december 1983

INTERNATIONAL ENERGY AGENCY solar heating and cooling programme

task VIII
passive and hybrid solar low energy buildings

ANALYSIS MODEL SURVEY

Prepared by
Ove Jørgensen
December 1983

THERMAL INSULATION LABORATORY TECHNICAL UNIVERSITY OF DENMARK report no. 143

PREFACE

INTERNATIONAL ENERGY AGENCY

The International Energy Agency was formed in November 1974 to establish cooperation among a number of industrialized countries in the vital area of energy policy. It is an autonomous body within the framework of the Organization for Economic Cooperation and Development (OECD). Twenty-one countries are presently members, with the Commission of the European Communities also participating in the work of the IEA under a special arrangement.

One element of the IEA's programme involves cooperation in the research and development of alternative energy resouxces in order to reduce excessive dependence on oil. A number of new and improved energy technologies which have the potential of making significant contributions to global energy needs were identified for collaborative efforts. The IEA Committee on Energy Research and Development (CRD) comprising reprew sentatives from each member country, supported by a small Secretariat staff, is the focus of IEA RD\&D activities. Four Working Parties (in Conservation, Fossil Fuels, Renewable Energy and Fusion) are charged with identifying new areas for cooperation and advising the CRD on policy matters in their respective technology areas.

Solar Heating and Cooling was one of the technologies selected for joint activities. During $1976-77$, specific projects were identified in key areas of this field and a formal Implementing Agreement drawn up. The Agreement covers the obligations and rights of the Participants and outlines the scope of each project or "task" in annexes to the document. There are now eighteen signatories to the Agreement:

Australia	Italy
Austria	Japan
Belgium	Netherlands
Canada	New Zealand
Denmark	Norway
Commission of the	Spain
European Communities	Sweden
Federal Republic of	Switzerland
Germany	United Kingdom
Greece	United States

The overall programme is managed by an Executive Committee, while the management of the individual tasks is the responsibility of Operating Agents. The tasks of the IEA Solar Heating and Cooling Programme, their respective Operating Agents, and current status (ongoing or completed) are as follows:

Task I Investigation of the Performance of Solar Heating and Cooling Systems - Technical University of Denmark (Completed).

Task II Coordination of Research and Development on Solar Heating and Cooling - Solar Research Laboratory GIRIN, Japan (Ongoing).

Task III Performance Testing of Solar Collectors -KFA-Julich, F.R. Germany (Ongoing).

Task IV Development of an Insolation Handbook and Instrument Package - U.S. Department of Energy (Completed).

Task V Use of Existing Meteorological Information for Solar Energy Application - Swedish Meteorological and Hydrological Institute (Completed).

Task VI Performance of Solar Heating, Cooling, and Hot Water Systems Using Evacuated Collectors - U.S. Department of Energy (Ongoing).

Task VII Central Solar Heating Plants with Seasonal Storage Swedish Council for Building Research (Ongoing).

[^0]
TASK VIII - PASSIVE AND HYBRID SOLAR LOW ENERGY BUILDINGS

The participants in Task VIII are involved in research to study the design integration issues associated with using passive and hybrid solar and energy conservation techniques in new residential buildings. The overall objective of Task VIII is to accelerate the development and use of passive and hybrid heated and cooled low-energy buildings in the participants' countries. The results will be an improved understanding of the design and performance of buildings using active and passive solar and energy conservation techniques, the interaction of these techniques, and their effective combination in various climatic regions and verification that passive and hybrid solar low energy buildings can substantially reduce the building load and consumption of nonerenewable energy over that of conventional buildings while maintaning acceptable levels of year-round comfort. The subtasks of this project are:
0. Technology Baseline Definition
A. Performance Measurement and Analysis
B. Modeling and Simulation
C. Design Methods
D. Building Design, Construction and Evaluation

The participants in this Task are: Austria, Belgium, Canada, Denmark, Federal Republic of Germany, Italy, The Netherlands, New Zealand, Norway, Spain, Sweden, Switzerland, United States and United Kingdom.

This report documents work carried out under subtask B of this Task.

Michael J. Holtz, A.I.A. Operating Agent
(On behalf of the U.S. Department of Energy)

LIST OF CONTENTS

Page No.
Preface vii

1. Executive Summary 1
2. Introduction 3
3. Survey Summary Tables 5
4. Status of Validation of Models used
in the Participating Countries 21
5. Bibliography 23Appendices1. Completed Survey Forms
6. List of Subtask B Representatives

1. EXECUTIVE SUMMARY

This document presents the findings and conclusions of a survey of the currently available building thermal analysis simulation models, their analysis capabilities, characteristics and limitations. Thirty-one models from ten different member countries of the IEA Solar Heating and Cooling Prow gramme are included in this survey.

The survey was undertaken to serve two main objectives:

1. to assess the state of the art in order to identify what future model evaluation and developments are necessary; and
2. to create an overview of available building thermal anaw lysis simulation tools which can serve as a guide for the selection of an appropriate model for a given problem.

A survey form was generated and distributed to the participating countries of Task VIII. The thirtyone completed and returned forms are all included as Appendix 1 . In a second round the subtask B representatives were asked to clarify what passive and hybrid systems the programs could simulate and the current status of model validation.

Chapter 3 summarizes the major findings of the survey in tabular form, thus making it possible to quickly assess the important features of the models.

The most important conclusion that can be drawn from the compiled information is that only a few programs can be used to simulate hybrid systems. Another important point is that even though most of the programs have been written in FORTRAN, they

* A hybrid system can be defined as a system that incorporates both natural and forced heat (energy) transport phenomena.
are very machine-dependent and therefore not easily transferable. The third major conclusion is that most of the programs have been developed by researchers for research purposes; they do not represent energy analysis tools useful to building designers.

Chapter 4 includes a table on validation of the different models. From this table it appears that, aside from direct gain systems, the validation experience for passive systems is extremely limited. This table was part of the . background material for the development of the validation activity plan within Subtask B. Results from this work will be documented in future reports.

To sum up, these conclusions direct future model developm ment to focus on hybrid systems, to produce real computerindependent, user-friendly and design-oriented programs. Also, all of the models reported require further validation against measured data to increase confidence in their use.

The present survey has created an important overview of existing models and their capabilities and limitations, which provides valuable guidance for the planning of further model development efforts.

2. INTRODUCTION

Analysis models for passive and hybrid solar low energy build ings are computer simulation programs which have been designed for a detailed thermal analysis of a building and its components. The basis of these programs is a mathematical model of the total building as a thermal system. Usually this fundamental model is equipped with input and output routines, routines for calculating solar radiation input, routines for calculating energy flows into and out of the building, and,. in some cases, routines for calculating HVAC system performance.

Of course there are many ways to set up a model, from the choice of basic mathematics to the creation of output data files. Since different people have different opinions and different needs, several different models exist and new models are being developed.

The development of a new model is very time-consuming, so if an existing model can cover ones needs, it is much more preferable to use that. The problem is to find out whether one of the existing models suits a given purpose, for example provides hourly temperature output plots for different rooms, handles water walls and attached sunspaces, performs an economic analysis, and so on.

The present survey attempts to provide the reader with sufficient information on the different models from the IEA Task VIII participating countries to decide which model can be used for which purpose. At the same time, it presents a clear picture of the state of art, which can be used to identify necessary future model developments.

METHODOLOGY

At the outset of this activity a survey form was developed and distributed to all the participating countries. A total number of 31 completed survey forms were returned. The following table shows the number of survey forms received from each country.

Country	Number of Survey Forms
Belgium	2
Canada	4
Denmark	1
Germany	1
Italy	3
Netherlands	2
Norway	2
Switzerland	8
United Kingdom	1
USA	7
Total	31

All the completed survey forms have been included in an Appendix to this report.

After the compilation of all the survey forms, the information was condensed into 5 summary tables presented in Chapter 3 .

3. SURVEY SUMMARY TABIES

Five tables have been generated based on the information from the completed survey forms in order to present an overview of the information contained in the forms.

The tables have been ordered according to a logical search for a model:

- Which models are capable of handling my problem?
- Which of these are available and for what are they intended?
- What results do they provide?
- What input data is needed?
- What is the calculation procedure?

When one or more models have been tentatively identified by screening through the five tables, the next step is to find the completed survey forms for the selected models, to check the information, and finally, to contact the person or organization responsible for the distribution of the model.

$A=A C T I V E, p=P A S S I V E=T H E R M O$ SYPHON, 1) OVERHANG ONLY

Table 3.1 Summary of application and capability of the surveyed models

APPLICATION, CAPABILITY

Passive and hybrid systems

It is no surprise that all the thirty-one programs can be used to simulate direct gain systems. What is more interesting is that only half of the programs are able to simu late Trombe wall systems, and only twelve attached sunspaces.

Hybrid systems, combining features of active and passive (forced and natural heat transfer) solar components (primarily collector and storage), can only be simulated by four models, two of which are general network programs, that in principle can be set up to simulate anything. However, they cannot be used by the average engineer or architect. By employing some very advanced modelling, a few of the other models might also be used (SERI-RES, ESP) for the simulation of some hybrid systems. It should, however, be noted that at present there is a lack of knowledge of some of the most important parameters to be used for the simulation of hybrid systems, such as heat transfer coefficients in different block and channel geometries. Without any doubt, this is the field of development for the coming years.

Heating

All programs calculate heating loads and space temperatures. Active solar heating systems can be simulated by six of the programs. Underground loads seem to be a weak point in many of the models with only eleven claiming to be able to analyse this condition. It is striking that almost all the American programs can be used to simulate heating, ventilation and airconditioning systems. This is obviously an area which has been given far greater attention in the US than in Western Europe.

Cooling

The pattern is very similar to that of heating. It is seen that a few programs do not include any cooling calculations at all.

Lighting

Eleven of the programs have routines for switching the artificial lighting on and off based on solar radiation incident on windows. Probably this ought to be included in all programs as the impact of artificial lighting can be significant on both heating and cooling loads.

DHW

Only few of the programs can be used for simulating active and/or passive solar domestic hot water systems.

Zones

Most of the programs have been designed to simulate more than two zones, but nine programs can still only deal with one zone.

This page is intentionally left blank.
Table 3.2
Summary of intended
use and availability
of surveyed models

INTENDED USE AND AVAILABILITY

Intended use
Table 3.2 clearly shows that the majority of the programs have been developed for research purposes, and the intended users are therefore primarily engineers and researchers. only nine of the programs have been developed for design development; however, most of the programs can be used for this purpose. About half of the programs are also said to be useful for post design services, whereas considerably few can be used for predesign, site analysis and schematic design. Obviously, any complex model can be used for these purposes by setting up a simple building model using numerous default values. This, however, only makes sense provided a simplified model, capable of analyzing the same building configuration, does not exist. This approach has the advantage that moving from a simple building model with few modes to a more complex model for dem sign development, can be done quite easily. With this in mind, probably more of the models can be said to be useful for the pre-design, site analysis and schematic phases.

Availability
Almost all of the programs are available on main frame computers only; two are run on micro-computers. IBM is the most common computer used; however, the spread is rather large with a tendency that many American programs are run on CDCmachines. This is really one of the most crucial points, as it is often not possible to transfer a computer program from one machine to the other even if the program has been written in "Standard" FORTRAN.

Support

Most of the programs are supported by a "users guide" at a minimum and for several a "data manual" exists.

Run time
The run time quoted is for an annual simulation of a singlezone, 100 square meter residence using an hourly time step. The range is rather broad: 5-1000 CPU-seconds. The number of CPU seconds is very machine-dependent. It can easily vary by a factor of 5 for the same program run on different machines.

This page is intentionally left blank.

Table 3.3 Summary of results and output of surveyed models

Temperature profiles, loads and, if an HVAC system is included in the simulation, energy consumption are the fundamental outputs of these programs. Depending on the program, these variables can be given by component, zone or total building and for time-intervals of one hour, one day, one week, one month and one year. For a selected number of these possible outputs, table 3.3 shows whether or not they can be delivered by the programs.

Loads
The fact that most of these programs have been developed for detailed analysis shows up in the table. Hourly loads are given by almost all of the programs and for those that simulate multizone buildings, output is available for each zone or component.

Temperatures
All programs produce indoor air temperature as output, but it is interesting that as many as twenty also produce surfacetemperatures. The existence of graphic plotting routines in a program is not that important as this tends to be very system-dependent. Obviously the possibility of producing output files with hourly data for subsequent data handing and plotting by other programs ought to be inherent in any of the programs.

Fuel consumption
When an HVAC system or plant is included in the simulation, monthly consumption and peak demand are obviously provided by most programs. Also, most programs provide energy consumption by system componenets separately.
4
0
0
0
0
0
0
0
0
Summary of input
data for surveyed
models

File type

Eleven programs create files through interactive data input but most of them require the preparation of an input file to be read by the program while it is executed.

Required/possible input data

The high densjty of the dots in the middle of Table 3.4 shows that most of the programs accept schematic design and architectural design data as input. This indicates that most of the programs can be used to analyse the impact of varying these data. The nature of these data is that they are very concise: for example building surface areas, building material data, building mass data etc. This is very much in line with the typical computer model of a house: a "shoebox" with windows. Only a few programs accept data on the generic building shape or building type.

Weather data

Hourly data are used in all cases, except for one which rem quires data given at smallex time intervals. For the rest of the programs, hourly weather data can be given for a "typical" day, or as a typical meteorological year, TMY, or any weather data file of hourly values. The data variables needed for a given program has to be explored with the program distributor. Typical data variables needed are two radiation data variables, wind speed, ambient temperature and dew point temperature.
Table 3.5
-etnoted Io Axeumins
tion procedures for
surveyed models

CALCULATION PROCEDURES

Programming language

FORTRAN is the most common language employed in the programs surveyed. Three of the models have been programmed in BASIC and two in ALGOL. However, this does not mean that the 25 FORTRAN programs can be run by any machine having a FORTRANcompiler. The compiler is very machine-dependent, so before requesting a program it is necessary to determine on which computers the program has been running. This information is included in the survey forms but should also be checked with the authors to avoid any difficulties in implementing the program.

Heat transfer

Heat transfer is primarily modelled by finite differences but also to quite a large extent by response factors.

Solar orientation and shading

Most of the programs have routines for the calculation of solar radiation on any given surface, but when it comes to shading, only half of them can take wingwwalls or any other obstruction into account.

Room temperatures

Surface and air temperatures are calculated by half of the programs and air only by the other half.

U-values

Again, half of the programs include the effect of wind speed on building U-values and half of them can also deal with moveable insulation.

Infiltration

A given air change per hour is the most common way of handiling infiltration but 13 programs vary infiltration with wind speed.

Internal loads
9 programs handle sensible and latent internal loads separately while 1.5 consider sensible loads only.

Ventilation

Ventilation is primarily calculated as a sensible heat exchange; only two programs include latent heat exchange as well.
4. STATUS OF VALIDATION OF MODELS USED IN THE PARTICIPATING COUNTRIES

Model development is not finished after the programming phase. The model must be checked in every possible way to ensure that it is a reliable tool. The ultimate check of a model is a comparison to reality. For thermal analysis models this involves a comparison to measured data from either test cells or real houses. However, the prom cess of validating a model against measured data is a very tedious process which is often complicated by the lack of adequate performance data. For these reasons the Task VIII participants considered it important to establish, at the outset of the work in Subtask B, the status of validation of the models used in the member countries.

Table. 4.1 was generated at one of the early working group meetings (Summer 1982) and has since been updated by the participants. It appears that the number of fully documented validation studies is very limited. DEROB, BLAST and SERI-RES are the only programs which have been validated for Trombe walls and attached sunspaces and only about seven of the programs have been validated for direct gain system data. The table provides clear indication that further work is needed in this area.

Table 4.1
IEA SOLAR HEATING AND COOLING PROGRAMME, TASK VIII, SUBTASK B

Analysis capabilities and validation experiences on highly instrumented facilities of the models used in the participating countries.

Elm-meeting, Switzerland, July, 1982

MODEL	COUNTRY	PASSIVE SYSTEM ANALYSIS CAPABILITY				VALIDATION EXPERIENCE												
						TEST CELLS				HOUSES								
		DG	TW	SS	TS	DG	TW	SS	TS	DG	TW	SS	TS					
TRNSYS	Austria	X	X	X		0	0	0										
ENCORE	Canada	X		?														
BA4	Dermark	X								-								
HAUSER	Germany	X	X	X	X					-								
MORE (Fiat)	Italy	X																
NBSLD	Italy	X																
KLI	Netherlands	X	X	X						\bigcirc								
BFEP	Netherlands	X	X	X														
ENCORE	Norway	X		?						0		0						
VARUM	Norway	X		?		-												
ESP	United Kingdom	x	X	x	x					.								
BRIS	Sweden	X	$?$	X														
STANWAD	Sweden	X																
DEROB	Switzerland	x	X	X	$?$	-		-		-		-						
SERI-RES	Switzerland	X	X	8	$?$	\bigcirc	-			-	-	\cdots						
SERI-RES	U.S.A.	x	X	X	$?$	-	*	-		-								
BLAST	U.S.A.	X	X	X	X	-	-			\cdots		-						
DOE-2.1	U.S.A.	X		$?$		-				-								
$?$ possible, not known DG: Direct Gain 0 some work made - not documented - TW: Trombe Wall or work underway SS: Sunspace TS: Thermo-syphon system																		

- validation study performed

BIBLIOGRAPHY

1. Källblad, K. (1983). International Energy Agency. Energy Conservation in Buildings and Community Systems Programme; Annex III, Residential Buildings Energy Analysis. Calculation Methods to predict Energy Savings in Residential Buildings. ISBN 91-540-3885-5.
2. Littler, J.G.F. (1982). Overview of some available models for passive solar design. Computer-Aided Design, vol. 14, page 15-18.
3. SERI. (1980). Analysis Methods for Solar Heating and Cooling Applications, Passive and Active Systems. 3rd edition. SERI/SP-35-232R.
4. Burt, Hill, Kosar, Rittelman Assoc. (1983). International Energy Agency, Solar Heating and Cooling Programme, Task VIII, Subtask C. Design Tool Survey.
5. Judkoff, R.et al. (1983). A Methodology for Validating Building Energy Analysis Simulations. SERI/TR-254-1508.

APPENDIX 1

COMPLETED SURVEY FORMS

TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO: LOW ENERGY DWELLING

SUBTASK - MODELLING \& Simulation SUBTASK C - DESIGN METHODS

GENERAL:

TOOL HARE: LSPBI
Developed by: Laboratoire de physique du Batiment: Universite' de Liege
Faculte des Sciences Applique'es 15, Avenue des Tilleuls - Bat Dl
4000 Liege Belgique
DATE DEVELOPED: 81
bate of last revision: 83
avallable throvg: Laboratoire de Physique du Batiment: Universite de Liege, Faculte des Sciences. Applique'es 15. Avenue des Tilleuls - Bat Dl PHONE 4000 Lilege Betglque

SUPPORTED BY: The SPPS
Rue de la Sciences no. 8
1040 Bruxelles - Belgique

PHONE NO. $02 / 2304400$
bRIEF DESCRXPION: LPBI is a programme designed to compite thermal loads and temperatures in a building. This is done taking all capacity effects into account, thus in a dynamic way.
please attach any validation on testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQURING A MAIN FRAME COMPUTER

HARDWARE:

COHPUTER TYPE:	(18)	O coc	D univac	13 OTHER	
CORE REquired:	\% ${ }^{\text {c }}$ 500K	[$100-5008$	\%	1025-100 K	$0<25 \mathrm{~K}$
SUPPORT:	D USER'S Gutde	\square data	manual	Q OTHER	
EQUIPMENT:	E) CRT	D Prxwter	Q TExTROM	Ix OTHER	

costs:
ASSUMTNG PURCHASE OF SOFTTARE FOR USE ON PRESENT TIME-SHARING:
FIRST COST: ?
XR-OFFICE EQUXPMENT:
softhare qunchase:
SUPPORT INFORMATIOR:
TIME TO INPUT AND DEBUG:
\qquad
\qquad
\qquad
LISTING \qquad
ofrer \qquad

RUN COST/TXME: ?
XeRUT SETOUP TiME: MAN-DAYS
 MAN - HOURS
typical b run time:
$\square>1 \mu \mathrm{~m}$.
560 M - 30 M

- $30 \mathrm{M}=10 \mathrm{M}$
C) < 10 m
- > 1000 SEG.
[100-1000 SEG.
[$5=100 \mathrm{sEC}$ 。
© < 5 SEC.
deor this porm, assme "typical" to be a single-2oned 100 square meter residence heth alh outputs checked (,) in SECTION 2.

ASSUMING USE OF SOFTUARE ON PUBLIC TYHE-SHARING NETNORKS:
mames and contacts of time-sharing services which have this program avallable (exact costs can be obtaimed тиROUGH THEM).
Laboratoire de Physigue du Batiment.
Universite' de Liege, Faculte" des
Sciences Appligue es 15 Avenue des
Sciences Tilleuls - Bat Dl
4000 Liege Belgique

TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO: LOW ENERGY DWELLING
SUBTASK - MODELLING \& SIMULATION SUBTASK G - DESIGN METHODS

GENERAL:

TOOL NAKE: SOLPA
developed by: A De Herde … E Gratia
Unite' d'architecture
Batiment Vinci
Place du Levant 1
1348 Louvain-la-Neuve BELGIQUE
Date developed: 1981
date of last revision: 1981
available through: A De Hexde
Unite' d'architecture, Bat. Vinci
Place du Levant 1
1348 Louvain-1a-Neuve BELGIQUE
Phone No.: 010/418181 ect 2139
supported by: A. De Herde
Unite' d'architecture, Bat.Vinci
Place du Levant 1
1348 Louvain-la-Neuve - Belgique
pHONE NO.: 010/418181 ext 2139
Bref description:' This design tool calculates the performances of a window with a "porch roof". It calculates, hour by hour, the shaded surface and the balance sheet.
please attach any validdation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

WEATHER DATA:

socur data:	HOURLY tape D TYPICAL day D MONTHLY DATA \square ANNUAL DEGRE DAYS D AVE. HOHTMI MXN. AND MAX. HOURLY TAPE TYPLCAL DAY profile	- monthiy ave. danly 6 toral
ar oriens. cauc:		horiz. 64 candinal drec.
		H

CALCULATION PROCEDURES:

language: fortran b basic machine language \square other
\qquad D graphs charts \& simple calc.
USER TYPE: INTERACTIVE INTERACTIVE GRAPMIC PREPARE FTLE g hand calculation

UNITS OF CALCULATION: W SI UNITS
D ENGLISH
© вотн
CRECK ALL APPROPRIATE BOXES:

HEAT TRANSFER:	\square EINITE DIFFERENCE	L Response factor	* Steady state
solar comp. calculated:	* DIFFUSE/DIRECT/RE-RADIATED	Q DIffuse/direct	\square Total
integration:	\square SImple Euler	[mplicit	[] Other
Shading:	[] any solar obstruction	C overhang only	[NO SHADING
movable shaiting:	(dally \% seasonal shltching	- seasonal shitching	D Not calculated
mass effect is Calculated:	© transyent heat rloh	C TIME CONSTANT FACTORS	(assume no mass affect
ROOM TEMP. EASED ON:	\square SURFACE \& AIR	$1]$ AIR OALY	* not calculated
InSide temperature:	(${ }^{\text {a }}$ INPUT SCHEDULE BY USER	[] FIXED BY YOOL	[] VARIED EY \%ool.
U-VALUES:	\square change w/wind speed	d remain constant	(movable insulation
INFILTRATION:	D air change per hour	-] CRACK METHOD	D varies m/wind speed
INTERNAL LOADS INCLUDE:	- sensible \& latent separate	[sens. \& lat. total	Sensible only
ventilation:	0 SENSIBLE	0 datent	© VARIES BY SCHEDULE OR COMAND
DAYLIGHT COEFFICIENTS	* SKY, REFL. \& DIRECT	[SKY \& REFL。	D SKY ONLY
ZONES PER RUN:	■ > 25 E 10-25	D2-10	[1 OnLy
SYSTEM RODELING:	[SYStem effic. LnPut	0 SYSTEM OPTEMIZENG	D component sensitivity
ECONOMIC ANALYSIS:	c] annual cost	d simple payback	- life cycle costing

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

MARDWARE:

COSTS:
ASSUMING PURCHASE OF SOFTHARE FOR USE ON PRESENT TME-SHARING:
first cost: ?

IN-OFFICE EQUIPMENT:
SOfthare purchase:
SUPPORT INFORMATION:
TINE TO INPUT AND DEBUG:
CRT \qquad PRINTER \qquad
TAPE \qquad Listing \qquad
OTHER \qquad
data manjal \qquad man=hours
RUN COST/TMME: ?

- XNPUT SET-UP TME:
-ancomen MAN-DAYS \qquad man-hours
[$>1 \mathrm{KR}$ 。
D $60 \mathrm{M}-30 \mathrm{M}$
D $30 \mathrm{M}-10 \mathrm{M}$
$\mathrm{O}<10 \mathrm{M}$
TYpical cpl trme:
$\square>1000$ SEC.
(1) $100-1000$ SEC.
[5 - 100 sEc.
L < 5 SEC.
あFOR THIS GORG, ASSUME "TYPICAL" TO BE A SINGLE-ZONED 100 SQUARE METER RESIDENCE MITH ALd OUTPUTS ChECKED (V) IN SECTION 2.

ASSUMING USE OF SOFTWARE ON PUBLIC TIME-SHARING NETWORKS:
mafes and contacts of time sharing services which have this program available (exact costs can be obtained through them
Laboratoire de Coinie Ciul
Batiment Vinci Place du Levant
1348 Louvain-1a-Neuve Belgique
\qquad
\qquad

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

costs:

ASSUMING PURCMASE OF SOFTVARE FOR USE ON PRESENT TIME-SHARING:
FIRST CosT: Not known
IN-OFFICE EQUIPMENT:
SOFTGARE PURCHASE:
SUPPORT INFORMATION:
TIRE TO IRPIT ARD DEBUG:
CRT \qquad printer \qquad
CARD DECK \qquad

TAPE \qquad LISTING \qquad

RUN COST/TXME:
\qquad
\qquad data manual \qquad orker \qquad

INPUT SETOUP TYME: \qquad HANADAYS \qquad man-hours
TYPIGAL* RIN TIME:
D >1 KR
日 $60 \mathrm{~A}-30 \mathrm{H}$
[$30 \mathrm{M}-10 \mathrm{M}$
$0<10 \mathrm{n}$
TXPICAL* CPV TXME:
$\square>1000$ sec.
D $100=1000$ SEC.
䈐 5-100 SEC.

- < S SEG.
"For this form, assume "typical" to ee a sinclem-zoned 100 Square meter residence with all outpurs checked (1) in SECTION 2.

ASSUMING USE OF SOFTVARE ON PUBLIC TIME-SHARING NETWORKS:
nafes and contacts of the-sharyng services uhich have thas program available (exact costs can be obtained TAROUGH THEM).
\qquad
\qquad
\qquad

TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO: LOW ENERGY DWELLING
SUBTASK B - MODELLING \& SIMULATION
SUBTASK C - DESIGN METHODS

```
Michael Glover
Solar Energy Program
National Research Council
Bldg. R-92
Ottawa, Ontario.
KIA ORG
```


GENERAL:

TOOL NAME: \qquad Encore-Canada
developed by: A. Konrad
Division of Building Research
National Research Council of Canada
Ottawa, Ontario. KIA OR6
date developed: August 1978
date of last revision: 1980
available through: \qquad
-Thermal Performance Section \qquad
Division of Building Research

- National Research Council of Canarla PHONE NO: Ottawa. KLA OR 6 (613) 993-1421 SUPPORTED BX: \qquad
Thermal Performance Section \qquad
$-$

Division of Building Research
National Research Council of Canada
pHone no.: Ottawa, KIA OR6 (613) 993-1421
BRIEF DESCRPTION: The Eacore-Canada pmagnamperforms a-dymanic simuation-of enemg-use-m-an hourly basis using real weather data. Internal heat storage is taken into account.
Air infiltration calculations are based on mass flow balance. Solar effects are included. Temperature variation from room to room is permitted provided that electric heaters controlled by proportioning thermostats are used. Oil-fired fumace heated
please attach any validation or testing reports.
(continued over)

TOOL HARDWARE \& AVAILABLE FORMS:

SURVEY FORM FOR ENERGY DESIGN TOOLS㫨 ANALYSIS MODELS

COMMENTS:

houses with hot air distribution systems can also be simulated. Internal heat gains (occupancy, lighting, appliances, hot water) are described by 24 -hour schedules. Heat transfer through basement walls and floor is computed on the basis of a yearly cycle of ground surface sol-air temperature and constant basement indoor temperature.

FOR DESIGN TOOLS REOUIRING A MAN FRAME COMPUTER

HARDWARE:

 SECTSON 2.

ASSUMLNG USE OF SOFTHARE ON PUBLRC TLAE-SHARING METHORKS:
HARES AKD CONTACTS OF TYREESHARINS SERVICES WHICH ZAVE TKIS GROGRAM AYAILABLE (EXACT COSTS CAN BE OBTAINED SHROUGH THEM).
\qquad
\qquad
\qquad

CALCULATION PROCEDURES:

FOR DESIGN TOOLS REQUIRING A MICRO-COMPUTER

HARDWARE:

manufacturer and model mumber: Wang 2200 MVP (Mini)
RANDOM ACCESS HEMORY (RAM) REQUTRED: \qquad
12.5 \qquad \mathbb{R}
DOES THIS TOOL REQUIRE A PRINTER?
YES
[0 NO
suppors:
D user's guxde

- data makual
- OTHER
\qquad

COSTS:

FIRST COST:
MICRO-COMPUTER: \qquad
SOFTWARE: ROM IC \qquad TAPE \qquad LISTING \qquad
SUPPORT INFORAATION:
USER'S GULDE \qquad data manuaz. \qquad OTHER \qquad
tiale to infut and debug: \qquad maN-DAYS \qquad MAN-HOURS
RUR COST/TME:
TYPICALK INPUT SET-UP TIME: \qquad manmays \qquad MAN-HOURS

TYPICAL RUN THE: \qquad RRS. \qquad M1\%.
TXPICAL* PRINT TIRE: \qquad URS. \qquad кin.
afor this fork, assume "gyplcal" to ee a single zoned doo square meter residence hith all outputs checked ($($) in SECTION 2.

TASK VIII - PASSIVE AND HYBRID SOLAR GETURN TO: LOW ENERGY DWELLING

SUBTASK B - MODELLING \& SIMULATION SUBTASK C - DESIGN METMODS

GENERAL:

TOOL NAME: $\frac{\text { STINET }}{\text { DEveloped GY: Robin Barker }} \frac{\text { Margo Mandy }}{\text { Watershed Energy Systems }}$
$\frac{97 \text { Six Point Road }}{\text { TORONTO, Ontario. M8Z } 2 \times 3}$

DATE DEveloped: January 1982
DATE OF Last Revision: June 1982
Michael Glover
Solar Energy Program
Nathonal Research Counci
Bldg. R -92
Ottawa, Ontario
KLA ORG
avallable through: University of Guelph,

PHONE KO.: \quad GMELPH,Ontario.
SUPPORTED BX: $\quad(519) \quad 824-4120$

SUPPORTED BY: \qquad
\qquad

PHONE NO:
bRIEF DESCRIPTLON: The STMNET program performs a dynamic simulation on an hourly basis using real meteorological input. The program is similar to PASOLE program. In
addition to simulating passive solar systems (direct gain, trombe wall and attached
suN space systems) the program simulates hybrid passive systems incorporating isolated rock storage which is either blower or heat pump charged.
please attach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

FOR DESIGN TOOLS REOUIRING A MAIN FRAME COMPUTER

HARDWARE:

COSTS:

ASSUMING PURCHASE OF SOFTHARE GOR USE ON PRESENT TYYE-SHARTNG:

FIRST COST:

IN-OFFICE EQUIPMENT:
SOFTUARE PURCHASE:
SUPPORI INFORMATION:
TXAE TO XNPYT AND DEBUG:
\qquad PRYNTER \qquad X
\qquad LISTING \qquad X.

OTHER \qquad

\qquad DATA MANUAD. \qquad

RUN COST/TIME:
INPUT SET-UP TIME: \qquad MAN-DAYS \qquad $1 / 2$ MAN-HOUXS

TYPYCASA RUN TYYE:
$\square>1$ HR.
[] $60 \mathrm{H}-30 \mathrm{~N}$
© $30 \mathrm{M}-10 \mathrm{H}$
$0<10 \mathrm{M}$
TYPICAL CPU TLME:
$\square>1000 \mathrm{SEC}$.
D $100-1000 \mathrm{sec}$.
㢣 5-100 SEC。
$\square<5 \mathrm{SEC}$
GFOR THIS FORH ASSUAE "TYPICAL" TO EE A SXNGLE ZONED 100 SQUARE METER RESIDENCE WITH ALL OUTPUTS CHECKED ($/$) IN SECTION 2.

ASSUMING USE OF SOFTWARE ON PUBLIC TIME SHARING GETWORKS:
NAKES AMD CONTACTS OF TIME-SHARING SERVICES WHICH HAVE THIS PROGRAM AVAILABLE (EXACT COSTS CAN BE OBTAIRED THROUGH THEN).

Robin Barker
97 Six Point Road
TORONTO, (Ontario).
M8Z $2 \mathrm{X3}$ (416) 233-3241

TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO:
LOW ENERGY DWELLING
SUBTASK B-MODELLING \& SImULATION SUBTASK C - DESIGN METHODS

GENERAL:

rool nave: BA4
devecoped gy: Hans Lund
$\frac{\text { Thermal Insulation Laborator }}{\text { Technical University of Denm }}$
Building $118-$ DK-2800 Lyngb
Denmark
date developed: \qquad
date of last revision: \qquad
\qquad
AYAILABLE THROUGH:
\qquad

PHONE NO:
bref description: The programme calculates for a room half-hour values during a whole year of room temperatures, utilizing a simplified method. Further it can calculate heating and cooling loads, taking into account sun radiation, fixed and movable sun shading devices, va* rying ventilation and infiltration, electric lighting and other
please attach any validatyon or testing reports. heat sources in the room.

TOOL HARDWARE \& AVAILABLE FORMS:
[8 MAIN FRAME COMPUTER

(COMPLETE SECTIONS $1,2,4$)
[] MAGNETIC CARD ID LISTING
G RECALL ORLY IEMORY JHTEGRATED CIRCUIT
COMPLETE SECTIONS $1,2,5)$
\square GRAPHIC OR MANUAL
© TEMPLATES, CHARTS TABLES

- Book

D DEVICE
(COMPLETE SECTIONS $1,2,6$)

CALCULATION PROCEDURES:

USER TYPE: \square INTERACTIVE G INTERACTIVE GRAPHIC B PREPARE FMEE O HAND CALCULATIOR
URITS OF CALCULATION: GI UNITS ENGLISH EOTK

CHECK ALL APPROPRIETE BOXES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE：

COHPURER TYPE：
CORE REQUIRED：
SUPPORT：
［］$>500 \mathrm{~K}$
cmc
$[$ TOIVAC
Co OTHER \qquad
EQUXPYENT：
等 USER＇S GUTDE
（8） $200=500 x$
［a］25－100k
[]$<25 x$
（5）CRT
（n）DATA KARUAK
E8 PRONTER
（2）TEXERONTY
$1]$ OTMER \qquad
costs：
ASSUMING PURCHASE OF SOFTWARE FOR USE OW PRESENY TYME SHARJNG：
grRST COST：
IHOOFEXCE EQUIMAENE：
SOFTHARE PURCMASE：
SUPPORT INFORMTION：
TSEE TO INMUR AND DEBUG： RUN COST／TIME：

RNPUT SETMETTME：
TYPYCAL＊RUN TIME：
TYPICAL CPU TLME：
MANDDAYS \qquad BANMOURS
（ty $>1 \mathrm{KR}$ 。
D］$>1000 \mathrm{sEC}$ ．
（4） 60 路 -30 M
$\mathrm{c} 30 \mathrm{M}=10 \mathrm{~m}$
2 210 m
（1） $100 \cdots 1000$ SEC．
器 5－ 100 SEC 。
R <5 gEC．
 ASSUMIHG USE OF SOFTUARE ON PUBLXC TYME SHARTAG NETWORKS：

NARES ARD CONTACTS OF TIME SHARYNG SERVICES WHLCH WAVE TTYS PROGRAH AVALLABLE（EXACT COSTS CAN BE ORTAXNED THROUGM THEK）
\qquad
\qquad
\qquad
\qquad

SURVEY FORM FOR ENERGY DESIGN TOOLS \& ANALYSIS MODELS


```
TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO:
                    LOW ENERGY DWELLING
        SUBTASK B - MODELLPNG & SIMULATION
        SUBTASK G - DESIGN METHODS
```

 GENERAL:
 TooL name: HAUSer
 developed by: Dr.-Ing. Gerd hauser
 - Gesamthechschule -
 - Gesamhochschule -
 o. Prof. Dr. -Ing. Karl Gentis
 Universitätsstrabe 2 - Postfach 6843
 date developed: 1974 -494900 Essen
 date of last revision: 1982
 available through:
\qquad

Avallaze throvas

PHONE NO.: \qquad
SUPPORTED BY: \qquad

PMONE NO.: \qquad
BRIEF DESCRIPTION: Time-step method for the calculation of the transient thermal behaviour of buildings of any size and construction. Testing report: Hauser, G.: Verfahren zur Berechnung des Temperaturverhaltens und Energieverbrauchs von Gebäuden. KI 6 (1978), H. 2, 5. 53-56.
please attach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

D main frase computer
[y MICRO-COAPUTER
D mand calculator
[hagnetlc cabs
[] listing
O wecall only hehory mitegrated carcuit
(COMPLETE SECTIONS $1,2,5$)
(COMPLETE SECTIONS $2.2,6$)
(COMPLETE SECTIONS $1,2.3$)
\square DISC
D LISTING
] RLCALL OMLY HEMORYintr orated cyrcur
(COHPLETE SECTIONS $1,2,4$)
-

INTENDED USE:

INTENDED FOR USE BY:

ARCHITECT	\square ENGEAEER	[TECHNXCTAK	RESEARCH

FHASE FOR WHYCX DESIGN TOOI WAS DEVELOPED (\& ONLY): PHASE (S) FOR WHICN DESIGN ZOOL MAY BE USEFYL (ANY NO.):
\square PRE
C] EITE ANALYSZS
rg SCHEMATICS.
D deszgn devel. - post-design serv. \& Research

MAJOR \& MINOR ENERGY COMPONENTS ADDRESSED BY TOOL:
 R Heatinc

 \qquad
 品
 LOADS SPACF TEMPS. \square BVAC SYSTEEAS PASSIVE SOLAR \square ACTIVE SOLAR \square SHADING \square ECSTEM DESIGN \square UNDERGROUND LOADS MASS \square LOADS SPACE TEMPS. \square HVAC SYSTEMS \square SASSIVE CLNG. \square SYSING DESIGN \square ECONOMICS \square SLDERGROUND LOADS D MASS GIAZING
 \square LOADS \square SOLAR ACTIV EOLAR PASSX \square ECONOMXCS
 0 PUMPS

INPUT DATA REQUIRED:

PRE-DESIGN AND SITE ARALYSIS DATA
ZOCATRON - ASSOCIATED WEATHER DATA

BULLDING TYPE AND SCHEDULE
OCCUPANCY RATES
BUMLDING AREA
SPACE TEMPERATURES
LOCAL EAERGY COSTS
GENERIC BUILDTNG SRAPE OUE TO SITE RESTRICTIONS
LOCAI CODE REQUIREMENTS (VENTIL., INSUL. ETC.)
LIGATING REQUIREMENTS
ChEMATRG DESIGR DATA ---

> BUILDING SURFACE AREAS

GLAZIRG AREAS \& ORIENTATIONS
ZONYNG
ROOM SHAPES
operatirg schedules a profiles

DOES NOT	MYKIMUM	RECOMMERDED	rotal POSSIBLE
ACCOEmODATE	XNPUT	INPUT	1kpiat

ARCHITECTURAL DESIGN DEVELOPMENT DATA
BUILDENG MATERIALS \& ASSOCIATED DATA (R, Q, E ETC. $)$
SUILDING MASS DATA
SHADIKG CEEFFICIENTS 6 DAYLXGHX TRANSMXSSION
INTERIOR SURFAGE DATA
8

8 8 8 8 8		9 8 8 8 8
8	衾	$\frac{8}{8}$

GGINEERIMG DESIGN DEVELOPMENT DATA
MECHANICAL SYSTEY DESIGN
MECHANICAL SYSTEM CONTROL
ELECTRICAL SYSTEM DESIGN
ELECTRICAL SYSTEM CONTROL
LIGHTINS SYSTE DESIGN
LIGHTING SYSTEM CONTROL
040000
Menou
000000

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

COSTS:

ASSUPING PURCHASE OE SOETWARE FOR USE ON PRESENT TIME-SRARING:
FIRST COST:

IN-OFFICE EQUIPMENT:
Softhare purchase:
SUPPORT INFORMATION:
TIME TO INPUT AND DEBUG: RUN COST/TIME:
input setmup time:
typical* run time:
TYPICAL* CPU TIME:

CRT
CARD DECK \qquad USER'S GUIDE \qquad masiodays
\qquad MAN-DAYS \qquad MAN~HOURS
D >1 RR。
D $60 \mathrm{~N}-30 \mathrm{M}$
[100-1000 SEC.
[] $30 \mathrm{n}-10 \mathrm{M}$
$0<10 \mathrm{M}$
[> 1000 sEC.
D 5-100 SEC.
$0<5 \sec$.
*FOR this form, assume "tuacal" to be a single-zoned 100 square meter residence hith ald outputs checked (\checkmark) in SECTION 2.

ASSUMING USE OF SOFTUARE ON PUBLIC TIEE-SHARING NETWORKS:
Names and contacts of time-sharimg services which have this program available (exact costs can be obtained THROUGH THEM).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

AVAYLABLE THROUGH: CNR

PHONE NO: : \qquad
supported bx: Dr. Eranco Vivona
Direzione CNR/PFE Via Nizza 128 00198 Roma
รHoNe ro.: $06-854389$
grief description: More is a sophisticated simulation tool to analyze transient loads using transfer functions. (Please find enclosed paper)
\qquad
\qquad
prease attach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

```
* hain frace computer
```

- macrom-COMPYter

O Drsc $0 \begin{gathered}\text { rape } \\ \text { Listing }\end{gathered}$ - Recall only hemory integrated cricuit
(COMPlete sections 1. 2, 6)

- hamd calculator
- magnetic card - listing

B RECALL ORLY GEMORY integrated circuit (Complete sections 1, 2, 5)
d graphic or manual

- templates, charts, tables
- воок
[0 deuzee
(COMPLETE SECTIONS 1, 2,6)
CARD DECK
TAPE
IU LIHE SHARING
LISTING - HARD COPY
(COMPLETE SECTIONS 1,2,3)

2 main frane computer

CALCULATION PROCEDURES:

OUTPUT:

LOAD DETERMINANTS:		COMPONENT		zone				buicdinc				
loads output by:		hour		day				MONTH		[] SEASON		Coyer
TEMPERATURES:	-	air		surface				graphic s	PLOT			
FUEL USE BY:	$\begin{aligned} & \text { MONTHLY CONSUMPTION } \\ & \square \text { MONTHLY PEAK pE:AND } \\ & \text { OTHER GOUS } \end{aligned}$					annual annual OTHER	CO	consumption eak demand		[g SYSTEM COMPONENTS ENERGY SySTEMS \square TOTAL BULLDING ONLX		

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

costs:

ASSUMING PURCHASE OF SOFTHARE FOR USE ON PRESENT TYHE-SHARING:
FIRST COST:

LN-OFFICE EQUIPMENT:
SOFTWARE PURCHASE:
SUPPORT INFORMATION:
TIME TO INPUX AND DEBUG:
RUN $\cos T / T I M E:$
INPUT SET-UP TIME:
TYPICAL RUN TIME:
TYPICAL CPU TSME:

CRT \qquad GRINTER \qquad TAPE \qquad LSSTIAG \qquad OTHER \qquad DATA MANUAL \qquad USER'S GUZDE \qquad MANOHOURS
\qquad $M A N=D A Y S$ \qquad

$$
1-2
$$ MAN-DAYS \qquad KANMOURS

$\mathrm{C}>1 \mathrm{HR}$
[] $60 \% 30 \mathrm{M}$
$30 \mathrm{M}-10 \mathrm{M}$
$\mathrm{L}<10 \mathrm{M}$
[5 - 100 SEC.
D < 5 sEC.

由FOR THIS FORM ASSIME "TYPICAL" TO BE A SINGLE-2ONED 100 SQUARE METER RESIDENCE WITH ALL OUTPUIS CHECKED (V) IN SECTION 2.

ASSUMING USE OF SOFTVARE ON PUBLIC TIME SHARING NETVORKS:
NAIES AND CONTACTS OF TIME SHARING SERVICES WHICH HAVE THIS PROGRAM AYAILABLE (EXACT COSTS CAN BE OBTAINED THROUGH THEM)。

Ing. Bruno Boni
C/o Fiat Engineering \qquad Via Belfiore 23 Torino

FOR DESIGN TOOLS REQUIRING A MICRO-COMPUTER

HARDWARE:

manufacturer and model number: hP $9845 / \mathrm{B}$
RANDOM ACCESS MEMORY (RAM) REQURED: \qquad x

DOES THIS TOOL REQULRE A PRINTER?
Le yes
อ ค०
SUPPORT:
6 USER's GuTDE

- data marual.
D OTHER \qquad

COSTS:

FIRST COST:
MICRO-COMPUTER: $\sim 50.000 .000$ Lire

SUPPORT INFORMATION:
USER'S GUIDE \qquad TAPE \qquad LISTING \qquad .

TIME TO INPUT, AND DEBUG: \qquad MAR-DAYS \qquad MAN-HOURS

RUN COST/TIME:

TYPICAL* ZNPUT SET-UP TXHE:
typycal mun tyme: \qquad MANODAYS \qquad BAN-HOURS

TYPICAL* PRINT TME: \qquad 4RS.
"For thls gory, assume "typical" go be a siaglemzohed 100 square reter residence hith all outputs checked (6) in section 20

FOR DESIGN TOOLS REQUIRING A HAND-HELD CALCULATOR

HARDWARE:

hanufacturer and model nthber: TEXAS INSTRUM. TT-59
supporx:
Q USER'S GUTDE
[] DATA MANUAI

U arHer
costs:
FIRST COST:
\qquad
\qquad
\qquad
\qquad ISTING

RUF $\operatorname{cost} / T \mathrm{TME}:$
TYPLCALM INPUT SETOUP TTME: \qquad HRS. \qquad MN.

TYPICALA RUN TRYK: URS. HRS. \qquad MXN。
*FOR THAS FORM, ASSUME "TYPICAL" TO RE A SINGLE-ZONED 100 SQUARE METER RESIDENCE WITH ALL OUTPUTS GMECRED (') IN SECTION 2.

A subroutine may be activated in order to evaluate the comfort conditions.

PHASE FOR WHICR DESIGN TOOL WAS DEVELOPED（I ONLY）：
 PHASE（S）FOR WHICH DESIGR TOOL MAY RE USEFUL（ABY NO．）：
D PRE～DESIGN
\square SITE ANALYSIS D SCHEMATICS
参䜌DESIGN DEVEL． \％ 2 OST－DESIGN SERV． K

MAJOR \＆MINOR ENERGY COMPONENTS ADDRESSED BY TOOL：

数網 HEATING

COOLIAG

INPUT DATA REQUIRED：

PRE－DESIGN AND SJTE ANALYSIS DATA
LOCATXON - ASSOCIATED WEATHER DAT

OCCUPANCY RATES
BCILDING AREL．
SPACE TEMPERATLRES
LOCAL ENERGI COSTS
GESERIC BUILDING SHAPE DUE TO SITE RESTRICTIONS
LOCAL CODE REQUIREMETTS（VENTIL．，INSUL．0，ETC．）
LOCAL CODE REOUIREMENT
LIGHIING REQUIREMCRIS
LIGHTING \square DHW
\square
$[0$
$[0$
SOLAR
SOLAR
\square MISCELLABEOUS
LOADS
\square FC（LUN）LEVEI
SYSTEH DESIG
D Solar active
\square EARS
DAYLighting
（FC（LUX）LEVELS
ARTIFICIAL LTNG．

ChEMATIC DESIGN DATA
BUTIDING SURFACE AREAS
GLAZING AREAS \＆ORIENTATIONS
gOLING
ROON SHAPES
OPERATING SCHEDULES \＆PROFILES

DOES NOT	MINIMM	RECOMESDED	ToSAA
ACCOMMODATE	INPUT	1NPLI	INPLT

BLIEDING TYPE AND SCHEDULE

ARCHITEGTURAL DESIGK DEVELOPMENT DATA
BLILDING METERIALS \＆ASSOCIATED DATA（R，Q，E，ETC．）
BILDING MASS DETA
SHADING CCEFFICIENTS \＆DAYLIGHT TRANSMLSSION
INTERIOR SURFACE DATA
ENGINEERIMG DESIGR DEVELOPMENT DATA
MECFARICAL SYSTEM DESIGN
MESBAIICAL SYSTEM COHIROL
ELECTKICK SYSTE DESIGN
ELECTRICA，SYSTE：CONTROL
LIGHTIN S：STE DESIGN
LIGHTING SYSTEM CORIROL

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COSTS:

ASSUMING PURCHASE OF SOFTWARE FOR USE ON PRESENS TXME-SHARING:
FIRST COST:

IN-OFFICE EQUIPMENT:
SOFTWARE PURCHASE:
SUPPORT INFORMATION:
TIME TO INPYT AND DEBUG:
RUN $\cos \% /$ TITEE:
TNPUT SETMUP TIME:
TYPICAL* RUR TIME:
TYPICAL® CPV TIME:
WFOR THIS POR
SECTION 2.
ASSIMING USE OF SOFTVARE ON PURLIC TINE-SHARING NETWORKS:
NAMES AND CONTACTS OF TIME SHARIBG SERVICES WHICH MAVE THIS PROGRAY AVALLABLE (EXACT COSTS CAN BE OBTALNED THROUGH THEN).
ISTITUTO DI FISICA TECNICA

FACOLTA' DI INGEGNERIA
VIALE DELLE SCIENZE
90128 PALERMO (ITALY)
$\frac{\text { CUC }}{\frac{\text { CENTRO UNIVERSITARIO DI CALCOLO }}{\text { VIALE DELLE SCIENZE }}}$

PLEASE ATTACH AKY VALIDATIOK OR TESTINE REPORTS.

TOOL HARDWARE \& AVAILABLE FORMS:
家 MAIN YRASE COMPUTER
[] MICRO-COMPUTER
 D LISTING - BARD COPY
(COMPIETE SECTIONS 1:2,3
\square DISC
\square TAPE
\square LISTING
\square RECALI ONIY MEMORY -
INIEGRATEL CIRCUIT

D MAGNETIC CARS
\square LISTING
\square RECALL ONLY MEMORY INTEGRATED SIRCUIT
(COMPLETE SECTIONS $1,2,5$)

D GRAPHIC OR MARURL
\square TEMPlates, Charts, tabies $\square \mathrm{BOOK}$ \square DEVICE
(COMPLETE SECIIONS $1,2,6$)

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A. MAIN FRAME COMPUTER

HARDWARE:

ASSUMING PURCHASE OF SOFTWARE FOR USE OF PRESENT TIME-SHARING:
FLRST COST:

INOOFFICE EQUYPNENT:
SOFTHARE PURCHASE:
SUPPORT INPORUATION:
TIME TO INPUT AND DEBUG:
RUN $\cos T /$ ITME:
YNPLTT SET-UP TIME:
TYPICAL* RUN TMEE:
TYPICAL" CPU TXME:

CRI \qquad PRINTER \qquad
TAPE \qquad LISTING \qquad
DATA MANDAL \qquad OTHER \qquad
\qquad DAMA HANDAL
\qquad MAN-DAYS \qquad MAM $-H O U R S$
\qquad MAR-DASS \qquad MARMOURS
$\square>1 \mathrm{KR}$.
[] $60-30 \|$
$030 M-10 M$
$0<10 \mathrm{H}$
D > 1000 SEC.
100-1000 SEC.
8 5 - 100 SEC.
E < 5 SEC .
*FOP THIS FORK, ASSUKE "TYPICAL" TO BE A SINGLEWZONED 100 SQUARE METER RESIDENCE UITK ALL OUTPUTS CHECKED (.') IN SECTIOA 2.

ASSUMING USE OF SOFTWARE ON PUBLIC TIME-SHARING NETWORES:
NAMES AND CONTACTS OF TIPE SHARING SERVICES WHICH MAVE TMIS PROGRAM AVAILABLE (EXACT COSTS CAN BE OBTAINED THROUGH THEM)

- ISIITUTO DI EISICA TECNICA
CUC
CENTRO UNIVERSITARIO DI CALCOLO
VIALE DELLE SCIEMZE
gov28 PALERMQ (ITALY)

please attach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

COMMENTS:
Program is a computer implementation of:

1. D.G. Stephenson and G.P. Mitalas:

Cooling load calculations by thermal response factor method. Ashrae transactions, vol. 73, part 1. 1967.
2. G.P. Mitalas and D.G. Stephenson:

Room thermal response factors.
Ashrae transactions, vol. 73, part 1. 1967.
3. K. Kimura and D.G. Stephenson: Solar Radiation on cloudy days
Ashrae transactions. vol. 75, part l. 1969.
4. K. Kimura and D.G. Stephenson:

Theoretical study of cooling load caused by lights.
Ashrae transactions, vol. 74, part $2,1968$.

CALCULATION PROCEDURES:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COMPUTER TYPE:
D. $2 B M$
CORE REQUIRED:
SUPPORT:
EQUIPMENT:
$[\square>500 \mathrm{~K}$
(USER'S GUIDE
CRT
$\square \mathrm{CDC}$ UNIVAC
[a] 100 os 500 K
5 Data manual
อ other \qquad
COSTS:

C OTHER \qquad
O OTHER \qquad
(25-100K $\quad \square<25 \mathrm{~K}$
TEXTRONIX

ASSUMING PURCHASE OF SOFTWARE FOR USE ON PRESENT TIME SHARING:
FIRST COST:
IN-OFFICE EQUIPMENT:
SOFTWARE PURCHASE:
SUPPORT INFORMATION:
TIME TO INPUT AND DEBUG:
RUN COST/TIME:
INPUTS SET-UP TIME:
CRT \qquad PRINTER \qquad CARD DECK \qquad TAPE \qquad LISTING \qquad USERS GUIDE \qquad DATA MANUAL \qquad OTHER \qquad
\qquad MANMDAYS \qquad MA $2=$ HOURS
\qquad MAN -DAYS \qquad MAN -HOURS
TYPICAL RUN TIME:
TYPICAL* CPU TIME:
D > 1 HR 。
[] $60 \mathrm{M} \sim 30 \mathrm{M}$
[] $30 \mathrm{M}=10 \mathrm{M}$
($<10 \mathrm{M}$
$\square>1000$ SEC.
[100 - 1000 SEC.
5 5 - 100 SEC.
$0]<5$ SEC.
-FOR THIS FORM, ASSUME "TYPICAL" TO BE A SINGLE -ZONED 100 SQUARE METER RESIDENCE WITH ALL OUTPUTS CHECKED (, IS N SECTION 2.

ASSUMING USE OF SOFTWARE ON PUBLIC TIME -SHARING NETWORKS:
NAMES AND CONTACTS OF TIME SHARING SERVICES WHICH HAVE THIS PROGRAM AVAILABLE (EXACT COSTS CAN RE OBTAINED THROUGH THEM).
\qquad
\qquad
\qquad
\qquad
\qquad

TASK VIII - PASSIVE AND HYBRID SOLAR LOW ENERGY DWELLING

SUBTASK 8 - MODELGMG \& SIMULATION
SUBTASK G DESIGN AETHODS

RETURN TO:
Ove uørgensen
faboratoriet for Varmeisoler Danmarks Tekniske Hojskole Bygning 118
2800 myngby - Danmaxk

GENERAL:

TOOL NA4E: ENCORE
DEVELOPED BY: \qquad
available throveh: \qquad
B.T. Latsen

Norwegian Building
Research Institute, 0
Oslo, Norway
date develored: 1977
Date of last revesion: 1983

Norwegian Building

Research Institute
Oslo, Noxway
PHONE NO.: (02) 469880
supported by: \qquad
Hans Engelbretsem
Norwegian Building Res. Inst.

PHONE NO.: (02) $46 \quad 98 \quad 80$
Braer ofscription: Encore is a program for calculating energy consumption of Residential buildings. Within certain limits (max. 20 rooms, 50 surfaces, etc.) Buildings of any shape and room subdivision can be analysed. Calcu lations are done hour by hour according to the "transfex function method"
of Ashrae. Contrary to most energy prograns, infiltration is caloulated
using the principle of mass balance. Both stack and wind foxces are taken into account.

TOOL HARDWARE \& AVAILABLE FORMS:

© MARK FRARE COHPUTER

- micto-computer

DI card deck
CA TAPD DECK
TME SHARING
© LISSYXNG a gard COPY
(COMPlete sections $1,3,3$)

D DISc
[1) TAPE
-] LISTIN
\square RISTING
RECALL ONLY HEMORY. retegrated circuit
(COMPLETE SECTIONS $1,2,4$)

D hand calculator
\square magnetre cabo b listing \square RECALL OKLY MEMORX hategrated chacuit
(Complete sections 1, 2,5)

- Graphic or madde
g TEmplates, cmarts, tables
$\square 800 \mathrm{R}$
Co bevice
(complete sections 3, 2, 6)

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COSTS:
ASSUMTVG PURCHASE OF SOFTWARE FOR USE ON PRESENT TIME-SHARING:
FIRST COST:
IN-OFFICE EQUIPMENT:
SOfTHARE PURCLASE:
SUPPORT information:
time to input and debug:
RUN COST/TIME:
INPUT SET-UP TIME:
 MAN-DAYS $\quad 3 \quad$ MAN-ROURS
TYPICAL* RUN TIME:
$\square>1 \mathrm{HR}$ 。

- $60 \mathrm{n}-30 \mathrm{n}$
C $30 \mathrm{M}-10 \mathrm{~m}$
(2) < 10 M
$\square>1000 \mathrm{sec}$.
[$100-1000$ SEC.
© 5 - - 100 SEC.
$0<5$ sec.
*FOR This form, assure "typical" to re a singlemzoned 100 square meter residence wim all outputs checked (${ }^{\prime}$) in section 2.
ASSUMING USE OF SOFTWARE ON PUBLIC TIME-SHARING NETWORKS:
hayes and contacts of time-sharing services which have this program available (exact costs can be obtained THROUGH THEM).
\qquad
\qquad
\qquad
\qquad

COMMENTS:

Price of program depends on buyer category:
Research Institutions are given considerably reduced price.
Commercial companies pays Nkr. 15000, (approx. . depending on support).

please artach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

EX RAIN FRAME COMPUTER
D CARD DECK TAPE (8) TIME SHARIMG [] LISTING - HARD COPX
(COMPLETE SECTIONS $1,2,3$)
[] hand calculator
D HAGNETYC CARD [LESTING
E1 MECALL ORLY MEMORY WHTEGATED CXRCUIT
(COMPLETE SECTLONS 1.2 .5)

D graphyc or manual

\square templates, charts, tables
\square BOOK
D device
Complete sections 1.2.6)
(COMPLETE SECTIONS $1,2,6$)

INTENDED FOR USE BY：

MAJOR \＆MINOR ENERGY COMPONENTS ADDRESSED BY TOOL：緘 HEATING

cooling

－lighting
\square DH－\quad misclilaneous
挴 LOADS
© Lanss ${ }^{\circ}$ － 1 SPACE TEMPS．\square SPACE TEYPS．
BYAC SYSTEMS
\square PASC SYSTEMS PASSYVE
SHADING
\square LDADS
＊PASSIVE SOLAR SHADING
［ SYSTEM DESIGN ECONOMICS
UNDERGROUND LOADS SYSTD DES
ECONOMXCS UNDERGROUND LOADS SLOPED GLAZING
（ HRSS HASS

INPUT DATA REQUIRED：

PREMESIGN AMD SITE ANALYSIS DATA
LOCATION－ASSOCIATED UEATHER DATA
BULLDING TYPE AND SCHEDULE
OCCUPANCY RATES
BUILDIN AKEA
SPACE TEMPERATURES
LOCAL ENERCY COSTS
GENERIC BUILDING SHAPE DUE TO SITE RESTRICTIONS
LOCAL CODE REQUIREMETTS（VENTILO．INSULo ETC．）
LIGHTING REQUIREYENTS

DOES NOT	MINIMU		TOTAL
ACCOMODATE	INPU：	M MPUT	

SHEMATIC DESICN DATA
BUILDIHG SURPACE AREAS
GLAZIN AREAS \＆ORIENTATLOMS
RONLVE
ROOM SHAPES
OPERATING SCHEDULES \＆PROEILES
ARCHITECTURAL DESION DEVELORMENG DATA
BULLDING YATERIALS \＆ASSOCIATED DATA（R，a, c_{0} ETC．）
BULDDING RASS DATA
SNADERG CREFELCIENTS \＆DAYLIGHT TRANSMISSIOR
GNIERIOR SURFACE DRTA
ENGINEERING DESIGN DEUELOPREMT DATA
MECHANYCAL SYSTEA DESIGN
HECHANICAL SYSTEH CONTROL
ELECTRICAL SYSTEM DESICN
ELECTRICAL SYSTEM CORIROL
LICHIINE SYSTEY DESIGN
LIGHIING SYSTEM CONTROL

04TMO®

0	0	9
0	0	8
0	0	8
0	0	8

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAN FRAME COMPUTER

HARDWARE：

computer tyee：	0 18\％	0 CDC	D unryac	\square OTHER	BURROUGHS	
core requireds	D＞ 900 K	）（100－500		－1 $25 \cdots 100 \mathrm{k}$	$\square<258$	
Suprort：	）X user＇s cumbe	［］DATA	manial．	O OTHER	PLOTPTER	
EQULPMENS：	¢ CRE	M printer	E TExtrond	Ix ¢ OTHER		

cos75：

AsSuming purchase of sofrware for use on yresent tymesharimg：NOT EOR SAJ．e
FIRST cost：
IN－OFPXCE EQUYPMENT：
sorghare purchase：
suppokt ingorgarton：
TIME TO TNPUT AND DEbUG： mun Cosidxme：

Xavut sexmer Tme：
\qquad PRENTER \qquad

> Card deck
\qquad TAPE \qquad B．ISTIMG \qquad
user＇s guide \qquad DRTA MARUES \qquad other \qquad
\qquad MAR－DAYS \qquad MAN WOURS $\underline{0,5-1}$ MAYDDYS \qquad MAR－HOUKS
TYPICALE RIN THES：
©＞ 1 K母。
［16 $60 \mathrm{~N}-30 \mathrm{~K}$
Q $30 \mathrm{~N}-10 \mathrm{k}$
有 $<10 \mathrm{k}$
TYPICAL CPU TZME：
$0>1000$ SEC．
A（ONE 1000 SEC．OUMPUT1 $)^{5-100 ~ S E C . ~}$
$\mathrm{D}<\mathrm{s} \sec \mathrm{c}$
＂FOR THIS FORM，ASSUER＂TYPICAL＂TO EE A SXNGLE－ZONED 100 SQUARE METER RESIDENCE WXTH ALL OUTPUES CHEGED（ $($ ）IN sectron 2

ASSUMING USE OF SOFTHARE ON FUBLXC TIME－SHARING NETNORKS：
hames and contacts of time－shartic services hhicas have thys prograh ryavlable（exact costs can be obtained THROUG THEM）
\qquad
\qquad
\qquad
\qquad

GENERAL:

Tool maks: BfEP
Developed By: Augembroe, G.L.M.
Building Physics Group
Dept. of Civil Engineering
Delft University of Technology
Delft, The Netherlands
avarabre whough: Augenbroe, G.L.M.
adress: Building Physics Group
Dept. of Civil Engineering
Deffe University of Technology, postbus 5048
आows wo: 015-7833862000 GR DELFT, The Neth
suppoxted ay: same as above
bate bevenged: started: 1979
DRTE OF RASE REVSEXOR: version 2.1, may 1982
BFEP is implemented on an AMDAHL $470 \mathrm{~V} / 7 \mathrm{~B}$ at the computer-centre of the Delft Univ. of Technology
 \qquad
Bras bescharion. BFEP is a finite element-based computer-program intended for the calculation of temperatures in buildings. It consists of a library of FORTRAN-Coded subroutines. Due to the modular approach, the user can define any load, climate, control, algorithm, etc. in a userwritten main program and additional userwsubroutines. Alternatively the user can simply select standard options by supplying appropriate input data. The actual conputation stage is preceded by seperate input preparation stage, the latter thus lending itself to interactive processing and data generation in any suited computer environment. As might be obvious from the above it is felt necessary to elaborate on the purpose and intended use of BFEP: (continued onattached sheet)

TOOL HAPDWARE \& AVAILABLE FORMS:

60 WAIH EMNAS COMPUKER
[1) H1CROMCOMYUEE
(T) WNO CGLCBMATOA
\square MAGRERTC EABS 1. LISTMNG C) RECALL ORLX MEMORY MATEGKATED CRRCUIT

- camo becz
ED DSSC
\square TAPS
- RECALL ONLY YEMORY IRTEGRATEG CRRCURT
[] TME SHARRPG

(COAPLETE SECTBORS \&, 2, 3)
(COMPLETE SECTIONS $l_{t} \mathrm{E}, 4$) d graphic or manval

SMTENDED YOR USE EY：

PHASE FOR WHYOH DESION 5OOL WAS DEVELOPED（I ONL．Y）：

D SRE－DESIGN	D SITE ANALYSIS	［0 SClicmatics	1 DESIGN DEVEL．	［］POSTMDESIGN SERV．	䀦	RESEARCH
PHASE（S）EOR MHICI	DESICN TOOL MAY EE	USEFUL（ANY NO．）：	\cdots			
［0］PRE－DESICN	E SITE ANALYSIS	D SCHEMATICS	紷 DESIGN DEVEL。	咀 POST－DESIGN SERV．		

\section*{MAJOR \＆MINOR ENERGY COMPONENTS ADDRESSED BY TOOL：
 | 縎 heatime | 縎 COOL． 2 NG | 駩 LIGBxing | $\square \mathrm{DH} \mathrm{\%}$ | ［］MISCELLANEOUS |
| :---: | :---: | :---: | :---: | :---: |
| 曒 LOADS | L LOADS | \％LOADS | D L．0ADS | |
| SPACE TEMPS． | SPACE TEEPS | FC（LIN）LEVELS | E SOLAR Active | \square PARS |
| 䠘 HVAC SYSTEMS | 10 HVAC SYSTEMS | \square SYSTEH DESICN | SOLAR PASSIVE | |
| 矦 PASSIVE SOLAR
 chCIVE solar | | \square ECONOMICS | ECONOMICS | ELEV．\＆ESCALATOR |
| 㭵 SMADTRG | \square SYSTDi desica | －DAYLIGRTINC FC（LINX）LEVELS | | |
| \square SYSTEM DESIGN | \square ECONOMICS | 䦪 ARTIFICIAL LTNG。 | ． | |
| ［ ECONOMICS | \square UADERGROUND LOADS | REDUCTION | | |
| IT UNDERGROUND | | | | |
| LOADS | 矢 MASS | | | |

INPUT DATA REQURRED：

PREMESTION AND SITE ANALYSYS DATA

| DOES NOT M MNIMUM RECOMUENDED POSSIBLE | | |
| :---: | :---: | :---: | :---: |
| ACCOMODATE INPUT | INPUT | INPLI |

LOCATION－ASSOCSATED WEATHEA DATA
－BUILDXNG TYPE AND SCREDULE
OCCUPANCY RATES
BUILDIMG AKEA．
SPACE TEHPERATURES
LOCAL ENERGY COSSS
GEYERIC BUTLDING SHAPE DUE TO SITE RESTRICTIONS LOCAL CODE REQUIRENENSS（VENTIL．GNSUL．E ETC．） LICHTING REQUIRERENIS

SCHEMATYC DESTCN DATA
BUI：DING SURFACE AREAS
GLAZING ARERS A ORIENTATIONS
RORING
ROOM SHAPES
OPERATING SCHEDULES \＆PROFTLES

8	8	9	0
8	8	8	0
0	8	0	8
0	8	8	0
0	0	0	8
0	0	0	8

ARCHITEGJURA，DESICR DEVELOPMENT DATA

BUSLDING MASS DATA
SBADDAG CREFFICXERTS B DAYLXGHT TRANSMESSIOH
IHIERIOR SURFACE DATA

8	8	$\frac{8}{8}$	8
8	8	$\frac{9}{8}$	8

ENGYRERYMG DESIGN DEVELOPTENZ DATA

CALCULATION PROCEDURES:

OUTPUT:

FOA DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COAPUTER TYPE:		(Ditcuc (in prep)te univac	(myother	HP 1000 (in prep)
CORE REQUIRED:	B $>500 \mathrm{~K}$	$\text { (large } 500 \mathrm{system})$	$\left(\operatorname{sina} 1^{100}-\right)^{k}$	口<25
SuPPORT:	\% USER'S GUXDE	O DRTA HANUAL	* OTHER	theor manual
EQUIPMENT:	CR	He PRIMEER DI TEXTRONS	IX \square OTHER	

$\operatorname{costs}:$

ASSUHING PURCMASE OF SOFTHARE FOR USE OH PRESENT TIME-SHARING:
FIRST COST:

INOOFEICE EQUIPMENT:
SOFTWARE PURCHASE:
support information:
TLHE TO SAPUT APD DEBUG:

\qquad
CARE DECK $-\infty$ \cdots
user's gurde included I-5 PAR-DAYS

\qquad MAN-HOURS

RUN cosT /TIME:

GPOR THYS FORM, ASSUME "TYPICAL" TO RE A SXRGBE-ZONED 100 SQUARE BETER RESLDENCE HITH ALI OUTPUTS CHECKED (') IN SECTION 2.

ASSUATAG USE OF SOFTVARE ON PUBLIC TMME-SHARIRG NETUORES:
WAGES RNO CONTACTS OF TIME SHARIRG SERVICES NHICH HAVE THIS PROGRRA AVARLABLE (EXACT COSTS CAN BE OBTALNED THROUGS THEM).
Not available
Note: BFEP is primarily developed for Batch-processing, during which data from the so-called input-model is read from a standard input file. The BFEP approach enabTes thris fite to be fithed during a thardware-dependent) interactive-pre-ppocessing stage. As yet experience in this area is lacking.

PURPOSE OF BFEP

The major distinction of BFEP as apposed to similar programs is that the user has to perform his own modelling tasks before any BFEP-calculations are performed. In this way its fruitful use is limited to a group of users, equipped with sufficient know-how and experience in the application field; moreover BFEP prohibits black-box use by inexperfenced users, unaware of its limitations, as indeed any program should.

On the other hand the user-modelling facility guarantees maximal flexibility and use in almost unlimited application areas.

INTENDED USE OF BFEP

Standard BFEP use comprises two stages:
stage 1:
preperation-stage, requiring system modelling and preparation of the input-file.

This stage can be thought of as being rather dependent upon the available computer environment (i.e. interactive file preparation, whenever possible). BFEP merely supplies so-called generation subroutines for generating the element data for the input-model of standard components (i.e. walls, rooms, etc.).

The use of finite elements allows a flexible space-discretization on component-level. Components such as solar collectors, packed beds, storage tanks, etc. are all treated uniformly, requiring only different elements.
stage 2:
Computation-stage, requiring a user-written main program and user-subroutines (Batch processing only).

In this stage the main program acts as a master-routine for all userselected actions, every action requiring the call of a BFEP-subroutine. Different standard files, containing climate data can be connected during this stage, along with the specification of loads, control-actions, etc. in user-subroutines.

LITERATURE

Background:

1. Augenbroe, G.L.M.; Finite elements in building physics. Building Physics Group, Delft University of Technology (1978).
2. Augenbroe, G.L.M.; A finite element-based computer program for the simulation of the thermal behaviour of complex systems. 8th CIB-Congres, Oslo (1980).

IEA, Task VIII, supp1. 2
3. Augenbroe, G.L.M.; Temperature calculations in buildings using a finite elementbased computer program.
Third Int. Symp. on Energy Conservation in the Built Environment, Dublin (1982).

BFEP-Manuals: (in Dutch):
4. Augenbroe, G.L.M.; Temperature calculations in buildings using BFEP. Part 1-4.
Building Physics Group, Delft University of Technology (1982).

EENERAL:

PIEASE AHAAGM ALY VADIDAS8ON OR EESTLNE REPORES

TOOL HARDWARE \& AVAILABLE FORMS:

COMMENTS:

- Mainly used for research work, PASSIM is actually used by an Ingeneer office at design level.
- The documentation of PASSIM is in project.

COMMENTS:

The input data required is:
(1) a description file for the system, which describes:

- the chosen nodes (type, ie, floating, assigned temperature, or thermostatcontrolled; initial temperature or assignation on lower / upper limit)
- the thermal capacity of each node
- the coupling constants between nodes (which may be pure conductance, natural convection, or radiation).
- the externaiheat sources on certain nodes
- the definition at solar irradiation measurements tabulation and solar constants
- the times (simulation and display timesteps, beginning end of simulation)
- an optimal title
- multiplying expressions for coupling constants
(2) a tabulated data file, which tabulates:
* the temperature of assigned nodes
- the horizontal and diffuse solar irradiation if one uses the "solar generator"
- the external heat sources if necessary

The tabulation interval may be anything, typically one may use half hour or one hour. The format has to be "GRES - fomat"; it is described in an internal report, which may be obtained by the GRES/EPFL ("Format-GRES 81". N. MOREL)

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HAROWARE:

ASSEM:VG PGREMASE OF SOPTEARE FOR USE OR YPESENT TYPE SNARING:
firss coss:

SOFGARE DERCMASE:
SUPPOR: LNTMORMADON:
TIE SO REPGT AN DEMUG: LEN cos\%/imme:

SYP! GA: MLN PRE:
gYPGCAL CBG ELME:

\qquad
CARD DECR \qquad YRKRTER
SARE \&ะ5T5M \qquad
USER'S CuIDE \qquad BATA MANLAL \qquad 07nc: \qquad
\qquad RASmDAYS \qquad has-mours

2
mancans mab-hours

D60 \% 30 ※
(2) $30 \% 10 \mathrm{n}$

- $<10 \mathrm{~m}$
g >1000 SEC.
18, $800-8000$ SLE.
D \& - 100 SEC.
- < s secs
 SEG:ION 3.

ASSMIVE USE OF SOFTVARE ON PURLIC TINESHARINE NETVORSS:

 shrocen they).
\qquad
\qquad
\qquad
\qquad
\qquad

TASK VII - PASSIVE AND HYBRID SOLAR RETUR TO:
LOW ENERGY DWELING
SUBTASK B - MODELLING \& SIMULATION SUBTASK E - DESIGN METHODS

GENERAL:

```
TOOL NAME: MODPAS
developed BX: J.C. Hadorn - D. Chuard
    - Sorane S.A.
    Route du Chatelard 52
    1018 Lausamne
bate developed: May 1982
DATE OF LaST revision: Jume 1982
AVAMLABLE throvgh: \frac{Not available}{at present}
    O-2-_O-
```



```
PHONE NO,:
brief descriptonim MODPAS = Model for Passive Systems
    solves a nodal network describing the thermal interactions
        between nodes representing parts of the system, by means
        of equivalent conductances and capacitcies
```

please attach any validation or testing reports.

TOOL HAROWARE \& AVAILABLE FORMS:

```
区 man frame computer D micro-computer
```

O hend calculator
D mageric card
\square Listang
© RECALL ORLy Mehory integrated circuit
(COHPLete sectrons 1,2,5)

DI graphic or manugh.
[] Templates, charts, tables
\square B00K
D Device
(COMPlete sections 8, 2, 6)

D DISC
M I.rsxen
\square RECALL ONLX FEMORY -integrated circutt
(COMPLETE SECTIONS 1,2,6)

MODPAS
SWITZERLANID

INTECDED FOR USE EY:
\square ARCHITECT DE ENGINEER TECHNICIAN E ERSEARCM ANALYST

- PMASE FOR WHICH DESICN TOOL WAS DEVELOPED (I ONLY):

PHASE(S) FOR MHXCN DESION TOOL PAY RE USEYUL (ABN NO.):

\section*{MAJOR \& MINOR ENERGY COMPONENTS ADDRESSED BY TOOL:区 heating B cooling
 [I LIGHTING [DT DH
 D M SCELLASEOLS
 | L LOADS | [LOADS |
| :---: | :---: |
| 1 SPACE TEIPS. | Q SPACE TEMPS. |
| \square HVAC SYSTEMS | O HVAC SYSTEMS |
| Q PASSIVE SOLAR | \square PaSSTVE ClNG. |
| \square ACTIVE SOLAK | (0) Shading |
| (2) SHADAK | O SYSTE DESIGN |
| Q SYSTEM DESTCN | \square ECONOHICS |
| [Economics | [UNDERGROUND LOADS |
| \ldots UKUERGROUND | \square SLOPED GLAZING |
| LOADS | H HASS |
 | LOADS
 FC (LUX) LEVELS | |
| :---: | :---: |
| | |
| \square SYSTEM DESIGN | |
| \square | ECONOMICS |
| \square | DAYLIGHTX SG |
| | PC LLD LEVELS |
| \square | ARTIFICLAL LTNG. REDUCTIOA |
| | |
 | LOADS solar active solar passive economics | fais PLYPS M1SC. RLECTRICAl ELEV. \& Escalator |
| :---: | :---: |

INPUT DATA REQUIRED:

TEODESICN ANO SITE ANALYSIS DATA
hocatdon - associated nerther data
SUBLUAN TYP: ARU SCHEDULE
OCCIJPANCY RATES
BLILDIVC AREA
SPACE TEMHERATURES \rightarrow if \# OUTPUT
LOCAL ENERGY COSTS
GEDERIC BLILDING SHAPE DUE TO SITE RESTRICTIONS
LOCAI CODE KEQURPEMENTS (UENTILO, BNSUGO ETG.)
LICHT8EG REQUBEEMENTS

DOES NO\%	MSNTMM	RECOMLESDED	TOTAL BOSSIBLE
ACCOMEODATE	Xnpue	XRPUT	inflet

SCHEMATIC DESIGN DATA
BUILDIRG SURFACE AREAS
GLAZIRO AREAS \& ORIENTATYONS
20:14, NC
ROOM SHAPES
OPEKATING SCHEDULES \& PROFSLES

$\begin{aligned} & 8 \\ & 8 \\ & 0 \\ & 0 \\ & 0 \\ & 0 \end{aligned}$	8 8 8 8 0	8 8 8 8 8
8	$\begin{aligned} & 8 \\ & 8 \\ & 8 \end{aligned}$	
8	$\begin{aligned} & 0 \\ & \text { 曷 } \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & \frac{8}{0} \end{aligned}$

ARCHITECTURAL DESIGI DEUELOPMENT DAEA

BUILDING MASS DATA

hrion surface dara
ano expantor
EHGINEENING DESIGN DEVELOPMENY DATA

COMMENTS:

- in general conductances and capacities are treated as constant, i.e. independant of the nodes temperatures (except for a free convection path), so that the indoor geometry is not an input: this is given through the conductances and capacities input.
- The glazing geometry is a real input and the transmitted radiation is computed for any inclination and orientation
- The repartition of the transmitted solar radiation between all nodes is also an input. It is considered as a constant for one month.

CALCULATION PROCEDURES:

OUTPUT:

COMMENTS:

The main uses of this tool are:

- Check of the maximum/minimum temperature of rooms air in greenhouse passive systems.
- Optimisation of thermal mass
- Interest and need for shading devices
- general thermal haviour of a passive house or greehouse during typical weeks or days

Example of output: follows

MODPAS
SWITZERLAivD

$$
\frac{\text { Laige greenhase }\left(2250 \mathrm{~ms}^{2}\right)}{\operatorname{using} \quad 20 \text { nodes }} \quad \text { in dwitterland, }
$$

FOR DESIGN TOOLS REQUIRING A MICRO-COMPUTER

HARDWARE:

manufacturer and hodel number: HP 9845 B
RANDOM ACCESS MEMORY (RAM) REQUIRED: \qquad 100 \qquad x bytes
DOES THIS TOOL REqUIRE A PRINTER?
$\square \mathrm{yES}$
(2) 0 and a plottex
SUPPORT:

- user's guide
- data manual
* orher short description

COSTS:

FIRST COST:
MICRO-COMPUTER: \qquad
SOETWARE: ROM IC \qquad DISC \qquad TAPE \qquad LISTING \qquad
SUPPORT INFORMATION:
USER'S GUIDE \qquad data manual \qquad OTHER \qquad
time to input and debug: \qquad MAS-DAYS \qquad MAN-HOURS RLN COST/TIME:

TYPICAL* INPUT SET-UP TIME: \qquad MAN-DAYS
1 to 3 MAN-HOURS

TYPICAL* RUN TIME:

$$
\sim 5
$$

\qquad HRS. \qquad MIN.

TYPXCAL* PRTNT TIME:
~ 0.5 hRS. \qquad mN. With plots
afor this form, assime "typical" to be a singlewzoned 100 square meter residence with all outputs checked ($(1$) in SECTION 2.

$$
+\left\{\begin{array}{l}
\text { time step: } 1 \text { hour } \\
\text { period of simulation: } 1 \text { year }(8760 \text { steps) }
\end{array}\right.
$$

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COMPUTER TXPE:	I IBM	\square	CDC		\square	UNIVAC				OTHER	PRIME	
CORE REQUIRED:	成 > 500 K		[] $100-$	500	k		E	$25-$	100	k	[] <25	
SUPPORT:	G USER'S GUIDE		\$	DATA	MAN	UAL			$\square 0$	OTHER		
EQUIPAENT:	造 CRT	\%	PRINTER		0	textron	SIX		D 0	OTHER		

COSTS:

ASSUMING PURCHASE OF SOFTWARE FOR USE ON PRESENT TIME-SHARING:
FIRST COST:

IN-OFFICE EQUIPMENT:
SOFTHARE PURCHASE:
SUPPORT LNFORMATION:
TLIE TO INPUT AND DEBUG:
GRT \qquad
CARD DECK \qquad PRINTER \qquad
TAPE
\qquad LISTING \qquad OTHER \qquad USER'S GUXDE \qquad DATA MANUAL \qquad
\qquad MAN-DAYS \qquad MAN-HOURS

RUN $\cos \pi / T I M E:$
INPUT SET-UR TIME:

TYPICAL CPU TKME:

$$
1-10
$$

MANMOURS

TYPICAL GUN TIRE:

$$
\mathrm{M}>\mathrm{MR} . \quad 60 \mathrm{M}-30 \mathrm{~N}
$$

*FOR THIS FORH, ASSUHE "TYPICAL" TO EE A SINGLE-ZONED 100 SQUARE METER RESIDENCE WITH ALI OUTPUTS CHECKED GY) IN ASSUMING USE OF SOFTVARE ON PUBLIC TIME-SHARTNG NETHORKS:

NakES AND CONTACTS of time-sharing services which have this prograb available (exact costs can be obtarned THROUGH THEM).
J. ILanz, A. Schopfex

Motor Columbus Ing. AG
Parkstr. 27,5400 Baden
tel. $05620 \quad 11 \quad 21$

INTENDED FOR USE BY:
ARChITECT ENGINEER TECHNICIAN R RESEARCH ANALYST

PHASE FOR WHICH DESICN TOOL HAS DEVELOPED (I ONLY)
\square PRE-DESIGN
C SITE ANALYSTS

- schematics
- Design devel.
post-design serv.
Q Research
phase (S) for hhich design tool may be useful (any no.):
- pre-design
0 SITE ANALYSIS
- scbematics
design devel.
POST-DESIGN SERV: RESEARCH

MAJOR \& MINOR ENERGY COMPONENTS ADDRESSED BY TOOL:
 © Heating
 B COOLING
 lighting
 Q LOADS
 D DHw
 \square MISCELLANEOUS
 LOADS SPACE TEMPS. HVAC SYSTEMS PPASSIVE SOLAR ACIVE SOLAR SHADING SYSEM DESIGN ECOYOMICS UNDERGROUND LOADS MASS

 D FC(LIXX) IEVELS
 Loads Golar active Solar passive
 \square FANS
 - ECONOMICS
 - $\underset{\text { FC(} \mathrm{LUX} \text {) Levels }}{ }$
 - artificial lung
 REDUCTION
 MASS
 MLOSS

INPUT DATA REQUIRED:

DOES NOT	Minimum	RECO	TOTAL
ACCOMMODATE	input	Input	INPUT

```
LOCATION - ASSOCIATED WEATHER DATA
BUTLDING TYPE AND SCHEDULE
    OCCUPANCX RATES
    BUILDING AREA
    SPaCE TEMPERATURES
    LOCAL ENERGY COSTS
    GENERIC BUTLDING SHAPE DUE TO SITE RESTRICTIONS
    LOCAL CODE REQUIRETENTS (VENTIL., INSUL., ETC.)
```

 LIGHIXNG REQUIREGENTS
 | 0 | 0 | 0 | \square |
| :--- | :--- | :--- | :--- |
| 0 | 0 | 8 | 0 |
| 0 | 0 | 0 | 0 |
| \square | 9 | 0 | \square |
| \square | 0 | 9 | 8 |
| 0 | 0 | 0 | 0 |

schematic deston data
BUILDING SURFACE AREAS
GLAZYNG AREAS \& ORIENTATIONS
ZONING
gOOM SHAPES
OPERATING SCHEDULES \& PROFILES

8	\square	0	0
8	0	0	8
0	0	0	

ARCHITECTURAL DESIGN DEVELOPMENT DATA
BUILDING YATERIALS \& ASSOCIATED DATA ($A_{0} a, \varepsilon, E T C$)
SUILDING MASS DATA
SHADING CREFFICIENTS \& DAYLIGHT TZANSMISSION
INTERLOR SURFACE DATA
ENGINEERYRG. DESIGN DEVELOPMENT DATA
MECHANICAL SYSTEM DESIGN
MECHANICAL SYSTEM CONTROL
ELECTRICAL SXSTEM DESIGN
LICHITNG SY STEM DESIGN
LIGHTING SysTEM CONRROL
000000
000000
000000

BAUDYN
SWITZERLAND

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE：

COSTS：

ASSUKING YURCHASE OF SOFTVARE FOR USE ON PRESEMI TIME－SHARING：
EIRST $\cos T$ ：
INOFFICE EQUIPAENT：
SOFTHARE PURCHASE：
SUPPORT INFORMATION：
TINE TO XAPUT AND DEBUG：
\qquad PRINTER \qquad
TAPE \qquad Q．ISTING \qquad
ogner \qquad
USER＇S GUIDE
MAN－DAYS data manuaj． \qquad
RUN COST／TIME：
INPUT SETMUP THE： \qquad MANODAYS \qquad MAR－HOURS
TYPICAL \＃RUA TIBE：
$\square>1$ RR。
TM $60 \mathrm{M} \times 30 \mathrm{M}$
C］ $30 \mathrm{~K}=10 \mathrm{M}$
$0<10 \mathrm{M}$
TYPICAL参 CPU TIHE：
［］$>1000 \mathrm{sEc}$ ．
$0100=1000$ gEC．
ए 5－100 SEC．
明＜S SEC。

WFOR THIS FORM ASSUME＂TYPLCAL＂TO EE A SINGLE ZONED 100 SQUARE PETER RESIDENCE WITH ALI OUYPUTS CHECKED（G）IN SECTION 2.

ASSUMING USE OF SOFTHARE ON PUBLIC TIFE－SHARING NETWORKS：
MAMES AND CONTACTS OF TIME－SHARING SERVICES WHICY HAVE THYS PROGRAM AVAILABLE（EXACT COSTS CAN BE OBTALNET THROUGS THEM）．
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GENERAL:

COMMENTS:

Taking into occount geogrophical location and elevation above sea level (maximum theoretical rodiation available), shade, cloudiness, haze, orientation (horizontal and vertical) and transmittance of glazed creas STEMOD computes the solar energy available behind translucent surfoces for any period of time by hourly aggregation.

DYWAN is o dynamic procedure to simulote the energy-household of entire buildings ond their zones in hourly intervals, taking into occount the changes in climate (solar heat gain, temperature, wind, humidity), the building's capocity for heat storage and the user behovior (ventilation when spoces are overheated by solar heat gain). DWAN is bosed on so-called 'Beuken-models" and produces realistic dato for heoting and cooling loads and energy required for any period of time when sufficient meteorological information is available.
The solar heat gainminput is derived from STEMOD. Thus, DWAN is always combined with STEMOD.

F applies to STEMOD

* applies to DYWAN

INEENDEA SOR USE EY:

PMASE FOR WHICA DESIGN TOOL WAS DEVELORED (S ONLY):
[PRE-DESYG
© SITE ANALYSIS
D Schematycs
D deszen devel.
D POST-DESIGN SERV. (\% RESEARCH

MAJOR \& MINOR ENERGY COMPONENTS ADDRESSED BY TOOL: 88

© LOADS
2 SPACE TEYPS. \square HiAC SYSTEMS 2 passive cing. shindine SYSTEM SYSTE4 DE
ECONOMY ECONOMICS SLOPED GLAZING HaSS

INPUT DATA REQUIRED:

PREDDESIG AND SITE ANASYSIS DATA

DOES NOT	SINIEXM	RECOMESDED	TOLBL cossibl.
ACCOMSODATE	INPUT	InPut	

- OCATIOK - ASSOCIATED HEATHER DATA

WiLDIH TYPE AND SCHEDLLE
OCCEPANCY RATES
BLILSIMC AKEA
SPACE TEYPERATLRES
LUCAL EYERCY COSTS
GESERIC BLILDING SKAPE DUE TO SITE RESTRICTXOMS LOCAL CUDE REUBIREMENTS (VENTILO: INSULO. ETC. hoghilic requikemits

\square DH
\square miscellaseous

GEmATIC DESIGN DATA

BUILDING SURFACE areas

goou Shapes
operating schedules a profiles

6	8	8	9
9	5	9	9
5	8	0	8

ARCHITECTURAL DESICN DEVELOPMEST DATA

BUIDIV:G MASS DATA
SHADING COEFTICIENTS G DAYLGCHE TRASMSSSIOR
InTEKIUM SURFACE DATA
翠
$\begin{array}{lll}8 & 9 & 9 \\ 0 & 0 & 9 \\ 0 & 0 & 0\end{array}$
EnGINEERImC dESAGN DEvELOPGENT DATA
MECHANICAL SYSTEY DESIGA
MECAMICAL SYSTEM CORIROL
ELECTRICAL SYSTEM DESIGN
ELECTRICAL SYSTEM CONTROL
LICHITN SYSTE DESIGR
LIGHTING SYSTEM COKTROL

000000
000000

000000

CALCULATION PROCEDURES:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

1 IRDWARE:

COMPUTER TYPE:	8 88M	8 cac	E UNIVAC	D OTHER	
CORE REQUIRED:	$\square>500 \mathrm{~K}$	20 \square^{100} - 500	k	迤 $25-100 \mathrm{~K}$	[10 25
SUPPORT:	发USER'S GUIDE	\square Dais	manuad.	D other	
gQuiphent	$\square \mathrm{CRP}$	\% PRINTER	O ctertronix	IX © OTHER	

COSTS:

ASSLUPNG PURCMRSE OF SOETMARE FOR USE ON PRESENT TIME-SHARING:
EXRST COST:

FOR THIS FORM, ASSUME "TYPICAL" TO EE A SINCLE-ZONED 100 SQUARE HETER RESIDENCE HITH ALL OUSPUTS CHECKED (V) IM SECTION 2.

ASSUINC USE OF SOTTHARE ON PUBLIC TIME SHARIAG NETWORRS:
Nams and contacts of time-sharing services uhich have this prograh available (exact costs can ge obtained
throuch them).
\qquad
\qquad
\qquad
\qquad
\qquad
\qquad

GENERAL:

please attach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

SURVEY FORM FOR ENERGY DESIGN TOOLS \& ANALYSIS MODELS

COMMENTS:

Bibliographie:

- Etude d'une structure solaire passive
M. Baussiere, O. Guisan, O. Rudaz

3 Sywposium $R+$ D Energie Solaire en Suisse
EPFL, Ecublens 19/10/81 pp. 191-200 ef.annexe

- Travail de diplome M. Baussiere, O. Rudaz Bibliotheque Ecole de Physique 24 q. E. Ansermet 1211 Geneve 4
Energie Solaire: Bilanthermique d'une cellule test
- Le programe est peu documente, doc peu utilisable par d'autres. Les resultats sont tres satisfaisants.
Cette etude ponctuelle n'est actuellement pas poursuivie.

OUTPUT:

FOR DESIGN TOOLS REQUIPING A MAIN FRAME COMPUTER

HARDWARE:

costs:

ASSUMING PURCRASE OF SOFTWARE FOR USE ON PRESENT TIKE - SHARING:
FIRST COST:

EFOR THIS FORM, ASSUPE "TYPICAL" TO KE A SINGLEWZONED 100 SQUARE METER RESIDENCE WITH ALL OUTPUTS CHECKED (.') XN SECIION 2.

ASSUMING USE OF SOFTVARE ON PUBLIC TMAE-SHARING NETVORKS:
AAMES AND CONTACTS OF TIME-SHARING SERVICES WHICH HAVE THIS PROGRAL AVALLABLE (EXACT COSTS CAN BE OBTAINED THROUGR THEM).
\qquad
\qquad
\qquad
\qquad
\qquad

GENERAL:

TOOL NAME: SOLAR TRAP
developed g\%: Dr。C.Filleux / P. Jemelka
avallable throvg: Basled \& Hofmann
$\frac{\text { Basler \& Hofmann }}{\frac{\text { Consulting Engineers }}{\text { Forchstrasse } 395}}$
Consult. Engineers

Phone No: $\frac{01 / 55 \quad 1122}{\text { Supported by: }}$| Nationaler Energie-Forschungs |
| :--- |
| \quad Fonds |

PHONE NO.:
Brier pescriptran: Dynamic simulation of enexgy flows in a active/passive systern Nodal decomposition of system. First difference solutine method Black box for active parts of system.
please attach any varidation or testing reports.
Validation over l year period in a active/passive test-cell.

TOOL HARDWARE \& AVAILABLE FORMS:

COMMENTS:
Mainly used for research work, $i . e$. for optimisation of the Solar Trap system (see e.g. Proceedings Solar World Eorum, Brighton 1981, section B). Easy to use input.

HEA

solar red

SURVEY FORM FOR ENERGY DESIGN TOOLS \& ANALYSIS MODELS

COMMENTS:

- Programs has been developped for 1 zone only
- Input file describing building geometry as well as material constants must be set up.
- Coupling constants (conductance, convective or by radiation) are defined.
- Input required is solar irradiation, horizontal or vertical south and air temperature

CALCULATION PROCEDURES:

OUTPUT:

LOAD DETERMINANYS:	(a Component	8 zone	[Bumbin			(8 YEdR
LOADS OUTPUT BY:	64 hour	(3) day	\% Monim	込	seaso	
temperatures:	80 Alr	S Surface	gi grapule plot			
FUEL USE BY:	\square MONTHLY CONSUMPTION \square monthly peak demand © OTHER ROMLY HOURLY		D AnNuAL CONSUMPTION \square annual peak dehand O OTHER \qquad		$\begin{aligned} & \text { SYSTE } \\ & \text { ENERG } \\ & \text { TOTAL } \end{aligned}$	

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE：

$\square \mathrm{CBM}$
$\square \mathrm{CDC}$
Io UNIVAC
O OTHER PRIME 450
CORE REQUIRED：
［］$>500 \mathrm{~K}$
［］ $100-500 \mathrm{~K}$
25－100k
$\square<25 k$
SUPPORT：\quad USER＇S GUIDE
\square data manuai
\％omar Final report to NEEE
EQUIPMENT：
$\square \mathrm{CRT}$
＊PRINTER
－TEXTRONIX
（ other calcomb plotter

COSTS：

ASSUMING PURCHASE OF SOFTWARE FOR USE ON PRESENT TYME－SHARING：
FIRST COST：

INOFFICE EQUIPMENT：
SOFTWARE PURCHASE：
SUPPORT INFORMATION：
TLYE TO XNPUT＇AND DEBUG
KUN COST／TIME：
INPUT SET－UP TIME：

TYPICAL＊CPU TXME：

CRT
USER＇s GUIDE \qquad MAN－DAYS
\qquad MAN－DAYS $\quad 2-3$ PRINTER \qquad TAPE \qquad LISTING \qquad OTHER \qquad
\qquad MAN－HOURS
\qquad
（1） 1 㫙。
（a） $60 \mathrm{M}-30 \mathrm{M}$
［ $30 \mathrm{M}-10 \mathrm{H}$
$0<10 \mathrm{~m}$
［＞ 1000 SEC．
驭 $100-1000$ SEC。
E 5－100 SEC．
$\square<5$ SEC．
for 1 season
GFOR THIS FORM，ASSUME＂TYPICAL＂TO IE A SINGLE－ZONED 100 SQUARE FETER RESIDENCE WITH ALL OUTPUTS CKECKED（V＇）IN SECIION 2．

ASSURING USE OF SOFTWARE ON PUBLIC TIME－SHARING NETWORKS
NARES AND CONTACTS OF TIME－SHARING SERVICES WHICH HAVE THIS PROGRAM AVATLABLE（EXACL COSTS CAN BE OBTAINED THROUGH THEM）．
\qquad
\qquad
\square
\qquad
\qquad
\qquad

SURVEY FORM FOR ENERGY DESIGN TOOLS \& ANALYSIS MODELS

COMMENTS:

Adaitional information of interest for passive solar task VIII:

SOL TRAP is able to simulate three of the foux commonly used design types, namely

- direct gain
- isolated gain (air collector + rockbed storage, where the air collector may be part of the south window)
- trombe wall (with vents)

GENERAL:

please attach any validation or testimg reports.

TOOL HARDWARE \& AVAILABLE FORMS:

COMMENTS:

The simulation model has been developed to investigate the influence of radiation processes at the building envelope to the energy consumption

- influence of solar radiation on elements heat loss and
- influence of infrased sadiation exchange (study of selective surfaces) co the net heat loss
- influence of glazed walls (absorber walls) to the solar gain

The simulation model is based on the detailed thermal balance method. The model has been validated against two test cells.

CALCULATION PROCEDURES:

units of calculation: SI units a both
CHECK ALL APPROPRIATE BOXES:

heat transfer:	[Finite difference	8 RESPONSE FACTOR	\square steady state
solar comp. calculated:	Q dffule/direct/re-Radiated	D DIffuse/direct	D total
gntegration:	\square SImple muler	C Implictit	[other
ghading:	[any solar obstruction	D OVErhang only	* no Shading
movable shading:	D daily \& seasonal smitching	D seasonal switcung	E rot calculated
mass effect is calculated:	5 Tharsient heat mow	D time constant factors	D assute no mass affect
ROOM TEAP. RASED OM:	\% SURFACE \& AIR	col alr only	D not calculated
inside temperature:	\square ynput schenule by user	C] FIXED BY \%ool	varied bi tool
U-values:	Q Change w/wind speed	O remain constant	- movable insulation
Inflltration:	Q air change per hovr	g crack method	- varies h/wind sperd
internal loads include:	- sensible \& Latent separate	Q sens. \& lat. total	- $0^{\text {a }}$ Sensible only
ventilation:	[] senstble	D Latent	* varies by schedule or comiand
daylight coemficients	D SKY, REEL \& DIRECT	O SKY \% REFL.	\bigcirc SKY ONLY
gones per run:	$0>25010-25$	-2-10	(1) 1 OnLy
SYStea modeling:	D SYSTEM EFEIC. IRPUT	■ SYSTEM OPTIMIZING	© COMPONENT SEMSITIVITY
ECOnomic analysis:	0 anNuAL COST	C) simple payback	D lafe cycle costing

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

computer ivpe:
D IBM
core required:
SUPPORT:
D > 500 K
equiphent:

* USER'S GUIDE
(\%) CDC
E UNIVAC
G OTHER \qquad
(140-500 K D $25-100 \mathrm{~K}$ D < 25 k
5 CRI
d data manual
D OTher \qquad

COSTS:

ASSUMING PURCHASE OF SOFTHARE FOR USE ON PRESENT TIME-SHARING:
FIRST Cost:

 SECTION 2.

ASSUMING USE OF SOFTWARE ON PUBLIC TIME-SHARING NETNORKS:
mafes and contacts of time -sharing services which have this prograli available (exact costs cam be obtained through them).

EMPA Abt. 151
$\mathrm{CH}=8600$ Dübendors
\qquad
\qquad
\qquad

TOOL HARDWARE \& AVAILABLE FORMS:

COMMENTS:

BLAST- 3.0 NOTES

1). Daylighting: in experimental version.
2). Interior surface data: Only by specifying a paint type in materials library.
3). Surface reflectance: Assume this means ground reflectivity based on TMY indication of snow.
4). Solution technique: conduction through envelope based on response factors zonal effects based on simultaneous equations.

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE：

COMO：00\％	5	18M		0	Ec			D	ExTVAC			5	OTHER	，
GORE REQLIRED：	\square	＞500x			8100	500	8			\square	25	100	\％	$0<25 \mathrm{~m}$
SUPPORE：	0	HSER＇S	GEDDE			DATA		natus				［10	OTMER	
E0t5Pumiti	5	C8\％		（2）	PR1WzER			1	CExTRON	888			64181	

COSTS：

ASSUETN PUACHASE OF SOFTEARE POR USE ON PRESENF FIMF－SHARIAG：
81⿷匚 coss：
\＆KOEFICE EQUIPNENT：
sofigare purchase：
SUPPORE REFORUKTION：
IITE TD IRPG AN DEEUG：
MU COS：／EIME：
IRPU SETーUS ITME：
\qquad

\qquad 295 Ty Mc \qquad USER＇S CSSDE X DATA MANUAL x \qquad OTHER \qquad 4 MAN－DAYS \qquad MAN－HOURS

2 Mali－bAys

\qquad MANMOURS

（\％） 1 MR．
10 $60 \mathrm{~m}-30 \mathrm{~m}$
（0） $100=3000$ SEC．
$30 \mathrm{~m}=10 \mathrm{~m}$
B＜ 10 m
D >1000 sEE．
\％ 5100 sEG．
O＜S SEC．
 SEcison 2.

ASSOUNG USE OF SOPTVARE ON PUETIC ITME SHARINC NETWORSS：
 ThROUG＂TEE）．
\qquad Cybernet User Seryice \qquad
\qquad
\qquad
SURVEY FORM FOR
SURVEY FORM FOR
ENERGY DESIGN TOOLS
ENERGY DESIGN TOOLS
\& ANALYSIS MODELS
\& ANALYSIS MODELS

TASK VIM - PASSIVE AND HYBRID SOLAR NETURN TO:
LOW ENERGY DWELLING
SUEYASK - MODELING \& SIMULATION
SUSTASK - DESIGN METHODS

GENERAL:

```
T00L RANE: DEROB IV
NEEODPED &Y: Erancisco AnumimeNop
AVARLABLE THROUGY: SOLENCO
    University of Texas at Austin
    School of Architestuxe
    Austin,TK 78712
BAEE DEMELOPED: }197
BATE OF LASI REVISION: 1981
```


DEROB IV

Movable shading: Possible by using movable insulation option.
Daylighting subroutines available on request from code author.

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COSTS:
ASSUMSNG FURCHASE OF SOFTVARE FOR USE ON PRESENT TMME-SHARTNG:
PYRST $\cos 5$:

IN-OFFICE EQUIPMENT: SOFTHARE PURCHASE: SUPPORT RHYORMATION: TLAE TO YRPUT AND DEBUG: RUN COST/TIME:

INPUT SET-UP TIME:
TYPICAS UN TXYE:
TYPICAL CPU TIME:

\qquad 2 MAN BAYS \qquad MAN-HOURS
茴 21 RR。
E $60 M-30 M$
(a) $30 \mathrm{n}-10 \mathrm{~m}$
$0<10 \mathrm{~m}$
[] $>1000 \mathrm{sEC}$.
(4 $100-1000$ SEC.
E $5=100$ SEC.

- 5 SEG.
 SECTION 2.

ASSUMING USE OF SOFTVARE ON PUBLIC TIME SHARING NETYORKS:
NAEES ARD CONTACTS OF TIME-SHARING SERVICES WHICR RAVE THIS PROGRAM AVAILABLE (EXACY COSTS CAN RE OBTAXRED THROUGH THEM).
\qquad
\qquad
\qquad
\qquad
\qquad

$\begin{aligned} & \text { TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO: } \\ & \text { LOW ENERGY DWELLING }\end{aligned}$

```
SUGTASK O MODELLING & SIMULATION
SUBTASK C - DESIGN METHODS
```

CENERAL:

To0\% MAME: OOE-2.1	availhble trrougr: National Technical Infor.
devexper ax: Building Energy Analysis Group	mation Service - U.S. Department of Com-
Energy and Environment Division	merce - 5285 Port Royal Road
Lawrence Berkeley Laboratory	Springfield Virginia 22161
Berkeley, California	PHONE MO. (703) 557-4650
	supported sy: Building Energy Analysis Group
Date jeveloped: May 1980	Energy and Environment Division
DaEE OF LASA gevysion:	Lawnonco Serkeley tabontory Beckeley California
,	puoxe mo:
Bras descaraliok: DOE-2 is a public domain computer program which can be used to explore	
the energy behavior of proposed and existing buildings and their associated heating,	
ventilation and air conditioning systen	

Pitase hathch any vaindatyon or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:
z yoik phag convier
[wicro-computer

- basd calculator

Ezupintes, Charts, ihexs
 © Las:anco eard copy
(Gouprete sezoons $:, 2,3$)

Exisizn
orey wrupy

(conplefe sections 1, 2, 4)

COMMENTS:
DOE 2.1
Solution Technique:
Conduction through envelope based on response factors
Zonal effects based on weighting factors
Daylighting: in experimental version

© PG5-bycser

INPUT DATA REQUIBED:

Oomparev Rytes

SPAEE TEMOREURES
COn CNE Cosas

\%m	\% 3×1.814	80000\%20\%	
hecommobrem	3nver	SNPU。	N\%

8.. $\operatorname{con}^{4} \mathrm{BG}$ SWEACE ARXRS

20:7". N
SO2M 5HAPES

CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REOUIRING A MAIN FRAME COMPUTER

HAROWARE:

COSTS:

FuEs coss:

SOTGEARE PYRCHASE:
guppori ikforuraion:
TLEE TO INPLE ARD DEQUG:
\qquad

\qquad LISTME \qquad
ornek \qquad
DaTs ManuL X \qquad Mineqours
BUN cosefogre:
INPL SETMY CIAE: MADOMAS \qquad Mandyoues
"YPICA: WN © ARE:
包) 1 2

D > 1000586.
$1060 \% \mathrm{~m} 90 \mathrm{~m}$
[] $30 \mathrm{M}=10 \mathrm{~m}$
C8 10 m
K \& - 100 sEc.

- くS 5Ec.
 SEE.ZIOA 2.

 FRRDUGE THEM).

Airflow Science Comooration/BACS Inc. \qquad
Arga Associates
Babcock and Wilcox
Boeing Computer Services
University of Massachusetts Computing Center McDornell Douglas Automation Company

Cubernet User Service
Centre Technique Industriel de in
Construction Metallique
Intermountain Technologies. Inc
Minnesota Energy Agency United Computing Systems, Inc.

TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO:

LOW ENERGY DWELLING

SUETASK 8 - MODELLING EIMULATION
SUSTASK O - OESIGN METHODS

'GENERAL:

TOO2 RN: FMPS 2.0
Qevebose ze: D. R. Merriam

- Arthur D. Little. Inc for Electric Power Research Inst.
\qquad
\qquad
Dute vercloped: Feb. 1982
DATE OF inse revegon:
Feb. 1982
phons no.: (677) 864-5770 x-5887
Brim wacnarson: EMPS 2.0 models more common passive solar designs and conventional design residential buildings. Multiple conditioned or unconditioned spaces.
which communicate by conductive and convective transport, can be modeled.
Heat or cooling energy requirenents to maintain comfort conditions are calculated for unitary, central or combination systems. System part load performance

TOOL HARDWARE \& AVAILABLE FORMS:


```
    E COFO DEX
    x-EES
```



```
    (cos==2% 5E=00N5 1, 2, 3)
        MCRD-COMPUER
        D #&,To ChaClaron
        maghenaC Chin
        O aremse
```



```
        IT TrNPE:C OR NA:MA:
```



```
        E 50N%
        Cougiect smcmions 1,2,5)
            (CDMPmete Secions 1, 2,6)
```


COMMENTS:
and duct losses (or gains) are simulated. Through the house or individual room ventilations can be modeled. Slab and/or basement heat transfers with the soil are included. The thermal balance method for establishing space thermal loads (including internal radiative couplings) is used. The user has the choice of a simplified solar gain analysis or of a detailed analysis of solar heat inputs to individucl walls/floors, etc., using solar radiation scattering matrices. Daylighting analysis is carried out. Shading by building structural elements or by detached elements is included. Backup heating/cooling equipment can be controlled by schedule and/or time of day thermostats. Room moisture balances (including the potential for moisture condensation on cold surfaces) can be simulated. The most common passive solar designs simulated are detailed solar gain, attached sunspaces, trombe wall, water wall, controlled and natural ventilation, off peak electrical heat input to massive elements, moveable insulation. A new version of the program, scheduled for completion by Dec. 1982, will include active solar water heating. dedicated heat pump, water heating, and ground coupled heat pump.

COMIVENTS:

The program is primarily a research tool. It can be used with various levels of detail in building/system description. For example, building shading may or may not be evaluated. The building can consist of only one space, or as màny as ten mutually coupled spaces. Walls may be "UR" type or have as many as 10 nodes.

CALCULATION PROCEDURES:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COSTS:

C ASSUMTNG PURCRASE OF SOFTWARE FOR USE ON PRESENT TIME-SHARING:

IN-OFFICE EQUIPMENT: CRT \qquad PRINTER \qquad
SOfthare purchase:
CARD DECK \qquad TAPE \qquad LISTING \qquad
SUPPORT INFORMATION:
USER'S GUYDE \qquad data manual \qquad other \qquad
TIME TO INPGT AND DEBUG: \qquad $\mathrm{maNa}-\mathrm{DAYS}$ \qquad man-HOURS

RUN COST/TIME:
LRPUT SET-UP TIME: \qquad MAN-DAYS \qquad RANMOURS
TYPICAL* RUN TILE:
(> 1 HR.
$06 \mathrm{M}=30 \mathrm{M}$

- $30 \mathrm{M}=10 \mathrm{M}$
$0<10 \mathrm{M}$
TYPYCAL" CPU TXME:
$\square>1000 \mathrm{sEC}$ 。
100-1000 sEC.
D 5 - 100 SEC.
D < 5 sec .
afor this form, assume "typical" to re a single-zoned loo squape teter residely sis section 2.

ASSUMING USE OF SOFTHARE ON PUBLIC TIME-SHARING NETHORKS:
mames and contacts of time-sharing services which have this prograk available (exact costs can be obtained THROUGH THEM).
\qquad
\qquad
\qquad

GENEPAL:

TOOL HARDWARE \& AVALLABLE FORMS:

```
3 Th:H FNAUE COHELONER
```



```
\% Cunci DEC:
        8 ORPE
```



```
        O-:SNSN = EART, COP:
```



```
                                E DISC 
                                E MAND Chlclimator
                                    MaGNENLC EARD
                                    LES"ING
L SSGING 
                                    INIEGRH%% rIKCULZ
    (COUF:PME SECHIONS !,2.5)
    (COMPIETE SEE&IONS 2, 2,6)
```


CALCULATION PROCEDURES:

OUTPUT:

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE:

COSTS:

FIRET COS\%:

 SEE:ION 2.

 - Th Ojom Tixul.
\qquad
\qquad
\qquad
\qquad
\qquad

15
bolas red

SURVEY FORM FOR ENERGY DESIGN TOOLS \& ANALYSIS MODELS

TASK VIII - PASSIVE AND HYBRID SOLAR RETURN TO: LOW ENERGY DWELLING
SUETASK B - MODELLING \& SIMULATION SUSTASK C - DESIGN METHODS
'GENERAL:
TOOL NAE: TRNSYS 11.1
DEVELOED BY: University of Wisconsin
AVhilhle trover: Solar Energy Laboratory
Solar Energy Laboratory
1500 Johnson Drive
Madison. Wisconsin 53706
PHONE NO.: (608) 263-1586
supported by: Solar Energy Laboratory
\longrightarrow J.E. Braun
Date of hast nevesqon: 4/81 \qquad

PHONE NO.: (608) 263-1509
Shay deschipion: TRNSYS is a modular system simulation program. It recognizes a system
description language in which the user specifies which components constitute the
Sister and the manner in which they are connected. The TRNSYS library includes \qquad
-many of the active and passive components commonly found in solar anergy systems.

TOOL HARDWARE \& AVAILABLE FORMS:

E MiN DEE:
E $-2 \mathrm{~m}^{\circ} \mathrm{E}$

[J WGGCOWDUTRR
[a] RAN CALCinstor

(CONP:ETE SEG:ONS 1,2.6)

```
                                    [) WhCRE=IC GinD
                                    D whckr=it
                                    m FEChid ONLY REMOEY 1NTとCKAT J GIRCEZ
```


COMMENTS:

The present version of TRNSYS is supplied with the following standard component models:

Data Reader
Solar Radiation Data Processor
Shading Algorithm
Flat Plate Collector
CPC Collector
Mass Wall
Direct Gain Window
Pipe And Duct
Pump/Fan
Flow Divertor/Mixing Valve/Tee Piece
Controller With Hysteresis
Three-Stage Thermostat
Microprocessor Controller
Relief Valve
Heat Exchanger
Storage Tank
Rock Bed

Heat Pump
Absorption Air Conditioner
Auxiliary Heater
Liquid Collector - Storage Subsystem
Air Collector - Storage Subsystem
Domestic Hot Water Subsystem
Energy/(degree-Hour) Space Heating or Cooling
Load
\(\left.\begin{array}{l}Wall

Roof and Attic

Room and Basement

Cyclic Time-Dependent Function Generator

Algebraic Operations Unit

Quantity Intergrator

Printer

Plotter

Time and Frequency Distribution Plotter

Simulation Summarizer

Lifecycle Ecomonmic Analysis\end{array}\right]\)| Using |
| :--- |
| Line |

In addition to the standard components listed above, TRNSYS 11.1 also contains a library of user-contributed components. These components are supported by the contributors rather than the Solar Lab. Prsesntly, this library contains models for photovoltaic and combined photovoltaic/thermal systems. They are:

> PV/Thermal Collector
> Storage Battery
> Regulator Inverter
> Electrical Subsystem

These subroutines were developed by Professor Don Evans of Arizona State University ((602) 965-3291).

The TRNSYS Manual is a 650. page document explaining the construction of the TRNSYS program and its use. The manual presents the concepts central to the TRNSYS approach to system simulation, as well as general and mathematical descriptions of each component model. Methods for formulating component models and preparing input data for system simulation are given. There are also a variety of example problems covering water heating, active or passive space heating, space cooling and building load generating simulations.

INPUT DATA REQUIRED：

LOCATIO！－ASSOEAATED WEATELR DAJA

C－

2．ictiand
STFEu4＊IC DESIQ：DATA
Eこ：MDIAG SVR゙ムRE AKEAS
GENZON AEEAS \＆ORIENSAESONS
2015 Ne
FODE SHAPES
OFEFAEXNG 5CHEDLZES \＆FPOETLES

ENE：NEEPRE DEE：GL DEVEDOPNETH DABA

EDERE：CA SYSTE NESNSH

DOES NO：	KINIMNH		
ACCOMSODATE	INP：	IRPL：	ざちご，

	5000		\％00U00000
000000	0000	DOY00	0000000001
םomberon	0000	00000	－00\％17x\％00
DUT079	50	0，0003	

CALCULATION PROCEDURES:

OUTPUT

塸及 solar fico

COMMENTS：

TRNSYS is highly flexible in terms of the systems it models，the level of detail of the analysis and the outputs of the simulation．Many components may operate in any of several modes，offering several degree of model complexity Also，the capabilities of several component routines may overlap．Building loads， for example，may be calculated using the simple＂degree－day＂（or in this case ＂degree－hour＂）load model．When more exact determination of the dynamics of a particular building is desired，the transfer function＂walls＂，＂roof＂，and＂rooms＂ can be assembled to model virtually any structure．Alternatively，TRNSYS can accept hourly loads generated by even more sophisticated load programs．

Although TRNSYS can handle several zones，it does not conveniently model natural convection between zones．

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

HARDWARE：

GOMPL	格 1 B	闗	CDE		\％	WKIVAC		䎌 0	CTHER	$\dot{\sim}$
COFE KEQ：OFED：	$\square>500 \mathrm{~K}$		1100	500	R		$25-$	100	K	b 225 k
SUPPDET：	鴚UER＇S G：JDE			DATA	MAN	URd			OTUER	
SQUIPMENI：	路 CRT	堿	PRINLER		\pm	IEXTRONIX		¢ 0	OTET	

COSTS：

Fipsi cosi：

 5EC：2OR 2．

ASSORYG LSE OF SOFTWAR OR PUEEIC TIE－SFBRING RETHORRS：

Control Data Corp．
Boeing Computer Servicos McAuto

Computer Sharing Service

Jay Fano（Minnesota）
－George Van Eushs（Washinoton）
Mr．Dwidark（Missouri）
Thomas Rallens（Colorada）

COMMENTS:
TRNSYS is written in standard ANSI FORTRAN. The program has been run on a wide variety of machines with very little or no modification. No serious problem should be anticipated in setting up the program, provided core space requirements are met.

RETURN YO:
Richard Rittelmann Burt Hill Kosar Rittelmann Assoc.
400 Morgan Center Butler PA 16001 USA

GENERAL:

avallable through: Joe Clayke developed by: Joe Clarke mance (ESP)
$\frac{\text { ABACUS }}{\text { University of Strathclyde }}$
Dept. of Architecture, 131
PHONE NO: 041-552-4400 Ext. 3021
SUPPORTED BY: ABACUS
DATE DEvELOPED: 1977
date of last revision: September 1983
Phone No.: 0415524400 Ext. 3021
brief description: ESP is a large finite-difference based program running on a mainframe or mini computer providinga detailed simulation of hourly heat flows in a multizone construction.
please attach any validation or testing reports.

TOOL HARDWARE \& AVAILABLE FORMS:

```
* main frame computer
\square MICRO-COMPUTER
```

- hamd calculator
[. magnetic card
- Listing
- RECALL ORLY Yemory integrated circuit (COmplete sections $1,2,5$)

```
D Card deck
D disc
TAPE
TMME SHARING [] LISTING - bard copy
[ RECALL ONLY MEMORYintegrated circuit
(COMPLETE sections \(1,2,3\) )
(COMPlete sections 1, 2,4)
```


CALCULATION PROCEDURES:

OUTPUT:

COMMENTS:
Finite difference integration method: Crank-Nicolson.
The choice of output period is under control of the user.

FOR DESIGN TOOLS REQUIRING A MAIN FRAME COMPUTER

DEC 10, DEC 20, HP3000, Honeywe 11. 6060, SEL, Burroughs

cosTs:

ASSUMING PURCHASE OF SOETEARE FOR USE ON PRESENT TIME-SHARING:
FIRST cost:

*FOR THIS FORM, ASSUME "typical" to e a SINGLE-ZONED 100 SQUARE meter residence hith all outputs checked (.) in section 2.

ASSUMING USE OF SOFTEARE ON PUBLIC TIME-SHARING NETWORKS:
wates and contacts of time-sharing services hhich have this program available (exact costs cas be obtaleed THROUGH THEM).
\qquad
\qquad
\qquad
\qquad

COMMENTS:

Cost of source code: E 1000 for Educationel or Research Application E 10000 for commercial Application
Time to input and debug:
For machine identical to one on which code already implemented 10 days For machine similar to one on which code already implemented 30 days. For new machine with no existing graphics facilities 120 days.

Run costtime:
Single-user machine 7 month heating season assumed.

APPENDIX 2.

IEA Solar Heating and Cooling Programme, Task VIII

Subtask B Reprensentatives

BELGIUM	```Prof. A. De Herde Unite' d'Architecture - F'ac. Sciences Appl. Place du Levant B - 1348 Louvain - la - Nueve```
CANADA	Mr. S. Barakat Division of Building Research Thermal Performance Section National Research Council Ottawa, Ontario KlA OR6
DENMARK	Mr. O. Jørgensen Thermal Insulation Lab. Technical University of Denmark Building 118 DK - 2800 Lyngby
GERMANY	Prof. Dr. Karl Gertis University of Essen $\text { P.O. Box } 6843$ D - 4300 Essen 1
ITALY	Mr. F. Butera Instituto Di Fisica Tecnica Facolta Di Ingegneria Universita De Palermo Viale Delle Scienze Palermo
NETHERLANDS	Mr. B. Poel \& P. Herulltomo BOUWCENTRUM Weena 700 Rotterdam
NEW ZEALAND	Mr. M. Donn Lecturer in Environmental Science School of Architecture Private Bag Wellington

NORWAY	Mr. Terje Wolleng Norweigian Building Research Institute P.O. Box 322, Blindern N - Oslo 3
SPAIN	Mr. E. Mezquida INI'A Torrejon de Ardoz Madrid
SWEDEN	```Mr.S.Salo̊ Dept. of Building Science P.O. Box 725 S - 220 07 Lund```
SWITZERLAND	Mr. C. Filleux Basler and Hofmann Forchstr. 395 $\mathrm{CH}-8029$ Zurich
UNITED KINGDOM	Mr. D. Bloomfield Building Research Established Department of the Environment Garston, Hertfordshire
USA	Mr. R. Judkoff Solar Energy Research Institute 1617 Cole Boulevard Golden, CO 80401

[^0]: Task VIII Passive and Hybrid Solar Low Energy Buildings U.S. Department of Energy (Ongoing).

 Task IX Solar Radiation and Pyranometry Studies Canadian Atmospheric Environment Service (Ongoing).

