LABORATORIET FOR VARMEISOLERING

Bjarne Saxhof

Utilsigtede varmetab fra installationer i lavenergihuse

Særtryk af

Alle varme og varmtvandsanlmg vil, uanset hvilken energikilde de er baseret på, i støree eller mindre grad utilsigtet afgive varme til deres umiddelbare omgivelser, bla. fra lagerenheder, fx brugsvandsbeholdere. Varmen kan afgives uden for husets klimaskmrm og vil så i reglen vare helt tabt for huset, som det er tilfmldet med varmeindholdet i den røggas, som slippes ud fra et fyringsanlogs skorsten. Et sådant skorstenstaber samtidig et eksempel på et tab, som kun forekommer, nå anlmgskomponenten - i dette tilfmide fyret eller brmndeovnen - er i drift (at skorstenen ogsaikan give anledning til et stilstandstab pga. gennemtræk er en anden sag) 。

Indtil olieforsyningskrisen for ti å siden og de deraf følgende energiprisstigninger, var forbrugernes og de fleste producenters interesse for fyringsokonomi beskeden, selv om skorstenstabet fra et typisk mldre villafyr kan have en størrelse pá 1000-2000 1 fyringsolie svarende til hele varmebehovet for to-tre lavenergihuse.

Endnu mindre har interessen imidlertid været for utilsigtede varmetab, som forekommer inden for husets klimaskærm, idet det - ganske logisk - har vmret konkluderet, at tab fra anlmgget kommer huset til gode som varmetilskud og altsa ikke går til spilde. Når man lige ser bort fra, at varmetilskud i den største del af sommeren er en tvivlsom fordel, er antagelsen korrekt, så lmnge der er tale om midre huse med ret store varmetab, hvoraf de utilsigtede tab kun udgør en lille andel. I lavenergihuse vil de utilsigtede varmetab fra anløggene absolut set have samme størrelse, hvis der ikke tages specielle forholdsregler for at reducere dem, men set i forhold til husenes lave varmebehov vil tabene udgøre en betydelig størrelse.

For at anskueliggøre hvorfor det i lavenergihuse er så væo sentilgt at nedbringe de ukontrollable varmetilskud, er varmebehovet igennem et normalar i figur 1 optegnet for tre huse med forskellig isoleringsgrad. De tre eksempler reprosenterer typiske varmetab for et $120 \mathrm{~m}^{2}$ enfamiliehus bygget hhv. i 60'erne, efter det nyeste bygningsreglement og som lavenergihus. Husets varmebehov (som skal dokkes af varmeanlmgget) opstå som forskellen mellem det aktuelle tab og det aktuelle varmetilskud, dels fra de utilsigtede varmetab, dels fra gratisvarmen, som i figuren er opdelt i et árstidso afhmigigt bidrag fra solindfald gennem vinduerne og et bidrag fra varmeafgivelsen fra personer, lys og husholdningsmaskiner, tilnmrmet konstant året igennem. Varmeafgivelsen fra lys og husholdningsmaskiner medregnes til gratisvarme, fordi varmeproduktionen er et biprodukt i forbindelse med det primære formal (belysning, rengøring e.l.) som man betaler for. Varmetilskuddets storrelse er naturligvis stærkt afhengigt af beboernes brug af huset, men den absolutte størelse har i denne forbindelse mindre betydning, idet interessen koncentreres om indvirkningen pa de tre hustyper.

Figur 1. Varmebehov, gratisvarme m.v. i tre typiske enfami1iehuse ved onsket indetemperatur 20 C .

Det fremgar klart af figuren, at jo lavere varmetab et hus har, jo mere gratisvarme bliver totalt set overskudsvarme, dvs. varmetilskud som giver en højere indetemperatur end krævet/ønsket og derfor bør ventileres bort. Det fremgå
samtidig, at den resterende, anvendelige del af gratisvarmen i et lavenergihus dækker en væsentlig større andel af det samlede varmetab, hvilket bl.a. medfører, at fyringssmsonen i et lavenergihus bliver kortere end i et hus med storre varmetab. $\quad \mathrm{P}_{\mathrm{a}}$ figuren er ogsá skitseret et varmetilskud svarende til utilsigtet varmetab fra de tekniske installam tioner, dvs. varme der mà betales for. Det utilsigtede varmetab som her tilnærmet er regnet konstant aret igennem kan kun udnyttes, når de samlede varmetilskud ikke overstiger det aktuelle varmetab, og endda kun under forudsætning af at de ukontrollable varmetilskud fra de tekniske installationer fordeles i huset svarende til behovene og ikke blot giver anledning til meget høje temperaturer i et enkelt rum, fyrrummet. Det gølder derfor om at minimere de ukontrollable betalingskrævende tilskud for i videst muligt omfang at kunne nyde de gratis glmder.

For utilsigtede varmetab inden for klimaskmrmen samler interessen sig isœr om anlægs og anlægskomponenters tomgangstab, dvs. de tab som forekommer, selv om anlmgget intet yder, men blot star klar til at levere sin ydelse med kortest muligt varsel, fx varmetab fra en varmtvandsbeholder, som holdes opvarmet til den \quad nskede varmtvandstemperatur. Tomgangstabet er altsà det lavest opnáelige tab for tilsluttede anlmg og optræder normalt såel 1 tomgang som under drift. Tomgangstab reducerer altid anlægseffektiviteten for anlæggenes primære formal - eksempelvis skal effektiviteten af et brugsvandsanlæg vurderes ud fra den leverede varmevandsmongde; at anlmgget derudover bidrager til husets opvarmning på ønskede og måske især uønskede tidspunkter er en sekundær - lidt tvivlsom - gevinst.

De efterfølgende eksempler på de utilsigtede varmetabs betydning bygger pà analyser af anlmggene i de seks lavenergihuse, som med støtte fra Energiministeriet blev opfort 1 Hjortekær i 1978-79, nærmere beskrevet af Byberg m.fi. 1979 (1) og af Byberg og Saxhof 1982 (2). Beskrivelse af anlmggene samt mere dybtgànde redegørelse for undersøgelsesmeto-
der og -resultater er givet af Byberg 1982 (3), Saxhof m.fi. 1984 (4) og Rasmussen m.f1. 1984 (5).

Eksempler pà utilsigtede varmetab uden for klimaskærmen

Et af husene opvarmes med et lavtemperaturradiatoranlmg forsynet fra en varmepumpe med jorden som varmekilde. Huset er opfort af letre hojisolerede træelementer, og bygherren/de rågivende ingeniører \quad nskede aht. risiko for vandskader at undga skjulte (utilgængelige) rorinstallationer i huset og valgte derfor at placere radiatorernes frem- og returlob 1 husets uisolerede, ventilerede krybekælder. Trods omhyggelig isolering af rørene (dobbelt sa stor isoleringstykkelse som normalt) har dette valg haft meget uheldige konsekvenser for varmesystemets effektivitet. Varmetabet fra fordelingssystemet er under tomgang malt til $17 \mathrm{~W} / \mathrm{C}$, relateret til forskellen mellem fordelingssystemets middeltemperatur og krybekældertemperaturen; denne forskel er ifyringssmonen 20-30 C. Tomgangstabet fra selve varmepumpeuniten (inden for klimaskærmen) udgør kun $1,9 \mathrm{~W} / \mathrm{C}$, relateret til temperaturforskellen mellem beholder og bryggers, normalt mindre end 10 C . I en af de undersøgte perioder modtog uniten pga. høj bryggerstemperatur faktisk $0,2 \mathrm{kWh} / \mathrm{d} \boldsymbol{\mathrm { f }} \mathrm{gn}$, medens fordelingssystemet tabte $8,8 \mathrm{kWh} / \mathrm{d} \varnothing \mathrm{gn}$ til krybekæideren.

Tabel 1 og 2 viser tabenes betydning hhv. i tre udvalgte 14-dages perioder under simuleret beboelse og ito måleår, det ene under simuleret, det andet under reel beboelse.

Systemeffektiviteten udtrykker forholdet mellem systemets totale varmeydelse og den købte energimængde (el); nettoeffektiviteten $u d t r y k e r$ forholdet mellem den nyttiggjorte varmeydelse og den købte energi.

Den negative indvirkning pa nettoeffektiviteten bliver smrlig markant i overgangsperioderne, hvor husets varmebehover beskedent, medens tabet til krybekælderen stadig er betydeligt, som i den i tabel 1 viste forársperiode (pa trods af rimelig høj systemeffektivitet). Under reel beboelse bliver nettoffektiviteten pa årsasis 0,9 eller med andre ord: det ville i det aktuelle tilfmide have voret mere fordelagtigt at benytte direkte elvarme. En vmsentilg grund til det store varmetab til krybekmlderen er, at cirkulationen fordelingssystemet opretholdes døgnet rundt, uanset om der er et aktuelt varmebehov - de enkelte radiatorer reguleres med termostatventiler. Den konstante cirkulation bevirker i øvrigt et el-forbrug til pumpe på ca. $25 \mathrm{kWh} / \mathrm{må} \mathrm{~m}_{\mathrm{f}} \mathrm{d}$ 。

Kun en meget lille del af varmetabet kommer huset til gode i form af en lidt højere krybekmldertemperatur, som i beskedent omfang nedsptter transmissionstabet fra huset og giver lidt lunere friskluft, idet ventilationssystemet har luftindtag i krybekælderen.

	Efterår	Vinter	Forar
Fremløbstemperatur, radiatorkreds (C) Varmeydelse, radiatorkreds (kWh/døgn) Heraf varmetab til krybekælder (kWh/døgn)	26,5	27,6	34,4
Nettoeffektivitet Systemeffektivitet	16,3	28,9	19,5

Tabel 1. Varmeydelse m.m. for tre udvalgte 14 -dages perion der under simuleret beboelse. Den hojere frem1 obstemperatur i forársperioden skyldes en minding 1 termostatindstilingen.

	Simuleret beboelse $1979 / 80$	Reel beboelse 1981/82
Varmeydelse, radiatorkreds (kWh/ar)	4820	5240
Heraf varmetab til krybekælder (kWh/ar)	1970	2320
El til varmepumpe (kWh/år)	1870	2480
E1 til \varnothing vrige pumper (kWh/àr)	470	930
Nettoeffektivitet	1,2	0,9
Systemeffektivitet	2,1	1,5

Tabel 2. Varmeydelse mom. måt gennem to år.

I et af de andre huse opvarmes værelserne med luftvarme fra et stenlager, suppleret med el-opvarming af den indblæste luft. Fra det centrale anlmg placeret i en kolder under husets midterste del afgrenes luftkanaler ind under terrm dæk til værelser og kamre i husets øst-og vestende. Kanalerne (9160 mm) er lagt direkte på drenlagets nøddesten 1 de nederste to lag af fire lag mineraluld med samlet lagtykkelse 300 mm 。 De decentrale varmeflader - 500 W til hvert rum $=$ er placeret i kalderen umiddelbart før kanalens indføring under terrændækket.

I en vintermåned (marts) er der foretaget en undersgelse af driftsforholdene for opvarmningen af vestkammeret (5,0 m luftkanal under gulvet). Kanalen benyttes ogsa til konstant indblæsning af friskluft, ca. $16 \mathrm{~m}^{3} / \mathrm{h}$, forvarmet i en $k r y d s-$ varmeveksler. Det centrale varmeanlmgs to store ventilatorer startes, nå termostaten i et af de fire soverum kræver varme. I den undersøge periode har varmeanlmgget
været i drift 65% af tiden, med en luftmængde pà ca. $61 \mathrm{~m} / \mathrm{h}$ til kammeret - og el-varme under hele driftstiden. Af de tilforte $324 \mathrm{~Wh} / \mathrm{h}$ kom kun $94 \mathrm{~Wh} / \mathrm{h}$, eller 29%, rummet til gode i opvarmingsperioden - resten gik til opvarmning af luftkanalens umiddelbare omgivelser. Som det ogsáfremgar af figur 2, er hovedparten heraf tabt for huset, men en beskeden del indvindes iform af forvarming af ventilationsluften i varmeanlmggets stilstandsperioder (35\% af tiden), hvor luftmængden jo til gengæld kun er ca. en fjerdedel.

Figur 2. Temperaturforlob for luftvarmesystem til vestkammer.

Gulvvarmesystemer på terrændæk, som også er repræsenteret 1 e, t af husene, udgør et grmensetilfolde af "utilsigtede varmetab uden for klimaskærmen", idet de selvfølgelig befinder sig inden for denne, men undgàeligt oger varmetabet gennem gulvet. Forskellige kombinationer af gulv- og fundamentstype med og uden gulvvarme er analyseret af Saxhofogengelund Poulsen 1982 (6), og det er vigtigt at være opmærksom på, at gulvisoleringen skal ϕ ges med ca. 200 mm (regnet som mineraluld, type A) for at kompensere for det \quad gede varmetab。

Tomgangstabet for en standardtype 2101 el-opvarmet, rimelig velisoleret brugsvandsbeholder opstillet i en kmlder i et af husene er malt til $2,4 \mathrm{~W} / \mathrm{C}$ relateret til temperaturforskellen mellem beholder og omgivelser. Det er ikke noget stort tab, men bliver alligevel til $1,4 \mathrm{kWh} / \mathrm{dqgn}$ eller ca. 500 $k W h / a r, d v s .10 \%$ af den projekterede købte energimængde til huset, og som varmetilskud i et kælderrum udfyldt med tekniske installationer ikke til nytte for boligen. Tomgangstabet for to luft-til-vand brugsvandsvarmepumper med 2501 lagertank er måt til ca. $2,0 \mathrm{~W} / \mathrm{C}$, typisk med 10% højere tab, nå luften strmmer gennem uniten, svarende til normale driftsbetingelser - der var til gengæld stor forskel páde to principielt ens varmepumper mht. hvor stort tomgangsforbruget (og dermed el-regningen) var, idet systemeffektiviteterne var hhv. 3, 1 og 1,1 .

Tilsvarende blev tomgangstabet fra en 2501 kappebeholder til eftervarme af brugsvand i et kombineret solvarmeanlæg malt til $5,0 \mathrm{~W} / \mathrm{C}$, dvs. mere end dobbelt så stort som for de tidifgere nævnte beholdere til trods for isolering med 100 mm mineraluld. Ligesom de to andre solvarmeanlæg it bebyggelsen er anlmgget forsynet med to vandbeholdere: en akkumuleringstank for solvarmen (i de to kombinerede anlmg med neddykket forvarmebeholder til brugsvand) og en brugsvandsbeholder, hvor evt. eftervarme tilføres - i de aktuelle tilfmide overfores varme fra 1 . til 2. tank med brugsvandet, udelukkende når der tappes varmt vand. Udformningen med to beholdere er valgt for at undga at varme de store lagervoluminer op med suppleringsvarme, men varmetab fra eftervarmebeholderen kan medføre, at suppleringsvarme er påkrmet, selv om der findes varmt vand i den primme lagertank. Lagertankens tomgangstaber i det nævnte anlæg malt til $12 \mathrm{~W} / \mathrm{C}$ (for 1500 l) - suppleringsvarmen leveres fra et gasfyr. Figur 3 illustrerer energibalancen for anlægget i et aktuelt måeár inkl. gasfyret, som tegner sig for et betydeligt tab uden for klimaskærmen. Brugen af en kappebe-
holder som eftervarmebeholder er stmrkt medvirkende til det store varmetab, idet de højeste temperaturer (hojere end varmtvandstemperaturen) jo forekommer i kappen, og kappen dækker nmsten hele overfladen.

Figur 3. Varmebalance for gasfyr og vandbeholdere på årsbasis (1979/80). Varmeməngderne er anført ikWh/å.

En væsentlig del af el-forbruget til pumper og ventilatorer, ventiler og styreenheder afgives ogsa som varme til omgivelserne og skal henregnes til de utilsigtede varmetab. Det på figur 3 skitserede anlmg er placeret i et $9,3 \mathrm{~m}^{2}$ stort rum i husets kælder, og rummet få på årbasis ud over de viste varmetilskud tilført godt 1500 kWh fra elektriske installationer. Tilskuddet kommer kun i yderst ringe grad selve huset til gode - hovedvirkningen er meget høje rumtemperaturer i teknikrummet: àmiddeltemperatur $22,7 \mathrm{C}$, middeltemperatur i august (den varmeste maned) 28,2 C og maksimumtemperatur (timemiddelverdi) 30,8 C.

Selv om lagerbeholdere i reglen er de største bidragydere til utilsigtede varmetilskud og deraf følgende overtemperaturer 1 enkelte rum, kan selve driftsformen (styringen af
 opvarmes med et luftvarmeanlæg placeret i husets brygers, hor en centralt anbragt vand-til-luft varmeflade forsynes
fra et oliefyr. Varmefladen er placeret 1 et lodretstående kabinet forsynet med en nedadblmsende ventilator - returluften fra rummene lober i bryggerset i en ca. 3 m lang uisoleret blikkanal. En termostat i stuen afbryder ventilatom ren, nar varme er uønsket, men i den oprindelige udførelse var der uafbrudt vandcirkulation mellem oliefyr og varmeflade. Det bevirkede ud over et konstant el-forbrug til pumpe og blandeventil pa 90 W, at luften cirkulerede baglmens i systemet, opvarmet af varmefladen. Varmen blev ismr afgivet til bryggerset, dels fra den ufsolerede "returkanal", dels fra det utilstrokkeligt isolerede kabinet. En midring af styringen med afbrydelse af pumpe og ventil gav dels en el-besparelse på ca. $300 \mathrm{kWh} / \mathrm{a}_{\mathrm{r}}$ ($600 \mathrm{kWh} / \mathrm{ar}, \mathrm{hvis}$ anlægget også er tilsluttet 1 sommerperioden), dels en morkbar reduktion af overtemperaturen i bryggerset.

Et andet eksempel pai en driftsform, som giver et utilsigtet varmetab af betydelig størelse, er cirkulation af varmt brugsvand. Et af brugsvandssystemerne med de tidiigere omtalte varmepumper er udformet med cirkulation. Medens tomgangstabet fra beholderen blev malt til $2,0 \mathrm{~W} / \mathrm{C}$, var tomgangstabet fra deca. 30 m rør placeret i etageadskillelsens isoleringslag $7,5 \mathrm{~W} / \mathrm{C}$ - eller godt $1600 \mathrm{kWh} / \mathrm{ar}$ - hvortil kommer et el-forbrug på ca. $200 \mathrm{kWh} / \mathrm{a}_{\mathrm{r}} \mathrm{til}$ cirkulationspumpen.

I betragtning af at en gennemsnitsfamilies varmtvandsforbrug energimessigt udgor ca. $3000 \mathrm{kWh} / \mathrm{ar}$ må cirkulationstabet betragtes som helt uacceptabelt. Det kan i ovrigt ogsa give kapacitetsproblemer. Hvis familien har brugt det meste af vandet i beholderen, tager det fx 50 timer at opvarme vandet fra 17 C til 55 C ved $\mathrm{h} \neq \mathrm{l} \mathrm{p}$ af varmepumpen alene. De sidste graders opvarmning tager længst tid - opvarmningshastigheden falder fra $4,7 \mathrm{C} / \mathrm{h} / 100 \mathrm{l}$ ti1 $0,6 \mathrm{C} / \mathrm{h} / 100 \mathrm{l}$ under opvarmningsforløbet pga. stigende varmetab og faldende kompressoreffektivitet. Stoppes cirkulationen, klares den samme opvarming på 27 timer (10 timer, hvis el-patron på 1000 W indkobles).

Utilsigtede varmetab har stor negativ indflydelse på såvel effektiviteten af lavenergihuses varme- og brugsvandsanlmg som den termiske komfort i enkelte rum. Enhver form for uregulerbar varmeafgivelse i lavenergihuse skal begrmenes mest muligt, da de utilsigtede varmetilskud sjmident tidsmassigt falder sammen med varmebehov og desuden i reglen er koncentreret til sekundmre rum (teknikrum/bryggers) med beskedne krav til opvarmaing. De tab som ikke kan undgås, skal holdes inden for klimaskermen - tab fra fyringsanlmg skal begrmases mest muligt ved anvendelse af balanceret aftrmk og - i egentlige skorstene - rogspjæid.

Referencer

1. Mogens R. Byberg, Rolf G. Djurtoftog Bjarne Saxhof: 6 Lavenergihuse i Hjortekær - Kort beskrivelse af husene. Meddelelse nr. 83, LfV, maj 1979:
2. Mogens R. Byberg og Bjarne Saxhof: 6 Lavenergihuse i Hjortekmr. Konstruktioner - arbejdsudførelse og erfaringer. Meddelelse nr. $120, L f V, j u n i 1982$.
3. Mogens Byberg: Do Conservation Houses Require Sophisticated Technical Installations? Meddelelse nr. 127, Lfv, november 1982.
4. Bjarne Saxhof, Mogens R. Byberg og Niels Henrik Rasmus sen: 6 Lavenergihuse 1 Hjortekær. Installationer udformning og erfaringer. Meddelelse nr. 151, Lfv, juni 1984.
5. Niels Henrik Rasmussen og Bjarne Saxhof: 6 Lavenergihuse 1 Hjortekær. Effektiviteter og tomgangstab for varme- og brugsvandsanlmg. Meddelelse nr. 152, LfV, juni 1984.
6. Bjarne Saxhof og R. Engelund Poulsen: Foundations for Energy Conservation Houses - A Thermal Analysis Based on Examples from five Low-Energy Houses at Hfortekmr, Denmark. Meddelelse nr. 130, LfV, november 1982.

$$
(s)]=W \rightarrow[t(s)]={ }^{\circ} \mathrm{C}
$$

ændres til:
$=R_{4}=\frac{e}{2 C \delta}+\frac{Z}{2 C}$
$=R_{6}=\frac{Z}{B}+\frac{B}{2 e \delta}$
ndres til:
er bredden af de ubelagte striber $=2 B+2 C$ er bredden af de belagte striber er overlapningen af de belagte striber

