelagre malt hhv. ved lagertemperaturer pa omtrent $30^{\circ} \mathrm{C}$ og $80^{\circ} \mathrm{C}$.

Af tabellen fremgar det, at varmetabskoefficienten ved det høje temperaturniveau er større end varmetabskoefficienten ved det lave temperaturniveau. Arsagen hertil er, at savel størrelsen af isoleringsmaterialets varmeledningsevne som størrelsen af varmetabskoefficienten for kuldebroer gennem isoleringen afhænger af temperaturniveauet. Lagerudformningen ex bestemmende for, hvorledes størrelsen af varmetabskoefficienten varierer som funktion af lagertemperaturen. Det er derfor rimeligt at bestemme varmetabskoefficienten ved de to temperaturniveauex.

Da nøjagtigheden af målingerne for de fleste lagre desuden er rimelig god, og da varmetabskoefficientens størrelse hax stor betydning for varmelagerets egnethed, vurderes det, at prøvemetoden er meget værdifuld.

2.1. 2 Varmetabskoefficient for varmelageret under et afkølingsforl \quad b

Varmelagerets varmetabskoefficient under et afkølingsforløb \mathbb{K}_{s} ex et udtryk for varmelagerets varmetab under en afkølingsperiode. De temperaturforskelle, som optræder i lageret under afkølingsperioden, bevirker, at K_{s} ikke i traditionel forstand kan benævnes som en varmetabskoefficient.

2.1.2.1 Beskrivelse

Ved pxøvningens start har lageret en ensartet temperatur pa omtrent $80^{\circ} \mathrm{C}$, idet provningen foretages efter malingen af varme tabskoefficienten under solfangerdrift ved $80^{\circ} \mathrm{C}$. Varmelagertemperaturerne og omgivelsernes temperatur registreres her efter igennem en 24 timers periode uden varmetilforsel og vandtapning.

Efter 24 timer opvarmes lageret. Solfangervæskens fremløbstemperatur til lageret T_{f} hæves gradvist indtil T_{f} bliver $5^{\circ} \mathrm{C}$ højexe end temperaturen i toppen af lageret ved afkølingsperiodens slutning. I resten af opvarmingsforlobet holdes T_{f} konstant. Solfangervæskestrømmen ex $4.5 \mathrm{l} / \mathrm{min}$. Under opvarm ningen registreres ongivelsernes temperatur $T_{0}{ }^{\circ}$ volumenstrøm men v og differencen mellem solfangervaskens fremlobs-og returtemperatur $\left(T_{f}-T_{x}\right)$ 。 Desuden registreres middelværdier ne igennem hver halve time af temperaturerne iforskellige niveauer af lageret, solfangervaskens fremløbs- og returtemperatur. Det antages, at der er opnact en ensartet temperatur i lagexet, nar alle disse temperaturex ændres mindre end $0,1^{\circ} \mathrm{C}$ fra halvtime til halvtime. Nar denne ensartede temperatur i lageret er opnået, stoppes opvarmningen.

Det forudsættes i det følgende, at der ikke er temperaturforskel le i lageret. Nor solfangeren ikke er i drift, har varmelageret varmetabskoefficienten K_{s} og varmebalancen for varmelageret kan udtrykkes således:

$$
c_{1} \frac{d T_{1}}{d \tau}=-K_{s} \cdot\left(T_{1}-T_{0}\right)
$$

T_{1} er lagertemperaturen og C_{1} er varmelagerets varmelagringskapacitet, som kendes fra prøvningen, der er beskrevet i afsnit 2.1.3.

Forudsattes desuden, at K_{s} og T_{0} er konstante igennem hele afkølingsforløbet, far differentialligningen løsningen:

$$
T_{I}=T_{0}+\left(T_{s t}-T_{0}\right) \cdot e^{-\frac{K_{S}}{C_{1}} \tau}
$$

Tst er lagertemperaturen ved afkølingens start, dvs. til tidspunktet $\tau=0$ og T_{1} er lagertemperaturen til tidspunktet τ. Ved afkølingens slutning ${ }^{T}{ }_{s}$ benævnes lagertemperaturen $T_{s i}$. hvorfor varmetabskoefficienten bestemmes af ligningen:

$$
K_{s}=-\frac{C_{1}}{\tau_{s}} \ln \left(\frac{T_{s 1}-T_{0}}{T_{s t}-T_{0}}\right)
$$

Da der normalt forekommer temperaturforskelle i lageret ved afkølingens slutning, måles $T_{\text {sl }}$ ikke direkte, men bestemmes ved hjelp af den ovenfor omtalte opvarmningsperiode. Ved slut. ningen af opvarmningsperioden top benævnes den ensartede lagertemperatur T_{h} og $T_{s l}$ bestemmes af:

$$
T_{s l}=T_{h}-\frac{Q_{t i l f}}{C_{1}}
$$

hvor den tilførte varmemængde $Q_{t i l f}$ under opvarmningsperioden bestemmmes af:

$$
Q_{\text {tilf }}=\int_{0}^{\tau} o p\left[V \cdot \rho \cdot C_{p} \cdot\left(T_{f}=T_{r}\right)-K_{d} \cdot\left(T_{1}{ }^{\infty T_{O}}\right)\right] d \tau
$$

\mathbb{K}_{d} er varmetabskoefficienten fundet ved provningen, som er bew skrevet i afsnit 2.1 .1 og T_{1} ex gennemsnitslagertemperaturen. K_{S} bestemmes derfor af udtrykket:

$$
K_{s}=-\frac{C_{1}}{\tau_{s}} \ln \left(\frac{T_{h}-\frac{Q_{t i I f}}{C_{1}}-T_{0}}{T_{s t}-T_{0}}\right)
$$

Det bor nævnes, at K_{s} for nemhedens skyld her omtales som varmelagerets varmetabskoefficient uden solfangerdrift. I virkeligheden er dette ikke korrekt. idet der opstar temperaturlagdeling i lageret under afkølingsprioden. K_{s} er et må for størrelsen af varmelagerets varmetab under afkølingsperioden.

2.1.2.2 Målefejl og målenøjagtighed

Prøvemetoden er behæftet med en rakke systematiske fejl. Ved
beregningen af k_{s} forudsættes det, at der ikke er temperaturforskelle i lageret under afkølingsforlobet, at K_{s} er konstant igennem afkølingsforløbet, altsa at \mathbb{K}_{s} er uafhangig af temperaturniveauet, og at $T_{0} o g C_{1}$ er konstante igennem afkølingsforlobet. Dex er ogsa knyttet en rakke systematiske fejl til det efterfølgende opvarmingsforløb. Blandt andet kan navnes, at målepunkterne for temperaturdifferencen placeres forkert, og at de benyttede værdiex for solfangervæskens massefylde og varmefylde er beregnet ved middeltemperaturen mellem fremiobs- og returtemperaturen. Disse fejl ex omtalt i afsnit 2.1.l.2 og ex ogsa her uden betydning for resultatet. Desuden ex varmetabskoefficienten K_{d}, som benyttes ved beregningen, malt uden temperaturlagdeling i lageret, og lagertemperaturen T_{1} bestem mes med nogen unøjagtighed pa grund af temperaturlagdelingen. Endelig skal det nævnes, at vandets sammentrækning under af-
 vandets udvidelse under opvarmningen, pavirker resultatet. I det følgende omtales de enkelte systematiske fejl, som ikke er omtalt i afsnit 2.1.1.2, herer for sig.

Under afkølingens forløb opstax der normalt temperaturlagdeling i lageret. Normalt findes de laveste temperaturer i bunden af lageret, mens de højeste temperaturex findes i toppen af lageret. Temperaturlagdelingen kan skyldes varmetabet fra lagerets bund. den af varmetabet forarsagede nedadrettede vandstrom langs be holderens sider og det faktum, at vandet undex afkolingen trakker sig sammen, saledes at der under afkølingen strommer koldt vand ind i lagerets bund. Desuden kan lageret vare udformet pa en sadan made, at andre dele end den nederste del af lageret hurtigt afkøles, nar solfangeren ikke er idrift. Der kan fx. være tale om rorstrækninger, som ex indbygget i lageret og som indeholder hjælpeudstyr til solvarmeanlæggets drift: altså dele med en forholdsvis lille varmelagringskapacitet og et forholdsm vis stort varmetab, når solfangeren er i drift. Temperaturlag delingens betydning for størrelsen af K_{s} belyses ved hjælp af et eksempel.

Et varmelagex med varmelagringskapaciteten $836000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$, altsa et vandlager med et omtrentligt volumen pá 200 \& antages under solfangerdrift at have varmetabskoefficienten $K_{d}=5 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ 。 Det antages videre, at lageret kan deles i tre dele: del 1 med varmelagringskapaciteten $752400 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ og varmetabskoefficienten $3 \mathrm{~W} /{ }^{\circ} \mathrm{C}$
del 2 med varmelagringskapaciteten $75240 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ og varmetabskoefficienten $1 \mathrm{~W} /{ }^{\circ} \mathrm{C}$
de1 3 med varmelagringskapaciteten $8360 \mathrm{~J} /{ }^{\circ} \mathrm{C}$ og varmetabskoefficienten $1 \mathrm{w} /{ }^{\circ} \mathrm{C}$.

Det forudsættes, at der ikke transporteres varme mellem de enkelte dele under afkølingen, og omgivelsernes temperatur er $20^{\circ} \mathrm{C}$. Temperaturerne efter 24 timers afkøling fra $80^{\circ} \mathrm{C}$ i de tre dele er da:

```
del 1: 62,51' C
del 2: 39.03 C
del 3: 20,00 }\mp@subsup{}{}{\circ}\textrm{C
```

Dette svarer til middeltemperaturen $59.98^{\circ} \mathrm{C}$ og varmetabskoefficienten $3.9 \mathrm{~W} /{ }^{\circ} \mathrm{C}$, beregnet som beskrevet i afsnit 2.1.2.1. Temperaturlagdelingen bevirker, at den måle varmetabskoefficient K_{s} bliver mindre end varmetabskoefficienten uden temperaturlagdeling \mathbb{K}_{d} altsa under solfangerdrift. \mathcal{A} grund af temperaturlagdelingen kan K_{s} ikke direkte benyttes som lagerets varmetabskoefficient. Her bor K_{d} benyttes. Derimod er \mathbb{K}_{s} et udmarket må for varmetabets stprrelse undex afkølings perioden.

Det forudsættes, at K_{s} og C_{1} er konstante igennem hele afkølingsperioden. Disse tilnarmelsex er uden betydning for resultatet; den beregnede varmetabskoefficient K_{s} er blot en gennemsnitsværdi for hele afkølingsperioden.

Det forudsættes, at omgivelsernes temperatur T_{o} er konstant igennem hele afkølingsperioden. Normalt varierer T_{o} igennem
døgnet mellem $20^{\circ} \mathrm{C}$ og $25^{\circ} \mathrm{C}$. Ved beregningen anvendes en middeltemperatur igennem afkolingsperioden. Herved opstå en fejl. Størrelsen af denne fejl afhænger af størrelsen af K_{s} og af hvorledes T_{0} varierer igennem afkølingsperioden. Normalt er fejlen mindre end 1%, altsa forsvindende lille. For varmelagre med urimeligt store varmetab kan den maksimale fejl forarsaget af variationen af T_{o} dog blive storre. Fox et 200 \& vandlagex med varmetabskoefficienten $10 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ og en ugun stig variation af T_{o} mellem $20^{\circ} \mathrm{C}$ og $25^{\circ} \mathrm{C}$ igennem 24 timer bliver fejlen således omtrent 2%.

Under opvarmningen bliver temperaturlagdelingen i lageret normalt meget lille i løbet af meget kort tid. Opvarmningen ex normalt lille og opvarmningsperioden kortvarig. De systematiske fejl, som er knyttet til opvarmningen, fx den unøjagtige bestem melse af K_{d} og T_{1} og vandets udvidelse, er derfor nomalt ubetydelige.

De systematiske fejl, som er knyttet til mailingen, kan saledes negligeres. Blot bør det huskes, at K_{s} udelukkende er et udtryk for varmelagerets varmetab under afkølingsperioden. Tilfældige fejl forarsager en ubestemthed af $K_{S^{\prime}} S_{K_{s}}$. Storrelsen af denne vurderes i det følgende:
K_{s} bestemmes af formlen:

$$
K_{s}=-\frac{C_{1}}{\tau_{s}} \cdot \ln \left(\frac{T_{h}-\frac{Q_{t i l f}}{C_{1}}-T_{0}}{T_{s t}-T_{0}}\right)
$$

K_{s} beregnes altså på basis af en rakke registrexinger eller malinger af: $C_{i}, \tau_{s}, T_{h}, T_{o} T_{s t}$ og $Q_{\text {tilf }}$ Disse størrelser er indbyrdes uafhængige, og de ex alle behæftede med en ubestemthed: $S_{C_{1}}, S_{\tau_{S}}, S_{T_{h}}, S_{T_{o}}, S_{T_{s t}} \circ{ }^{\circ} S_{Q_{t i l f}} S_{K_{S}}$ findes af formlen, se [24] og [25]:

Måleudstyret og målenøjagtigheden er beskrevet i kapitel 3. Størrelsen af $S_{K_{S}}$ belyses ved hjælp af et eksempel.

I eksemplet benyttes de i tabel 3 angivne maleubestemtheder. Desuden regnes med følgende relative ubestemtheder af tids springet og af varmelagringskapaciteten:

$$
\frac{S_{\Delta \tau}}{\Delta \tau}=0,005 \quad \text { og } \quad \frac{{ }_{C_{1}}}{C_{1}}=0,01
$$

Der regnes med, at afkølingsperioden pa 24 timer efterf $\varnothing 1 g e s$ af en 3 timers opvarmningsperiode med effektoverførslen 1000 W . Opvarmningsperioden opdeles i halvtimewperioder. Varmelagringskapaciteten for lageret er $836000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$, svarende til et 200 \& vandlager. Endvidere forudsattes: $T_{0}=20^{\circ} \mathrm{C}$. $\mathrm{K}_{\mathrm{d}}=5 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ og $\mathrm{S}_{\mathrm{K}_{d}}=0,2 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. For forskellige størrelser af K_{s} beregnes $\mathbb{S}_{\mathbb{K}_{S}}$ af ovennevnte formel. Resultaterne ex angivet i tabel 5. Malenøjagtigheden for typiske storrelser af varmetabskoefficienten anses for at være tilfredsstillende.

$K_{s} W /{ }^{\circ} \mathrm{C}$	$\mathrm{S}_{\mathrm{K}_{\mathrm{s}}} \mathrm{W} /{ }^{\circ} \mathrm{C}$	Relativ ubestemthed for K_{S}	
2	0,14		6,9
3	0,15	5,0	
4	0,16	4,1	
5	0,18	3,6	

Tabel 5. Eksemplex pa størrelsen af $\mathrm{S}_{\mathrm{K}_{\mathrm{s}}}$ 。

2.1.2.3 Erfaring og vurdering

Prøvemetoden er let at gennemføre. Varmetabskoefficienten malt ved omtrent $80^{\circ} \mathrm{C}$ under drift K_{d} og "vametabskoefficienten" malt under et afkølingsforløb fra omtrent $80^{\circ} \mathrm{C} \mathrm{K}_{\mathrm{s}}$ er angivet i tabel 6 for forskellige varmelagre. Malexesultater ne er taget fra [19], [26], [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] og [39]. Af tabellen fremgar det, at K_{d} er storre end K_{s}. Det skyldes blandt andet. at K_{5} måles ved et lidt lavere temperaturniveau end det tem peraturniveau, hvor \mathbb{K}_{d} måles. Dette kan dog langt fra form klare hele forskellen. Hovedarsagen til forskellen mellem K_{d} og \mathbb{K}_{s} er, som omtalt i afsnit 2.1 .2 .2 , temperaturlagdelingen, som opstar i lageret under afkølingsforløbet. Lagerudformningen er bestemmende for, hvor stor forskellen mellem K_{d} og K_{s} er. Størrelsen af forskellen mellem K_{d} og K_{s} kan benyttes til at lokalisere dele af lageret med særlig store varme tab. Det er derfor rimeligt at måle bade K_{d} og K_{s}. Da målenøjagtigheden for de fleste lagre desuden er rimelig god. og da varmetabets størrelse har stor betydning for varmelagerets egnethed, vurderes det, at prøvemetoden ex nyttig.

$\mathrm{K}_{\mathrm{d}} \mathrm{W} /{ }^{\circ} \mathrm{C}$	3,2	5,5	2,8	2,4	7,1	2,8	3,2	4,6	6,9	3,5	2,9	2,8	3,3	2,5	4,6	4,0
$\mathrm{~K}_{\mathrm{s}} \mathrm{W} /{ }^{\circ} \mathrm{C}$	2,8	4,5	2,2	1,6	4,8	2,2	2,6	4,0	5,2	2,4	2,8	2,5	2,5	2,0	4,0	3,2

Tabel 6. Varmetabskoefficient for forskellige varmelagre ved lagertemperatur pa omtrent $80^{\circ} \mathrm{C}$ malt hhv. under solw fangerdrift og under stilstand.

2.1.3 Varmelagringskapacitet og varmelagringseffektivitet

Varmelagerets varmelagringskapacitet C_{1} defineres som lagerets varmeindhold pr. ${ }^{\circ} \mathrm{C}$ temperaturforskel i lageret.

Varmelagringseffektiviteten η_{1} udtrykker lagerets evne til at udnytte lagerets varmelagringskapacitet under en opvarmningsperiode.

2.1.3.1 Beskrivelse

Ved provningens start har lageret en ensartet temperatur pa omtrent $30^{\circ} \mathrm{C}$, idet provingen foretages efter mailingen af varmetabskoefficienten under solfangerdrift ved $30^{\circ} \mathrm{C}$.

Varmelageret opvarmes ved at solfangervæsken cixkuleres gennem varmelageret med volumenstrommen $0,02 \mathrm{l} / \mathrm{min}$ pr. \& lagerm volumen og effekttilførslen 10 w pr. ℓ lagervolumen. Volumen stxømen og effekttilførslen holdes konstant igennem hele op varmningsforløbet. Nå den maksimale lagertemperatur overstiger $75^{\circ} \mathrm{C}$, stoppes opvarmningen.

Igennem hele opvarmningen registreres temperaturerne i lageret. omgivelsestemperaturen T_{0} 。 solfangervæskens fremløbs- og returtemperatur $T_{f} \circ T_{x}$ og temperaturdifferencen $T_{f}-T_{r}$ hvert tredie minut. Desuden males volumenstrømmen v hver halve time.

Ved beregningerne ses der bort fra vandets udvidelse under opvarmningen og den dermed forbundne energimengde, som normalt tabes ved at varmt vand skydes ud gennem varmelagerets sikkerhedsventil. Varmebalancen for varmelageret kan dexfor udtrykkes saledes: Endringen i varmelagerets varmeindhold pr. tidsenhed ex lig effekttilforslen til lageret minus lagerets varmetab. Med symbolex udtrykkes varmebalancen saledes:

$$
\frac{d Q_{1}}{d \tau}=Q_{u}-Q_{t a b}
$$

Opvarmningsperioden opdeles i \mathbb{N} tidsspxing, hvex med varigheden $\Delta \tau$. For små tidsspring $\Delta \tau$ kan differentialiigningen omskrives til:

$$
\frac{\Delta Q_{1}}{\Delta \tau}=Q_{u}-Q_{\text {tab }} \text { eller } \quad \Delta Q_{1}=\Delta \tau \cdot\left(Q_{u}-Q_{\text {tab }}\right)
$$

For hele opvarmningsforløbet summeres alle varmeindholdsbidrag for pa denne måde at finde andringen i lagerets varmeindhold
i hele opvarmingsperioden, $Q_{I_{\text {rstart, }} \text { risut }}$:

$$
\begin{aligned}
Q_{1_{\text {Tstart, TsIut }}} & =\sum_{i=1}^{N} \Delta \tau_{i} \cdot\left(Q_{u_{i}}-Q_{\mathrm{tab}_{i}}\right)= \\
& =\sum_{i=1}^{N} \Delta \tau_{i} \cdot\left[V_{i} \cdot C_{Q_{i}} \circ \rho_{i} \circ\left(T_{E}-T_{Y}\right)_{i}-K_{d_{i}} \cdot\left(T_{1}-T_{O_{i}}\right)\right]
\end{aligned}
$$

I denne formel benyttes i som et indeks, som tilføjet de ϕ vrige symboler angiver, at der er tale om en gennemsnitsverdi gennem tidsperiode i. Solfangervaskens varmetylde $C_{p_{i}} \quad o g$ massefylde ρ_{i} afhenger af solfangervaskens temperatur. Som en rimelig tilnærmelse benyttes middeltemperaturen mellem $\mathrm{T}_{\mathrm{f}_{i}}$ og $T_{r_{i}}$ ved bestemmelsen af $C_{p_{i}}$ og ρ_{j} 。

Varmelagringskapaciteten for lagexet C_{1} bestemmes af:

$$
C_{1}=\frac{Q_{I_{\text {Tstart.Tslut }}}}{T_{\text {slut }}} T_{\text {start }}
$$

hvor $\mathrm{T}_{\text {start }}$ er den gennemsnitiige lagertemperatur ved opvarm ningens start og $T_{\text {slut }}$ er den genmemsnitlige lagertemperatur ved opvarmningens slutning.

Varmelagerets varmelagringseffektivitet η_{1} bestemmes af:

$$
\eta_{1}=\frac{T_{\text {slut }}-T_{\text {start }}}{T_{\text {slut mas }}-T_{\text {start }}}
$$

hvor $T_{\text {slut, mas }}$ ex den maksimale temperatur i lageret ved slutningen af opvarmningen。 n_{1} udtrykker lagerets evne til at udnytte C_{1} under opvarmingen. Lave η_{1} merdier opnas nå varmelagringskapaciteten ikke udnyttes. Dette er fx tilfældet, hvis varmetilforslen til lageret ikke foregar i lagem rets nederste del, saledes at kun en del af lageret opvarmes under opvarmingen.

2.1.3.2 Målefej1 og målenфjagtighed

Prøvemetoden ex behæftet med savel systematiske som tilfældige fejl. Ved beregningen tages der ikke hensyn til den energi-
mængde, som tabes ved at varmt vand skydes ud gennem varmelagerets sikkerhedsventil. Den malte varmelagringskapacitet er varmelagerets typiske varmelagringskapacitet i opvarmningsperioden. Varmelagringskapaciteten afhængex af temperaturniveauet. Fx. er varmelagringskapaciteten for et varmelager med en tryktank omtrent 2% lavere ved $75^{\circ} \mathrm{C}$ end ved $30^{\circ} \mathrm{C}$.

I afsnit 2.1.1.2 ex den systematiske fejl ved malingen af temperaturdifferencen $T_{f}-T_{x}$ omtalt. Denne fejl er uden bew tydning for resultatet. I afsnit 2.1.1.2 ex den systematiske fejl ved at benytte middeltemperaturen mellem $T_{f} \operatorname{og} T_{x}$ ved bestemmelse af solfangervaskens massefylde og varmefylde omtalt. Også denne fejl kan negligeres.

De systematiske fejl, som er knyttet til måingen, kan altså negligeres. Tilfældige fejl forarsager en ubestemthed af C_{1}. S_{C}. Størrelsen af denne vurderes i det følgende.
c_{1} bestemmes af formlen:

$$
C_{1}=\frac{\sum_{i=1}^{N} \Delta T_{i}\left[V_{i} \cdot C_{p_{i}} \cdot \rho_{i} \cdot\left(T_{f}-T_{Y}\right)_{i}-\mathbb{X}_{a_{i}} \cdot\left(\mathbb{T}_{I_{i}}-T_{o_{i}}\right)\right]}{T_{s I u t}-T_{s t a r t}}=\sum_{i=1}^{N} C_{1_{i}}
$$

$C_{1_{i}}$ beregnes altså på basis af en rakke registreringer eller målinger af:
$\Delta T_{i}, V_{i}, C_{p_{i}}, P_{i},\left(T_{E}-T_{r}\right)_{i}, K_{d_{i}}, T_{I_{i}}, T_{O_{i}}, T_{\text {slut }}$ og $T_{\text {start }}{ }^{\circ}$ Disse storrelser er indbyrdes uafhængige, og de er alle behæftede med en ubestemthed:
 og $S_{\text {Tstart }}{ }^{\circ}$

Forudsættes $S_{C_{i}}$ igennem hele opvarmningsforlpbet at være konstant, kan varmelagringskapacitetens ubestemthed $S_{C_{1}}$ bestemmes af, se [24] og [25]:

$$
\begin{aligned}
& S_{C_{1}}=\sqrt{N} \cdot S_{C_{1}}=\sqrt{N} \cdot \sqrt{\left(\frac{\partial C_{i}}{\partial \Delta \tau_{i}} S_{\Delta \tau_{i}}\right)^{2}+\left(\frac{\partial C_{1}}{\partial V_{i}} S_{V_{i}}\right)^{2}+\left(\frac{\partial C_{1}}{\partial C_{P_{i}}} S_{C_{P_{i}}}\right)^{2}} \\
& +\left(\frac{\partial C_{1}}{\partial \rho_{i}} S_{\rho_{i}}\right)^{2}+\left(\frac{\partial C_{i}}{\partial\left(T_{f}-T_{X}\right)_{i}} S_{\left(T_{f}-T_{X}\right)}\right)^{2}+\left(\frac{\partial C_{i}}{\partial K_{d_{i}}} S_{K_{d_{i}}}\right)^{2}+\left(\frac{\partial C_{1}}{\partial T_{1}} S_{T_{1}}\right)^{2} \\
& +\left(\frac{\partial C_{i}}{\partial T_{O_{i}}} S_{T_{O_{i}}}\right)^{2}+\left(\frac{\partial C_{i}}{\partial T_{s l u t}} S_{T_{s l u t}}\right)^{2}+\left(\frac{\partial C_{i}}{\partial T_{s t a r t}} S_{T_{s t a r t}}\right)^{2}=
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{\Delta \tau_{i}{ }^{\circ} v_{i} \cdot \rho_{i}\left(T_{f}-T_{r}\right) T_{i}}{T_{\text {slut }}-T_{s t a r t}} S_{C_{p_{i}}}\right)^{2}+\left(\frac{\Delta \tau_{i} \cdot v_{i} \cdot C_{p_{i}} \cdot\left(T_{f}-T_{x}\right)}{T_{s l u t}-T_{\text {start }}} S_{\rho_{i}}\right)^{2}
\end{aligned}
$$

$$
\begin{aligned}
& +\left(\frac{\Delta \tau_{i} \cdot K_{d_{i}}}{T_{s l u t}-T_{s t a r t}} S_{T_{I_{i}}}\right)^{2}+\left(\frac{\Delta \tau_{i} \cdot K_{d_{i}}}{T_{s l u t}-T_{\text {start }}} S_{T_{O_{i}}}\right)^{2} \\
& +\left(\frac{C_{1}}{T_{\text {slut }}-T_{\text {start }}} S_{T_{\text {slut }}}\right)^{2}+\left(\frac{C_{1}}{T_{\text {slut }}-T_{\text {start }}}{ }^{S_{T_{s t a r t}}}\right)^{2}
\end{aligned}
$$

Moleudstyret og malenøjagtighederne er beskrevet i kapitel 3. Størrelsen af $\mathrm{S}_{\mathrm{C}_{1}}$ belyses ved hjælp af et eksempel.

I eksemplet benyttes de i tabel 3 angivne ubestemtheder. Desuden regnes med den relative ubestemthed af tidsspringet
$\frac{S_{\Delta \tau}}{\Delta \tau}=0,005$
Lageret tænkes opvarmet fra $30^{\circ} \mathrm{C}$ til $75^{\circ} \mathrm{C}$ pa 6 timer, som opdeles i halvtime-perioder. Desuden forudsættes: $\mathrm{T}_{0}=20^{\circ} \mathrm{C}$
$\mathrm{K}_{\mathrm{a}}=5 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ og $\mathrm{S}_{\mathrm{K}}=0.2 \mathrm{~W} / \mathrm{O}_{\mathrm{C}}$. Eor forskellige lagervolumener beregnes ubestemtheden af ovenstaende ligning. Resultateme ex givet i tabel 7. Målenøjagtigheden er tilfredsstillende.

Vandlagexvolumen ℓ	$\begin{gathered} \text { Varmelagrings- } \\ \text { kapacitet } \mathrm{C}_{1} \\ \mathrm{~J} /{ }^{\circ} \mathrm{C} \end{gathered}$	Ubestemthed af $\begin{gathered} C_{1} \cdot s_{1} C_{1} \\ 3 / C^{\circ} \end{gathered}$	Relativ ubestemthed for varmelagrings kapaciteten \%
100	418000	5031	1.2
200	836000	9904	1,2
300	1254000	14812	1.2
400	1672000	19729	1.2
500	2090000	24650	1.2

Tabel 7. Eksemplex pa storyelsen af $S_{C_{1}}$.

Varmelagringseffektiviteten n_{1} bestemmes af:

$$
\eta_{1}=\frac{T_{\text {slut }}-T_{\text {start }}}{T_{\text {slut,max }}-T_{\text {start }}}
$$

Ubestemtheden for $\eta_{1}, s_{\eta_{1}}$ findes af:

$$
S_{\eta_{1}}=\frac{\sqrt{\left(\frac{\partial \eta_{1}}{\partial T_{s l u t}} S_{T_{s l u t}}\right)^{2}+\left(\frac{\partial \eta_{1}}{\partial T_{\text {start }}} S_{T_{s t a x t}}\right)^{2}}}{+\left(\frac{\partial \eta_{1}}{\partial_{T s l u t, m a x}} S_{T_{s l u t, m a x}}\right)^{2}}=
$$

$$
\sqrt{\left(\frac{S_{T_{s l u t}}}{T_{\text {slut,max }} T_{\text {start }}}\right)^{2}+\left(\frac{T_{\text {slut }}-T_{\text {slut,max }}}{\left(T_{\text {slut,max }}-T_{\text {staxt }}\right)^{2}} S_{T_{\text {start }}}\right)^{2}}
$$

$$
+\left(\frac{T_{s t a r t}-I_{s I u t}}{\left(T_{\text {slut,max }}-T_{s t a r}\right)^{2}} S_{T_{\text {slut,max }}}\right)^{2}
$$

Med de i tabel 3 angivne ubestemtheder beregnes $S_{\eta_{1}}$ for forskellige størrelser af η_{1}. Resultaterne er givet i tabel 8 . Også her er målenøjagtigheden tilfredsstillende.

η_{1}	$s_{\eta_{1}}$	Relativ ubestemthed for varmelagringseffektiviteten $\%$
1,00	0,016	1,6
0,90	0,015	1,7
0,80	0,014	1,8
0,70	0,014	2,0
0,60	0,014	2,3

Tabel 8. Eksempler på størrelsen af $S_{n_{1}}$ 。

2.1.3.3 Erfaring og vurdering

Prøvemetoden er let at gennemføre. Varmelagringskapaciteten c_{1} og varmelagringseffektiviteten η_{1} malt for forskellige markedsførte varmelagre fremgar af tabel 9. Måleresultaterne er taget fra [27], [28], [29], [30], [31], [32], [33], [34], [35], [36], [37], [38] og [39]. Af tabellen ses det, at der er relativ store variationer i varmelagringseffektiviteten.

Varmelagerets varmelagringseffektivitet η_{1}, dvs. lagerets evne til at udnytte varmelagringskapaciteten afhænger af lagerudformningen. Denne evne har ligesom lagerets varmelagringskapacitet C_{1} stor betydning for lagerets egnethed. Da malenøjagtigheden desuden er god, vurderes det, at prøvemetoden er nyttig.

$\mathrm{C}_{1} \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$	1310	1666	2675	1640	1960	2330	1170	1232	1560	950	810	1960	5580
n_{1}	0,95	0,98	0,94	0,96	0,95	0,86	0,97	0,70	0,70	0,54	0,99	0,95	0,95

Tabel 9. Malte varmelagringskapaciteter og varmelagringseffektiviteter for markedsførte varmelagre. Varmeoverforingsevnen H angiver hvor stor effekt, der kan overfores fra solfangervæske til varmelageret pr. ${ }^{\circ} \mathrm{C}$ temperaturforskel mellem solfangervaske og varmelager.

2.1.4.1 Beskrivelse

Gorsøgsperioden beskrevet i afsnit 2.1.3.1 benyttes ogsa til bestemmelse af varmeoverforingsevnen. For hver halve time beregnes varmeoverføringsevnen, saledes at varmeoverføringsevnens sammenhæng med lagertemperaturen Eastlægges.

De Eleste varmelagre er udformet som vist skematisk pa figur 5. Solfangervesken pumpes igennem en varmevekslerspiral placeret \& bunden af lagertanken, hvorved varmen Era solfangervasken overfpres til varmelageret. Denne prøvemetode begranses til sAdanne varmelagre.

Figur 5. Skematisk skitse af varmelager med indbygget varmem vekslerspiral og udsnit af varmevekslexspiralen.

I det folgende betragtes et lille udsnit af varmevekslexspio ralen, se figur 5. Solfangervæskens temperatur i udsnittet kaldes T, og overfladearealet af spiraludsnittet kaldes dA, mens hele varmevekslexspiralens overfladeareal kaldes A.

Varmeoverføringskoefficienten for varmevekslerspiralen fra solfangervæsken til varmelageret kaldes $U\left(W / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}\right)$. Temperaturen af lageret \mathbb{T}_{1} antages at være konstant omkring hele varmevekslerspiralen. Både varmefylde C_{p} og massefylde ρ for solfangervæsken antages at være temperatur-uafhængige. Varmestrommene for det betragtede udsnit af varmevekslerspiralen fremgar af figur 5, og varmebalancen for udsnittet kan udtrykkes ved ligningen:

$$
\begin{aligned}
& V \cdot C_{p} \cdot \rho \cdot T=U \cdot d A \cdot\left(T-T_{1}\right)+V \cdot C_{p} \cdot \rho \cdot(T+d T) \quad \text { eller } \\
& -\frac{U \cdot d A}{V \cdot C_{p} \cdot \rho}=\frac{d T}{T-T_{1}}
\end{aligned}
$$

Integreres over hele varmevekslerspiralen fås ligningen:

$$
\begin{aligned}
& \int_{O}^{A}-\frac{U \cdot d A}{V \cdot C_{p} \cdot \rho}=\int_{T_{f}}^{T_{r}} \frac{d T}{T-T_{1}} \text { som har } 1 \phi \text { sningen: } \\
& -\frac{U \cdot A}{V^{\circ} C_{p} \cdot \rho}=\left[\ln \left(T-T_{1}\right)\right]_{T_{f}}^{T}=\ln \frac{T_{r}-T_{1}}{T_{f}-T_{1}}
\end{aligned}
$$

Heraf kan varmeoverføringsevnen H fra solfangervæsken til varmelageret findes:

$$
\begin{aligned}
H= & U \cdot A=-V \cdot C_{p} \cdot \rho \cdot \ln \frac{T_{r}-T_{1}}{T_{f}-T_{1}}=V \cdot C_{p} \cdot \rho \cdot \ln \frac{T_{f}-T_{1}}{T_{r}-T_{1}}= \\
& -V \cdot C_{p} \cdot \rho \cdot \ln \left(1-\frac{T_{f}-T_{r}}{T_{f}-T_{1}}\right)
\end{aligned}
$$

Ved bestemmelse af C_{p} og ρ benyttes middeltemperaturen mellem T_{f} og T_{r}. Størrelsen af H afhænger naturligvis af spiraludformningen. Desuden har effekttilførslen, volumenstrømmen og lagertemperaturen stor betydning for størrelsen af H.

2.1.4.2 Malefejl og malengjagtighed

erøvemetoden er behaftet med bade sustematiske og tilfaldige fejl. Ved beregningen tages der ikke hensyn til den tid. som det tager solfangervasken at pessere gennem vammelageret. For normale vamelagre med et forholasvis lille solfangex vaskevolumen i vaxmelageret far dette nasten ingen betydnimg for resultatet.

Ved beregningen forudsættes ogsa, at temperacuren i lageret TI omkring hele varmevekslexen er konstant. I de fleste varmelagre optrader der normalt ingen temperaturlagdeling af bem tydning i lageret omkring varmevakslerspiralen. For enkelte varmelagre hax varmevekslexen agg să stor en vertikal udstrekning, at der opstar en betydelig temperaturlagdeling omkring varmevekslexspiralen. Denne tempexaturlagdeling Eir indflydele se pa størrelsen af vammeoverføxingsevnen. Det ex sordeles vanskeligt at vurdere forskelidge temperaturlagdelingexs bem tydning for varmeoverforingsevnen. Her henvises til [40]. hvor omfattende teoretiske og ekspeximentelle underspgelser af de varmeoverforingsmassige forhold for varmevekslerspiraler er beskrevet.

Den systematiske fejl, som opstå ved at benytte middeltempew raturen mellem T_{f} og T_{r} ved bestemmelse af solfangervæskers massefylde og varmefylde, ex omtalt 1 afsnit 2.1.1.2. og ogm sà i denne provning er fejlen forsvindende lille. Endelig skal fejlplaceringen af malepunkterne for temperaturdifferen cen $T_{f}-T_{r}$ navnes. Malepunkterne for T_{f} ex identiskemed det ene malepunkt for temperaturdifferencen $T_{f}-T_{x}$, se afsnit 2.1 .1 .2 . Betydningen af målepunkternes fejlolacering vurderes som forsvindende lille.

De systematiske fejl, som ex knyttet til provemetoden, ex altsa forsvindende sma fox normale varmelagre por enkelte lagxe med stor vertikal udstrekning af varmevekslerspiralen bor provemetoden $1 k k e$ benyttes. Tutaldige fejl foxarsager en
ubestemthed af H, S_{H}. Størrelsen af denne vurderes i det følgende.

H bestemmes af formlen:

$$
H=-V \cdot C_{p} \cdot \rho \cdot \ln \left(1-\frac{T_{f}-T_{x}}{T_{f}-T_{1}}\right)
$$

H beregnes altså på basis af en rakke registrexinger eller
 er indbyrdes uafhængige, og de er alle behæftede med en ubestemthed: $S_{V,} S_{C_{p}}, S_{p,} S_{T_{E}}, S_{T_{1}}$ og $S_{T_{f}} T_{r}$ 。 Ubestemtheden af H, S_{H} bestemmes, se [24] og [25], af:

$$
\begin{aligned}
& S_{H}=\sqrt{\left(\frac{\partial H}{\partial v} S_{V}\right)^{2}+\left(\frac{\partial H}{\partial C_{P}} S_{C_{P}}\right)^{2}+\left(\frac{\partial H}{\partial \rho} S_{\rho}\right)^{2}+\left(\frac{\partial H}{\partial\left(T_{f}-T_{X}\right)} S_{T_{f}-S_{X}}\right)^{2}} \\
& +\left(\frac{\partial \mathrm{H}}{\partial \mathrm{~T}_{\mathrm{I}}} \mathrm{~S}_{\mathrm{T}_{\mathrm{E}}}\right)^{2}+\left(\frac{\partial \mathrm{H}}{\partial \mathrm{~T}_{I}} \mathrm{~S}_{\mathrm{T}_{I}}\right)^{2}= \\
& \sqrt{\left(H \frac{S_{V}}{V}\right)^{2}+\left(H \frac{{ }^{S_{P}} C_{p}}{C_{p}}\right)^{2}+\left(H \frac{\rho}{\rho}\right)^{2}+\left(\frac{V \cdot C_{p} \cdot \rho \cdot S_{T_{E}-T_{r}}}{T_{f}-T_{1}-\left(T_{E}-T_{r}\right)}\right)^{2}} \\
& +\left(\frac{-V \cdot C_{p} \cdot \rho \cdot S_{T_{E}} \cdot\left(T_{E}-T_{X}\right)}{\left(T_{E}-T_{1}-\left(T_{E}-T_{X}\right)\right) \cdot\left(T_{E}-T_{I}\right)}\right)^{2}+\left(\frac{{ }^{V} C_{P}{ }^{\circ} \rho \cdot S_{T_{I}} \cdot\left(T_{E}{ }_{E} T_{X}\right)}{\left(T_{E}-T_{1}-\left(T_{f}-T_{X}\right)\right) \cdot\left(T_{f}{ }^{-T_{1}}\right)}\right)^{2}
\end{aligned}
$$

Màleudstyret og målenøjagtigheden er beskrevet i kapitel 3. Størrelsen af S_{H} belyses ved hjælp af et eksempel.

De i tabel 3 angivne ubestemtheder benyttes. Der benyttes et varmelager med varmelagringskapaciteten $836000 \mathrm{~J} /{ }^{\circ} \mathrm{C}$, svarende til et vandlager med et omtrentligt volumen pa 200 \& Ube stemtheden beregnes af ovenstaende ligning fox forskellige varmeoverføringsevner. Resultaterne er angivet itabel 10 og figur 6.

```Vaxmeoverf \(\phi\) ringsevne H \(\mathrm{W} /{ }^{\circ} \mathrm{C}\)```	$\begin{aligned} & \text { Varmeoverforingsevnens } \\ & \text { ubestemthed, } \mathrm{S}_{\mathrm{H}} \\ & \mathrm{~W} /{ }^{\circ} \mathrm{C} \end{aligned}$	Relatiq ubestemthed for varmeoverføringsevnen \%
50	1,9	3.8
100	4,9	4.9
150	9,7	6,5
200	16.5	8,3
300	37,6	12,5
500	124,0	24.8

Tabel 10. Eksempler pa størrelsen af varmeoverforingsevnens måleubestemthed.

Det bemarkes, at den relative ubestemthed vokser kxaftigt med voksende varmeoverforingsevne. Nar varmeoverfpringsevnen er meget stor, er malenøjagtigheden imidlertid noxmalt af begranset interesse. Målenøjagtigheden er for typiske størrelser af varmeoverføringsevnen tilfreasstillende.

p1gur 6. Beregnet maleubestemthed for varmeoverifrings. evnen som funktion af vameoverfoxingsevnen.

### 2.1.4.3 Erfaring og vurdering

Prøvemetoden er let at gennemføre. Erfaringen har vist, at varmeoverføringsevnen $H$ kan udtrykkes som en simpel funktion af lagertemperaturen:

$$
H=c+d \cdot T_{1} \quad W /{ }^{\circ} \mathrm{C}
$$

bvor $c$ og $d$ er konstanter, som naturligvis afhænger af varme vekslerspiralens udformning. Desuden afhænger cog d af volumenstrømmen $v$ og effekttilsførslen til lageret. Et enkelt opvarmningsforløb med én volumenstrøm og ên effekttilførsel giver derfor ikke komplet viden om de varmeoverføringsmæssige forhold for varmelageret. Volumenstrømmen og effekttilførslen til lageret under opvarmningsforløbet er valgt saledes, at de svarer til driftsforholdene for et typisk solvarmeanlæg i en solrig periode. Der er nemlig valgt et vandvolumen/solfangerareal forhold pa $50 \mathrm{l} / \mathrm{m}^{2}$, en volumenstrøm på $1 \mathrm{l} / \mathrm{min}$ pr. $\mathrm{m}^{2}$ og en effekttilførsel pa $500 \mathrm{~W} / \mathrm{m}^{2}$ solfanger. pa basis af prøvningen er det muligt at vurdere, om varmelagerets varmeoverføringsevne er tilstrækkelig stor. Da målenøjagtigheden desuden er god for varmelagre med typiske varmeoverføringsevner, vurderes det, at prøvemetoden er nyttig.

En grundig undersøgelse af de varmeoverføringsmæssige forhold for forskellige varmevekslerspiraler, volumenstrømme og effekttilførsler er beskrevet i [40].

### 2.1.5 Dynamiske forhold for varmelageret

Ved prøvningen undersøges varmelagerets dynamiske egenskaber igennem en 3 -dages periode med vandtapning fra og solvarmetilførsel til lageret. Prøvningen benyttes blandt andet som valideringsgrundlag for en matematisk model, som simulerer lagerets dynamiske forhold.

### 2.1.5.1 Beskrivelse

Der tappes varmt vand fra lageret fire gange pr. dag: kl. 8,

12, 18 og 20. Det totale dagisge vaxmevandsforbrug er ca. 250 h. Umiddelbaxt inden hver tapning foretages en blindtapning af tilforselsioxet for koldt vand. Hexved sikxes at temperaturen af det kolde vand, som tilfores lagexet undex selve tapningen, ex konstant.

Dex benyttes et vandlagervolumen/solfangerareal forhold pá $50 \mathrm{l} / \mathrm{m}^{2}$ og en solfangervaskestrom pa 1 h/min pr. $\mathrm{m}^{2}$ solfangex.

Solvarmetilforslen simulexes ved hjolp af provestandens varme* legeme. Vejrparametrene, dvs. solintensiteten pà solfangeren I og udelufttemperaturen Tude" som benyttes ved beregningen af varmelegemets effektafgivelse, ex vist pa figur 7 . Begge parametre har en vardi for alle 10 min perioder i forsøgspe rioden. Vejuparametrene for de Edrste to dage ex malte vardier for to forarsdage 11980.


Figux 7. Solintensitet pă mofangeren og udelufthemperaturen, som benyttes ved den dynamiske proming.

Som solfangereffektivitet benyttes:

$$
n=0,80-5,5 \cdot \frac{T_{\mathrm{ms}}-T_{\mathrm{ude}}}{I}
$$

$T_{m s}$ er middeltemperaturen af solfangervesken i solfangeren. Dette svarer til en almindelig solfanger. Det forudsættes, at solfangervæskens temperaturstigning over solfangeren er $5^{\circ} \mathrm{C}$. Solfangereffektiviteten og effekten fra solfangeren findes dexfor af formlerne:

$$
\begin{aligned}
& n=0,80-5,5 \cdot \frac{T_{r}+2,5-T_{\text {ude }}}{I} \\
& S U=0,80 \cdot A R \cdot I-5,5 \cdot A R \cdot\left(T_{r}+2,5-T_{\text {ude }}\right) \quad W
\end{aligned}
$$

$A R$ er solfangerarealet.

Hvert minut males solfangervæskens returtemperatur fra varmelageret $T_{x}$, dvs. solfangervæskens fremlobstemperatur til solfangeren, af en temperaturf $\phi l e r$. Ved hjælp af denne temperatur, vejrparametrene og det valgte solfangerareal beregnes effekten fra solfangeren af ovennævnte formel.

Den dynamiske provestand ex udformet anderledes end et typisk solvarmeanlæg. Fs er pumper, rør og rørisolering forskellige. Disse forskelle tages $i$ betragtning ved beregningen af varmelegemets effektafgivelse pa den måde, at effekttilforslen fra provestanden til varmelageret har samme storrelse, som den ville have $i$ et typisk solvarmeanlæg med rorføring og pumpe, som angivet i tabel 11 og med den ovenfor beskrevne solfanger.

| Matexiale Dimension | Materiale Tykkelse | RøRLFNGDE <br> Inde <br> R Ude | Cirkulations- <br> pumpeeffekt |
| :---: | :---: | :---: | :---: | :---: |
| Stal $3 / 4^{\prime \prime}$ | Mineraluld 3 cm | $6 \mathrm{~m} 4+A R \mathrm{~m}$ | 45 W |

Tabel 11. Data benyttet ved beregning af rorsystemets varmetab og varmelagringskapacitet for et typisk solvarmeanlæg。

Som nevnt males Tr hvert minut. Hvert 10 . sekund beregnes, gtyres og males varmelegemets effektafgivelse som beskrevet ovenfor. Eventuelle forskelle mellem den beregnede og malte cffekt. fx forarsaget af pludselige spring i netspendingen, korrigeres i den neste 10 -sekund periode. Herved bliver energitilforslen til varmelageret identisk med den beregnede storselse.

Styringen foregax således, at cirkulationspumpen er i drift, nar solfangerudbyttet ex positivt.

Igennem hele prøvningen registreres temperaturerne i Eorskellige niveauer i lageret og omgivelsernes temperatur $T_{0}$ hvert 10. minut. Desuden registreres $T_{f} o g T_{f} T_{T}$ hvert minut og \% hvert 10. minut, nar solfangeren er $i$ drift. Under hver tapning registreres temperaturen af brugsvandet, som tilfores lageret $T_{k}$ og temperaturen af brugsvandet, som rappes fra Lageret $T_{v}$ og temperaturdifferencen $T_{v}-T_{k}$ igennem hele cappeforløbet. Desuden males volumenstrømnen $v_{v}$ af brugsvandet.

Vamemengden, som tilfores lageret i en periode med varigheden ${ }^{T}{ }_{p}$ findes af:

$$
Q_{t}=V \cdot C_{p} \cdot p \cdot\left(T_{E}-T_{r}\right) \cdot \tau_{p}
$$

Temperaturdifferencen $\left(T_{f}-T_{x}\right)$ ex middelvardien for perioden, og solfangervaskens varmefylde $C_{p}$ og massefylde $\rho$ bestemmes ved middeltemperaturen mellem $T_{f}$ og $T_{r}$ for perioden Normalt benyttes 10 -min perioder ved bexegning af $Q_{t}$.

Vaxmemangden, som tappes fra lagexet $i$ en periode med tappe varigheden $\tau$, findes af:

$$
Q_{v}=v_{v} \cdot C_{p v} \cdot p_{v} \cdot\left(T_{v}-T_{k}\right) \cdot \tau_{t}
$$

Temperaturdifferencen $\left(T_{v}-T_{k}\right)$ er middelvardien for perioden og brugsvandets massefylde $\rho_{\mathrm{v}}$ bestemmes ved temperatuxen T.

```
Brugsvandets varmefylde }\mp@subsup{C}{pv}{}\mathrm{ antages at vare uafhrangig}a
temperaturen.
```

De daglige energimængder, som tilføres og tappes fra lageret, findes, sa de kan sammenlignes med enexgimængderne, som beregnes ved hjælp af en simuleringsmodel for varmelageret med de i provningen benyttede driftsforhold.

### 2.1.5.2 Malefejl og målenøjagtighed

Prøvemetoden er behæftet med bade systematiske og tilfældige fejl.

Ved måingen af $Q_{t}$ er både den systematiske fejl, som opstå ved fejlplaceringen af temperaturdifferensmalepunkterne, og den systematiske fejl, som opstar ved at benytte middeltemperaturen mellem $T_{f}$ og $T_{r}$ ved bestemmelsen af solfangervæskens massefylde og varmefylde; forsvindende lille, se afsnit 2.1.1.2.

Ved måingen af $Q_{v}$ kan den systematiske fejl, som opstar ved fejlplaceringen af temperaturdifferensmålepunkterne ligeledes negligeres. Fejlen, som opstar ved at antage, at brugsvandets varmefylde er uafhængig af temperaturen, er ogsa forsvindende lille. Endelig skal nævnes, at der under tapningen kan optræde pludselige variationer i volumenstrommen for brugsvandet $v_{v}$. Sadanne variationer er vanskelige at måle korrekt, og dex kan derfor opsta fejl. Normalt er disse fejl dog ubetydelige.

De systematiske fejl, som er knyttet til energimængdemailingerne er altsa normalt forsvindende små. Tilfældige fejl forarsager en ubestemthed af energimængderne. Storrelsen af disse vurderes i det følgende.
$Q_{t}$ og $Q_{v}$ bestemmes af ligningerne:

$$
\begin{aligned}
& Q_{t}=v \cdot C_{p} \cdot \rho \cdot\left(T_{f}-T_{r}\right) \cdot \tau_{p} \\
& Q_{v}=v_{v} \cdot C_{p v} \cdot \rho_{v} \cdot\left(T_{v}-T_{k}\right) \cdot \tau_{t}
\end{aligned}
$$

$Q_{t}$ og $Q_{v}$ beregnes altsa pa basis af an rakke regtstrexinger
 og $\tau_{t}$. Disse storrelser ex $\dot{\operatorname{sindbyraes}}$ wafhængige, og de er


 og [25], af IIgningerne:

Måleudstyret og målenøjagtigheden ex beskrevet i kapitel 3. Storrelsen af $S_{Q_{t}}$ og $S_{Q_{v}}$ belyses ved hjelp af et eksempel. De $i$ tabel 3 angivne ubestemtheder benyttes. Der regnes med en relativ ubestemthed af tidsspringet på:

$$
\frac{S_{\tau}}{\tau}=0,005
$$

Den relative ubestemthed af vandets vammefylde og massefylde sattes til:

$$
\frac{S_{C_{p v}}}{C_{p v}}=0.02 \quad \text { og } \quad S_{V y}=0.02
$$

Den relative ubestemthed for $Q_{6}$ for forskeliige temperaturdifferencer $T_{f} \mathbb{T}_{x}$ og den relative umestemthed for $Q$ for
forskellige temperaturdifferencer $\mathrm{T}_{\mathrm{v}}{ }^{-T} \mathrm{~T}_{\mathrm{k}}$ er angivet i tabel 12 。


Tabel 12. Eksempler pa størrelsen af den relative ubestemthed for $Q_{t} \quad o g Q_{v}$ 。

For typiske størrelser af $T_{f}-T_{x}$ og $T_{v}-T_{k}$ er målenøjagtig hederne tilfredsstillende. Altså måes energiməngderne med en rimelig nøjagtighed. Målenøjagtigheden af temperaturmålingerne i og uden for lageret er ogsa god.

### 2.1.5.3 Erfaring og vurdering

Prøvemetoden er rimelig let at gennemføre. Erfaringen har vist, at der normalt opnås en god overensstemmelse mellem måle temperaturer og energimængder i 3-dages perioden og de ved hjælp af en simuleringsmodel for varmelageret beregnede temperaturer og energimængder.

De måle data fra alle prøvningerne benyttes i simulexingsmodellen. Fordelingen af varmetabets størrelse på de forskellige dele af lageret vælges således, at den ovennæunte gode overensstemmelse opnås. Prøvemetoden benyttes altså til at fastlægge varmetabets fordeling. Desuden illustreres varmelagerets dynamiske egenskaber på en simpel og letforståelig måde. Alt i alt vurderes det, at prøvemetoden er nyttig.

### 2.2 Europæiske metoder

Pxøvemetoderne er udviklet igennem et par år. Udvikingsarbejdet blev financieret af EF og koordineret af TNO Delft. Holland. I udviklingsarbejdet deltog laboratorier for de Eleste EF-lande. Fra Danmark deltog Laboratoriet for Varmew isolering. Grundlaget for udviklingsarbejdet og exfaringer fxa provningerne er beskrevet i [41]. [42]. [43]. [44], [45]. [46]. [47], [48], [49], [50] og [51]. De foreslaede prøvem metoder baseret pa udviklingsarbejdet ex beskrevet i [52]. Da erfaringerne med prøvemetoderne er sparsomme, mà prøvemetoderne betragtes som foreløbige. Alle betingelser for de enkelte prøvemetoder ex da heller ikke fastlagt endnu.

Både varmefyldelagre og smeltevarmelagre kan prøves med disse provemetoder, som udelukkende er baseret pa malinger uden for varmelageret.

### 2.2.1 Varmelagerets varmeindhold som funktion af temperaturen

Vamelagerets varmeindhold som funktion af lagertemperaturen bestemnes ved at male varmelagerets varmeindhold i forskellige sma temperaturintervaller.

### 2.2.1.1 Beskrivelse

Solfangervasken cirkuleres gennem varmelageret med konstant Exempbstemperatur $\mathbb{T}_{i, 1}$ Nar der er opnået stabilitet, mares fremløbstemperaturen pludseligt til et højere niveau $y_{i, 2}$ Volumenstrømmen $v$ holdes konstant gennem hele pr $\phi v=$ ningen:

$$
V=\frac{Q_{s, t}\left(T_{i, 1} \cdot T_{i, 2}\right)}{C_{p} \cdot \rho \cdot\left(T_{i, 2} T_{i, 1}\right) \cdot T_{c f}}
$$

Bvor opladningstiden for det perfekte varmelager $\tau_{c f}$ sættes til 6 h . og det teoretiske varmeindhold i temperaturintervalLet Exa $T_{i, 1}$ til $T_{i, 2}$ benærnes $Q_{s, t}\left(T_{i, 1}, T_{i, 2}\right)$.

Normalt benyttes temperaturspring på $10^{\circ} \mathrm{C}$. Hvert opvarmningsforl $\phi b$ efterf $\varnothing$ lges af et nyt opvarmningsforl $\phi b$, indtil hele varmelagerets normale temperaturomrade er dækket.

Igennem hele forsøget males volumenstrømen $v$, differencen mellem fremløbs- og returtemperaturen for solfangervasken $\Delta T_{i,}{ }^{\circ}$ omgivelsernes temperatur $T_{o}$, solfangervæskens fremløbstemperatur og returtemperatur. Opvarmningsforløbets varighed benævmes ${ }^{T} c$.

Varmelagerets varmeindhold i temperaturintervallet fra $\mathrm{T}_{\mathrm{i}, 1}$ til $T_{i, 2}, Q_{s, m}\left(T_{i, 1}, T_{i, 2}\right)$ findes af:

$$
Q_{s, m}\left(T_{i, 1} \cdot T_{i, 2}\right)=\int_{0}^{\tau_{c}} v \cdot \rho \cdot C_{p} \cdot \Delta T_{i, e} d t-\int_{0}^{T} C_{d} \cdot\left(T_{1}-T_{o}\right) d t
$$

Solfangervæskens varmefylde $C_{p}$ og massefylde $\rho$ bestemmes ved en middeltemperatur mellem fremløbs- og returtemperaturen.

Varmetabskoefficienten $K_{d}$ er ikke kendt igennem opvarmningsforløbet. Lagertemperaturen $T_{1}$ males ikke. Både ved star ten og slutningen af hvert opvarmningsforløb indstiller der sig stabilitet, således at effekttilførslen til varmelageret netop er lig med varmetabet $K_{d} \cdot\left(T_{1}-T_{0}\right)$. Storrelsen $K_{d} \cdot\left(T_{1}-T_{0}\right)$ kendes altsa ved starten og slutningen af opvarmningen, og ved hjælp af interpolation bestemmes $K_{d} \cdot\left(T_{1}-T_{0}\right)$ igennem prøvningen。
$Q_{s, m}\left(T_{i, 1}, T_{i, 2}\right)$ bestemmes således for hver enkelt opvarmningsperiode, hvorved varmelagerets varmeindhold som funktion af temperaturen bestemmes.

### 2.2.1.2 Erfaring og vurdering

Prøvemetoden er behæftet både med systematiske og tilfældige fejl. De systematiske fejl. som ex knyttet til målingen af temperaturdifferencen $\Delta T_{i, e}$ og den systematiske fejl, som er knyttet til bestemmelsen af solfangervæskens varmefylde $C_{p}$ og massefylde $\rho$, er omtalt $i$ afsnit 2.l.l.2. Ogsa her ex disse
fejl betydningsløse．Bestemmelsen af varmetabets størrelse kan være behæftet med stor un申jagtighed，og størrelsen af fejlen，som opstå herved，kan variere meget fra lager til lager．

Provningsbetingelserne er afgorende for størrelsen af savel de systematiske som tilfældige fejl．For eksempel spiller tempe－ raturspringets storrelse，som normalt er $10^{\circ} \mathrm{C}, \mathrm{Og}$ det benyttede stabilitetskriterium，som i $\phi$ vigt enanu ikke er fastlagt，en meget stor rolle．Desuden er st申rrelsen af varmeoverførings－ evnen fra solfangexvasken til varmelageret af stor betydning for malenфjagtigheden．I［46］er vist eksempler pa malen申jag－ tigheden for et varmelager ned darlige varmeoverføringsmassige forhold．Jo mindre temperaturspringet er，des større bliver den relative ubestemthed for varmelagerets varmeindhold．Ube－ stemtheden kan let blive sa stor，at provingen ex meningslos． Dex bør derfor ikke benyttes for sma temperaturspring．

Prøvemetoden er kun af interesse for varmelagre med varierende varmeindhold i forskellige lige store temperaturintervallex， altsa for smeltevarmelagre．Netop fox smeltevarmelagre er varmeoverforingsevnen fra solfangervasken til varmelageret of te forholdsvis lille．

Det bør ogsa nævnes，at det i praksis er vanskeligt at opnå et pludseligt korrekt tempexaturspring for fremlobstemperaturen til varmelageret．For store temperaturspring，som kan vare nødvendige for at opnå en tilfredsstillende malenøjagtighed， kroves upraktisk store varmelegemer i provestanden．

Det vurderes，at provemetoden er velegnet for smeltevarmelagre med meget gode varmeoverføringsmassige egenskabez．Da erfaring－ erne med prøvemetoden endnu er sparsomme，er det for tidligt at bedømme prøvemetodens egnethed for forskellige varmelagre med forskellige storxelser af varmeoverføringsevnen fxa solfanger－ væsken til varmelageret．
2.2.2 Varmelagerets varmeindhold i design-temperaturomradet

Varmelagerets varmeindhold i det temperaturområde, som varmelageret er beregnet til, bestemmes.

### 2.2.2.1 Beskrivelse

Solfangervæsken cirkuleres gennem varmelageret med konstant volumenstrøm $v$ og konstant fremløbstemperatur $T_{i, 1}$ Nar der er opnået stabilitet tilføres solfangervasken og dermed varmelageret en konstant effekt. Denne effekt holdes konstant, indtil fremløbstemperaturen bliver lig $T_{i, 2}$. Herefter holdes fremløbstemperaturen konstant pa $T_{i, 2}$ i resten af prøvningen. Prøvningen afsluttes, nå stabilitet er opnået.
$T_{i, 1}$ og $T_{i, 2}$ vælges således, at $T_{i, 1}$ er den nedre temperaturgrænse $o g T_{i, 2}$ den $\varnothing v r e$ temperaturgrænse $i$ det temperaturomrade, som varmelageret er beregnet til.

Den konstante effekttilførsel under prøvningen er:

$$
\frac{Q_{S, f}\left(T_{i, 1}, T_{i, 2}\right)}{{ }_{C f}}
$$

hvor opladningstiden for det perfekte lagex ${ }^{\tau}{ }_{c f}$ sættes til 6 h og $Q_{s, t}\left(T_{i, 1}, T_{i, 2}\right)$ er det teoretiske varmeindhold af varmelageret $i$ temperaturintervallet fra $T_{i, 1}$ til $T_{i, 2}$ Volumenstrømen findes som omtalt i afsnit 2.2.1.1. Malinger og beregninger foretages ligeledes som beskrevet i afsnit 2.2.1.1.

### 2.2.2.2 Erfaring og vurdering

Prøvemetoden ex behæftet med både systematiske og tilfældige fejl. De systematiske fejl knyttet til prøvningen er beskrevet i afsnit 2.2.l.2. Størrelsen af både de systematiske og tilfældige fejl varierer fra lager til lager.

Stabilitetskriteriet, som endnu ikke er fastlagt, har indfly delse på malenøjagtigheden, men indflydelsen er normalt langt
mindre end for prøvemetoden beskrevet i afsnit 2.2.1.1. Tempem xaturspringet og vaxmeoverforingsevnen fra solfangervasken til varmelageret er nemlig normalt så store, at màlenøjagtigheden for næsten alle varmelagre bliver rimelig god. Varmeoverforingsevmen er nemlig normalt rimelig stor ved temperaturen $T_{i, 2}$ idet varmelagringsmaterialet her er en vaske.
provemetoden skonnes at vare nyttig fox alle vaxmelagre, varm mefyldelagre såvel som smeltevarmelagre.

### 2.2.3 Varmetabskoefficient for varmelageret under solfangerdrift

Varmelagerets varmetabskoefficient under solfangerdrift $K_{d}$ males under stabile temperaturforhold uden temperaturforskelle i varmelageret.

### 2.2.3.1 Beskrivelse

Solfangervasken cirkuleres gennem varmelagexet med konstant volumenstrom $v$ og konstant fremløbstemperatur ${ }^{\text {Th}}$ fil varme Lagexet. Udføres provningen i sammenhang med provningen for varmelagerets varmeindhold som funktion af temperaturen benyttes volumenstrøm og fremløbstemperaturerne som angivet $i$ af snit 2.2.1.1.

Ellexs benyttes som fxemlobstemperatur den maksimale temperatur $i$ det temperaturinterval, som vamelageret er beregnet til. For smeltevarmelagre benyttes desuden en frempostemperatur, som er $5^{\circ} \mathrm{C}$ lavere end smeltepunktet for vaxmelagringsmatexialet. Volumenstrommen vælges saledes, at størrelsen af differencen mellem solfangervaskens fxemlobs-og xeturtemperatur $\Delta T_{i,}$ er mellem $1^{\circ} \mathrm{C}$ og $2^{\circ} \mathrm{C}$.

Igennem forspget foretages malinger som beskrevet i afsnit 2.2.1.1. Nar stabilitet er opnaet, er varmelagerets vametab:

$$
\text { V. } \rho \cdot C_{p} \cdot \Delta T_{i, e}
$$

Da varmelagertemperaturen ikke males, bestemmes varmetabskoefficienten for varmelagre, hvor solfangervasken befinder sig i hele lagerets udstrækning, ved hjælp af den logaritmiske middeltemperatur:

$$
K_{d}=\frac{V \cdot \rho \cdot C_{p} \cdot \Delta T_{i} e}{\frac{\Delta T_{i, e}}{\ln \frac{T_{f}-T_{0}}{T_{r}-T_{o}}}}=V \cdot \rho \cdot C_{p} \cdot \ln \frac{T_{f}-T_{o}}{T_{r}-T_{0}}
$$

For varmelagre med indbygget varmevekslerspiral bestemmes varmetabskoefficienten af:

$$
\begin{gathered}
K_{d}=V \cdot C_{p} \cdot \rho \cdot \Delta T_{i, e} \cdot \frac{1+\frac{V \cdot C_{p} \cdot \rho \cdot \Delta T_{i, e}}{V \cdot C_{p} \cdot \rho \cdot \varepsilon \cdot\left(T_{r}-T_{0}\right)}}{T_{f}-T_{0}}
\end{gathered}=
$$

$\varepsilon$ er varmevekslerspiralens effektivitet, som bestemmes under prøvningen, se afsnit 2.2.5.

### 2.2.3.2 Erfaring og vurdering

Prøvemetoden er behæftet med bade systematiske og tilfældige fejl. De systematiske fejl, som ex knyttet til malingen af temperaturdifferencen $\Delta T_{i, e}$ og den systematiske fejl, som er knyttet til bestemmelsen af solfangervæskens varmefylde $C_{p}$ og massefylde $p$ er omtalt i afsnit 2. l.l.2. Ogsa her er disse fejl betydningsløse. De systematiske fejl er saledes normalt betydningsløse.

Da lagertemperaturen ikke måles, er de i afsnit 2.2.3.1 angivne formler til bestemmelse af $\mathrm{K}_{\mathrm{d}}$ tilnærmede. Erfaringen har vist, at disse tilnærmelser er gode. Størrelsen af de tilfældige fejl afhænger af varmelagerets udformning. Normalt er disse fejl ogsa meget sma.

Varmetabskoefficienten afhænger af varmelagerets udformning og temperaturniveau. Det skønnes, at prøvemetoden klarlægger de varmetabsmassige forhold for lageret i perioder med solfangerdrift, og at prøvemetoden er velegnet for alle varmelagre.

### 2.2.4 Varmetab for varmelageret under et afkølingsforløb

Varmelagerets varmetab i en periode uden varmetilførsel til og varmetapning fra lageret bestemmes.

### 2.2.4.1 Beskrivelse

Solfangervæsken cirkuleres gennem varmelageret med konstant volumenstrøm og konstant fremløbstemperatur til lageret, starttemperaturen $T_{i, 1}$ Nå der er opnået stabilitet til tiden $t_{1}$ stoppes cirkulationen $i$ en pexiode med varigheden $\tau_{\text {sb }}$. Nar denne periode er afsluttet, opvarmes varmelageret igen til starttemperaturen $T_{i, 1}$. Stabilitet opnås til tiden $t_{2}$ 。

Volumenstrpmmen $v$ beregnes som beskrevet i afsnit 2.2.1.1. Som starttemperatur benyttes den maksimale temperatur, som varmelageret er beregnet til. Hvis der er tale om et smeltevarmelager prøves lageret også med en starttemperatur, som er $5^{\circ} \mathrm{C}$ lavere end varmelagringsmaterialets smeltepunkt. For hver starttemperatur prøves to varigheder for afkølingsperioden $\tau_{s b}$ : $8 \mathrm{~h} \circ \mathrm{~g} 24 \mathrm{~h}$ 。

Gennem prøvningen foretages målinger som beskrevet i afsnit 2.2.1.1. Varmetabet $i$ perioden uden solfangerdrift $Q_{1}\left(T_{i, 1}, T_{0} T_{s b}\right)$ ex lig med varmemængden, som tilf $\varnothing$ res varmelageret gennem opvarmningen efter afkølingsperioden:

$$
Q_{1}\left(T_{i, 1} \cdot T_{o} \cdot T_{s b}\right)=\int_{t_{1}+\tau_{s b}}^{t_{2}} v \cdot C_{p} \cdot \rho \cdot \Delta T_{i, e} d t-\int_{t_{1}+\tau_{s b}}^{t_{2}} K_{d} \cdot\left(T_{1}-T_{o}\right) d t
$$

Da lagertemperaturen $T_{1}$ ikke måles, bestemmes størrelsen $\int_{t_{1}+\tau_{s b}}^{t_{2}} K_{d} \cdot\left(T_{1}-T_{o}\right) d t \quad$ som beskrevet $i$ afsnit 2.2.1.1.

Det relative varmetab $\delta Q_{1}$ bestemmes af ligningen:

$$
\delta Q_{1}=\frac{Q_{1}\left(T_{i, 1}, T_{0}{ }^{\tau_{s b}}\right)}{Q_{s, t}\left(T_{0}, T_{i, 1}\right)}
$$

hvor det teoretiske varmeindhold af varmelageret i temperaturintervallet fra $T_{0}$ til $T_{i, 1}, Q_{S, t}\left(T_{o}, T_{i, 1}\right)$ erstattes af det måle varmeindhold $Q_{s, m}\left(T_{0}, T_{i, 1}\right)$, hvis malingen er foretaget som beskrevet $i$ afsnit 2.2.1.1.

### 2.2.4.2 Erfaring og vurdering

Prøvemetoden er behæftet med både systematiske og tilfældige fejl. De systematiske fejl, som er knyttet til temperatur differensmålingen og til bestemmelsen af solfangervæskens varmefylde $C_{p}$ og massefylde $p_{0}$ er omtalt i afsnit 2.1.1.2. Ogsa her er disse fejl meget små. Bestemmelsen af størrelsen af $\int_{t_{1}+\tau_{s b}}^{t_{2}} K_{d} \cdot\left(T_{1}-T_{o}\right) d t \quad$ er ligeledes behæftet med en systematisk fejl, idet lagertemperaturen $T_{1}$ ikke måles. Det er vanskeligt at vurdere størrelsen af denne fejl, som i øvrigt afhænger af stabilitetskriteriet, som endnu ikke er fastlagt. Fejlens størrelse varierer fra varmelager til varmelager. Normalt er fejlen lille. Størrelsen af de tilfældige fejl varierer også fra varmelager til varmelager. Disse fejl er normalt også rimeligt små.

Varmetabets størrelse afhænger af lagerudformningen, temperaturniveauet og afkølingsperiodens varighed. De varmetabsmæssige forhold for varmelageret i perioder uden solfangerdrift klarlægges ved hjælp af prøvningerne. Det skønnes, at prøvemetoden er velegnet for alle varmelagre.

### 2.2.5 Varmelagerets varmeoverføringsmæssige forhold

Varmeoverføringsevnen fra solfangervæske til varmelager bestemmes ved lagertemperaturen lig med omgivelsernes temperatur.

## 2．2．5．1 Beskrivelse

Solfangervæsken cirkuleres gennem varmelageret med konstant volumenstrøm $v$ og konstant fremløbstemperatur til lageret $\mathbb{T}_{i, 1}=\mathbb{T}_{0}-5^{\circ} \mathrm{C}$ 。 No̊ stabilitet er opnået til tiden 0 ，ændres fremløbstemperaturen pludseligt til $T_{i, 2}=T_{0}+5^{\circ} \mathrm{C}$ 。 Forsøget afsluttes，når der er opnået stabilitet igen til tiden $\tau_{C}$ 。

Prøvningen foretages med seks forskellige volumenstrømme． Den første af de prøvede volumenstrøme beregnes som beskrevet i afsnit 2．2．1．1．De $\varnothing$ vrige fem volumenstrømme bestemmes som hhv． $2,4,6,8$ og 10 gange den først beregnede volumenstrøm．

Gennem prøvningen foretages malinger som beskrevet i afsnit 2．2．1．1．Varmelagerets effektivitet $\eta_{S}(t)$ defineres som forholdet mellem varmemængden，som lagres i varmelageret fra starten af opvarmningsforløbet til tiden $t$ og varmemængden． som varmelageret indeholder i hele temperaturintervallet fra $T_{i, 1}$ til $T_{i, 2}$ Varmelagerets effektivitiet $\eta_{s}\left(\tau_{c f}\right)$ for hver opvarmningsperiode bestemmes af ligningen：

$$
\eta_{s}\left(\tau_{c f}\right)=\frac{\int_{0}^{\tau}{ }_{c f} V_{V} C_{p} \cdot \rho \cdot \Delta T_{i, e} d t-\int_{0}^{T} C_{f} K_{d} \cdot\left(T_{1}-T_{0}\right) d t}{\left.Q_{s, m} T_{i, 1} \cdot T_{i, 2}\right)}
$$

hvor varmelagerets varmeindhold i temperaturintervallet fra $T_{i, 1}$ till $T_{i, 2}$ bestemmes af：

$$
Q_{S, m}\left(T_{i, 1}, T_{i, 2}\right)=\int_{0}^{\tau_{c}} v \cdot C_{p} \cdot \rho \cdot \Delta T_{i, e} d t-\int_{0}^{T} C_{d}\left(T_{1}-T_{0}\right) d t
$$

og varmelagerets opladningstid for det perfekte lager $\tau_{c f}=6 \mathrm{~h}$.

Varmevekslingseffektiviteten $\eta_{h x}(t)$ defineres som forholdet mellem varmemængden，som er tilført lageret fra starten af op－ varmningsperioden til tiden $t$ og den maksimale varmemængde， som kan overføres fra opvarmningsperiodens start til tiden $t$ ， dvs．varmeindholdet af varmelageret minus varmeindholdet af
solfangervæsken i temperaturintervallet fra $T_{i, 1}$ til $T_{i, 2}$. Varmevekslingseffektiviteten $\eta_{h x}\left(\tau_{c f}\right)$ bestemmes af ligningen:

$$
\eta_{h x}\left(\tau_{c f}\right)=\frac{\eta_{s}\left(\tau_{c f}\right) \cdot Q_{S, m}\left(T_{i, 1} \cdot T_{i, 2}\right)-\left(1-\left|\theta_{e}\left(\tau_{c f}\right)\right|\right) \cdot \rho \cdot C_{p} \cdot V_{t f} \cdot\left(T_{i, 2}-T_{i, 1}\right)}{Q_{s, m}\left(T_{i, 1} \cdot T_{i, 2}\right)-\rho \cdot C_{p} \cdot V_{t f} \cdot\left(T_{i, 2}-T_{i, 1}\right)}
$$

hvor den dimensionslose returtemperatur bestemmes af:

$$
\theta_{e}\left(\tau_{C f}\right)=\frac{T_{x}\left(\tau_{C f}\right)-T_{i, 2}}{\left|T_{i, 1}-T_{i, 2}\right|}
$$

$o g V_{t f}$ er solfangervæskens volumen i varmelageret.
Nar $V_{t f}$ er relativ lille findes $\eta_{h x}\left(\tau_{c f}\right)$ med rimelig tilnærmelse af: $\quad \eta_{h X}\left(\tau_{c f}\right)=\eta_{s}\left(\tau_{c f}\right)$

Her indføres begrebet varmeoverføringsevne igennem opladningstiden, $\dot{Q}_{h x}^{\prime}\left(\tau_{C f}\right)$, som bestemmes af ligningen:

$$
\dot{Q}_{\mathrm{hX}}^{\prime}\left(\tau_{C f}\right)=\mathrm{V} \cdot \rho \cdot \mathrm{C}_{\mathrm{p}} \cdot \eta_{\mathrm{hX}}\left(\tau_{\mathrm{Cf}}\right)
$$

De måte $\eta_{h x}\left(\tau_{c f}\right)$-værdier afbildes som funktion af volumenstrømmen. Denne kurve har et knækpunkt. Den mindst mulige størrelse af varmeoverføringsevnen fra solfangervæsken til varmelageret, $H_{m i n}$ bestemmes af den tilnarmede formel:

$$
\mathrm{H}_{\min }=1,69 \cdot \mathrm{~V} \cdot \rho \cdot \mathrm{C}_{\mathrm{p}}
$$

hvor $v$ er volumenstrømmen ved det ovennævnte knækpunkt.
$\dot{Q}_{h x}^{\prime}\left(\tau_{c f}\right)$ afbildes ogsa som funktion af volumenstrømmen. Ved hjælp af ekstrapolation mod uendeligt store volumenstrømme findes den størst mulige værdi af varmeoverføringsevnen fra solfangervæsken til varmelageret $H_{\text {max }}$ 。

Varmeoverføringsevnen fra solfangervasken til varmelageret $H$ bestemmes herefter som middelværdien mellem $H_{m i n}$ og $H_{m a x}$ 。

Desuden angives hældningen af tangenten for ovennavnte kurve gennem begyndelsespunktet , idet den giver information om temperaturlagdelingen $i$ strømningsretningen. Dette gøres dog kun nar $H / V \cdot C_{p} \cdot p \gg 1$ 。

Endelig findes vamevekslerspiralens effektivitet af ligningen:

$$
\varepsilon=1-\exp \left(-\frac{\mathrm{H}}{\mathrm{~V}^{\circ} \rho^{\circ} \mathrm{Cp}}\right)
$$

### 2.2.5.2 Erfaring og vurdering

Erfaringerne med provemetoden er yderst sparsomme. provningen er vanskelig at udføre korrekt, og den er kun velegnet for temperaturniveauex omkring omgivelsernes temperatur. Desuden bestemmes varmeoverforingsevnen $H$ og varmevekslerspiralens effektivitet $\varepsilon$ med meget stor usikkerhed.

Det bør nævnes, at bade $H$ og $\varepsilon$ normalt andres igennem form skellige opvarmningsperioder, idet størrelserne afhænger af volumenstrøm, lagertemperatumiveau og effekttilførsel. For et simpelt vandlager med en indbygget varmevekslexspiral er de varmeoverføringsmæssige forhold beskrevet i [40]. Forholdene er forholdsvis komplicerede, og for smeltevarmelagre er forholdene endnu mere komplicerede. Det er derfor umuligt med fa provninger at klarlægge de varmeoverf申ringsmæssige forhold fuldstændigt.

Prøvningen udføres kun ved et temperaturniveau. Det vurderes, at prøvningen kun giver begrenset og usikkex information om de varmeoverføringsmæssige forhold. provemetoden anses derfor ikke for at være velegnet. $I$ [46] er det foreslàt, at prøvemetoden, som er beskrevet $i$ afsnit 2.2 .2 , ogsa benyttes til at give letforstaelig, men ikke fuldstandig information om de varmeoverforingsmessige forhold for varmelageret. Det foreslas, at der indføres en effektivitet, som svarer til den i afsnit 2.I. 3 ontalte varmelagringseffektivitet.

### 2.2.6 Varmelagerets effektivitet

Varmelagerets effektivitet $\eta_{\mathrm{s}}(\mathrm{t})$ defineres som forholdet mellem varmemængden, som lagres i/tappes fra varmelageret fra starten af opvarmningsforløbet/afkølingsforløbet til tiden $t$ og varmemængden, som varmelageret indeholder i hele temperaturintervallet fra starttemperaturen $T_{i, 1}$ til sluttemperaturen $T_{i, 2}$. $\eta_{s}(t)$ bestemmes for forskellige opvarmingsforlob og afkølingsforløb, hvor solfangervæskens fremløbstemperatur pludseligt ændres fra $T_{i, 1}$ til $T_{i, 2}$ 。

### 2.2.6.1 Beskrivelse

Solfangervæsken cirkuleres gennem varmelageret med konstant volumenstrøm og konstant fremløbstemperatur til lageret $T_{i, 1}$ 。 Nar stabilitet er opnået, ændres fremløbstemperaturen pludseligt til $\mathbb{T}_{i, 2}$. Forsøget afsluttes, når stabilitet er opnået igen.

Der udføres så mange prøvninger, at de fleste driftsbetingelser for varmelageret undersøges. Forskellige størrelser af volumenstrømmen, $T_{i, 1}$ og $T_{i, 2}$ prøves. Både positive og negative temperaturspring prøves.

Målingerne foretages som beskrevet $i$ afsnit 2.2.1.l. Varmelagerets effektivitet $\eta_{s}(t)$ beregnes som beskrevet i afsnit 2.2.5.1 til forskellige tidspunkter $t$ af prøvningen.

### 2.2.6.2 Erfaring og vurdering

Erfaringerne med prøvemetoden er sparsomme. Prøvningen er vanskelig at udføre korrekt. Prøvningerne giver nogen information om varmelagerets termiske egenskaber. Til gengæld er det ikke muligt direkte at anvende de fundne $n_{s}$-værdier til at bedømme varmelagerets egnethed.

Provningen kan desuden anvendes til at bestemme de varmeoverføringsmæssige forhold for varmelageret, nar der eksisterer en matematisk model. som simulerer varmelagerets drift. Det vuxderes, at prøvemetoden kan give nyttig information om lagerets varmeoverføringsmæssige forhold.

## 3. PROVESTANDE

Ved de danske provninger benyttes to prøvestande, der omtales som en statisk og en dynamisk provestand.

I den statiske provestand måles varmelagerets vametabskoefficient, nå solfangeren ex i drift og nar den ex ude af drift, varmelagexets varmelagringskapacitet og varmelagringseffektivitet, og endelig varmeoverforingsevnen fra solfangexvæsken til varmelageret.

I den dynamiske prøvestand undersøges lageret som var det en del af et solvarmeanleg. De dynamiske forhold for lageret klarlægges herved.

De i afsnit 2.2 omtalte europeiske provninger foretages ved hjælp af den statiske provestand.

Opbygningen af de to provestande beskrives i det følgende.

### 3.1 Statisk provestand

Figur 8 viser en skematisk skitse af provestanden. Prøvestanden bestar af et rorsystem, hvortil varmelageret tilsluttes med slanger, sa solfangervasken kan pumpes gennem varmelageret. I rørsystemet ex indbygget to pumper, to varmelegemer pa hhv. 6750 W og 1200 W , en temperaturfolex, et flow meter og en rokke ventilex så volumenstrømmen gennem varmem lageret kan reguleres nøjagtigt. Røxsystemet bestar af en indre og en ydre rørkreds. I den indre rørkreds ex volumenstrømmen meget stor, mens volumenstrømmen i den ydre kreds, hvortil lageret tilsluttes, er mindre.

Temperaturføleren, som styrer det ene af varmelegemerne, er placeret lige efter varmelegemet $i$ den indre kreds med den store volumenstrøm. Herved kan en effekt/temperaturregulator styre effektafgivelsen fra varmelegemet, således at solfanger-


Figur 8. Skematisk illustration af statisk prøvestand.
væskens fxemløbstemperatur til varmelageret kan holdes helt konstant. Det andet varmelegeme kan styres således, at en konstant effekt overføres til solfangervæsken. således er det muligt enten at opnå en konstant fremløbstemperatur til varmelageret eller at overføre en konstant effekt til varmelageret.

Hele rørsystemet er isoleret for at nedsætte varmetabet til omgivelserne. Prøvestanden er placeret i Laboratoriets prøvehal, hvor temperaturen normalt ligger mellem $20^{\circ} \mathrm{C}$ og $25^{\circ} \mathrm{C}$. Figur 9 viser et fotografi af den statiske prøvestand.


Figur 9. Statisk provestand.

### 3.2 Dynamisk provestand

Figur 10 viser en skematisk illustration af den dynamiske provestand. Provestanden bestar af en solfangersimulator og en tappesimulator. Varmelageret foxbindes med slanger bade til solfangersimulatoren og til tappesimulatoren.

Solfangersimulatoren bestar af et xorsystem med indbygget varmelegeme pa 9000 W, pumpe, flowmeter og reguleringsventiler, soledes at solfangervasken kan transporteres med pnsket volumenstrom gennem solfangersimulatoren og varmelageret.

## SOLFANGERSIMULATOR



Figur 10. Skematisk illustration af dynamisk prøvestand.
tor og forskellige ventilex, som styrer volumenstrommen af brugsvandet, som tappes Era lageret. Nar lagextemperaturen er meget høj under en vandtapning, blander en blandeventil varmt vand fra lageret med koldt tilførselsvand. Herved opnas, at vand med en rimelig temperatur tappes fra lagersystem met.

Prøvestandens styresystem er en mikxoprocessor, som styrer pumpen, ventilerne og varmelegemet saledes, at varmelagexet udsattes for pavirkninger, som om det vax en del af et solvarmeanlæg til brugsvandsopvarmning i en periode med typiske vejrparametre, se afsnit 2.1.5. Umiddelbart for hver tapning af vand fra lageret foretages en blindtapning, saledes at vandet, som tilfores lageret under selve tapningen, har en lav konstant temperatur. Dex er installeret en temperaturfoler i slangen, som forbinder varmelageret og solfangersimulatoren. Denne temperaturfoler maler under hele provningen solfangervaskens returtemperatux fra varmelageret. Varmelegemets effektafgivelse styres saledes, at effekten, som tilfores varmelageret gennem hele Eorspget, bestemmes af de valgte vejrparametre, den valgte solfangereffektivitet, den valgte udformning af solvarmeanlegget og den malte returtemperatur for solfangervæsken.

Styresystemet er udformet saledes, at ogsà en manuel styring af hver enkelt ventil, af pumpen og af varmelegemet er mulig.

Den dynamiske provestand og den statiske provestand er placeret pà samme forsøgsopstilling, saledes at hele forsøgsopstilu lingen ikke er pladskravende. De to separate prøvestande muliggør, at to lagre kan afproves samtidigt, det ene lager i den statiske og det andet lager $i$ den dynamiske provestand. Solfangersimulatorens roxsystem ex isolexet for at nedsætte varmetabet. Figur 11 viser solfangersimulatoren og mikroprocessoren. som styrer prøvestanden.


Figur 11. Solfangexsimulator og mikroprocessor.

### 3.3 Må lesystem

Volumenstromme $i$ provestandenes solfangerkredse og i tappe simulatoren måles med stopur og Agua Metro ringstempelmalere af typen VZFM20. Nøjagtigheden ex af fabrikanten angivet til 1. af den aktuelle vaskestrom, nå volumenstrommen er storre end $1 \mathrm{l} / \mathrm{min}$.

Temperaturer males med termoelementer af kobber-konstantan, type TT. Fabrikanten angiver, at den største fejl, som kan opsta pa grund af forskelle $i$ termoelementtradene er $0,42^{\circ} \mathrm{C}$. Termoelementerne forbindes dixekte til Philips Multipoint Data Recorder, type PM8237A, som opsamler malingerne af temperaturer og temperaturdifferencer. Fabrikanten angiver, at malenøjagtigheden for kobber-konstantan termoelementer i má leomradet $0-100^{\circ} \mathrm{C}$ ex $1,2^{\circ} \mathrm{C}$, nar der ses bort fra malenøjagtigheden, som er knyttet til selve termoelementtraden. Nøjagtigheden for temperaturmalinger med kobber-konstantan termoelementer, type Tr og Philips Multipoint Data Recorder, type PM8237A, er undexsøgt næmexe, se afsnit 3.3.1.

Maling af temperaturer i varmelageret foretages ved hjalp af en glasstav, hvor malepunkterne er placeret med 10 cm mellemrum. Målestavens opbygning er vist skematisk på figur 12. Glasstavens udvendige diameter er $16,0 \mathrm{~mm}$, og den indvendige diameter er $13,6 \mathrm{~mm}$. Ved hvert malepunkt er dex viklet mindst $1 / 2 \mathrm{~m}$ termoelementtrad omkring en plastcylinder. Mellemrummene mellem plastcylindrene er fuldstændigt udfyldt med glasuld for at nedsætte varmetransporten $i$ glasroret. Fejlmailingen forarsaget af denne placering af temoelementerne er undersøgt, se afsnit 3.3 .2 .

Temperaturen af omgivelserne for lageret måles ca. 1 m over gulvet og 2 m fra varmelageret.

Solfangervæskens fremlobstemperatur og returtemperatur og brugsvandets tilførselsm og tappetemperatur males med det


Fig. 12. Skematisk illustration af malestav til temperaturmåing i varmelageret.
samme udstyr, som benyttes til at male temperaturdifferencer, se nedenfor.

Hver af differencerne mellem solfangervaskens fremiobstemperatur og returtemperatur for de to provestande og mellem brugsvandets tilforsels- og tappetemperatur males med et udstyr bygget op omkring en termosøjle med ti elementer. Der benyttes ogsa her termoelementtxad af typen TW kobber-konstantan. Hvert element er indsat $i$ et $3 / 2.4 \mathrm{~mm} / \mathrm{mm}$ messingrør. Et termoelement ex indsat $i$ et 11. rør. Rørene er loddet
til en blok af samme materiale med udvendigt gevind. Udstyret ex vist på figur 13. Udstyret er anbragt i rørstykker, som er forsynet med vinkler for at sikre opblanding af den strømmende veske langs varmeoverføringsfladen. Rørstykkerne er kraftigt isoleret, sa varmetabet reduceres mest muligt. Texmosøjlernes treghed over for temperaturforandringer er særdeles lille, se [22].


Figur 13. Udstyr til måing af temperaturdifferens.
Termosøjlerne placeres sa tæt på varmelagerets tilslutningsstudse som muligt, og de korte slangestykker, som befinder sig mellem termosøjlerne og lagerets tilslutningsstudse, isom leres ekstra kraftigt. I alle provninger foretages en kor-
rektion, så fejlen, foråsaget af varmetabet fra disse slange* stykker, reduceres til et minimum, se afsnit 2.1.1.2.

Fabrikanten angiver som omtalt, at den storste fejl, som termoelementtxaden kan vare behrftet med ex $0.42^{\circ} \mathrm{C}$. Texmosøjlen forbindes til Philips-skxiveren. Fabrikanten angiver, at malenøjagtigheden for termosøjlens mvosignal er mindre end $0,01 \mathrm{mV}$, svarende til $0,024^{\circ} \mathrm{C}$. Det ex saledes termoelementtradens nøjagtighed, der er afgørende for malenøjagtigheden for temperaturdifferencen.

De malte temperaturdifferencer benyttes til at beregne støro relsen af effekten, som tilfores lageret med solfangervasken eller som tappes fra lageret. Hertil benyttes desuden massew fylde og varmefylde for det varmetransporterende medium samt volumenstrømmen. Målenøjagtigheden for de overførte effekter afhænger saledes af målenøjagtigheden for fire variable. Effektmalingernes nøjagtighed er undexsøgt nærmere, se afsnit 3.3.3.

Endelig skal det navnes, at effekten, som overipres til varmelegemet $i$ den dynamiske prøvestand, igennem hele forsøget males med et wattmetex.

### 3.3.1 Nøjagtighed af temperaturmåling

Som navnt i afsnit 3.3 er nøjagtigheden for temperaturmalinger ifølge fabrikanterne: $1,2+0,42 \approx 1,6^{\circ} \mathrm{C}$.

Maleudstyrets nøjagtighed blev desuden undersøgt ved malinger. Tre temmelementer blev placeret $i$ et cermostatbad med omr $\phi$ ring. I termostatbadet blev desuden installeret et præcisionsdigitaltermometer med pt $100 \Omega$ folere. Texmometeret er af typen 1223, og fabrikatet er systemteknik. Termometeret blev kalibreret den 17. december 1981. Maleusikkexheden vax mindre end $0,01^{\circ} \mathrm{C}$, se [53]. Philips-skriveren har i alt 30 kanaler. De tre termoelementer blev tilsluttet skriverens
kanal 1, 15 og 30, saledes at hele skxiverens omrade blev undersøgt.

Termostatbadet blev stabiliseret pa tre forskelljge temperam turer, sa hele det temperaturomrade, som normalt bliver anvendt under provningen af lagrene, blev kontrolleret. Nar der var opnaet stabilitet, blev tempexaturen af pracisionstermometeret og skriverens kanal 1 , 15 og 30 aflæst. Resultaterne fremgar af tabel 13. Det ses, at malenojagtigheden ikke afhænger af kanalmummeret for Philipsoskrivexen, idet den storste forskel mellem malte temperaturer ned et termoelem ment og Philips-skriveren er $0.2^{\circ} \mathrm{C}$. Desuden er overensstemmelsen mellem temperaturen malt med precisionstermometeret og temperaturen malt med texmoelement og Philips-skrivexen god. Den storste forskel mellem disse temperatuxer er i forsøgene registreret til $0,4^{\circ} \mathrm{C}$. pa basis af disse forsog vurm deres det, at ubestemtheden af temperatuxmalingex kan settes til $S_{T}=0.5^{\circ} \mathrm{C}$. Denne vardi er benyttet i kapitel 2 .

tempexatur malt med pracisionstermometer ${ }^{\circ} \mathrm{C}$	temperatur målt med termoelement og Philipseskxiverens kanal 1 ${ }^{\circ} \mathrm{C}$	temperatur målt med termoelement og Philipswskriverens kanal 15 ${ }^{\circ} \mathrm{C}$	semperatur mait med termoelement og Philipsoskriverens kanal 30 $o_{C}$
20.18	20,3	20.3	20,4
49.82	49,8	49.9	49,8
80.02	80,2	80.4	80,3

Tabel 13. Nøjagtighedsforsøg for temperaturnainnger.
3.3.2 Nøjagtighed af temperaturmaling i vaxmelager

Som navnt i afsnit 3.3 anvendes en glasstav ved temperaturmailing i varmelageret. Termoelementerne ex ikke placeret direkte $i$ vandet, men inde $i$ glasxpret. Glasstavens egnethed unders $\varnothing$ ges ved fors $\varnothing$ g.

Forsøgsopstillingen bestar af to 2 m lange acrylror med forskellige diametre. Røret med den lille diameter er placeret
inden $i$ det andet rør. Begge rør er vandfyldte. Det udvendige $r ø r$ bestar af to adskilte dele hver med længden 1 m . Hver af disse dele er forbundet til et termostatbad. Herved kan en temperaturlagdeling etableres $i$ det udvendige og dermed også i det indvendige rør. Glasstaven er monteret i det
 der placeret et termoelement direkte i vandet i det indvendige ror. Et lod sørger for, at disse termoelementers position er stabil. Figur 14 viser et udsnit af opstillingen med termoelementerne placeret ud for glasrorets målepunkter.


Figur 14. Udsnit af proveopstilling til kontrol af glasstavens egnethed til temperaturmåling i varmelagre.

En temperaturlagdeling blev etableret og bevaret $i$ en time. Temperaturer i forskellige niveauer blev registreret, se figur 15. Det bemæxkes, at temperaturen $i$ toppen af det indvendige ror er lidt lavere end temperaturen i midten af roret. Denne stabile unaturlige temperaturlagdeling etableres af vandet, som cirkuleres genmem det udvendige ror og et ter mostatbad. Den største forskel mellem temperaturerne i samme niveau mait med glasstaven og med termoelementerne direkte placeret $i$ vandet var $0,1^{\circ} \mathrm{C}$. Det vurderes derfor, at glasstaven er velegnet til maling af lagertemperaturex under stabile temperaturforhold.

Der blev etableret en konstant temperatur pa omtrent $60^{\circ} \mathrm{C}$ i det indvendige rør. Varmt vand blev tappet fra toppen af det indvendige ror, og koldere vand tilfort bunden af det indvendige ror. Varigheden af denne tapning var tre minutter. Temperaturerne $i$ forskellige niveauer blev registreret under og efter tapningen, se figur 16. Tapningen starter til tiden 0 min og slutter tre minutter senere. For tapningen optræder der ogsa i dette forsøg en unaturlig temperaturlagdeling med de laveste temperaturex i toppen og de hojeste temperaturer $i$ bunden af det indvendige xor. Ogsa her etableres denne temperaturlagdeling ved hjælp af vandet, som cirkuleres gen nem det udvendige rør. Tragheden, som er knyttet til glase stavsmalingen, ex Eorholdsvis lille. Det bemarkes sailedes, at temperaturmålingerne med glasstaven allexede to minutter efter tapningens slutning er korrekte. Pludselige store temperaturændringer medforer dog betydelige malefejl for glasstaven.

Pa basis af forsøgsresultaterne vurderes det at glasstaven er velegnet; blot bor det huskes, at malingerne under og umiddelbart efter vandtapninger ikke ex korrekte.


## Glasstav: $X$

Termoelementerad direkte i vand:
Figur 15. Målte temperaturex i forskellige niveauer i røret ved stabil temperaturlagdeling.


### 3.3.3 N $\varnothing$ jagtighed af effektmåling

Effekten, som tilfores eller tappes fra varmelageret med et varmetransporterende medium, bestemmes som produktet af massefylden for det varmetransporterende medium, varmefylden for det varmetransporterende medium, volumenstrommen og temperaturdifferencen. Fx beregnes effekttilforslen til lageret fra solfangervæsken $Q_{u}$ af formlen:

$$
Q_{u}=V \cdot C_{p} \cdot \rho \cdot\left(T_{E}-T_{r}\right)
$$

Den statiske prøvestand tilsluttes en kasse med indbygget varmepatron, isolering og varmetabsskjold. Kassen er beskrevet i [54]. I alle forsøgene blev den samme stromningsxetning gennem varmetabsskjoldet benyttet.

Varmetabskoefficienten $K$ for kassen $i$ opstillingen blev malt som beskrevet $i$ afsnit 2.1. 1 . Fremlobstemperaturen $T_{f}$ til kassen blev holdt konstant, og varmepatronen fik ikke tilført effekt. Begge termosøjler, som blev benyttet til prøvningerne, som er beskrevet i kapitel 4 og 5, var installeret $i$ måleopstillingen. Måleresultaterne Eremgår af tabel 14.

Måleudstyr	Volumenstxøm $v \quad \ell / \mathrm{min}$	Fremlobstemperatur $\mathrm{T}_{f} \quad{ }^{\circ} \mathrm{C}$	Omgivelsestemperatur $\mathrm{T}_{0} \quad{ }^{\circ} \mathrm{C}$	Varmetabskoefficient for kasse i måleopstilling   $\% \quad \omega /{ }^{\circ} \mathrm{C}$
Måleudstyr   $n r$. 1	$\begin{aligned} & 1,52 \\ & 1,46 \end{aligned}$	$\begin{aligned} & 30,0 \\ & 78,9 \end{aligned}$	$\begin{aligned} & 21.9 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 0,28 \\ & 0,29 \end{aligned}$
$\begin{gathered} \text { Măleudstyr } \\ \text { nr. } 2 \end{gathered}$	$\begin{aligned} & 1.52 \\ & 1.46 \end{aligned}$	$\begin{aligned} & 30,0 \\ & 79,0 \end{aligned}$	$\begin{aligned} & 21,9 \\ & 22.4 \end{aligned}$	$\begin{aligned} & 0,71 \\ & 0,72 \end{aligned}$

Tabel 14. Varmetab for varmepatronkassen.
Der kan fra varmepatronkassen afgives en elektrisk effekt. Denne effekt stabiliseres med en spandingsstabilisator og måles med et præcisions-wattmeter (NORMA D4155) med en unøjagtighed på $0,1 \%$ af måleområdet, som kan varieres.

Forsøg med tre forskellige temperaturniveauer, tre forskellige volumenstrømme og to forskellige elektriske effekter blev udført. Herved dækkes størstedelen af de driftsforhold, som normalt benyttes ved varmelagerprovaingerne. Nar stabilitet er opnået, registreres den elektriske effekt, volumenstr申mmen $v$, omgivelsernes temperatur $T_{0}$ solfangervæskens fremlobs- og returtemperatur $T_{F}$ og $T_{r}$, samt temperaturdifferencen $T_{f} T_{r}$. Den malte varmeeffekt beregnes af udtrykket:

$$
\mathrm{V} \cdot \mathrm{C}_{\mathrm{p}} \cdot \rho \cdot\left(\mathrm{~T}_{f}-\mathrm{T}_{x}\right)-\mathrm{K} \cdot\left(\frac{\mathrm{~T}_{f}+\mathrm{T}_{X}}{2}-T_{0}\right)
$$

Resultaterne fremgar af tabel 15 og 16 . Overensstemmelsen mellem den malte varmeeffekt og den elektxisk malte effekt ex god for begge maleudstyr. Den største uoverensstemmelse er 5\%.

Den relative ubestemthed af $\mathcal{Q}_{\mathrm{u}}, S_{\mathcal{Q}_{\mathrm{u}}}$ er angivet $i$ tabel 17 med følgende maleubestemtheder:

$$
\frac{S_{V}}{V}=0,01, \quad \frac{S_{C}}{C_{p}}=0,02, \quad \frac{S_{\rho}}{P}=0,02 \quad 09 \quad S_{\Delta T}=0,1{ }^{\circ} \mathrm{C}
$$

$T_{f}-T_{r}{ }^{O_{C}}$	1	2	3	5	10	20
$\frac{S_{u}}{Q_{u}}$	0,10	0,06	0,04	0,04	0,03	0,03

Tabel 17. Relativ ubestemthed af $Q_{u}$ for forskellige $T_{f}{ }^{-} T_{x}$.

Pa basis af tabel 15,16 og 17 vurderes det at vare rimeligt at benytte størrelsen $S_{\Delta T}=0,1^{\circ} \mathrm{C}$, hvilket er gjort $i$ tabel 3 .

Temperaturniveau:						Temperatumiveas: $50^{\circ} \mathrm{C}$						Temperaturniveau: $80^{\circ} \mathrm{C}$					
1.47	20,3	6,00	550	552	1.00	1.57	49.4	5,90	580	585	0,99	1.49	80,2	6,04	564	575	0,98
1.30	20,6	18,42	1487	1518	0,98	1.50	49.4	16.89	1590	1637	0,97	1.49	79:3	16,90	1589	1617	0,98
2,91	20,2	3.08	556	545	1,02	3,09	49.6	2,95	571	583	0,98	3,03	81,0	3.00	571	574	0.99
2,94	20.3	8,53	1558	1558	1.00	3.09	49.7	8.36	1591	1640	0,97	2.89	80,0	8,79	1593	1624	0,98
5,78	20,2	1.59	573	595	0,96	6.19	49.8	1.49	576	584	0.99	5,94	80.4	1,57	588	578	1.02
5:56	20,1	4.67	1614	1640	0.98	6.20	50,0	4.12	1558	1645	0,95	5,92	80.4	4.28	1594	1629	0,98

Tabel 15. Varmeeffektmalinger for måleudstyr nr. 1.

Temperaturniveau: $20^{\circ} \mathrm{C}$						Temperaturniveau: $50^{\circ} \mathrm{C}$						Temperatumiveau:				$80^{\circ} \mathrm{C}$	
$2 / \mathrm{min}$						e/min										$\begin{aligned} & \begin{array}{c} 3 \\ 4 \\ 4 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \\ 0 \end{array} \\ & 0 \end{aligned}$	
1187	20,3	6.01	551	551	1.00	1.57	49.5	5.75	566	571	0.99	1.49	80,3	5.63	526	547	0,96
1,30	20,6	18,34	1482	1509	0.98	1.50	49.4	16.72	1574	1619	0,97	1.49	79.8	16.27	1530	1571	0.97
2,91	20.3	2,91	525	545	0.96	3.09	49.6	2.84	571	583	0.98	3.03	81.1	2,80	533	547	0.97
2.94	20.3	8,52	1556	$155 \%$	1.00	3,09	49.7	8.22	1618	1624	1.00	2.89	80.0	8,51	1542	1596	0.97
5.78	20,2	1,58	568	596	0.95	6.19	49.8	1.39	538	557	0,97	5.94	80.4	1.41	528	553	0.95
5.56	20.1	4.68	1617	1639	0.99	6,20	50.0	4.011	1600	1631	0,98	5,92	80.4	4.07	1515	1586	0.96

Tabel 16. Varmeeffektmalinger for maleudstyr nr. 2.

## 4. VANDIAGRE

Som nævnt $i$ afsnit 1.2 er vand velegnet som varmelagringsmateriale. I solvarmeanlæg til brugsvandsopvarmning ex det derfor naturligt at benytte selve brugsvandet som det varmelagrende materiale. I langt størstedelen af de solvarmeanlæg。 som er opfort $i$ Danmark, indgar en varmtvandsbeholder til brugsvandet da ogsa som anlæggets varmelager.

### 4.1 Lagertyper

For sma solvarmeanlæg til brugsvandsopvarmning til boliger, hvor der allerede findes en varmtvandsbeholder, er det narliggende at anvende den eksisterende varmtvandsbeholder som varmelager. Denne mulighed ex endnu kun undersøgt i meget begxænset omfang.

Normalt installeres solvarmeanlæg med et separat varmelager. Hovedvægten $i$ dette arbejde ex derfor lagt pa denne udformning. Forskellige lagertyper kan finde anvendelse her, se [55] og [56].

Ved nybyggeri er muligheden for at anvende kombitanke til stede. Ved en kombitank forstå et varmelager, som foruden at vare koblet til solvarmeanlægget ogsa er forbundet til et eller flere back-up systemer. se [57] og [58].

### 4.1.1 Benyttelse af eksisterende varmtvandsbeholder

Som navnt er det i boliger med en eksisterende varmtvandsbem holder nærliggende at udnytte denne bekolder som varmelager. Denne anvendelse er imidlertid ikke normal. Det skyldes forst og fremmest, at det er vanskeligt at installere anlagget, saledes at varmen fra solfangerkredsen kan overføres til beholderen.

Det eksisterende energisystem og styringen af dette, varmtvandsbeholderens form og placeringsmuligheden for varmeover-
føringssystemet, der sørger for at overføre solvarmen til varmtvandsbeholderen, er afgørende for, om varmtvandsbeholderen med fordel kan anvendes som varmelager for solvarmeanlegget, og for hvorledes varmeoverføringssystemet skal udformes.

Der er mange udformningsmuligheder for varmeoverføringssystemet. Et eksempel ex vist skematisk pa figur l\%. En varmeveksler, fx en koaxial varmeveksler, trenkes installeret under varmtvandsbeholderen. Varmtvandsbeholderens koldeste vand samles på grund af massefyldeforskelle $i$ varmeveksleren. Herved sikres, at solfangerkredsens temperaturniveau bliver så lavt som muligt. Nor solfangeren er i drift, vil der opstà naturlig cirkulation af brugsvandet, idet det fra bunden af beholderen transporteres til varmeveksleren og herfra videre


Figur 17. Skematisk illustration af varmeoverforingssystem til et solvarmeanlæg med udnyttelse af den eksisterende varmtvandsbeholder.
til beholderen gennem et plastror. plastroret er forsynet med et passende antal huller i forskellige niveauer. Herved sikres, at brugsvandet tilføres beholderen pa en sådan måde. at beholderens temperaturlagdeling udnyttes i stor udstrakning. Princippet ex endnu ikke afprovet. Mange andre udform ninger kan tænkes. Undersøgelser bør klarlægge fordele og ulemper ved forskellige udformninger og systemer. Herved bliver det muligt at udpege de systemer og lagerudformninger. hvor den eksisterende vartmvandsbeholder med fordel kan anvendes.

### 4.1. 2 Kombitanke

Ved nybyggeri er det let at forberede varmtvandsbeholderen til et (eventuelt senere installexet) solvarmeanlæg. Dette kan gøres ved at udforme varmtvandsbeholderen som en kombitank. Herved forstås et varmelager, som både ex forbundet til et solvarmeanlæg og til et eller flere back-up systemer.

Kombitanken bør udformes saledes, at solfangerkredsens temperaturniveau bliver lavest muligt. Samtidigt bor det sikres, at energisystemet, der skal klare den del af opvarmningen, som solen ikke magtex, kun træder i funktion, når det er nødvendigt og ikke ødelægger driftsbetingelserne for solfangeren. Varmeoverførslen fra solfangerkredsen til tanken bør derfor forega nedexst i tanken, mens varmeoverførslen fra back-up systemet til tanken bør foregå фverst $i$ tanken.

Forskellige udformninger af kombitanke er beskrevet i [58]. Mange forskellige udformninger kan tænkes. Undersøgelser bøx klarlagge fordele og ulemper ved de forskellige udformninger, og optimalt udformede kombitanke bor udvikles.

### 4.1.3 Separat vandlager til solvarmeanlag

I dag installeres næsten alle solvameanleg til brugsvandsopvarming med et separat varmelager. Dex benyttes hovedsageligt tre forskellige lagertyper: Kappebeholdere, lagre med
en neddykket varmtvandsbeholder og varmtvandsbeholdere med indbygget varmevekslerspiral. I kappebeholderen opbevares brugsvandet normalt i selve beholderne, mens solfangervæsken cirkuleres gennem kappen. I lagre med en neddykket varmtvandsbeholder opbevares brugsvandet normalt udelukkende i den neddykkede varmtvandsbeholder, mens selve lageret bestar af en trykløs vandtank med en indbygget varmevekslerspiral, hvorigennem solfangervæsken cirkuleres. I varmtvandsbeholderen med varmevekslerspiral opbevares brugsvandet i varmtvandsbeholderen, og solfangervæsken cirkuleres igennem varmevekslerspiralen.

I alle lagertyperne benyttes normalt stal som beholdermateriale. De forskellige lagertyper udnytter i forskellig udstrækning de muligheder, der er for at øge udbyttet fra solvarmeanlæggene ved brug af temperaturlagdeling i varmelagrene. De lave temperaturer $i$ lageret kan udnyttes til at reducere solfangerkredsens temperaturniveau og dermed øge solfangerudbyttet. De høje temperaturer i lageret kan udnyttes, nar der er behov for varmt vand med høje temperaturer.

Normalt opstå temperaturlagdeling i lageret pa grund af vandtapning. Nar solfangeren er i drift, vil varmetilførslen til lageret normalt forholdsvis hurtigt udjævne eventuelle temperaturforskelle. Er solfangeren ikke i drift, vil temperaturudjævningstempoet være lavere. Lagerudformningen bestemmer tempoet. Erfaringerne har vist. fx [19] og [55], at i hvert fald tre krav skal være opfyldt, for at temperaturlagdelingen i lageret skal udnyttes i rimelig udstrækning:

1) Det kolde vand skal tilf $\phi r e s$ bunden af lageret, uden at der skabes omrøring i vandvolumenet.
2) Varmevekslingssystemet mellem solfangervæske og vand skal placeres i bunden af beholderen.
3) Varmetransporten ved varmeledning fra toppen til bunden af lageret skal reduceres mest muligt.

Vedrørende kxav 3) skal det bemerkes, at for almindelige sma stalbeholdere er varmetransporten ved varmeledning fra toppen mod bunden af beholderen i stalet normalt storre end i vandet. Varmetransporten kan reduceres ved at gøre lageret højt og slankt, ved at benytte tynde beholdexmaterialer ellex beholdermaterialer med små varmeledningsevner.

For kappebeholdexe overholdes normalt kun krav 1). For lagre med en neddykket varmtvandsbeholder overholdes normalt kun krav 2). For varmtvandsbeholderen med varmevekslerspiralen kan alle tre krav overholdes, og denne lagertype er den bedst egnede af de tre omtalte typer. I [56] er den arlige ydelse fra sma solvarmeanlæg med forskellige lagertyper beregnet med forholdsvis simple beregningsmodeller. Beregningerne viser netop, at varmtvandsbeholderen med en indbygget varmevekslerspiral er mest velegnet. Denne lagertype er derfor udvalgt og undersøgt nærmere, se afsnit $4.3,4.4,4.5,4.6$ og 4.7 .

### 4.2 Varmetab

Varmetabet fra varmelageret er summen af transmissionstabet gennem isoleringen og varmetabet fra kuldebroer. Varmetabet fra sma varmelagre kan ofte være lacceptabelt stort og helt pdelaggende for solvarmeanlaggenes ydelser, se fx [18], [19], [55] og [21]. Varmetabene fra kuldebroer, fx i form af gennembrydninger af isoleringen, fra hjelpeudstyret til solvarmew anlægget og fxa roxforingerne uden for vammelageret, kan ofte være langt større end transmissionstabet gennem isoleringen. Det er derfor vigtigt at udforme lageret, sa disse enkelttab begranses mest muligt.

### 4.2.1 Transmissionstab

Nesten alle markedsforte solvarmeanlag til brugsvandsopvarmning er forsynet med et lille cylinderfoxmet vandlagex. Undersøgelserne begranses dexfox til udelukkende at omfatte en cylinderformet tank, som er vist skematisk pa figur 18.


Figur 18. Skematisk illustration af cylinderformet tank med isolering.

Varmelagerets må er: udvendig diameter $d_{y}$, udvendig højde $h$, isoleringstykkelse pa toppen $e_{t}$, isoleringstykkelse på siderne $e_{s}$ og isoleringstykkelse på bunden $e_{b}$. Isoleringsmaterialets varmeledningsevne benævnes $\lambda$ 。 Der ses bort fra de sma temperaturforskelle mellem vandet og beholdermaterialet. Desuden benyttes størrelsen af overgangsisolansen ved isoleringsoverfladen: $0,13 \mathrm{~m}^{2}{ }^{\circ} \mathrm{C} / \mathrm{W}$. Dette svarer til den $i$ [59] angivne størrelse af overgangsisolansen ved indvendige overflader i bygninger. Med disse forudsætninger bestemmes varmetabskoefficienten pr. højdeenhed fra beholderens sider, se [2], af:

$$
\frac{\pi}{\frac{1}{2 \cdot \lambda} \ln \frac{d_{y}+2 e_{s}}{d_{y}}+\frac{0,13}{d_{y}+2 e_{s}}} \quad w /{ }^{\circ} \mathrm{Cm}
$$

Det er vanskeligt at beregne varmetabet fra toppen (eller bunden) af varmelageret teoretisk korrekt, idet de varme-
strømsmæssige forhold i isoleringsmaterialet er komplicerede. Normalt er varmetabskoefficienten fra toppen relativ lille, og fejlen, som opstar ved at benytte en tilnærmet beregningsm metode, ex normalt forsvindende lille. Her beregnes varmetabskoefficienten fra toppen med rimelighed af udtrykket:

$$
\frac{\frac{\pi}{4} \cdot\left(d_{y}+e_{s}\right)^{2}}{\frac{e_{t}}{\lambda}+0.13} \quad W /{ }^{\circ} C
$$

Tilsvarende beregnes varmetabskoefficienten fra bunden af udtrykket:

$$
\frac{\frac{\pi}{4} \cdot\left(d_{y}+e_{s}\right)^{2}}{\frac{e_{b}}{\lambda}+0,13} \quad w /{ }^{\circ} \mathrm{C}
$$

Varmeisoleringsmaterialets varmeledningsevne $\lambda$ afhænger normalt af temperaturniveauet. For mineraluld-isolering med rumvægten $30 \mathrm{~kg} / \mathrm{m}^{3}$, se $[60]$, beregnes $\lambda$ saledes af ligningen:

$$
\lambda=0,0336+0,00026 \cdot\left(\frac{T_{1}+T_{0}}{2}\right) \mathrm{W} / \mathrm{m}^{O_{C}}
$$

$\frac{T_{1}+T_{0}}{2}$ er gennemsnitstemperaturen af lageret $T_{1}$ og af lageromgivelserne To. Formlen er gyldig, nar gennemsnitstemperaturen ex beliggende i temperaturintervallet fra $10^{\circ} \mathrm{C}$ til $60^{\circ} \mathrm{C}$.

Med $\lambda=0,045 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$ og $\mathrm{h} / \mathrm{d}_{\mathrm{y}}=2$ beregnes varmelagerets varmetabskoefficient for forskellige lagervolumener og isoleringstykkelser med de ovenfor anførte formler. Ligeledes be" regnes varmetabskoefficienten for et 200 l lager, isoleret med 5 cm isoleringsmateriale med $\lambda=0.045 \mathrm{~W} / \mathrm{m}{ }^{\circ} \mathrm{C}$ for for skellige $h / d_{y}$ forhold. Resultaterne fremgar af figur 19 og 20. Det ses, at varmetabskoefficienten for lageret bliver mindst, nar $h / d_{y}$-forholdet ex omkring 1,0 .


Figur 19. Varmelagerets varmetabskoefficient for forskellige varmelagervolumener og isoleringstykkelser.


Figur 20. Varmetabskoefficienten for et 200 \& lager isoleret med 5 cm isoleringsmateriale med $\lambda=0,045 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ som funktion af $h / d_{y}$-forholdet.

### 4.2.2 Kuldebro

Erfaringen har vist. [18] og [19], at placeringen af kuldew broerne og hjælpeudstyret har stox betydning for varmetabets størrelse. Placeres en kuldebro $i$ beholderens bund, afkøles vandet ved kuldebroen forholdsvis hurtigt og danner, hvis solfangeren ikke er i drift, et koldt stillestaende, isolem rende lag oven over kuldebroen, saledes at vammetabet fra kuldebroen bliver forholdsvis lille. Placeres en kuldebro $i$ toppen af beholderen, vil kuldebroen forblive varm, idet det af kuldebroen afkølede vand exstattes af vammere vand fra lageret pa grund af massefyldeforskelle. Naturlig konvektion $i$ lageret holder altsa kuldebroens temperatur hoj, og varmetabet fra kuldebroen bliver derfor stort. Tilsvarende betragtninger kan gøres vedrørende varmetabet fra hjolpeudstyret. Hjælpeudstyret placeres mest hensigtsmæssigt under beholderen $i$ et isoleret instrumentrum. En sadan placering begrænser udstyrets og lagerets varmetab mest muligt.

Rørforingen har ogsa betydning for varmetabet fra varmelage ret. En rorgennemforing gennem isolexingen ex den type kuldebro, som kan forarsage størst varmetab, idet der kan optræde intern væskecirkulation i røret, da væskens massefylde er temperaturafhængig. Denne interne vaskecixkulation vil opvarme storre ellex mindre dele af roxsystemet med stoxre ellex mindre lagervarmetab til folge. Det er dexfor vigtigt, at rørgennemføringen placeres i bunden af lageret, og at rørene føres nedad fra beholdexen, sa intern cixkulation i roxsystemet forhindres.

Under drift optræder der ofte store temperaturforskelle mel Iem beholdertoppens varme vand og beholderbundens kolde vand. Sammenholdes dette med de ovenfor navnte forhold, taler alle varmetabsmessige forhold for at 1) toppen af lageret skal vare velisoleret uden nogen form for kuldebroer, 2) alle kuldebroer, Ex roxgennemforinger, tankfastgorelser, 0.1., gkal placeres $i$ bunden af lageret, og 3) alt hjelpeudstyr skal placeres $i$ et isolexet instrumentrum under lagertanken.

De markedsførte varmelagre blev undersøgt i 1980. De meget store varmetab var hovedproblemet, [18]. Igennem 1982 og 1983 blev de markedsførte varmelagre unders申gt på ny, [27]. $[28],[29],[30],[31],[32],[33],[34],[35],[36],[37]$ og [38]. Måleresultaterne fra 1980 og fra $1982 / 1983$ er vist på figur 2l. Desuden er varmelagerets transmissionstab, som er beregnet $i$ afsnit $4.2 .1, v i s t$. Udviklingen siden 1980 har, under anvendelse af de ovenfor angivne retningsinier, ført frem til bedre udformede varmelagre med forholdsvis sma varmetab, uden at lagerprisen af den grund er steget.


Malt varmetabskoefficient for varmelager markedsført i 1980: o
Malt varmetabskoefficient for varmelager markedsført i 1982 og 1983: +
Beregnet varmetabskoefficient for varmelager uden kuldebroer:
Figur 21. Varmetabsmåinger for markedsførte varmelagre.

Som nævnt kan kuldebrovarmetabene reduceres til et minimum ved at udforme varmelageret hensigtsmæssigt. Varmetabene kan blive sà små, at de ingen indflydelse fax pa varmelagerets egnethed. Størrelsen af kuldebroers varmetab vil derfor ikke blive undersøgt detaljeret, idet sadanne grundige underspgelser desuden vil blive meget omfattende på grund af de komplicerede konvektive forhold omkring kuldebroer.

### 4.3 Varmeoverføringsevne

Som nævnt i afsnit 4.1 .3 er en varmtvandsbeholdex med en indbygget varmevekslexspiral den bedst egnede lagertype til solvarmeanlæg til brugsvandsopvarmning. Denne lagertype vil derfor blive grundigt undersøgt. En detaljeret matematisk model. som simulerer dette lagers termiske egenskaber, opstilles og valideres ved hjolp af forsøg. Med denne detaljerede model er optimeringsgrundlaget for udformningen af lageret til stede. Med modellen beregnes små solvarmeanlægs áro lige ydelse med forskellige lagerudformninger.

Varmelagerprøvningerne og omhyggelige undersøgelser, [40], har vist, at varmeoverføringsevnen fra solfangervasken til varmelageret $H$ kan findes af ligningen:

$$
\mathrm{H}=\mathrm{c}+\mathrm{d} \cdot \mathrm{~T}_{1} \quad \mathrm{~W} /{ }^{\mathrm{O} \mathrm{C}}
$$

$T_{1}$ er temperaturen af lagervandet, som omgiver varmevekslerspiralen; $c$ og d ex konstanter, som afhænger af varmevekslerspiralen, solfangervæsken, solfangervæskestrommen og effekttilforsien. I [40] ex det vist, at $c$ og d kan beregnes af formlerne:

$$
\begin{aligned}
& c=c_{2}+c_{3} \cdot \ln \left(T_{f}-T_{1}\right) \\
& d=d_{2}+d_{3} \cdot \ln \left(T_{f}-T_{1}\right)
\end{aligned}
$$

$T_{f}$ er solfangervæskens fremlobstemperatur til varmelagexet. Konstanterne $\mathrm{C}_{2}, \mathrm{c}_{3}{ }^{\prime} \mathrm{d}_{2}$ og $\mathrm{d}_{3}$ er udelukkende afhængige af varmevekslerspiralen, solfangervasken og volumenstrommen. Disse formler ex gyldige for alle normale driftbetingelser for typiske solvarmeanleg.

I [40] er en detaljeret teori til simulering af de varmeoverføringsmæssige forhold opstillet og valideret ved forsøg. Ved hjælp af denne teori kan de fire konstanter beregnes for forskellige varmevekslerspiraler, solfangervæsker og volumenstrømme.

Varmeoverføringsevnen afhænger af solfangervasken, lagertemperaturen $T_{1}$, differencen mellem solfangervaskens freml $\phi$ bstemperatur og lagertemperatur $T_{f}-T_{1}$, og dermed effekttilførslen til lageret, volumenstrømmen og længden, dimensionen og materialet af varmevekslerspiralen. Varmeoverføringsevnen $\boldsymbol{f}$ beregnes for forskellige driftsforhold og varmevekslerspiraler. En referencevarmevekslerspiral udsat for referencedriftsbetingelser benyttes som basis for disse beregninger. Varmevekslerspiralen og driftsbetingelserne fremgå af tabel 18.

Varmevekslerspiral	Solfangervaske	Solfangervolunenstxpm	Lagertemperatux $\mathrm{T}_{1}$	$\begin{gathered} \text { Drıvkxaft } \\ T_{\mathbb{E}}-T_{1} \sim \text { effekttiførsel } \end{gathered}$
Matexiale Dimension Langde kobber 10/8,4 5 m	508 (efter vage) vand/propylenglykol blanding	1,5 $2 / \mathrm{min}$	$50^{\circ} \mathrm{C}$	$5^{\circ} \mathrm{C} \quad 391 \mathrm{~W}$

Tabel 18. Data for referencevarmevekslerspiral og referencedriftsbetingelser.

I beregningerne varieres kun én parameter ad gangen, alle $\phi v=$ rige parametre bevares som angivet i tabel 18. Resultaterne fremgå af figur 22, 23, 24, 25, 26 og 27. Varmeoverføringsevnen vokser kraftigt med voksende lagertemperatur og voksende drivkraft, dvs. voksende $T_{f}=T_{I}$ eller voksende effekttilførsel. Ligeledes vokser varmeoverføringsevnen for voksende volumenstrøm og længde af varmevekslerspiralen. Spiraldimensionen og -materialet har derimod kun begrænset indflydelse pa størrelsen af varmeoverføringsevnen.

Figurerne illustrerer betydningen af variationer for de enkelte parametre. I virkeligheden afhænger de forskellige parametre af hinanden. Det er derfor vanskeligt at vurdere forskellige varmevekslerspiralers egnethed uden at benytte detaljerede beregningsmodeller, bade for beregning af varmeoverføringsevnen og for simulering af varmelagerets drift.


Fig. 22 Varmeoverfbringsevnen som funktion af lagertemperaturen.


Figur 23. Varmeoverføringsevnen som funktion af forskellen mellem solfangervæskens fremløbstemperatur og lagertemperaturen.


Figur 24. Varmeoverføringsevnen som funktion af effekttilførslen.


Figur 25. Varmeoverføringsevnen som funktion af volumenstrømmen.


Figur 26. Varmeoverføringsevnen som funktion af langden af varmevekslerspiralen.


Figur 27. Varmeoverføringsevnen som funktion af varmevekslerspiralen.

### 4.4 Temperaturlagdeling

Som omtalt $i$ afsnit 4.1 opstir temperaturlagdelingen $\mathbf{i}$ varmtvandsbeholderen normalt ved vandtapning. Temperaturerne udjevnes efter tapningen pa grund af vaxmeledning, bade i vandet og i beholdermaterialet. Den interne vametransport i lageret er imidlertid ikke udelukkende bestemt af varmeledningen. Varmelagerets varmetab foxarsager en nedadrettet vandtransport langs beholderens sider og dermed en tilsvarende opadrettet vandtransport 1 lagerets centrale del. Der ex knyttet varmem transporter til disse massetransporter. Den resulterende interne varmetransport foraxsaget af disse massetransporter er opadrettet. Endelig skal det navnes, at vandets massefylde afhænger af temperaturen. Under varmelagerets afkoling bliver der plads til stadig mere vand i lageret, og nar der ex tale om brugsvandsbeholdere, tilfores koldt vand derfor til lageret under afkølingen. Dette far naturligvis indflydelse pa temperaturlagdelingen i lageret.

Der er udført savel teoretisk som eksperimentelt arbejde for at udvikle beregningsmodeller, som korrekt simulerer varmelagerets temperaturlagdeling. størstedelen af arbejdet, [6]. [61], [62], [63], [64] og [65], er koncentreret om varmelagre under opvarmningsperioden, hvor lagervandet ud over at vare det varmelagrende materiale ogsa benyttes som det varmetransporterende materiale. Andre undersøgelsex omfatter varmelagre under stilstandsperioder, hvor vandet udelukkende benyttes som varmelagrende materiale, [66], [67], [68], [69]og [70]. De fleste af underspgelserne er koncentreret omkring varmeled ningen $i$ vandet. Enkelte undersøgelser ex koncentreret om varmeledningen bade $i$ vandet og $i$ beholdermaterialet. Kun i [67], [68] og [70] er de konvektive forhold undersøgt. I disse undersøgelser er der til gengæld set bort fra varmeled ningen $i$ beholdermaterialet. Netop denne varmeledning er for holdsvis stor for små ståbeholdere. I [71] ex opstillet en matematisk model, som simulerer temperaturlagdeling i varmelageret, nar der tages hensyn til bade konvektion og varmem
ledning i lageret. Modellen er så kompliceret og tidkrævende, at den er uanvendelig $i$ forbindelse med beregning af den årlige ydelse for solvarmeanlæg. I [72] er simple matematiske modeller, som simulerer varmelagres termiske egenskaber, beskrevet og underbygget ved hjælp af de dynamiske varmelagerprøvninger. I disse modeller tages der ikke hensyn til intern konvektion i lageret forarsaget af varmetabet fra lageret. Der tages heller ikke hensyn til vandets udvidelse og sammentrækning igennem opvarmningsperioder og afkølingsperioder. Varmeledning tages i beregning bade i vandet og i beholdermaterialet. I beregningerne fordeles varmelagerets varmetabskoefficient på de forskellige dele af varmelageret pà en sadan made, at der opnås rimelig god overensstemmelse mellem beregninger og malinger. Denne fordeling er ikke korrekt, idet den interne varmetransport i lageret ikke beregnes korrekt.

Der eksisterer således ikke en simpel matematisk model, som korrekt simulerer de komplicerede forhold, der bestemmer temperaturlagdelingen $i$ varmtvandsbeholderen. Ved en detaljeret optimering af lagerudformningen kræves en sadan model. Der blev derfor udført forsøg med en varmtvandsbeholder. Disse forsøg er beskrevet i afsnit 4.4.1 og 4.4.3. og de danner baggrund for udviklingen af en simpel model, som korrekt simulerer varmelagerets temperaturlagdeling.

### 4.4.1 Fors $\phi \mathrm{g}$ til bestemmelse af varmetabet for varmtvands beholder

En høj, slank, ubehandlet varmtvandsbeholder af stal med et omtrentligt vandvolumen på 150 l benyttes. Fabrikatet er Kähler \& Breum, typen er VVB. Svøbet afsluttes med en flange, saledes at beholderens nederste endebund er udskiftelig. To endebunde afprøves: den ene er forsynet med en varmevekslerspiral, den anden er uden varmevekslerspiral. I denne endebund installeres et varmelegeme med lille vertikal udstrækning. Varmtvandsbeholderen er vist pa figur 28. Til


Figur 28. Varmtvandsbeholder.
venstre ses beholderen, uisoleret, med varmtvandsrøret fra toppen af tanken og koldtvandsrøret med tilhørende sikkerhedsventil til bunden af tanken. Lageret er forsynet med termoelementer fastgjort til svøbet for hver $10 . \mathrm{cm}$. Herved kan svøbets temperaturlagdeling registreres. Endebunden med varmevekslerspiralen er placeret pa gulvet ved siden af beholderen. Til hojre ses beholderen, isoleret. Neden under er lageret med endebunden med varmelegemet illustreret skematisk.
pa figur 29 er lagerets udforming vist med endebunden med varmevekslerspiralen.

Pa figur 30 er de to endebunde vist. Øverst ses endebunden med varmevekslerspiralen, nederst endebunden med et specielt udformet varmelegeme med meget lille vertikal udstrakning.

Data for varmtvandsbeholderen og de to endebunde fremgar af tabel 19, 20 og 21.

Den tilnærmede beholderform, som benyttes i bexegningsmodellen for varmelagerets drift, ex angivet $i$ tabel 22.

En glasstav med temperaturfølere for hvex 10 . cm installeres pa en sadan made, at lagertemperaturerne og svøbets temperaturer males i nøjagtigt samme niveau。 Temperaturerne males i hele lagerets udstrakning. Glasstaven og dens egnethed er beskrevet i afsnit 3.3. Studsen i midten af lagexets øverste endebund benyttes som målestuds for glasstaven.


Figur 29. Varmtvandsbeholderens udformning. Må i mm.


Figur 30. Endebunde til varmtvandsbeholder.

Beholdermateriale	Stål st 37-2
Godstykkelse $\quad \begin{array}{ll}\text { svøb } \\ & \text { endebunde }\end{array}$	$\begin{aligned} & 5 \mathrm{~mm} \\ & 5 \mathrm{~mm} \end{aligned}$
materiale   Isolering isoleringstykkelse	mineraluld   5 cm
Varmtvands-og matallængde   koldtvandsrør dimension    totalmasse	$\begin{aligned} & 2,1 \mathrm{~m} \\ & \text { stal } \\ & 3 / 4^{\mathrm{n}} \\ & 3,3 \mathrm{~kg} \end{aligned}$
svøb   En endebund    Masse flange    ben    overgang svøb/endebund   i toppen af beholderen     andet: sikkerhedsventil,    studse, rorindf $\phi r i n g$,    bolte o.l.	71.9 kg   $3,6 \mathrm{~kg}$   $15,4 \mathrm{~kg}$   $2,8 \mathrm{~kg}$   0.4 kg   $1,5 \mathrm{~kg}$

Tabel 19. Data for varmtvandsbeholder.

længde   Varmeveksler- materiale   spiral    dimension   masse	$\begin{gathered} 8,3 \mathrm{~m} \\ \text { kobber } \\ 15 / 13 \mathrm{~mm} / \mathrm{mm} \\ 3,2 \mathrm{~kg} \end{gathered}$
Vandvolumen ved $20^{\circ} \mathrm{C}$	
Masse af tom uisoleret beholder incl. rør, varmevekslerspiral 0.1.	105.7 kg

Tabel 20. Data for varmtvandsbeholder med varmevekslexspiral.

Varmelegeme	form   effekt	spiralviklet   500 W
Vandvolumen ved $20^{\circ} \mathrm{C}$	$152,5 \mathrm{l}$	
Masse af tom uisoleret beholder   incl. røx, varmelegeme o.l.	$102,5 \mathrm{~kg}$	

Tabel 21. Data for varmtvandsbeholder med varmelegeme.

Form	Indre   diameter	Ydre   aianeter	Tndre   højae	Ydre   hylinder   form
$0,34 \mathrm{~m}$	$0,35 \mathrm{~m}$	$1,68 \mathrm{~m}$	$1,69 \mathrm{~m}$	

Tabel 22. Data for beholderform ved $20^{\circ} \mathrm{C}$ anvenat i beregningsmodel.

For at validere beregningsmetoden for temperaturlagdelingen i lageret ma størrelsen af lagerets varmetabskoefficient og dens fordeling pà de forskellige dele af lagexet kendes. Forsøg med lageret med endebunden med varmelegemet benyttes til at finde varmetabskoeficienten og dens fordeling. Disse fors $\phi$ g beskxives i det følgende.

Vamelegemet er placeret $i$ endebundens laveste punkt og har en meget lille vextikal udstrakning, ca. 6 cm, se figur 30. Varmelegemets tilslutningsdase ongives af beholderens isolem ring. Varmelageret kan opvarmes af varmelegemet uden temperaturlagdeling af betydning, idet massefyldeforskelle i vandet sørger for en hurtig temperaturudjævning. Varmelegemet tilsluttes en variotrafo og en spandingsstabilisator, saledes at effekttilførslen kan vælges og holdes konstant i omradet Era 0 W til 500 W . Effekten males med et precisionswattmeter (NORMA D4155) med en unøjagtighed på 0,1\% af måleomradet.

En konstant effekt $E$ tilføres lageret. Iagertemperaturen $T_{1}$ stabiliseres, og stabiliteten bevares i en langvarig periode. Kun perioder, hvor lagertemperaturens variation ex mindre end $0,1{ }^{\circ} C_{0}$ og hvor omgivelsernes temperatur $T_{o}$ varierer mindre end $0,5{ }^{\circ} \mathrm{C}$, benyttes $i$ malingerne. Den tilførte effekt er lig med varmelagerets varmetab, hvorfor varmelagerets vametabskoefifcient $K_{d}$ bestemmes af:

$$
K_{d}=\frac{E}{T_{1}-T_{0}}
$$

Målinger foretages med og uden isolering af glasstavens fasto gørelse $i$ toppen af lageret, se figur 31. Forsøg uaføres saledes både med og uden en kuldebro i toppen af lageret. Malinger foretages med forskellige effekter og dermed forskellige temperaturniveauex. Resultaterne fremgar af tabel 23. Det ses, at isolexingen af glasstavens fastgørelse reducerer varmetabskoefficienten med $0,1 \mathrm{~W} /{ }^{\circ} \mathrm{C}$.

Kuldebro   i toppen ?	E W	$\mathrm{T}_{1} \quad{ }^{\circ} \mathrm{C}$	$\mathrm{T}_{0} \quad{ }^{\circ} \mathrm{C}$	Stabiliseringsperiodens varighed	$\mathrm{K}_{\mathrm{d}} \quad \mathrm{W} /{ }^{\circ} \mathrm{C}$
ja	145.7	76.4	20,5	1.4	2,61
nej	131.0	75,5	23:4	16	2,51
	27,4	36.5	24.7	15	2,32

Tabel 23. Varmetabskofficientmalinger.

Fordelingen af varmetabskoefficienten findes ved fors $\phi$ g med en til formalet specielt opbygget forsøgskasse. Forspgskasm sens udvendige må ex: langde: 91 cm , bredde: 78 cm og højde: 167 cm . Kassen er vist skematisk på figur 32. Kassen er isoleret med 5 cm mineraluld og forsynet med ben og et cirkulørt hul $i$ bunden, saledes at den $\phi$ verste del af varmtvandsbeholdexen kan placeres inden i kassen. Benene er ind-


Figur 31. Varmelagerets top med og uden kuldebro.
stillelige på en sådan made, at en større eller mindre del af varmtvandsbeholderen kan være indesluttet af kassen. Kassen er forsynet med et elektrisk varmepanel af fabrikatet Nobø, type G4EZ-405, og to tværstrømsblæsere af fabrikatet ZiehlAbegg, type SQR 6-36-2. Varmepanelet styres af en i kassens indre placeret termostatfølex og en effekt/temperaturregulator.


Figur 32. Skematisk illustration af proveopstillingen.
Styringen af varmepanelet og tværstrømsblæserne muliggør, at luften i kassen kan holdes på en ensartet og konstant temperatur. Luftens temperatur blev malt 12 forskellige steder i kassen: foroven, $i$ midten og forneden i de fire hjørner. Den største temperaturvariation $i$ luften $i$ kassen igennem alle forspgene var $0,5^{\circ} \mathrm{C}$; altsa holdes lufttemperaturen i kassen rimeligt konstant. Forsøgskassen med ben er vist på figur 33, hvor ogsa varmtvandsbeholderen er vist. På Eigur 34 vises en del af forsøgskassens indre med varmepanelet og de to tværstrømsblæsere. Forsøgskassen placeres saledes, at varmtvandsbeholderens фverste del indesluttes af kassen. Den snævre åbning mellem varmtvandsbeholderen og kassens hul udfyldes med mineraluld. Opstillingen er vist på figur 35.

- 105 -


Figur 33. Forsøgskasse og varmtvandsbeholder.


Figur 34. Tværstrømsblæsere og varmepanel i den isolerede forsøgskasse.


Figur 35. Måleopstilling til bestemmelse af fordelingen af varmelagerets varmetabskoefficient.

Forsøgskassens varmepanel reguleres saledes, at luftens temperatur i kassen er omtrent $75^{\circ} \mathrm{C}$. Effekten til varmelegemet i varmtvandbeholderen $E$ indstilles saledes, at lagertemperaturen bliver omtrent $75^{\circ} \mathrm{C}$.

Under hele prøvningen optræder der ingen temperaturlagdeling i varmtvandsbeholderen. Efter nogen tid stabiliseres lagertemperaturen. Effekttilførslen $E$ indstilles herefter således, at forskellen mellem lagertemperaturen og forsøgskassens lufttemperatur reduceres. proceduren gentages indtil forskellen mellem lagertemperaturen og kassens lufttemperatur er højst $0,1^{\circ} \mathrm{C}$. Den opnåede stabilitet bevares i en langvarig periode. Kun perioder, hvor lagertemperaturen $T_{I}$
ændres mindre end $0,1^{\circ} \mathrm{C}$, hvor forskellen mellem $\mathrm{T}_{2}$ og kassens lufttemperatur er mindre end $0,1^{\circ} \mathrm{C}$, hvor varmelegemets effekt $E$ ændxes mindre end $0,5 \mathrm{~W}$ og hvor den maksimale variation for omgivelsestemperaturen To er $0.5^{\circ} \mathrm{C}$, benyttes som en stabil måleperiode. Måleperiodens varighed benavnes ${ }^{\tau}{ }_{m}$. Stabilitetskravene er strenge, og hvert fors $\varnothing \mathrm{g}$ er derfor tidkravende.

Ovennavnte forsøg blev kun udført med varmelageret uden kuldebro i toppen af lageret. Tre forsøg med forskellige indstillingex af forsøgskassens ben blev udført. Herved males varm metabskoefficienten for tre forskellige dele af beholderen. Varmetabskoefficienten for den del af beholderen, som ikke er indesluttet af kassen $K_{1} 。 K_{2}$ og $\mathbb{K}_{3}$ findes af samme lig ning for de tre forsøg, fx:

$$
K_{1}=\frac{E}{T_{1}-T_{0}}
$$

Denne beregningsmetode er rimelig, idet varmetabet fra den del af lageret, somer indesluttet af kassen, kan negligeres.

Malingen af $\mathbb{K}_{1}, \mathbb{K}_{2}$ og $K_{3}$ benyttes til bestemnelse af varmetabskoefficienten for beholderens sider $K_{\text {side }}$ top $K_{\text {top }}$ og bund $\mathrm{K}_{\text {bund }}$ Dette er muligt, da størrelsen af varmetransporten gennem beholderisoleringen fra den del af beholderen. som ex indesluttet af kassen, til ongivelserne for den nederste del af beholderen ex den samme for alle tre fors $\phi$ g. Overgangsisolansen ved den indvendige beholderside i de forskellige forsøg er næsten ens. Det skønnes, at eventuelle forskelle fra forsøg til forsøg, forarsaget af fors $\phi$ gskassen, er uden betydning for måleresultaterne. Overgangsisolansen ved den del af isoleringens overflade, som er placeret under forsøgskassen, pavirkes af forsøgskassen. Bade de konvektive og de stralingsmassige forholde påvirkes, men da både lageret og forsøgskassen er velisoleret, og da luftbevagelsen i laboratoriehallen er af en rimelig storrelse, vurderes det, at
fors $\varnothing$ gskassen maksimalt kan andre størrelsen af $K_{1}, K_{2}$ og $\mathrm{K}_{3} 2 \%$ pa grund af andret overgangsisolans. Omgivelsestemperaturen $T_{0}$ males ud for midten af den del af beholdersiden, som ex placeret under forsøgskassen.

Måleresultaterne ex vist i tabel 24.

Afstand gulv/ nedexste del a 8 forsogskassens bundisolextng	Agstand beholderens mederste andebund/miaten at forswgakamaens bundleolering	Vameme legemets sefekt   \%	\&ager    $y_{1}$	Cug \& velsese cemgexatue $4_{0}$	Was sighed 35 btabil wale" pestode ©	Varme tabs"   koevisucient   for nederste   del ar   beholderen
$0,76 \mathrm{~m}$	0.34 m	53.36	$75.9{ }^{\circ} \mathrm{C}$	$20.6{ }^{6} \mathrm{c}$	98	
1, 17 m	$0,85 \mathrm{~m}$	75, \%	$75.7{ }^{\circ} \mathrm{C}$	21.00	35 h	$\mathrm{K}_{2}=2.40{ }_{\mathrm{O}}^{\mathrm{C}}$
1.56 m	1.26 m	99.0 明	$76.0{ }^{\circ} \mathrm{C}$	$22.6{ }^{\circ} \mathrm{C}$	1) $h$	$\mathrm{K}_{3}=1.85 \frac{\mathrm{~b}}{\mathrm{O}_{\mathrm{C}}}$

Tabel 24. Maleresultater for fordeling af varmetabso koefficienten。

Hele beholderens side er isoleret ensartet i hele beholderens højde. Beholderens højde ex 1.69 m . Varmetabskoefficienten for beholderens side $K_{\text {side }}$ ved omtrent $76^{\circ} \mathrm{C}$ findes derfor af:

$$
\mathbb{K}_{\text {side }}=\frac{1,69}{(1,26-0,44)} \cdot\left(K_{3}-K_{1}\right)=1,83 \quad \mathrm{~W} /{ }^{\circ} \mathrm{C}
$$

Varmetabskoefficienten for beholderens top $\mathrm{K}_{\text {top }}$ ved omtrent $76^{\circ} \mathrm{C}$ findes af:

$$
\begin{aligned}
K_{\text {top }}= & K_{d}-K_{3}-\frac{(1,69-1,26)}{1,69} \cdot K_{\text {side }}= \\
& 2,51-1,85-\frac{0,43}{1,69} \cdot 1,834=0,19 \mathrm{~W} /{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Varmetabskoefficienten for beholderens bund $\mathrm{K}_{\mathrm{b}}$ und ved omtrent $76^{\circ} \mathrm{C}$ findes af:

$$
\mathrm{K}_{\mathrm{bund}}=\mathrm{K}_{1}-\frac{0,44}{\mathrm{I}_{0} 69} \cdot \mathrm{~K}_{\mathrm{side}}=0,48 \mathrm{~W} /{ }^{\circ} \mathrm{C}
$$

Det bemærkes, at $\left(K_{3}-K_{2}\right)-\left(K_{2}-K_{1}\right)=0,01 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. Heraf ses, at det er rimeligt at antage, at varmetabskoefficienten fra beholderens side pr. højdeenhed er konstant.

Beregnes varmetabskoefficenterne som angivet i afsnit 4.2.1. fas følgende størrelse for hver enkelt varmetabskoefficient:

$$
\mathrm{K}_{\mathrm{side}}=1.77 \mathrm{~W} /{ }^{\circ} \mathrm{C} \text { og } \mathrm{K}_{\text {top }}=\mathrm{K}_{\mathrm{bund}}=0.10 \mathrm{~W} /{ }^{\circ} \mathrm{C}
$$

Forskellen mellem den malte og beregnede varmetabskoefficent for siden er meget lille. Forskellene mellem de malte og de beregnede varmetabskoefficienter fox toppen og bunden er først og fremmest forårsaget af kuldebroer: i toppen er kuldebroerne forårsaget af varmtvandsroret og glasstaven til tempera turmålingerne; $i$ bunden er kuldebroerne forarsaget af flang en, benene og koldtvandsrøret.
$T_{1}, T_{o}$ og måles med en vis unøjagtighed. Unøjagtigheden Eor $E$ er knyttet dels til præcisionswattmeteret, dels til varigheden af måleperioden $\tau_{\mathrm{m}}$ 。 Lagertemperaturandringen $i$ maleperioden er mindre end $0,1^{\circ} \mathrm{C}$. Dette svarer til, at energiændringen for varmelageret er mindre end omtrent 66840 J. Nar effekten er beliggende i omradet mellem

$$
E-\frac{66840}{\tau_{m}} \quad \text { og } \quad E+\frac{66840}{\tau_{m}}
$$

vil stabilitet kunne opnăs i maleperioden. Unøjagtigheden af effektmåingen med præcisionswattmeteret er forsvindende lille $i$ forhold til unøjagtigheden, som er knyttet til stabilitetskriteriet. I det iolgende forudsættes det, at ubestemtheden for effekten $S_{E}=\frac{66840}{\tau_{m}}$. Endvidere regnes med ubestemthederne for temperaturmaiingerne $S_{T}=S_{T_{1}}=S_{T_{0}}=0,5^{\circ} \mathrm{C}$.
Varmetabskoefficienten $K_{1}$ findes af: $K_{1}=\frac{E}{T_{1}-T} \quad$ og ubestemtheden for $K_{1}$ af:

$$
\begin{aligned}
\mathrm{S}_{\mathrm{K}_{1}}= & \sqrt{\left(\frac{\partial \mathrm{K}_{1}}{\partial \mathrm{E}} \mathrm{~S}_{\mathrm{E}}\right)^{2}+\left(\frac{\partial \mathrm{K}_{1}}{\partial \mathrm{~T}_{1}} \mathrm{~S}_{\mathrm{T}_{1}}\right)^{2}+\left(\frac{\partial \mathrm{K}_{1}}{\partial \mathrm{~T}_{0}} \mathrm{~S}_{\mathrm{T}_{0}}\right)^{2}}= \\
& \mathrm{K}_{1} \sqrt{\left(\frac{\mathrm{~S}_{\mathrm{E}}}{\mathrm{E}}\right)^{2}+2 \cdot\left(\frac{\mathrm{~S}_{\mathrm{T}}}{T_{1}-\mathrm{T}_{0}}\right)^{2}}
\end{aligned}
$$

For varmetabskoefficientmalingerne for varmtvandsbeholderen uden kuldebro i toppen fra tabel 23 og 24 er $S_{\mathrm{E}}$ og ubestemthederne for de måte varmetabskofficienter angivet i tabel 25.

Afstand beholderens nedexste endebund/ midten af Eosspgs* kassens bund isolexing	$\begin{aligned} & T_{1} \\ & o_{C} \end{aligned}$	$\begin{aligned} & \mathrm{T}_{\mathrm{O}} \\ & { }_{\mathrm{C}} \end{aligned}$	$\begin{aligned} & { }^{{ }^{\mathrm{n}}} \mathrm{n} \\ & \mathrm{~h} \end{aligned}$	E   $W$	$\begin{gathered} \text { Ubestemthed } \\ \operatorname{Eor}_{\mathrm{E}} \\ \mathrm{~S}_{\mathrm{E}} \\ \mathrm{~W} \end{gathered}$	Varmetabs $=$ koefficient $\text { ㄴ/ } /{ }^{\circ} \mathrm{C}$	ubestemthed GOX varmetabskoesticient $\mathrm{W} /{ }^{\circ} \mathrm{C}$
ingen kasse	36,5	24.7	15	27,4	1.24	$\mathrm{K}_{\mathrm{d}}=2,32$	$S_{K_{d}}=0,15$
ingen kasse	75,5	23.4	16	131.0	1,16	$K_{d}=2,51$	$S_{\mathrm{K}_{\mathrm{a}}}=0,04$
0.44 m	75,9	20,6	9	53.3	2.06	$\mathrm{x}_{1}=0,96$	$\mathrm{S}_{\mathrm{K}_{1}}=0.08$
$0,85 \mathrm{~m}$	75.7	21,8	15	75.4	1.24	$k_{2}=1.40$	$S_{\mathrm{K}_{2}}=0,03$
1,26 m	76,0	22.6	11.	99.0	1,69	$K_{3}=1,85$	$s_{\mathrm{K}_{3}}=0,04$

Tabel 25. Ubestemtheder fox malte varmetabskoefficienter.

Med de $i$ tabel 25 angivne ubestemthedex findes ubestemthederne for $K_{\text {side }} K_{\text {top }}$ og $K_{b u n d}$ Dex ses bort fra unpjagtigheder forarsaget af lagerets geometri. Ubestemthederne for $\mathbb{K}_{\text {side }}$ Ktop. $K_{b u n d}$ og den totale varmetabskoefficient fremgar af tabel 26.


Tabel 26. Varmetabskoefficienter og deres måleubestemtheder for varmtvandsbeholderen uden kuldebro $i$ toppen.

## i varmtvandsbeholdere

Beholderen opdeles i. $N$ lige høje lag, soledes at vertikal temperaturlagdeling kan beregnes. Lag 1 er det nederste lag, og $\operatorname{lag} \mathrm{N}$ er det $\varnothing$ verste lag. Lag I antages at have en ensartet temperatur $\quad$ ' (I), mens varmelagringskapaciteten for lag $I$ CI(I) varierer med temperaturen $T(I)$. Både massefylden og varmefylden for vand ex uafhængige af trykket $i$ varmtvandsbeholderen, [73], men afhængige af temperaturen, se Eigur 36. I temperaturintervallet fra $10^{\circ} \mathrm{C}$ til $100^{\circ} \mathrm{C}$ reduceres massefylden med mere end $4 \%$ Varmefyldens maksimale andring i intervallet fra $10^{\circ} \mathrm{C}$ til $100^{\circ} \mathrm{C}$ er $0.9 \%$. Det ex derfor mimeligt at se bort fra varmefyldens temperaturafhangighed og at benytte $C_{p v}=4188 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ 。


Figur 36. Massefylde og vammefylde for vand ved forskellige temperaturer.

I temperaturintervallet fra $10^{\circ} \mathrm{C}$ til $100^{\circ} \mathrm{C}$ er folgende udtryk fundet for massefylden af vandet i lag I:

$$
\rho(I)=1000,6-0,0128 \cdot \mathrm{~T}(\mathrm{I})^{1,76} \mathrm{~kg} / \mathrm{m}^{3}
$$

Beholdermaterialet udvider sig normalt ogsa under opvarmangen, saledes at vandvolumenet af lag I VOL(I) afhenger af temperaturen $T(I)$. VoL (I) beregnes ved hjalp af beholderens mal ved $20^{\circ} \mathrm{C}$, den indvendige diameter $d_{i}$ og den indvendige hojde $h_{i,}$ og beholdermaterialets varmeudvidelseskoefficient $\alpha$ :

$$
\operatorname{VOL}(I)=\frac{\pi}{4} \cdot d_{i}^{2} \cdot \frac{h_{i}}{N} \cdot(I+\alpha \cdot(T(I)-20))^{3}
$$

Vandmassen $i \operatorname{lag} I \quad M(I)$ findes $a f:$

$$
M(I)=\rho(I) \cdot \operatorname{VOL}(I)
$$

Varmelagringskapaciteten for lag $I$ CI (I) ex summen af varme lagringskapaciteten for vandet $i \operatorname{lag} I$ og varmelagringskapaciteten for beholdermaterialet $i$ lag I。 Varmelagringskapaciteten for beholdermatexialet beregnes ved hjalp af beholderens mal ved $20^{\circ} \mathrm{C}$, den udvendige diameter $d_{y}$ og den udvendige højde $h$. Nax der ses bort fra uregelmassigheder i beholde* rens geometri, fx i form af varmevekslexspiraler, flanger, ben, overgang mellem svob og endebunde og lignende, beregnes CI (I) aE:

$$
\begin{aligned}
& C I(1)=M(1) \cdot C_{p V}+\left(\frac{\frac{\pi}{4} \cdot h_{i}\left(d_{y}^{2}-d_{i}^{2}\right)}{N}+\frac{\frac{\pi}{4} \cdot d_{y}^{2} \cdot\left(h^{2}-h_{i}\right)}{2}\right) \rho_{b} \cdot C_{p_{b}} J /{ }^{\circ} C \\
& \text { fOR } I=2, N-1: \quad C I(I)=M(I) \cdot C_{P V}+\frac{\frac{\pi}{4} \cdot h_{i} \cdot\left(d_{y}^{2}-d_{i}^{2}\right)}{N} p_{b} \cdot C_{P_{b}} \quad J /{ }^{O} C \\
& C I(N)=M(N) \cdot C_{p V}+\left(\frac{\frac{\pi}{4} \cdot h_{i}\left(d_{y}^{2}-d_{i}^{2}\right)}{N}+\frac{\frac{\pi}{A} \cdot d_{y}^{2} \cdot\left(h^{2}-h_{i}\right)}{2}\right) \rho_{b} \cdot C_{P_{b}} J /{ }^{\circ} C \\
& \rho_{b} \text { er beholdermaterialets massefylde, og } C_{p_{b}} \text { er beholder- } \\
& \text { materialets varmefylde. }
\end{aligned}
$$

### 4.4.2.1 Varmeledning

Varmeledning i vand og beholdermateriale foraxsager en nedadrettet varmetransport mellem nabolag. Forudsættes et retlinet temperaturforløb mellem midten af nabolagene og konstante varmeledningsevner for vand og beholdermateriale imellem midten af nabolagene, kan varmestrømmen, forarsaget af varmeledning mellem lag IHl og lag $I_{\text {, }}$ tilnærmet beregnes af:

$$
\operatorname{XK}(I) \cdot(T(I+1)-T(I)) \quad W
$$

hvor $\quad X K(I)=\frac{\frac{\pi}{4} \cdot d_{i}^{2} \cdot \lambda_{v}(I)+\frac{\pi}{4} \cdot\left(d_{y}^{2}-d_{i}^{2}\right) \cdot \lambda_{b}}{h / N} \quad W /{ }^{\circ} C$
$\lambda_{b}$ er beholdermaterialets varmeledningsevne og $\lambda_{v}(I)$ er vandets varmeledningsevne imellem lag I og lag Itl. Vandets varmeledningsevne afhænger af vandtemperaturen, og tilnærmet benyttes middeltemperaturen mellem lag I og lag Itl. I temperaturintervallet fra $10^{\circ} \mathrm{C}$ til $100^{\circ} \mathrm{C}$ er følgende udtryk fundet for varmeledningsevnen:

$$
\lambda_{v}(I)=0,520+0,0198 \cdot\left(\frac{T(I)+T(I+1)}{2}\right)^{0,46} \quad W / m{ }^{\circ} \mathrm{C}
$$

De ovenfor nævnte forudsætninger er opfyldt i større eller mindre omfang, alt afhængig af antallet af lag, som benyttes i modellen. Jo flere lag des bedre er forudsætningerne opfyldt.

### 4.4.2.2 Varmetab og vandstrømning i varmtvandsbeholderen

Den i afsnit 4.4 omtalte opadrettede varmestrøm, som er foråm saget af den nedadrettede vandstrom langs beholdervæggen og den opadrettede vandstrøm i lagerets midte, tages i beregning ved fastlæggelse af lagenes varmetab. Dette er rimeligt, idet varmetabet forarsager denne varmetransport. Den opadrettede varmestrøm tages $i$ beregning på en sådan måde, at en del af beholdersidens varmetab fra et lag eventuelt flyttes til et nedenfor beliggende lag.

Uden hensyntagen til en eventuel flytning af varmetabene beregnes størrelsen af tabet fra lag $I_{\text {, }}$ ZTAB(I), som beskrevet i
afsnit 4.2.1. Størrelsen af varmetabet, som flyttes fra lagene over lag I til lag $I$ benævnes $E T A B(I)$. Der indfores en storrelse $\alpha(I)$, som er placeret $i$ intervallet Era 0 til 1. $\alpha(I)$ er et udtryk for, hvor stor en del af varmtvandsbeholdew rens sidetab, som flyttes nedad i beholderen fra lag itl til lag I. For $I<\mathbb{N}-1$ defineres $\alpha(I)$ og $E T A B(I)$ ved $h j \neq I p a f$ ligningen:

$$
\alpha(I)=\frac{\operatorname{ETAB}(I)}{\operatorname{ETAB}(I+I)+2 T A B(I+I)}
$$

Det teoretisk beregnede varmetab fra det pverste lag zTAB(N) bestar af et bidrag fra toppen af beholderen zTAB top $(\mathbb{N})$ og et bidrag fra beholdersiden ZTAB $_{\text {side }}(\mathbb{N})$. Kun sidetabet kan flyttes til de nedenfor beliggende lag, idet tabet fra toppen forarsager en nedadrettet vandstrom i midten af lageret. $\alpha(N-1)$ og FTAB $(N-1)$ defineres derfor ved ligningen:

$$
\alpha(\mathbb{N}-1)=\frac{\operatorname{FTAB}(\mathrm{N}-1)}{Z \operatorname{TAB}_{\mathrm{si}} \mathrm{de}}(\mathrm{~N}) \quad
$$

$\alpha(I)$-værdierne giver et billede af hvorledes varmetabet fordeles pa de forskellige lag.

Som omtalt i [70] og [71] ex temperaturlagdelingen i lageret afgorende for storrelsen af den opadrettede varmestrom。 $\alpha(I)$ er derfor afhangig af temperaturlagdelingen mellem lag I og $129 I+1, \operatorname{GR}(I)=\frac{T(I+I)-T(I)}{h / N}{ }^{\circ} \mathrm{C} / \mathrm{m}$. Jo mindre GR(I) er des større bliver $\alpha(I)$. $\alpha$-vardierne og dermed fordelingen af varmetabet varierer altsa igennem lagerets drift. De benyttede symboler fremgix af tabel 27 , hvor ogsa det virkelige varmetab for hvert lag er beregnet.

Det bemarkes, at FTAB(I) ligesom ZTAB(I) kan flyttes videre nedad i lageret. Der indføres endnu en hjalpeparametex $P(I)$, som multipliceret med zTAB(I) angiver lagets vixkelige (omfordelte) varmetab. Der gælder altså:

$\begin{aligned} & \dot{y} \\ & \Leftrightarrow \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$				$\begin{aligned} & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & > \\ & 0 \\ & 0 \\ & 0 \\ & 0-1 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \\ & 4 \\ & 4 \\ & 4 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$
$\mathbb{N}$	$\begin{aligned} & \operatorname{ZTAB}(N)=\operatorname{ZTAB}_{\operatorname{Lop}}(\mathbb{N})+ \\ & \mathrm{ZTAB}_{\mathrm{Side}}(\mathbb{N}) \end{aligned}$	$\cdots$	-	$\begin{aligned} & \mathrm{ZIAB}_{\operatorname{top}}(\mathrm{N})+ \\ & (1-\alpha(\mathbb{N}-1)) \cdot \operatorname{ZTAB}_{\text {side }}(\mathrm{N}) \end{aligned}$
$\mathrm{N}-1$	ZTAB (N-1)	$\operatorname{Fr} \mathrm{S}^{\text {a }}(\mathbb{N}-1)$	$\alpha(N-1)$	$\begin{aligned} & (\operatorname{FTAB}(N-1)+Z T A B(N-1)) \\ & (1-\alpha(N-2)) \end{aligned}$
$I+1$	$\mathrm{ZTAB}(I+1)$	$\operatorname{FTAB}(I+1)$	$\alpha(I+1)$	$\begin{aligned} & (\operatorname{FTAB}(I+1)+\operatorname{ZTAB}(I+1)) \\ & (1-\alpha(I)) \end{aligned}$
$I$	$\operatorname{ZTAB}(1)$	$\operatorname{FTAB}(I)$	$\alpha(\mathrm{I})$	$\begin{aligned} & (\operatorname{FTAB}(I)+\operatorname{ZTAB}(I)) \cdot \\ & (1-\alpha(\operatorname{I-1})) \end{aligned}$
I-1	$\operatorname{ZTAB}(\mathrm{I}-1)$	FIAB ( $1-1$ )	$\alpha(I-1)$	$\begin{aligned} & (\operatorname{FTAB}(I-1)+Z T A B(I-1)) \\ & (1-\alpha(T-2)) \end{aligned}$
2	ZTAB (2)	FWAB (2)	$\alpha(2)$	$\begin{aligned} & (\operatorname{FTAB}(2)+\mathrm{ZTAB}(2)) \cdot \\ & (1-\alpha(1)) \end{aligned}$
1	ZTAAB (1)	FTAB (1)	$\alpha(1)$	$\operatorname{FrAB}(1)+2 \mathrm{TAB}(1)$

Tabel 27. Anvendte symboler ved beregning af lagenes virkelige varmetab.

```
 P(1)\cdotZTAB(1) = FTAB(1) + ZTAB(1)
for I=2,N-I: P(I)
 P(N)\cdotZTAB(N)= ZTAB
P(I) findes derfor af:
```



FTAB(I)-værdierne findes ved hjælp af formlerne:
$\operatorname{ETAB}(\mathbb{N}-1)=\alpha(\mathbb{N}-1) \cdot 2 T A B_{\text {side }}(\mathbb{N})$
for $I=N-2,1: \operatorname{ETAB}(I)=\alpha(I) \cdot(\operatorname{ETAB}(I+I)+2 T A B(I+I))$

FTAB(I)-værdierne findes saledes ved hjælp af $\alpha(I)-$ -ZTAB(I)-værdierne. P(I)-værdierne og dermed det virkelige tab for lag $I, P(I) \cdot Z T A B(I)$, bexegnes altsa udelukkende ved hjælp af $\alpha(I)-\quad o g$ ZTAB(I)-værdierne pa en sadan made, at varmtvandsbeholderens totale varmetab er lige så stort som teoretisk beregnet, men med en anden fordeling af varmetabets størrelse på de enkelte lag. $\alpha(I)$ ex som nævnt en funktion af temperaturlagdelingen mellem lag $I$ og lag Itl。 GR(I)。

Ved opstilling af varmebalancen for lag I benyttes varmetabskoefficienten for lag I, XKT(I). XKT(I) bestemmes som produktet af $P(I)$ og varmetabskoefficienten beregnet som beskrevet i afsnit 4.2.

Den her beskrevne omfordeling af varmetabet benyttes kun nå lagertemperaturen $i$ lag $I, T(I)$, er større end omgivelsernes temperatur $T_{0}$ Nar $T(I)$ < $T_{0}$ er varmetabets absolutte størrelse meget lille, og en omfordeling af varmetabet er derfor overflødig.

## 4．4．2．3 Vandtapning

Figur 37 viser lageret skematisk under tapning．En tilfældig opblanding kan tages $i$ beregning．$v_{v}$ angiver volumenstrom men tappet fra varmtvandsbeholderen．$V(I, J)$ angiver volumen－ strømmen $i$ skillelinien mellem lag $I$ og lag $I+1$ ．Temperatu－ ren af volumenstrømmen i skillelinien ex $T(J-1)$ ．Vandet， som tilføres varmtvandsbeholderen under tapningen，har tempe－ raturen $T_{k}$ ，og her benyttes $T(0)=T_{k}$ 。

Volumenstrommen $V(I, J)$ kan bade vare opadrettet（positiv） og nedadrettet（negativ）．Den totale opadrettede volumenstrom er overalt $i$ lageret $v_{v}$ ．For alle I－vardier galder derfor：

$$
v_{V}=V(I, I)+V(I, 2)+\ldots \ldots \ldots+V(I, N+1)
$$

Idet varmeindholdet af vand ved temperaturen $T_{k}$ sattes til $0_{0}$ beregnes varmestrømmen，som tappes fra lag $1, Y(1)$ ，af：

$$
\begin{aligned}
Y(1)= & V(1,2) \cdot \rho(1) \cdot C_{p v} \cdot\left(T(1)-T_{k}\right)+V(1,3) \cdot \rho(2) \cdot C_{p v} \cdot\left(T(2)-T_{k}\right)+ \\
& \ldots \ldots \ldots+V_{k}(1, N+1) \cdot \rho(N) \cdot C_{p v} \cdot\left(T(N)-T_{k}\right)
\end{aligned}
$$

Varmestrømmen tappet fra lag $I, Y(I)$ ，findes for alle andre lag af：

$$
\begin{aligned}
& Y(I)=V(I, 2) \cdot \rho(1) \cdot C_{p V} \cdot\left(T(1)-T_{K}\right)-V(I-1,2) \cdot \rho(1) \cdot C_{p V} \cdot\left(T(1)-T_{k}\right) \\
& +V(I, 3) \cdot \rho(2) \cdot C_{p \nabla} \cdot\left(T(2)-T_{k}\right)-V(I-1,3) \cdot \rho(2){ }^{\circ} C_{p v} \cdot\left(T(2)-T_{k}\right) \\
& \text { 。 } \\
& \text { 。 } \\
& \text { - } \\
& \text { - } \\
& \text { - } \\
& +V(I, N+1) \cdot \rho(N) \cdot C_{p v} \cdot\left(T(N)-T_{k}\right)-V(I-1, N+1) \cdot \rho(N) \cdot C_{p V} \cdot\left(T(N)-T_{k}\right)
\end{aligned}
$$

Nar der ikke er knyttet opblanding til tapningen gælder：

$$
V(I, I+I)=V_{V}, \quad \text { mens alle andre } V(I, J)=0
$$



Figur 37. Skematisk illustration af varmtvandsbeholderen under tapning.

4．4．2．4 Varmebalancer for lagene i perioder uden varmetilførsel pa basis af varmestrømmene，som er beskrevet i de foregående afsnit．opstilles varmebalancerne for hvert enkelt lag．De en－ kelte varmestrømme beregnes med temperaturerne til tidsspring－ ets slutning $T(I)$ ．Dette gælder dog ikke for varmestrømmen， som tappes fra lag I，$Y(I)$ ．Ved beregning af $X(I)$ benyttes temperaturerne til tidsspringets start $T_{\mathrm{gm}}(\mathrm{I})$ 。 Dette er ri－ meligt，idet temperaturen netop under tapning kan andres meget．

Varmebalancen for lag I kan udtrykkes ved：

$$
\frac{d(C I(1) \cdot T(1))}{d \tau}=X K(1) \cdot(T(2)-T(1))-X K T(1) \cdot\left(T(1)-T_{0}\right)-Y(1)
$$

CI（1）。XK（1）og XKT（I）er temperaturafhængige størrelser．Be－ nyttes sma tidsspring $\Delta \tau$ ，kan disse størrelser med rimelighed beregnes med temperaturerne ved tidsspringets start $\mathbb{T}_{\mathrm{gml}}(\mathrm{I})$ 。 og varmebalancen kan med rimelighed omskrives til：

$$
\frac{C I(1)}{\Delta \tau} \cdot\left(T(1)-T_{g m I}(1)\right)=X K(I) \cdot(T(2)-T(1))-X K T(1) \cdot\left(T(1)-T_{0}\right)-Y(1)
$$

eller：

$$
\begin{aligned}
& \left(\frac{C I(1)}{\Delta \tau}+X K(1)+X K T(1)\right) \cdot T(1)-X K(1) \cdot T(2)= \\
& T_{g m I}(1) \cdot \frac{C I(1)}{\Delta \tau}+X K T(1) \cdot T_{O}-Y(1)
\end{aligned}
$$

For lag $I$ beliggende mellem lag 1 og $\operatorname{lag} N, I=2, N-1, k a n$ var－ mebalancen udtrykkes ved：

$$
\begin{aligned}
\frac{d(C I(I) \cdot T(I))}{d \tau}= & X K(I) \cdot(T(I+I)-T(I))-X K(I-I) \cdot(T(I)-T(I-I)) \\
& -X K T(I) \cdot\left(T(I)-T_{0}\right)-Y(I)
\end{aligned}
$$

CI（I），XK（I），XK（I－I）Og XKT（I）er temperaturafhængige størrel－ sex．Benyttes sma tidsspring $\Delta \tau$ ，kan disse størrelser med rimelighed beregnes med temperaturerne ved tidsspringets start $T_{g m l}(I)$ ，og varmebalancen kan med rimelighed omskrives til：

$$
\begin{aligned}
& -X K(I-I) \cdot T(I-I)+\left(\frac{C I(I)}{\Delta T}+X K(I)+X K(I-1)+X K T(I)\right) \cdot T(I) \\
& -X K(I) \cdot T(I+1)=T_{g m I}(I) \cdot \frac{C I(I)}{\Delta T}+X K T(I) \cdot T_{0}-Y(I)
\end{aligned}
$$

For $\operatorname{lag} \mathrm{N}$ udtrykkes varmebalancen ved:

$$
\frac{d(C I(N) \cdot T(N))}{d \tau}=-X K(N-1) \cdot(T(\mathbb{N})-T(N-1))-X K T(\mathbb{N}) \cdot\left(T(N)-T T_{0}\right)-Y(\mathbb{N})
$$

$C I(N), X K(N-1)$ og $X K T(N)$ er temperaturafhangige storrelser. Benyttes sma tidsspring $\Delta \tau$ kan disse storrelser med rimelighed beregnes med temperaturerne ved tidsspringets start, $T_{g m I}(I)$, og varmebalancen kan med rimelighed omskxives til:

$$
\begin{aligned}
& -X K(N-1) \cdot T(N-1)+\left(\frac{C I(N)}{\Delta T}+X K(N-1)+X K T(N)\right) \cdot T(N)= \\
& T_{g m I}(\mathbb{N}) \cdot \frac{C I(N)}{\Delta T}+X K I(N) \cdot T_{0}-Y(\mathbb{N})
\end{aligned}
$$

De $N$ ovenfor opstillede vamebalanceligninger udgør et tridiagonalt ligningssystem. En version af simpel Gauss-elimination, kaldet "Tridiagonal-algoritme" benyttes til direkte at bereg* ne temperatuxerne ved tidsspringets slutning $T(I)$ se [74]. Ved Iosningen af ligningssystemet benyttes i edb-programmet dobbelt precision.

Under tapningen skal $\Delta \tau$ vælges på en sadan made at $\triangle T \cdot V T A P$ ikke bliver storre end vandvolumenet af laget med det mindste vandvolumen.

Lagertemperaturerne ved tidsspringets slutning $T(I)$ beregnes som beskrevet ovenfor ved hjelp af temperaturerne ved tidsspringets start $\mathrm{T}_{\mathrm{gml}}(\mathrm{I})$. Efter beregningen kan det forekomme, at $T(I)>T(I+1)$. Dette er muligt, da konvektionen $i$ varmtvandsbeholderen kun $i$ begranset omfang tages i beregning. En sadan temperatur-uorden vil ikke optræde i lageret, idet massefyldeforskelle $i$ vandet hurtigt vil resultere i vandstrøm
ninger og en dermed forbundet temperaturudjævning. Hvis $T(I)-T(I+1)>0,05^{\circ} \mathrm{C}$ foretages derfor en helt ny beregning af temperaturerne. I denne beregning sættes $X K(I)=1000000 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. Altsa gøres varmeledningen så stor, at temperaturudjævning sikres.

### 4.4.2.5 Vandets udvidelse og sammentrakning

Som nævnt er varmelagringskapaciteten for hvert lag afhængig af temperaturniveauet, idet vandmassen i hvert lag varierer med temperaturen. Under opvarmningen udvider vandet sig, og vand skydes ud gennem sikkerhedsventilen. Da temperaturen af dette vand fra bunden af varmtvandsbeholderen er $h \not \subset j e r e$ end $T_{k}$. tabes herved energi. Under afkøling trækker vandet sig sammen, og koldt vand med temperaturen $T_{k}$ tilføres bunden af varmtvandsbeholderen. Lagertemperaturen beregnes $f \not \subset r s t$ som beskrevet i de foregående afsnit. Herefter foretages korrektion for vandets udvidelse og sammentrækning. Denne korrektion beskrives i det $f \emptyset l g e n d e$.

Vandmassen i lag $I$ ved tidsspringets start $M_{g m l}(I)$ beregnes ved hjælp af $T_{g m i}(I)$, og vandmassen i lag I ved tidsspringets slutning $M(I)$ beregnes ved hjælp af $T(I)$ som beskrevet $i$ afsnit 4.4.2. Vandmasseændringen for lag I igennem tidsspringet beregnes af: $D M(I)=M(I)-M_{m g l}(I)$. Igennem tidsspringet flyttes vandmængden $X D(I)$ fra (evt. til) lag I-1 til (evt. fra) lag $I$. Vandmængden, der igennem tidsspringet strømmer til eller fra varmtvandsbeholderen, benævnes XD(1). Vandstrømme rettet mod toppen af lageret regnes positive, vandstrømme rettet mod bunden af lageret regnes negative. XD(I) beregnes således:

$$
X D(\mathbb{N})=D M(\mathbb{N})
$$

For alle andre $I$-værdier, dvs. for $\mathrm{I}=\mathrm{N}-1,1$ :

$$
\mathrm{XD}(I)=\mathrm{DM}(I)+\mathrm{DM}(I+I)+\ldots \ldots \ldots+\mathrm{DM}(N)
$$

pa figur 38 er lagerets enkelte lag og vandmassebevægelserne mellem lagene igennem tidsspringet vist skematisk.


Figur 38. Skematisk illustration af lagerets vandbevægelser igennem tidsspringet.

Idet varmeindholdet af vand ved temperaturen $T_{k}$ sættes til $0_{0}$ kan varmemængderne, som er knyttet til vandmassebevægelserne, beregnes. Varmeindholdet for hvert lag udtrykkes dels ved hjolp af de beregnede temperaturer $I(I)$, dels vea hjælp af de for vandmassebevagelser korrigerede temperaturer $\mathrm{T}_{\mathrm{korr}}(\mathrm{I})$ 。 Varmeindholdene beregnes pa basis af varmelagringskapaciteterne til tidspunktets start CI(I). For lag N gælder, se figur 38:
hvis $X D(N) \leqq 0$ :

$$
\mathrm{T}_{\mathrm{korx}}(\mathbb{N})=\mathrm{T}(\mathbb{N})
$$

hvis $\mathrm{XD}(\mathrm{N})>0$ :

$$
\begin{aligned}
& C I(N) \cdot\left(T(N)-T_{k}\right)+X D(N) \cdot C_{p v} \cdot\left(T(N-1)-T_{k}\right)= \\
& \left(C I(N)+D M(N) \cdot C_{p v}\right) \cdot\left(T_{k o r x}(\mathbb{N})-T_{k}\right)
\end{aligned}
$$

eller:

$$
I_{k \circ x x}(N)=T_{k}+\frac{C I(N) \cdot\left(T(N)-T_{k}\right)+X D(N) \cdot C_{p y} \cdot\left(T(N-I)-T_{k}\right)}{C I(N)+D M(N) \cdot C_{p y}}
$$

Vandet, som tilføres lageret under afkølingsperioden, antages at have temperaturen $T_{k}$. Derfor galdex for lag 1 , se Eigur 38: hvis $X D(1) \leqq 0$ Og $X D(2) \geqq 0:$

$$
\mathrm{T}_{\mathrm{korr}}(1)=\mathrm{T}(1)
$$

Hvis $\mathrm{XD}(1) \leqq 0 \quad \mathrm{Og} \quad \mathrm{XD}(2)<0$ :

$$
\begin{aligned}
& \left(C I(1)+X D(1) \cdot C_{p V}\right) \cdot\left(T(1)-T_{k}\right)-X D(2) \cdot C_{p v} \cdot\left(T(2)-T_{k}\right)= \\
& \left(C I(1)+D M(1) \cdot C_{p v}\right) \cdot\left(T_{k \circ r r}(1)-T_{k}\right)
\end{aligned}
$$

eller:

$$
\mathrm{T}_{\mathrm{koxr}}(1)=\mathrm{T}_{\mathrm{k}}+\frac{\left(\mathrm{CI}(1)+\mathrm{XD}(1) \cdot \mathrm{C}_{\mathrm{pV}}\right) \cdot\left(\mathrm{T}(1)-\mathrm{T}_{\mathrm{k}}\right)-\mathrm{XD}(2) \cdot \mathrm{C}_{\mathrm{pV}} \cdot\left(\mathrm{~T}(2)-\mathrm{T}_{\mathrm{k}}\right)}{\mathrm{CI}(1)+\mathrm{DM}(1) \cdot \mathrm{C}_{\mathrm{pV}}}
$$

HVis $X D(1)>0$ og $X D(2) \geqq 0:$

$$
\begin{aligned}
& \left(C I(1)-X D(2) \cdot C_{p V}\right) \cdot\left(T(1)-T_{k}\right)= \\
& \left(C I(1)+D M(1) \cdot C_{p v}\right) \cdot\left(T_{k \circ r r}(1)-T_{k}\right)
\end{aligned}
$$

eller:

$$
T_{k \circ r r}(1)=T_{k}+\frac{\left(C I(1)-X D(2) \cdot C_{p v}\right) \cdot\left(T(1)-T_{k}\right)}{C I(1)+D M(1) \cdot C_{p v}}
$$

Hvis XD(1) >0 og XD (2) < 0:

$$
C I(I) \cdot\left(T(I)-T_{k}\right)-X D(2) \cdot C_{p v} \cdot\left(T(2)-T_{k}\right)=
$$

$$
\left(C I(1)+D M(1) \cdot C_{p v}\right) \cdot\left(T_{k \circ r r}(1)-T_{k}\right)
$$

eller:

$$
T_{k o r x}(1)=T_{k}+\frac{C I(1) \cdot\left(T(1)-T_{k}\right)-X D(2) \cdot C_{p V} \cdot\left(T(2)-T_{k}\right)}{C I(1)+D M(1) \cdot C_{p V}}
$$

For alle andre lag, $I=2, \mathbb{N}^{-1}$ gælder, se figur 38:
Hvis $X D(I) \leqq 0$ og $X D(I+1) \geqq 0:$

$$
T_{k o x r}(I)=T(I)
$$

Hvis $\mathrm{XD}(I) \leqq 0$ og $\mathrm{XD}(I+1)<0:$

$$
\begin{aligned}
& \left(C I(I)+X D(I) \cdot C_{p V}\right) \cdot\left(T(I)-T_{k}\right)-X D(I+I) \cdot C_{p V}\left(T(I+I)-T_{k}\right)= \\
& \left(C I(I)+\operatorname{DM}(I) \cdot C_{P V}\right) \cdot\left(T_{k o r r}(I)-T_{k}\right)
\end{aligned}
$$

eller:

$$
T_{\mathrm{kOrY}}(I)=\mathrm{T}_{\mathrm{k}}+\frac{\left(\mathrm{CI}(I)+X D(I) \cdot \mathrm{C}_{\mathrm{pv}}\right) \cdot\left(T(I)-\mathrm{T}_{\mathrm{K}}\right)-X \mathrm{XD}(I+I) \cdot \mathrm{C}_{\mathrm{pv}} \cdot\left(\mathrm{~T}(I+I)-\mathrm{T}_{\mathrm{k}}\right)}{\mathrm{CI}(I)+\mathrm{DM}(I) \cdot \mathrm{C}_{\mathrm{pv}}}
$$

$$
\begin{aligned}
& \text { Hvis } X D(I)>0 \quad O g \quad X D(I+I) \geqq 0: \\
& \quad\left(C I(I)-X D(I+1) \cdot C_{p V}\right) \cdot\left(T(I)-T_{k}\right)+X D(I) \cdot C_{p V} \cdot\left(T(I-I)-T_{k}\right)= \\
& \quad\left(C I(I)+D M(I) \cdot C_{p V}\right) \cdot\left(T_{k O r x}(I)-T_{k}\right)
\end{aligned}
$$

eller:

$$
\mathrm{T}_{k o r x}(\mathrm{I})=\mathrm{T}_{\mathrm{k}}+\frac{\left(\mathrm{CI}(I)-X D(I+1) \cdot \mathrm{C}_{\mathrm{pv}}\right) \cdot\left(\mathrm{T}(\mathrm{I})-\mathrm{T}_{\mathrm{k}}\right)+\mathrm{XD}(\mathrm{I}){ }^{\circ} \mathrm{C}_{\mathrm{pv}}\left(\mathrm{~T}(\mathrm{I}-\mathrm{I})-\mathrm{T}_{\mathrm{k}}\right)}{\mathrm{CI}(\mathrm{I})+\mathrm{DM}(\mathrm{I}) \cdot \mathrm{C}_{\mathrm{pv}}}
$$

Hvis $X D(I)>0$ og $X D(I+1)<0:$

$$
C I(I) \cdot\left(T(I)-T_{k}\right)+X D(I) \cdot C_{p v} \cdot\left(T(I-1)-T_{k}\right)-X D(I+1) \cdot C_{p v}{ }^{\circ}\left(T(I+1)-T_{k}\right)=
$$

$$
\left(C I(I)+D M(I) \cdot C_{p V}\right) \cdot\left(T_{k o r r}(I)=T_{k}\right)
$$

ellex:

$$
T_{k o r r}(I)=T_{k}+\frac{C I(I) \cdot\left(T(I)-T_{k}\right)+X D(I) \cdot C_{p v} \cdot\left(T(I-I)-T_{k}\right)-X D(I+I) \cdot C_{p v} \cdot\left(T(I+I)-T_{k}\right)}{C I(I)+D M(I) \cdot C_{p v}}
$$

Korrektionerne foretages pa basis af varmelagringskapaciteterne til tidsspringets start. Varmelagringskapaciteterne andres med temperaturerne, og der kan derfor opsta voverensstemmelse mellem vandmasseandringerne og de korrigerede temperaturer. Noxmalt er disse uoverensstemmelser helt ubetydelige, men er dette ikke tilfældet, foretages endnu en korrektion med varmelagrings kapaciteterne og vandmassebevægelserne basexet på T $\mathrm{T}_{\mathrm{k}} \mathrm{mr}$ (I).

Vaxmeindholdet af lageret beregnes ud fra temperaturen $T_{k}$. De eneste energiændringer for lageret i forbindelse med vandudvidelser og -sammentrækninger er derfor forarsaget af vand, der presses ud af sikkerhedsventilen under opvammingsperioder, idet koldtvandstilførslen under afkølingsperioder ikke er forbundet med energiændringer. For XD(1) < 0 skydes der vand ud gennem sikkerhedsventilen, og den derved tabte varmemæengde igennem tidsspringet beregnes af udtrykket:

$$
-X D(I) \cdot C_{p v} \cdot\left(T(I)-T_{k}\right)
$$

### 4.4.3 Forsøg til validering af simulexingsmodel for temperaturlagdeling i varmtvandsbeholdere

Den $i$ afsnit 4.4.1 omtalte varmtvandsbeholdex med varmelegemet placeret $i$ bunden af lageret benyttes $i$ en foxspgsrakke Forsøgsresultaterne sammenlignes med beregninger med den i afsnit 4.4.2 beskrevne simulexingsmodel. De $i$ afsnit 4.4 .1 angivne data for varmevanasbeholderen og de i [75] angivne materialedata for beholdermaterialet, staltype $S t 37-2$, (varmeledningsevnen $\lambda_{b}=60 \mathrm{~W} / \mathrm{m}^{\circ} \mathrm{C}_{\mathrm{C}}$, massefylden $\rho_{\mathrm{b}}=7850 \mathrm{~kg} / \mathrm{m}^{3}$, varmefylden $C_{P_{b}}=460 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$ og varmeudvidelseskoefficienten $\alpha=13 \cdot 10^{-6}$ $\mathrm{cm} / \mathrm{cm}{ }^{\circ} \mathrm{C}$ ) benyttes $i$ simuleringsmodellen. I modellen anvendes ikke muligheden for at tage opblanding under vandtapningen i beregning, og forsøgene bekræftex, at der ingen opblandning foregå. I lagermodellen benyttes 10 lag og de malte varmetabskoefficienter, som er angivet $i$ tabe 126.

Varmtvandsbeholderen opvarmes til $80^{\circ} \mathrm{C}$. Herefter tappes $74,20 \ell$ vand fra beholderen $i$ løbet af 20 minutter. Under tapningen er koldtvandstemperaturen $T_{k}=15,0^{\circ} \mathrm{C}$. Lagervandets og svobets temperaturer registreres i hele lagerets højde under tapningen og $i$ de næste 24 timer. Kun under tapningen og $i$ den forste time herefter ex der $i$ samme niveau temperaturforskelle af betydning mellem vandet og svobet. Herefter ex forskellen højst $1^{\circ} \mathrm{C}$ 。 De malte vandlagertemperaturer $i$ hele lagerets højde er vist med fuldt optrukne linier pa figur 39, føx tapningen og to minutter efter tapningen, saledes at vandtemperaturerne males rimeligt korrekt, se afsnit 3.3.2. Med den i afsnit 4.4 .2 beskrevne simuleringsmodel for vandtapningen ex det umuligt at opnå det malte temperaturprofil ved tapningens slutning. Dette skyldes sandsynligvis den specielle lagerudformning med den store flange. Elangen. som er placeret $i$ det nederste lag, indeholder en vamemangde, som sandsynligvis ikke kan afgives til vandet i takt med tapo ningen. En del af flangens varmeindhold ved tapningens start antages dexfor at lagres i stalet, indtil tapningen er afsluttet. Eprst herefter udiignes temperaturerne mellem stalet og vandet. Der foretages beregninger med forskellige dele af
flangens varmeindhold ved tapningens start lagret i flangen til tapningens slutning: $0 \%, 50 \%, 75 \%$ og $100 \%$. De beregnede middeltemperaturer $i$ de 10 lag ved tapningens slutning er vist pa figur 39. For overskuelighedens skyld er de beregnede middeltemperaturer for lagene ikke indtegnet i midten af lagene. Ved sammenligning mellem malte og beregnede temperaturer bør de beregnede middeltemperaturex derfor flyttes til midten af lagene. Det ses, at temperaturprofilet beregnes rimeligt korrekt, nar 75\% af flangens varmeindhold ved tapningens start lagres til tapningens slutning i stalet. I det følgende benyttes denne korrektion derfor ved simulering af vandtapning.

Pa figur 40 er de malte vandtemperaturer før tapningen, umiddelbart efter tapningen og $1,6,12$ og 24 timer efter tapningens slutning vist med fuldt optrukne linier. De beregnede temperaturer i de 10 lag ex vist for beregningsmodellen uden indførsel af omfordelingen af varmetabskoefficienten, se afsnit 4.4.2.2. I de første seks timer beregnes temperaturerne rimeligt nøjagtigt. Herefter opstar der forholdsvis store forskelle mellem de beregnede og de malte temperaturer: tem peraturlagdelingen beregnes for stor. Omfordelingen af varmetabskoefficienten vil som omtalt i afsnit 4.4.2.2 forøge temperaturlagdelingen i lageret. Forskellen mellem de måte og beregnede temperaturer vil derfor blive endnu større, nå denne omfordeling medtages i beregningen. Idet det vurderes. at varmeledningen $i$ lageret beregnes korrekt, er det derfor sandsynligt, at varmetabskoefficienterne for siden, toppen og bunden er anderledes end anført i tabel 26. Varmetabskoefficienterne er malt med en vis ubestemthed. Den beregnede tem peraturlagdeling reduceres, når varmetabet fra de $\varnothing$ verste dele af lageret forøges. Varmetabskoefficienterne zandres derfor $i$ de følgende beregninger saledes, at varmetabet fra den $\emptyset v e r s t e ~ d e l ~ a f ~ b e h o l d e r e n ~ g \phi r e s ~ s a ̊ ~ s t o r t ~ s o m ~ m u l i g t, ~ s a m-~$ tidig med at varmetabskoefficienterne ex beliggende i det i tabel 26 anførte målenøjagtighedsomrade. Desuden antages, at varmetabskoefficienternes temperaturafhængighed er ensartet. Idet $T$ er lagertemperaturen, benyttes $f \emptyset l g e n d e ~ u d t r y k ~ f o r ~$ varmetabskoefficienterne $i$ det følgende:

$$
\begin{array}{lll}
\mathrm{K}_{\text {top }}=0,24+0,00015 \cdot \mathrm{~T} & \mathrm{~W} /{ }^{\circ} \mathrm{C} \\
\mathrm{~K}_{\text {side }}=1,75+0,00148 \cdot \mathrm{~T} & \mathrm{~W} /{ }^{\circ} \mathrm{C} \\
\mathrm{~K}_{\mathrm{bund}}=0,41+0,00034 \cdot \mathrm{~T} & \mathrm{~W} /{ }^{\circ} \mathrm{C} \\
\mathrm{~K}_{\mathrm{d}} & =2,40+0,00198 \cdot \mathrm{~T} & \mathrm{~W} /{ }^{\circ} \mathrm{C}
\end{array}
$$

Med disse varmetabskoefficienter beregnes temperaturerne igennem forsøget. Resultatet er vist på figur 41. Beregninger udføres bide med og uden vandstxømningen langs beholdersiden. Beregninger med tidsspring pa 60 sec og 1800 sec giver samme resultat. I beregningen med koldtvandsnedfaldet langs beholderens sider er følgende funktion for $\alpha(I)$ anvendt, se afsnit 4.4.2.2:

$$
\alpha(I)= \begin{cases}0,50-0,02 \cdot G R(I) & \text { for } G R(I)<25^{\circ} \mathrm{C} / \mathrm{m} \\ 0 & \text { for } G R(I) \geq 25^{\circ} \mathrm{C} / \mathrm{m}\end{cases}
$$

Denne funktion er bestemt af det nedenfor beskrevne fors $\phi \mathrm{g}$. $\alpha(I)$ er et udtryk for, hvor stor betydning det kolde nedfald langs beholderens sider har pa opbygningen af temperaturlagdelingen. Jo mindre temperaturlagdelingen er, des større bliver $\alpha(I)$ og dermed temperaturlagdelingen pa grund af vandnedfaldet langs beholdersiden. Det vurderes, at temperaturerne i lageret beregnes rimeligt nøjagtigt igennem hele forsøget, nar vandstrømningen tages i beregning på den omtalte made.

Varmelagexet opvarmes til $80^{\circ} \mathrm{C}$. Opvarmningen stoppes, og temperaturerne registreres $i$ de næste 24 timer. Igennem hele forsøget er den største forskel mellem svøbet og vandet i samme niveau $1^{\circ} \mathrm{C}$. De malte vandtemperaturer i hele lagerets højde er vist med de fuldt optrukne liniex ved starten af prøvningen og efter $l_{,} 6,12$ og 24 timer på figur 42. Temperaturerne i. de 10 lag, beregnet med beregningsmodellen og de ovenfor anførte varmetabskoefficienter og den ovenfor anførte $\alpha$ (I)funktion, er også vist på figuren. $\alpha(I)$-funktionen er fastlagt ved hjælp af denne prøvning, og der er derfor særdeles god overensstemmelse mellem malingex og beregninger. Også her ex



Malte temperaturer:
Beregnede middeltemperaturer i hvert lag:
med vandstrømning langs beholdersiden: $x$
uden vandstromning langs beholdersiden: o
uden vandstromning lags beholdexsiden og uden vandudvidelser:

A
Figur 42. Lagerets vandtemperaturer ved prøvningens start og efter $1,6,12$ og 24 timer.
der foretaget beregninger med tidsspring pa hhv。 60 og 1800 sec, og også her er tidsspringets størrelse uden betydning for resultatet. Desuden udføres beregninger uden hensyntagen til vandstrømningen og uden hensyntagen til vandstrømningen og vandets udvidelse/sammentrækning. Resultaterne af disse beregninger er også vist pa figur 42. I dette forsøg er temperaturlagdelingen lille, og vandstrømmens betydning for temperaturprofilet derfor forholdsvis stox. Igennem 24 timer reduceres lagertoppens temperatur omtrent $1,5^{\circ} \mathrm{C}$ mindre, end hvis der ingen vandstrømning er. Det bør navnes, at $\alpha(I)-$ funktionen er bestemt med en vis unøjagtighed. Varmelagerets varmetabskoefficients fordeling ex bestemt med en vis unøjagtighed, og denne fordeling har indflydelse pa $\alpha(I)$. Andre $\alpha(I)$-funktioner end den her fundne kan resultere i næsten de samme temperaturer. Endelig bør det nævnes, at $\alpha(I)$ i virm keligheden ikke udelukkende er en funktion af temperaturlagdelingen. For eksempel er isoleringstykkelsen, temperaturniveauet og positionen i lageret (og dermed lagexets højde) faktorer, som har indflydelse på $\alpha(I)$. Det vurderes dog, at den her fundne $\alpha(I)$-funktion med rimelighed kan benyttes for små lagertanke, som ikke er for darligt isoleret. Endvidere ses det af figur 42, at det kolde vand, som tilføres lageret på grund af vandets samentrækning igennem forsøget, har forholdsvis stor indflydelse pa temperaturerne i lagerets nederm ste trediedel.

Ovennævnte afkølingsforsøg er også udført med varmelageret før isoleringen af glasstavens fastgørelse, altså med lageret med en kuldebro i toppen, se afsnit 4.4.1. Beregningsresultaterne og maleresultaterne for dette forsøg er vist pa figur 43. Resultaterne fra dette forsøg er helt analoge med resultaterne fra ovennævnte fors $\varnothing$ g.

Der udføres endnu to tappeforsøg med varmelageret uden kuldebro i toppen. Herved kontrolleres simuleringsmodellen med forskellige temperaturprofiler. Lageret opvarmes til $80^{\circ} \mathrm{C}$.


Malte temperaturer:
Beregnede middeltemperaturex i hvert lag: med vandstromning langs beholdersiden: $x$
uden vandstrømning langs beholdersiden: o
uden vandstrømning langs beholdersiden og uden vandudvidelser:
$\Delta$
Figur 43. Vandtemperaturer for lageret med kuldebro i toppen ved provningens start og efter $1,6,12$ og 24 timer.

I det ene forsøg tappes 38,26 l i lobet af 9 minutter 20 sec fra lageret．Koldtvandstemperaturen er $T_{k}=15,2^{\circ} \mathrm{C}$ ． I det andet fors $\phi$ g tappes 109,74 \＆$i$ lobet af 30 minutter 20 sec fra lageret．Koldtvandstemperaturen er $\mathrm{T}_{\mathrm{k}}=15,4^{\circ} \mathrm{C}$ 。 I begge fors $\phi$ g registreres temperaturerne på svøbet og i lagervandet $i$ hele lagerets højde under tapningen og i de næste 24 timer． Kun under tapningen og $i$ den første time herefter er der $i$ samme niveau temperaturforskelle af betydning mellem svobet og vandet．Herefter er forskellen højst $1^{\circ} \mathrm{C}$ ．De malte vand－ lagertemperaturer $i$ hele lagerets hojde er vist med fuldt op－ trukne linier，før tapningen，umiddelbart efter tapningen， 1，6， 12 og 24 timer efter tapningens slutning for de to tap－ peforsøg，på figur 44 og 45 ．pa figurerne er desuden vist beregnede temperaturer $i$ de 10 lag．Beregninger er foretaget bade med og uden vandstrømningen langs beholderens side．Den ovenfor benyttede $\alpha(I)$－funktion og de ovenfor benyttede var－ metabskoefficienter er ogsa benyttet i disse beregninger．Og－ sa her beregnes temperaturer ens med tidsspring på 60 sec og 1800 sec．Der er god overensstemmelse mellem beregnede og malte temperaturer．
pa basis af forsøgene omtalt $i$ dette afsnit vurderes det，at den beskrevne simuleringsmodel，som tager vandstrømningen langs beholdervæggen i beregning，er velegnet til beregning af temperaturlagdelingen i varmtvandsbeholdere．

## 4．5 Standardprovning

Den i afsnit 4．4．1 omtalte varmtvandsbeholder med endebunden med varmevekslerspiralen prøves ved hjælp af de i afsnit 2.1 beskrevne danske provemetoder og de i kapitel 3 omtalte prove－ stande．Som solfangervæske benyttes en $50 \%$（efter vægt）prom pylenglycol／vandblanding。

Varmetabskofficienten for varmelageret under solfangerdrift males som beskrevet $i$ afsnit 2．1．1。 Malebetingelserne og male－ resultaterne fremgå af tabel 28 ．Den totale varmetabskoeffi－



Lager-   temperatur   ${ }^{\circ} \mathrm{C}$	Omgivelses   temperatur   ${ }^{\circ} \mathrm{C}$	Volumen-   strom   $\ell / m i n$	Varmetabs   koefficient   $W /{ }^{\circ} \mathrm{C}$
29,8	23,2	1,42	2,7
77,1	23,5	1,59	2,8

Tabel 28. Maling af varmetabskoefficienten for varmtvandsbeholderen med den indbyggede varmevekslerspiral.
cient for varmtvandsbeholderen med varmelegemet i bunden blev i afsnit 4.4 .3 fundet til $2,46 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ ved $29,8{ }^{\circ} \mathrm{C}$ og $2,55 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ ved $77,1^{\circ} \mathrm{C}$. Den her malte varmetabskoefficient er større. Arsagen hertil er lagerbundens kuldebroex ved varmevekslerspiralens tilslutning til prøvestanden, idet den eneste forskel mellem de to beholdere er de to forskellige endebunde.

Figur 46 viser lagerets vandtemperaturer under en 24 timers periode uden varmetilførsel og vandtapning. Efter 24 timer opvarmes lageret til en ensartet temperatur, og varmetabskoefficienten beregnes som beskrevet i afsnit 2.1.2. Varmetabskoefficienten for varmelageret under afkølingsforløbet er $2,8 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. Dette passer godt med den maite varmetabskoefficient under solfangerdrift. Med varmtvandsbeholderens data fra tabel 20, de malte varmetabskoefficienter og den $i$ afsnit 4.4 .3 validerede simuleringsmodel beregnes lagertemperaturerne igennem afk $\phi-$ lingsperioden. Resultaterne er vist på figur 46. Der er god overensstemmelse mellem måle og beregnede temperaturer.

Varmelagringskapaciteten og varmelagringseffektiviteten måles som beskrevet i afsnit 2.1.3. Lageret opvarmes fra $30^{\circ} \mathrm{C}$ til $76^{\circ} \mathrm{C}$ af solfangervæsken med en omtrentilg volumenstrøm pa $3.2 \mathrm{l} / \mathrm{min}$. Varmelagringskapaciteten, baseret på lagerets middeltemperatur, males til $C_{1}=670 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}$. Dette ex i god over ${ }^{-\mathrm{m}}$ ensstemmelse med varmelagringskapaciteten, som benyttes i simuleringsmodellen. Varmelagringseffektiviteten males til:

$n_{1}=0,99$. Varmelagerets varmelagringskapacitet udnyttes alts̊ fint under opvarmningsforløbet. Dette skyldes, at varm mevekslexspiralen ex placeret $i$ bunden af varmtvandsbeholderen.

De malte varmeoverføringsevner fra solfangervæsken til varmelageret og maleforholdene fremgar af figur 47. Den malte varmeoverføringsevne er en retlinet funktion af lagertemperaturen: $H=73,8+1,64 \cdot T_{I} W /{ }^{\circ} \mathrm{C}$. Pa figuren er desuden vist malenøjagtighedsomradet, beregnet som beskrevet i afsnit 2.1.4.2. Endelig er vist varmeoverføringsevnen, beregnet med den i [40] beskrevne teori. Overensstemmelsen mellem de malte og beregnede varmeoverføringsevner er god.

Varmeoverføxingsevnen måles under endnu et opvarmningsforløb med en større volumenstrom. Måleresultaterne er vist på figur 48. Varmeoverføringsevnen kan her udtrykkes ved: $\mathrm{H}=66,3+2,45 \cdot \mathrm{~T}_{1} \mathrm{~W} /{ }^{\circ} \mathrm{C}$. Også her er overensstemmelsen mellem beregnede og målte størrelser god.

Den dynamiske prøvning udføres som beskrevet i afsnit 2.1.5 med solfangerarealet $3 \mathrm{~m}^{2}$ og solfangervæskestrømmen $\mathrm{v}=$ $2,75+0,0083 \cdot T_{f} l / m i n$. De malte temperaturer $i$ toppen, midten og bunden af varmtvandsbeholderen, omgivelsernes temperatur $o g$, nar solfangeren er i drift, solfangervaskens fremløbs og returtemperatur er vist pa figur 49. Data for varmtvandsforbruget fremgar af tabel 29. De daglige og totale energimængder, som stråler på solfangeren og som tilføres og tappes fra varmtvandsbeholderen, er angivet i tabel 30. I denne tabel er teoretisk beregnede varmemængder for varmelageret desuden angivet. Den benyttede simuleringsmodel er en udbygget version af den i afsnit 4.4 .2 beskrevne model. Modellen ex udbygget saledes, at ogsa varmetilførsel simuleres med lagerets driftsbetingelser $i$ den dynamiske prøvning. Modelopbygningen er detaljeret beskrevet i afsnit 4.6. De beregnede temperaturer ex vist på figur 49.


Milt varmeoverforingsevne:
Afgransning af målenøjagtighedsomrade: $\qquad$

Figux 47. Maleforhold (øverst) og måte varmem overføringsevner (nederst).


Milt vaxmeovexforingseve:
Afgransning af målenøjagtighedsomrade:
Tearetisk bexegnet vaxmeovexforingsevne: sumanemen
Figur 48. Måleforhold (øverst) og måle varmeoverføringsevner (nederst).



Tabel 29．Data for varmtvandsforbruget under den dynamiske prøvning。

51d	golstakilng 8\％ nolfangex	```Varmemengade E&140xt varmtvandsbeholdes```			Farmarnangede tappet． Exs vazmevandebuholex			$\begin{gathered} \text { segeg. yaxmetsb } \\ \text { fra } \\ \text { vacnenandacholder } \end{gathered}$	seregh，vanmemanguis \＆abe gennem sikkentadsventil
dag	23	51818   5	bereg．   R3	$\frac{\text { malt }}{\text { beceg. }}$	Kifle   智	bereg．   腃了	malc   bereg．	89	MJ
1	85．31	2\％．10	87．36	0.98	20.89	10，21	3.03	1． 65	0,05
2	60.22	32.80	31.96	8.08	89，55	19．89	2.00	4.80	0.25
3	0	0	0	－	13.79	14．25	0.97	2.55	0
Total	113.53	89.50	49.38	8.00	83.83	43.95	1.00	9.60	0,30

Tabel 30．Daglige og totale varmemængder for varmtvands－ beholderen under den dynamiske prøving．

Pa basis af figur 49 og tabel 30 vurderes det, at der ex god overensstemmelse mellem beregninger og malinger, og at den opstillede simuleringsmodel er velegnet til simulering af varmtvandsbeholderes termiske egenskaber under realistiske driftsbetingelser.

### 4.6 Matematisk model til simulering af varmelagerets drift

Simuleringsmodellen, som benyttes til at undersфge lagerudform ningens betydning for smà solvarmeanlægs ydelse, ex en udbygget version af den $i$ afsnit 4.4 og 4.5 beskrevne og validerede simuleringsmodel. Hver enkelt udbygning eller korrektion omtales i det $f \emptyset l g e n d e$.

### 4.6.1 Korrektioner forarsaget af varmevekslerspiralen

Varmevekslexspiralen antages at være placeret i varmelagerets nederste lag, lag 1 . Ved beregning af varmelagringskapaciteten for lag $1, C I(1)$ benyttes derfor varmevekslerspiralens data: varmevekslexspiralens indvendige diameter $d_{i v x}$ " varmevekslerspiralens udvendige diameter $d_{y_{V x}}$ varmevekslexspiralens længde VX og varmevekslerspiralmaterialets massefylde $\rho_{V x}$ og varmefylde $C_{p_{V X}}$.

Vandvolumenet af lag 1 VOL(1) beregnes af:

$$
\operatorname{VOL}(1)=\frac{\pi}{4} \cdot d_{i}^{2} \cdot \frac{h_{i}}{N} \cdot(1+\alpha \cdot(T(I)-20))^{3}-\frac{\pi}{4} \cdot V X \cdot d_{Y_{V X}}{ }^{2}
$$

Vandmassen i lag 1 M(1) findes af:

$$
M(1)=\rho(1) \cdot \operatorname{VOL}(1)
$$

Nå solfangeren er i drift, ses der ved beregningen af CI(1) bort fra varmevekslerspiralen idet denne er varmere end vandet og her opfattes som en del af solfangerkredsen. I perioder med solfangerdrift findes CI(1) derfor af:

$$
C I(I)=M(1) \cdot C_{p v}+\left(\frac{\frac{\pi}{4} \cdot h_{i} \cdot\left(d_{y}{ }^{2}-d_{i}{ }^{2}\right)}{N}+\frac{\frac{\pi}{4} \cdot d_{y}^{2} \cdot\left(h^{2}-h_{i}\right)}{2}\right) \cdot \rho_{b} \cdot C_{p_{b}}
$$

Nor solfangeren ikke er i drift, opfattes varmevekslerspiralen som en del af lag $1, ~ o g ~ C I(1)$ beregnes derfor af:

$$
\begin{aligned}
C I(I)= & M(I) \cdot C_{p v}+\left(\frac{\frac{\pi}{4} \cdot h_{i} \cdot\left(d_{y}^{2}-d_{i}^{2}\right)}{N}+\frac{\frac{\pi}{4} \cdot d_{y}^{2} \cdot\left(h^{2-h} h_{i}\right)}{2}\right) \cdot \rho_{b} \cdot C_{p_{b}} \\
& +\frac{\pi}{4} \cdot V X \cdot d_{i} 2 \cdot \rho \cdot C_{p}+\frac{\pi}{4} \cdot V X \cdot\left(d_{y_{V X}}{ }^{2}-d_{i_{V X}}\right) \cdot \rho_{V x} \cdot C_{P_{V x}}
\end{aligned}
$$

Nar en periode med solfangerdrift begynder eller slutter, ændres varmeindholdet af lag 1 naturligvis pa en sadan made, at den ændrede beregningsmetode for $C I(1)$ ingen indflydelse far pa temperaturen af lag $1, T(1)$ 。 De $\quad$ ovrige lags varmelagringskapaciteter beregnes som beskrevet i afsnit 4.4.2.

### 4.6.2 Varmetilf申rsel fra solfangerkreds til varmelager

Udbyttet fra solfangeren su udtrykkes ved:

$$
S U=\eta \cdot A R \cdot I
$$

hvor $\eta$ er solfangereffektiviteten, AR solfangerarealet og I er solintensiteten pa solfangeren. $\eta$ findes af:

$$
\eta=\eta_{0}-k_{0} \cdot \frac{T_{m s}-T_{u d e}}{I}=\eta_{0}-k_{0} \cdot \frac{T_{r}+2,5-T}{}
$$

$T_{m s}$ er middeltemperaturen af solfangervesken i solfangeren. Det antages altsà, at $T_{m s}=T_{r}+2,5^{\circ} \mathrm{C}$, idet solfangervaskens temperaturdifferens over solfangeren antages at vare omtrent $5^{\circ} \mathrm{C}$. Reduktionen af solfangervæskens temperatur i solfangerkredsen, forårsaget af rørkredsens varmetab, er normalt forsvindende lille, hvorfor den negligeres her. Tude er udeluftom temperaturen, $\eta_{0}$ solfangerens maksimaleffektivitet og $k_{0}$ er varmetabskoefficienten for solfangeren. Det anførte simple effektivitetsudtryk kan rimeligt godt beskrive malte effektiviteter for gode selektive solfangere. størrelsen af maksimaleffektiviteten $\eta_{0}$ afhænger af indfaldsvinklen. For indfaldsvinkler mindre end $50^{\circ}$ benyttes en konstant størrelse, for en indfaldsvinkel på $90^{\circ}$ benyttes $\eta_{0}=0$. For indfalds-
vinkler mellem $50^{\circ}$ og $90^{\circ}$ beregnes $\eta_{o}$ som funktion af indfaldsvinklen - $\eta_{0}$ antages her at være en retlinet funktion af indfaldsvinklen.

Nar solfangeren er i drift, er temperaturen i solfangerkredsen normalt hojere end omgivelsernes temperatur, bade for den del af solfangerkredsen, som ex beliggende inde $i$ og uden for huset. Der tabes altsa varme fra solfangerkredsen. Varmetabets storrelse er bestemt af solfangerkredsens udformning: rørets udvendige diameter $d_{y r}$ rørisoleringstykkelsen $e_{r}$ og rorisoleringsmaterialets varmeledningsevne $\lambda_{r}$ 。 Overgangsisolansen ved isolexingsoverfladen for den del af rørsystemet, som er beliggende inde i huset, sættes til $0,13 \mathrm{~m}^{2} \mathrm{C} / \mathrm{W}, \mathrm{og}$ overgangsisolansen ved isoleringsoverfladen for den del af rorsystemet, som er beliggende uden for huset, sættes til $0.04 \mathrm{~m}^{2} \mathrm{C} / \mathrm{W}$. Dette svarer til de i [59] angivne størrelser af overgangsisolansen ved henholdsvis indvendige og udvendige overflader $i$ bygninger. Ved beregning af varmetabet fra solfangerkredsen ses der bort fra temperaturforskellen mellem solfangervæsken og ydersiden af solfangerkredsens ror. Varmetabskoefficienten pr. rorlængde-enhed for rør beliggende inde i huset $H_{i n d e}$ og varmetabskoefficienten pr. rorlængde-enhed for rox beliggende uden for huset Hude bestemmes, se [2], derfor af:

$$
\begin{aligned}
H_{\text {inde }} & =\frac{\pi}{\frac{1}{2 \lambda_{x}} \ln \frac{d_{y r}+2 e_{r}}{d_{y r}}+\frac{0,13}{d_{y r}+2 e_{r}}} \\
H_{\text {ude }} & =\frac{\frac{1}{2 \lambda_{r}} \ln \frac{d_{y r}+2 e_{r}}{d_{y r}}+\frac{0,04}{d_{y r}+2 e_{r}}}{}
\end{aligned}
$$

Varmeisoleringsmaterialets varmeledningsevne $\lambda_{r}$ afhzenger af temperaturniveauet. Benyttes mineraluld med rumvægten $30 \mathrm{~kg} / \mathrm{m}^{3}$ som rørisoleringsmateriale, og antages solfangervæskens temperatur $i$ røxsystemet at være $\frac{T_{f}+T_{r}}{2}$, beregnes $\lambda_{r}$ som nævnt
i afsnit 4.2.1, for rørsystemet i huset af:

$$
\lambda_{r}=0,0336+0,00026 \cdot\left(\frac{\frac{T_{f}+T_{r}}{2}+T_{O}}{2}\right) \quad W / m^{\circ}{ }_{C}
$$

For rørsystemet uden for huset beregnes $\lambda_{r}$ af:

$$
\lambda_{r}=0,0336+0,00026 \cdot\left(\frac{\frac{T_{f}+T_{x}}{2}+T_{u d e}}{2}\right) W / \mathrm{m}^{\circ}{ }_{\mathrm{C}}
$$

Rørsystemets varmetab beregnes ved hjælp af længderne for de enkelte dele af rorsystemet: længden af returroret fra varmelageret (fremløbsxøret til solfangeren) placeret henholdsvis inde i huset RLIR og uden for huset RLUR, samt langden af fremløbsrøret til varmelageret (returrøret fra solfangeren) placeret henholdsvis uden for huset RLUF og inde i huset RLIF. Rørsystemets totale længde RL findes af:

$$
\mathrm{RL}=\mathrm{RLIR}+\mathrm{RLUR}+\mathrm{RLUF}+\mathrm{RLIF}
$$

Varmetabet fra rørsystemet forarsager en reduktion af solfangervæskens temperatur i solfangerkredsen. Reduktionen er dog for normale anlæg forsvindende lille, og den negligeres derfor ved beregningen af rørsystemets varmetab RTAB:

$$
\begin{aligned}
\operatorname{RTAB}= & H_{u d e} \cdot \operatorname{RLUF} \cdot\left(T_{f}-T_{u d e}\right)+H_{u d e} \cdot \operatorname{RLUR} \cdot\left(T_{x}-T_{u d e}\right) \\
& +H_{i n d e} \cdot R L I F \cdot\left(T_{f}-T_{o}\right)+H_{i n d e} \cdot \operatorname{RIIR} \cdot\left(T_{x}-T_{o}\right)
\end{aligned}
$$

Under solfangerens drift ændres solfangerkredsens temperatur. Ved beregning af varmetilforslen til vaxmelageret må der tages hensyn til denne temperaturændring, idet solfangerkred sen har en vis varmekapacitet SFKVAK. SFKVAK ex summen af den effektive varmekapacitet for solfangeren AKSO, varmekapaciteten for rørsystemet ROMVAK, varmekapaciteten for solfangervæsken i rørsystemet SFVRVA og varmekapaciteten for varmevekslerspiralen inklusiv varmekapaciteten for sol-
fangervæsken i varmevekslerspiralen AKVX. Disse varmekapaciteter beregnes ved hjolp af anlæggets data: solfangererens effektive varmekapacitet $\mathrm{pr} . \mathrm{m}^{2}$ solfanger SFLK, rorenes indvendige diameter $d_{i_{a}}$ og rormaterialets massefylde $\rho_{x}$ og varmefylde $C_{p_{r}}$. Varmekapaciteterne beregnes af ligningerne:

$$
\begin{aligned}
& A K S O=A R \cdot S F L K \\
& \text { ROMVAK }=\frac{\pi}{4} \cdot\left(d_{Y r}{ }^{2}-d_{i_{a}}{ }^{2}\right) \cdot R L \cdot \rho_{r} \cdot C_{p_{r}} \\
& \text { SFVRVA }=\frac{\pi}{4} \cdot{d_{i}}_{a}{ }^{2} \cdot R L \cdot \rho \cdot C_{p} \\
& A K V X=\frac{\pi}{4} \cdot d_{i_{V X}}{ }^{2} \cdot V X \cdot \rho \cdot C_{p}+\frac{\pi}{4} \cdot\left(d_{y_{V X}}{ }^{2}-d_{i_{V K}}{ }^{2}\right) \cdot V X \cdot \rho_{V X} \cdot C_{p_{V X}} \\
& S F K V A K=A K S O+R O M V A K+S F V R V A+A K V X
\end{aligned}
$$

Solfangerkredsens temperaturændring pavirker varmetilførslen til varmelageret. I perioder med voksende temperatur i solfangerkredsen anvendes en del af udbyttet fra solfangeren til at opvarme solfangerkredsen, saledes at varmetilforslen til varmelageret reduceres. I perioder med solfangerdrift og aftagende temperatur $i$ solfangerkredsen vil den i solfangerkredsen akkumulerede varme til gengæld forøge varmetilførslen til varmelageret. Endringen i solfangerkredsens varmeindhold pr. tidsenhed, og dermed ændringen i effekttilforslen til varmelageret forarsaget af solfangerkredsens temperaturændring, er SFKVAK $\cdot \frac{d T r \phi r}{d \tau}$, idet det forudsættes, at solfangerkredsens temperatur $T_{r \phi r}$ er ensartet $i$ hele solfangerkredsen. Anvendes små tidsspring $\Delta \tau \quad o g$ forudsættes desuden at $T_{r \phi r}=\frac{T_{f}+T_{r}}{2}$, kan ændringen af effekttilf $\quad$ rslen til varmew lageret, forårsaget af solfangerkredsens temperaturændring, beregnes af formlen:

$$
\text { SOLKA }=\frac{\text { SFKVAK }}{\Delta \tau}\left(\frac{T_{f}+T_{r}}{2}-\frac{T_{f}}{}+\frac{T_{r}}{}+2\right.
$$

$T_{f_{g m l}}$ og $T_{r_{g m l}}$ er solfangervæskens fremløbs-og returtemperatur ved tidsspringets start.

Den ovenfor nævnte ligning ex gældende, nar solfangeren er i drift i tidsspring, som folger efter et tidsspring, hvor solfangeren ogsa er i drift. Nar solfangexen ikke er i drift. beregnes solfangerens og solfangerkredsens temperaturer ved tidsspringets slutning ved hjælp af temperatureme ved tidsm springets start. Kaldes solfangertemperaturen Tsolf kan varmebalancen for solfangeren $i$ perioder uden solfangexdrift udtrykkes ved ligningen:

$$
S F L K \cdot A R \cdot \frac{d T}{d \tau}=\eta_{0} \cdot A R \cdot I-k_{0} \cdot A R \cdot\left(T_{\text {SOIE }}-T_{u d e}\right)
$$

Løses denne ligning kan solfangerens temperatur ved tidsspringets slutning $T_{\text {solf }}$ beregnes ved hjolp af solfangertemperaturen ved tidsspringets start $T_{\text {solf }} \mathrm{gml}^{\text {: }}$

$$
T_{\text {solf }}=T_{u d e}+\frac{\eta_{0} \cdot I}{k_{0}}-\left(T_{u d e}+\frac{\eta_{0} \cdot I}{k_{0}}-T_{\operatorname{solf}}^{g m I}\right) \cdot e^{-\frac{k_{0} \cdot \Delta \tau}{S F L K}}
$$

Kaldes temperaturen af rørene, som ex beliggende inde $i$ huset $T_{r i}$ kan varmebalancen for rørene i huset udtrykkes ved:

$$
(\text { ROMVAK+SFVRVA }) \frac{d T_{r i}}{d \tau}=-H_{i n d e} \cdot R L \cdot\left(T_{r i}-T_{0}\right)
$$

Løses denne ligning, kan temperaturen af rorene i huset ved tidsspringets slutning $T_{r i}$ beregnes ved hjelp af temperam turen af rorene $i$ huset ved tidsspringets start $T_{r i m 1}$ :

$$
T_{r i}=T_{0}+\left(T_{r i}-T_{o m l}\right) \cdot e^{-\frac{H_{i n d e} \cdot R L^{\circ} \cdot \Delta T}{R O M V A K+S F V R V A}}
$$

Kaldes temperaturen af rørene, som ex beliggende uden for huset Tru kan varmebalancen for rørene uden for huset ud= trykkes ved:

$$
(R O M V A K+S F V R V A) \frac{d T_{r u}}{d \tau}=-H_{u d e} \cdot R L \cdot\left(T_{r u}-T_{0}\right)
$$

Løses denne ligning kan temperaturen af rørene uden for huset ved tidsspringets slutning $T_{r u}$ beregnes ved hjolp af temperaturen af rorene uden for huset ved tidsspringets start $T_{r u_{g m I}}:$

$$
T_{x u}=T_{u d e}+\left(T_{r u_{g m 1}-T_{u d e}}\right) \cdot e^{-\frac{H_{u d e} \cdot R L \cdot \Delta \tau}{R O M V A K+S F R V A}}
$$

I perioder, hvor solfangerdriften netop er sluttet benyttes temperaturen $\frac{T_{f}+T_{r}}{2}$ for det Eoregaende tidsspring som $T_{r i_{g m l}}{ } \mathbb{T}_{x u_{g m l}}$ og $T_{s o l f_{g m l}}{ }^{\circ}$

I perioder uden solfangerdrift beregnes $T_{\text {solf }} T_{x i}$ og $T_{x u}$ som beskrevet ovenfor. Disse tempexaturer benyttes til at beregne andringen af effekttilforslen til varmelageret, forgrsaget af solfangerkredsens temperaturændring i de tids spring, hvor solfangerdriften begynder:

$$
\begin{aligned}
& \operatorname{SOLKA}=\frac{\text { SFKVAK }}{2 \cdot \Delta T}\left(\mathrm{~T}_{\mathrm{f}}+\mathrm{T}_{\mathrm{x}}\right)-\frac{1}{\Delta \tau} \cdot\left[A K S O \cdot \mathrm{~T}_{\mathrm{sOl} \mathrm{E}_{\mathrm{gml}}}+A K V X \cdot \mathrm{~T}_{\mathrm{gmi}}(1)+\right. \\
& \frac{(R L I R+R L I F) \cdot(R O M V A K+S E V R V A) \cdot T_{r} i_{g m}}{R L}+ \\
& \frac{\left.(R L U R+R L U F) \cdot(R O M V A K+S E V R V A) \cdot \mathbb{T}_{x} u_{g m}\right]}{R L}
\end{aligned}
$$

$T_{s o l f}{ }_{g m l}$ er solfangertemperaturen ved tidsspringets start, Trigml er temperaturen af rorene i huset ved tidsspringets start, Trugml er temperaturen af rorene uden for huset ved tidsspringets start, Tf ex solfangexvæskens fremlobstemperatur ved tidsspringets slutning og $T_{r}$ er solfangexvæskens returtemperatur ved tidsspringets slutning.

Varmebalancen for solfangervasken kan nu opstilles på basis af de ovenfor beskrevne varmestrpmme. De enkelte varmestromme beregnes med temperaturerne til tidsspringets slutning $T_{f}$ og $T_{r}$.

Cirkulationspumpens effekt, som tilføres solfangerkredsen, benævnes $P E$. Varmebalancen kan, når solfangeren ogsa har været $i$ drift $i$ det foregaende tidsspring, udtrykkes vea:

$$
\begin{aligned}
& V \cdot C_{p} \cdot p \cdot\left(\mathbb{T}_{f}-T_{r}\right)=S U+P E-R T A B-S O L K A= \\
& \eta_{0} \cdot A R \cdot I-k_{o} \cdot A R \cdot\left(T_{x}+2,5-T_{u d e}\right)+P E-H_{u d e} \cdot R L U F \cdot\left(T_{f}-T_{u d e}\right)= \\
& H_{u d e} \cdot R L U R \cdot\left(T_{r}-T_{u d e}\right)-H_{i n d e} \cdot \operatorname{RLIF} \cdot\left(\mathbb{T}_{f}-T_{O}\right)-H_{i n d e} \cdot R L I R \cdot\left(T_{X}-T_{O}\right)= \\
& \frac{S E K V A K}{2 \cdot \Delta \tau} \cdot\left(T_{f}+T_{x}-T_{E_{g m l}}-T_{g m l}\right)
\end{aligned}
$$

eller:

$$
\begin{aligned}
& \left(V \cdot C_{\rho} \cdot \rho+H_{u d e} \cdot R L U F+H_{i n d e} \cdot R L I F+\frac{S E K V A K}{2 \cdot \Delta T}\right) \cdot T_{E}+\left(-V \cdot C_{p} \cdot \rho+k_{0} \cdot A R+\right. \\
& \left.\mathrm{H}_{\mathrm{ude}} \cdot{\mathrm{RLUR}+\mathrm{H}_{\text {inde }}} \cdot \mathrm{RLIR}+\frac{\text { SFKVAR }}{2 \cdot \Delta \tau}\right) \cdot T_{x}=
\end{aligned}
$$

$$
\begin{aligned}
& H_{i n d e} \cdot R L I F \cdot T_{0}+H_{i n d e} \cdot R L I R \cdot T_{0}+\frac{S F K V A K}{2 \cdot \Delta \tau}\left(T_{f_{g m 1}}+T_{r_{g m} I}\right)
\end{aligned}
$$

I tidsspring, hvor solfangerdriften netop er begyndt, bliver varmebalanceligningen for solfangervesken:

$$
\begin{aligned}
& \left(V \cdot C_{p} \cdot \rho+H_{u d e} \cdot R L U F+H_{i n d e} \cdot R L I F+\frac{S E K V A K}{2 \cdot \Delta T}\right) \cdot T_{f}+\left(-V \cdot C_{p} \cdot \rho+k_{0} \cdot A R+\right. \\
& \left.H_{\text {ude }} \cdot R I U R+H_{i n d e} \cdot R L I R+\frac{\text { SFKVAK }}{2 \Delta \tau}\right) \cdot T_{r}=
\end{aligned}
$$

$$
\begin{aligned}
& \frac{(R L I R+R L I F) \cdot(R O M V A K+S E V R V A) \cdot T_{£} \mathrm{I}_{\mathrm{gm}}}{\mathrm{RL}}+ \\
& \left.\frac{(R L U R+R L U F) \cdot(R O M V A K+S F V R V A) \cdot T_{r u g m}}{R L}\right]
\end{aligned}
$$

$H_{i n d e} H_{u d e} \circ g \mathrm{v}$ er temperaturafhængige størrelser. Benyttes små tidsspring $\Delta \tau$ kan disse størrelser med rimelighed beregnes med temperaturerne ved tidsspringets start. Det antages, at volumenstrommen $v$ er en retlinet funktion af temperaturen af lag 1 . Det antages altså. at $v$ med rimelighed kan beregnes af temperaturen af lag 1 ved tidsspringets start $\mathrm{T}_{\mathrm{gm}}(1)$ :

$$
V=A_{f}+B_{f} \cdot T_{g m I}(1)
$$

### 4.6.3 Varmevekslerspiralens varmeoverføring

Varmevekslerspiralen forudsættes som nævnt placeret i varmelagerets nederste lag, som har temperaturen $T(1)$. Varmevekslingen for varmevekslerspiralen kan, se afsnit 2.1.4.1, udtrykkes ved:

$$
T_{f}-T_{r}=\left(T_{f}-T(1)\right) \cdot\left(1-e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}\right)
$$

eller:

$$
\left(1-\left(1-e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}\right)\right) \cdot T_{x}-T_{x}+\left(1-e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}\right) \cdot T(1)=0
$$

Volumenstrømmen $v$ og varmeovexføringsevnen $H$ er temperaturafhængige størrelser.

Varmeoverføringsevnen $H$ beregnes som beskrevet i afsnit 4.3 ligeledes ved hjælp af temperaturerne ved tidsspringets start:

$$
\mathrm{H}=\mathrm{c}_{2}+\mathrm{c}_{3} \cdot \ln \left(\mathrm{~T}_{\mathrm{f}_{\mathrm{gmI}}}-\mathrm{T}_{\mathrm{gml}}(1)\right)+\left[\mathrm{a}_{2}+\mathrm{d}_{3} \cdot \ln \left(\mathrm{~T}_{\mathrm{f}_{\mathrm{gml}}}-\mathrm{T}_{\mathrm{gml}}(1)\right)\right] \cdot \mathrm{T}_{\mathrm{gm} 1}(1)
$$

4.6.4 Varmebalance for varmelageret under solfangerdrift

I perioder med solfangerdrift ændres varmebalancen for lag 1
i forhold til varmebalancen, som er opstillet i afsnit 4.4.2.4 og som er gældende i perioder uden solfangerdrift. Varmebalancen kan i perioder med solfangerdrift udtrykkes ved:

$$
\frac{d(C I(1) \cdot T(1))}{d \tau}=V \cdot C_{p} \cdot \rho \cdot\left(T_{f}-T_{r}\right)+X K K(1) \cdot(T(2)-T(1))-X K T(1) \cdot\left(T(1)-T_{O}\right)-Y(1)
$$

CI(1), $V_{\theta} X K(1)$ Og XKT (1) er temperaturafhængige storrelser. Benyttes smã tidsspring $\Delta \tau$, kan disse størrelser med rime lighed beregnes med temperaturerne ved tidsspringets start $T_{\operatorname{Tm}}(I)$ 。 og varmebalancen kan med rimelighed omskxives til:

$$
\begin{aligned}
& \frac{C I(1)}{\Delta \tau}\left(T(1)-T_{g m 1}(1)\right)=v \cdot C_{p} \cdot p \cdot\left(T_{f}-T_{r}\right)+X K(1) \cdot(T(2)-T(1))- \\
& X K I(1) \cdot\left(T(1)-T_{0}\right)-X(1)
\end{aligned}
$$

eller:

$$
\begin{aligned}
& -V \cdot C_{p} \cdot \rho \cdot T_{f}+V \cdot C_{p} \cdot \rho \cdot T_{r}+\left(\frac{C I(1)}{\Delta \tau}+X K(1)+X K T(I)\right) \cdot T(I)-X K(1) \cdot T(2)= \\
& \frac{C I(I)}{\Delta \tau} T_{g m I}(I)+X K T(I) \cdot T_{0}-Y(1)
\end{aligned}
$$

Denne varmebalanceligning kan ved hjelp af den i afsnit 4.6 .3 opstillede varmevekslerligning omformes til:

$$
\begin{aligned}
& -\left(1-e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}\right) \cdot T_{r}+\left[1-e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}+\frac{e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}}{V \cdot C_{p} \cdot \rho} .\right. \\
& \left.\left(\frac{C I(1)}{\Delta T}+X K(I)+X K T(1)\right)\right] \cdot T(I)-\frac{e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}}{V \cdot C_{p} \cdot \rho} \cdot X K(I) \cdot T(2)= \\
& \frac{e^{-\frac{H}{V \cdot C_{p} \cdot \rho}}}{V \cdot C_{p} \cdot \rho} \cdot\left(\frac{C I(I)}{\Delta \tau} \cdot T_{g m I}(I)+X X K T(I) \cdot T_{0}-Y(I)\right)
\end{aligned}
$$

Varmebalanceligningerne for lagerets øvxige lag, lag 2, lag 3. $\ldots . . \operatorname{Og} \operatorname{lag} N$ er opstillet $i$ afsnit 4.4 .2 .4 perioder uden solfangerdrift. Disse ligninger gældex ogsa for perioder med solfangerdrift.

### 4.6.5 Beregning af lagerets og solfangerkredsens temperaturer under solfangerdrift og tapning

Solfangervæskens vamebalanceligning fra afsnit 4.6.2. varmevekslingsligningen fra afsnit 4.6 .3 , den omformede varmebalan celigning for lag 1 fra afsnit 4.6 .4 og de i afsnit 4.4 .2 .4
opstillede ligningex for lagerets ovrige lag udgor et tridiam gonalt ligningssystem med $N+2$ ligninger. Lagertemperaturerne og fremlobs- og returtemperaturen ved tidsspringets slutning $T(I)$, $T_{f}$ og $T_{r}$ beregnes airekte ved hjalp af den i afsnit 4.4.2.4 omtalte version af simpel Gauss-elimination. Ogsai i perioder med solfangerdrift benyttes i edb-programmet dobbelt precision ved $l \phi s n i n g e n$ af ligningssystemet.

Lagertemperaturerne ved tidsspringets slutning $T(I)$ beregnes som beskrevet ovenfor ved hjalp af temperaturerne ved tidsspringets start $T_{g m}(I)$. Efter beregningen kan det forekomme, at $T(I)>T(I+1)$. Dette ex muligt, da konvek tionen $i$ vammtvandsbeholderen kun $i$ begrenset omfang tages i beregning. En sadan temperatur-uorden vil ikke optræde i lageret, idet massefyldeforskelle i vandet hurtigt vil resultexe i vandstrpmninger og en dermed forbundet temperaturud jæving. Hvis $T(I)-T(I+1)>0,05^{\circ} \mathrm{C}$ foretages derfor en helt ny beregning af temperaturerne. I denne beregning sattes $X K(I)=10^{6} W /{ }^{\circ} \mathrm{C}$. Altsa gøres varmeledningen sa stor, at temperaturudjævning sikres.

Nar solfangeren er $i$ drift, benyttes den ovenfor beskrevne me.. tode til beregning af lagertemperaturerne og af solfangere væskens fremløbs-og returtemperatur. Nar solfangeren ikke ex $i$ drift, beregnes solfangerens temperatur og solfanger kredsens temperaturer som beskrevet ovenfor. Lagerets temperaturer $i$ disse perioder beregnes ved hjelp af metoden beskrevet $i$ afsnit 4.4 .2 .4 med de ovenfor omtalte andringer.

Efter beregningen af lagertemperatureme benyttes altid den $i$ afsnit 4.4 .2 .5 beskxevne metode, hvorved lagertemperaturerne korrigeres for lagervandets eventuelle udvidelse eller sammentrakning。

Systemets temperaturer beregnes altsà ved slutningen af hvert tidsspring ved hjxlp af temperaturerne ved tidsspringets start.

Har solfangeren været i drift $i$ det foregànde tidsspring, benyttes beregningsmetoden for perioder med solfangerdrift. Systemets temperaturer til tidsspringets slutning beregnes altsa som om solfangeren er i drift i tidsspringet. Solfangervæskens fremlobstemperatur til lageret ved tidsspringets start og slutning $T_{f g m}$ og $T_{f}$ solfangervæskens returtemperatur fra lageret ved tidsspringets start og slutning $T_{r m p}$ og $T_{r}$ afgør sammen med styresystemets stopdifferens $\Delta T$ stop" om solfangeren er i drift i det păgældende tidsspring.

Er $\frac{T_{f}+T_{f g l}}{2}-\frac{T_{r}+T_{r g m}}{2}>\Delta T_{\text {stop }}$ antages solfangeren at være $i$ drift i tidsspringet.
Er det modsatte tilfældet: $\frac{T_{f}+T_{f g m l}}{2}-\frac{T_{r}+T_{r}}{2} \leqq \Delta T_{\text {stop }}$ antages solfangeren ikke at være $i$ drift i tidsspringet, og i stedet benyttes beregningsmetoden for perioder uden solfangerdrift.

Har solfangeren ikke været i drift i det foregãenāe tidsspring, beregnes solfangertemperaturen ved slutningen af tidsspringet Tsolf, som om der ikke er solfangerdrift i tidsspringet. Denne temperatur, solfangerens temperatur ved tidsspringets start Tsolfgml' lagerbundens temperatur ved tidsspringets start $T_{g m l}(1)$ og styxesystemets startdifferens $\Delta T$ start afgor, om solfangeren er i drift $i$ tidsspringet.
$\operatorname{Er} \frac{T_{\text {solf }}+T_{\text {solf }} \mathrm{Eml}}{2}-\mathrm{T}_{\mathrm{gml}}(I)>\Delta \mathrm{T}_{\text {start }}$ antages solfangeren at være i drift i tidsspringet。
Er det modsatte tilfaldet: $\frac{T_{s o l f}+T_{s o l f}}{2}-T_{g m l}(1) \leqq \Delta T_{\text {start }}$ benyttes beregningsmetoden for perioder uden solfangerdrift. Da temperaturen af lag 1 normalt kun ændres meget lidt i de sma tidsspring, som benyttes ved beregningen, anses det for rimeligt kun at benytte temperaturen af lag l ved tidsspringets slutning $T_{g m l}(1)$ ved styringen.

Den her beskrevne styring kræver et styresystem med 4 temperam
turfølere til moling af temperaturen i solfangeren, i bunden af lagertanken, i solfangervæsken, som tilføres lageret, og i solfangervæsken, som transporteres bort fra lageret. Da der benyttes små tidsspring ved beregningen, kan Danfoss' SETA differenstermostat med overvagning til solvarmeanlæg styre driften af solvarmeanlæggets cirkulationspumpe, som beskrevet ovenfor.

Figur 50 viser en principskitse af solvarmeanlægget, som tages i beregning. I langvarige solrige perioder, hvor temperaturen 1 varmelagerets top er højere end den ønskede varmtvandstemperatur $T_{v \phi}$ slukkes oliefyret, som tænkes anvendt som back-up system. En blandeventil sørger for at blande koldt vand, som normalt tilføres lageret og har temperaturen $T_{k}$, med vandet, som tappes fra toppen af varmelageret og har temperaturen $T(\mathbb{N})$ 。 saledes at temperaturen af vandet, der tappes fra systemet, bliver $\mathrm{T}_{\mathrm{v} \phi}$.

I perioder, hvor oliefyret ikke er slukket, ex begge systemets blandeventiler aktive. Nå $T(N)<T_{v \phi}$ blandes vand fra varmelageret med vandet fra varmtvandsbeholderen på en sådan måde, at temperaturen af vandet, der tappes fra systemet, bliver $T_{V \phi}$. Nar $T(N)>T_{V \phi}, b l a n d e s ~ k o l d t ~ v a n d ~ m e d ~ v a n d e t ~ f r a ~ v a r m e l a g e r e t, ~$ sa temperaturen af vandet, som tappes fra systemet, ogsa her bliver $\mathrm{T}_{\mathrm{v} \phi}{ }^{\circ}$
$\mathbb{N} \mathfrak{x} T(\mathbb{N})<T_{v \phi}$ tappes således samme vandvolumen fra varmelageret, som tappes fra hele systemet, mens dex tappes et mindre vandvolumen fra varmelageret end fra hele systemet, nar $T(\mathbb{N})>T_{v \phi}$. Er den totale tappetid for en tapning $\tau_{t} \quad o g$ det totale vandvolumen som tappes fra systemet VTA kendte størrelser for en tapning, kan volumenstrommen tappet fra varmelageret $V_{V}$ derfor, nar $T(N)<T_{V_{\phi}}$ findes af:

$$
v_{v}=\operatorname{VrA} A / \tau_{t}
$$

$N a x \quad T(N)>T_{V \phi}$ er varmestrømmen, som tappes fra varmelagerets


Figur 50. Principskitse af solvarmeanlæg til brugsvandsm opvarmning.
pverste lag, lig med varmestrommen, som tappes fra hele systemet, idet varmeindholdet sxttes til 0 ved temperaturen $T_{k}$. Kaldes vandets massefylde $\rho_{v \phi}$ ved temperaturen $T_{v \phi}$ gælder derfor:

$$
\left(T(N)-T_{k}\right) \cdot \rho(N) \cdot C_{p v} \cdot V_{v}=\left(T_{V \phi}-T_{j k}\right) \cdot \rho_{V \phi} C_{p v} \cdot \frac{V T A}{T_{t}}
$$

Af denne ligning findes volumenstrømmen, som tappes fra varmew lageret:

$$
v_{v}=\frac{T_{v \phi}-T_{k}}{T(N)-T_{k}} \cdot \frac{\rho_{v \phi}}{\rho(N)} \cdot \frac{V T A}{T_{t}}
$$

Under tapningen valges tidsspringet $\Delta \tau$ på en sådan made, at $\Delta \tau \cdot v_{v}$ ikke bliver storre end vandvolumenet af laget med det mindste vandvolumen. Tapningen deles altsa eventuelt i en rakke mindre tidsspring, og størrelsen $T(N) T_{V \phi}$ afgøx for hvert tidsspring hvilken af de ovenfor beskrevne beregningsmetoder, som anvendes ved beregningen af $v_{v}$.

### 4.6.6 Beregning af ydelsen for solvarmeanlagget

Metoden, som er beskrevet $i$ de foregående afsnit, benyttes til beregning af systemets temperaturer til forskellige tidspunkter igennem hele aret. Vaxmemængderne, som tilfores varmelageret, som tabes fra varmelageret i form af varmetab, som skydes ud gennem sikkerhedsventilen under opvarmningen og som tappes fra varmelageret, beregnes for hvert tidsspring og sum meres op for hver dag og maned samt for hele aret.

Varmemængden, som tilføres varmelageret i tidsspringet $\Delta \tau$. bestemmes af:

$$
\mathrm{V} \cdot \mathrm{C}_{\mathrm{p}} \cdot \rho \cdot\left(\frac{\mathrm{~T}_{\mathrm{I}}+\mathrm{T}_{\mathrm{f}} \mathrm{gm}}{2}-\frac{T_{r}+\mathrm{T}_{r_{g m}}}{2}\right) \cdot \Delta T
$$

For tidsspring, hvor solfangerdriften netop er stoppet, er der endvidere et bidrag fra den varme varmevekslerspiral i varmelageret.

Varmemængden, som tabes fra varmelageret i tidsspringet $\Delta \tau$, findes ved at sumere varmetabene fra alle lagerets lag:

$$
\sum_{i=1}^{N} \operatorname{XKT}(I) \cdot\left(\frac{T(I)+T_{g m .1}(I)}{2}-T_{0}\right) \cdot \Delta \tau
$$

Varmemængden, som tabes gennem sikkerhedsventilen under solvarmetilførslen til lageret, beregnes som beskrevet i afsnit 4.4.2.5. Varmestrømmene, som bestemmer varmemangden, der tappes fra varmelageret, beregnes som beskrevet i afsnit 4.4.2.3.

Den totale arlige besparelse, som opnås ved brug af solvarmeanlægget, bestå dels af solvarmeanlæggets nettoydelse korrigeret for back-up systemets nyttevirkning, dels af det sparede tomgangstab, som stammer fra perioder, hvor back-up systemet kan slukkes. Den totale arlige besparelse afhanger som vist i [57], [56] og [76] helt af backwup systemets udformning og kvalitet.

Her antages back-up systemet at være et oliefyr, som kan slukkes i perioder, hvor solvarmeanlæggets ydelse til brugsvandsopvarmningen er tilstrækkelig stor. Som beskrevet i [77] er det rimeligt at bestemme antallet af dage, hvor oliefyret kan slukkes NA, ved hjælp af solvarmeanlæggets sommerdækningsgrad SD:

$$
N A= \begin{cases}150 & \text { for } S D \geqq 95 \% \\ \frac{150}{20}(S D-75) & \text { for } 75 \%<S D<95 \% \\ 0 & \text { for } S D \leqq 75 \%\end{cases}
$$

SD er den del af varmtvandsforbruget om sommeren, som solvarme anlagget leverer. Sommeren er her defineret som de fem sommermåneder: maj, juni, juli, august og september, hvor velisolerede huse ikke har rumopvarmningsbehov. Data for det valgte oliefyr fremgår af tabel 31.

Ved beregningen af den arlige besparelse ses der bort fra en rakke mindre energimængder, som kan forøge eller reducere besparelsen en smule. Der ses saledes bort fra pumpeenergien, som benyttes til cirkulation af solfangervasken, styresystemets energiforbrug og el-besparelsen, som opnås ved slukning af oliefyret. Desuden ses dex bort Era eventuel nyttiggjort varmetab fra lageret og rorsystemet $i$ huset, samt den varmemangde, som lagexet modtager Era ongivelserne i perioder med lagertemperaturer lavere end omgivelsestemperaturen. Endelig ses der bort fra solvarmeanlæggets eventuelle indflydelse pa boligens rumopvarmningsbehov.

Som vejrdata ved beregning af solvarmeanleggenes ydelser be nyttes det danske referencear $T R X_{, ~[78] . ~ E n ~ l a n g ~ r a k k e ~ p a r a-~}^{\text {a }}$ metre kan frit varieres i edb-programmet, men er i de følgende beregninger fastholdt, idet kun variationer i varmelagerets udformning undersøges.
4.7 Lagerudformningens betydning for sma solvarmeanlags ydelse
4.7.1 Data for solvarmeanlegget, som tages i beregning

Solvarmeanlæggets data, som Eastholdes i de folgende beregninger, fremgå af tabel 31. Den benyttede maksimaleffektivitet for solfangeren $\eta_{0}=0,90$, den benyttede varmetabskoefficient $k_{o}=5,0 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ og det benyttede simple effektivitetsudtryk beskriver rimeligt godt den maite gennemsnitseffektivitet for tre selektive solfangere, [79], [80] og [81]. Afprøvningerne af de tre solfangere blev foretaget 11982 og 1983 pa Laboram toriet for Varmeisolering, som beskrevet i [82]. Som solfanger vaske benyttes en $50 \%$ (vegt procent) vand/propylenglycol blanding, hvor produktet af massefylde og varmefylde antages at vare uafhangigt af temperaturen, se afsnit 2.1.1.2.

Solvarmeanlæggets ydelse afhænger kun lidt af forbrugsmpnsteret [56] , hvorfor der her kun anvendes det i tabel 31 angivne forbrugsmonster. Det daglige varmtvandsforbrug bestemmex den optimale storrelse af solvarmeanlegget. Ogsa dette forhold er beskrevet i [56]. Derfor benyttes her kun en størrelse af det daglige varmtvandsforbrug, nemlig $150 \mathrm{l} / \mathrm{dag}, \quad$ som anfort $i$ tabel 31. Lagerudformningens betydning for solvarmeanlægs ydelse undersøges herefter med det udviklede edbeprogram.

I alle de udforte beregninger er de i tabel 31 anforte data be nyttet. Betydningen af storrelsen af tidsspringet benyttet ved beregningen, solfangerarealet og styresystemets start-og stopdifferens samt varmelagerets udformning for solvarmeanleggets ydelse er undersøgt ved beregninger. I disse beregningex ex


Tabel 31. Data benyttet ved beregning af solvarmeanlægs ydelse.
valgt et referenceanlæg, hvis data er givet i tabel 32. Hver enkelt parameters indflydelse på ydelsen fra solvarmeanlægget undersøges på en sådan måde, at beregninger udføres med form skellige størrelser af denne enkelte parameter. Bortset fra variationer af størrelsen af denne ene parametex benyttes i фvrigt refexenceanlæggets data fra tabel 32 i beregningerne. Altsa varieres kun én parameter ad gangen. Resultaterne fra beregningerne omtales $i$ de $f$ folgende afsnit, 4.7.2 - 4.7.14.

Referenceanlagget er et typisk velmamensioneret anlæg. Solfangerareal og lagervolumen er valgt i ovecensstemmelse med de i [56] opstillede tommelfingerregler. Den valgte volumenstrøm svarer rimeligt godt til de normalt anbefalede volumenstrømme. Styresystemets startdifferens er valgt på basis af de i [77] beskrevne beregninger. Styresystemets stopdifferens er valgt således, at pumpen standses, sa effekttilførslen til varmelageret ikke bliver mindre end omtrent 2,2 gange den effekt, som pumpen bruger til cirkulation af solfangervæsken. Denne styring skønnes at vare rimelig på grund af prisforskellen mellem elektrisk energi og varme. En almindelig ståtank med normal godstykkelse og isoleringstykkelse benyttes som varmelager. Varmt vand tappes fra lagerets top gennem et vel-isoleret rør. Alle øvrige rørgennembrydninger gennem isoleringen og kuldebroer tænkes placeret i lagerets bund. Hjælpeudstyret til solvarmeanlægget tankes placeret i et isoleret instrumentrum under lagertanken. pa basis af erfaringexne fra provning af varmelagre skønnes det. at denne udformning resulterer i, at varmetabskoefficenten, på grund af kuldebroer, forøges med $1 \mathrm{~W} /{ }^{\circ}{ }_{\mathrm{C}}$, og at hele forøgelsen er lokaliseret i lagerets bund. Den anførte varmeoverføringsevne for varmevekslerspiralen er fundet på basis af varmevekslerspiralens data, solfangervæskens data og volumenstrømmen og den i [40] beskrevne teori. I øvrigt viser undersøgelserne, at referenceanlæggets data er rimeligt valgt.


Tabel 32. Data for referenceanleg.

### 4.7.2 Tidsspring

Beregninger udfores med tre forskellige tidsspring, $\Delta \tau=450 \mathrm{~s}$, $900 \mathrm{~s} \circ \mathrm{og} 1800 \mathrm{~s}$. De bexegnede arlige energimangder, som tilføres varmelageret fra solfangerkredsen, som tappes fra varmelageret, som tabes fra varmelageret i form af varmetab, som bruges af pumpen til vaskecirkulation, samt energimængden, som tabes samtidig med at vand skydes ud gennem sikkerhedsventilen pa grund af vandudvidelser under varmetilførsel, er vist på figur 51. Desuden ex den arlige varmebalance vist. Det ses, at den arlige varmebalance er korrekt for $\Delta \tau=450 \mathrm{~s}$, mens der opstar ubalance ved større tidsspring. Dette skyldes, at retlinede temperaturforlob hhvoi lageret og i solfanger kredsen forudsættes ved beregning af hhv. lagerets varmetab og varmemængden, som tilføres lageret. Det ses endvidere, at de enkelte varmemængder kun afhanger lidt af tidsspringet.

Solvarmeanlæggets årlige nettoudbytte og besparelse, som beregnes som beskrevet i affnit 4.6.6, er vist på figur 52, hvor også den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til solvarmeanlaggets arlige nettoudbytte og besparelse, beregnet med $\Delta \tau=900 \mathrm{~s}$, er vist som funktion af tidsspringet. Beregningernes nojagtighed forbedres ved at benytte små tidsspring. Da dex kun opnas ubetydelige endringer af det ålige nettoudbytte og den årlige besparelse ved at reducere tidsspringet, når blot $\Delta \tau=900 \mathrm{~s}$, benyttes dette tidsspring i de følgende beregninger. Bexegningstiden for en arssimulering ex rimelig kort for $\Delta x=900 \mathrm{~s}$, og prisen for en sadan kørsel er derfor rimelig lav.

### 4.7.3 Antal lag i varmelagermodellen

Solvarmeanlæggets arlige nettoudbytte og besparelse er vist på figur 53 som funktion af antallet af lag $i$ varmelagermodellen. Desuden er vist den procentvise ændring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til solvarmeanlæggets årlige nettoudbytte og besparelse beregnet med $N=6$ som funktion af antallet af lag i varmelagermodellen. Bereg-

Varme tilfort varmelager : varme tappet fra varmelager : varmetab fra varmelager : varme tabt gennem sikkerhedsventil
$\frac{\mathrm{kWh}}{\mathrm{ar}}$



Figur 51. Arlige varmemangder tilfort, tappet og tabt fra varmelageret, den årlige pumpeenergi brugt til cirkulation af solfangervæsken, samt den årlige varmebalance for varmelagexet som funktion af tidsspringet.

\% ændring af
solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlægget


Figur 52. Solvarmeanleggets arlige nettoudbytte og besparelse samt den procentvise monding af solvarmeanlæggets arlige nettoudoytte og besparelse i forhold til referenceanlwggets arlige nettoudbytte og besparelse som funktion af tidsspringet.

\% ændring af solvarmeanlæggets axlige nettoudbytte og besparelse i forhold til nettom udbytte og besparelse for referenceanlægget


Figur 53. Solvarmeanlaggets arlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af antallet af lag i varmelagermodellen.
ningernes nojagtighed forbedres ved at benytte mange lag i beregningsmodellen. Det ses, at fem lag er tilstrakkeligt i dette tilfælde, idet ydelsen kun mendres ubetydeligt ved at forøge antallet af lag yderligexe. I de folgende beregninger vælges $N=6$ for at være pa den sikre side.

### 4.7.4 Solfangerareal

Solvarmeanlæggets åflige ydelsex er vist pa figur 54 som funktion af solfangerarealet. Desuden er den procentvise andring af solvarmeanleggets ydelser $i$ forhold til referenceanlæggets ydelser vist som funktion af solfangerarealet. Ydelsen forøges for voksende solfangerareal. kraftigt for sma solfangerarealer, mindre drastisk for storre solfangerarealer. Det skønnes, at referenceanlæggets solfangerareal har en rimelig størrelse。

### 4.7.5 styresystem

### 4.7.5.1 styresystemets startdifferens

Solvarmeanlæggets årlige ydelser er vist på figur 55 som funk tion af startdifferensens storrelse. De procentvise ændringer af solvarmeanleggets arlige ydelser er desuden vist som funktion af startdifferensen. Ydelsen andres ikke markbart ved andring af startdifferensen. Det bemærkes dog, at startdifEerensen ikke må blive urimelig stor.

### 4.7.5.2 Styresystemets stopdifferens

Solvarmeanleggets arlige ydelse er vist pa figur 56 som funktion af storrelsen af stopdifferensen. Ydelsen reduceres kraftigt for voksende stopdifferens. Det er altsa vesentligt, at pumpen ikke stoppes for tidligt.

Stoppes pumpen først ved negative stopdifferenser, tappes varme fra lageret gennem varmevekslerspiralen. De varmeoverf $\phi$ ringsmassige forhold for varmevekslerspiraler er i [40] ikke unders申gt for perioder, hvor varme tappes fra lageret gennem

\% ændring af
solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlagget


Figur 54. Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af solfangerarealet.

\% ændxing af solvarmeanlaggets ålige nettoudbytte og besparelse i forhold til nettom udbytte og besparelse for referenceanlægget


Figur 55. Solvarmeanlwggets arlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse $i$ forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af styresystemets startdifferens.

\% ændring af solvarmeanleggets ålige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlagget


Figur 56. Solvarmeanlaggets årlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse $i$ forhold til rew ferenceanlæggets axlige nettoudbytte og besparelse som funktion af styresystemets stopdifferens.
varmevekslerspiraler. For ikke at undexvurdere fejlstyringens betydning for reduktionen af ydelsen benyttes for sadanne pew rioder i disse beregninger en meget stor varmeoverforingsevne, $H=100 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ 。 Dog regnes med $H=5 \mathrm{~W} /{ }^{\circ} \mathrm{C}$, nar tempexaturen af laget med varmevekslerspiralen ex lavere end $5^{\circ} \mathrm{C}$. Dette skonm nes at være rimeligt, idet vands massefylde i temperaturintervallet fra $0^{\circ} \mathrm{C}$ til $5^{\circ} \mathrm{C}$ næsten ikke varierer med temperaturen. Derfor vil den naturlige konvektion i vandet omkring varmevekslerspiralen i disse perioder være lille, hvorved varmeoverforingsevnen for varmevekslerspiralen reduceres væsentligt, idet den storste del af vammeoverføringen sker ved varmeledning.

Af figur 56 ses, at solvarmeanlaggets ydelse ikke reduceres mærkbart, nar pumpen stoppes for sent, uanset hvor sent den stoppes. Allerede ved en stopdifferens pa $-1^{\circ} \mathrm{C}$ er pumpen $i$ drift igennem alle arets timer. Arsagen til den ringe reduktion af ydelsen er, at kun den nederste del af lageret hvor varmevekslerspiralen er beliggende, afkøles væsentligt i perioder med fejlstyring. Temperaturen af de ovenfor liggende lag i lageret reduceres kun langsomt, idet varmetransporten fra disse lag foregar ved varmeledning, som ex forholdsvis lille. Det ex saledes kun muligt at tappe en begrænset del af lagerets varmeindhold gennem en varmevekslexspixal, som er beliggende $i$ bunden af lageret $o g$ som har sine roxforbindelser ført ud gennem bunden af lageret. De lave temperaturer i lagerets bund, forarsaget af fejlstyring, medfører et forøget solfangerudbytte $i$ de efterfølgende solskinsperioder. Solvarmeanlæggets ydelse reduceres således ikke mærkbart, når pumpen stoppes for sent.

Figur 57 viser solvarmeanleggets arlige besparelse, nettoud bytte og energiforbrug til pumpedrift som funktion af stopdifferensen. Stoppes pumpen for sent, forbruges for meget energi til pumpedriften. Det er altsa trods alt vesentiigt, at pumpen ikke er $i$ drift $i$ alt for mange perioder uden solskin, fx om natten.


Figur 57. Solvarmeanlæggets arlige nettoudbytte, besparelse og energiforbrug til cirkulation af solfangervæsken som funktion af styresystemets stopdifferens.

Styresystemets indflydelse pä anlaggets ydelse er som vist ovenfor lille, nar der som varmelager benyttes en hoj, slank varmtvandsbeholder med en varmevekslerspixal beliggende i bunden af tanken og med roxforbindelserne fort gennem bunden af tanken. Det bor blot sikres, at pumpedriften ikke stoppes for tidligt, og at pumpen ikke er $i$ drift i for mange perio der uden sol. Det er derfor nærliggende at forenkle, og dermed billiggøre, solvarmeanlæggets opbygning og styresystem. Den normalt benyttede kontraventil i solfangerkredsen kan spares, idet solvarmeanlaggets ydelse ikke reduceres mærkbaxt, selv om varme tappes fra lageret gennem varmevekslerspiralen i perioder uden sol.

Styresystemet kan ogsa billiggores. Med de små energibespare ende cirkulationspumper, som allerede $i$ dag er pa markedet. vejer energiforbruget til pumpens drift ikke tungt $i$ energiregnskabet for solvarmeanlægget, selv om pumpen er i drift i visse perioder uden tilstrokkelig sol. Mange forskellige billige udforminger af styresystemet kan tankes. Temperaturfølere kan undværes. Eventuelt kan pumpen styres af et simpelt ur eller af en lysfoler.

Det må understreges, at de ovenfor omtalte forhold kun er gældende for anlag med et hojt, slankt varmelager med varmew vekslerspiralen placeret $i$ bunden af lageret og med røxforbindelserne fort gennem lagerets bund. Før de nævnte forbedm ringer tages i brug i solvarmeanlæg, bør det naturligvis ved forsøg kontrolleres, at de $i$ beregningerne benyttede forudsætninger for de varmeoverforingsmessige forhold for varme vekslerspiralen i perioder, hvor varme tappes fra lageret gennem varmevekslerspiralen, ex rimelige. For eksempel reduce res vands massefylde for aftagende temperatur, nar vandtempem raturen er mindxe end $4^{\circ} \mathrm{C}$. Det kunne derfor tænkes, at lageret kan tommes for varme gennem varmevekslerspiralen, hvis temperaturen af vandet $i$ det nederste lag bliver mindre end $4^{\circ} \mathrm{C}$. Det er dog usandsynligt, at dette forhold vil reducere anlxggets ydelse vasentligt. Dels nås kun sjaldent sà lave
temperaturer, dels vil tomningen af varmelageret formodentlig forega særdeles langsomt, idet massefyldeforskellene er meget små.

Det skønnes, at den omtalte forenkling af styresystem og systemudformning kan reducere prisen for små solvarmeanlæg med $10-20 \%$ 。

### 4.7.6 Lagervolumen

Solvarmeanlæggets årlige ydelser ex vist på figur 58 som funktion af lagervolumenet. Ydelserne stiger kraftigt for voksende lagervolumen, sa lenge volumenet er mindre end $200 \ell$, som svarw er til det optimale lagexvolumen fundet ved de i [56] opstillede tommelfingerregler. Yderligere $\phi g n i n g$ af lagervolumenet giver derimod ikke anledning til næmeværdige andringer af anlæggets ydelse.

### 4.7.7 Varmevekslerspiral

Varmevekslerspiralen bør placeres i lagerets nederste del. sao ledes at solfangerkredsens temperaturniveau holdes så lavt som muligt. Den fordelagtige placering af varmevekslerspiralen i varmelagerets nederste lag er forudsat i beregningerne Lagre med denne spiralplacering fordyres ikke i Eorhold til lagre med mindre fordelagtige spiralplaceringer.

Solvarmeanlaggets ydelse er vist for tre lige lange varmevekslerspiralex med Eorskellige materialer og dimensioner pa Eigur 59: kobber 10/8,4. kobber 18/16 og stal 1/2". Varmem vekslerspixalens materiale og dimension har nesten ingen indflydelse pa anlæggets ydelse. Ved valg af dimensionen for kobber-varmevekslerspiraler må det sikres, at der ikke optræder for store strømningshastigheder i spiralen. Herved reduceres faren for korrosion i varmevekslerspiralen.

Solvameanlæggets ydelsex ex vist som funktion af varmevekslerm spiralens lengde pä figur 60. Ydelsen stigex for voksende

\% ændring af solvarmeanlæggets årlige nettoudbytte og bespaxelse i forhold til nettoudbytte og besparelse for refexenceanlægget


Figur 58. Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af lagervolumenet.

\% ændring af solvarmeanlwggets årlige udbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlægget


Figur 59. Solvammeanlaggets arlige nettoudbytte og besparelse samt den procentvise zndring af solvarmeanlæggets årlige nettoudbytte og besparelse i forhold til rem ferenceanlæggets årlige nettoudbytte og besparelse for forskellige varmevekslexspiraler.

\% ændring af
solvarmeanlæggets årlige nettoudbytte og besparelse i forhold til netto udbytte og besparelse for referenceanlægget


Figur 60. Solvarmeanlæggets arlige nettoudbytte og bespareise samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af varmevekslerspirallængden.
spirallængde, kraftigt for sma længder, mindre drastisk for større længder. I beregningerne tages der ikke hensyn til eventuel kalkafsætning på varmevekslerspiralen. Kalk afsættes pa varmevekslerspiralen under opvarmning af vand til høje temperaturer. Kalken påirker varmeoverføringsevnen for varmevekslerspiralen. Ved bestemmelse af den optimale udformning af varmevekslerspiralen bør der tages hensyn til ydelsen for anlægget under hensyntagen til kalkafsætningen og til prisen for varmelageret med forskellige udformninger af varmevekslerspiralen. $P a ̊$ basis af figur 60 skønnes det, at den valgte spirallangde for referenceanlægget er i underkanten af det optimale.

### 4.7.8 Volumenstrøm

Solvarmeanlæggets ydelse er vist som funktion af volumenstrøm men på figur 61. I beregningerne ses der bort fra volumenstrømmens indflydelse på solfangereffektiviteten, hvilket er rimeligt for de fleste solfangere. I intervallet fra $1 \mathrm{l} / \mathrm{min}$ til $7 \mathrm{l} / \mathrm{min}$ har volumenstrommen næsten ingen indflydelse på anlæggets ydelse. Ydelsen har et maksimum ved en volumenstrøm på omtrent $4,5 \mathrm{l} / \mathrm{min}$ ved $50^{\circ} \mathrm{C}$. For mindre volumenstrømme reduceres ydelsen på grund af reduktionen af varmeoverføringsevnen for varmevekslerspiralen. For større volumenstrømme reduceres ydelsen, idet styresystemets stopdifferens for disse volumenstrømme er for stor.

### 4.7.9 Varmelagerets hojde/diameter-forhold

Solvarmeanlæggets ydelse er vist som funktion af lagertankens højde/diameter-forhold på figur 62. Ydelsen stiger kraftigt for voksende $h_{i} / d_{i}$-forhold, sa længe størrelsen $h_{i} / d_{i}$ er lille. Er $h_{i} / d_{i}$ større end 2,5, vokser ydelsen næsten ikke mere, selv om $h_{i} / d_{i}$-forholdet forøges væsentligt. Arsagen hertil er, at selv om temperaturlagdelingen i lageret forøges, forøges varm melagerets varmetabskoefficient, og dermed varmetabet, samtidigt, siledes at anlægsydelsen næsten ikke ændres.

\% mndring á solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til nettom udbytte og besparelse for referenceanlægget


Figur 61. Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til referenceanlxggets :xilge nettoudbytte og besparelse som funktion af volumenstrommen.

\% ændring af solvarmeanlæggets ålige nettoudbytte og bespaxelse i forhold til nettom udbytte og besparelse for referenceanlægget


Figur 62. Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlæggets arlige nettoudbytte og besparelse $i$ forhold til referenceanlæggets årlige nettoudbytte og besparelse som funktion af $h_{i} / d_{i}$-forholdet.

### 4.7.10.1 Topisoleringens tykkelse

Solvarmeanleggets ydelse er vist som funktion af topisolexingens tykkelse på figur 63. Ydelsen stiger for voksende isoleringstykkelse, kraftigt for små isoleringstykkelser, næppe mærkbart for store isoleringstykkelser. Nar isoleringstykkelsen er støre end 3 cm . forøges ydelsen kun lidt for voksende isoleringstykkelse. Isoleringstykkelsens relative lille indflydelse på ydelsen forklares ved det forholdsvis lille overfladeareal for toppen af lagertanken, som jo er høj og slank.

### 4.7.10.2 Sideisoleringens tykkelse

Solvarmeanlæggets ydelse er vist som funktion af sideisoleringens tykkelse på figur 64. Ydelsen stiger for voksende isoleringstykkelse, kraftigt for sma isoleringstykkelser, næppe markbart for store isoleringstykkelser. Nar isoleringstykkelsen er størye end 5 cm , forøges ydelsen kun lidt for voksende isoleringstykkelse.

### 4.7.10.3 Bundisoleringens tykkelse

Solvarmeanlæggets ydelse er vist som funktion af bundisoleringens tykkelse pi figur 65. Ydelsen er uafhengig af bundisoleringens tykkelse. Det er derfor unpdvendigt at isolere lagerets bund.
4.7.10.4 Kuldebro i toppen af varmelageret

Solvarmeanleggets ydelse er vist som funktion af storrelsen af kuldebroen $i$ toppen af varmelageret på figur 66. Ydelsen reduceres kraftigt, nar storrelsen af kuldebroen i toppen vokser. Det er derfor sardeles vigtigt, at lagerets top isoleres grundigt uden nogen form for gennembrydning af isoleringen.
4.7.10.5 Kuldebro i bunden af varmelageret

Solvarmeanlaggets ydelse er vist som funktion af storrelsen af
$-183-$

\% ændring af solvarmeanlæggets ålige nettoudbytte og besparelse i forhold til netto udbytte og besparelse for referenceanlægget


Figur 63. Solvarmeanlaggets orlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af tykkelsen af lagerets topisolering.

\% ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til nettom udbytte og besparelse for referenceanlægget


Figur 64. Solvarmeanlaggets årlige nettouabytte og besparelse samt den procentvise ændring af solvarmeanlaggets årlige nettoudbytte og besparelse i forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af tykkelsen af lagexets sideisolering.

\% ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til netto.. udbytte og besparelse for referenceanlægget


Figur 65. Solvarmeanlæggets airlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til referenceanlæggets ålige nettoudbytte og besparelse som funktion af tykkelsen af lagerets bundisolering.
\% ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlægget


Figur 66. Solvarmeanlaggets arlige nettoudbytte og besparelse samt den procentvise endring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af storrelsen af kuldebroen i toppen af varmelageret.
kuldebroen i bunden af varmelageret på figur 67. Nar kuldebroen er placeret i bunden af varmelageret, har kuldebroens størrelse ikke tilnærmelsesvis samme indflydelse pa ydelsen, som nå kuldebroen ex placeret i toppen af varmelagexet. Dette skyldes temperaturlagdelingen i varmelageret. Den arlige besparelse for solvarmeanlægget reduceres lidt, nar størrelsen af kuldebroen $i$ bunden vokser. Erfaringerne har vist, at størrelsen af kuldebroen, forarsaget af alle rørgennemf $\emptyset-$ ringer, ben, hjælpeudstyr til solvarmeanlægget og lignende, let kan begrænses til $1 \mathrm{~W} /{ }^{\circ} \mathrm{C}$, nå blot alle kuldebroerne placeres i bunden af lageret. Med denne udformning reduceres besparelsen altså ikke på grund af kuldebroen.

### 4.7.11 Varmelagerets godstykkelse

Solvarmeanlæggets ydelse er vist som funktion af endebundenes godstykkelse på figur 68. Ydelsen er uafhængig af endebundenes godstykkelse.

Solvarmeanlæggets ydelse er vist som funktion af svøbets godstykkelse pa figur 69. Ydelsen reduceres lidt for voksende godstykkelse. Dette skyldes, at den forøgede godstykkelse medfører forøget varmeledning i svøbet, hvorved varmelagerets temperaturlagdeling reduceres. 3 mm er den normale godstykkelse for svøbet for en 200 \& varmtvandsbeholder.

### 4.7.12 Varmelagerets tappesystem

Solvarmeanlæggets ydelse er vist som funktion af den del af varmelageret, hvor koldt vand opblandes fuldstændigt med lagervand under tapning, se figur 70. Ydelsen reduceres kraftigt, nå delen af lageret, hvor koldt vand opblandes fuldstændigt med lagervand under tapning, vokser. Det bør derfor sikres, at koldt vand tilføres bunden af lageret uden nogen nævneværdig omrøring i vandvolumenet.

Det varme vand tappes fra toppen af tanken, enten gennem den фverste del af tanken eller gennem et rør i lageret fra toppen

\% ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlægget


Figur 67. Solvarmeanlæggets axlige nettoudbytte og besparelse samt den procentvise andring af solvarmeanlaggets axlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af storrelsen af kuldebroen i bunden af varmelageret.

\% ændring af solvarmeanlæggets årlige nettoudbytte og besparelse i forhold til nettom udbytte og besparelse for referenceanlægget


Figur 68. Solvarmeanlæggets axlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlaggets arlige nettoudbytte og besparelse i forhold til referenceanlæggets arlige nettoudbytte og besparelse som funktion af godstykkelsen af endebundene.

- 190 -

\% andring af solvarme anlæggets årlige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlægget


Figur 69. Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise zendring af solvarmeanlæggets arlige nettoudbytte og besparelse $i$ forhold til referenceanlæggets årlige nettoudbytte og besparelse som funktion af godstykkelsen af svøbet.

\% ændring af solvarmeanlæggets årlige nettoudbytte og besparelse i forhold til nettoudbytte og besparelse for referenceanlægget


Figur 70. Solvarmeanlæggets ålige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse $i$ forhold til rererenceanlæggets arlige nettoudbytte og besparelse som funktion af den del af lageret, hvor koldt vand opblandes fuldstændigt med Lagervand under tapning.
til og gennem bunden. Forskellige udformninger af dette rør er ikke taget $i$ beregning. Det ma sikres, at det varme vand ikke afkøles under transporten fra toppen til bunden af lageret. Undersøgelser viser, at afkølingen af det varme vand er ubetydelig, nå der benyttes et plastrør [83]. Benyttes et plastrør, vurderes det derfor, at den interne varmetransport i lageret under tapningen ikke påirker solvarmeanlæggets ydelse.

### 4.7.13 Ekstra tank for brugsvandet

Varmelageret, som tages i beregning, er udformet i overensstemmelse med vejledningen vedrørende sikring mod tilbagestrømning for varmtvandsbeholdere med maksimalt 300 \& volumen, [84]. Lageret og dets koldtvandstilførselsrør er vist skematisk på figur 71.


Figur 71. Skematisk illustration af lageret og koldtvandstilførselsrøret.

Under opvarmning udvider vandet sig, trykket i lagertanken stiger, sikkerhedsventilen abner sig og der tabes herved varmt vand. Under stilstandsperioder trokker vandet sig sammen, og koldt vand tilføres bunden af lagexet. Man kan derfor mellem sikkerhedsventilen og varmtvandsbeholderen installere en lille isoleret tank. som under opvarmningsperioder modtager varmtvandsbeholderens varme vand foroven, mens det koldere vand i bunden af den lille tank skydes ud gennem sikkerhedsventilen. Under stilstandsperioder tilfores det relativt varme vand fra
den lille tank varmtvandsbeholderen $i$ stedet for det kolde vand fra koldtvandstilførselsrøret. Ydelsesberegninger er udført med en lille ekstra tank, isoleret med 5 cm mineraluld. Der er ikke regnet med lagdeling i den lille tank. Solvarmeanlæggets ydelse er vist som funktion af lagervolumenet af den lille tank på figur 72. Ydelsen stiger kun meget svagt for voksende lagervolumen af den lille tank. Arsagen hertil er dels, at varmetabet fra den lille tank ex forholdsvis stort, dels at varmemangderne, som tabes gennem sikkerhedsventilen, kun er store $i$ perioder med store variationer af lagertemperaturen, dvs. i solrige perioder, hvor anlægget let kan klare hele opvarmningsbehovet. Installation af en lille ekstra tank kan måske være fordelagtig $i$ anlæg, hvor der dagligt er meget store temperaturvariationer i lagertanken, hvorimod den ekstra tank ikke synes attraktiv i almindelige solvarmeanlæg.

I фvrigt bør det nævnes, at varmevekslerspixalen kun vanskeligt $i$ praksis kan placeres sa lavt i lagertanken, at alt vandet i lagertanken opvarmes lige meget. Normalt vil der være lidt vand $i$ tankens bund, som er koldere end den øvrige del af tanken. Tilføres det kolde vand direkte til lagerets bund, vil det vand, som skydes ud gennem sikkerhedsventilen, derfor være lidt koldere end forudsat $i$ den benyttede matematiske model. Energitabene, som er knyttet til vandudvidelserne, er deffor i praksis normalt lidt mindre end de teoretisk beregnede energitab.

### 4.7.14 Betydning af vandstromning langs beholdersiden

Solvarmeanlæggets ydelse, beregnet med og uden vandstromning langs beholdersiden, ex vist pà figur 73. Solvarmeanlaggets ydelse er den samme, uanset om vandstromningen langs beholderens sider tages $i$ beregning eller ej. Dette skyldes dels. at vandstrømningen næsten gåx i stå, nå der optrwder temperaturlagdeling i lageret, dels at lagringstiderne er meget små. Da der tappes varmt vand bade kl. 18 og kl. 20 hver dag, altså umiddelbart efter varmetilførslen til lageret. får

\% madring af solvarmeanlæggets ålige nettoudbytte og besparelse i forhold til nettom udbytte og besparelse for referceanlægget


Figur 72. Solvarmeanlaggets arlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets arlige nettoudbytte og besparelse i forhold til rew ferenceanlæggets arlige nettoudbytte og besparelse som funktion af lagervolumenet af den ekstra tank.


Figur 73. Solvarmeanlæggets arlige nettoudbytte og besparelse samt den procentvise ændring af solvarmeanlæggets axlige nettoudbytte og besparelse i forhold til referenceanlaggets arlige nettoudbytte og besparelse som funktion af beregningsmetoden for temperaturlagdelingen i lageret.
strømningen derfor ingen nævneværdig indflydelse pa anlæggets ydelse.

I anlæg, hvor varme lagres i lageret i lange perioder efter opvarmningen, vil vandstrømningens betydning være større end angivet her, men afgørende betydning for ydelsen vil vandstromningen ikke $\mathrm{fa}^{\circ}$ 。

### 4.7.15 Forøget temperaturlagdeling i varmelageret

Varmelageret kan udformes saledes, at der i lageret etableres og bevares en temperaturlagdeling, som er større end den temperaturlagdeling, som "naturligt" optræder i referenceanlæggets varmelager.

For eksempel kan varmeledningen fra toppen til bunden af lageret reduceres ved at anvende beholdermaterialer med sma varmeledningsevner eller ved at reducere tvarsnitsarealerne af beholdermaterialet og af lagexvandet i en storre eller mindre del af lagerets højde. Af figur 69 fremgar det, at ydelsen for solvarmeanlægget ikke forøges vasentligt ved at reducere svøbets godstykkelse. Da varmeledningen i stalet normalt yder det største bidrag til lagerets totale interne varmetransport, vil anlæggets ydelse derfor ikke vokse nævneværdigt ved at udforme lageret på den ovenfor beskrevne made.

Lageret kan udformes med et stratifikationssøgende varmeoverføringssystem, saledes at kun en mindre del af lagervolumenet opvarmes i perioder, hvor solen ellers ikke helt kan dække opvarmningsbehovet. Herved opnas eventuelt høje temperaturer i lageret sa hurtigt, at eftervarmning ex unødvendig. Sandsynligvis vil nettoudbyttet for et anlæg med et sadant lager reduceres, mens besparelsen forøges, idet pexioderne med oliefyret slukket forlænges. Uden detaljerede bexegningex, som simulerer lagerets drift, er det vanskeligt at vurdere egnetheden af forskellige lagre udformet efter det her omtalte princip.

Lageret kan udformes med et stratifikationss申gende aftapningssystem, saledes at vandet kun tappes fra toppen af lageret, når temperaturen her er lavere end den onskede varmtvandstemperatur. Tappes det varme vand ikke fra toppen af lageret. men tappes det $i$ stedet fra det niveau i tanken, hvor vandet har den onskede temperatur, vil lageret tilfores en storre mængde koldt vand under tapningen. Herved reduceres tankens varmetab, og solfangerudbyttet forøges. Endvidere lagres det varme vand $i$ toppen af tanken, til der er brug for det. Egnetheden af varmelagre udfort efter dette princip er ogsa vanskelig at vurdere uden detaljerede beregninger.

Egnetheden af forskellige avancerede varmelagre med stor tem peraturlagdeling, blandt andet de ovenfor nævnte, undersøges for tiden $i$ et forprojekt finansieret af Energiministeriet.

Den komplicerede lagerudformning fordyrer naturligvis lageret. Disse lagre er derfor kun attraktive, hvis ydelsen forøges sa meget, at forholdet mellem ydelse og pris for solvarmeanlægget forbedres.

### 4.7.16 Varmelagerudformning

Referenceanlæggets varmelager er en høj, slank og velisoleret varmtvandsbeholder med en indbygget varmevekslexspiral i bunden af lageret. Der er ingen kuldebroex i lagexets top, alle rørforbindelser gar gennem lagerets bund, og alt hjælpeudstyr er placeret $i$ et instrumentrum under lageret. Beregningerne med den verificerede lagermodel har vist, at dette varmelager er særdeles velegnet til sma solvarmeanlag til brugsvandsopvarmning.

Ved et smeltevarmelager forstas et lager, hoor en stor del af den lagrede varmemangde afgives/optages under varmelagringsw materialets størkning/smeltning.

### 5.1 Varmelagringsmaterialex

Potentielle varmelagringsmaterialer findes i grupperne: uorganiske salthydrater, organiske materialer, organiske og uorganiske eutektiske blandinger. Der er udfort mange litteraturstudier og laboratorieforsøg for at finde de bedst egnede varmelagringsmaterialer ved forskellige temperaturniveauer, [85], [86], [87], [88], [89], [90], [91] og [92]. Næsten 20.000 materialer blev inkluderet $i$ de indledende litteraturstudier, mens de vigtigste fysiske og termiske egenskaber blev malt i laboratoriefors $\varnothing$ g for omtrent 200 af disse materialer.

Som regel ex massefylden for organiske materialer lille i forhold til massefylden for de uorganiske materialer. Da smeltevarmen pr. masseenhed for organiske og uorganiske materialer stort set ex den samme, resultexer massefyldeforskellene i, at varmeindholdet pr. volumenenhed for de uorganiske salthydrater er storre end varmeindholdet pr. Volumenenhed for de organiske materialer. Dette forhold bevirker, at de uorganiske salthyo drater er de mest attraktive smeltevarmelagringsmaterialer. Det er imidlertid ikke udelukkende storrelsen af varmelagrings materialets varmeindhold pr. volumenenhed, somer afgorende for varmelagringsmaterialets egnethed. Naturligvis skal materialet have et passende smeltepunkt, materialet skal være stabilt og det må ikke vare farligt eller giftigt. Desuden skal materialet vare rimeligt billigt.

### 5.1.1 Uorganiske salthydrater

I forbindelse med normale aktive solvarmeanleg bor varmelag ringsmatexialets smeltepunkt være placeret $i$ temperaturintervallet fra $30^{\circ} \mathrm{C}$ til $60^{\circ} \mathrm{C}$. Eksempler pa ufarlige og rimeligt billige salthydrater, som smelter i dette temperaturinterval.
og som har en stor smeltevarme, er angivet i tabel 33.

Salthydrat	Smeltepunkt ${ }^{\circ} \mathrm{C}$	Smeltevarme   $\mathrm{kJ} / \mathrm{kg}$   salthydrat	$\begin{array}{\|l} \text { Pris } \\ \mathrm{kr} / \mathrm{kg} \\ \text { salthydrat } \\ (20 \mathrm{t} \text { levering }) \end{array}$	Kongruent smeltende
$\mathrm{NaCH}_{3} \mathrm{COO} \cdot 3 \mathrm{H}_{2} \mathrm{O}$	58	265	4.15	nej
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	48	209	3,35	nej
$\mathrm{Ca}\left(\mathrm{NO}_{3}\right){ }_{2} \cdot 4 \mathrm{H}_{2} \mathrm{O}$	43	153	1,55	nej
$\mathrm{NA}_{2} \mathrm{HPO}_{4} \cdot 12 \mathrm{H}_{2} \mathrm{O}$	35	266	3,90	nej
$\mathrm{Na}_{2} \mathrm{CO}_{3} \cdot 1 \mathrm{OH}_{2} \mathrm{O}$	33	247	0,80	nej
$\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 1 \mathrm{OH}_{2} \mathrm{O}$	32	251	1.00	nej

Tabel 33. Data for attraktive salthydrater.

Alle de i tabel 33 anførte salthydrater smelter, ligesom langt størstedelen af salthydraterne, inkongruent. Den inkongruente smeltemåde er hovedarsagen til, at smeltevarmelagre endnu ikke markedsføres i noget nævneværdigt omfang.

### 5.1.1.1 Smeltemåde

Et salthydrat bestar af et vandfrit salt med tilhørende krystalm vand. Hvis en mættet vandig opløsning af det vandfri salt afkøles, vil der ved en vis temperatur, smeltepunktet, dannes krystaller bestående af salt og vand, krystalvand. Under dannelsen af krystallerne afgives krystallisationsvarmen, som i det følgende benæunes smeltevarmen. Opvarmes krystallerne igen, smelter de under optagelse af smeltevarmen.

Salthydrater kan inddeles i to grupper afhængigt af smeltemåden: de kongruent smeltende og de inkongruent smeltende salthydrater. For et kongruent smeltende salthydrat er saltets oplpselighed sa stor, at det helt kan opløses i krystalvandet. Ved smeltepunktet bestar det smeltede salthydrat derfor af en mættet
saltopløsning. For et inkongruent smeltende salthydrat er saltets opløselighed ikke så stor, at alt saltet kan opløses i krystalvandet. Det smeltede salthydrat bestar derfor ved smeltepunktet af en mættet saltopløsning og uopløseligt vandfrit salt.

I det følgende betragtes et varmelager, som bestar af en beholder med et inkongruent smeltende salthydrat. Nar lageret er varmet op, består det smeltede salthydrat altså af en mættet saltopløsning og uopløseligt vandfrit salt. Da det vandfri salt er væsentligt tungere end opløsningen, danner det bundfald. Ved afkøling dannes der først salthydratkrystaller i skillelinien mellem bundfaldet og den mættede opløsning. Krystallerne danner efter kort tid en fast skorpe mellem saltet på beholderens bund og den mættede opløsning. Derved forhindres saltet $i$ at komme i kontakt med vandet og danne salthydratkrystaller. Det vil derfor kun være saltet i opløsningen, som er aktivt i faseændringen. Samtidig vil størkningen ske ved en faldende temperatur, idet saltindholdet i opløsningen Ealder i takt med størkningen, og da udkrystallisering ${ }^{-}$ en kun sker fra en mættet opløsning, må temperaturen falde, så man hele tiden har mætning. Opløseligheden af saltet i vand vokser nemlig, når temperaturen vokser, indtil smeltepunktet nås. Der vil opstå en tredeling af beholderens indhold: nederst vandfrit salt, i midten et lag salthydratkrystaller og øverst en mættet saltopløsning. Nar temperaturen hæves igen, smelter salthydratkrystallerne og danner en overmættet opløsning. Hvis dex ikke foretages en svag omrøring $i$ den flydende fase, bundfældes der vandfrit salt fra den overmættede opløsning. Bundfaldet forøges saledes for hver smeltnings/størknings-cyklus, hvorved varmelagerets varmeindhold reduceres kraftigt. I løbet af fag cykler ophører lageret næsten at fungere som et smeltevarmelager.

Da langt storstedelen af salthydraterne smelter inkongruent, er det væsentligt, at ovennævnte stabilitetsproblem løses effektivt. I [93] er beskrevet fors $\varnothing$ g med glaubersalt, $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot 10 \mathrm{H}_{2} \mathrm{O}$, med
forskellige beholderhøjder. Man fandt, at ovennævnte stabili= tetsproblem opstår, når beholderens h申jde er større end $0,9 \mathrm{~cm}$. Der er siden udført mange forskningsprojekter med det formål at udvikle metoder, som forhindrer afblanding i store beholdere.

Muligheden for at tilsætte stoffer, som forhindrer afblanding i store beholdere, er undersøgt. En masse forskellige tilsætningsmaterialer, fx. uorganiske geler, hydrofile polymerer, stivelse, skum, specielle lerarter og tørvearter, for blot at nævne nogle, blev undersøgt. [93], [94], [95], [96], [97], [98], [99] og [100]. Mange af de undersøgte tilsætningsmaterialex har vist sig kun at være virksomme i begrænset tid og endnu savnes dokumentation for, at afblandingsproblemet i store beholdere kan løses ved hjælp af tilsætningsmaterialer. I små beholdere kan afblandingsproblemet imidlertid løses ved at tilsætte passende tilsætningsmaterialer. En række firmaer markedsfører smeltevarmelagre, hvor varmelagringsmaterialet er placeret i småbeholdere, [101]. Smeltepunktet for disse varmelagringsmaterialer er omtrent $20^{\circ} \mathrm{C}$, og lagrene anvendes til passiv udnyttelse af solvarme. Disse lagerudformninger er velegnede til lave temperaturer, er relativt dyre og synes ikke attraktive i forbindelse med aktive solvarmeanlæg.

Afblandingsproblemet kan selvfølgelig løses ved at der skabes en tilstrækkelig kraftig omrøring i beholderen med salthydratet. Imidlertid er massefyldeforskellen mellem det vandfri salt og den mættede opløsning meget stor, og der kræves derfor en meget kraftig omrøring for at forhindre afblanding. I [102] og [103] beskrives en lagerudformning, hvor salthydratet indkapsles i en roterende cylinder. Bevægelsen skaber så stor omrøring, at afblanding forhindres. I [104] er afblandingsproblemet løst ved hjælp af en kraftig omrører placeret i salthydratet. Kraftig omrøring kan løse stabilitetsproblemet, men lagerudformningen bliver samtidig forholdsvis kompliceret og dermed dyr.

### 5.1.1.2 Ekstra-vand-princippet

En metode, som effektivt forhindrex afblanding, bestar i at der tilsættes sa meget ekstra vand til det inkongruent smeltende salthydrat, at alt saltet kan oploses i vandet ved smeltepunktet. Herved opnås at alt saltet oploses i vandet. nå salthydratet smelter, hvis der samtidig sprges for en svag omrøring. Kun en svag omrøring ex nødvendig. og med et velformet lager er den naturlige konvektion som opstar under lagerets drift, tilstrekkelig kraftig. Tilsætningen af vand bew virker, at størkningen sker ved stadigt lavere temperaturer, idet størkning kun kan ske fra en mættet saltopløsning. Opløseligheden af saltet $i$ vandet bestemmer, hvorledes størkningen forløber. Varmelagringsmaterialet bestar af salthydratkrystaller og en mættet opløsning, når temperaturen er lavere end smeltepunktet. Nox alle salthydratkrystaller er smeltet ved smeltepunktet, er varmelagringsmatexialet en mættet saltoplosning. Med den beskrevne metode, ekstra-vand-princippet, opnas et stabilt varmelagringsmateriale. Til gengæld reduceres varmeindholdet lidt $i$ forhold til varmeindholdet af det ideelt virkende salthydrat, og smeltning og storkning finder sted i temperaturintervallet fra lagerets minimumstemperatur til smeltepunktet. Metoden er udviklet og afprpvet pa Laboratoriet for Varmeisolering, [105], [106], [88], [107], [108] og [44].

Princippet ex siden afprovet på andre forskningsinstitutioner, [109], [110], [111] og [112] og benyttes i et par markedsforte varmelagre til aktive solvarmeanlag.

I [88] er detaljeret beskrevet, hvorledes varmeindholdet af forskellige salthydrat/vand-blandinger beregnes. I [88] og [44] er varmeindholdet for forskellige salthydrat/vand-blandingm er angivet. Figur 74 viser i temperaturintervallet $0-100^{\circ} \mathrm{C}$ varmeindholdet af vand, et ideelt virkende inkongruent smeltende salthydrat og en salthydrat/vand-blanding baseret pa ekstra-vand-princippet. Glaubersalt $\mathrm{Na}_{2} \mathrm{SO}_{4} \cdot \mathrm{loH}_{2} \mathrm{O}$ er valgt som eksempel, idet der for dette salt ex sæxlig stor forskel på


Figur 74. Varmeindhold af et ideelt virkende inkongruent salthydrat, en saltvandsblanding baseret på ekstra-vand-princippet og vand i temperaturintervallet $0-100^{\circ} \mathrm{C}$.
salt/vand-forholdet for salthydratkrystallerne og salt/vandforholdet for den mattede saltopløsning ved smeltepunktet. Forskellen mellem varmeinaholdet for det ideelt vixkende salthydrat og varmeindholdet for saltvandsblandingen baseret pa ekstra-vand-princippet er derfor særlig stor for dette salt. pa figur 75 er varmeindholdet i temperaturintervallet $0-100^{\circ} \mathrm{C}$ vist for fem forskellige saltvandsblandinger. Massefylden ved $95^{\circ} \mathrm{C}$ for alle varmelagringsmaterialerne er benyttet her. De forskellige saltvandsblandinger er attraktive i forskellige systemer alt afhængig af det temperaturniveau, som pnskes i varmelageret.


Figur 75. Varmeindhold af forskellige saltvandsblandinger.

## 5. 2 Lagerudformninger

En række forskelligt udformede smeltevarmelagre baseret på ekstra-vand-princippet er afprøvet på Laboratoriet for Varmeisolering. Både lagrenes termiske egenskaber og stabiliten blev undersøgt [88], [107], [108]. [44] og [113].

Prøvningerne viste, at ekstra-vand-wrincippet løste stabilitetsproblemet, idet lagrenes termiske egenskaber ikke blev ændret igennem de lange afprøvningsperioder.

De vigtigste problemer, som skal løses ved udformningen af smeltevarmelagre, hvor ekstramvand-princippet er anvendt, er knyttet til varmetransporten til og fra lageret, salthydraternes underafkøling og den nødvendige svage omrøring i lagerets væskefase under lagerets drift.

Figur 76 viser en principskitse af tre afprøvede lagertyper. I den første lagerudformning blev en varmetransmissionsolie anvendt som varmeoverførende medium. Olien blev tilført varmelageret med saltvandsopløsningen gennem et dysesystem placeret $i$ bunden af beholderen. pa grund af massefyldeforskelle stiger olien til vejrs og danner et lag i toppen af beholderen. Herfra pumpes olien igennem en varmeveksler, hvor den enten opvarmes eller afkøles. Lagerprincippet er først prøvet i [114]. oliedråbernes bevægelse igennem saltvandsblandingen forhindrer, at der opstiar en nævneværdig underafkøling og sørger samtidig for den svage omrøring. I skillelinien mellem olien og saltvandsblandingen opstår der normalt et emulsionslag bestående af saltvand og olie. Er olievolumenstrømmen for stor, vokser dette lag, og der er risiko for at saltvand transporteres med rundt i oliekredsløbet. Kredsløbets rør kan derfor tilstoppes, nar krystaller udfældes fra saltvandsblandingen. [l07] angiver en effektiv løsning på dette problem, som foråsages af urenheder i saltet. Der tilsættes en lille mængde tetrabutylammonium hydrogensulfat til olien. Herefter separeres olien og saltvandet meget hurtigt. Denne løsning er siden anvendt


Figur 76. Skematisk illustration af tre smeltevarmelagre。
med succes [115]. Varmeoverføringsevnen til og fra lageret vil herefter normalt være tilstrækkelig stor. Det kan dog være vanskeligt at bevare en $h \phi j$ volumenstr $\phi \mathrm{m}$ og dermed en stor varmeoverføringsevne ved lave temperaturer pa grund af det forøgede trykfald igennem lagexet med de faste salthydratkrystaller. Der er udfort meget arbejde med det formal at produktudvikle denne lagertype [116], [117], [118], [119], [120] og [121]. Dysesystemet, varmetransmissionsolien, pumpen, varmeveksleren og tilsætningsstoffet bevirker imidlertid, at denne lagertype bliver forholdsvis dyr. Desuden optager olien en del af lagerets volumen, og det er tvivlsomt, om lagertypen kan udvikles så meget, at den bliver mere attraktiv end normale vandlagre $i$ forbindelse med normale solvarmeanlæg.

I den anden lagerudformning blev en almindelig kappebeholder benyttet. Saltvandsopløsningens ekspansionsmulighed er den luftfyldte beholdertop. En vakuumpumpe recirkulerer denne luftmængde og sørger dermed for en svag omrøring af saltvandsopløsningen, idet luften fra beholdertoppen gennem et rør føres til bunden af beholderen. Denne omrøring sikrer også, at der ikke optræder nævneværdig underafkølning. Varmeoverførslen sker igennem beholdervæggen fra/til den i kappen cirkulerende væske. Varmeoverføringsevnen til varmelageret er normalt god, idet der opstar naturlig konvektion langs beholdervæggen i den smeltede saltvandsblanding. Ved varmetapning størkner krystaller på beholdervæggen. Jo mere varme der tappes fra lageret, des tykkere bliver krystallaget på beholdervæggen. Derved vil varmetransporten komme til at forega igennem et stadigt tykkere lag af salthydratkrystaller, som har en ringe varmeledningsevne. For lave temperaturer er varmeoverføringsevnen fra lageret til det varmetransporterende medium derfor forholdsvis lille.

Den tredie smeltevarmelagertype er beregnet til et solvarmeanlæg til brugsvandsopvarmning. En varmtvandsbeholder er neddykket i en lagertank med saltvandsblandingen. Varmen fra solm
fangerkredsen til varmelageret overføres ved hjælp af en varmevekslerspiral. Når der tappes varmt vand fra varmtvandsbeholderen, tilføres varmelagerets nederste del koldt vand. Den store temperaturforskel mellem dette kolde vand og saltvandsblandingen medfører, at der opstå omrøring i saltvandsblandingen i form af naturlig konvektion. Omrøringen er tilstrækkelig til at stabilisere varmelagringsmaterialet. Den store temperaturforskel mellem dette kolde vand og saltvandsblandingen forhindrer ligeledes nævneværdig underafkøling. Varmeoverføringsevnen til lageret er normalt tilstrækkelig stor. Krystallaget pa varmtvandsbeholderen kan resultere $i$, at varmeoverføringsevnen fra saltvandsblandingen til varmtvandsbeholderen bliver forholdsvis lille. Det er derfor vigtigt, at vom lumenet af varmtvandsbeholderen og volumenet af saltvandsblandingen vælges sailedes, at varmeoverførslen bliver tilstrækkelig stor.

Smeltevarmelagre kan naturligvis udformes pa mange andre måder end beskrevet ovenfor. Der markedsføres i dag kun meget fa smeltevarmelagre til aktive solvarmeanlæg. I størstedelen af de markedsførte lagre overføres varmen fra lageret til det varmeafgivende system ved $\mathrm{bj} æ \mathrm{l} p$ af meget lange varmevekslerspiraler placeret i lageret. Derved opnås en tilstrokkelig stor varmeoverføringsevne fra lageret til det varmetransporterende medium, men samtidig fordyres lageret naturligvis. Mange steder er der spændende arbejde i gang med det formal at udvikle effektive og samtidig rimeligt billige lagre, fx. [122] og [123]. I fremtiden vil der uden tvivl blive udviklet og markedsført forskellige smeltevarmelagre, som er specielt velegnede til forskellige typer af aktive solvarmeanlag.

Det følgende afsnit omhandler smeltevarmelagre til solvarmeanlæg til brugsvandsopvarmning.
5.3 Smeltevarmelager til solvarmeanlag til brugsvandsopvarmning

Der er udført indledende undersøgelser [44], [113] og [124] med den pa figur 76 viste tredie lagertype til brugsvandsanlæg.

Lagrene blev undersøgt, savel teoretisk som eksperimentelt, med fem saltvandsblandinger, hvis varmeindhold er vist pà figur 75. Desuden er der udfort indledende undersøgelser [46] med en lignende lagerudformning, hvor varmevekslerspiralen var placeret dels $i$ varmtvandsbeholderen, dels i lagertanken. I denne lagerudformning blev $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} /$ vand-blandingen benyttet som det varmelagrende materiale.

Undersøgelserne viste, at saltvandsblandingernes målte varme indhold svarer godt til de teoretisk beregnede varmeindhold, som er vist pa figur 75. Lagrenes varmeindhold blev ikke reduceret igennem prøvningsperioderne, som for hvert salt varede omkring to maneder. Der opstod ikke underafkøling af praktisk betydning under lagrenes drift. Det er væsentligt, at varmen tilføres saltvandsblandingen fra bunden af lageret, idet krystaller placeret under niveauet, hvor varme tilfores lageret, kun smelter særdeles langsomt。 Varmeoverføringsevnen fra solfangervæsken til varmelageret varierer fra opvarmningsperiode til opvarmningsperiode. Dette skyldes, at den faste og den flydende fase ikke $i$ alle opvarmningsforløb er placeret pa samme made i lageret.

Beregninger viste, at det bedste smeltepunkt for salthydratet er lidt højere end den onskede varmtvandstemperatur. $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} /$ vand-blandingen er derfor særlig attraktiv. Med denne blanding opstod ingen korrosion $i$ staltankene. Det optimale lagervolumen reduceres lidt, nar smeltevarmelageret, baseret på $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} /$ vand-blandingen, benyttes $i$ stedet for et almindeligt vandlager. Med fixersalt/vand-lageret forlanges de perioder om sommeren, hvor oliefyret kan slukkes. Foreløbige ydelsesberegninger, baseret på grove beregningsmodeller og okonomiske betragtninger, tyder på, at foxholdet mellem sma solvarmeanlags ydelse og pris kan forbedres med omtrent $10 \%$, nar der benyttes et fixersalt/ vand-lager i stedet for et vandlager.

Varmelageret bør udformes saledes, at muligheden for at forøge solvarmeanlæggets ydelse ved hjælp af temperaturlagdeling i lageret udnyttes $i$ størst mulig udstrokning uden at lagerets
stabilitet af den grund pdelægges. Salthydratkrystallernes ringe varmeledningsevne muliggøx udnyttelse af temperaturlagdeling i større udstrækning end $i$ almindelige vandlagre.

Nar varmt vand tappes fra varmtvandsbeholdereren, tilfores koldt vand til varmtvandsbeholderens bund. De lave temperaturer $i$ bunden af varmtvandsbeholderen bor i perioder med sol udnyttes til at reducere temperaturniveauet i solfangerkredsen og dermed forøge udbyttet fra solfangeren.

Ved udformningen af lageret skal der tages hensyn til, at varmeoverf $\phi$ ringsevnen fra saltvandsblandingen til varmtvandsbe holderen ikke bliver for lille $i$ perioder uden sol. Dette hensyn kan desvarre normalt ikke umiddelbart forenes med bestrabelserne for at udforme lageret saledes, at temperatur lagdelingen i lageret under opvarmningsperioder udnyttes til at forøge solvarmeanlæggets ydelse. Det er derfor vanskeligt at udforme lageret optimalt.
5.3.1 Na $\mathrm{N}_{2} \mathrm{O}_{3} /$ vand-blanding

Som nevnt i afsnit 5.3 er blandingen bestaende af $61 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ og $39 \%$ vand (vægt\%) velegnet som varmelagringsmateriale i forbindelse med solvarmeanlæg til brugsvandsopvaxmaing. Pentahydratet af natriumtiosulfat $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ anvendes i fotoindustrien under navnet fixersalt, mens det under navnet antiklor bruges til at uskadeliggøre spor af klorholdige blegemidler i $t \phi j$ og papir.

Natriumtiosulfat i teknisk kvalitet kan i form af små fine $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ krystaller kobes hos Superfos Kemi A/S. Superfos Kemi $A / S k \not b b e r$ saltet $i \quad D D R, o g$ prisen forhandles to gange om året på markedet i Leipzig. Ved 20 t levering ex prisen (marts 84) $3,35 \mathrm{kr} / \mathrm{kg}$ salthydrat eller $3,19 \mathrm{kr} / \mathrm{kg}$ for den benyttede saltvandsblanding. Anvendes saltvandsblandingens massefylde ved temperaturen $95^{\circ} \mathrm{C}$ er prisen $5,06 \mathrm{kr} / \mathrm{l}$ saltvandsblanding. Ved
større indkøb end 20 t vil prisen ikke reduceres mærkbart.

Natriumtiosulfat er et ufarligt salt. Indtagelse af store mængder natriumtiosulfat gennem munden virker dog afførende, men ellers er saltet uskadeligt. I visse medicinske sammenhænge benyttes det endog intravenøst i små mængder.

Natriumtiosulfat/vand-blandingens kemiske langtidsstabilitet er undersøgt i [44]. Blandingen er stabil, når der til blandingen er tilsat $1 \% \mathrm{Na}_{2} \mathrm{CO}_{3}$ (vægt $\%$ )。

Korrosionsmæssige undersøgelser, [90] og [125] viser, at ulegeret stå er et velegnet materiale til varmevekslerspiralen og lagertanken, som indeholder natriumtiosulfat/vand-blandingen. Derimod ma der ikke forekomme kobber, messing eller andre kobberlegeringer, idet der i så fald hurtigt opstår korrosion under dannelse af kobbersulfid.

Afkøles natriumtiosulfat/vand-blandingen langsomt, opstar der som regel underafkøling. Blandingen kan afk $\phi$ les til stuetemperam turen uden at størkne. I forbindelse med langtidslagring kan dette være interessant, men i et varmelager til brugsvandsanlæg ma underafkøling forhindres effektivt, idet smeltevarmen ellers ikke afgives. Ved at tilsætte krystaller af natriumtiosulfat pentahydrat til blandingen under afkølingen forhindres underaf$k \not \subset l i n g e n$. Dette er imidlertid ikke en praktisk løsning af prom blemet. I nogle tilfælde kan andre krystaller med samme krystalform også anvendes som krystallisationskim. Disse krystaller bør have så højt et smeltepunkt, at de altid er til stede i lageret i krystallinsk form. I [126] er anført, at underafk $\varnothing$ ling af $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ forhindres ved at tilsætte en passende blanding af $\mathrm{Mg}(\mathrm{OH})_{2} \mathrm{og} \mathrm{SrSO}_{4}(0,01-15 \%)$. Denne metode blev afprøvet i Laboratoriet med 100 prøver med forskellige mængder og sammensætninger af ovennævnte tilsætningsmaterialer. Prøverne blev afkølet langsomt fra $60^{\circ} \mathrm{C}$ til stuetemperaturen, og der opstod underafkøling i dem alle. Den patenterede løsning synes således ikke umiddelbart at være virksom.

Sa lange et virksomt tilsætningsmatexiale ikke ex fundet, bør lagerudformningen $i$ sig selv forhindre, at der opstar underafkøling. For eksempel kan en del af krystallexne altid holdes på sa lavt et temperaturniveau, at de ikke smelter. Dette kan fx sikres ved at undlade at isolere lagerets nederste del. Kraftig bevægelse $i$ saltvandsopløsningen kan ogso forhindre underafkøling. For eksempel kan den store temperaturforskel mellem saltvandsblandingen og det kolde brugsvand, som tilføres varmtvandsbeholderens bund, skabe sa kraftig konvektion, at underafkøling forhindres. Denne konvektion formodes at vare arsagen til, at der ikke optradte underafkøling af betyaning i varmelagrene, som blev prøvet $i$ de indledende forsøg.

De vigtigste materialdata for $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$, $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ og salto vandsblandingen bestaiende af $61 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \quad$ og $39 \%$ vand (vagt\%) fremgar af tabel 34 og 35 og figur 77 og 78. Saltvandsblanding ens kogepunkt og massefyldes afhengighed af temperaturen blev malt ved laboratoriefors $\phi$. Saltvandsblandingens vameindhold. som er angivet $i$ tabel 35 , ex beregnet ved $h j \neq 1 p$ af den $i$ [88] beskrevne beregningsmetode. Varmeindholdet er sat til o ved temperaturen $0^{\circ} \mathrm{C}$ 。

vandfrit salt	Salthydxat	Salthydxatets smeltepunkt	Vegtandel af vandfrit salt i salt-hydxackrystaller	Salthydrat-kryscallexnes smeltevaxme	Vamefylde for salt hydratkry staller	Varmefylde for vandfrit salt	Kogepunkt for sal.tvandsblanding af $618 \mathrm{Ha}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ og 398 vand ved atmosfaretryk
$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$	$\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$	$48^{\circ} \mathrm{C}$	0.64	$209 \mathrm{~kJ} / \mathrm{kg}$	$1865 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$	$924 \mathrm{~J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$	$120^{\circ} \mathrm{C}$

Tabel 34. Materialedata for varmelagringsmaterialet.

$\begin{gathered} \text { Temperatur } \\ { }^{\circ} \mathrm{C} \end{gathered}$	Varmefyldevarme $\mathrm{kJ} / \mathrm{kg}$	Smeltevarme   $\mathrm{kJ} / \mathrm{kg}$	```Totalt varmeindhold kJ/kg```
0	0,0	0,0	0.0
2	4.0	0,6	4,6
4	8.0	1,2	9,2
6	12,0	1,9	13,8
8	16.0	2,6	18,5
10	20.0	3,3	23.3
12	23,9	4,1	28,0
14	27,9	4,9	32,9
16	31.9	5,8	37.7
18	35.9	6.8	42.7
20	39,9	7,8	87.7
22	44,0	8,9	52,8
24	48.0	10,0	58,0
26	52,0	11,3	63,3
28	56.0	12.7	68.7
30	60,0	14.2	74.2
32	64,0	15,8	79,8
34	68.0	17,6	85,6
36	72,1	19.6	91.6
38	76,1	22,3	98,4
40	80.2	28.2	108,3
42	84,2	36,1	120,3
44	88,3	47.6	135,9
46	92,4	68.5	160,9
48	96,6	187.1	283,8
50	101.0	187.1	288.2
52	105.4	187.1	292,6
54	109,8	187.1	297.0
56	114.2	187.1	301.4
58	118,6	187.1	305.8
60	123.0	187.1	310.2
62	127.4	187,1	314,6
64	131.8	187.1	319.0
66	136.2	187.1	323.4
68	140,6	187.1	327.8
70	145.0	187.1	332,2
72	149.4	187.1	336.6
74	153.9	187.1	341.0
76	158.3	187.1	345.4
78	162,7	187.1	349.8
80	167.1	187.1	354.2
82	171.5	187.1	358,6
84	175.9	187.1	363.0
86	180.3	187.1	367.4
88	184.7	187,1	371,8
90	189.1	187.1	376.2
92	193.5	187.1	380.6
94	197.9	187.1	385,0
96	202,3	187.1	389,4
98	206,7	187.1	393.8
100	211.1	187.1	398.2
102	215.5	187.1	402.6
104	219.9	187.1	407.0
106	224.3	187.1	411.4
108	228,7	187.1	415.8
110	233.1	187.1	420.2
112	237.5	187.1	420.6
114	241,9	187.1	429.0
116	246.3	187.1	433.4
118	250,7	187.1	437.8
120	255,1	187.1	442.2

Tabel 35. Varmeindhold af saltvandsblandingen bestående af $61 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ og $39 \%$ vand (vægt\%) i temperaturintervallet $0-120^{\circ} \mathrm{C}$.


Figur 77. Opløselighed af $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ i vand.


Figur 78. Massefylden for saltvandsblandingen bestående af $61 \% \mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ og $39 \%$ vand (vægt\%) i temperaturintervallet $0-120^{\circ} \mathrm{C}$ 。

### 5.3.2 Prototyper

Pa basis af erfaringerne omtalt $i$ afsnit 5.3 er en prototype, prototype 1 , konstrueret og afprøvet i prøvestandene. Udformningen af prototypen fremgå af figur 79 og 80 og tabel 36. Varmevekslerspiralen i saltlagertanken vist til højre på figur 80 er udformet med en lille vertikal udstrækning på 35 cm , og med en stor del af spiralen placeret helt nede pa lagerets bund. Herved sikres, at alle salthydratkrystallerne smeltes under opvarmningen. Varmevekslerspiralen i varmtvandsbeholderen, som ses til venstre på figur 80 ved siden af saltlagertankens varmevekslerspiral, er, bortset fra tilslutningsrørene, placeret i beholderens bund. Tilslutningsrørene er ført fra bund til top gennem hele beholderens højde.

Lageret blev forsynet med en glasstav med en rokke termoelementer $i$ varmtvandsbeholderen og en plasticstav med en rakke termoelementer i saltlagertanken. Hexved muliggøres en registrering af lagerets temperaturer i forskellige niveauer, både i vandet og i saltet, under lagerets prøvning i prøvestandene. Som solfangervæske benyttes en $50 \%$ (efter vægt) vand/propylenglycolmblanding.

Varmelagerets varmeindhold blev målt bade ved starten og slutningen af prøvningsperioden. Der blev ikke konstateret nogen mærkbar reduktion af varmelagerets varmeindhold i denne periode, som varede omtrent Eire maneder. Det er derfor rimeligt at antage, at varmelageret virker stabilt.

Lagerets varmetabskoefficient under solfangerdrift $k_{d}$ blev malt som beskrevet i afsnit 2.1.1. Lagerets varmetabskoefficient under et afkølingsforløb $\mathrm{K}_{\mathrm{s}}$ blev malt som beskrevet $i$ afsnit 2.1.2. Måleresultaterne fremgar af tabel 37. Det relativt store varmetab er hovedsageligt forarsaget af kuldebroer i toppen af varmtvandsbeholderen og af forbindelsesroret mellem varmevekslerspiralerne. Forskellen mellem varmetabskoefficienten, nå solfangeren er i drift, og varmetabskoefficienten, når solfangeren ikke er i drift, skyldes dels at kun en begrænset del


Figur 79. Skematisk illustration af prototype 1. Må i mm。

- 218 -


Figur 80. Prototype 1 med varmevekslerspiraler.

Volumen af varmtvandsbeholder	
Volumen af lagertank til saltvandsblandingen	
Volumen af solfangervæske	$9.5 \ell$
Masse af tom prototype	112 kg
Masse af: $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$    vand    $\mathrm{Na}_{2} \mathrm{CO}_{3}$   total saltvandsblanding	$\begin{gathered} 79,3 \mathrm{~kg} \\ 50,7 \mathrm{~kg} \\ 130 \mathrm{~g} \\ 130 \mathrm{~kg} \end{gathered}$
Varmevekslerspiral:   materiale   dimension   spirallængde i varmtvandsbeholder   spirallængde i saltlagertank	$\begin{aligned} & \text { stå } \\ & 3 / 4^{\prime \prime} \\ & 6 \mathrm{~m} \\ & 9 \mathrm{~m} \end{aligned}$
Forbindelsesrør mellem de to varmevekslerspiraler:   materiale   dimension   totallængde   isoleringsmateriale   isoleringstykkelse	stå   3/4"   2.6 m   armaflex   12 mm
Beholderisolexing:   materiale   tykkelse	mineraluld   5 cm

Tabel 36. Data for prototype 1.

Lagertemperatur $\mathrm{T}_{1}$ 。 ${ }^{\circ} \mathrm{C}$	29,5	77.1
Varmetabskoefficient under solfangerdrift $\mathrm{K}_{\mathrm{d}}$, $\quad \mathrm{W} /{ }^{\circ} \mathrm{C}$	4.0	4,0
Varmetabskoefficient under et afkølingsforløb $\mathrm{K}_{\mathrm{s}}, \quad \mathrm{W} /{ }^{\circ} \mathrm{C}$	3.5	

Tabel 37. Måle varmetabskoefficienter for prototype 1.
af forbindelsesrøret er varmt i perioder uden solfangerdrift, dels at der opstå temperaturlagdeling i saltlagertanken i perioder uden solfangerdrift. I denne forbindelse bør det nævnes, at en del af forbindelsesrørets isoleringsmateriale er i tat kontakt med beholderens isolering.

Varmelagerets varmeindhold blev som beskrevet i afsnit 2.1.3 malt igennem et opvarmningsforløb, som varede 5 h 53 min . Solfangervæskens volumenstrøm, effekttilforslen til varmelagexet, de malte solfangervæsketemperaturer samt varmtvandsbeholderens og saltlagertankens gennemsnitlige temperatur $T_{\text {vand }}$ og $T_{\text {salt }}$ igennem opvarmningsforløbet fremgår af figur 81. Der optræder ingen mærkbar temperaturlagdeling i varmtvandsbeholderen under opvarmningen, mens der i saltlagertanken er store temperaturforskelle, specielt nå salthydratkrystallerne endnu ikke er smeltet. Maleresultaterne fremgår af tabel 38.

```Gennemsnitlig lagertemperatur ved opvarmningens start T start```	Gennemsnitilg   lagertempexatur   ved opvarmningens   slutning $\mathrm{T}_{\text {slut }}$	Masimal   lagertemperatur ved opvarmningens   slutning   $T_{\text {slut }}$ max	Endring af lagerets varmeindhold under opvarmningsperioden $\mathrm{Q}_{\text {1Tstart, Tslut }}$
$29.5{ }^{\circ} \mathrm{C}$	$74.4{ }^{\circ} \mathrm{C}$	$76.3{ }^{\circ} \mathrm{C}$	55 MJ

Tabel 38. Måleresultater for opvarmingsforlobet.

Varmelagerets malte varmeindhold i temperaturintervallet fra $29,5^{\circ} \mathrm{C}$ til $74,4^{\circ} \mathrm{C}$ svarer godt til lagerets teoretisk beregnede varmeindhold, som ex vist på figux 82. Lagerets varmeindhold bestå af bidrag fra saltvandsblandingen, fra brugsvandet, fra stalet og fra solfangervasken i lageret. For smeltevarmelagre har temperaturintervallet for opvarmningsperioden altafg力rende indflydelse pa støxrelsen af lagerets varmelagringskapacitet C_{1} og varmelagringseffektivitet η_{1}. Størrelserne for dette opvarmningsforløb, $C_{1}=1,22 \mathrm{MJ} /{ }^{\circ} \mathrm{C}$ og $\eta_{1}=0,96$, er derfor ikke af synderlig stor interesse.

Temperatur
${ }^{\circ}{ }_{C}$

Figur 81. Måleforhold (øverst) og malte temperaturer (nederst) for opvarmningsforløbet.

Figur 82. Varmeindholdet af prototype 1 i temperaturintervallet $0^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$.

Opvarmningsforløbet benyttes ogsa til maling af varmeoverføringsevnen fra solfangervæsken til varmtvandsbeholderen som beskrevet i afsnit 2.l.4. Måingen af denne varmeoverføringsevne er baseret pa fremløbstemperaturen for solfangervæsken, solfangervæskens temperatur i forbindelsesrøret mellem de to varmevekslerspiraldele og varmtvandsbeholdertemperaturen. På figur 83 er måleforholdene og den malte varmeoverføringsevne fra solfangervæsker til varmtvandsbeholderen vist som funktion af temperaturen i varmtvandsbeholderen. Desuden er vist varmeoverføringsevnen, beregnet ved hjælp af den i [40] opstillede og validerede beregningsmodel. Den malte varmeoverføringsevne er betydeligt større end den teoretisk beregnede varmeoverføringsevne. Forskellen mellem den måle og den beregnede varmeoverføringsevne er særlig stor, nå brugsvandstemperaturen er høj, altså nå smeltningen af krystaller er pabegyndt og afsluttet. Varmtvandsbeholderen er her omgivet af en væske, hvorfor varmestrømmen fra varmtvandsbeholderen til saltlagertanken er særlig stor. Der er knyttet betydelige vandbevægelser i varmtvandsbeholderen til denne store varmestrøm gennem varmtvandsbeholderens sider. Koldt vand strøm mer ned langs varmtvandsbeholderens sider og varmt vand strømmer op i lagerets midte. Vandbevægelserne er langt kraftigere end vandbevægelserne i velisolerede varmtvandsbeholdere. De kraftige vandbevægelser medfører, at varmeoverføringsevnen for en varmevekslerspiral i en varmtvandsbeholder, som er neddykket i en saltlagertank, er større end varmeoverføringsevnen for den samme varmevekslerspiral placeret i et velisoleret vandlager. I фvrigt medvirker den horisontale temperaturlagdeling i varmtvandsw beholderen ogsa direkte til at forøge varmeoverføringsevnen fra solfangervæsken til varmtvandsbeholderen, idet varmevekslerspim ralens tilslutningsrør er placeret umiddelbart langs varmtvands. beholderens forholdsvis kolde sider.

Der er udført en række opvarmningsfors $\phi \mathrm{g}$ med forskellige effekttilførsler til varmelageret. Varmeoverføringsevnen fra solfangervæsken til varmtvandsbeholderen er meget stor, og forskellen mellem varmeoverføringsevnen og den teoretisk beregnede varmeoverføringsevne er særdeles stor i perioder med små effekttilførsler

Figur 83. Måleforhold (\varnothing verst) og malt og teoretisk beregnet varmeoverforingsevne (nederst).
til varmelageret ved høje brugsvandstempexaturer. For store
 den teoretisk beregnede varmeoverføringsevne mindre. De vaxmeoverføringsmæssige forhold for varmelagexet er uhyre komplicerede. Der kræves en mængde forsøg for at klarlagge disse forhold fuldstændigt. Disse forsøg er ikke udigrt, idet lageret ikke er udformet hensigtsmæssigt.

Lagerets dynamiske forhold ex undexsøgt som beskrevet i afsnit 2.1 .5 med solfangerarealet $5 \mathrm{~m}^{2}$ og solfangervæskestrommen $v=4,49+0,010^{\circ} T_{f} \ell / m i n$. De malte temperaturer i toppen og bunden af varmtvandsbeholderen, saltlagertankens maksimale og minimale temperatur, omgivelsernes temperatur og, nå solfangeren er i drift, solfangerveskens fremløbs-og returtemperatur er vist på figur 84. Der opstå store temperaturforskelle i lageret. Specielt er forskellene i saltlagertanken store, og det er vanskeligt at bestemme den gennemsnitiige temperatur i saltlagertanken. Data for vamtvandsforbruget fremgax af tabel 39. De daglige og totale energimængder, som stråler på solEangeren og som tilføres og tappes fra varmelageret, er angivet i tabel 40 .

Af figur 84 ses, at lageret er særdeles uheldigt udformet. De høje temperaturer i saltlagertanken, som forefindes i bunden af lagertanken, udnyttes ikke på provningens tredie dag, idet varmtvandsbeholdexens temperatur her er betydeligt lavere end de høje saltlagertemperaturer. Varmeoverføringsevnen fra saltlagertanken til varmtvandsbeholderen er altsa alt for lille. En sandsynlig forklaring pa den lille varmeoverforingsevne gives i det folgende.

Efter varmtvandstapningex findes de laveste temperaturer i lageret pa bunden af varmtvandsbeholderen. Der dannes dexfor forst salthydratkrystaller pa undersiden af varmtvandsbeholderens bund. Demnæst dannes ud for bunden af varmtvandsbeholderen et vandret krystallag, som udfylder hele saltlagertankens tversnitsareal. Saltvandsblandingen, som endnu ikke er storknet, opdeles herved i to separate dele, én del under varmtvandsbeholderen og én del omkring varmtvandsbeholderens sider. Krystallaget udgor en

dag kl.	Tappe* varighed $r_{t} \quad m i n$	Tappe hastighed $v_{v} \quad m^{3} / s$	Koldevands temperatur $\mathrm{r}_{\mathrm{k}} \quad{ }^{\circ} \mathrm{C}$	Cennemsnits" temperatux Eox tappet vand $\mathrm{T}_{v} \quad{ }_{\mathrm{C}}^{\mathrm{C}}$	Tappet Vandmungde Exa vamme vandsbeh.	Tappet varme ${ }^{-}$ wasngde $Q_{v} \quad \mathrm{~J}$	Daglig tappet vandmangde Era varme vandsbeh. 2	Daglig tappet varmemangde W]
8 $1 \quad 12$ 	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 0,000092 \\ & 0,000097 \\ & 0,000091 \\ & 0,000093 \end{aligned}$	$\begin{aligned} & 16,3 \\ & 15,9 \\ & 15,5 \\ & 15,6 \end{aligned}$	$\begin{array}{r} 44.9 \\ 86.2 \\ 49.8 \\ 11.2 \end{array}$	$\begin{aligned} & 55.4 \\ & 29.2 \\ & 50.4 \\ & 55.6 \end{aligned}$	$\begin{aligned} & 6.57 \\ & 3.67 \\ & 7.72 \\ & 5.95 \end{aligned}$	198.6	23,91
8 2 12 18 20	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 0,000093 \\ & 0,000094 \\ & 0,000093 \\ & 0,000093 \end{aligned}$	$\begin{aligned} & 16.0 \\ & 15.4 \\ & 15.4 \\ & 15.5 \end{aligned}$	$\begin{aligned} & 33.2 \\ & 56.2 \\ & 62.5 \\ & 50.7 \end{aligned}$	$\begin{aligned} & 55,6 \\ & 28,2 \\ & 55,8 \\ & 55,8 \end{aligned}$	$\begin{array}{r} 3.98 \\ 4.75 \\ 10.81 \\ 8.33 \end{array}$	195.4	27.67
8 12 3 18 20	$\begin{array}{r} 10 \\ 5 \\ 10 \\ 10 \end{array}$	$\begin{aligned} & 0,000093 \\ & 0,000093 \\ & 0,000092 \\ & 0,000092 \end{aligned}$	$\begin{aligned} & 16,1 \\ & 15,3 \\ & 15,4 \\ & 14,5 \end{aligned}$	$\begin{aligned} & 36,4 \\ & 33.2 \\ & 27,5 \\ & 23,7 \end{aligned}$	$\begin{aligned} & 55,5 \\ & 28,0 \\ & 55,2 \\ & 5 A, 9 \end{aligned}$	$\begin{aligned} & 4.69 \\ & 2.09 \\ & 2.79 \\ & 2.11 \end{aligned}$	193.6	11.68

Tabel 39. Data for varmtvandsforbruget under den dynamiske prøvning。

rid dag	Solstråing pa solfangex 8	Vaxmemangde tilitort varmelager R3	Varmemzengde tappet Exa varmelager Bl
1	75.51	15.88	23,91
2	113.71	48.17	27.67
3	0	0	11,68
Total	189.22	63.65	63.26

Tabel 40. Daglige og totale varmemængder for varmelageret under den dynamiske prøvning.
effektiv barriere mellem de to dele. Da $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \cdot 5 \mathrm{H}_{2} \mathrm{O}$ smelter inkongruent, bliver saltvandsblandingen omkring varmtvandsbeholderens sider undermattet. og kun en lille del af saltvandsblandingen omkring varmtvandsbeholderen tager del i størkningen. Samtidig er varmeoverforingsevnen fra saltvandsblandingen, som er beliggende under varmtvandsbeholderen, til varmtvandsbeholderen meget lille pa grund af krystallernes ringe varmeledningsevne og det lille varmeoverføringsareal, som udgøres af varmtvandsbeholderens bund. Opdelingen af saltlagertankens indhold

1 to separate dele ex altsa serdeles uheldig og bør forhindres ved en hensigtsmassig udformning af varmelageret.

Varmelagerets varmeindhold reduceres som omtalt ikke markbart igennem prøvningsperioden. Pa trods af den beskrevne uheldige lagerudformning opstar dex altsa ikke sa stor afblanding , at lagerets stabilitet ødelægges. Dette kan skyldes den omrøring, som den kompakte varmevekslexspiral i salttankens bund skaber i opvarmningsperioderne.

For at vurdere størrelsen af varmeoverføringsevnen fra saltlager tanken til varmtvandsbeholderen udføres tre tappeforsøg. Forsøgene udføres som beskrevet i afsnit 2.2.6, dog tilføres den konstante temperatur $T_{i, 2}$ ikke med solfangervesken men i stedet for med brugsvandet. Forsøgsbetingelserne og den malte andring af varmelagerets varmeindhold igennem forsøget for de tre forsøg fremgå af tabel 41.

$T_{i, 1}$	$29,9{ }^{\circ} \mathrm{C}$	$49,8{ }^{\circ} \mathrm{C}$	$79,9{ }^{\circ} \mathrm{C}$
$T_{i, 2}$	$15,0{ }^{\circ} \mathrm{C}$	$16,0{ }^{\circ} \mathrm{C}$	$16,0{ }^{\circ} \mathrm{C}$
V	$0,000127 \mathrm{~m}^{3} / \mathrm{s}$	$0,000136 \mathrm{~m}^{3} / \mathrm{s}$	$0,000064 \mathrm{~m}^{3} / \mathrm{s}$
$Q_{\mathrm{s}, \mathrm{m}}\left(\mathrm{T}_{\mathrm{i}, 1,} \mathrm{~T}_{\mathrm{i}, 2}\right)$	$12,0 \mathrm{MJ}$	$47,7 \mathrm{MJ}$	$69,9 \mathrm{MJ}$
Varighed af forsøg	7 h 29 min	28 h 23 min	28 h 6 min

Tabel 41. Data for tre tappeforsøg.

De malte lagertemperaturer i de forste 70 min for de tre tappe forsøg er vist på figur $85,86 \mathrm{og} 87$. Desuden er vist de beregnede temperaturer af varmtvandsbeholderen og saltlagertanken med en simpel simuleringsmodel, som hverken tager hensyn til tempera turlagdeling i varmtvandsbeholderen eller i saltlagertanken. I simuleringsmodellen er benyttet en vaxmeoverføringsevne mellem saltlagertanken og varmtvandsbeholderen pa $13 \mathrm{~W} /{ }^{\circ} \mathrm{C}$. Af disse

Figur 85. Lagertemperaturer under tappefors ϕ med $T_{i, 1}=29,9^{\circ} \mathrm{C}$.

Malte temperaturer
$T_{\text {salt }}$ max ${ }^{T}$ salt min :
Tvand top, Tvand bund:
$\rightarrow-$

Beregnede temperaturer:

$$
T_{\text {salt }}
$$

$$
T_{\text {vand }}
$$

Figur 86. Lagextemperatur under tappeforsøg med $T_{i, 1}=49,8^{\circ} \mathrm{C}$.

Figur 87. Lagertemperaturer under tappefors \varnothing ged $T_{i, 1}=79,9^{\circ} \mathrm{C}$.
fors \varnothing g ses altså, at varmeoverføringsevnen fra saltlagertanken til varmtvandsbeholderen er særdeles lille.

De varmeoverføringsmassige forhold for varmelageret er i det hele taget meget komplicerede. Detaljerede undersøgelser er nødvendige for at klarlægge disse forhold. Pa grund af lagerets uheldige udformning er disse undersøgelser ikke udført, og en detaljeret matematisk model. som simulerer lagerets drift. er ikke udviklet.

Pa basis af provningerne af prototype 1 blev prototype 2 konstrueret. Hele saltvandsblandingen placeres i en kappe omkring varmtvandsbeholderens sider. Udformningen af prototype 2 fremgår af figur 88 og 89 og tabel 42. Nederst pa figur 89 ex varmt vandbeholderens varmevekslerspiral, som er placeret i beholderens nederste 30 cm , og de to korte varmevekslerspiraler, som er placeret nederst.i kappen, vist. Varmevekslerspiralerne forbindes s:ledes, at varmelageret kan prøves uden varmevekslerspiral i kappen, med en varmevekslerspiral med længden 1 m i kappen eller med.en varmevekslerspiral med længden 2 m i kappen og bade med og uden varmevekslerspiral i varmtvandsbeholderen.

Lageret er forsynet med en glasstav med en række termoelementer i varmtvandsbeholderen og en plasticstav med en rakke termoelementer i kappen. Herved muliggøres en registrering af lagerets temperaturer i forskellige niveauer, både i vandet og i saltet, under lagerets prøvning. Som solfangervæske benyttes en 50\% (efter vægt) vand/propylenglycol-blanding.

Varmelageret blev prøvet igennem en periode, som varede omtrent tre måneder, ved hjælp af de samme prøvemetodex, som blev benyttet ved prøvningen af prototype 1. Umiddelbart synes lagerets termiske egenskaber under drift at være gode. Varmeoverføringsevnen fra saltvandsblandingen til varmtvandsbeholderen har en rimelig størrelse, lave temperaturer i bunden af varmtvandsbeholderen udnyttes til at forøge solfangerens udbytte, temperaturlagdelingen i varmtvandsbeholderen bevares igennem lang tid i perioder uden solfangerdrift og varmtvandsbeholderen opvarmes hurtigt til

Figur 88. Skematisk illustration af prototype 2. Mål i mm。

Figur 89. Prototype 2 med varmevekslerspixaler.

Volumen af varmtvandsbeholder	
Volumen af kappe til saltvandsblandingen	
Volumen af solfangervaske	2ℓ
Masse af tom prototype	79 kg
Masse af: $\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}$ vand $\mathrm{Na}_{2} \mathrm{CO}_{3}$ total saltvandsblanding	$\begin{array}{r} 61 \mathrm{~kg} \\ 39 \mathrm{~kg} \\ 100 \mathrm{~g} \\ 100 \mathrm{~kg} \end{array}$
Varmevekslerspiral: materiale dimension spirallængde i varmtvandsbeholder spirallængde i kappe	$\begin{aligned} & \mathrm{stå} \\ & 1 / 2^{\prime \prime} \\ & 6 \mathrm{~m} \\ & 2 \times 1 \mathrm{~m} \end{aligned}$
Beholderisolering: materiale tykkelse	mineraluld 5 cm

Tabel 42. Data for prototype 2.
høje temperaturer. Til gengæld blev lagerets varmeindhold efter kort tid mindre end det teoretisk beregnede varmeindhold, og i lobet af hele prøvningsperioden reduceres varmeindholdet yderm ligere. Varmelageret virker altså ikke stabilt, hvorfor malem resultaterne ikke vil blive beskxevet.

Efter tre måneders prøvning blev lageret opvarmet til omtrent $48^{\circ} \mathrm{C}$, således at alle krystaller smeltede. Efter at stabilitet var nået, blev sammensætningen af en saltvandsprøve fra toppen af kappen undersøgt. Vægtandelen af vandfrit salt var i denne saltvandsblanding 38\%. Som det ses af figur 77 svarer dette ved $48^{\circ} \mathrm{C}$ til en undermættet saltopløsning. Sammensætningen svaxer til en mættet saltopløsning ved omtrent $14^{\circ} \mathrm{C}$, lagerets laveste temperatur under prøvningspexioden. Endvidere bestod de nederste 30 cm af kappen af et bundfald bestànde af uopløst vandfrit salt. Der opstår altså afblanding i kappen på trods af anven -
delsen af ekstra-vand-princippet. Dette skyldes, at den nodvendige svage omrøring af saltvandsblandingen ikke er til stede. Saltvandsblandingen i kappen er altid stillestaende.

I perioder med varmetilførsel opvarmes varmtvandsbeholderen hurtigere end saltvandsblandingen, uanset hvorledes solfangervasken fores gennem varmevekslexspiralsystemet. Dette skyldes den gode termiske kontakt mellem spiralen i bunden af kappen og varmtvandsm beholderens side. Under opvarmningen optrader der ingen novnevardig temperaturlagdeling i varmtvandsbeholdexen. Da den storste del af varmetilførsien til saltvandsblandingen som ved staxten af opvarmningen bestar af et lag kxystaller i den nederste del og en mattet saltopløsning i den ϕ verste del af kappen, foregar gennem varmtvandsbeholderens sider, opvarmes vrskedelen lige så meget som krystallerne Derfor bliver vaskedelen foroven hurtigt undermættet. Krystallexne, som gradvist smelter, bliver en overmattet saltoplosning og dermed tungere end den ovenfor beliggende undermattede saltoplosning. Saltvandsblandingen er derfor stillestående.

I perioder uden varmetilførsel, hvad enten dex tappes varmt vand fra varmtvandsbeholderen eller ej, forefindes de højeste temperaturer i toppen og de laveste temperaturer i bunden af varmtvandsbeholderen. Denne temperaturlagdeling skaber hellex ingen omrøring i saltvandsblandingen.

Varmelageret er altsa uheldigt udformet, idet den nødvendige svage omrøring i saltvandsblandingen ikke skabes ved hjelp af naturlig konvektion under lagerets drift.

5.3.3 Foxtsat udviklingsarbejde

Stabiliteten for prototype 1 er god, idet der bade under opvarmning og tapning opstar en svag omroring i saltvandsblandingen. Derimod ex lagerets dynamiske egenskaber i forbindelse med solvarmeanlæg ringe. Disse egenskaber er gode for prototype 2, som til gengæld ikke virker stabil. Dex ex derfor behov for yderligere udviklingsarbejde før et velegnet smeltevarmelager til
solvarmeanlæg til brugsvandsopvarmning er færdigudviklet.

Desværre er det ikke let at udforme lageret pa en sadan made, at lageret bade er stabilt og er i besiddelse af optimale dynamiske egenskaber i forbindelse med solvarmeanlæg. Gode dynamiske egenskaber opnås lettest, nar der forefindes en temperaturlagdeling med de højeste temperaturer i toppen og de laveste temperaturer i bunden af lageret. Opretholdes en sadan temperaturlagdeling altid, vil saltvandsblandingen til gengæld være stillestående, og der vil opstå stabilitetsproblemer på grund af manglende omrøring.

En lagerudformning, hvor tilstrækkelig kraftig omrøring i saltvandsblandingen skabes pa grund af opstàde massefyldeforskelle i saltvandsblandingen under lagerets opvarmning eller tapning, er naturligvis attraktiv, idet et sadant lager sandsynligvis bliver forholdsvis billigt.

Det bør derfor i det fortsatte udviklingsarbejde undersøges, hvorledes udformningen af opvarmningssystemet og tappesystemet pavirker omrøringens styrke. Desuden bør det undersøges, om opvarmning af saltvandsblandingen udelukkende fra bunden alene kan skabe tilstrækkelig omrøring til at forhindre afblanding, om den omrøring, som skabes i saltvandsblandingen under tapning, alene er tilstrakkelig til at forhindre afblanding, eller om en kombination af omroring skabt under opvarmning og tapning, som det er tilfældet med prototype $I_{\text {, }}$ er nødvendig for at forhindre afblanding. Lagerudformningen har afgørende indflydelse pa resultatet af disse undersøgelser. Eksempelvis har lagerets h申jde og fordelingen af den faste og flydende fase i lageret stor be tydning i denne Eorbindelse. Teoretiske overvejelsex er derfor ikke tilstrækkelige - praktiske forsøg er nødvendige for at afprøve, om varmelageret er stabilt og i фvrigt er i besiddelse af fordelagtige termiske egenskaber i forbindelse med solvarmeanlæg。

5.4 Status

Fordelen ved smeltevarmelagre er, at varmelagringskapaciteten er stor i et snævert temperaturinterval omkring smeltepunktet. pladso og isoleringskravene er derfor mindre for disse lagre end for almindelige vandlagre. Sæxlig attraktive ex smeltevarmelagre i anlæg, hvor det er fordelagtigt, at lagertemperaturen i lange perioder holdes pa et konstant niveau. Som eksempel herpa kan nævnes solvarmeanlæg til brugsvandsopvarmning om sommeren, hvor man ønsker at slukke oliefyret. I sadanne anlag er det nemlig specielt fordelagtigt, at lager $\begin{gathered}\text { demperaturen er større }\end{gathered}$ end den pnskede varmtvandstemperatur så lange som muligt. Endelig skal det nævnes, at muligheden for at unytte temperaturlagdeling i lageret ϕ ges pa grund af krystallernes ringe varmeledningsevne. Ulempen ved smeltevarmelagre ex, at lagerudformningen bliver forholdsvis kompliceret og dermed dyr.

En række hensyn skal tages og en række problemer skal loses i forbindelse med udformningen af smeltevarmelagre til aktive sol-m varmeanlæg:

- et velegnet varmelagringsmateriale skal vælges
- varmelagringsmaterialet skal virke stabilt
- underafkøling skal forhindres
- varmeoverførslen fra varmelageret til brugsvandet og til det varmetransporterende medium skal vane tilstrakkelig stor - varmelagerets termiske egenskaber i forlindelse med solvarmeanlag skal være gode
- varmeoverføringsevnen fra solfangervæsken til varmelageret skal være tilstrækkelig stor
- lageret skal være rimeligt billigt.

En rakke uorganiske salthydrater har vist sig velegnede som varmelagringsmaterialer i forbindelse med smeltevarmelagre til aktive solvarmeanlæg. Varmelagringsmaterialets stabilitet kan
opnås pa mange måder. For eksempel har ekstra-vand-princippet vist sig at løse afblandingsproblemet effektivt, når blot der sørges for en svag omrøring i saltvandsblandingens flydende fase. Det bør i det videre udviklingsarbejde klarlægges, på hvilke måder denne omrøring billigt kan tilvejebringes. Underafkøling kan forhindres ved at anvende et tilsætningsmateriale med samme krystalform som salthydratkrystallerne som krystallisationskim eller ved at undlade at smelte alle salthydratkrystallerne i lageret.

De varmeoverføringsmæssige forhold for lageret, lagerets termiske egenskaber i forbindelse med solvarmeanlæg og lagerets pris er nøje knyttet til lagerets udformning.

Der er behov for yderligere udviklingsarbejde for at udvikle et stabilt, billigt og velegnet smeltevarmelager til solvarmeanlæg. En sammenligning mellem smeltevarmelagre og vandlagre kræver ud over viden om lagerets anvendelse et nøje kendskab til smeltevarmelagerets udformning og virkemåde. Det er derfor for tidigt at foretage en sammenligning mellem smeltevarmelagre og vandlagre.

6. KONKLUSION

De udviklede danske prøvemetoder benyttes til at mile varmelagerets varmetabskoefficient bade under solfangerdrift og under et afkølingsforlob, varmelagerets varmelagringskapacitet og varmelagringseffektivitet og varmeoverføringsevnen fra solfangervæsken til varmelageret. Desuden klarlægges de dynamiske Eorhold for varmelageret ved hjælp af prøvemetoderne. Det er forholdsvis let og hurtigt at prove varmelagre ved hjælp af de udviklede danske provemetoder. Prøvningerne giver gode oplysninger om varmelagrenes egnethed i Eorbindelse med solvarme anlæg til brugsvandsopvarmning。

Prøvemetoderne udgør grundlaget for prøvningsarbejdet, som er udfort i Danmark inden for solvarmelageromradet. De markedsforte varmelagre er forbedret væsentligt igennem de sidste fire ar. Prøvningsarbejdet og exfaringerne, som er opnaet gennem dette arbejde, har i stor udstrækning medvirket til denne forbedring. Det vurderes dexfor, at provemetoderne har været og, i. forbindelse med udvikling af effektive varmelagre til solvarmeanlæg til brugsvandsopvarmning, ogsa fremovex vil være af stor betydning ved udviklingen af optimale solvarmeanlæg.

Malet med udviklingsarbejdet vedrørende fwlles europaiske prøvemetoder er black box tests. som ex velegnede til provning af forskellige vammelagertyper til forskellige solvarmeanlag. Black box tests er fordelagtige i forbindelse med provning af varmelagre med komplicerede interne temperaturforhold, fx smeltevarmelagre. Disse prøvemetoder udnytter altsa ikke muligheden for at måe varmelagerets temperaturer. Herved kompliceres provemetoderne naturligvis i forhold til de simple danske pxøvemetoder. Da erfaringerne med de europæiske provemetoder er sparsomme, og da alle provningsbetingelserne endnu ikke er fastlagt, ma provemetoderne betragtes som forelobige. Der er behov for yderligere arbejde med udvikling af metoderne, før de er direkte anvendelige i forbindelse med provning af forskellige markedsforte varmelagre.

Varmelagre kan let tilsluttes de opbyggede prøvestande. Prøvestandene er simple at styre. Malesystemet er rimeligt nøjagtigt. Prøvestandene ex derfor velegnede til prøvning af varmelagre ved hjælp af de forskellige prøvemetoder.

En detaljexet matematisk model, som simulerer de termiske egen skaber for varmtvandsbeholdere med en indbygget varmevekslerspiral, er opstillet og valideret ved hjælp af forsøg. I forhold til tidligere anvendte simuleringsmodeller beskriver modellen mere detaljeret de varmeoverføringsmæssige forhold for varmevekslerspiralen. Desuden beregnes temperaturlagdelingen i varmelageret mere nøjagtigt end med tidligere benyttede simuleringsmodeller, idet der både tages hensyn til vandets udvidelse og sammentrækning under driften og de i lageret op trædende vandstrømninger, som forarsages af varmelagerets var-m metab. Det vurderes, at simuleringsmodellen er sa detaljeret. at en optimering af varmelagerets udformning er mulig ved hjælp af simuleringsmodellen.

Da simuleringsmodellen tilmed er mindre tidkrævende og dermed billigere end de tidligere anvendte simulexingsmodeller (på grund af anvendelsen af "Tridiagonal-algoritmen" ved beregningen af temperaturerne) udgøx den opstillede model fremover grundlaget for arbejdet vedrørende optimering af solvarmeanlag til brugsvandsopvarmning. Ved hjælp af ydeevneberegninger med modellen og okonomiske betragtninger for forskellige udformninger af solvarmeanlægget er det muligt at optimere udformningen af varmelageret og styresystemet.

Ydeevneberegninger ex foretaget for forskellige solfangerarealer, styresystemer, volumenstrømme og lagerudformninger i form af forskellige lagervolumener, varmevekslerspiraler, højde/diameter-forhold, isoleringsforhold, godstykkelser og udformninger af tappesystemet. Særlig stor indflydelse pa ydelsen har en eventuel kuldebro placeret i varmelagerets top.

Eksempelvis kan en kuldebro på $4 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ placeret her reducere energibesparelsen, som opnås med solvarmeanlagget, med omtrent 30%. De фvrige undersøgte variationer i udformingen har mindre indflydelse pä ydelsen. Til gengreld kan de have en ikke ringe indflydelse pa anlæggets pris. Eksempelvis har styresystemets start- og stopdifferens kun begrænset indflydelse på ydelsen, når blot stopdifferensen ikke bliver for stor, dvs. nar blot pumpen ikke stoppes for tidligt. Det er derfor muligt at benytte et simpelt og billigt styxesystem uden tempe raturfølere og herved forbedre forholdet mellem ydelse og pris for solvaxmeanlegget. Der er pa mange omrader mulighed for at forbedre de i dag markedsforte varmelagre og systemer betydeligt. Den udviklede matematiske model er saledes værdifuld i forbindelse med den fortsatte udvikling af solvarmeanlæg til brugsvandsopvarmning.

Problemerne vedrorende smeltevarmelagre ex beskrevet. Et princip, ekstra-vand-princippet, som løser stabilitetsproblemet. er uaviklet. To forskellige smeltevamelagre til solvarmeanleg til brugsvandsopvarmning ex undersøgt ved hjælp af prøvningex i de opbyggede provestande. pa basis heraf er det vuxderet, hvorledes arbejdet vedrørende udvikling af et velegnet smeltevarmelager til solvarmeanleg til brugsvandsopvarmning kan fortsættes.

SUMMARY

Danish and European test procedures for heat storages for solar heating systems have been developed. The suitability of the test procedures has been evaluated by means of calculations of the accuracies of the measurements and by means of the experiences gained by the tests.

Test facilities for heat storages for solar heating systems for domestic hot water supply have been built. The accuracy of the measuring equipment of the test facilities has been investigated in detail.

The type of heat storage consisting of a hot water tank with a built-in heat exchanger spiral has been investigated thoroughly. A detailed computer model simulating the thermal behaviour of this type of heat storage, in periods with heat supply as well as in periods without heat supply, has been developed. The computer model has been validated by means of experiments. Special tests as well as the above mentioned developed test procedures were used for the validation.

The yearly thermal performance for small solax heating systems for domestic hot water supply has been calculated based on the Danish Test Reference Year and the validated computex model with different designs of the control system and of the heat storage. Based on these calculations it is possible to optimize the design of the heat storage.

The problems concerning the stability of heat of fusion stoxages as well as a principle solving the stability problems, have been mentioned. Different heat of fusion storages making use of the principle, have been described. Two heat of fusion storages for solar heating systems for domestic hot water supply have been developed. These storages have been investigated by means of experiments in the test facilities. Based on these experiments it is assessed how the work concerning development of a suitable heat of fusion storage for solar heating systems for domestic hot water supply can be continued.

SYMBOLLISTE

Visse steder anvendes der samme symbol for flere storrelser, men det vil ved omtalen af udtrykket fremgå, hvilken størrelse, der aktuelt anvendes.

Symbol	Beskrivelse	Enhed
A	Varmevekslerspiralens overfladeareal	m^{2}
a	Konstant	$\mathrm{J} / \mathrm{m}^{3}{ }^{\mathrm{O}} \mathrm{C}$
$A_{\text {f }}$	Konstant	m^{3} / s
AKSO	Solfangerens effektive varmew	$\mathrm{J} /{ }^{\circ} \mathrm{C}$
	kapacitet	
AKVX	Varmekapaciteten af varmevekslex spiralen inklusiv varmekapaciteten	$J /{ }^{\circ} \mathrm{C}$
	for solfangervasken i varmevekslerspiralen	
AR	Solfangerareal	m^{2}
b	Konstant	$\mathrm{J} / \mathrm{m}^{3}\left({ }^{\mathrm{O}} \mathrm{C}\right)^{2}$
B_{f}	Konstant	$m^{3} / s^{\circ} \mathrm{C}$
C	Konstant	$\mathrm{W} /{ }^{\circ} \mathrm{C}$
CI (I)	Varmelagringskapaciteten for lag I	J/ ${ }^{\circ} \mathrm{C}$
C_{p}	Varmefylde for solfangervaske	$J / \mathrm{kg}^{\circ} \mathrm{C}$
$\mathrm{Cbp}_{\mathrm{p}}$	Beholdermaterialets varmefylde	$J / \mathrm{kg}{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{p_{r}}$	Varmefylde for solfangerkredsens rørmateriale	$\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
C_{pv}	Brugsvandets varmefylde	$J / \mathrm{kg}{ }^{\circ} \mathrm{C}$
$\mathrm{C}_{\mathrm{p}_{\mathrm{VX}}}$	Varmevekslerspiralmaterialets varmefylde	$\mathrm{J} / \mathrm{kg}{ }^{\circ} \mathrm{C}$
C_{1}	Varmelagerets varmelagringskapacitet	$\mathrm{J} /{ }^{\circ} \mathrm{C}$

c_{2}	Konstant	W/ ${ }^{\circ} \mathrm{C}$
C_{3}	Konstant	W/ ${ }^{\circ} \mathrm{C}$
d	Konstant	$\mathrm{W} /{ }^{\circ} \mathrm{C}^{2}$
d_{i}	Varmelagerets indvendige diameter	m
$\mathrm{d}_{i_{a}}$	Indvendig diameter af rør i solfangerkreds	m
$d_{i_{\mathrm{vx}}}$	Varmevekslerspiralens indvendige diameter	m
DM (I)	Vandmasseændring for lag I igennem tidsspring	kg
d_{y}	Varmelagerets udvendige diameter	m
$d_{y r}$	Udvendig diameter for rør i solfangerkredsen	m
$d_{y_{v x}}$	Varmevekslerspiralens udvendige diameter	m
d_{2}	Konstant	$\mathrm{W} /\left({ }^{\circ} \mathrm{C}\right)^{2}$
d_{3}	Konstant	$\mathrm{W} /\left({ }^{\circ} \mathrm{C}\right)^{2}$
E	Elektrisk effekt som tilføres lageret	W
e_{b}	Isoleringstykkelse på varmelagerets bund	m
e_{r}	Isoleringstykkelse for rør i solfangerkredsen	m
e_{s}	Isoleringstykkelse på varmelagerets sider	m
e_{t}	Isoleringstykkelse på varmelagerets top	m
FITAB (I)	Varmetab, som flyttes fra lagene over lag I til lag I	W

GR (I)	Temperaturlagdeling mellem lag I og lag I+1	${ }^{\circ} \mathrm{C} / \mathrm{m}$
H	Varmeoverføringsevne fra solfangervæske til varmelagex	W/ ${ }^{\circ} \mathrm{C}$
h	Varmelagerets udvendige højde	m
h_{i}	Varmelagerets indvendige højde	m
$\mathrm{H}_{\text {inde }}$	```Varmetabskoefficient pr. rørlængde- enhed for ror beliggende inde i huset```	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$
$\mathrm{H}_{\max }$	Størst mulige størrelse af H	$\mathrm{W} /{ }^{\circ} \mathrm{C}$
$\mathrm{H}_{\min }$	Mindst mulige størrelse af H	$W /{ }^{\circ} \mathrm{C}$
$\mathrm{H}_{\mathrm{ude}}$	Varmetabskoefficient pr. rørlængdew enhed for ror beliggende uden for huset	$W /{ }^{\circ} \mathrm{C}$
I	Lagnummer	ubenævnt
I	Solintensitet på solfangeren	$\mathrm{W} / \mathrm{m}^{2}$
i	Indeks, som tilføjet de pvrige symboler angiver, at der er tale om en gennemsnitsvardi gennem tids perioden $\Delta \tau$	
K	Varmetabskoefficient for forsøgskasse i maleopstilling	$W /{ }^{\circ} \mathrm{C}$
$\mathbb{K}_{\text {bund }}$	Varmetabskoefficient for varmtvandsbeholderens bund	$W /{ }^{\circ} \mathrm{C}$
${ }^{K}$	Varmelagerets varmetabskoefficient nar solfangeren er i drift	$W /{ }^{\circ} \mathrm{C}$
k_{0}	Solfangerens varmetabskoefficient	$\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
K_{s}	Varmelagerets varmetabskoefficient når solfangeren ikke er i drift	$\mathrm{W} /{ }^{\circ} \mathrm{C}$

$Q_{I_{\text {Tstart, Tslut }}}$	```Varmelagerets varmeindhold i tempe- raturintervallet mellem T start og Tslut```	J
$Q_{s, m}\left(T_{i, 1}, T_{1,2}\right)$	Varmelagerets malte varmeindhold i temperaturintervallet fra $\mathbb{T}_{i, 1}$ til $\mathrm{T}_{\mathrm{i}, 2}$	J
$Q_{s, t}\left(T_{i, 1}, T_{i, 2}\right)$	Varmelagerets teoretiske varmeindhold i temperaturintervallet fra $T_{i, 1}$ til $T_{i, 2}$	J
Q_{t}	Varmemængde tilført lageret i perioden med varigheden τ_{p}	J
$Q_{\text {tab }}$	Varmetab for varmelager	W
$Q_{\text {tilf }}$	Varmemængde tilført varmelageret under opvarmningsperiode	J
Q_{u}	Tilført effekt til varmelager	W
Q_{v}	Varmemængde tappet fra lageret igennem perioden med varigheden τ_{t}	J
RL	Solfangerkredsens totale rørlængde	m
RLIF	Længden af solfangerkredsens fremløbsrør til varmelageret beliggende inde i huset	m
RLIR	Længden af solfangerkredsens returrør fra varmelageret beliggende inde i huset	m
RLUF	Længden af solfangerkredsens frem- lobsror til varmelageret beliggende uden for huset	m
RLUR	```Længden af solfangerkredsens retur- rør fra varmelageret beliggende uden for huset```	m
ROMVAK V	Varmekapaciteten af solfangerkredsens rørsystem	J/ ${ }^{\circ} \mathrm{C}$

RTAB	Solfangerkredsens varmetab	W
SD	Sommerdækningsgraden, dvs. den del af varmtvandsforbruget i perioden maj-september (incl), som solvarmeanlægget leverer	\%
SFKVAK	Solfangerkredsens varmekapacitet	$J /{ }^{\circ} \mathrm{C}$
SELK	Solfangerens effektive varmekapacitet pr. m^{2} solfanger	$\mathrm{J} /{ }^{\circ} \mathrm{C} \mathrm{m} \mathrm{m}^{2}$
SFVRVA	Varmekapaciteten af solfangervasken i solfangerkredsen	J/ ${ }^{\circ} \mathrm{C}$
SOLKA	```Endring af effekttilforsel til varmelager forarsaget af solfanger- kredsens temperaturændring```	W
SU	Solfangerudbytte	W
$S_{\%}$	Ubestemthed af x	
T	Temperatur	${ }^{\circ} \mathrm{C}$
$\mathbb{T}_{\text {f }}$	Solfangervæskens fremløbstemperatur til varmelager	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{f}_{\mathrm{gm}}}$	Solfangervæskens fremløbstemperatur til varmelageret ved tidsspringets start	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{gm} 1}(\mathrm{I})$	Temperaturen af lag 1 ved tids springets start	${ }^{\circ} \mathrm{C}$
T_{h}	Varmelagertemperatur ved slutning af opvarmningsperiode	${ }^{\circ} \mathrm{C}$
T (I)	Temperaturen af lag I	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\mathrm{i}, 1}$	Solfangervæskens fremløbstemperatur ved starten af forsøg	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{1,2}$	Solfangervæskens fremløbstemperatur ved slutningen af fors ϕ g	${ }^{\circ} \mathrm{C}$

T_{k}	Temperaturen af det kolde vand, som tilføres varmelageret under tapning
$\mathrm{T}_{\text {korx }}(\mathrm{I})$	Temperaturen af lag I korrigeret for vandmassebevægelser
T_{1}	Gennemsnitslagertemperatur
T_{ms}	Middeltemperatur af solfangervæsken i solfangeren
$\mathrm{T}_{\mathrm{mvx}}$	Solfangervæskens temperatur imellem smeltevarmelagerets to varmeveksler spiraler
T (0)	Temperaturen af det kolde vand, som tilføres varmelageret under tapning
T。	Varmelagerets omgivende temperatur
T_{r}	Solfangervæskens returtemperatur fra varmelager
$T^{r_{g m l}}$	Solfangervæskens returtemperatur fra varmelageret ved tidsspringets start
$T_{r i}$	Rørtemperatur af solfangerkxedsen beliggende inde i huset
$\mathrm{T}_{\mathrm{ri}}^{\mathrm{igml}}$	Rørtemperatur af solfangerkredsen beliggende inde i huset ved tidsspringets start
$T_{r}(t)$	Solfangervæskens returtemperatux til tidspunktet t
$\mathrm{T}_{\text {ru }}$	Rørtemperaturen af solfangerkredsen beliggende uden for huset
$T_{r u m b l}$	Rørtemperatur af solfangerkredsen beliggende uden for huset ved tidsspringets start
$T_{r \phi r}$	Solfangerkredsens temperatur

$\mathrm{T}_{\text {salt }}$	Gennemsnitstemperatur af saltvandsblandingen i smeltevarmelageret	${ }^{\circ} \mathrm{C}$
${ }^{T}$ salt max	Maksimal temperatur i saltvandsblandingen i smeltevarmelageret	${ }^{\circ} \mathrm{C}$
T salt min	Minimal temperatur i saltvands blandingen i smeltevarmelageret	${ }^{\circ} \mathrm{C}$
$T_{s 1}$	Varmelagerets gennemsnitstemperatur ved slutning af afkølingsperioden	${ }^{\circ} \mathrm{C}$
Tsiut	Varmelagerets gennemsnitstemperatur ved slutning af opvarmningspexioden	${ }^{\circ} \mathrm{C}$
Tslut,max	Højeste temperatur i varmelageret ved opvarmningens slutning	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {solf }}$	Solfangertemperaturen	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{\text {solf }} \mathrm{gml}$	Solfangertemperatur ved tidsspringets start	${ }^{\circ} \mathrm{C}$
$\mathrm{T}_{s t}$	Varmelagerets temperatur ved starten af en afkølingsperiode	${ }^{\circ} \mathrm{C}$
T staxt	Varmelagerets gennemsnitstemperatur ved starten af opvarmningsperiode	${ }^{\circ} \mathrm{C}$
Tude	Udelufttemperatux	${ }^{\circ} \mathrm{C}$
T_{v}	Temperatur af brugsvand tappet fra varmelagex	${ }^{\circ} \mathrm{C}$
$T_{\text {vand }}$	Gennemsnitstemperatur af varmtvands" beholderen i smeltevarmelageret	C
T vand bund	Temperaturen i bunden af varmtvandsbeholderen i smeltevarmelageret	C
Tvand top	Temperaturen i toppen af varmtvandsbeholderen i smeltevarmelageret	C
$\mathrm{T}_{\mathrm{V} \varnothing}$	Ønsket varmtvandstemperatur	${ }^{\circ} \mathrm{C}$

t	Tid	S
t_{1}	Tid	5
t_{2}	Tid	5
U	Varmeoverføringskoefficient for varmevekslerspixalen fra solfangervæsken til varmelageret	$\mathrm{W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$
V	volumenstrom i solfangerkreds	$\mathrm{m}^{3} / \mathrm{s}$
$V(I, J)$	Volumenstrøm under tapning i skillelinien mellem lag I og lag $I+1$ med temperaturen $T(J-1)$	m^{3} / s
VOL (I)	Vandvolumen i lag I	m^{3}
VTA	Vandvolumen som tappes fra systemet	m^{3}
$\mathrm{V}_{\text {tif }}$	Solfangervæskens volumen i varmelageret	m^{3}
V ${ }^{\text {v }}$	Volumenstrøm af brugsvand fra varmelageret under tapning	m^{3} / s
VX	Varmevekslerspiralens længde	m
XD (I)	Vandmasse flyttet mellem lag I-1 og lag I igennem tidsspringet	kg
XK (I)	Konduktans ved varmeledning mellem lag I+1 og lag I	$W /{ }^{\circ} \mathrm{C}$
XKT (I)	Varmetabskoefficient for lag I	$W /{ }^{\circ} \mathrm{C}$
$Y(I)$	Varmestrøm tappet Era lag I	W
ZTAB (I)	Teoretisk varmetab Era lag I	W
ZTAB side $^{(N)}$	Teoretisk varmetab fra varmelagerets side i lag N	W
$\mathrm{ZTAB}_{\text {top }}(\mathrm{N})$	Varmetab fra varmelagerets top	W

α	Beholdermaterialets varme-	$\mathrm{m} / \mathrm{m}{ }^{\circ} \mathrm{C}$
	udvidelseskoefficient	
$\alpha(I)$	Hjælpestørrelse ved omfordeling af	ubenævnt
	varmetabet	
ΔQ_{1}	Endring af varmelagerets varme*	J
	indhold i et tidsspring	
$\Delta T_{i, e}$	Differencen mellem solfangervaskens	${ }^{\circ} \mathrm{C}$
	fremlobs- og returtemperatur	
$\Delta T_{\text {staxt }}$	Styresystemets startdifferens	${ }^{\circ} \mathrm{C}$
$\Delta T_{\text {stop }}$	Styresystemets stopdifferens	${ }^{\circ} \mathrm{C}$
$\Delta \tau$	Varighed af tidsspring	5
δQ_{1}	Relativt varmetab	ubenævnt
ε	Varmevekslerspiralens effektivitet	ubenævnt
η	Solfangexeffektivitet	ubenævnt
$\eta_{h x}(t)$	Varmevekslingseffektivitet	ubenævnt
no	Solfangerens maksimaleffektivitet	ubenævnt
$\eta_{s}(t)$	Varmelagerets effektivitet	ubenævnt
η_{1}	Varmelagerets varmelagrings-	ubenæunt
	effektivitet	
$\theta_{e}(t)$	Dimensionslos returtemperatur	ubenævnt
λ	for solfangervesken	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$
	Isoleringsmaterialets varme*	
	Ledningsevne	
λ_{b}	Beholdermaterialets varme-	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$
λ_{x}	ledningsevne	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$
	Rørisoleringsmaterialets varmem	
	ledningsevne	
$\lambda_{\mathrm{V}}(\mathrm{I})$	Gennemsnitilg varmeledningsevne for vandet $i \operatorname{lag} I$ og lag $I+1$	$\mathrm{W} / \mathrm{m}^{\circ} \mathrm{C}$

ρ	Solfangervaskens massefylde	$\mathrm{kg} / \mathrm{m}^{3}$
ρ_{b}	Beholdermaterialets massefylde	$\mathrm{kg} / \mathrm{m}^{3}$
$p(I)$	Massefylde for vandet i lag I	$\mathrm{kg} / \mathrm{m}^{3}$
p_{r}	Massefylde for solfangerkredsens rørmateriale	$\mathrm{kg} / \mathrm{m}^{3}$
ρ_{V}	Brugsvandets massefylde ved temperaturen T_{v}	kg/m ${ }^{3}$
$\rho_{\mathrm{V} \phi}$	Massefylde af vand ved temperaturen $\mathrm{T}_{\mathrm{v} \phi}$	$\mathrm{kg} / \mathrm{m}^{3}$
$\rho_{\text {Vx }}$	Varmevekslerspiralmaterialets massefylde	$\mathrm{kg} / \mathrm{m}^{3}$
т	Tid	5
${ }^{T} \mathrm{C}$	Varighed af opvarmningsforløb	s
${ }^{\text {T }}$ Cf	Opladningstiden for perfekt varmelager	5
${ }^{\tau} \mathrm{m}$	Varighed af måleperiode	5
$T_{\text {op }}$	Varighed af opvarmningsperiode	s
${ }_{T}{ }_{p}$	Varighed af periode	s
${ }_{\text {T }}^{s}$	Varighed af afkølingspexiode	S
$\tau_{s b}$	Varighed af periode uden cirkum lation af solfangervaske	S
${ }^{\tau}{ }_{t}$	Tappevarighed	S

LITTERATURLISTE

[1] "Storage of heat. A survey of efforts and possibilities". Gunnar Wettermark, Bo Carlsson, Hans Stymne. Document D 2:1979. Division of Physical Chemistry. The Royal Institute of Technology, Stockholm. Swedish Council for Building Research.
[2] "Glent ventilation". Ole B. Stampe, Glent \& CO. A/S. 1977.
[3] "Storage of low temperature heat. Solar energy thermal storage". Gunnar Wettermark \& Janina Kowalewska. Division of Physical Chemistry. Royal Institute of Technology. Stockholm。 1976.
[4] "Design and installation manual for thermal energy storage". Roger L. Cole, Kenneth J. Nield, Raymond R. Rohde, Ronald M. Wolosewicz. Argonne National Laboratory. ANL-79-15. 1979.
[5] "How to solve materials and design problems in solar heating and cooling". D.S. Ward and H.S. Oberoi, Solar Energy Applications Laboratory, Colorado State University, and S.D. Weinstein, the Ehrenkrantz Group, New York. Noyes Data Corporation, Park Ridge, New Jersey, USA. 1982.
[6] "Solar Engineering of Thermal Processes". J.A. Duffie, W.A. Beckman. Solar Energy Laboratory. University of Wisconsin-Madison. 1980.
[7] "Resistance of gravel storage to air flow". B. Givoni and R. Frizer. Ben-Gurion University of the Negev. The Institute for Desert Research. Sede Boger. 1980.
[8] "Stenmagasin i et lavenergihus". Anker Nielsen. Laboratoriet for Varmeisolering. Rapport fra EM - Mindre Varmelagre. Intern rapport nr. 80-52. November 1980 .
[9] "Luftsolfangere og varmelagring i jord". Kurt Kielsgaard Hansen. Laboratoriet for Varmeisolering. Meddelelse nx. 118. Marts 1982.
[10] "Poly Alcohol Solid Phase-Change Material studied". In Review. A SERI Research Up-date. March 1983. D.K. Benson, Materials Research Branch.
[11] Svensk patent $n x .7614$ 653-9, 29. december 1976.
[12] Dansk patent nr. 5768/77, 23. december 1977.
[13] "Litteraturundersøgelse og vurdering af kemiske varmelagre". Peter I. Christensen. Energiministeriets varmelagerprojekt. Rapport nr. l. Laboratoriet for Varmeisolering. 1979.
[14] "Thermal storage of Solar Energy". Proceedings of an international TNO-symposium held in Amsterdam, 5-6 November, 1980. C. den Ouden. Martinus Nijhoff Publishers.
[15] "Kemiske Varmelagre. Teori og praksis". Peter I. Christensen. Enexgiministeriets varmelagerprojekt. Rapport nr. 10. Laboratoriet for Varmeisolering. 1981.
[16] "International Seminar on Thermochemical Energy Storage". Stockholm, January 7-9, 1980. Gunnar Wettermark. Byggforskningsradet. Rapport nr. D25:1980.
[17] "Low Temperature Thermal Energy Storage: A state-of-the-art survey". Frank Baylin. SERI, Solar Energy Research Institute. A division of Midwest Research Institute. Golden, Colorado. July 1979.
[18] "Prøvning af varmelagerunits til solvarmeanlæg". Simon Furbo. Energiministeriets varmelagerprojekt. Rapport nr.5. Laboratoriet for Varmeisolering. 1980.
[19] "Prøvemetoder for mindre varmelagre og exfaringer fra provningerne". Simon Furbo og Jan-Erik Larsen. Energiministeriets varmelagerprojekt. Rapport nr. 12. Laboratoriet for Varmeisolering. 1982.
[20] "Beskrivelse af prøvestand og -metode til prøvning af varmelagre som indgår i solvarmeanlæg til brugsvandsopvarmning"。 Ole Ravn og Svend Svendsen. Rapport nr. 81-30. Laboratoriet for Varmeisolering. 1981.
[21] "Test procedures for Heat Storages for Solar Heating Systems". Simon Furbo. Int. J. Solar Energy, 1983. Vol. 1.
[22] "Beskxivelse af prøvestand og -metode til prøvning af varmelagre som indgår i solvarmeanlæg til brugsvandsopvarmning". Ole Ravn. Rapport $n x$. 82-51. Laboratoriet for Varmeisolering. 1982.
[23] "Anvendelse af forskellige vasker i solvarmeanlæg". Henrik Nielsen. Afgangsprojekt. Laboratoriet for Varmeisolering. 1980.
[24] "Elementær måleteori". R.E.H. Rasmussen. Gjellerups Forlag A/S. København. 1968.
[25] "Error Analysis". E. van Galen. CEC Solar Storage Testing Group. Working Document 08. 1982.
[26] "Prøvning af varmelagre". Janmerik Laxsen. Laboratoriet for Varmeisolering. Rapport nr. 82-61. 1982.
[27] "Prøvning af varmelager til solvarmeanlæg til brugsvand, fabrikat Dansk Solvarme". Ole Ravn. Laboratoriet for Varmeisolexing. Rapport nr. 82-32. Juli 1982. Provning foretaget for prøvestationen for solvarmeanleg.
[28] "Prøvning af varmelager til solvarmeanlag til brugsvand, fabrikat AR-CON Solvarme Aps". Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 82-33. Juli 1982. Prøv= ning foretaget for provestationen for solvarmeanlag.
[29] "Prøvning af varmelager til solvarmeanleg til brugsvand, Eabrikat AR-CON Solvarme Aps". Ole Ravn. Laboratoriet for Varmeisolexing. Rapport nx. 82-34. Juli 1982. Pxøvm ning foretaget for provestationen for solvarmeanlæg.
[30] "Prøvning af varmelagex til solvarmeanlæg til brugsvand, Eabrikat Sdr. Hфjrup Maskinfabrik A/S". Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 82-35. Juli 1982. Prøvning foretaget for prøvestationen for solvarmeanlæg.
[31] "Prøvning af varmelager til solvarmeanlæg til brugsvand, fabrikat Sar. Højrup Maskinfabrik $A / S^{\prime \prime}$. Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 82-36. Juli 1982. Provning foretaget for provestationen for solvarmeanlæg。
[32] "Prøvning af varmelager til solvarmeanlæg til brugsvand, fabrikat HS Kedler". Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 82-37. Juli 1982. Prøvning foretaget for prøvestationen for solvarmeanlag.
[33] "Provning af varmelager til solvarmeanlæg til brugsvand, fabrikat Metro". Ole Ravn. Laboratoriet fox Varmeisole ring. Rapport nr. 82-38. Juli 1982. Provning foretaget for prøvestationen for solvarmeanlag.
[34] "Prøvning af varmelager til solvarmeanlag til brugsvand, fabrikat Vølund Varmeteknik, type: Vølund 300 QVs". Ole Ravn. Laboratoriet fox Varmeisolering. Rapport nr. 83-17. Juni 1983. Prøvning foretaget for prøvestationen for solvarmeanlæg.
[35] "Provning af varmelager til solvarmeanlæg til brugsvand. fabrikat Ans Solvarme, type: Ans Solvarme FK350". Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 83-18. Juni 1983. provning foretaget for provestationen for solvarmeanleg.
[36] "Prøvning af varmelager til solvarmeanlæg til brugsvand. fabrikat Zachomatic, type: Zachomatic $10 / 2,5 \mathrm{R}^{\prime \prime}$. Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 83-19. Juni 1983. Prøvning foretaget for provestationen for solvarmeanlæg。
[37] "Prøvning af varmelager til solvarmeanlæg til brugsvand, fabrikat $A R-C O N$ Solvarme Aps, type: $A R-C O N L 200^{\prime \prime}$. Ole Ravn. Laboratoriet for Varmeisolering. Rapport nr. 83-20. Juni 1983. Prøvning foretaget for provestationen for solvarmeanlæg.
[38] "Prøvning af varmelager til solvarmeanlag til brugsvand og rumopvarmning, fabrikat JE-BU Consult Aps, type: Fønix-JEBU Solvarmelagertank type 4". Ole Ravn. Laboratoriet for Vameisolering. Rapport nr. 83-23. Junj 1983. Prøvning foretaget for prøvestationen for solvarmeanlæg。
[39] "Provning af varmelager til solvarmeanleg til brugsvand og rumopvarmning, fabrikat Brillgaard-Pedersen VVS, type J. Brillgaard-Pedersen type 1200". Ole Ravn. Laboram toriet for Varmeisolering. Rapport nr. 83-24. Juni 1983. Prøvning foretaget for provestationen for solvarmeanlæg.
[40] "Varmeovergang for varmevekslerspiraler neddykket i vand". Søren $\emptyset s t e r g a a r d$ Jensen. Laboratoriet for Varmeisolering. Rapport nr. 84-10. Maj 1984.
[41] "ASHRAE Standard 94-77, Methods of Testing Thermal Storage Devices based on Thermal Performance". J.E. Hill et al. ANSI 3 199. $1-1977$, American Soc. of Heat, Refrig. and Air Con. Eng. Inc., 345, E47th Street, New York, USA.
[42] Recommendations for a European Reporting Format on the Performance of Solar Heat stores". CEC Commission of the European Communities. TPD 1981. Delft.
[43] "A revised themal storage test procedure". R. Marshall. Report no. 808. SEU no. 292. University College Cardiff, 1981. Cardiff.
[44] "Heat storage unjts using a salt hydrate as storage medium based on the extra water principle ${ }^{\text {P. S. Furbo. Thexmal }}$ Insulation Laboratory, Technical University of Denmark. 1982.
[45] "Provisional Test Procedures I. Component tests, black box approach". E. van Galen. CEC Solar Scorage Testing Group, Working Document 03. April 1982.
[46] "Test procedures of thermal energy stoxage systems for solar applications. Final report. S. Furbo. June 1983. Thermal Insulation Laboratory. Technical University of Denmark.
[47] "Test procedures of thermal energy storage systems for solar thermal applications. Final report". G.J.V.d.Brink. June 1983. Institute of Applied Physics, TNO-TH, Delft. the Netherlands.
[48] "Test procedures of thermal energy storage systems for solar thermal applications. Final Report". D. Seemann. June 1983. Institut für Thermodynamik und Wåmetechnik. Universität Stuttgart.
[49] "Test procedures of thermal energy storage systems for solar thermal applications. Final report". J.L. Salagnac. June 1983. CST'B, Sophia Antipolis.
[50] "Test procedures of thermal enexgy storage systems for solar thermal applications. Final report". P. Coda. June 1983. E.N.E.A., Rome.
[51] "Test procedures of thermal energy storage systems for solar thermal applications. Final report". R. Marshall. June 1983. Solar Energy Unit, University of Cardiff.
[52] "Recommendations for European Solar Storage Tests Methods. (sensible heat and latent heat storage devices). Draft". E. Van Galen. Institute of Applied Physics, TNOMTH, Delft, the Netherlands. June 1983.
[53] "Prøvningsrapport nr. 149". Finn Andersen. 17/12-81. Statens Tekniske Prøvenævn. Risø. Autorisations-nr. 98. Kalibrering af temperaturmålere.
[54] "Undersøgelse af malenøjagtigheden i solsimulatoropstilm lingen". S. Svendsen. Marts 1981. Rapport nr. 81-13. Laboratoriet for Varmeisolering.
[55] "Sma varmelagre. Status og visioner". Simon Furbo. Juni 1982. Foredragsresuméer XII Nordiske VVS Kongres. VVS Vision 82.
[56] "Lagertyper og lagerstørrelser i solvarmeanleg til brugsvandsopvarmning". Søren Østergaard Jensen og Simon Furbo. Marts 1984. Laboratoriet for Varmeisolering. Meddelelse nr. 148.
[57] "økonomisk solbidrag til opvarmning af brugsvand". Sven Pedersen, Simon Furbo, Preben Nordgaard Hansen og Vagn Ussing. December 1982. Energiministeriets varmelagerprojekt. Rapport nr. 14. Meddelelse nr. 132. Laboratoriet for Varmeisolering.
[58] "A solar water heating system for Northern Europe". P.E. Kristensen. September 1983. Performance Monitoring Group, Commission of the European Communities. Thermal Insulation Laboratory, Technical University of Denmark.
[59] "Dansk Ingeniørforenings regler for beregning af bygningers varmetab". Teknisk Forlag. 4. udgave, november 1977. Dansk Standard DS 418.
[60] "Rockwool isoleringshåndbog. Teoretisk grundlag". København. September 1971.
[6]] "Mass and energy transfer in a hot liquid energy storage system". W.F. Phillips and R.A. Pate. Utah State University. Proceedings of the 1977 annual meeting. Volume one. June 1977. American Section of the International Solar Energy Society.
[62] "Computer simulation of a solar energy system with a viscouseentrainment liquid storage tank model". S.M. Han and S.T. Wu. University of Alabama in Huntsville. Proceedings of Third Southeastern Conference on Application of Solar Energy. April 1978. Huntsville, Alabama.
[63] "A liquid solar energy storage tank model. I. Formulation of a mathematical model". S.T. Wu and S.M. Han. University of Alabama in Huntsville. Proceedings of 1978 Winter annual meeting of the American Society of Mechanical Engineers at San Francisco, California. December 1978.
[64] "Stratification in solar water heater storage tanks". E.S. Davis and R. Bartera. Proceedings of the Workshop on solar energy storage subsystems for the heating and cooling of buildings. Charlottesville, Virginia. April 1975.
[65] "Three dimensional mathematical model of flow stratification in thermocline storage tanks". W.T. Sha and E.I.H.Lin. Argonne National Laboratory. Proceedings of the Third Southeastern Conference on Application of Solar Energy. April 1978. Huntsville, Alabama.
[66] "Natural thermal stratification in tanks. Phase 1. Final report". Roger L. Cole and Frank O. Bellinger, ANL"-82-5. February 1982. Argonne National Laboratory.
[67] "Theoretische und experimentelle Untexsuchungen ůber den Einfluss der Konvektion in Jahreswärmespeichern". U. Grigull, K. Kůblbeck, A. Staudt, J. Straub und G. Merker. Lehrstuhl A für Thermodynamik. Technischen Universität München. 1976 .
[68] "Untersuchung der Konvektion in Jahreswärmespeichern". J. Straub, G. Merker, K. Küblbeck, A Staudt und U. Grigull. VDI-Berichte nr. 288. 1977.
[69] "Experimentelle und theoretische Ermittlung von Temperaturverteilungen in geschichteten Warmwasserspeichern". KFA Jülich. 1977.
[70] "Ein Modell zur Berechnung des Temperaturverhaltens von Warmwasser - Wärmespeichern". Albert Staudt. Lehrstuh1 A für Thermodynamik. Technischen Universität München. Dezember 1981.
[71] "Naturlig konvektion i mindre vandfyldte varmelagre". Peter Berg. 1983. Eksamensprojekt ved Laboratoriet for Varmeisolering.
[72] "Beskrivelse og underbygning af matematiske modeller til simulering af varmelagres termiske egenskaber". J.E. Nielsen og Ole Ravn. Rapport nr. 82-50. August 1982. Laboratoriet for Varmeisolering.
[73] "VDI-Wasserdampftafeln mit einem Mollier (i,s)-Diagramm auf einer besonderen Tafel". Dr. Ing. We. Koch, VDI. Zweite Auflage. München und Berlin. 1941. R. Oldenbourg, Springer-Verlag。
[74] "Løsning af lineære ligningssystemer. August 1972. Numerisk Institut, DTH.

Hæfte $23^{\circ "}$ Udgave 2. Numerisk Analyse.
[75] "Konstruktionsmaterialer for den mekaniske industri". Sammenslutningen af Arbejdsgivere indenfor Jern- og Metalindustrien i Danmark. Juni 1967. Forskningsudvalget. Publikation nr. 6701. UDK 620.2:621:681.
[76] "Perspektiver vedrørende solvarme nu og i fremtiden". Klaus Ellehauge og Søren \emptyset stergaard Jensen. Laboratoriet for Varmeisolering. Januar 1984. Meddelelse nr. 138.
[77] "Solindfald og solvarmeanlæg - målt og beregnet". Henrik Lawaetz. Laboratoriet for Varmeisolering. Oktober 1980. Meddelelse $n r .106$.
[78] "Vejrdata for VVS og energi. Dansk referenceå TRY". Bo Andersen et al. Statens Byggeforskningsinstitut. 1982. SBI-rapport nr. 135.
[79] "Effektivitetsprovning af solfanger foretaget for provestationen for solvarmeanlæg. Rekvirent: Energiministeriets solvarmeprogram: Teknologisk Institut". C. Bisgaard. Rapport nr. 82-19. April 1982. Laboratoriet for Varme isolering.
[80] "Effektivitetsprøvning for solfanger foretaget for provestationen for solvarmeanlag. Fabrikat Solteknik". C. Bisgaard. Rapport nr. 82-22. November 1982. Laboratoriet for Varmeisolering.
[81] "Effektivitetsprøvning af solfanger foretaget for prøvestationen for solvarmeanlæg. Fabrikat Dansk Solvarme". C. Bisgaard. Rapport nr. 83-11. Maj 1983. Laboratoriet for Varmeisolering.
[82] "Solfangeres effektivitet - måt og beregnet". S. Svendsen. Meddelelse nr. 109. Maj 1981. Laboratoriet for Varmeisolering.
[83] "Varmetab ved varmtvandstapning fra lager". Jørn Jeppesen. Laboratoriet for Varmeisolering. Juli 1982. Kursusarbejde.
[84] "Dansk Ingeniørforenings norm for vandinstallationer". Dansk Standard DS 439. 1. udgave. 1978.
[85] "Solar Energy Subsystems employing isothermal heat storage materials". Lane, G.A., Glew, D.N., Clarke, E.C., Quigley, S.W. and Rossow, H.E. Report NSE/RANN/SE/C906/ TR/75/1. The Dow Chemical Co. Midland, Michigan. 1975.
[86] "Heat of fushion systems for solar enexgy storage". Lane, G.A., Glew, D.N., Clarke, E.C., Rossow, H.E., Quigley, S.W., Drake, S.S. and Best, J.S. Proceedings of the Workshop on solar energy storage subsystems for the heating and cooling of buildings. Charlottesville, Virginia. April 1975.
[87] "Thermal energy storage". Working papers. Turnberry, Scotland. 1-5 March, 1976. Nato Science Committee Conference.
[88] "Report on heat storage in a solar heating system using salt hydrates". S. Furbo and S. Svendsen. Thermal Insulation Laboratory, Technical University of Denmark. Meddelelse nr. 70. July 1977. Revised 1978.
[89] "Phase change. Thermal storage. A comprehensive look at developments and prospects". September 1980. Monegon Ltd.
[90] "Entwicklung modularer wärmeůbertrager mit integriertem Latentwärmespeicher". A. Abhat, D. Heine, M. Heinisch, N.A.Malatidis, G. Neuer. Institut fur Kerntechnik und Energiewandlung e.V. Stuttgart. Februar 1981.
[91] "Kompakte Latentwärmespeicher bei benutzung von zustandsänderungen im temperaturbereich zwischen 320 und 340 K . J. Stahl und B. Hennemann. Batelle-Institut e.V. Frankfurt. 1982。
[92] "Solar heat storage: Latent heat material". Volume 1. George A. Lane, CRC Press, Inc., Boca Raton, Florida. 1983.
[93] "Thermal energy storage in sodium sulfate decahydrate mixtures". Kenneth Kauffman and YenmChi Pan. University of Pennsylvania. December 1972.
[94] "Solar heat storage". Maria Telkes. Paper 64-WA/SOL9. American Society of Mechanical Engineers Winter Annual Meeting. New York. 1964.
[95] "Storage of solar heating/cooling". Maxia Telkes. ASHRAE solar energy applications symposium. Montreal. June 1974.
[96] U.S. Patent 3, 986, 969. Maria Telkes. 1976.
[97] "Thermal Energy Storage using Glauber's Salt: Improved storage capacity with thermal cycling". S.B. Marks. Presented at 15 th Intersociety Energy Conversion Engineering Conference. Seattle. August 1980.
［98］＂An investigation of the thermal energy storage capacity of Glauber＇s salt with respect to thermal cycling＂。 S．B．Marks．Solar Energy，25，255．1980．
［99］＂Calorimetric testing of improved Glauber＂s salt phase change thermal energy storage material＂．S．B．Marks． Presented at 3rd Miami International Conference on alter－ native energy sources．Miami．December 1980 ．
［100］U．S．Patent 4，231，885．P．G．Rueffel． 1980.
［101］＂A review of latent heat storage technology＂．Solar Storage Workshop Proceedings．A．I．Michaels．March 1982. Jeddah，Saudi Arabia．
［102］＂Qualitative behaviour of a new latent heat storage device for solar heating／cooling systems＂．C．S．Herrick and D．C．Grolibersuch．Power Systems Laboratory．General Electric．Report no． 77 CRD006．March 1977.
［103］＂Thermal energy storage subsystems for solar heating and cooling applications．（Rolling cylinder thermal storage）＂． R．F．Thornton and C．S．Herrick．General Electric Company． Interim report．June 1979．
［104］＂Bulk storage of PCM．Salt hydrate thermal energy storage system for space heating and air conditioning＂．Calvin D． MacCracken，John M．Armstrong，Mark M．MacCracken， Brian M．Silvetti．Calmac Manufacturing Corp．June 1980.
［105］＂Varmeakkumulering i salte＂．Simon Furbo。 Laboratoriet for Varmeisolering．Danmarks Tekniske Højskole．Indivi－ duelt kursus．Januar 1976.
［106］＂Varmelagring i salthydrater．Solenergidagen juni 1976＂。 S．Svendsen．Meddelelse nr．51．Laboratoriet for Varme－ isolering，Danmarks Tekniske Højskole．Juni 1976.
［107］＂Investigation of heat storages with salt hydrate as storage medium based on the extra water principle＂．Simon Furbo． Thermal Insulation Laboratory，Technical University of Denmark．Meddelelse nr．80．December 1978.
［108］＂Heat storage with an incongruently melting salt hydrate as storage medium based on the extra water principle＂． Simon Furbo．Thermal Insulation Laboratory，Technical University of Denmark．Meddelelse nr．108．December 1980.
［109］＂Thermal energy storage with saturated aqueous solutions＂． ERDA thermal energy storage program information exchange meeting．K．W．Kauffmann and H．G．Lorsch．Cleveland． September 1976.
[110] "Thermal energy storage by means of saturated aqueous solutions". K.W. Kauffman, H.G. Lorsch and D.M. Kyllonen. Report TTD-28330. 1977.
[111] "Thermal energy storage using sodjum sulfate decahydxate and water ${ }^{\text {. }}$. D.R. Biswas. Solar Energy, 19.99. 1977.
[112] "Thermal energy storage systems". P.W. O"Callaghan, I.E.Smith, S.D. Probert and M.A. Bell. Cranfield Institute of Technology. August 1980.
[113] "Heat storage units using salt hydrate". Simon Furbo. Sunworld. Volume 6, number 5. October 1982.
[114] "A dynamic heat storage system". Heating, Piping, Air Conditioning, 29,147. 1957. T.L. Etherington.
[115] "Technical grade salt hydrates as energy storage media". John C. $0^{\circ} \mathrm{C}$. Young. Saint Mary ${ }^{\text {s }}$ University and Alan L. Maingot, Technical University of N.S. SUNFEST' 83. Windsor, Ontario. August 1983.
[116] Dansk patent 79/261, 1979. Egon Helshøj.
[117] "A highmcapacity, highospeed latent heat storage unit". Egon Helshøj. Effex Innovation A / S. Copenhagen, Denmark. Brighton. August 1981.
[118] "Latent heat energy storage using dixect contact heat transfer". Sun II. Proceedings of the International Solar Energy Society. Silver Jubilee Congress. D.D. Edie, S.S. Melsheimer, J.C. Mullins snd J.E. Marra. Clemson University. May 1979.
[119] "Direct contact heat exchange for latent heat-of-fusion energy storage systems ${ }^{\text {i }}$. M.C. Nichols and R.M. Report SAND 77-8665. Sandia Laboratories. 1977.
[120] "Solar storage systems using salt hydrate latent heat and direct heat exchange - $I^{\prime \prime}$. Sol. Energy, 25.437. 1980. A.E. Fouda, G.J.G. Despault, J.B. Taylor and C.E. Capes.
[121] "Direct contact salt hydrate storage systems". Second world Congress of Chemical Engineering. J.D. Wright. Montreal. October 1981.
[122] "Latent heat exchange by direct contact vaporization - a new concept in energy storage and retrieval". Proc. EPRI Thermal Energy storage Conf. Gustaf O. Arrhenius, James Hitchin, Exic A. Jensen and Albert G. Tsai. Palo Alto, California. January 1983.
[123] "Lågtemperaturvärmelagring i salthydratsmältor - Undersökningar av material, värmevåxlingstekniker - Korttidslagring av solvärme". Bo Carlsson. Kungliga Tekniska Högskolan, Stockholm. Sammanfattande forskarrapport för BER avseende projekt 750016-8. Juni 1983.
[124] "Heat storage units using a salt hydrate as storage medium based on the extra water principle". Solar Energy Applications to Dwellings. Proceedings of the EC Contractors' meeting. Simon Furbo. Athens. November 1981.
[125] "Interaction of sodium thiosulfate pentahydrate with metal surfaces". GeArrhenius. University of California. San Diego. September 1979.
[126] Japansk patent Kokai 55-142076.1980. N. Nishizaki。 K. Sakagami, H. Okazaki og A. Mitsuibara.

```
Rubinstein, Axel:
Metoder til bestemmelse af varmeledningstal, med sxrlig
vagt pa teorien for de instationære metoder samt nogle
malinger med en termosonde af egen konstruktion. 1963.
Petersen, Exwin:
SolindEald gennem vinduer. 1966.
Lund-Hansen, Per:
Fugttransport i byggematerialer. 1967.
Nicolajsen, Asta:
Fugttransportkoefficienter fra gasbeton. 1973.
Nielsen, A.F.:
Fugtfordelinger i gasbeton under varme- og Eugttransport.
1974.
Nielsen, Peter V.:
stromningsforhold i luftkonditionerede lokaler. 1974.
Ravn-Jensen, Lars:
Vinduer og energi. 1977.
Lawaetz, Henrik:
Solindfald og solvarmeanlæg. Beregnet og malt. 1980.
Svendsen, S.:
Solfangeres effektivitet. Malt og beregnet. 1981.
Kielsgaard Hansen, Kurt:
Luftsolfangere og vamelagring i jord. 1982.
```


[^0]: forbedringsmuligheder inden for solvarmeomradet, og der ex fortsat behov for støtte bade til forskning og udvikling. Den danske solvarmeindustri kan udvikle sig til en valutabesparende, jobskabende og miljøvenlig industri til stor nytte for Danmark. Lad os habe, at politikerne og deres radgivere ex opmarksomme herpa.

 Endelig vil jeg habe, at Laboratoriets forskningsmiljø inden For solvarmeomradet opretholdes, saledes at nye licentiatstuderende fremover kan nyde godt heraf i samme grad som jeg har gjort.

