Lavenergihusprojektet under Energi ministeriet

6 LA VENER GIHUSE I HJORTEKÆR
Effektiviteter og tomgangstab for varme- og brugsvandsanlæg

NIELS HENRIK RASMUSSEN - BJARNE SAXHOF

Laboratoriet for Varmeisolering
Danmarks Tekniske Højskole
Juni 1984
Lavenerghusprojektet

Projektgruppe
Mogens R. Byberg, lektor, civ.ing., projektleder
Rolf G. Djurtoft, civ.ing.
(til juli 1984)
Allan Aasbjerg Nielsen, civ.ing.
Gad Nissenbaum, akademiingeniør
(til juni 1982)
Johannes Poulsen, civ.ing.
(til august 1981)
Kirsten Engelund Poulsen, civ.ing.
Niels Henrik Rasmussen, civ.ing.
(til juli 1983)
Bjarne Saxhof, civ.ing.

Illustrator
Marianne Skjold-Jørgensen, cand.arch.

Indskrivning
Bodil Fauerskov, assistent

Teknikere
Mogens Jørgensen, håndværker
Klaus Myndal, håndværker
Verner Vorm, programmør
Forord

Seks lavenerghuse er opført i Hjortekær i et samarbejde mellem grupper af private firmaer og Laboratoriet for Varmeisolering (LfV). Husene har været genstand for detaljerede energimålinger, først under simulater beboelse og siden under reel beboelse. Målingerne har strakt sig over en periode på ca. 3 1/2 år.

Foruden de kontinuerd gennemførte registreringer til fastlæggelse af husenes årlige energiforbrug, komforttilstand m.v. er der over kortere perioder gennemført undersøgelser specifikt rettet mod enkeltdele af husenes installationer. Det er disse specielle undersøgelser denne rapport omhandler. De er for alle husene samlet i én rapport for som en række konkrete eksempler at vise hvilke effektiviteter, der med kendte komponenter kan opnås i lavenerghuse.

Yderligere – og det er måske rapportens vigtigste formål – skulle eksemplerne tjene som inspiration til forbedret systemudformning i kommende lavenerghuse og vel især til udvikling af nye, mindre og mere hensigtsmæssige komponenter til lavenerghuses varmeanlæg.

For at lavenerghuse kan opnå et lavt energiforbrug er kraftig varmeisolering og lufttætte konstruktioner en væsentlig forudsætning. Lige så væsentligt er det, at husenes energisystem (varmeanlæg, brugsvandsanlæg m.v.) udformes således, at tomgangstabet nedbringes til det mindst mulige. Når f.eks. et varmeanlægs nettoydelse er lille, kan et tomgangstab i traditionel forstand let blive en uforholdsmæssig stor del af bruttoydelser. Derfor bør varmeanlægget helt stoppes, når der ikke er behov for varme.

Rapporten er et led i laboratoriets rapportserie om erfaringer og resultater fra de seks lavenerghuse i Hjortekær.

M.R. Byberg, projektleder.
Indholdsfortegnelse

Forord

1. Indledning... 4

2. Kort beskrivelse af husenes installationer........ 6
 2.1 Ventilation..................................... 6
 2.2 Varmeanlæg..................................... 6
 2.3 Varmt brugsvand................................ 8

3. Måle- og beregningsprocedurer....................... 10
 3.1 Måling af varmetabsfaktorer for beholdere og cirkulationsledninger.......................... 10
 3.1.1 Måling ved konstant temperatur........... 10
 3.1.2 Måling under afkøling.................... 12
 3.2 Forceret brugsvandaftapning og opvarmning af kold brugsvandsbeholder......................... 14
 3.3 Varme- og brugsvandsanlæggenes energiforbrug under tomgangsdrift.............................. 16
 3.4 Måling af den optagne effekt for de varmetekniske el-installationer......................... 17
 3.5 Definition af ydelseseffektiviteter m.m........ 17
 3.5.1 Varmepumpeanlæg............................ 17
 3.5.2 Olie- og gasfyrede kedler.................. 20
 3.5.3 Varmegenvinding fra gråt spildevand...... 21

4. Måle- og beregningsresultater....................... 22
 4.1 Lavenerghus A.................................. 23
 4.1.1 Brugsvandsanlægget........................ 23
 4.1.2 Varmeanlægget................................ 28
 4.2 Lavenerghus B.................................. 30
 4.2.1 Brugsvandsanlægget........................ 31
 4.2.2 Varmeanlægget................................ 35
 4.3 Lavenerghus C.................................. 39
1. **Indledning**

Samlige rapporterede specialundersøgelser er foretaget som in situ målinger i de seks lavenergihuse. Ulempen ved sådanne målinger er, at det aldrig i samme omfang som ved laboratorieundersøgelser vil være muligt at kontrollere målebetingelserne (hverken komponentens omgivelser eller dens øvrige driftsforhold). Derfor vil det normalt heller ikke være muligt at opnå lige så stor målenøjagtighed som ved laboratorieundersøgelser. Ofte er der imidlertid kun mulighed for at gennemføre in situ målinger – således er en række af de undersøgte komponenter i lavenergihusene fremstillet i forbindelse med projektet og findes kun i pågældende eksem-
plar. In situ målingerne har også visse fordele frem for laboratoriemålingerne, idet de kommer til at foregå under absolut realistiske driftsbetingelser.

På basis af undersøgelserne analyseres anløgggenes driftsforhold og deres ydelser gennem repræsentative 14-dages perioder (sommer- og vinterforhold).

De målte og beregnede størrelser er nødvendige som inddata ved beregningen af energistrømmene i husene under simuleret såvel som under reel beboelse. Desuden giver måleresultaterne en række interessante oplysninger om drift og driftsbetingelser for varme- og brugsvandsanlæg i lavenergihuse.

Installationerne i husene beskrives kun i det omfang, som er nødvendigt for forståelsen af de gennemførte målinger. En udførligere beskrivelse findes i laboratoriets meddelelse nr. 151 (2).

En beskrivelse af husenes udformning og konstruktioner findes i laboratoriets meddelelse nr. 120 (3), medens specialundersøgelser vedr. husenes isolering og tæthed er rapporteret i laboratoriets meddelelse nr. 121 (4).
2. Kort beskrivelse af husenes installationer

For at øge overskueligheden af de udførte målinger gives i det følgende en kort beskrivelse af ventilations-, varme- og brugsvandsanlæggene. En mere indgående beskrivelse findes i laboratoriets meddelelse nr. 151 (2).

2.1 Ventilation

Der er i alle husene installeret et ventilationsanlæg med separat friskluftindblæsning og udsugning af afkastluft og med en indskudt krydsvarmeveksler af pladetypen til varmegenvinding.

Ventilationsluftmængden svarer til et luftskifte på 0,5-0,7 gange/h afhængig af anlægsudformning og husstørrelse.

2.2 Varmeanlæg

Varmeanlægget skal opvarme huset på alle de normalt kolde dage samt kunne klare de ekstremt kolde dage (spidsbelastning). Hvor der forekommer varmepumpeanlæg, kan det være en teknisk og økonomisk fordel at anvende et særligt spidsbelastnings-varmeanlæg til at supplere varmepumpeanlægget.

Termerne normaldrift og spidsbelastning vil derfor blive anvendt i den efterfølgende korte gennemgang af husenes varmeanlæg. Der er ingen faste regler for, hvor stor en del af den samlede ydelse, der skal dækkes af f.eks. spidsbelastningsanlægget.

Husenes varmeanlæg består af:

Hus A: I forbindelse med krydsvarmeveksleren til varmegenvinding i ventilationsanlægget er installeret en varmepumpeenhed, der forøger genvindingsgraden. Forår og
efterår kan indblæsningsanlægget således fungere som et luftvarmeanlæg. Spidsbelastningen klares af elektrisk varmekilde i loftet (loftsvarme).

Hus B: Et varmepumpeanlæg, der anvender jorden syd for huset som varmekilde, leverer varme til et lavtemperatur radiator-varmeanlæg. Anlægget er dimensioneret til også at klare spidsbelastningen.

Hus C: Et solvarmeanlæg leverer forår og efterår varme til husets gulvvarmeanlæg. Spidsbelastningen (den største del af varmesøsøn) klares ved tilkobling af elektriske varmeklager i gulvvarmeanlæggets vandsystem.

Hus D: En oliefyret kedel leverer varme til et luftvarmeanlæg, der er dimensioneret til også at klare spidsbelastningen. Kedlen (i specialudførelse) er adskilt lufttæt fra det rum, den er opstillet i.

Hus E: Overskud af solindfald gennem de sydvestlige glasarea-
ler akkumuleres via et særligt ventilationssystem i et 10 m³ stenmagasin anbragt i kælderom. Har huset behov for varmetilførsel, kan ventilationssystemet reverseres, hvorved varme fra stenmagasinet tilføres husets rum. Spidsbelastningen (den største del af varmesøsøn) klares ved tilkobling af elektriske varmeklager i ventilationssystemet, hvorved dette virker som et luftvarmeanlæg.

Hus F: Et solvarmeanlæg leverer forår og efterår varme til husets gulvvarmeanlæg. Spidsbelastningen (den største del af varmesøsøn) klares ved supplerings fra en gasfyrer kedel. Kedlen er adskilt lufttæt fra det rum, den er opstillet i.
<table>
<thead>
<tr>
<th>hus</th>
<th>anlægstype</th>
<th>normaldrift</th>
<th>spidsbelastning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>luftvarme</td>
<td>varmepumpe</td>
<td>el-varmefolie</td>
</tr>
<tr>
<td></td>
<td>loftvarme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>B</td>
<td>radiatorer</td>
<td>varmepumpe</td>
<td>varmepumpe</td>
</tr>
<tr>
<td>C</td>
<td>gulvvarme</td>
<td>solvarme/</td>
<td>el-varmelegeme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>el-varmelegeme</td>
<td></td>
</tr>
<tr>
<td>D</td>
<td>luftvarme</td>
<td>oliefyr</td>
<td>oliefyr</td>
</tr>
<tr>
<td>E</td>
<td>luftvarme</td>
<td>stenmagasin/</td>
<td>el-varmelegeme</td>
</tr>
<tr>
<td></td>
<td></td>
<td>el-varmelegeme</td>
<td></td>
</tr>
<tr>
<td>F</td>
<td>gulvvarme</td>
<td>solvarme/</td>
<td>gasfyr</td>
</tr>
<tr>
<td></td>
<td></td>
<td>gasfyr</td>
<td></td>
</tr>
</tbody>
</table>

Tabel 1: Husenes varmesystemer og energiforsyning.

2.3 Varmt brugsvand

Nogle af husene har separate anlæg til opvarmning af det varme brugsvand, medens de i andre huse er kombineret med husenes varmeanlæg. Ligesom for varmeanlægggenes vedkommende anvendes termerne normaldrift og spidsbelastning. Under den simulerede beboelse var varmtvandsforbruget fastsat til 3700 kWh/år, i gennemsnit svarende til tapning af 250 l/døgn ved 45 °C.

Hus A: Luft-til-vand varmepumpeenhed med udeluft via tagrummet som varmekilde. Automatisk supplerings med el-varmelegeme under spidsbelastning/vinterdrift.

Hus B: Luft-til-vand varmepumpeenhed i fortsættelse af varmegenvindingen på afkastluften. Anlægget anvender således den delvist afkølede afkastluft som varmekilde. Under spidsbelastning kan et elvarmelegeme indkobles manuelt - det udkobles automatisk, når termostaten første gang "slår fra".

Hus E: Elektrisk vandvarmer til såvel normaldrift som spidsbelastning.

<table>
<thead>
<tr>
<th>hus</th>
<th>forvarmning</th>
<th>normaldrift</th>
<th>spidsbelastning</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>varmeopvarmning</td>
<td>varmeopvarmning</td>
<td>el-varmeopvarmning</td>
</tr>
<tr>
<td>B</td>
<td>varmeopvarmning</td>
<td>varmeopvarmning</td>
<td>(el-varmeopvarmning)</td>
</tr>
<tr>
<td>C</td>
<td>solvarme</td>
<td>solvarme varmeopvarmning</td>
<td>(el-varmeopvarmning)</td>
</tr>
<tr>
<td>D</td>
<td>spildevands-olværme</td>
<td>spildevands-olværme</td>
<td>oliefyr</td>
</tr>
<tr>
<td>E</td>
<td>el-vandvarmer</td>
<td>el-vandvarmer</td>
<td>el-vandvarmer</td>
</tr>
<tr>
<td>F</td>
<td>solvarme</td>
<td>solvarme gasfyre</td>
<td>gasfyre</td>
</tr>
</tbody>
</table>

Tabel 2: Husenes brugsvandsoptørmning og energiforsyning.
3. Måle- og beregningsprocedurer

I dette afsnit beskrives de specialundersøgelser af varme- og brugsvandsinstallationerne, der er gennemført for hovedparten af lavenerghusene. Derimod beskrives de undersøgelser, som kun vedrører enkelte huse, under afsnit 4.

I afsnit 3.5 defineres ydelseseffektiviteterne for systemerne og de enkelte aggregater.

3.1 Måling af varmetabsfaktorer for beholdere og cirkulationsledninger

En beholders varmetabsfaktor udtrykkes som varmetabet pr. grad temperaturdifferens mellem beholderen og dens omgivelser.

Varmetabsmålingerne er - afhængig af anlæggenes udførsel - foretaget efter en af nedenstående metoder, hvoraf den første kræver konstant systemtemperatur, medens den anden baseres på systemets afkølingsforløb. Begge metoder forudsætter konstante omgivelsestemperaturer, et forhold som ikke helt har kunnet opfyldes under de udførte in situ målinger.

Usikkerheden på de enkelte målinger vurderes til mellem 5% og 10%. De mindste usikkerheder forekommer ved målingerne med konstant systemtemperatur.

3.1.1 Måling ved konstant temperatur

Adskillige af de undersøgte vandbeholderer har indbyggede el-varmelegemer. Under målingen af beholderens varmetabsfaktor blokeres for cirkulation gennem og tapning fra beholderen. Temperaturen i beholderen fastholdes inden for et begrænset interval ved termostatstyret drift af den indbyggede el-patron. El-patronens forbrug, beholderens og omgi-
velsernes temperaturer registreres, hvorefter varmetsfaktoren kan beregnes af :a:.

I beregningsudtrykket indgår forskellen i væskevoluminets varmeindhold ved målingens start og slutning. Da forskellen i beholderstemperatur - ved de foretagne målinger - er lille (max. 0,5 °C), er der set bort fra ændringen i beholdervægagens varmeindhold.

\[
(k \cdot A)_b = \frac{Q_{e} + C_{væske} \cdot (T_2 - T_1)}{\tau \cdot (T_b - T_0)}
\]

<table>
<thead>
<tr>
<th>(k \cdot A)_b</th>
<th>beholderens varmetsfaktor (W/C)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Q_e</td>
<td>el-patronens el-forbrug (Wh)</td>
</tr>
<tr>
<td>C_{væske}</td>
<td>væskevoluminets varmekapacitet (Wh/C)</td>
</tr>
<tr>
<td>T_2</td>
<td>beholderens sluttemperatur (C)</td>
</tr>
<tr>
<td>T_1</td>
<td>beholderens starttemperatur (C)</td>
</tr>
<tr>
<td>T_b</td>
<td>beholderens middeltemperatur gennem måleperi- oden (C)</td>
</tr>
<tr>
<td>T_0</td>
<td>omgivelsernes middeltemperatur gennem måleperi- oden (C)</td>
</tr>
<tr>
<td>\tau</td>
<td>måleperiodens længde (h)</td>
</tr>
</tbody>
</table>

Beholdertemperaturen beregnes som middel af temperaturen i op til tre niveauer i beholderen. Væskevoluminets varmekapacitet beregnes af :b:.

\[
C_{væske} = V_{væske} \cdot \rho_{væske} \cdot c_{p, væske}
\]

<table>
<thead>
<tr>
<th>V_{væske}</th>
<th>beholderens væskevolumen (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>\rho_{væske}</td>
<td>væskens massefylde - vand ved 40 °C: 992,3 kg/m³</td>
</tr>
<tr>
<td>c_{p, væske}</td>
<td>væskens varmefylde - vand ved 40 °C: 1,161 Wh/kg°C</td>
</tr>
</tbody>
</table>
Efter måling af varmetabsfaktoren for selve beholderen måles varmetabsfaktoren for evt. cirkulationsledninger. Målingen omfatter ud over de førnævnte størrelser også temperaturen af cirkulationsledningens omgivelser samt el-forbruget til evt. cirkulationspumpe.

\[
(k \cdot A)_\text{cir} = \frac{Q_e + 0,45 \cdot Q_\text{cir} + C_\text{væske} \cdot (T_2 - T_1) - \tau \cdot (k \cdot A)_b \cdot (T_b - T_o)}{\tau \cdot (T_b - T_o, \text{cir})}
\]

\((k \cdot A)_\text{cir} \) : cirkulationsledningens varmetabsfaktor (W/C)
\(Q_\text{cir} \) : cirkulationspumpens el-forbrug (Wh)
\(T_o, \text{cir} \) : middeltemperaturen af ledningens omgivelser gennem måleperioden (C)

3.1.2 Måling under afkøling

Under målingen af beholderens varmetabsfaktor blokeres for cirkulation gennem og tapning fra beholderen. Beholderen opvarmes til en temperatur, som er væsentligt højere end temperaturen af omgivelserne. Når temperaturen i beholderen kan regnes ensartet i hele beholderen (efter 0,5-2,0 h afhængig af beholderens volumen) registreres afkølingsforløbet sammen med omgivelsernes temperatur. For store beholdere, som solvarmeanlæggenes akkumuleringsstanke, vil der opstå en temperatururlagdeling, hvorfor beholdertemperaturen som regel er registreret i flere niveauer. Varmetabsfaktoren beregnes i disse tilfælde som middel af faktorerne i de enkelte niveauer.
Varmetabsfaktoren under afkøling beregnes af :d:. I udtrykket indgår beholderens samlede varmekapacitet, som defineres i :e:.

<table>
<thead>
<tr>
<th>:d:</th>
<th>((k \cdot A))_b = - \frac{C_b}{\tau} \cdot \ln\left(\frac{T_2 - T_0}{T_1 - T_0}\right)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(k \cdot A)_b</td>
<td>beholderens varmetabsfaktor (W/C)</td>
</tr>
<tr>
<td>(C_b)</td>
<td>beholderens varmekapacitet (Wh/C)</td>
</tr>
<tr>
<td>(\tau)</td>
<td>afkølingsperiodens længde (h)</td>
</tr>
<tr>
<td>(T_1)</td>
<td>beholderens starttemperatur (C)</td>
</tr>
<tr>
<td>(T_2)</td>
<td>beholderens sluttemperatur (C)</td>
</tr>
<tr>
<td>(T_0)</td>
<td>omgivelsernes middletemperatur gennem måleperioden (C)</td>
</tr>
</tbody>
</table>

Beholderens varmekapacitet beregnes som summen af væskevolumets og beholdervæggens varmekapaciteter, hvorimod der ses bort fra beholderisoleringens varmekapacitet. Eventuelle varmeveksler i beholderen regnes tilnærmet som væskevolumen.

<table>
<thead>
<tr>
<th>:e:</th>
<th>(C_b = C_{væske} + V_{stål} \cdot \rho_{stål} \cdot c_{p, stål})</th>
</tr>
</thead>
<tbody>
<tr>
<td>(C_b)</td>
<td>beholderens varmekapacitet (Wh/C)</td>
</tr>
<tr>
<td>(C_{væske})</td>
<td>væskevolumets varmekapacitet beregnet efter :b: (Wh/C)</td>
</tr>
<tr>
<td>(V_{stål})</td>
<td>beholdervæggens volumen (m³)</td>
</tr>
<tr>
<td>(\rho_{stål})</td>
<td>stål smasafyld - 7860 kg/m³</td>
</tr>
<tr>
<td>(c_{p, stål})</td>
<td>stål smasafyld - 0,134 Wh/kg°C</td>
</tr>
</tbody>
</table>

For en kappebeholder regnes \(C_b\) som summen af varmekapaciteterne af beholderens og kappens væskevolumen samt beholderens og kappens stål volumen.
Måling under afkøling er bl.a. anvendt til anlæg med naturlig cirkulation. Varmetabsfaktoren for cirkulationsledningen er tilnærmet relateret til beholderomgivelsernes temperatur og beregnes af:

\[
: f: \quad (k \cdot A)_{cir} = - \frac{C_v + C_{cir}}{\tau} \cdot \ln \left(\frac{T_2 - T_0}{T_1 - T_0} \right) - (k \cdot A)_b
\]

\[C_{cir} \quad : \text{samlet varmekapacitet af cirkulationsledningens stål- og vandvoluminer (Wh/C)}\]

I hus D er den ene varmtvandsbeholder indbygget i en oliefyrsunit. Den beregnede varmetabsfaktor gælder derfor hele uniten.

I hus F findes en gasfyret kedel med meget lille vandindhold (6 l) - en bestemmelse af kedlens varmetabsfaktor i den aktuelle installation blev ikke foretaget, da den ville blive meget usikker p.g.a. den lille vandmængde, usikker fastsættelse af kedlens akkumulerende masse og måletekniske problemer med bestemmelse af en repræsentativ temperatur (uden cirkulation i systemet).

3.2 Forceret brugsvandaftapning og opvarmning af kold brugsvandsbeholder

Til undersøgelse af brugsvandsanlæggenes egenskaber er genemført målinger af varmtvandstemperaturen ved det fjernestliggende tappedsted (i forhold til brugsvandsbeholderen) under en langvarig (forceret) aftapning.

Temperaturen af det varme brugsvand registreres kontinuerligt ved tappestedet under aftapningsforsøgene sammen med vandforbruget og temperaturen i brugsvandsbeholderen. Under aftapningerne er varmetilførslen til brugsvandsinstalla-
tionerne afbrudt (dog ikke i hus F). Målingerne viser, hvor hurtigt der ved tappestedet nås op på en tilfredsstillende temperatur - vurderet til 40 °C (fedtløsnende) - samt hvor store vandmøngder, der kan tappes fra brugsvandsbeholderen, før temperaturen igen når under dette niveau.

Da temperaturen i brugsvandsbeholderen som regel er højere end 40 °C, er det muligt at iblande mere eller mindre koldt vand og stadig opretholde en tilfredsstillende varmtvands-temperatur. Fra leverandørs-side er termostaten i brugsvandsbeholderen i reglen indstillet til en afgangstemperatur på 55 °C som anbefalet i vandinstallationsnormen. Ingen af anlæggene var forsynet med udstyr til termostatisk blandning (ud over skoldningsøkning), og det er ikke beregnet, hvor store vandmøngder der i de enkelte tilfælde ved iblanding af koldt vand kunne tappes ved 40 °C. Vandtemperaturen ved tappestedet, som er afbildet for alle tappeforsøgene, giver i midlertid et indtryk heraf.

Derudover er anlæggens driftsforsøg underlagt ved opvarmning af varmtvandsbeholderen fra "kold tank" - d.v.s. efter en forceret aftapning eller efter en længere stilstandsperiode. Brugsvandet blev i hvert enkelt tilfælde opvarmet fra den aktuelle koldtvands- eller minimumstemperatur til den temperatur, hvor anlæggets termostat slog fra - opvarmningssattrallerne er derfor ikke helt ens, ligesom størrelsen af de undersøgte beholder spæder fra 210 til 280 l.

For at øge sammenligneligheden beregnes for den aktuelle opvarmning en opvarmningshastighed pr. 100 l brugsvand ud fra den målte opvarmningstid og den forenklede forudsætning, at opvarmningen sker jævnt i hele temperaturintervallet. I virkeligheden er opvarmningshastigheden i de fleste tilfælde aftagende p.g.a. stigende varmetab fra beholderen og faldende temperaturforskelle - og dermed langsommere varmeoverføring - mellem varmekilde og brugsvand, som illustrerer f.eks. i figur 12 (for en varmepumpe). I en beholder med indbygget el-patron sker opvarmningen derimod med næsten
ændret hastighed i hele intervallet, da der hele tiden kan overføres samme effekt - kun det stigende varmetab bevirket et svagt fald i opvarmningshastigheden. I afsnit 5.1 er der foretaget en sammenligning af opvarmningshastighederne i de forskellige anlæg ved en opvarmning fra 10 °C til 50 °C.

Under opvarmningen af brugsvandsbeholderen registreres temperaturen i denne sammen med anlæggets energiforbrug. Derved kan opvarmningshastigheden og diverse ydelsesefektiviteter beregnes (se afsnit 3.5). Usikkerheden på de beregnede størrelser vurderes for hvert enkelt anlæg.

3.3 Varme- og brugsvandsanlæggenes energiforbrug under tomgangsdrift

Ved et anlægs energiforbrug under tomgangsdrift forstås den energitilførsel, som er nødvendig til opretholdelse af en ønsket driftstemperatur, selv om anlægget ikke leverer nogen ydelse. Den bestemmende driftstemperatur kan f.eks. være temperaturen af brugsvandet i varmtvandsbeholderen, eller for et varmeanlægs vedkommende temperaturen af vandet i opvarmningseenheden, lagertanken eller fordelingssystemet.

Dette energiforbrug dækker altså tomgangstabet, d.v.s. varmetabet under tomgangsdrift, og forbrug og tab er ved direkte el-opvarmning lige store, men f.eks. for varmepumper kan energiforbruget ved tomgangsdrift være betydeligt mindre end tomgangstabet p.g.a. kompressorernes effektfaktor. Varmetabet under tomgangsdrift kan være fuldstændig tabt for huset, f.eks. skorstenstab, eller helt eller delvis komme huset til gode, f.eks. varmetab fra rørinstallationer inden for klimeskærmen.

For anlæg med naturlig eller tvungen cirkulation måles energiforbruget ved tomgangsdrift så vidt muligt både med og uden cirkulation.
På basis af målingerne beregnes bl.a. ydelseseffektiviteterne under tomgangsdrift (se afsnit 3.5).

3.4 Måling af den optagne effekt for de varmetekniske el-installationer

På grund af rumvarme- og brugsvandsanlæggenses store antal af el-forbrugende komponenter (pumper, ventilatorer, varmelegerem) har det ikke været muligt at måle de enkelte installationsgenstandes el-forbrug kontinuerligt. I stedet er den akkumulerede driftstid for hovedparten af installationerne registreret på timestillere, medens den optagne effekt i den normale belastningssituation måles gennem en kortere periode. Flere ventilatorer og pumper reguleres ved brug af thyristorer, der foruden at reducere aggregatets ydelse også reducerer den optagne effekt. I afsnit 4.7 er de målte effekter angivet sammen med de fra fabrikanterne oplyste mærkeeffekter.

3.5 Definition af ydelseseffektiviteter m.m.

I dette afsnit defineres ydelseseffektiviteter for varme- og brugsvandssystemerne og for de enkelte aggregater.

Ved beregningen af effektiviteterne tages der ikke hensyn til el-forbruget til diverse styreaggregater (motorventiler, -spjæld). Dennes indflydelse på de beregnede størrelser er for de fleste systemer minimal.

3.5.1 Varmepumpeanlæg

For varmepumpeanlæggene defineres tre effektiviteter - en nettoeffektivitet, en systemeffektivitet (= bruttoeffektivitet) og en kompressoreffektivitet.
Nettoeffektiviteten defineres som forholdet mellem nyttig-gjort energi til anlæggets primære formål og den energimængde som købes. I den købte energimængde indgår ud over kompressorens forbrug evt. cirkulationspumpers, ventilatorers og afrinningsvarmelegemers forbrug. Nettoeffektiviteten for VP-vandvarmere beregnes af :g:. Ved tomgangsdrift er nettoeffektiviteten 0.

\[
\text{:g: } \quad \text{nettoeffektivitet} = \frac{V_{vb} c_{p,v} (T_b - T_k)}{Q_{komp} + Q_{cir} + Q_{vent} + Q_{afrim}}
\]

<table>
<thead>
<tr>
<th>(V_{vb})</th>
<th>: aftappet varmtvandsmængde (m³)</th>
</tr>
</thead>
<tbody>
<tr>
<td>(c_{p,v})</td>
<td>: vands varmefylde – ved 40 °C 1150 Wh/m³°C</td>
</tr>
<tr>
<td>(T_b)</td>
<td>: varmtvandsbeholderens middeltemperatur (°C)</td>
</tr>
<tr>
<td>(T_k)</td>
<td>: temperatur af vandet i beholdertilgang (°C)</td>
</tr>
<tr>
<td>(Q_{komp})</td>
<td>: kompressorens el-forbrug (Wh)</td>
</tr>
<tr>
<td>(Q_{cir})</td>
<td>: evt. cirkulationspumpers el-forbrug (i brugs-vand og brinekreds) (Wh)</td>
</tr>
<tr>
<td>(Q_{vent})</td>
<td>: evt. ventilatorers el-forbrug (ved fordamper) (Wh)</td>
</tr>
<tr>
<td>(Q_{afrim})</td>
<td>: evt. afrinningsvarmelegemers el-forbrug (Wh)</td>
</tr>
</tbody>
</table>

Systemeffektiviteten udtrykker den totale varmeafgivelse fra systemet i forhold til den samlede købte energimængde. Som tidligere nævnt (afsnit 3.1.1) forudsættes 45% af cirkulationspumpernes el-forbrug overført til den cirkulerende væske, medens resten overføres til omgivelserne.

Systemeffektiviteten kan for varmepumpeanlæg til brugsvands-opvarmning beregnes af :h:.

18
:h:

\[
\text{systemeffektivitet} = \frac{V_{vb} \cdot C_p, v \cdot (T_b - T_k)}{Q_{komp} + Q_{cir} + Q_{vent} + Q_{afrim}} \\
+ \frac{\tau \cdot (k \cdot A)_b \cdot (T_b - T_0) + \tau \cdot (k \cdot A)_c \cdot (T_b - T_{0,cir}) + 0,55 \cdot Q_{cir}}{Q_{komp} + Q_{cir} + Q_{vent} + Q_{afrim}}
\]

\begin{align*}
T_0 & : \text{beholderomgivelsernes middeltemperatur (C)} \\
T_{0,cir} & : \text{evt. cirkulationsledningers omgivelsestemperatur (C)} \\
(k \cdot A)_b & : \text{beholderens varmefladsfaktor (W/h)} \\
(k \cdot A)_{cir} & : \text{evt. cirkulationsledningers varmefladsfaktor (W/h)} \\
\tau & : \text{måleperiodens længde (h)}
\end{align*}

Kompressoreffektivitet defineres som kompressorens ydelse i forhold til dens el-forbrug og beregnes af :i:. Som tidligere nævnt forudsættes 45% af cirkulationspumpens el-forbrug overført til den cirkulerende væske.

:i:

\[
\text{kompressoreffektivitet} = \frac{V_{vb} \cdot C_p, v \cdot (T_b - T_k)}{Q_{komp}} \\
+ \frac{\tau \cdot (k \cdot A)_b \cdot (T_b - T_0) + \tau \cdot (k \cdot A)_{cir} \cdot (T_b - T_{0,cir}) - 0,45 \cdot Q_{cir}}{Q_{komp}}
\]

I hus B er til rumovnsmning installeret en vand-til-vand varmepumpe. Netto-, system- og kompressoreffektiviteten beregnes efter henholdsvis :g:, :h: og :i:, hvor varmeydelsen til brugsanlægget erstattes af varmeydelsen til radiatorerne og \(Q_{cir}\) står for el-forbrug til pumpen i radiatorkredsen. El-forbruget til brinepumpen i formankredsen adderes kun i nævneren i formlerne :g: og :h:..
3.5.2 Olie- og gasfyrede kedler

For fyringsanlæggene defineres to effektiviteter, hhv. fyringsnyttevirkning og kedelnyttevirkning.

Hus D er udstyret med en oliefyrsunit, som leverer varme til den indbyggede brugsvandsbeholder og til rumopvarmning. Oliefyrets fyringsnyttevirkning - d.v.s. den andel af den indfyrede varme, som bliver overført til kedlen - bestemmes dels ved sædvanlig målemetode (røggasanalyse), dels ved be- regning efter :j:. Varmetabet fra cirkulationsledningen (varm brugsvand) er tilnærmelsesvis relateret til temperaturen i bryggseret, hvor uniten er placeret.

:j:
\[
\text{fyringsnyttevirkning} = \frac{V_{vb} \cdot c_{p,v} \cdot (T_b - T_k) + Q_{varme} + \tau \cdot (k \cdot A)_{b} + (k \cdot A)_{cir} \cdot (T_b - T_o)}{9,96 \cdot 10^6 \cdot M}
\]

Q_{varme} : ydelsen til rumopvarmning målt med joule- måler (ved kedel) (Wh)
(k \cdot A)_{b} : unitens varmetabsfaktor (W/C)
9,96 \cdot 10^6 \cdot M : indfyrede varmemængder, beregnet som pro- dukt af olieforbruget M (m³) og en nedre brændværdi på 9,96 \cdot 10^6 Wh/m³

Oliefyrets kedelnyttevirkning (unitens nettoeffektivitet) - d.v.s. den andel af den indfyrede varme som overføres til brugsvandet og varmeanlægget - beregnes af :k:.

:k:
\[
\text{kedelnyttevirkning} = \frac{V_{vb} \cdot c_{p,v} \cdot (T_b - T_k) + Q_{varme} + \tau \cdot (k \cdot A)_{cir} \cdot (T_b - T_o)}{9,96 \cdot 10^6 \cdot M}
\]
I hus F er installeret et gasfyr med separat brugsvandsbeholder. Da det ikke var muligt at bestemme varmetabsfaktoren for den installerede gaskedel med en rimelig nøjagtighed, jfr. afsnit 3.1, kan fyringsnyttevirkningen for den aktuelle unit kun bestemmes ved røggasanalyse. En sådan måling er ikke foretaget. Kedelnyttevirkningen kan derimod beregnes af :

\[\text{kedelnyttevirkning} = \frac{V_{\text{vb}} \cdot c_{p,v} \cdot (T_b - T_k) + Q_{\text{varme}} + r \cdot (k \cdot A)_b \cdot (T_b - T_o) - 0,45 \cdot Q_{\text{cir}}}{4,42 \cdot 10^3 \cdot M} \]

\((k \cdot A)_b \) : varmtvandsbeholderens varmetabsfaktor (W/C)
\(Q_{\text{cir}} \) : el-forbrug til cirkulationspumpe mellem kedel og varmtvandsbeholder (Wh)
\(4,42 \cdot 10^3 \cdot M \) : indfyrede varmemængder, beregnet som produkt af gasforbruget \(M \) (m\(^3\)) og en nedre brændværdi på \(4,42 \cdot 10^3 \) Wh/m\(^3\)

3.5.3 Varmegenvinding fra gråt spildevand

En spildevandsvarmegenvinder til forvarmning af brugsvandet er installeret i hus D. Genvinderens virkningsgrad beregnes af :m::

Ved specialundersøgelserne og ved den simulerede beboelse er den grå spildevandsmængde lig med husets samlede vandforbrug.
\[
\eta = \frac{\sum_{j=1}^{N} V_{vb,j} \cdot (T_j - T_{k,j})}{\sum_{j=1}^{N} V_{sp,j} \cdot (T_{sp,j} - T_{k,j})}
\]

\(\eta\) : virkningsgrad
N : antal aftapninger i måleserien
\(V_{vb,j}\) : aftappet varmtvandsmængde - tapning j \((m^3)\)
\(V_{sp,j}\) : grå spildevandsmængde - tapning j \((m^3)\)
\(T_j\) : brugsvandstemperatur efter genvinder - tapning j \((C)\)
\(T_{k,j}\) : brugsvandstemperatur før genvinder - tapning j \((C)\)
\(T_{sp,j}\) : temperatur af gråt spildevand i genvinder - tapning j \((C)\)

4. Måle- og beregningsresultater

I dette afsnit beskrives de undersøgte brugsvand- og varmeinstallationer kun i den udstrækning, det er nødvendigt for forståelsen af de udførte undersøgelser. For nærmere detaljer henvises til (2). Resultaterne af målingerne vurderes for de enkelte huse i underafsnittene, medens der i afsnit 5 foretages en sammenligning af de dertil egnede undersøgelser husene imellem.

For hvert enkelt hus er anlæggens energiforbrug og driftsforhold undersøgt for 14-dages perioder med et normalt simuléret varmtvandsforbrug (repræsentative for sommer- og vinterforhold). Ved det simulerede vandforbrug tappes ca. 250 l varmt og ca. 280 l koldt pr. døgn efter et fast tappemønster, beskrevet i (1).

I afsnit 4.7 listes mørkeeffekterne og de målte effekter for de varmetekniske el-installationer.
4.1 Lavenergihus A

4.1.1 Brugsvandsanlægget

Brugsvandet opvarmes af en luft-til-vand varmepumpe, som henter varmen fra det uudnyttede tagrum.

Varmetabsfaktoren for brugsvandsbeholderen (280 l) er ved konstant systemtemperatur målt til 2,8 W/C.

Figur 1: Hus A - Brugsvandsinstallation med målepunkter indtegnet.
Når varmepumpen er i drift, passerer luften fra tagrummet gennem fordamperen og afkøler derved beholderens top med større varmetabsfaktor til følge. Afkølingens betydning for varmetabsfaktoren er ikke målt, men afhængig af tilgangsluftens temperatur skønnes forøgelsen til mellem 5% og 20%.

Der er ikke gennemført forcerede aftapningsforsøg fra varmtvandsbeholderen. P.g.a. varmtvansbeholderens størrelse og termostatindstillingen på varmepumpen (ca. 50°C) må det forventes, at varmtvandsmængderne (ved 40°C) er tilfredsstillende ved selv store aftapninger.

Ifølge fabrikantens oplysninger kan der ved tappehastigheder på 5-10 l/min. tappes op mod 80% af vandinholdet, d.v.s. ca. 225 l, inden der sker et væsentligt fald i afgangstemperaturen.

Målinger af varmepumpens ydelse er foretaget en sommer- og en vinterdag, hvor beholdertemperaturen ved målingernes start er lav, hhv. 18°C og 26°C. Tabel 3 gengiver målere-sultaterne.

<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>temperaturstiigning brugsvand, fra/til (°C)</td>
<td>18/55</td>
<td>26/47</td>
</tr>
<tr>
<td>opvarmningstid (h)</td>
<td>17,5</td>
<td>25,0</td>
</tr>
<tr>
<td>temperatur luft til fordamper min./max. (°C)</td>
<td>9/35</td>
<td>-7/5</td>
</tr>
<tr>
<td>forbrug kompressor, ventilator afrimning (kWh)</td>
<td>5,2</td>
<td>6,7</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>2,5</td>
<td>1,3</td>
</tr>
</tbody>
</table>

Tabel 3: Hus A - Brugsvandsanlæggets ydelse m.m. ved opvarmning fra kold beholder. Den indbyggede el-patron har ikke været i drift under målingerne.
Brugsvandets temperaturstigning ved de to målinter er henholdsvis 5,9 °C/h/100 l (sommer) og 2,4 °C/h/100 l (vinter) svarende til, at der i middel under målingerne netto til brugsvandet overføres hhv. 0,69 kW og 0,28 kW. Opvarmningshastigheden er tilfredsstillende om sommeren, medens det om vinteren kan være nødvendigt at øge hastigheden ved tilslutning af den indbyggede el-patron (910 W). Indkoblingen af el-patronen er termostatstyret og kan ske ved en vilkårlig ønsket temperatur. Termostaten har i den lange periode med simuleret beboelse af huset været indstillet meget lavt (af LfV), således at el-patronen næsten ikke har været i brug.

Ventilatoren på varmepumpens fordamperside optager en effekt på 80 W. Afrimningen af fordamer er styres af et ur, som er indstillet til at tilslutte et varmeeglemme (425 W) hver fjerde time, hvis temperaturen på fordamer er lavere end -2 °C. Varmeeglemmet udkobles igen, når temperaturen på fordamer er steget ca. 4 °C. Under afrimningen er strømforsyningen til kompressoren og ventilatoren afbrudt. På grund af den høje tagrumstemperatur har afrimmingsvarmeeglemmet ikke været indkoblet ved målingen om sommeren.

I forbindelse med målingerne af unitens tomgangstab blev kompressorens og ventilatorens el-forbrug registreret i en periode uden varmtvandsforbrug. Kl-forbruget måles til 1,4 kWh/døgn, hvoraf kompressoren optager 74%. Unitens og kompressorens effektivitet ved tomgang beregnes til henholdsvis 1,4 og 1,8. Middeltemperaturen af luften till fordameren er 12 °C, og middelbeholdertemperaturen er 50 °C.

Forholdene ved normalt simuleret varmtvandsforbrug er undersøgt for en sommer- og en vinterperiode på hver 14 dage. Tabell 4 gengiver de målte og beregnede størrelser for de to perioder.

Usikkerheden på de beregnede effektiviteter vurderes til 10%.
<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>varmtvandsforbrug (l/døgn)</td>
<td>244</td>
<td>238</td>
</tr>
<tr>
<td>vandtemperaturstigning, fra/til (°C)</td>
<td>16/51</td>
<td>10/46</td>
</tr>
<tr>
<td>temperatur luft til fordamper (°C)</td>
<td>17</td>
<td>4,7</td>
</tr>
<tr>
<td>varmetab fra beholderen (kWh/døgn)</td>
<td>1,7</td>
<td>1,6</td>
</tr>
<tr>
<td>varmepumpens driftstid (h/døgn)</td>
<td>14</td>
<td>24</td>
</tr>
<tr>
<td>kompressorens forbrug (kWh/døgn)</td>
<td>3,2</td>
<td>4,3</td>
</tr>
<tr>
<td>ventilatorens forbrug (kWh/døgn)</td>
<td>1,1</td>
<td>1,8</td>
</tr>
<tr>
<td>afrimningsvarmelegemets forbrug (kWh/døgn)</td>
<td>0</td>
<td>0,8</td>
</tr>
<tr>
<td>nettoeffektivitet</td>
<td>2,3</td>
<td>1,4</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>2,6</td>
<td>1,7</td>
</tr>
<tr>
<td>kompressoreffektivitet</td>
<td>3,5</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Tabel 4: Hus A - Varmtvandsforbrug m.m. i to 14-dages perioder med normalt simuleret tappemønster.

Figur 2 viser varmtvandsforbruget og varmepumpens driftstider i et typisk sommer- og vinterdøgn. P.g.a. den lave temperatur af luften til fordamperen er varmepumpen konstant tilsluttet om vinteren, og alligevel bliver varmtvandstemperaturen 5 °C lavere end i summerperioden, jfr. tabel 4. Det kan derfor være nødvendigt at benytte el-patronen for at få tilfredsstillende mængder varmt vand. Derved vil både system- og nettoeffektiviteterne (henholdsvis 1,7 og 1,4) blive endnu lavere.

Som nævnt sker lufttilførslen til varmepumpen fra det uudnyttede tagrum, hvor temperaturen om sommeren er vigtigt højere end temperaturen af udeluften. For vinterperioden er forskellen derimod forsvindende. På figur 3 er forholdene
Figur 2: Hus A - Varmtvandstemperatur m.m. gennem et døgn ved simulerede vandforbrug - sommer- og vinterforhold (el-patronen ikke benyttet).

illustreret for et solrigt sommerdøgn og et vinterdøgn, hvor udstrålingen til himmelrummet medfører, at temperaturen i tagrummet om natten bliver lavere end temperaturen ude. Da de højeste tagrumstemperaturer altid forekommer om dagen, vil det energiøkonomisk altid være en fordel styringsmæssigt at prioritere varmtvandsproduktion i dagtimerne. Anlægsudformningen vil derfor nøppe være hensigtsmæssig i kombination med el-afregning til billig nattakst.

4.1.2 Varmeanlægget

Udformningen af varmesystemet i hus A fremgår af figur 4.

Figur 4: Hus A - Ventilations- og varmeanlæg med målepunkter indtegnet.
Huset opvarmes primært (under spidsbelastning) med el-varme i form af et loftsvarmeanlæg, styret on-off af termostater i de enkelte rum. Derudover er ventilationsanlægget foruden en krydsvarmeveksler udstyret med en luft-til-luft varmepumpe. Varmepumpen styres on-off af en rumtermostat i opholdsstuen.

Varmepumpens ydelse og driftsbetingelser er undersøgt gennem to 14-dages perioder med normalt simuleret beboelse. Tabel 5 gengiver de målte og beregnede størrelser.

<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>kompressorens el-forbrug (kWh/døgn)</td>
<td>2,8</td>
<td>5,4</td>
</tr>
<tr>
<td>gennemsnitlig driftstid (h/døgn)</td>
<td>10,8</td>
<td>22,5</td>
</tr>
<tr>
<td>afkastluftmængde gennem fordamper (m³/h)</td>
<td>190</td>
<td>203</td>
</tr>
<tr>
<td>friskluftmængde gennem kondensator (m³/h)</td>
<td>163</td>
<td>182</td>
</tr>
<tr>
<td>middeltemperatur luft før fordamper (°C)</td>
<td>20,1</td>
<td>10,6</td>
</tr>
<tr>
<td>middeltemperatur luft efter kondensator (°C)</td>
<td>26,8</td>
<td>20,8</td>
</tr>
<tr>
<td>varmeydelse kondensator (kWh/døgn)</td>
<td>7,7</td>
<td>14,6</td>
</tr>
<tr>
<td>nettoeffektivitet</td>
<td>2,7</td>
<td>2,7</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>2,7</td>
<td>2,7</td>
</tr>
<tr>
<td>kompressoreffektivitet</td>
<td>2,7</td>
<td>2,7</td>
</tr>
</tbody>
</table>

Tabel 5: Hus A - Luft-til-luft varmepumpens forbrug m.m. i to 14-dages perioder med normalt simuleret beboelse.
Middelfrisklufttemperaturen ved indblæsningsristene er om vinteren ca. 21 °C, hvilket betyder, at krydsvarmeveksleren sammen med varmepumpen dækker husets ventilationstab – i den undersøgte vinterperiode var middelindblæsningstemperaturen endda 0,6 °C højere end udsugningstemperaturen. El-varmefolien i loftet skal derfor kun dække transmissionstabet. I sommerperioden og i store dele af forårs- og efterårsperiode dækker varmepumpen og krydsvarmeveksleren hele opvarmningsbehovet. I en beboet situation ville familien nok vælge at klare sig uden opvarmning om sommeren eller i hvert fald stille termostaten lavere end den var stillet i den undersøgte periode, hvor udsugningstemperaturen i gennemsnit var 23,3 °C.

Netto-, system- og kompressoreffektiviteterne er lige store, da varmepumpens el-forbrug udelukkende skyldes kompressoren. Effektiviteternes størrelse er tilfredsstillende i begge de undersøgte perioder.

Usikkerheden på de beregnede effektiviteter vurderes til 10%.

4.2 Lavenergihus B

4.2.1 Brugsvandsanlægget

Brugsvandet opvarmes af en luft-til-vand varmepumpe, som henter varmen fra husets afkastluft, efter at denne har passeret en krydsvarmeveksler. Varmepumpens fordamperdel er ikke forsynet med egen ventilator.

Varmetabsfaktoren for den indbyggede 250 l stålbeholder er ved konstant systemtemperatur målt til 2,1 W/C, når ventilationsanlægget er tilsluttet, og 1,9 W/C når ventilationsanlægget er afbrudt. Forskellen skyldes afkølingen af brugsvandsbeholderens top, når luften strømmer gennem fordampere. Den indbyggede el-patron i beholderen optager en effekt på 1000 W.

Figur 5: Hus B - Brugsvandsinstallation med målepunkter indtegnet.
Figur 6 viser temperaturen af varmt brugsvand (håndvask i badeværelse) under en forceret varmtvandsaftapning. Det er muligt at tappe ca. 190 l vand ved en temperatur over 40 C. Ved målingerne konstateres det, at termostaten først tilslutter kompressoren 1,5 time efter, at beholdertemperaturen når under den indstillede minimumsværdi. Den store hysterese skyldes dårlig varmekontakt mellem føler og dykrør.

![Temperature diagram](image)

Figur 6: Hus B – Forceret vandtapning (6,6 l/min.) – temperatur varmt brugsvand i håndvask i badeværelse.

Den efterfølgende opvarmningsperiode – hvor beholdertemperaturen stiger fra 6 C til 50 C – har en varighed på ca. 17 timer. Beholdertemperaturen øges gennemsnitligt 6,5 C/h pr. 100 l, hvilket med normale tappeintensiteter er tilfredsstillende – det svarer til en nettovarmeoverføring på 0,76 kW. Hvis varmtvandsforbruget ved enkelte lejligheder er ekstraordinært stort, kan den indbyggede el-patron (på 1000 W) tilsluttes manuelt og vil så levere en opvarmning.

Målinger er også udført under tomgangsdrift, d.v.s. en periode uden varmtvandsforbrug. Kompressorens el-forbrug måles til 0,53 kWh/døgn, og system- og kompressoreffektiviteten beregnes til 3,1. Varmtvandstemperaturen i perioden er gennemsnitlig 50 C.

Forholdene ved normalt simuleret beboelse er undersøgt for en sommer- og en vinterperiode, som hver varer 14 dage. Tabel 6 gengiver de målte og beregnede størrelser for de to perioder.

<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>varmtvandsforbrug (l/døgn)</td>
<td>232</td>
<td>238</td>
</tr>
<tr>
<td>vandtemperaturstigning, fra/til (°C)</td>
<td>15/58</td>
<td>6/50</td>
</tr>
<tr>
<td>varmetab fra beholderen (kWh/døgn)</td>
<td>0,6</td>
<td>1,4</td>
</tr>
<tr>
<td>kompressorens driftstid (h/døgn)</td>
<td>16</td>
<td>19</td>
</tr>
<tr>
<td>kompressorens forbrug (kWh/døgn)</td>
<td>4,0</td>
<td>4,0</td>
</tr>
<tr>
<td>luftmængde gennem fordamper (m³/h)</td>
<td>200</td>
<td>185</td>
</tr>
<tr>
<td>temperatur luft til fordamper (°C)</td>
<td>21</td>
<td>14</td>
</tr>
<tr>
<td>afkøling af luften gennem fordamper (°C)</td>
<td>9,4</td>
<td>5,8</td>
</tr>
<tr>
<td>nettoeffektivitet</td>
<td>2,9</td>
<td>3,0</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>3,0</td>
<td>3,3</td>
</tr>
<tr>
<td>kompressoreffektivitet</td>
<td>3,0</td>
<td>3,3</td>
</tr>
</tbody>
</table>

Tabel 6: Hus B – Varmtvandsforbrug m.m. i to 14-dages perioder med normalt simuleret beboelse.
Figur 7 viser fordelingen af varmtvandsforbruget og kompressorens driftstid gennem et repræsentativt sommer- og vinterdøgn.

![Diagram](image)

Figur 7: Hus B - Varmtvandsforbrug m.m. gennem et døgn med simuleret beboelse - sommer- og vinterperioder.

Varmepumpens ydelse og forbrug ændres kun lidt fra sommer- til vinterdrift. Den procentvise store forskel på størrelsen af varmetabet fra beholderen skyldes ekstremt høje temperaturer i bryggeriet i sommerperioden. Temperaturen er målt til gennemsnitligt 33,5 °C i den pågældende 14-dages periode.

Forskellen i den gennemsnitlige beholderstemperatur i de to perioder (8 °C) kan kun forklares ved en regulering af termosstatindstillingen. En beholderstemperatur på 50 °C må ellers betragtes som tilfredsstillende, og forsøgene med meget store vandforbrug viser, at tilstrækkelige varmtvandsmængder er til stede ved denne temperatur, se figur 6. Som tabel 6 antyder, og tilsvarende undersøgelser for hus C bekræfter, har den valgte termosstatindstilling stor indflydelse på kompressorens effektivitet og dermed også på system- og nettoeffektivitet.

Usikkerheden på de beregnede effektiviteter vurderes til 10%.

34
4.2.2 Varmeanlægget

Figur 8: Hus B - Varmeanlæg med målepunkter indtegnet.
Cirkulationspumpen P3 (35 W) kører konstant. P1 (88 W) og P2 (89 W) kører sammen med kompressoren. P2 øger cirkulationen kraftigt i kondensatorkredsen og til dels også i fordelingssystemet.

I varmepumpeuniten findes en 100 l bufertank, hvori er indbygget en 3 kW el-patron. Buffertankens varmetabsfaktor er ved konstant systemtemperatur målt til 1,9 W/C. Da temperaturforskellen mellem buffertanken og bryggeret normalt er mindre end 10 C, er det reelle tomgangstab minimalt.

Radiatoranlæggets fordelingssystem er placeret i krybekælde- ren. Fordelingssystemets varmetabsfaktor (til krybekælde- ren) er ved konstant systemtemperatur målt til 17 W/C. I varmetabsfaktoren er det meget lille varmetab til bryggeret inkluderet.

Fordelingssystemet er frostsikret med el-varmekabler.

Tomgangsforbrugets størrelse afhænger af temperaturforskellen mellem fordelingssystemet og luften i den ventilerede krybekælder samt af kompressorens effektivitet.

Under målingen af tomgangsforbruget er termostaten indstillet på "minimum" (lavere end "1"), da denne indstilling er anvendt i hovedparten af den simulerede beboelsesperiode. Ved et højere temperaturniveau i radiatorkredsen øges tom- gangstabnet til omgivelserne, og kompressoren får en dårligere virkningsgrad p.g.a. den større differens mellem kondensator- og fordampertemperaturen.

Temperaturen af radiatortilgang ved radiatortilgang (stue) er registreret i afhængighed af termostatindstillingen på var-
<table>
<thead>
<tr>
<th>Item</th>
<th>Value</th>
</tr>
</thead>
<tbody>
<tr>
<td>forbrug kompressor (kWh/døgn)</td>
<td>2,4</td>
</tr>
<tr>
<td>forbrug cirkulationspumper fordelingssystem, P2 og P3 (kWh/døgn)</td>
<td>1,0</td>
</tr>
<tr>
<td>forbrug cirkulationspumpe jordslangekreds, P1 (kWh/døgn)</td>
<td>0,2</td>
</tr>
<tr>
<td>middeltemperatur radiatorkreds (C)</td>
<td>27,0</td>
</tr>
<tr>
<td>temperatur krybekælder (C)</td>
<td>5,5</td>
</tr>
<tr>
<td>varmetab til krybekælder (kWh/døgn)</td>
<td>8,8</td>
</tr>
<tr>
<td>varmetab til bryggers (kWh/døgn)</td>
<td>-0,2</td>
</tr>
<tr>
<td>systemeffektivitet, tomgang</td>
<td>2,6</td>
</tr>
<tr>
<td>kompressoreffektivitet, tomgang</td>
<td>3,7</td>
</tr>
</tbody>
</table>

Tabel 7: Hus B - Kompressorens el-forbrug m.m. ved tomsgangsdrift af varmeanlæg.

Ved simuleret beboelse er forholdene undersøgt for en efterårs-, en vinter- og en forårsperiode. Perioderne har en varighed af 14 dage. I de to førstnævnte perioder er termostaten på varmepumpen sat på "min", medens termostaten i forårsperioden står på "2".

Varmetab til krybekælderer udgør en uacceptabel stor del af den producerede varme - i de tre udvalgte perioder mellem 30% og 55% af kondensatorens varmeydelse. For forårsperioden er den nyttiggjorte varmemængde (8,5 kWh) kun 13% større end kompressorens og cirkulationspumpernes el-forbrug, hvilket kommer til udtryk i den lave nettoeffektivitet.
Figur 9: Hus B – Temperaturen ved radiatortilgang i afhængighed af VP-termostatindstilling.

Radiatorkredsens varmeydelse måles kontinuerligt med en joule-måler, som desværre har vist sig mindre egnet til formålet p.g.a. store målerafvigelser ved små temperaturdifferencer mellem følrene, d.v.s. især ved de lave varmeydelser. Varmeydelsen og hermed de beregnede effektiviteter er derfor behæftet med en relativt stor usikkerhed – vurderet til 15% – medens usikkerheden på de øvrige størrelser i tabellen vurderes til 10%.
<table>
<thead>
<tr>
<th></th>
<th>efterår</th>
<th>vinter</th>
<th>forår</th>
</tr>
</thead>
<tbody>
<tr>
<td>fremløbstemperatur radiatorkreds (C)</td>
<td>26,5</td>
<td>27,6</td>
<td>34,4</td>
</tr>
<tr>
<td>varmeudsendelse radiatorkreds (kWh/døgn)</td>
<td>16,3</td>
<td>28,9</td>
<td>19,5</td>
</tr>
<tr>
<td>varmetab til krybekælder jfr. side 36 (kWh/døgn)</td>
<td>6,9</td>
<td>8,7</td>
<td>11,0</td>
</tr>
<tr>
<td>cirkulationspumpernes forbrug (kWh/døgn)</td>
<td>1,4</td>
<td>2,0</td>
<td>1,6</td>
</tr>
<tr>
<td>kompressorens driftstid (h/døgn)</td>
<td>3,4</td>
<td>6,6</td>
<td>4,3</td>
</tr>
<tr>
<td>kompressorens forbrug (kWh/døgn)</td>
<td>4,6</td>
<td>8,4</td>
<td>5,9</td>
</tr>
<tr>
<td>temperatur brine før fordamper (C)</td>
<td>7,0</td>
<td>2,2</td>
<td>2,7</td>
</tr>
<tr>
<td>temperatur jord ved slanger (C)</td>
<td>8,1</td>
<td>3,5</td>
<td>2,6</td>
</tr>
<tr>
<td>nettoeffektivitet</td>
<td>1,6</td>
<td>1,9</td>
<td>1,1</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>2,8</td>
<td>2,9</td>
<td>2,7</td>
</tr>
<tr>
<td>kompressoreffektivitet</td>
<td>3,4</td>
<td>3,4</td>
<td>3,2</td>
</tr>
</tbody>
</table>

Tabel 8: Hus B - Kompressoreffektivitet m.m. i tre 14-dages perioder med simuleret beboelse.

4.3 Lavenergihus C

Specialundersøgelserne omfatter brugsvandsanlægget og blev foretaget i perioden februar-april 1980.

Brugsvandet forvarmes i en 150 l stålbeholder indbygget i solvarmeanlæggets akkumuleringstank. Akkumuleringstanken - 1,8 m³ ståltank - er i top og bund isoleret med 150 mm mineralulud og i siderne med 50-100 mm. Varmetabsfaktoren for tanken er under afkøling målt til 15 W/C.

39
Figur 10: Hus C - Brugsvandsinstallation med målepunkter indtegnet.

Brugsvandet eftervarmes af en luft-til-vand varmepumpe, som henter varmen fra ventilationsanlæggets afkastluft, efter at

Varmtvandsbeholderen i VP-uniten og cirkulationsledningerne har en varmetabsfaktor på henholdsvis 2,0 W/C og 7,5 W/C – begge målt ved konstant systemtemperatur. Under målingerne er der ingen luftstrømning gennem fordamperen i unitens top. Målinger på en analog unit i hus B viser, at beholderens varmetabsfaktor øges ca. 10% under de normale driftsforhold, d.v.s. med ventilationsanlægget tilsluttet.

Figur 11 viser fremløbs- og returtemperaturen i cirkulationsledningerne under en forceret varmtvandsaftapning. Temperaturen ved tappestedet – håndvasken i badeværelset – er ligeledes illustreret. Ved tapningen konstateres en ønsket iblanding af koldt vand svarende til 40% af den tappede vandmængde. For husets øvrige blendingsbatterier er iblandingsprocenten målt til ca. 25%.

Som det fremgår af figur 11, er det ikke muligt at tappe vand fra håndvasken ved en tilfredsstillende høj temperatur, d.v.s. ca. 40 C. Fra brugsvandsbeholderen kan dog tappes ca. 210 liter vand, før beholderstemperaturen når ned på 40 C. Ved et andet aftapningsforsøg, med aftapning fra både køkken og badeværelse, tappedes 275 liter fra beholderen, før temperaturen var faldet fra 54 C til 40 C. Under aftapningererne er strømforsyningen til kompressor og el-patron afbrudt.

Den efterfølgende opvarmningsperiode, hvor beholderstemperaturen stiger fra 17 C til 55 C, har en varighed på 50 timer. Opvarmningshastigheden, som i gennemsnit er 1,9 C/h/100 l, mindskes kraftigt gennem måleperioden – fra ca. 4,7 C/h pr. 100 l til ca. 0,6 C/h/100 l – hvilket hovedsagelig skyldes
Figur 11: Hus C - Temperaturforhold brugsvandsanlæg - forceret aftapning (4,4 l/min.).

varmetabet fra varmtvandsbeholderen og fra cirkulationsledningerne. Den gennemsnitlige opvarmningshastighed svarer til en nettovarmeoverføring til brugsvandet på kun 0,22 kW. På figur 12 fremstår den del af den afgivne varme fra kompressor og cirkulationspumpen til brugsvandet, der resulterer i en temperaturstigning, som arealet mellem kurven for "afgivet varme fra kompressor og cirk.pumpe" og kurven for "varmetab fra beholder og cirk.ledninger". Varmetabet fra cirkulationsledningerne, som dog delvis kommer huset tilgode - på både ønskede og uønskede tidspunkter - udgør 75% af det samlede tab.

Kompressoreffektiviteten reduceres fra 3,2 til 1,6 under opvarmningen, hvilket bl.a. kan tilskrives den øgede kondenseringsstemperatur. Hvis termostaten havde standset kompressoren ved en beholdertemperatur på 50 C, ville effektiviteten ikke være kommet under 2,0.

Til sammenligning kan det nævnes, at opvarmningshastigheden for den samme type varmepumpe installeret i hus B er 6,5 C
Figur 12: Hus C – Kompressorens effektfaktor m.m. – opvarmnng fra kold varmtvandsbeholder.

pr. h/100 l. Den store forskel mellem de to varmepumper skyldes primært cirkulation af det varme brugsvand i hus C
samt at den indbyggede termostat er indstillet til et højere temperaturniveau end i hus B.

Figur 13 illustrerer luftflowet og temperaturforholdene ved fordamperen. Der sker en pludselig ændring af luftmængden midt i opvarmningsperioden, som skyldes en manuel regulering af afkastventilatorens thyristorindstilling. Afkølingen af luften gennem fordamperen falder jævnt fra ca. 6,5 °C til ca. 4 °C.

Figur 13: Hus C - Luftflow og temperaturforhold ved fordamperen i brugsvarmevarmpumpen.

Foretages opvarmningen (fra 14 °C til 55 °C) uden cirkulation af brugsvandet er opvarmningstiden målt til 27 h. Hvis opvarmningen sker ved samtidig tilslutning af den indbyggede el-patron (1000 W) er opvarmningstiden ca. 10 h (uden cirkulation).

I tabel 9 er de gennemsnitlige opvarmningshastigheder gengivet for de tre opvarmningsforsøg. Det må heraf konkluderes, at den utilfredsstillende lange opvarmningstid skyldes varmetabet fra cirkulationsledningerne og den unødvendigt høje termostatindstilling.
<table>
<thead>
<tr>
<th>opvarmningshastighed</th>
</tr>
</thead>
<tbody>
<tr>
<td>kompressordrift med cirkulation af brugsvand</td>
</tr>
<tr>
<td>1,9 C/h/100 l</td>
</tr>
<tr>
<td>kompressordrift uden cirkulation af brugsvand</td>
</tr>
<tr>
<td>3,8 C/h/100 l</td>
</tr>
<tr>
<td>kompressor- og el-patrondrift uden cirkulation af brugsvand</td>
</tr>
<tr>
<td>10,3 C/h/100 l</td>
</tr>
</tbody>
</table>

Tabel 9: Hus C - Gennemsnitlige opvarmningshastigheder af brugsvandet ved opvarmning til 55 C.

Brugsvandsanlæggets el-forbrug er registreret for to perioder uden varmtvandsaftapninger. I den ene periode er cirkulationspumpen afbrudt. **Tabel 10 gengiver måleresultaterne.**

<table>
<thead>
<tr>
<th></th>
<th>med cirkulation</th>
<th>uden cirkulation</th>
</tr>
</thead>
<tbody>
<tr>
<td>beholdertemperatur (°C)</td>
<td>49-54</td>
<td>49-54</td>
</tr>
<tr>
<td>varmetab fra beholder og cirkulationsledninger (kWh/døgn)</td>
<td>7,3</td>
<td>1,7</td>
</tr>
<tr>
<td>cirkulationspumpens forbrug (kWh/døgn)</td>
<td>0,5</td>
<td>-</td>
</tr>
<tr>
<td>kompressorens forbrug (kWh/døgn)</td>
<td>3,9</td>
<td>1,5</td>
</tr>
<tr>
<td>systemeffektivitet, tomgang</td>
<td>1,7</td>
<td>1,1</td>
</tr>
<tr>
<td>kompressoreffektivitet, tomgang</td>
<td>1,8</td>
<td>1,1</td>
</tr>
</tbody>
</table>

Tabel 10: Hus C - Kompressorens forbrug m.m. - brugsvandsvarmepumpen i tomgangsdrift.
Kompressorens forbrug ved tomgangsdrift (uden cirkulation) er meget stort sammenlignet med det tilsvarende for VP-uniteten i hus B (0,53 kWh/døgn). Forbrugets størrelse kan ikke umiddelbart forklares, men varmeoverføringen i fordameren er sandsynligvis reduceret p.g.a. tilsmudsning eller for dårlig fyldning i kølekrederen.

Det må her understreges, at effektiviteternes størrelse i tomgangstilstanden udtrykker forholdet mellem et faktisk tab og den dertil forbrugte tilførte (købte) energi – det er ingen tilskynelse til at cirkulere brugsvandet, at effektiviteten da er ca. 50% højere.

Varmepumpens driftsforhold er undersøgt i to 14-dages perioder ved simuleret beboelse. Tabel 11 gengiver resultaterne fra sommer- og vinterperioden. P.g.a. bl.a. det tidligere nævnte varmetab fra cirkulationsledningerne er kompressoren i drift døgnet rundt gennem hele vinterperioden.

Tabellen viser en særdeles lav nettoeffektivitet i sommerperioden. Det skyldes primært, at vandet i forvejen af solvarmeanlægget er varmet op til 40 C – varmepumpen kommer derved til at arbejde under ugunstige forhold med stort varmetab fra beholder og cirkulationsledninger, jfr. figur 12.

Registreringerne viser, at varmepumpens afrinningsprocedure ikke har været i funktion – enten fordi betingelserne ikke har været til stede eller p.g.a. en installationsfejl. Der ved flere lejligheder er observeret store rindannelser ved fordameren, virker den sidste mulighed mest sandsynlig.

<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>varmtvandsforbrug (l/døgn)</td>
<td>244</td>
<td>186</td>
</tr>
<tr>
<td>temperaturstigning i akkumulatortank, fra/til (C)</td>
<td>15/40</td>
<td>6/14</td>
</tr>
<tr>
<td>temperaturstigning i varme-pumpeunit, fra/til (C)</td>
<td>40/52</td>
<td>14/45</td>
</tr>
<tr>
<td>varmetab fra beholder (kWh/døgn)</td>
<td>1,2</td>
<td>1,4</td>
</tr>
<tr>
<td>varmetab fra cirkulationsledninger (kWh/døgn)</td>
<td>5,2</td>
<td>4,0</td>
</tr>
<tr>
<td>kompressorens driftstid (h/døgn)</td>
<td>10</td>
<td>24</td>
</tr>
<tr>
<td>kompressorens forbrug (kWh/døgn)</td>
<td>3,4</td>
<td>5,1</td>
</tr>
<tr>
<td>cirkulationspumpens forbrug (kWh/døgn)</td>
<td>0,5</td>
<td>0,5</td>
</tr>
<tr>
<td>luftmængde gennem fordamper (m³/h)</td>
<td>132</td>
<td>132</td>
</tr>
<tr>
<td>temperatur luft til fordamper (C)</td>
<td>21</td>
<td>10</td>
</tr>
<tr>
<td>afkøling af luften gennem fordamper (C)</td>
<td>7</td>
<td>6</td>
</tr>
<tr>
<td>nettoeffektivitet</td>
<td>0,9</td>
<td>1,2</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>2,6</td>
<td>2,2</td>
</tr>
<tr>
<td>kompressoreffektivitet</td>
<td>2,8</td>
<td>2,3</td>
</tr>
</tbody>
</table>

Tabel 11: Hus C - Varmtvandsforbrug m.m. i to 14-dages periode med simuleret beboelse.

Usikkerheden på de beregnede effektiviteter vurderes til 10%.
Figur 14 gengiver temperaturen af det varme brugsvand i cirkulationsledningens fremløb sammen med fordelingen af varmtvandsforbruget og kompressorens driftstid gennem et sommerdøgn. Aftapningen om natten (10 l) skyldes en fejl i simuleringsudstyret.

![Diagram](image)

Figur 14: Hus C - Varmtvandstemperaturen i cirkulationsledningens fremløb m.m. gennem et sommerdøgn med simuleret beboelse.

4.4 Lavenergihus D

Figur 15: Hus D - Brugsvandsinstallation med målepunkter indtegnet.
4.4.1 Spildevandsvarmegenvinderen

![Diagram of spildevandsvarmegenvinder](image)

Figur 16: Hus D - Lodret snit gennem spildevandsvarmegenvinder.

Til undersøgelse af varmegenvinderen er foretaget en serie aftapningsforsøg, hvor der udelukkende har været forbrug af varmt brugsvand. En forsøgsserie varer mindst tre timer, og for hver serie beregnes følgende størrelser:

- genvinderens virkningsgrad (defineret i afsnit 3.5 - formel :m:).
- spildevandsvarmegenvinderens varmeydelse pr. m³ aftappet varmt brugsvand.
- genvinderens varmeydelse i forhold til den samlede varmetilførsel til brugsvandet.
Temperaturen af brugsvandet før og efter genvinderen måles i bryggeriet. Det betyrder, at de målte varmetilskud til brugsvandet også indbefatter brugsvandets varmeudveksling med jorden på stræknningen mellem bryggeriet og genvinderen.

Resultaterne i tabel 12 stammer fra følgende tappeoserier:

1: Kontinuerlig tapning fra køkkenvask. Tappehastighed ca. 5 l pr. min.
2: 40 l tapning fra køkkenvask en gang i timen (5 l pr. min.).
3: 40 l tapning fra køkkenvask to gange i timen (5 l pr. min.).
4: 100 l tapning fra køkkenvask en gang i timen (5 l pr. min.).
5: 5 l, 15 l og 40 l tapninger (250 l/døgn) svarende til tappemønstret under simuleret beboelse.

<table>
<thead>
<tr>
<th>tappeserie nr.</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td>temp. koldt brugsvand (under tapningen) (°C)</td>
<td>9</td>
<td>10</td>
<td>9</td>
<td>10</td>
<td>9-18</td>
</tr>
<tr>
<td>temp. brugsvand efter genvinder (under tapningen) (°C)</td>
<td>12</td>
<td>17</td>
<td>16</td>
<td>16</td>
<td>13-19</td>
</tr>
<tr>
<td>temp. af gråt spildvand ved genvinder (under tapningen) (°C)</td>
<td>33</td>
<td>33</td>
<td>34</td>
<td>37</td>
<td>13-39</td>
</tr>
<tr>
<td>genvinderens temperaturvirkningsgrad (%)</td>
<td>13</td>
<td>30</td>
<td>28</td>
<td>22</td>
<td>32</td>
</tr>
<tr>
<td>genvinderens varmevedelse pr. m³ brugsvand (kWh/m³)</td>
<td>4,2</td>
<td>8,1</td>
<td>9,0</td>
<td>6,6</td>
<td>3,1</td>
</tr>
<tr>
<td>genvinderens procentvise varmevedelse (%)</td>
<td>8</td>
<td>18</td>
<td>18</td>
<td>16</td>
<td>15</td>
</tr>
</tbody>
</table>

Tabel 12: Hus D - Spildevandsvarmegenvinderens varmevedelse m.m.
På baggrund af genvinderens enkle konstruktion er de målte temperaturvirkningsgrader og genvinderens absolutte varmeudelse tilfredsstillende. Den største virkningsgrad forekommer ved det simulerede varmtvandsforbrug. Men da der kan være flere timer mellem to aftapninger, bevirket afkølingen af spildevandet i genvinderen, at denne bidrager med en mindre ydelse til den samlede brugsvandsopvarmning i forhold til ydelserne ved hovedparten af de afprøvede tappemønstre.

Spildevandsvarme­gen­vinderens ydelse må forventes at blive knap så stor, når der også tappes koldt vand i huset. Tal­værdierne fra den simulerede beboelse bekræfter dog ikke denne antagelse.

Endnu et forhold bevirket, at de procent­vise varme­ydelser i tabel 12 kan blive reduceret. Ved reel beboelse vil det grå spildevand indeholde bl.a. sæbe­ og fedtrester, som kan af­lejres i genvinderen og derved mindske varme­over­føringen fra spildevandet til brugsvandet. Ved genvinderens enkle kon­struktion er det dog tilstræbt at begrænse tilsmud­sningen.

P.g.a. den lange rørføring fra genvinderen til bryggerset sker der, gennem hoved­parten af året, en afkøling af det forvarmede brugsvand. Vand­voluminet i røret er ca. 2,5 l, hvilket ved små tapninger kan medføre, at store dele af varmetilførslen til brugsvandet i genvinderen blot overføres til jorden.

Gen­vinderens varme­ydelse er ved special­undersøgelserne be­regnet på basis af målte temperaturer før og efter genvin­deren samt vand­flowet gennem denne. Normalt måles varme­ydelsen med en joule­-måler, hvis visning ved visse temperatur­forhold desværre er behæftet med en stor usikkerhed. Ved special­undersøgelserne vurderes usikkerheden på resultaterne til 10%, medens usikkerheden ved normal drift vurderes til 20%.
4.4.2 Solvarmeanlægget

Efter forvarmningen i spildevandsvarmegenvinderen opvarmes brugsvandet af solvarmeanlægget. Varmen akkumuleres i brugsvandet i en 500 l kappebeholder. Tanken er isoleret med 100 mm mineralulud, og varmetablen er under afkøling målt til 3,4 W/C.

Mellemt solvarmeanlæggets akkumuleringsstank og oliefyrsuniten er brugsvandsanlægget udstyret med en trevejsventil som skoldningssikring.

4.4.3 Oliefyret

Oliefyrsuniten har indbygget en 135 l varmvandsbeholder. For bl.a. at reducere gennemtrækstabet er kappen omkring uniten lufttæt, og lufttilførslen til uniten er ført gennem en kanal, som ender i samme niveau som skorstenen (balanceret aftræk). Unitens varmetabsfaktor er målt under afkøling gennem fire fortløbende afkølinger. Mellemt afkølingerne hæves beholdertemperaturen ved drift af oliefyret. På basis af fyrets olieforbrug er unitens varmetabsfaktor også beregnet svarende til konstant systemtemperaturmetode, hvor en fyringsnyttevirkning på 0,92 er anvendt. Da brugsvandsanlægget er udført med naturlig cirkulation, er den samlede varmetabsfaktor for uniten og cirkulationsledningen også målt og beregnet ved de to metoder. Cirkulationsrørene er kobberør med en samlet længde på 40 meter.

Tabel 13 gengiver resultaterne af målingerne, som alle er udført uden vandcirkulation mellem kedel og varmluftenlæg.

Som det fremgår af tabellen, giver de to metoder forskellige resultater, hvilket især må tilskrives placeringen af temperaturføleren i toppen af den indbyggede brugsvandsbeholder. Ved målingerne uden cirkulation har afkølingerne en varighed på mellem 10 og 17 timer, hvorved der bliver mulighed
<table>
<thead>
<tr>
<th>målemetode</th>
<th>konstant temp.</th>
<th>afkøling</th>
</tr>
</thead>
<tbody>
<tr>
<td>oliefyrsunitens varmetabsfaktor (W/C)</td>
<td>4,6</td>
<td>3,0</td>
</tr>
<tr>
<td>oliefyrsunitens og cirkulationsledningens samlede</td>
<td>9,8</td>
<td>9,0</td>
</tr>
<tr>
<td>varmetabsfaktor (W/C)</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Tabel 13: Hus D - Oliefyrsunitens varmetabsfaktor m.m.

for en temperaturlagdeling i uniten. Derved bliver afkølingen i beholderens top og også den beregnede varmetabsfaktor mindre. Når brugsvandet cirkulerer, er temperaturudjævningen i beholderen større og afkølingsperiodernes varighed kortere (varighed ca. 8 timer), hvorved forskellen mellem de to metoder mindskes.

Ved de senere beregninger anvendes varmetabsfaktorerne bestemt ved konstant temperaturmetoden (4,6 W/C og 9,8 W/C).

Der er ikke foretaget målinger af brugsvandstemperaturen under forcerede aftapninger. Men p.g.a. solvarmeanlægget, oliefyrsunitens effekt (29 kW), varmtvandsbeholderens størrelse og den naturlige cirkulation af brugsvandet må det forventes, at det varme brugsvand forefindes i tilstrækkelige mængder og tilstrækkeligt hurtigt ved alle tappesteder.

Oliefyrets forbrug under tomgang (d.v.s. ingen varmtvandsaftapninger og ingen ydelse til varmluftanlægget) er henholdsvis uden og med naturlig cirkulation af brugsvandet 0,25 l olie/døgn (svarende til 2,5 kWh/døgn) og godt 0,5 l olie/døgn (5,4 kWh/døgn). Under målingerne er varmtvandstemperaturen ca. 47 °C.

Gennem to 14-dages perioder er driftsforholdene ved brugsvandsopvarmningen undersøgt sammen med oliefyrsunitens ydel-
se til varmluftanlægget. Måle- og beregningsresultaterne er
gengivet i tabel 14. Det skal bemærkes, at varmtvandsfor-
bruget og brugsvandstemperaturen i oliefyrsuniten er større
i forårspérioden end i vinterperiorden. Forskellen i behol-
dertemperatur skyldes ændring af termostatindstillingen.

<table>
<thead>
<tr>
<th></th>
<th>vinter</th>
<th>forår</th>
</tr>
</thead>
<tbody>
<tr>
<td>varmtvandsforbrug (l/døgn)</td>
<td>215</td>
<td>250</td>
</tr>
<tr>
<td>temperaturstigning i spildevandsvarmeegenvinder, fra/til (C)</td>
<td>5,9/10,9</td>
<td>6,4/7,8</td>
</tr>
<tr>
<td>temperaturstigning i akkumuleringstank, fra/til (C)</td>
<td>10,9/13,2</td>
<td>7,8/28,5</td>
</tr>
<tr>
<td>temperaturstigning i oliefyrsunit, fra/til (C)</td>
<td>13,2/44,5</td>
<td>28,5/54,7</td>
</tr>
<tr>
<td>varmetab fra akkumuleringstank (kWh/døgn)</td>
<td>-0,6</td>
<td>0,4</td>
</tr>
<tr>
<td>varmetab fra oliefyrsunit (kWh/døgn)</td>
<td>2,6</td>
<td>3,5</td>
</tr>
<tr>
<td>varmetab fra cirkulationsledninger (kWh/døgn)</td>
<td>2,9</td>
<td>3,9</td>
</tr>
<tr>
<td>driftstid oliefyr (h/døgn)</td>
<td>2,3</td>
<td>1,2</td>
</tr>
<tr>
<td>olieforbrug (l/døgn)</td>
<td>5,1</td>
<td>2,4</td>
</tr>
<tr>
<td>indfyret varme (kWh/døgn)</td>
<td>51</td>
<td>24</td>
</tr>
<tr>
<td>varme til varmluftanlæg (kWh/døgn)</td>
<td>35</td>
<td>7,3</td>
</tr>
<tr>
<td>oliefyrets fyringsnyttevirkning</td>
<td>0,95</td>
<td>0,93</td>
</tr>
<tr>
<td>oliefyrets kedelnyttevirkning</td>
<td>0,90</td>
<td>0,78</td>
</tr>
</tbody>
</table>

Tabel 14: Hus D - Varmtvandsforbrug m.m. i to 14-dages pe-
rioder med normalt simuleret beboelse.
Ved målinger udført af oliefyrsingeniør ca. 14 dage efter de to betrægtede perioder bestemtes fyringsnyttetevirkningen til 0,92 med 0,5% forskel på måleresultatet før og efter rensning af fyret.

Spildevandsvarmegenvinderens varmetilførsel til brugsvandet udgør i de to perioder henholdsvis 13% (1,3 kWh/døgn) og 16% (2,2 kWh/døgn) af den samlede ydelse til brugsvandet. Ydelsen må betegnes som tilfredsstillende, da genvinderens konstruktion er meget enkel.

Brugsvandets opvarmning i solvarmeanlæggets akkumulerings-tank svarer i vinter- og forårsperioden til henholdsvis 6% (0,6 kWh/døgn) og 30% (4,1 kWh/døgn) af den samlede opvarmning. I vintermånederne er der primært tale om et varmetilskud fra akkumuleringsstankens omgivelser (bryggeriet). I sommermånederne leverer solvarmeanlægget derimod en væsentlig større varmemængde til brugsvandet, i 14-dages perioden sidst på sommeren 1979 eksempelvis 75% af den totale vandopvarmning. P.g.a. anlæggets udformning bliver det solopvarmede vand dog ved normalt tappemønster afkølet i den 135 l store brugsvandsbeholder i oliefyrsuniten, hvis ikke også oliefyret er tilsluttet.

Oliefyrets ydelse til varmluftanlægget (se tabellen) inkluderer ikke varmetablen fra rørene mellem uniten og varmeveksleren, hvilket bevirkede, at de beregnede nyttetevirkninger er 1%-2% for lave. Nyttetevirkningerne er i begge perioder tilfredsstillende, men kedelnyttetevirkningen afhænger naturligvis meget af kedeltemperaturen.

Usikkerheden på de beregnede nyttetevirkninger vurderes til 15% (fyringseffektiviteten er dog bedre bestemt, jfr. resultater af røggasanalyser), medens usikkerheden på solvarmeanlæggets og spildevandsvarmegenvinderens ydelser, p.g.a. måleinstrumenterne, vurderes til 20%.
Figur 17 illustrerer driftsforholdene gennem et repræsentativt døgn i de to undersøgte 14-dages perioder. I figuren er vist fordelingen af varmtvandsforbruget gennem døgnet samt fyrets og varmluftanlæggets driftsperioder.

Figur 17: Hus D – Aftapede varmtvandsmængder m.m. gennem et døgn med simuleret beboelse – vinter- og forårsperiode.

P.g.a. fyrets effekt (29 kW) varer de enkelte driftsperioder kun ca. 7 min. I de perioder, hvor oliefyret kun leverer varme til luftvarmeanlægget – primært nattetimerne – har oliefyret en driftsperiode hver time. Når fyret samtidigt leverer varme til brugsvandet, øges hyppigheden af driftsperioderne til en hver ca. 50 min.

4.5 Lavenergihus E

4.5.1 Brugsvandsanlægget

Brugsvandet opvarmes af et el-varmelegeme på 3000 W i en 210 l varmtvandsbeholder.

![Diagram of Brugsvandsanlægget]

Figur 18: Hus E - Brugsvandsinstallation med målepunkter indtegnet.

Beholderen er isoleret med 50 mm mineraluld og varmetabsfaktoren er ved konstant beholdertemperatur målt til 2,4 W/C.

Figur 19 viser temperaturen af varmt brugsvand (badeværelse øst) under en forceret varmtvandsaftapning. På det tidspunkt, hvor undersøgelsen gennemførtes, var der endnu ikke etableret et temperaturmålepunkt i beholderen. Under aftapningen er strømforsyningen til el-varmelegemet afbrudt.

P.g.a. den lave termostatindstilling er det ikke muligt at tape tilfredsstillende mængder varmt vand ved en temperatur på 40 C. Målingen viser dog, at der kan tappes ca. 140 l varmt vand (8 l/min.), før temperaturen ved tappestedet er faldet 1 C. Ligeledes viser målingen, at temperaturen ved
Figur 19: Hus E - Forceret vandtæning (8 l/min.) - temperatur af varmt brugsvand ved tappested.

tappestedet hurtigt nær et tilfredsstillende niveau, (her ca. et halvt minut efter aftapningens start). Hæves termo-
statindstillingen blot et par grader, vil brugsvandsanlægget kunne fungere fuldt tilfredsstillende.

Opvarmningen til 40 °C fra kold beholder (7 °C) varede 3,3 h, og opvarmningshastigheden blev målt til 21 °C/h/100 l (svar-
rende til en nettovarmeoverføring på 2,45 kW). Hastigheden er også beregnet under hensyntagen til tabet fra beholderen
(beholderomgivelsesstemperatur på 17 °C) og en koldtvandstem-
peratur på 7 °C. Opvarmes beholderen til mellem 40 °C og 50 °C,
fås en teoretisk opvarmningshastighed på 25 °C/h/100 l.

El-forbruget ved tomgangsdrift – d.v.s. uden varmtvandsaf-
tapninger – er målt til 1,4 kWh/døgn ved en beholdertempera-
tur på 40 °C.

Forholdene ved normalt simuleret varmtvandsforbrug er un-
dersøgt for en 14-dages sommer- og vinterperiode. Tabel 15
gengiver de målte og beregnede størrelser. Det skal bemær-
kes, at varmtvandsforbruget i sommerperioden er 25% større
end det tilstræbte på 250 l/døgn, samt at varmtvandsstemperta-
turen er forskellig for de to perioder p.g.a. justering af termostatindstillingen.

<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>varmtvandsforbrug (l/døgn)</td>
<td>311</td>
<td>250</td>
</tr>
<tr>
<td>temperaturstigning, fra/til (C)</td>
<td>16/41</td>
<td>3/49</td>
</tr>
<tr>
<td>varmetab fra beholderen (kWh/døgn)</td>
<td>1,2</td>
<td>1,8</td>
</tr>
<tr>
<td>varmelegemets driftstid (h/døgn)</td>
<td>3,4</td>
<td>5,1</td>
</tr>
<tr>
<td>varmelegemets forbrug (kWh/døgn)</td>
<td>10,3</td>
<td>15,2</td>
</tr>
<tr>
<td>nettoeffektivitet</td>
<td>0,88</td>
<td>0,88</td>
</tr>
<tr>
<td>systemeffektivitet</td>
<td>1,0</td>
<td>1,0</td>
</tr>
</tbody>
</table>

Tabel 15: Hus E - Varmtvandsforbrug m.m. i to 14-dages perioder med normalt simuleret beboelse.

Figur 20: Hus E - Varmtvandsforbrug (måleropløsning 25 l) og driftstider for el-patron gennem et vinterdøgn med simuleret vandforbrug.
Usikkerheden på de målte vandmøngder vurderes til 10%, medens usikkerheden på målingerne af temperatur og el-forbrug vurderes til under 5%.

4.5.2 Varmeinstallatør

Hus E er udstyret med et luftvarmeanlæg bygget op omkring et 10 m³ stenlager. Anlægget er opdelt i to delsystemer, hvoraf det første transporterer luft mellem stuen og stenlageret (lufttransportens retning afhænger af temperaturen i stuen). Det andet delsystem transporterer luft mellem de fire værelser og stenlageret. Frisklufttilførslen til stuen foregår via en separat kanal fra husets krydsvarmeveksler, medens forsyningen til værelserne er tilsluttet kanalsystemet fra stenlageret til værelserne. Som figur 21 illustrerer, er der i kanalerne til stuen og værelserne indbygget el-varmeﬂade.

Kanalerne mellem stenlageret og værelserne (Ø 160 mm) føres dels i kælderen og dels i isoleringslaget mellem betondæk og drenlæg. For kanalerne til kamrene og værelserne er kanalrøgden under betondækket henholdsvis ca. 5,0 m og ca. 1,5 m.

Varmetabet fra den strækning af kanalen til nordvestkamrene, som føres i terrændækket, er beregnet på basis af temperaturmålinger ved indblæsningsristen i kammeret og i kanalen umiddelbart før denne føres fra kælderen ind under betondækket. På figur 23 er temperaturforholdene ved målepunkterne illustreret sammen med el-varmeﬂadens driftstid. El-varmeﬂaden er placeret i kælderen foran temperaturmålepunktet. Tabel 16 gengiver de målte temperaturer og el-forbrug samt de beregnede luftmøngder og varmetab. Målingerne er foretaget i marts måned.
Figur 21: Hus E - Luftvarmeanlægget med målepunkter indtegnet.

Figur 23: Hus E - Temperaturer i luftkanal ved indblæsningsrist i nordvestkammer og ved kældervæg samt temperaturen ved udsgningsrist i kammeret.
Tabel 16: Hus E - Luftmængder m.m. til nordvestkammeret.

Som det fremgår, vil kun 29% af varmefladens el-forbrug blive nytægtigt til opvarmning af nordvestkammeret. Det må derfor konkluderes, at varmetabet i kanalen er uacceptabelt stort. Årsagen til det store varmetabet er kanalens placering, da denne er anbragt direkte oven på drømmetet, hvorefter isoleringen (300 mm mineraludl, i fire lag) er lagt ved siden af og oven på kanalen.

Usikkerheden på de beregnede størrelser vurderes til 10%.

4.6 Lavenerghus F

Specialundersøgelserne vedrører hovedsagelig brugsvandsanlægget og er udført i perioden september 1979-april 1980.
4.6.1 Brugsvandsanlægget

Brugsvandet forvarmes i en 200 l beholder indbygget i solvarmeanlæggets akkumuleringsbank. Vandet eftervarmes i en 250 l kappebeholder, som holdes opvarmet af en gasfyret kedel. Fyret har en nominel effekt på 11,6 kW.

Figur 24: Hus F - Brugsvandsinstallation med målepunkter indtegnet.

Varmetsabsfaktoren for akkumuleringsbanken (1500 l) er under afkøling målt til 12 W/C. Kappebeholderens varmetabsfaktor er på tilsvarende måde målt til 5,0 W/C. Begge beholdere er isoleret med ca. 100 mm mineraluld.
Figur 25 viser temperaturen af det varme brugsvand i kappebeholderen og ved håndvasken i øst-badeværelset under en forceret varmtvandsaftapning. Gasfyrret og cirkulationspumpen mellem kedel og kappebeholder er tilsluttet under hele aftapningen. Rørstrækningen mellem kappebeholderen og tappestedet er ca. 18 m.

Figur 25: Hus F - Forceret vandtapning (8 l/min.) - temperatur varmt brugsvand.

Tappehastigheden er ved målingen ca. 8 l/min., og det er muligt at tappe ca. 200 l vand fra varmtvandsbeholderen før temperaturen når under 40 °C. Dette er en tilfredsstillende mængde, og det vil yderligere uden ændring af kedeltemperaturen være muligt at tappe større vandmængder i de perioder, hvor koldtvandstemperaturen og temperaturen i akkumuleringstanken er højere end de ved forsøget målte (henholdsvis 5 °C og 22 °C).

Den efterfølgende opvarmningsperiode - hvor temperaturen i kappebeholderen stiger fra 11 °C til 50 °C - har en varighed på 3,5 h. Opvarmningshastigheden beregnes heraf til 28 °C/h pr. 100 l, svarende til en nettovarmeanvendelse på 3,26 kW.

Gasfyrrets tomgangsforbrug – d.v.s. energiforbrug uden varmeydelse til varmtvandsbeholderen eller gulvvarmeanlægget – er målt gennem nogle døgn i september 1979 og februar 1980. Forbruget er henholdsvis 7,3 kWh/døgn og 13,3 kWh/døgn, hvilket i begge tilfælde er uacceptabelt stort. Årsagen til det store tomgangsforbrug skal primært findes i den konstant brændende pilotflamme og niveauforskellen mellem skorstenens og friskluftkanalens afslutning til det fri. Ved septembermålingen går gasforbruget udelukkende til pilotflammen. P.g.a. pilotflammen kan der ikke indbygges et spjæld i skorstenen eller i friskluftkanalen, hvilket ellers kunne have reduceret den afkølende luftstrøm omkring kedlen. Tomgangsforbrugsmålingen i februar giver den største tabsfaktor, da udetemperaturen her er lavere end i september, hhv. -1,9 °C og 14,0 °C.

Fyringsnyttevirkningen kan for den aktuelle unit kun bestemmes ved røggasanalyse, jfr. afsnit 3.5.2, og en sådan er ikke foretaget.

Forholdene ved et simuleret varmtvandsforbrug er undersøgt for en sommer- og en vinterperiode på hver 14 dage. Da gasfyret forsyner både varmtvandsbeholder og varmeanlæg, er ydelsen til opvarmning også angivet i tabel 17. Fordelingen af fyrets ydelse til de to systemer måles med joule-målere, som desværre har vist sig noget ustabile og unøjagtige ved små temperaturdifferencer. Derfor er ydelsen til brugsvandet beregnet på basis af de aftappede vandmængder og temperaturen i akkumuleringsstanken og i kappebeholderen. Ydelsen
til varmeanlægget beregnes på basis af brænderens forbrug og driftstid, kedels tomgangsforbrug, en fastsat fyringseffektivitet på 0,8 samt ovennævnte ydelse til brugsvandet.

De to sidstnævnte størrelser i tabel 17 er derfor behøftet med en betydelig usikkerhed - på fyrets kedelnyttevirkning vurderet til 25%.

<table>
<thead>
<tr>
<th></th>
<th>sommer</th>
<th>vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>varmtvandsforbrug (l/døgn)</td>
<td>242</td>
<td>244</td>
</tr>
<tr>
<td>temperaturstigning i akkumuleringstank, fra/til (C)</td>
<td>15/48</td>
<td>6/15</td>
</tr>
<tr>
<td>temperaturstigning i kappebeholder, fra/til (C)</td>
<td>48/48</td>
<td>15/50</td>
</tr>
<tr>
<td>varmetab fra akkumuleringstank (kWh/døgn)</td>
<td>6,0</td>
<td>1,5</td>
</tr>
<tr>
<td>varmetab fra kappebeholder (kWh/døgn)</td>
<td>2,3</td>
<td>3,5</td>
</tr>
<tr>
<td>driftstid pumpe mellem kedel og kappebeholder (h/døgn)</td>
<td>0,2</td>
<td>19,0</td>
</tr>
<tr>
<td>driftstid gasfyr (h/døgn)</td>
<td>0,8</td>
<td>6,4</td>
</tr>
<tr>
<td>forbrug pumpe mellem kedel og kappebeholder (kWh/døgn)</td>
<td>0,1</td>
<td>1,3</td>
</tr>
<tr>
<td>forbrug gasfyr (m³/døgn)</td>
<td>2,0</td>
<td>17,0</td>
</tr>
<tr>
<td>indfyret varme (kWh/døgn)</td>
<td>8,8</td>
<td>75</td>
</tr>
<tr>
<td>leveret varme til kappebeholder (kWh/døgn)</td>
<td>2,3</td>
<td>13</td>
</tr>
<tr>
<td>leveret varme til gulvvarme- anlæg incl. varmetab i rørsystemet (kWh/døgn)</td>
<td>0</td>
<td>35</td>
</tr>
<tr>
<td>gasfyrets kedel-nyttevirkning</td>
<td>0,26</td>
<td>0,64</td>
</tr>
</tbody>
</table>

Tabel 17: Hus F - Varmtvandforbrug m.m. i to 14-dages peri- oder med normalt simuleret tappemønster.
I sommerperioden opvarmes brugsvandet udelukkende af solvarmeanlægget, medens gasfyrets forbrug skyldes tomgangstabet fra kedlen og fra kappebeholderen. For den betragtede periode (primo september), hvor gasfyret heller ikke leverer varme til rumopvarmning, ville det i princippet være muligt at slukke fyret og derved spare ca. 2 m³ bygas (8,8 kWh) om dagen uden en mærkelig ændring af brugsvandstemperaturen. Med den aktuelle anlægsudformning kan der imidlertid ske uacceptabel afkøling af vandet i kappebeholderen, især på dage med lille varmtvandsforbrug.

I vinterperioden er temperaturen i akkumuleringstanken ca. 15 °C, hvilket hovedsagelig skyldes varmetilskuddet fra teknikrummet (ca. 21 °C). Det er derfor gasfyret, som i denne periode direkte eller indirekte sørger for hele opvarmningen af brugsvandet.

På basis af de kontinuerligt foretagne registreringer er det ikke muligt at beregne fyringsnyttevirkningen, som for den aktuelle unit i øvrigt kun kan bestemmes ved røggasanalyse. Kedelnyttevirkningen er derimod beregnet og er for begge perioder utilfredsstillende lav. Som tidigere nævnt er størrelserne dog behøftet med en relativt stor usikkerhed.

Nedenfor er temperaturen i kappebeholderen m.m. illustreret gennem et døgn i de to 14-dages perioder. I vinterperioden er gasfyret i gennemsnit i drift ca. 30 min. hver anden time. Driftstiden fordeler sig på 4-6 driftsperioeder inden for den ene time (se figur 26). Årsagen til den pendlende drift findes i udformningen af varmeanlægget, som er illustreret på figur 27.
Figur 26: Hus F – Temperaturen i varmtvandsbeholderen m.m. ved et simuleret vandforbrug gennem 1 døgn – sommer- og vinterforhold. P2 er pumpen, som cirkulerer vand mellem kedel og kappebeholder.

4.6.2 Varmeanlægget

Figur 26 illustrerer også – såvel for sommer- som for vinterdrift – at der ikke er særlig god varmeoverføring fra gasfyret til kappebeholderen. Vandindholdet i kedel, kappe
Figur 27: Hus F - Varmeanlægget med målepunkter indtegnet - den omtalte shuntventil er placeret ved pumpen Pl.
og mellemliggende rørstrækning er i alt ca. 60 l, deraf ca. 50 l i kappen. Gasfyret hæver hurtigt fremløbstemperaturen de ovennævnte 5 C, men pumpen P2 må køre meget længe for at få overført varmen til brugsøndet – det er uhensigtsmæssigt, da kappen (som jo dækker næsten hele overfladen) længe holdes på størst mulig temperatur og derfor har et forholdsvis stort varmetab til omgivelserne. Den lille forskel mellem kedeltemperaturen og vandbeholdertemperaturen er naturligvis en væsentlig årsag til den langsomme varmeoverføring, men hvis kedeltemperaturen blev sat op, ville pendlingen blive endnu mere udtalt, og varmetabene fra både kedel og varmtvandsbeholder ville blive forøget.

4.7 Varmetekniske el-installationers effekter

Som beskrevet i afsnit 3.4 er el-forbruget til de varmetekniske el-installationer målt gennem en kortere periode – typisk en driftstid på mellem 20 og 100 timer. Målingerne er foretaget i den normale driftssituation, og de beregnede effekter gengives i tabel 18 sammen med installationernes mærkeeffekter (oplyst af fabrikanterne).

De installationer, som er tilsluttet en thyristor, er i tabellen mærket med en "*". En thyristor giver mulighed for trinløst at regulere installationens ydelse og samtidig reducere el-forbruget. De anførte effekter for disse installationer gælder den aktuelle indstilling af thyristorstyringen.

En halvering af luftmængderne i varmeanlægget i hus E giver 35-40% reduktion af effektforbruget til ventilatorerne. Denne virkning har kun lille interesse for delsystemet stuestenlager, hvor en nedsat luftmængde blot resulterer i øget driftstid og alt i alt næsten uændret energiforbrug. I delsystemet stenlager-værelser er to ventilatorer imidlertid i drift, så snart blot et af de fire værelser har et opvarmningsbehov – ventilatorerne er derfor i lange perioder i
funktion omtrent i døgndrift, og det er vigtigt at reducere både el-forbruget og den langfra tabsfri luftvarmetransport mest muligt.

Af samme grund er det uhørdigt, at det har været nødvendigt at anvende en så stor cirkulationspumpe til gulvvarmekredsen i hus F – også denne pumpe aktiveres, så snart et enkelt af husets rum har et varmebehov.

Tallene for friskluft- og afkastventilator i hus E viser et eksempel på en uheldig kombination af mekanisk og elektro- nisk indregulering af et ventilationsanlæg med varmegenvinding. Indstillingen af anlæggets spænd har medført, at afkastventilatoren har måttet køre omtrent med fuld kapacitet, medens friskluftventilatoren elektronisk har kunnet reguleres meget ned – det uheldige består i, at medens motorvarmen på friskluftsiden nyttiggøres til opvarmning af indblæsningsluften, går den på afkastsiden til spilde (i det aktuelle anlæg).

De to brugsvandsvarmepumper i hus B og C er af samme type og model. Hovedårsagen til, at der må tilføres væsentlig større effekt til kompressoren i hus C, er, at varmepumpen har leveret en højere varmtvandstemperatur og har skullet dække et større varmetab p.g.a. cirkulation af det varme brugs- vand, jfr. afsnit 4.3 (især figur 12).
<table>
<thead>
<tr>
<th></th>
<th>målt effekt (W)</th>
<th>mærke-effekt (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hus A: Brugsvand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kompressor</td>
<td>180-230</td>
<td>210-320</td>
</tr>
<tr>
<td>fordampervVentilator</td>
<td>80</td>
<td>81</td>
</tr>
<tr>
<td>afrimningsvarmelegeme</td>
<td>426</td>
<td>400</td>
</tr>
<tr>
<td>el-patron</td>
<td>907</td>
<td>1000</td>
</tr>
<tr>
<td>hus A: Varme og ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kompressor</td>
<td>240-260</td>
<td>260-320</td>
</tr>
<tr>
<td>friskluftventilator</td>
<td>46*</td>
<td>55-70</td>
</tr>
<tr>
<td>afkastventilator</td>
<td>49*</td>
<td>55-70</td>
</tr>
<tr>
<td>hus B: Brugsvand og ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kompressor</td>
<td>210-250</td>
<td>230-260</td>
</tr>
<tr>
<td>el-patron</td>
<td>1016</td>
<td>1000</td>
</tr>
<tr>
<td>friskluftventilator</td>
<td>50*</td>
<td>55-70</td>
</tr>
<tr>
<td>afkastventilator</td>
<td>51*</td>
<td>55-70</td>
</tr>
<tr>
<td>hus B: Varme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kompressor</td>
<td>1270-1350</td>
<td>1230-1520</td>
</tr>
<tr>
<td>cirk.pumpe, jordslangekreds P1</td>
<td>88</td>
<td>90</td>
</tr>
<tr>
<td>cirk.pumpe, kondensatorkreds P2</td>
<td>89</td>
<td>90</td>
</tr>
<tr>
<td>cirk.pumpe, radiatorkreds P3</td>
<td>35</td>
<td>36</td>
</tr>
<tr>
<td>el-patron</td>
<td>2960</td>
<td>3000</td>
</tr>
<tr>
<td>hus C: Brugsvand og ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>kompressor</td>
<td>210-340</td>
<td>260-320</td>
</tr>
<tr>
<td>el-patron</td>
<td>990</td>
<td>1000</td>
</tr>
<tr>
<td>cirk.pumpe, brugsvandskreds</td>
<td>22*</td>
<td>25</td>
</tr>
<tr>
<td>cirk.pumpe, solfangerkreds</td>
<td>89*</td>
<td>90</td>
</tr>
<tr>
<td>friskluftventilator</td>
<td>37*</td>
<td>55-70</td>
</tr>
<tr>
<td>afkastventilator</td>
<td>50*</td>
<td>55-70</td>
</tr>
<tr>
<td>hus C: Varme</td>
<td></td>
<td></td>
</tr>
<tr>
<td>el-patron 1</td>
<td>1715</td>
<td>1500</td>
</tr>
<tr>
<td>el-patron 2</td>
<td>1205</td>
<td>1500</td>
</tr>
<tr>
<td>el-patron 3</td>
<td>1583</td>
<td>1500</td>
</tr>
<tr>
<td>cirk.pumpe, gulvslangekreds</td>
<td>76*</td>
<td>90</td>
</tr>
<tr>
<td>cirk.pumpe, varmekreds</td>
<td>28*</td>
<td>31</td>
</tr>
<tr>
<td>hus D: Ventilation</td>
<td></td>
<td></td>
</tr>
<tr>
<td>friskluftventilator</td>
<td>48*</td>
<td>55-70</td>
</tr>
<tr>
<td>afkastventilator</td>
<td>49*</td>
<td>55-70</td>
</tr>
</tbody>
</table>

Tabel 18: De varmetekniske el-installationers målte og på-stemplede effekt.

74
<table>
<thead>
<tr>
<th></th>
<th>målt effekt (W)</th>
<th>mærke-effekt (W)</th>
</tr>
</thead>
<tbody>
<tr>
<td>hus D: Varme og brugsvand</td>
<td></td>
<td></td>
</tr>
<tr>
<td>oliepumpe, ventilator i brænderunit</td>
<td>130</td>
<td>100</td>
</tr>
</tbody>
</table>
cirk.pumpe, solfangerkreds | 59 | 70 |
cirk.pumpe, varmeflade | 60 | 70 |
ventilator, varmeflade | 223** | 485 |

hus E: Brugsvand

el-patron | 3000 | 3000 |

hus E: Varme og ventilation

el-varmeflade, stue trin 1 | 690 | 700 |
el-varmeflade, stue trin 2 | 1450 | 1500 |
el-varmeflade, nordøstkammer | 528 | 500 |
el-varmeflade, nordvestkammer | 530 | 500 |
el-varmeflade, østværelse | 528 | 500 |
el-varmeflade, vestværelse | 532 | 500 |
ventilator, stenlager stue (520 m³/h) | 240* | 295 |
ventilator, stenlager stue (260 m³/h) | 140* | 295 |
ventilator, stue stenlager (550 m³/h) | 246* | 295 |
ventilator, stue stenlager (275 m³/h) | 169* | 295 |
ventilator, stenlager værelser | 85* | 190 |
ventilator, værelser stenlager | 77* | 190 |
friskluftventilator | 39* | 125 |
afkastventilator | 112* | 125 |

hus F: Ventilation

friskluftventilator | 45* | 55-70 |
afkastventilator | 48* | 55-70 |

hus F: Varme og brugsvand

cirk.pumpe, gulvvarmekreds | 137 | 150 |
cirk.pumpe, brugsvandsbeholder | 64 | 55-90 |
cirk.pumpe, solfangerkreds | 124 | 150 |

*: installation tilkoblet thyristor, målt effekt for aktuel driftsindstilling.
**: installation tilkoblet termostatstyret variotransformer (30-220 V)

Tabel 18 fortset.
5. Sammenfatning og konklusioner

I dette afsnit foretages en sammenligning af dertil egne
resultater husene imellem. Afsnit 5.1 omhandler de gennem-
førte specialundersøgelser, afsnit 5.2 undersøgelserne ved
normal simuleret beboelse, medens rapportens hovedkonclusio-
nen fremlægges i afsnit 5.3.

5.1 Målinger under specielle driftsbetingelser

For alle husene er varmetabet fra brugsvandsbeholderne målt.
I tabel 19 er beholderens væskevolumen angivet sammen med de
målte varmetabsfaktorer (pr. 100 l totalt væskevolumen).

<table>
<thead>
<tr>
<th>hus</th>
<th>brugsvandsvolumen (m³)</th>
<th>totale væskevolumen (m³)</th>
<th>varmetabsfaktor (W/C)</th>
<th>varmetabsfaktor (W/C/100 l)</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>0,280</td>
<td>0,280</td>
<td>2,8</td>
<td>1,0</td>
</tr>
<tr>
<td>B</td>
<td>0,250</td>
<td>0,250</td>
<td>2,1</td>
<td>0,84</td>
</tr>
<tr>
<td>C*</td>
<td>0,150</td>
<td>1,800</td>
<td>15,0</td>
<td>0,83</td>
</tr>
<tr>
<td>C</td>
<td>0,250</td>
<td>0,250</td>
<td>2,2</td>
<td>0,88</td>
</tr>
<tr>
<td>D*</td>
<td>0,500</td>
<td>0,530</td>
<td>3,4</td>
<td>0,68</td>
</tr>
<tr>
<td>D</td>
<td>0,135</td>
<td>0,340</td>
<td>4,6</td>
<td>1,4</td>
</tr>
<tr>
<td>E</td>
<td>0,210</td>
<td>0,210</td>
<td>2,4</td>
<td>1,1</td>
</tr>
<tr>
<td>F*</td>
<td>0,200</td>
<td>1,500</td>
<td>12,0</td>
<td>0,80</td>
</tr>
<tr>
<td>F</td>
<td>0,250</td>
<td>0,300</td>
<td>5,0</td>
<td>1,7</td>
</tr>
</tbody>
</table>

*: Solvarmeanlæggenes akkumuleringstanke.

Tabel 19: Brugsvandsbeholdernes varmetabsfaktorer m.m.
Det må forventes, at varmetabsfaktorerne for de store beholderne er mindre end faktorerne for de mindre beholderne p.g.a. muligheden for en relativt mindre overflade pr. volumenenhed. I hus C og F ligger varmetabsfaktorerne for akkumuleringsstankene på niveau med visse af de små beholderne, hvilket for hus F's vedkommende især skyldes mange rørforbindelser og lavere isoleringssgrad ud for to "mandehuller" (indstikning af vandbeholder og varmeveksler). For hus C's vedkommende skyldes det især tankens geometri – en trykløs kasseformet beholder med sidelængdeforhold 1:2,6:3,5.

Varmetabsfaktorens størrelse er for hovedparten af beholderne forholdsvis lav, da det må erindres, at systemerne er udviklet i 1977-78. Sidenhen er der bl.a. på Laboratoriet for Varmeisolering gennemført et udviklingsarbejde til termisk optimering af beholderes konstruktion, således at de nu udformes med færre varmebroer (ovenud af beholderne/gennem isoleringen), med forhindring af selvcirkulation i tilledninger o.s.v.

I hus C og D er brugsvandsanlæggene udstyret med rørsystemer til cirkulation af det varme brugsvand. Rørenes varmetabsfaktor er henholdsvis 7,5 W/C og 5,2 W/C. Rørtabene, som selv i fyringssæsonen kun kommer husene delvis til gode har en meget negativ indflydelse på systemernes effektivitet. Varmetabet er i hus C f.eks. medvirkende til, at den nyttig- gjorte varmemængde til brugsvandet i en summerperiode knapt svarer til kompressorens el-forbrug – d.v.s. en nettoeffekтивitet på mindre end 1.

Det må derfor konkluderes, at det er vigtigt at minimere afstanden fra opvarmningsaggregatet til tappstederne, så en cirkulation af brugsvandet kan undgås – et krav som bør kunne opfyldes i alle enfamiliehuse.

Hastigheden hvormed brugsvandet opvarmes er målt i alle huse med undtagelse af hus D. Temperaturintervallet for opvarmningen kan ved målingerne være forskelligt fra hus til hus,
bl.a. afhængigt af anlæggenes termostatindstilling. I tabel 20 er opvarmningsintervallet og -hastigheden angivet samt en skønnet hastighed for en opvarmning fra 10 °C til 50 °C.

<table>
<thead>
<tr>
<th>hus</th>
<th>A</th>
<th>B</th>
<th>C*</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>målt opvarmnings-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>interval (°C)</td>
<td>S: 18-55</td>
<td>6-50</td>
<td>17-55</td>
<td>7-40</td>
<td>11-50</td>
</tr>
<tr>
<td>V: 26-47</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>målt nettovarme-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>overføring til</td>
<td>S: 0,69</td>
<td>0,76</td>
<td>0,44</td>
<td>2,45</td>
<td>3,26</td>
</tr>
<tr>
<td>brugsvand (kW)</td>
<td>V: 0,28</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>målt opvarmnings-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hastighed (C/h/100 l)</td>
<td>S: 5,9</td>
<td>6,5</td>
<td>3,8</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>V: 2,4</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>skønnet opvarmnings-</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>hastighed, 10-50 °C</td>
<td>S: 7</td>
<td>6,5</td>
<td>6</td>
<td>21</td>
<td>28</td>
</tr>
<tr>
<td>(C/h/100 l)</td>
<td>V: 5</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

S: Gælder (i hus A) ved sommerbetingelser.
V: Gælder (i hus A) ved vinterbetingelser.
*: Ingen cirkulation af brugsvandet.

Tabel 20: Brugsvandsanlæggene - opvarmningshastigheden.

Opvarmningshastigheden af brugsvandet varierer meget fra anlægstype til anlægstype. De største hastigheder forekommer i hus F og E. På trods af gasfyrets store effekt i hus F (11,6 kW) er opvarmningshastigheden kun 30% større end for anlægget i hus E, hvor el-patronen yder 3 kW. Det skyldes, at varmeoverføringen fra kedelvandet til brugsvandet i den separate kappebeholder i hus F er betydeligt dårligere end fra den indbyggede el-patron til brugsvandet i hus E, bl.a. fordi der kun er nogle få grader forskel på kedeltemperaturen og brugsvandstemperaturen i kappebeholderen. I hus D er opvarmningshastigheden ikke målt, men da varmtvandsbehol- den er indbygget i oliefyrsunits (29 kW), kan opvarmningen forventes at ske betydeligt hurtigere end i hus E og F.
Opvarmningshastigheden er naturligvis væsentlig mindre for varmepumpeanlæggene, hvis kompressorer optager en effekt på 200-300 W. I hus A afhænger hastigheden af temperaturen i det uudnyttede tagrum, medens årstidsafhængigheden er mindre i hus B og C, hvor varmen hentes fra ventilationssystemernes afkastluft (efter genvinderen). I varmepumpeuniterne er indbygget el-patroner, som kan tilsluttes samtidigt med kompressorerne og derved øge opvarmningshastigheden. Hvis el-patronerne er i drift under hele opvarmningen, fordobles opvarmningshastighederne.

Især for varmepumpeanlæggene afhænger opvarmningshastigheden af brugsvandstemperaturniveauet, da kompressorerne efektivitet falder ved stigende kondenseringsstemperaturer. Det er derfor vigtigt, at brugsvandstemostaten er indstillet på den laveste temperatur, som er acceptabel for husets beboere. I hus C vil en lavere indstilling samtidig være gunstig for udnyttelsen af solvarmeanlægget (gælder også hus D og F).

Der er foretaget forcerede aftapninger af varmt brugsvand i husene B, C, E og F. Aftapningsmængderne ved en temperatur på over 40 °C afhænger naturligvis meget af starttemperaturen i beholderne. Konklusionen af forsøgene er, at det vil være muligt at tappe mindst 200 l varmt vand (med en temperatur på min. 40 °C), hvis starttemperaturen er 50 °C for de varmepumpeopvarmede anlæg og 45 °C for de øvrige anlæg med større opvarmningskapacitet.

5.2 Målinger under normale driftsbetingelser (simuleret beboelse)

På baggrund af to 14-dages perioder, henholdsvis sommer og vinter, er anlæggenes driftsforhold undersøgt ved et simuleret beboelsesmønster. Simuleringen gælder en familie med to voksne og to børn og omfatter bl.a. forbrug af varmt og koldt vand, (1).
I tabel 21 er forbruget til produktion af varmt brugsvand angivet. Tallene omfatter al købt energi d.v.s. el til pump-
per, ventilatorer, kompressorer og el-patroner samt olie og
gas. I tabellen er ligeledes angivet den procentdel af for-
bruget, som skyldes hjælpeaggregater såsom cirkulationspum-
per, afriningsvarmelegemer m.m. I visse huse afviger varmt-
vandsforbruget i en af 14-dages perioderne fra det ønskede
på 250 l/døgn. Forbrugene er her korrigeret svarende til
det ønskede. Derimod er tallene i tabellen ikke korrigeret
for forskelle i den indstillede varmtvandstemperatur husene
imellem, da denne kan afhænge af anlæggenes udformning. Den-
ne indstilling kan have væsentlig betydning for anlægseffek-
tiviteterne og dermed for de målte forbrug. Der er ikke for
de enkelte huse korrigeret for forskelle i termostatindstil-
lingen i de to 14-dages perioder. Da anlæggene i hus D og F
er integrerede brugsvands- og varmeanlæg, er tabelværdierne
korrigeret for ydelsen til rumopvarmning.

<table>
<thead>
<tr>
<th>hus</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
<th>F</th>
</tr>
</thead>
<tbody>
<tr>
<td>forbrug sommer (kWh/døgn)</td>
<td>4,4</td>
<td>4,3</td>
<td>4,0</td>
<td>16,0</td>
<td>8,3</td>
<td>8,9</td>
</tr>
<tr>
<td>heraf til hjælpe-aggregater (%)</td>
<td>26</td>
<td>0</td>
<td>13</td>
<td>0</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>forbrug vinter (kWh/døgn)</td>
<td>7,2</td>
<td>4,2</td>
<td>7,4</td>
<td>15,0</td>
<td>15,2</td>
<td>23,0</td>
</tr>
<tr>
<td>heraf til hjælpe-aggregater (%)</td>
<td>38</td>
<td>0</td>
<td>7</td>
<td>0</td>
<td>0</td>
<td>6</td>
</tr>
</tbody>
</table>

Tabel 21: Energiforbrug til produktion af varmt brugsvand
ved simuleret beboelse - sommer og vinter.

Årstidsvariationen af temperaturen på det kolde brugsvand
(ca. 5-15°C) har alt andet lige en mærkelig indflydelse på
energiforbruget til brugsvandsopvarmningen. Ligeledes påvir-
kører solvarmeanlæggenes ydelser i hus C, D og F naturligvis
også mængden af købt energi. I summerhalvåret kan solvarmeanlæggene i store perioder opvarme brugsvandet til en tilfredsstillende temperatur. Temperaturen af det solopvarmede brugsvand ligger i hus C og F i den undersøgte 14-dages periode i august-september på 40-50 °C, medens den tilsvarende temperatur i hus C i den undersøgte periode i april er 30 °C. På trods af de høje afgangstemperaturer af brugsvandet i akkumuleringsstankene er forbruget af købt energi relativt stort i sommerperioden for de tre huse. Den primære årsag hertil er, at alle tre systemer har to varmtvandsbeholderer - efter passage gennem solvarmeanlæggets akkumuleringsstank ledes brugsvandet over i eftervarmeaggregatets vandbeholder. Varmeoverføringen mellem de to beholderer sker med brugsvandet, og kun når der er et varmtvandsforbrug. P.g.a. størrelsen af eftervarmeaggregatets brugsvandsbeholder (135-250 l) sker der en betydelig afkøling af vandet - som eftervarmeaggregatet må kompensere for - før det når ud til tappstederne. I hus C og D er cirkulationen af det varme brugsvand også medvirkende til de forholdsvis store forbrug af købt energi.

En del energi kunne spares, hvis det i perioder var muligt at føre brugsvandet direkte fra akkumuleringsstanken til tappstederne og samtidigt slukke for eftervarmeaggregatet. Den ret store vandmængde, som kommer til at stå stille i eftervarmeaggregatets brugsvandsbeholder og efterhånden antager rumtemperatur, kan imidlertid give problemer med vandkvaliteten. I hus C ville den beskedne opvarmningshastighed af brugsvandet i varmepumpe-uniten også give problemer, når solvarmeanlægget ikke yder tilstrækkeligt, og behovet for eftervarme pludseligt opstår.

En stor del af brugsvandsanlæggets el-forbrug i hus A skyl des hjælpæaggregater. VP-unitten er udstyret med sin egen fordamperventilator i modsætning til varmepumperne i hus B og C, som udnytter ventilatoren i ventilationsanlægget. Derudover er unitten i hus A udstyret med et elektrisk afrimningsvarmeanlæg, som i vinterperioden står for 10% af unit-
ens samlede el-forbrug. I de øvrige varmeopmyster sker afrimning ved brug af varm luft (husets afkastluft).

Værdierne i tabel 21 viser tydeligt, at alt andet lige er brugsvpendicularvarmning ved brug af varmeopmyster som ventet den mindst energikrævende metode. Anvendes direkte el-varme, olie- eller gasfyr bliver forbrugere ved de aktuelle målinger mellem to og seks gange så store. Det kan endvidere konkluderes, at en uheldig udformning af et brugsvendantsanlæg, som medfører store tongangstab, kan bevirke, at næsten hele energibidraget fra et solvarmeanlæg sættes over styr.

På baggrund af de to 14-dages perioder er for varmeopmysterne beregnet kompressorens gennemsnitlige effektivitet. Det er foruden de tidligere omtalte tre luft-til-vand brugsvandscapevarmeopmyster en luft-til-luft varmeopmyster til rumopvarmning i hus A og en vand-til-vand varmeopmyster til rumopvarmning i hus B.

<table>
<thead>
<tr>
<th>hus</th>
<th>anlæg</th>
<th>kompressorens optagne effekt (W)</th>
<th>kompressor-effektivitet</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td>sommer</td>
<td>vinter</td>
</tr>
<tr>
<td>A</td>
<td>brugsvand</td>
<td>230</td>
<td>180</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sommer</td>
<td>Vinter</td>
</tr>
<tr>
<td>B</td>
<td>brugsvand</td>
<td>250</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sommer</td>
<td>Vinter</td>
</tr>
<tr>
<td>C</td>
<td>brugsvand</td>
<td>340</td>
<td>210</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sommer</td>
<td>Vinter</td>
</tr>
<tr>
<td>A</td>
<td>varme</td>
<td>260</td>
<td>240</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Sommer</td>
<td>Vinter</td>
</tr>
<tr>
<td>B</td>
<td>varme</td>
<td>1350</td>
<td>1270</td>
</tr>
</tbody>
</table>

Tabel 22: Varmepumpeanlæg – middel kompressoreffektiviteter m.m. for udvalgte 14-dages perioder.
Kompressoreffektiviteten afhænger af temperaturforholdene ved fordamperen og kondensatoren samt af flowet gennem fordamperen og for varmepumperne til rumopvarmning også af flowet gennem kondensatoren. Generelt er de målte kompressoreffektiviteter tilfredsstillende for kompressorer af denne størrelse.

For at undgå utilgængelige skjulte installationer er varmeanlæggets fordelingssystem i hus B placeret i den uisolerede, ventilerede krybekælder. Dette har medført, at varmeforbruget til krybekælderen udgør mellem 30% og 55% af den producerede varme. I en 14-dages periode i april måned er den nyttigjorde varmemængde til rumopvarmning kun 13% større end el-forbruget til kompressor og cirkulationspumper. I den periode ville det – på trods af en kompressoreffektivitet på 3,2 – kun være 13% mere energikrævende at opvarme huset med direkte el-varme.

Effektiviteterne af fyr og kedler i hus D og F er også søgt beregnet. Der foreligger ikke målinger af unitens fyrings-effektivitet i hus F, men det forventes, at den ligger omkring 0,8, og denne værdi er anvendt ved udregningen af kedelnyttevirkningen. Varmeydelserne er i flere af lavenerghusene målt med batteridrevne joule-målere, som har vist sig både unøjagtige og ustabile ved de aktuelle temperaturforhold. Det bevirket bl.a., at ydelserne til opvarmning i hus D og F og hermed nedenstående effektiviteter er behæftet med en stor usikkerhed. For hus D er usikkerheden vurderet til 15% og for hus F til 25% af de opgivne tal. Dog er fyringseffektiviteten i hus D målt ved røggasanalyse flere gange og er hver gang blevet bestemt til 0,92-0,93.

De konstaterede effektiviteter er tilfredsstillende for hus D's vedkommende, hvorimod kedeleffektiviteten i hus F er utilfredsstillende lav. Gasfyret i hus F er udstyret med atmosfærisk brander med en konstant brandende pilotflamme. Luften til forbrændingen trækkes fra det fri via en luftkanaal gennem kældervæggen til fyrets lufttætte kabinett, medens
<table>
<thead>
<tr>
<th></th>
<th>hus D Sommer</th>
<th>hus D Vinter</th>
<th>hus F Sommer</th>
<th>hus F Vinter</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fyringseffektivitet</td>
<td>0,93</td>
<td>0,95</td>
<td>-</td>
<td>-</td>
</tr>
<tr>
<td>Kedeleffektivitet</td>
<td>0,78</td>
<td>0,90</td>
<td>0,26</td>
<td>0,63</td>
</tr>
</tbody>
</table>

Tabel 23: Fyringseffektivitet m.m. i hus D og F, bestemt ud fra brændselforbrug og målt varmeudbydelse.

skorstenen går 7,5 m lodret op gennem husets tre etager til det fri over tag. P.g.a. pilotflammen og det ubalancerede friskluft-/skorstenssystem har fyreret et tomgangstab (hovedsagelig gennemtrækkstab) på 7,3 kWh/døgn og 13,3 kWh/døgn målt henholdsvis i september og februar. Forskellen i forbruget skyldes udetemperaturniveauet ved de to målinger, hhv. 14,0 C og -1,9 C. Til sammenligning er oliefyrsunitens tomgangsforbrug målt til 2,5 kWh/døgn.

Målinger på gas- og oliefyreret bekræfter, at tomgangstabene fra installationerne til såvel brugsvand som rumopvarmning udgør en stor procentdel af de samlede energiforbrug i lavenerghusene. Mulighederne for at udnytte selv den spildvarme, der forekommer som tab inden for klimaskærmen, er ikke store, da en væsentlig del optræder på uønskede tidspunkter, (2). Det er derfor meget vigtigt, at man ved projektering af installationerne er opmærksom på dette forhold og derved søger at begrænse tomgangstabenes størrelse.

5.3 Hovedkonklusioner

På baggrund af de gennemførte undersøgelser bør følgende forhold fremhæves:

- varmetabet fra beholdere kan have stor negativ indflydelse på brugsvandsanlæggs nettoeffektivitet. Hvis en beholder må
holdes permanent opvarmet, er det derfor vigtigt, dels at beholderen isoleres effektivt, dels at beholdertemperaturen holdes så lav som muligt.

cirkulation af varmt brugsvand er meget energikrævende og skal undgås i lavenerghuse.

brugsvandsanlæg, som får varmetilskud fra solvarmeanlæg, skal udformes med én varmtvandsbeholder eller med mulighed for at føre vandet uden om eftervarmeaggregatets brugsvandsbeholder. Sidstnævnte løsning kan dog give vandkvalitetsproblemer. Alternativt skal der være mulighed for at føre varme fra solvarmesystemets akkumulatortank til eftervarmebeholderen uafhængigt af vandforbruget.

el-forbruget til pumper, ventilatorer m.m. kan i lavenerghuse udgøre en stor procentdel af den købte energi og driftstiden bør derfor begrænses mest muligt.

til brugsvandsopvarming er varmepumper som ventet de mindst energikrævende aggregater. Varmepumper i den størrelse, som forefindes i de seks lavenerghuse forudsætter imidlertid suppleringsvarme i visse situationer.

kappebeholderen vil alt andet lige have et større varmetænderøvrige beholder typer, da de højeste væsketemperaturer forekommer i kappen.

stor forskel mellem varmeanlæggets effekt og varmebehovet (til brugsvand og/eller rumopvarming) medværker ofte til uheldige driftsforhold såsom pendling (med hyppige start/stop). For olie- eller gasfyrrede anlæg øges skorstenstabet og for varmepumpeanlæg kan foruden effektiviteten også varmepumpens levetid blive reduceret.

varmefordelingssystemer skal føres inden for klimaskærmen.
- varmeanlæg skal kunne slukkes, når der ikke er behov for varme.

- varmeanlæg med gas-/oliebrændere skal udføres med balanceret lufttildførsel/luftafkast og helst med et afspæringspjæld, som lukkes uden for driftstiden.
6. Litteraturliste

6.1 Referencer

6.2 Supplerende litteratur om Energiministeriets Lavenerghusprojekt

Ud over de i teksten refererede kilder indeholder nedenstående publikationer yderligere oplysninger om Lavenerghusprojektet.

7. Symbol- og signaturliste

<table>
<thead>
<tr>
<th>Symbol</th>
<th>Beskrivelse:</th>
<th>Enhed:</th>
</tr>
</thead>
<tbody>
<tr>
<td>C</td>
<td>varmekapacitet</td>
<td>Wh/C</td>
</tr>
<tr>
<td>c_p</td>
<td>varmefyldes</td>
<td>Wh/kgC</td>
</tr>
<tr>
<td>(k·A)_b</td>
<td>varmetabsfaktor - beholder/unit</td>
<td>W/C</td>
</tr>
<tr>
<td>(k·A)_cir</td>
<td>varmetabsfaktor - cirkulationsledning</td>
<td>W/C</td>
</tr>
<tr>
<td>M</td>
<td>brændselsforbrug (olie/gas)</td>
<td>m³</td>
</tr>
<tr>
<td>Q_cir</td>
<td>el-forbrug cirkulationspumper</td>
<td>Wh</td>
</tr>
<tr>
<td>Q_e</td>
<td>el-forbrug varmelegeme</td>
<td>Wh</td>
</tr>
<tr>
<td>Q_komp</td>
<td>el-forbrug kompressor</td>
<td>Wh</td>
</tr>
<tr>
<td>Q_varme</td>
<td>varmeydelse til rumopvarmning</td>
<td>Wh</td>
</tr>
<tr>
<td>T</td>
<td>temperatur</td>
<td>C</td>
</tr>
<tr>
<td>T_b</td>
<td>temperatur af brugsvand i beholder</td>
<td>C</td>
</tr>
<tr>
<td>T_o</td>
<td>temperatur af omgivelser</td>
<td>C</td>
</tr>
<tr>
<td>T_k</td>
<td>temperatur af brugsvand før beholder</td>
<td>C</td>
</tr>
<tr>
<td>T_sp</td>
<td>temperatur af gråt spildevand</td>
<td>C</td>
</tr>
<tr>
<td>T_i</td>
<td>starttemperatur</td>
<td>C</td>
</tr>
<tr>
<td>T_z</td>
<td>sluttemperatur</td>
<td>C</td>
</tr>
<tr>
<td>V</td>
<td>volumen</td>
<td>m³</td>
</tr>
<tr>
<td>V_{vb}</td>
<td>brugsvandsforbrug</td>
<td>m³</td>
</tr>
<tr>
<td>ρ</td>
<td>massefylde</td>
<td>kg/m³</td>
</tr>
<tr>
<td>τ</td>
<td>tid</td>
<td>h</td>
</tr>
<tr>
<td>η</td>
<td>temperaturvirkningsgrad</td>
<td></td>
</tr>
</tbody>
</table>

Signatur: Beskrivelse:

- måling af luftmængde
- måling af vandmængde
- måling af varmemængde (joule-måler)
- måling af temperaturdifferens
- måling af temperatur
8. Summary

6 Low-Energy Houses at Hjortekær
Technical Installations – Results from Specific Test Series

Thermal Insulation Laboratory
Technical University of Denmark
Building 118
DK-2800 Lyngby

As part of the Danish Energy Research and Development Programme six prototype low-energy houses have been built at Hjortekær, north of Copenhagen, as detached single-family houses each having a living area of approx 120 m². Five houses were completed in the autumn of 1978 and the last one in March 1979, (3).

Since then, a research team has carried out detailed continuous energy measurements as well as limited investigations of specific problems. During the period from the completion of the houses till May 1980 none of the houses were inhabited, but the occupancy was simulated according to a standard pattern (including electricity consumption for lighting and domestic appliances, heat emission from persons and the use of domestic hot and cold water), (1). After May 1980 the houses were eventually sold and inhabited, and the monitoring was continued till May 1982.

The main objective of the Low-Energy House Project was to demonstrate that it is possible to build 120 m² detached houses with a design energy supply of approx 5000 kWh/year covering space heating, ventilation and domestic hot water.
This report describes a series of specific tests carried out in situ in the six low-energy houses. The test programme includes measurement of heat loss (stand-by losses etc) from hot water tanks and boilers, and from circulation systems, measurement of domestic hot water supply temperature at forced tapping, measurement of the ability of the hot water systems (capacity and speed of hot water production) and measurement of the electricity consumption for technical installations in the hot water systems and heating systems.

As quite a few technical solutions have been applied in the six houses the analyses cover as different items as storage tanks for active solar systems, an air-to-air heat pump, air-to-water heat pumps, a water-to-water heat pump, a grey waste water heat recovery system, an oil burner and a gas burner and a few other topics.

The performance and the energy consumption of the different heating systems and hot water systems have been analyzed at typical summer and winter conditions for selected fortights.

The main conclusions of the report are as follows:

- heat loss from water tanks does often in a negative way greatly influence the system net efficiency of hot water systems, eg solar systems or heat pump systems. If a tank has to be permanently heated it is very important to insulate it well (without major thermal bridges) and to keep the temperature as low as possible.

- circulation of hot water increases the total heat loss from the system considerably and must be avoided in low-energy houses.

- hot water systems partly heated by active solar should be constructed with one storage tank only. If the after heating aggregate includes a separate tank it should be possi-
ble to bypass this - this solution has in some cases resulted in water quality problems (stale water in the second tank). An alternative solution in case of two tanks is to secure heat transfer from the storage tank independently of the hot water consumption, preferably by natural convection.

- the electricity consumption for pumps, fans etc may in low-energy houses make up a large percentage of the total demanded energy supply and the operating time should thus be minimized.

- as expected heat pumps for domestic hot water heating prove the least energy consuming system. However, small heat pumps like those at Hjortekær do occasionally require additional heat supply, eg for raising the water temperature quickly.

- the heat loss from indirect cylinders with jacket heat exchangers will - at equal conditions - be larger than from other types of water tanks because the surface temperature will be higher.

- a substantial difference between the rating of the heating system and the actual demand (for hot water or heating) often result in poor operating conditions, eg pendling (a high frequency of on/off operation), and this situation is very likely to occur frequently in a low-energy house. In systems with oil or gas burners the flue loss is increased, and in heat pump systems the efficiency and the useful life of the compressor may suffer.

- all supply lines in heating systems must be kept on the inside of the building envelope.

- heating plants must be switched off immediately when there is no need for heating.
heating plants with oil/gas boilers will have to be made with balanced flue and eventually with a barrier damper which is shut off when the burner is not running.