

Perspektiver vedrorende solvarme nu og i fremtiden

Klaus Ellehauge Søren Østergaard Jensen

Meddelelse nr. 138

PERSPEKTIVER VEDRØRENDE SOLVARME NU OG I FREMTIDEN

KLAUS ELLEHAUGE
SøREN øSTERGAARD JENSEN

LABORATORIET FOR VARMEISOLERING
DANMARKS TEKNISKE HOJSKOLE
MEDDELELSE NR. 138
JANUAR 1984

Nærværende rapport indeholder dels en beskrivelse af solvarmeteknologien, som den ser ud i dag, dels en vurdering af solvarmens fremtidige rolle i dansk energiforsyning. Vurderingen af solvarmens fremtidige rolle er foretaget pa baggrund af den hidtidige udvikling, teknologien og ϕ konomien på området i dag og på baggrund af de teknologiske og økonomiske udviklingsmuligheder, der allerede i dag skimtes. Denne vurdering er sammenholdt med tendenserne i den $\varnothing v r i g e$ energiplanlægning og samfundsudviklingen. Det ex sket ud fra den erkendelse, at solvarmens rolle i fremtiden i høj grad er bestemt af de energipolitiske beslutninger, der træffes fremover.

Rapporten omhander kun den termiske udnyttelse af solenergi (omdannelse af solenergien til varme ved hjælp af solfangere eller passiv solvarme). Men solens energi kan også udnyttes pa andre mader. F.eks. har der indenfor solcelleomradet (omdannelse af solenergien til elektricitet) været en kraftig udvikling indenfor de seneste ar. Dette kan ogsa blive tilfældet med andre solteknologier - såvel kendte som ukendte.

Rapporten er en viderebearbejdelse af et notat, der i oktober 1983 blev udarbejdet til brug for udredningsopgaven "Den teknologiske udvikling og dennes betydning for udformningen af det fremtidige energisystem" som Forsøgsanlæg RIS \varnothing udfører for Energiministeriet. Dette notat findes som rapport nr. $83-38$ ved Laboratoriet for Varmeisolering.

I notater ϕ nskedes hovedvægten lagt pa de fremtidige perm spektiver vedrørende solvarmen, men da den igangværende debat om solvarme især beskæftiger sig med den nutidige situation, har vi fundet det relevant at udvide nævnte notat med nogle nutidige \varnothing konomiske betragtninger. Vi háber herved at rapporten kan finde anvendelse i den igangværende debat.

Gennem de sidste 10 års arbejde med solvarme i Danmark er der fremkommet gode og højtydende solvarmeanlæg．Der har i perioden været adskillige danske solvarmefabrikater，men idag er antallet af fabrikanter under 10．Afsætningen af solvarme－ anlæg har været svingende og er idag lille pa trods af，at de anlæg，der fremstilles idag，er langt bedre and de tidligere anlæg。

Internationalt set er de danske anlæg af høj kvalitet，og den danske forskning har f．eks．med brugsvandsanlæggene været først med de gode resultater．

Solvarme anvendes idag på en række omrader．

Brugsvandsanlæggene er de，der haves flest erfaringer med． Brugsvandsanlæggene dimensioneres ofte，sa de dækker 60－70\％ af husets varmtvandsforbrug．

Et brugsvandsanlæg til et eksisterende parcelhus vil typisk være på $5 \mathrm{~m}^{2}$ ．Nettoydelsen vil være ca． $380-400 \mathrm{kWh} / \mathrm{or} \mathrm{pr} \mathrm{m}^{2}$ solfanger，totalydelsen $750-1100 \mathrm{kWh} / \mathrm{g} \mathrm{r} \mathrm{pr} . \mathrm{m}^{2}$ solfanger． Prisen for et sadant anlæg er idag inclusive moms ca． $5000 \mathrm{kr} / \mathrm{m}^{2}$ solfanger．

Et gunstigere forhold mellem pris og ydelse kan opnås for større brugsvandsanlæg f．eks．til en boligblok，for anlæg til nybyggeri，hvor en varmtvandsbeholder kan spares，eller ved anlæg med billigere og maske derfor mindre holdbare kompo－ nenter．Sadanne anlæg har nettoydelser på mellem 330 og $400 \mathrm{kWh} / \mathrm{m}^{2}$ solfanger pr 。 år og totalydelser på mellem 600 og $800 \mathrm{kWh} / \mathrm{m}^{2}$ solfanger pr 。å．Prisen for sadanne anlæg er idag mellem 2500 og 3000 kr 。 pr． m^{2} solfanger inclusive moms．

Anlæg til kombineret rum－og brugsvandsopvarmning．Til et parcelhus vil et sådant anlæg typisk være på $15 \mathrm{~m}^{2}$ og dække omkring 30% af husets årlige energiforbrug（ca． 20% af rumop－ varmningsbehovet og $60-65 \%$ af brugsvandsbehovet）．

Anlægget vil have en nettoydelse på f.eks. $310 \mathrm{kWh} / \mathrm{m}^{2}$ solfanger pr. å og totalydelser pa mellem 450 og $650 \mathrm{kWh} / \mathrm{m}^{2}$ solfanger pr. àr. Prisen for anlægget vil være ca, 4000 kr . m^{2} solfanger incl. moms.

Ogsa her vil et sadant anlæg kunne udfores billigere foeks. i nybyggeri. Nettoydelsen vil vare ca. $250 \mathrm{kWh} / \mathrm{ar}$ og totalydelsen $450 \mathrm{kWh} / \mathrm{m}^{2}$ solfangex pro ar. Prisen pr m^{2} solfanger vil vare ca. 3000 kr . inclusive moms.

Hvis den forventede holdbarhed for solvarmeanlæg på 20 år opnås, kan det (med ovennævnte anlægspriser og ydelser) betale sig for brugeren at investere i solvarmeanlag - også uden statsstøtte.

Den samfundsmæssige rentabilitet afhænger dels af, hvilke faktorer der medregnes, dels af hvilken forrentning af investeringerne det findes rimeligt for samfundet at kræve. I nærværende rapport er der ikke foretaget beregninger over solvarmens samfundsøkonomi med alle direkte og afledede effekter (beskæftigelse, valutabesparelse, forurening, m.m.)。 Der er kun lavet beregninger over den samfundsmæssige driftϕ konomi (almindelig driftøkonomi uden skatter og afgifter) med to forskellige forrentninger af den investerede kapital.

De kombinerede anlæg ses at have darligere forhold mellem ydelse og pris end brugsvandsanlæggene. Til gengæld har de højere dækningsgrader.

Passiv solvarme. Udnyttelse af solvarmen ved udformningen af selve bygningskonstruktionen kan i nybyggeri ofte ske uden nævneværdig merpris.

Der kan idag \varnothing jnes nogle tekniske og okonomiske udviklingsmuligheder

Hvis det bliver muligt at fremstille solvarmeanleggene under
stordriftsforhold samt ved yderligere formindskelse af anlaggene som følge af forbedrede ydelser, vil de forannævnte priser kunne reduceres med 40 til 50%.

Endvidece findes der en rakke nye muligheder for anvendelsex af solvarme.

Anlæggene kan eventuelt billiggøres ved anvendelse af nye materialer f.eks. plastic eller ved opbygning som noflefærdige units.

Nye lagringsmetoder kan vise sig at fa afgørende betydning. Der kan her peges på smeltevarmelagre, kemiske varmepumper og damvarmelagre.

Især kemiske varmepumper og damvarmelagre kan vare velegnede som sæsonvarmelagre. For damvarmelagrene kan der allerede idag peges på. at disse med solfangerpriser, som vil kunne opnås inden fox en kortere arrakke, vil vare konkurrencedygtige med almindelig Ejernvarme, idet solvarmen vil kunne leveres til $0,30 \mathrm{kr} / \mathrm{kWh}$ 。

I hvox hoj grad, solvarmen vil finde anvendelse fremover, ex dels afhengigt af, hvoxledes prisudviklingen vil blive for den energi, som solvarmen skal erstatte, samt et sporgsmal om, hvorledes energisystemet nu og fremover bliver udformet. Bestrabelser pà at spare på den hojkvalitative energi ved at ombgge forbruget til lavkvalitative energiformer vil фge den relative og absolutte rolle, solvamen vil kunne spille i fremtiden.

I det eksisterende byggeri vil en kraftig udnyttelse af solenergien bedst kunne lade sig praktisere i forbindelse med kollektive lavtemperatur-fjernvarmenet, safremt sadanne opbygges eller omstilles til lavtemperaturnet. Man vil her kunne opbygge sæsonvarmelagre, som vil give en stor udnyttelse af solvarmen.

I nybyggexi kan passiv solvarme og lavenergiforanstaltninger bringe energiforbruget meget langt ned, men ogsa her kan kollektive solvarmeanlæg bidrage væsentligt.

Indholdsfortegnelse

1.

1.1. Udviklingen fra 1973 til 1983
1.2. Teknikken i solvarmeanlæg idag

1.2 .1. 8
1.2.1.1. Solvarmeanlæg til brugsvandsopvarmning9
1.2.1.2. Solvarmeanlæg til rum-og brugsvandsopvarmning 10
1.2.2. Andre typer anlæg 11
1.2.3. Passiv solvarme 12
1.3. Økonomien i solvarme idag 1.3
1.3.1. Holdbarhed og vedligeholdelsesudgifter 13
1.3 .2 . Solvarmeanlægs rentabilitet 14
1.3.2.1. Brugsvandsanlæg 16
1.3.2.2. Kombinerede anlæg til brugsvandswog 18 rumopvarmning
1.3.3. Passivv solvarme 20
2. Tekniske og økonomiske udviklingsmuligheder 21
2.1. Videreudvikling af kendte anlegs-og 21 komponenttyper
2.1.1. Forbedringer i ydelse 21
2.1.2. Prismæssig forbedring 23
2.1.2.1. Eventuel storproduktions indflydelse på 23anlægsprisen
$2.2=$ Udvikling af nye typer komponenter og anlæg 24
2.3. Eksempel 28
3. Udnyttelse af solvarmeteknologien set i sam- 30 menhæng med andre energiteknologier og sam- fundsstrukturer
3.1.Overordnede betragtninger30
3.2 。 Solvarmens rolle i nybyggeri 31
3.3 . Solvarme i det eksisterende byggeri 31
3.3.1. Kollektive anlæg 31
3.3.2. Individuelle anlæg 32
3.4 . Afslutning 33
4. Referencer 34
1.1. Udviklingen fra 1973 til 1983.

Principperne i et solvarmeanlæg er gammelkendte, og der har da også i århundreder været eksperimenteret med forskellige udnyttelser af solenergien. I Danmark kan den forste interesse for solvarmeanlæg dog passende dateres til energikrisen i efterået 1973. Pa dette tidspunkt havde man i udlandet (især USA og Israel) allerede praktiske erfaringer med udnyttelse af solvarme. I USA blev der fra begyndelsen af 50'erne installeret i tusindvis af solvarmeanlæg til brugsvandsopvarmning i Californien og Florida. De fra det tidspunkt faldende oliepriser udkonkurrerede dog disse anlæg. "The International Solar Energy Society" blev dannet i 1954. (ref. [1]).

En væsentlig inspiration til interessen for solvarmeanlæg herhjemme var det såkaldte "Nul-Energihus" som blev opført ved Danmarks Tekniske Højskole i arene efter energikrisen i 1973. Hovedformålet med dette hus var især at formindske energibehovet i et hus, men pa huset blev der endvidere monteret et solvarmeanlæg, som skulle udgøre en væsentlig varmekilde til husets forbrug.

I perioden 1974-1976 blev der pa Laboratoriet for Varmeisow lering udfort forskelligt forberedende forskningsarbejde vedrørende solvarmens muligheder i Danmark. Samtidig dukkede de forste danske fabrikanter af solvarmeanlæg op. Disse havde et ganske væsentligt salg i 1976 og 1977. Endvidere var en del selvbyggere gàet i gang med at bygge solvarmeanlæg.

I 1977 startede Energiministeriets (dengang Handelsministeriets) forskningsprogram om solvarme. Udførelsen af dette program blev overvejende udlagt til Laboratoriet for Varmeisolering og Teknologisk Institut.

Hovedaktiviteten i dette program blev fra starten lagt på udførelsen af 8 demonstrationsprojekter af forskellige kategorier:

```
Brugsvandsanlæg til parcelhus
Stort solvarmeanlæg til rum- og brugsvandsopvarmning på nyt parcelhus
Mindre solvarmeanlæg til rum- og brugsvandsopvarmning på ældre parcelhus
Solvarmeanlæg til brugsvand på etageejendom
Solvarmeanlæg til brugsvand i tæt lav bebyggelse.
Solvarmeanlæg til brugsvand på campingplads
Solvarmeanlæg til brugsvand på gymnasium
Solvarmeanlæg kombineret med varmepumpeanlæg。
```

Resultaterne fra disse anlæg var skuffende, idet ydelserne ikke blev som beregnet. Endvidere var mange af anlæggene behæftede med funktions- og holdbarhedsmæssige problemer. Detaljerede målinger gjorde det dog muligt at påpege manglerne samt at foreslà forbedringer.

I 1978 blev de første tanker vedrørende tilskud til vedvarende energianlæg fremført fra boligministeriets side. Indtil ordningen blev etableret i august 1979 stoppede salget af solvarmeanlæg, men samtidig dukkede en masse nye fabrikanter op pa markedet i forventning om fremtidige afsætningsmuligheder. Ved slutningen af 1979 fandtes saledes 25-26 fabrikanter på det danske marked.

Pa Laboratoriet for Varmeisolering foregik der i denne periode et arbejde med afprøvning af solfangere og varmelagre. Resultaterne herfxa førte i samarbejde med fabrikanterne til meget forbedrede udgaver af komponenterne hos en del af fabrikanterne. De offentlige tilskud til solvarmeanlæg skulle kun gives til anlæg med godkendte systemløsninger og komponenter. Til varetagelse af disse godkendelser blev Prøvestationen for Solvarmeanlæg oprettet i 1981.

Siden antallet af fabrikanter toppede i slutningen af 1979 er antallet af disse gået tilbage, således er der i 1983 kun ca. 5-6 fabrikanter tilbage.

Arsagerne til denne tilbagegang skyldes især:

- Den periodevise tilskudsordning vanskeliggjorde en stabil omsætning
- De øgede myndighedskrav vanskeliggjorde forholdene for små virksomheder, idet komponentprøvninger og systemgodkendelse paførte virksomhederne ekstra udgifter
- De skuffende resultater fra Energiministeriets demonstrationsprojekter kølnede den første optimisme omkring solvarmeanlæg。

På baggrund af udviklingen af gode komponenter samt erfaringerne fra de første demonstrationsprojekter, blev det på Energiministeriets forskningsprogram besluttet at opføre nogle optimerede "2. generations" demonstrationsprojekter. Det var nærliggende at starte med små anlæg til brugsvandsopvarmning i parcelhuse. Resultater herfra kunne så overføres til kombinerede anlæg til rum- og brugsvandsopvarmning og til større anlæg. De optimerede anlæg til brugsvand (BV300-anlæggene) blev bygget i 1980, og målingerne blev afsluttet i 1981. Resultaterne herfra var gode, idet anlæggene fungerede uden problemer, samt ydede det de beregningsmæssigt skulle. Endvidexe var systemopbygningen vasentligt forenklet og forbedret.

Udviklingen på dette punkt kan illustreres af nedenstående figur, som viser udbyttet fra en række brugsvandsanlæg i EF, som er rapporteret af EF's Performance Monitoring Group (ref. [2]).

Annual performance data

Figur 1. Brugsvandsanlæg rapporteret til EF ref. [2].

System nr. 2 er demonstrationsprojektet i Bloustrød fra 1977, medens system nr. 4 er det såkaldte BV300-anlæg. Dette anlæg var det bedst ydende af samtlige 28 rapporterede anlæg i EF, idet anlægget bade har en høj ydelse pr. m^{2} solfanger ($380 \mathrm{kWh} / \mathrm{m}^{2}$) , en høj systemeffektivitet (38% af den jndfaldne sol udnyttes til brugsvandet) samt en høj dækningsgrad (66\% af energiforbruget til brugsvand dækkes af solenergi). Endvidere var anlægget mindre og enklere end de fleste andre rapporterede systemer. (pa figur 1 synes anlæg 6 i Ereiburg at være bedre ydende, hvilket dog skyldes, at anlagget er hådere belastet og altså har mindre dækningsgrad)。

De tekniske forbedringer af brugsvandsanlæggene kan overføres til andre typer anlæg. Dette er gjort ved et kombineret anlæg til rum- og brugsvandsopvarmning, som er opført pa Laboratoriet for Varmeisolering. Dette anlæg, som har et solfangerareal pa $15 \mathrm{~m}^{2}$, yder $310 \mathrm{kWh} / \mathrm{m}^{2}$ og dækker hermed 29% af et parcelhus' samlede forbrug (et hus på $120 \mathrm{~m}^{2}$ isoleret til BR77/BR82 standard) til brugsvand og rumopvarmning.

Anlægget er foreløbig kun et forsøgsanlæg, men nar tilstrækkelige erfaringer haves, vil det kunne danne prototype for fabrikanterne på samme måde som BV300-anlæggene.

Sideløbende med forskningen indenfor de traditionelle solvarmeanlæg har der også været udfort forskning vedrørende andre anvendelser af solvarme. Saledes kan nævnes passiv udnyttelse af solvarme, d.v.s. udnyttelse af solenergi ved brug af bygningsmæssige forhold f.eks. vinduers placering m.m. Endvidere kan nævnes forskning i solvarmeanlæggenes komponenter, herunder kemiske lagre til små solvarmeanlæg og sæsondamvarmelagre til store solvarmeanlæg. Selvom resultaterne herfra på længere sigt er lovende, ex der endnu ikke i væsentlig grad sket nogen anvendelse heraf.

Konkluderende om de sidste 10 års arbejde med solenergi i Danmark kan det anføres, at der inden for de sidste ar er udviklet traditionelle solvarmeanlæg, som ex højtydende og teknisk tilfredsstillende.

Pa baggrund af materiale fra tilskudsordningen og fra fabrikantoplysninger kan det skonnes at der i dag er etableret $2.500-3.000$ solvarmeanlæg i Danmark. Ca. 59% af disse anlæg er rene brugsvandsanlæg medens størstedelen af resten er anlæg til delvis rumopvarmning og brugsvand. Den sidste kategori af anlæggene fordeler sig på forskellige anvendelsesomrader, f.eks. opvarmning af svommebassiner, brugsvand til idrætsanlæg, diverse institutioner m.m., fælles an* læg for flere boliger, eventuelt i kombination med andre energikilder f.eks. jordvarme.

I Energiplan 81 er der i basisalternativet regnet med en udbygning af vedvarende energianlæg til 150.000 anlæg i 1995. Heraf skulle der være 30.000 solvarmeanlæg. Ved en sadan udbygning skulle de vedvarende energianlæg i alt kunne levere $3,3 \%$ af landets brændselsforbrug. pa denne baggrund má den nuværende udbygning pà ca. 3.000 anlæg anses for meget lille.

Markedet for solvarmeanlæg har været meget svingende, men har måske i фjeblikket stabiliseret sig på et lavt niveau.

De gode anlæg, som produceres nu, er stadig lidt for dyre. Desværre er en af forudsætningerne for en billiggørelse, at fabrikanterne kan opnå produktioner af en vis størrelse. Der er altså tale om en slags "ond cirkel", som på en eller anden måde må brydes.

Indenfor forskningsprogrammet vil det fremtidige arbejde bl.a. derfor også blive lagt på at finde nye materialer og konstruktionsmetoder til billiggørelse af anlæggene.

1.2. Teknikken i solvarmeanlæg i dag

1.2.1. Traditionelle solvarmeanlæg

Principperne i et traditionelt solvarmeanlæg er enkle. Man kan derfor forledes til at tro, at design og konstruktion af solvarmeanlæg ikke kræver særlig ekspertise, idet selve solfangeren er den eneste komponent, som ikke er kendt fra normal VVS-teknik.

Erfaringerne fra Energiministeriets første demonstrationsprojekter viser imidertid, at en del af problemerne stammer fra, at der er benyttet normal VVS-teknik på en del af løsningerne. I et solvarmeanlæg er det saledes meget vigtigt at holde nøje regnskab med eventuelle varmetab, og det ex vigtigt at dimensionere anlagget for det rigtige forbrug. Dette har man ikke i samme grad været vant til ved traditionelle energianlæg.

I det følgende gennemgås opbygningen af êt brugsvandsanlæg og êt anlæg til kombineret rum- og brugsvandsopvarmning.

Begge anlæg er baseret på korttidslagring (d.v.s. lagring i tidsperioder på mindre end 4-5 dage).

Med den lagringsteknik (små tanklagre) som hidtil er blevet anvendt og afprøvet, er det ikke ϕ konomisk at lagre energien i længere perioder. Anvendelse af store lagre til store solvarmeanlæg vil åbne mulighed for et gennembrud for solvarme.

Et principdiagram for et typisk brugsvandsanlæg er vist på Eigur 2.

Anlagget er vist i forbindelse med et eksisterende oliefyret opvarmningssystem. For et normalt vandforbrug pa $1501 /$ døgn i et parcelhus, vil en passende størrelse pa anlægget være $4 \mathrm{~m}^{2}$ solfanger samt 200 liter vand-lager. Et sådant anlæg vil kunne dække 60-70\% af energibehovet til varmt vand og have en arlig ydelse på $380 \mathrm{kWh} / \mathrm{m}^{2}$.
Dette forudsætter at solfangeren er effektiv evt. med selektiv belægning. For at undga store varmetab fra lagerbeholderen skal undgåelige kuldebroer være placeret forneden i lageret. Rфrforbindelser skal være ført ned säledes, at varmt vand ikke ved selvcirkulation cirkulerer ud i rørsystemet. Indløb af det kolde brugsvand skal være placeret forneden i beholderen og udtaget af varmt brugsvand foroven. Herved sikres temperaturlagdeling i.

Figur 2. Principdiagram: Tilkobling af brugsvandsanlæg til eksisterende varmtvandsanlæg.
tanken. Varmeveksleren i solfangerkredsen skal være placeret lavest i tanken, så den i videst muligt omfang arbejder pà det kolde vand i lagertanken. Af фvrige komponenter til anlægget skal der være:
ekspansionsbeholder
cirkulationspumpe
kontraventil
sikkerhedsventil
differenstermostat til styring af pumpen.

I de fleste installationer vil der endvidere skulle etabo leres en skoldningssikring。

Sofremt det er muligt at placere solfangeren lavere end lagertanken, kan anlægget fungere ved naturlig cirkulation, hvorved pumpe og styring kan spares.

I nybyggeri eller hvor der etableres nye varmeinstallationer, vil solvarmeanlægget kunne sammenbygges med det ϕ vrige varme" system, således at der kun er én varmtvandsbeholder. Dette vil give en okonomisk fordel, og vil i forbindelse med f.eks. et gasfyr kunne udføres som en kompakt og velfungerende enhed. Ved renovering af kedelanlæg i eksisterende bebyggelse kan de samme fordele opnas.

Endvidere vil solfangeren kunne gøres billigere ved integration i tagkonstruktionen.
1.2.1.2. Solvarmeanleg til rum- og brugsvandsopvarmning.

Principdiagxammet for et sadant anlæg til et eksisterende hus er vist pa naste side.

Foruden at fungere som et brugsvandsanlæg er der medtaget rumopvarmningsmuligheder, som fortrinsvis vil være af værdi i forårs- og efterårsmånederne.

Tilslutningen til det eksisterende opvarmningssystem sker i det viste anlæg ved en separat radiator, som i fyringssæsonen udelukkende kører pa solvarmeanlægget. En passende størrelse for et sadant anlæg til et normalt parcelhus vil E.eks. være 10-15 m^{2} solfanger og lagerbeholder 500-1000 liter (inklusiv varmtvandsbeholder)。 Et sadant anlæg vil kunne yde $310 \mathrm{kWh} / \mathrm{m}^{2} / \mathrm{ar}$ med en dækningsgrad af husets tota-

Figur 3. Solvarmeanleg til rum o og brugsvandsopvarmning. kv: koldt brugsvand. vv: varmt brugsvand. Fyringssason: V1: 2-3. Solvarmeradiator kører på lageret, de eksisterende radiatorer pà kedel.
Fyr afbrudt: $V 1: 1-3$. Alle radiatorer kører pà lageret.
le varmebehov på ca. 30% (heraf brugsvand $60-65 \%$ og rumopvarmning 20-25\%, (i et hus på $120 \mathrm{~m}^{2}$ isoleret til BR77/BR82 standard).

I forbindelse med nybyggeri vil solvarmeanlægget lettere kunne integreres med husets totale varmesystem, dette vil billiggøre solvarmeanlægget. Hvor stor en dækningsgrad af rumopvarmningsbehovet, der vil være optimal, er dog usikkert, da dette skal ses i sammenhæng med mulighederne for passiv solvarme og lavenergiforanstaltninger.

1.2.2. Andre typer anleg

De forannævnte solvarmesystemer er de mest benyttede i Danmark i dag, og de der haves mest viden om. De kan naturligvis udfores i mange variationer og i større skala til institutioner eller større bebyggelser. En sådan mindre opskaw lering vil ikke volde problemer, og vil ofte kunne billiggøre anlæggene relativt (i $\mathrm{kr} / \mathrm{m}^{2}$ solfanger). En speciel anvendelse er opvarmning af svømmebassiner.

I udlandet anvendes ofte solvarmesystemer med luft som varmebærende medium med lagring i E.eks. stenlager. Sadanne
anlæg kan have fordele, men anvendes mest i forbindelse med luftopvarmningssystemer, der har ringe udbredelse i Danmark.
1.2.3. Passiv solvarme

Ved passiv solvarme kan hele bygningen betragtes som en stor "beboelig" solfanger, der har relativt store vinduer eller glasdækkede opholdsarealer, som vender mod syd, sydøst eller sydvest.

Bygningen er samtidig en "beboelig" lagerenhed. Lagringseffekten opnås ved, at der placeres materialer med $h \not{ }^{\prime}$ j varmekapacitet i bygningskonstruktionen. Disse materialer kan være beton, teglsten, vand, O.s.v. Materialerne opsuger varmen fra solindstrålingen og afgiver den, når rumtemperaturen falder.

Varmeoverførslen sker hovedsagelig ved naturlige drivmidler - stråling, konvektion og varmeledning.

Udnyttelse af passiv solvarme behøver ikke at medføre væsentlige ændringer i forhold til traditionel byggemåde. Solvarmeudnyttelsen kan ske efter følgende principper:

- vindueskonstruktioner
-- glastilbygninger
- solvægge
(ref. [3]).

Udnyttelse af passiv solvarme ved hjælp af vindueskonstruktioner er muligt i nybyggeri, hvor en bevidst planlægning af vinduer og husets varmeakkumulerende evne kan medføre en bedre udnyttelse af solindfaldet.

En glastilbygning til et hus kan udover en brugsmæssig fordel medføre en række energimæssige besparelser.

Endelig kan der opføres solvægge hvor princippet er, at solstralingen absorberes i en vægflade og transmitteres ind i bygningen til senere dækning af en del af energiforbruget til bygningens varmetab.

Udnyttelsen af passiv solenergi er ved at finde indpas ved projektering af nybyggeri, men har næppe større praktisk betydning i den i dag eksisterende boligmasse. Da en del af de passive udnyttelser kan udføres uden væsentlig merpris i et nybyggeri, er der dog ingen tvivl om, at passiv udnyttelse vil vinde større udbredelse.

Hvorledes balancen i fremtidigt byggeri mellem passiv solw varme og lavenergiforanstaltninger (isolering m.m.) bliver, er svært at afgøre, men ved udnyttelse af begge muligheder er der dog ingen tvivl om, at energiforbruget i fremtidigt byggeri vil være væsentligt lavere end nu (xef. [17]).
1.3. фkonomien i solvarme i dag
1.3.1. Holdbarhed og vedligeholdelsesudgifter

I forbindelse med vurdering af rentabiliteten af en investering i et solvarmeanlæg, må der indgå en vurdering af, hvor længe solvarmeanlægget kan holde, samt hvilke vedligeholdelsesudgifter der vil forekomme.

I de nutidige anlæg er det kun solfangeren, som ikke er en traditionel VVS del. For den del af solvarmeanlægget, der ikke er solfanger, vil det derfor være rimeligt at regne med en holdbarhed på 20 år, som man normalt regner med for VVS komponenter.

For solfangere ex det vanskeligt at vurdere, hvor længe de kan holde, da der i Danmark kun haves erfaringer, som højest strækker sig over 10 ar. De seneste ars arbejde med dette problem (bl.a. ved hjælp af accelererede holdbarhedsprøvninger) tyder dog på, at for velgennemtænkte solfangerkonstruktioner vil der kunne regnes med holdbarheder på 20 ar eller mere. De holdbarhedsproblemer, som er registreret, har alle kunnet henføres til uhensigtsmæsige konstruktioner - f.eks. utætte indaækninger m.m. Af de solfangere, der forhandles idag, vil
nogle formentlig have holdbarheder pa 20 ar eller mere, medens andre næppe vil kunne holde så længe.

For et rigtigt udfort solvarmeanlag med langtidsholdbare komponenter vil den årlige vedligeholdelse være minimal eller praktisk taget lig nul. Det vil dog nok være rimeligt at medregne en mindre årlig vedligeholdelsesudgift på f.eks. 20 kr . pr. m^{2} solfanger incl. moms. For et $5 \mathrm{~m}^{2}$ brugsvandsanlæg vil beløbet altså udgøre 100 kr årligt. Dette beløb kan f.eks. dække udskiftning af glas i solfangeren som følge af beskadigelse på grund af stenkast el. lignende. Eller det kan dække efterfyldning af glucol pa anlægget som følge af overkogning.

Hvis solvarmeanlægget substituerer et oliefyr i sommerperioden, vil det ved afbrydelse af oliefyret være en god ide at fo renset dette. Udgiften hertil vil dog rimeligt kunne regnes til oliefyrets normale vedligeholdelse.
1.3.2. Solvarmeanlægs rentabilitet

Økonomi for investeringer kan beregnes pa flere forskellige mader. Her er valgt at se på kapitalværdien i forhold til anlægsprisen. Kapitalværdien er fremtidige indtægter og udgiftex tilbagediskonteret til anlægsaret. Kam pitalværdien er altså den pris, anlægget maksimalt må koste for at være rentabelt.

I tabel 1 er forudsætningerne for de følgende \varnothing konomiberegninger opstillet.

Tabel 2 viser nuværdifaktoxerne fox private og samfund for levetider pa henholdsvis 15 og 20 ar. Nuværdifaktorerne bruges til at tilbagediskontere fremtidige indtægter og udgifter til anlægsaret.

I de følgende beregninger antages det, at den arlige driftsudgift er $20,-\mathrm{kr}$. pr. m^{2} inkl. moms. I beregningerne tages der også hensyn til cirkulationspumpernes forbrug af elek-

	Privat \quad konomi	Samfundsøkonomi 1)
Gasoliepris 7)	$0,350 \mathrm{kr} / \mathrm{kWh} 2)$	0,246 kr/kWh 2)
El-pris	0, $725 \mathrm{kx} / \mathrm{kWh} 2$)	$0.439 \mathrm{kr} / \mathrm{kWh} \quad 2)$
Prisstigninger (inflation)	8\% p.a. 3)	8\% p.a. 3)
Energiprisstigninger	10% p.a. 4)	10\% p.a. 4)
Nominel kalkulationsrente	16\% 5)	$9 \circ \mathrm{l}$ 17,7\% 6)
Marginal . skatteprocent	55\%	0\%

Tabel 1. 1) Samfundsøkonomi beregnet som foreskrevet af Energiministeriet. Der indgå ikke hensyn til beskæftigelse, forurening, valutariske konsekvenser, m.m.
2) Priserne er fra 15. sept. 1983.

I energipriserne under samfundsøkonomi er ikke medtaget skatter og afgifter (herunder moms).
3) Tallet stammer fra [4], der bygger pa Det ϕ konomiske Rads Sekretariat.
4) 2% realprisstigning på energi er hentet fra [5].
5) Opringning til Handelsbanken uge 40 1983. Banken beregner sig ud over renten en provision på 2% af det lante beløb.
6) 9% svarer til en realrente på $0-1 \%$. 17,7\% - realrente $=9 \%$ - benyttes af Energiministeriet. Energiministeriet kræver saledes en højere forrentning end private.
7) For gasolie regnes med en nedre brændværdi på $10.000 \mathrm{kcal} / \mathrm{kg}=9.77 \mathrm{kWh} / 1$ 。

Levetid	Privat		Samfunds	
	Energipris	Andre priser	Energipris ${ }^{\text {1) }}$	Andre priser
15	18.55	15.93	15.129 .11	13.948 .06
20	26.51	21.64	20.2110 .59	18.189 .13

Tabel 2. Nuværdifaktorer.

1) Første kolonne er beregnet med en nominel kalkulationsrente på 9\%, anden kolonne med 17.7\%.
tricitet. Derimod er der ikke medregnet offfentligt tilskud.

1.3.2.1. Brugsvandsanlæg

Opvarmning af brugsvand er i dag den anvendelsesmade, der er mest udbredt indenfor solvarmeomradet. I det følgende beregnes økonomien for fire forskellige anlæg:

1) Anlæg på $5 \mathrm{~m}^{2}$ solfanger med en lagerbeholder på 2501. Det daglige forbrug er $2001 /$ døgn ved $45^{\circ} \mathrm{C}$. Et sadant anlæg koster $22.500,-k x$ excl. moms (inkl. moms: 27.450, - kr). Anlagget er bexegnet til installation i eksisterende byggeri, hvor det skal supplere enten en moderne ellex en ældre kedel. Totalydelsen pr. ár bliver 3.800 og 5.470 kWh for henholdsvis en moderne og en aldre kedel. Totalydelsen ex den nyttiggjorte energi fra solvarmeanlægget korrigeret for kedlens virkningsgrad plus sparet tomgangstab i sommermanederne, hvor fyret er slukket. For en moderne kedel regnes med en virkningsgrad på 0,85 og et tomgangstab på 350 W. De tilsvarende tal for en ældre kedel er 0.75 og 600 W .
Tallene stammer fra [6] og svarer til, hvad der er måt på de seneste demonstrationsanlæg.
2) Brugsvandsanlæg til en boligblok med 15-20 lejligheder. Anlægget er pa $40 \mathrm{~m}^{2}$ solfanger, det daglige forbrug er 2000 1. varmt vand. Anlægget antages at have samme arlige nettoydelse pr. m^{2} som det lille brugsvandsanlag - $380 \mathrm{kWh} / \mathrm{m}^{2}$. Varmetabet fra store beholdere er mindre pr. volumenenhed end for små beholdere. Det gælder bade for lagerbeholderen i solvarmeanlægget, men især for varmtvandsbeholderen i forbindelse med kedlen. Der regnes derfor med, at tomgangstabet fra kedlens varmtvandsbeholder er $1 / 3$ mindre pr. volumenenhed end fra en parcelhuskedel. Den arlige totalydelse for anlægget bliver da 23800 og 30900 kWh for henholdsvis en moderne og en gammel blokcentral. Et sadant solvarmeanlæg vil ifølge [7] koste omkring 100.000 kr. excl. moms (122.000,- kr inkl. moms).
3) Et solvarmeanlæg, der er billiggjort ved brug af enk-
lere og billigere komponenter. Anlægget er pa $6 \mathrm{~m}^{2}$ solfanger og har en årlig nettoydelse pà 2000 kWh (Dette tal er skonnet ud fra erfaringer med andre anlægstyper - der er endnu ikke foretaget malinger pa anlegget). Dette svarer til en totalydelse pa 3500 og 5000 kWh for henholdsvis en moderne og en ældre kedel som back-up-enhed. Prisen på anlægget er angivet til 12.300, - kr. excl. moms, (15.000, - kr inkl。moms) [8]
4) Anlæg til nybyggeri: Her er der muligt bade at spare pa materialer og monteringsomkostninger. Således er det muligt kun at have en varmtvandsbeholder, hvor bade solvarme og fyr er tilkoblet - en såkaldt kombibeholder. Anlægget゙ er pa $5 \mathrm{~m}^{2}$ og har en total arlig ydelse pa $3300 \mathrm{kWh} i$ forbindelse med en moderne kedel. En ældre kedel ex ikke aktuel i nybyggeri. Anlægget vil kunne laves for en merudgift på 14.500, -kr. excl. moms (17.690,- kr inkl. moms) [9].

Det skal bemærkes at priserne under 1) er erfarede priser, medens priserne 2) og 4) er beregnede. Prisen under 3) er opgivet af forhandleren. Priserne er uden offentligt tilskud.

Tabel 3 viser, hvor stor en brøkdel kapitalvardien udgør af anlægsprisen.

Som det ses af tabel 3 , kan det allerede i dag betale sig for forbrugeren at investere i solvarme (ogsa uden statstilskud), hvis anlæggene holder i op mod 20 ar. Samtidigt ses det, at anlæggenes rentabilitet stiger, nåx anlægget vokser, når der anvendes billigere materialer og hvis anlægget installeres samtidigt med husets opforelse. I dette notat er der ikke forsøgt at konkludere pa samfundsøkonomien, idet valget af forudsætninger er endnu vanskeligere her end ved privat ϕ konomi. Desuden er investeringernes afledede effekter pă samfundsøkonomien ikke medregnet.

Brugsvandsanlæg		Kapitalværdi divideret med anlxgspris			
Anlæg	levetid åx	privat pkonomi $^{\text {a }}$		samfundsøkonomi	
		back-up-enhed		back-up-enhed	
		moderne kedel	ældre kedel	$\begin{gathered} \text { moderne } \\ \text { kedel 1) } \end{gathered}$	ældre kedel 1)
$\left.5 \mathrm{~m}^{2} \quad 1\right)$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{gathered} 0,79 \\ 1,13 \end{gathered}$	$\begin{aligned} & 1,18 \\ & 1,69 \end{aligned}$	$\begin{array}{ll} 0,54 & 0,33 \\ 0,73 & 0,38 \end{array}$	$\begin{aligned} & 0,820,50 \\ & 1,100,58 \end{aligned}$
$\left.40 \mathrm{~m}^{2} \quad 2\right)$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 1,11 \\ & 1,60 \end{aligned}$	$\begin{aligned} & 1,49 \\ & 2,13 \end{aligned}$	$\begin{array}{ll} 0,76 & 0,46 \\ 1,02 & 0,54 \end{array}$	$\begin{aligned} & 1,030,62 \\ & 1,37 \end{aligned} 0,72$
$\begin{align*} & \text { billigt an- } \\ & \operatorname{læg} 6 \mathrm{~m}^{2} \end{align*}$	$\begin{aligned} & 15 \\ & 20 \end{aligned}$	$\begin{aligned} & 1,28 \\ & 1,85 \end{aligned}$	$\begin{aligned} & 1,93 \\ & 2.77 \end{aligned}$	$\begin{aligned} & 0,89 \quad 0,54 \\ & 1,190,63 \end{aligned}$	$\begin{array}{ll} 1,34 & 0,81 \\ 1,79 & 0,94 \end{array}$
Anlæg i nybyggeri $5 \mathrm{~m}^{2} 4$	15	$\begin{aligned} & 1,07 \\ & 1,53 \end{aligned}$	-	$\begin{array}{ll} 0,74 & 0,45 \\ 0,99 & 0,52 \end{array}$	- -

Tabel 3. Kapitalværdi divideret med anlægsprisen. Når tabelværdien er over 1, kan investeringen betale sig. Hvis værdien er under 1, skal prisen pa anlægget formindskes med (1-wtabelværdien) x100\%, før invew steringen bliver rentabel. Anlægsprisen er excl. tilskud, men inkl. montage.

1) Forste kolonne er beregnet med en nominel kalkulationsrente på 9\%, anden kolonne med 17.7\%.

1.3.2.2. Kombinerede anlæg til brugsvands-og rumopvarmning

Her er beregnet ϕ konomi for to anlæg:
5) Anlæg i eksisterende byggeri. De anvendte tal er malt pa et demonstrationsanlæg pa Lab. for Varmeisolering, DTH. Anlægget yder næsten det samme pr. m^{2} som brugsvandsanlæg - $310 \mathrm{kWh} / \mathrm{m}^{2}$ ar $\bmod 380 \mathrm{kWh} / \mathrm{m}^{2}$ år. Anlægget har et solfangerareal på $15 \mathrm{~m}^{2}$ og en lagerbeholder på

1200 1. Anlægget er dimensioneret til at dække 29\% af det årlige behov (opdelt på 21% af rumopvarmningsbehovet og 62\% af brugsvandsforbruget). Anlæggets årlige totale ydelse (incl. tomgangstab) er pa 7220 og 9360 kWh for henholdsvis en moderne og en ældre kedel. Prisen på anlægget vil være 51.000 exci. moms og statstilskud (62.220, -kr inkl. moms) [10].
6) Anlæg i nybyggeri. Anlægget ex på $10 \mathrm{~m}^{2}$. Den arlige totale ydelse vil være 4400 kWh i forbindelse med en moderne kedel. Merudgiften vil være 22.200, \quad kr. excl. moms og statstilskud (27.100, - kr. inkl. moms) [11].

Som det ses af tabel 4 skal anlæggenes pris reduceres med mellem 0 og 40% for at være rentable (uden statstilskud) for brugeren.

Kombineret brugsvands og rumopvarmningsanlæg		Kapitalverdi divideret med anlregspris			
Anlæg	$\begin{gathered} \text { levetid } \\ \text { ar } \end{gathered}$	privat \varnothing konomi		samfunds ϕ konomi	
		back-up-enhed		back-up-enhed	
		moderne kedel	ældre kedel	moderne kedel 1)	ældre kedel 1)
eksisterende byggeri $15.7 \mathrm{~m}^{2}$	15 20	$\begin{aligned} & 0,63 \\ & 0,91 \end{aligned}$	$\begin{aligned} & 0.86 \\ & 1.23 \end{aligned}$	$\begin{aligned} & 0,430,26 \\ & 0,580,31 \end{aligned}$	$\begin{aligned} & 0,590,37 \\ & 0,79 \\ & 0,42 \end{aligned}$
nybyggeri	15	0,86	-	0,59 0,36	-
$10 \mathrm{~m}^{2}$ 6)	20	1,24	\cdots	0,79 0,42	-

Tabel 4. Kapitalværdien divideret med anlægsprisen.

1) Første kolonne er beregnet med en nominel kalkulationsrente pa 9%, anden kolonne med 17.7%.

Ved sammenligning mellem et kombineret anlæg og et rent brugs-
vandsanlæg synes det kombinerede anlæg at have en lidt darligere \varnothing konomi. De kombinerede anlæg er dog ikke lige så veludviklede som brugsvandsanlæggene, billedet kan derfor let forrykke sig. Da et kombineret anlæg har en større dækningsgrad af hele husets varmebehov, kan dette tale til fordel for det kombinerede anlæg. Også ved kombinerede anlæg er det en \varnothing konomisk fordel at installere anlægget samtidigt med opforelsen af huset.
1.3.3. Passiv solvarme

Udnyttelse af passiv solvarme kan i nybyggeriet ofte ske uden nævneværdig fordyrelse af byggeriet. Såfremt udnyttelsen af passiv solvarme kan ske i overensstemmelse med komfortmæssige og bygningstekniske krav, vil en sadan udnyttelse ligge lige for.
For andre passive udnyttelser, der vil medføre en ændring i bygningens brugsværdi (positiv eller negativ), er det vanskeligt at opgøre ϕ konomien.

I dette afsnit vurderes hvilke udviklingsmuligheder, der er på solvarmeområdet. I en sådan vurdering må der dels tages udgangspunkt i de anlægstyper, der kendes og udnyttes i dag, dels i nye anlægstyper, der evt. fremover kan spille en rolle.
2. 1 Videreudvikling af kendte anlægs - og komponenttyper

Som det fremgor af det foregående afsnit er man idag naet langt med ydelsen for solvarmeanlæg. Den årlige solindstråling på en sydvendt flade med en hældning pa 45° fra vandret er i Danmark ca. $1200 \mathrm{kWh} / \mathrm{m}^{2}$ ar. Brugsvandsanlæggene har saledes en systemeffektivitet pa lige over 0,3 . Den teoretisk opnàlige systemeffektivitet er lig solfangerens starteffektivitet, som idag, afhængig af dæklagets optiske egenskaber og absorberens belægning, ligger mellem 0,8 og 0,9 . Denne hфje systemeffektivitet kan kun opnås, hvis solfanger, rør og lager intet varmetab har. Dette er kun muligt, hvis den onskede brugstemperatur er lig omgivelsernes temperatur. De hфje systemeffektiviteter kan således opnås i forbindelse med f.eks. opvarmning af svømmebassiner. Men jo h申jere temperaturer der ønskes, jo storre bliver varmetabet, og systemeffektiviteten falder derfor. I det følgende gennemgàs forst kort mulighederne for ydelsesmæssige forbedringer, dernæst mulighederne for prismassige forbedringer, idet det er her, der er de storste muligheder for forbedring af solvarmeanlægs rentabilitet.

2.1.1 Forbedringer i ydelse

Nar der i det følgende diskuteres ydelsesmæssige forbedringer, skal dette ses i forhold til de gode anlæg, som er udviklet idag. Det er klart, at disse anlæg endnu ikke er slået helt igennem på solvarmemarkedet. Størstedelen af de eksisterende anlæg har en mindre ydelse pr. m^{2}.

Ved selve solfangeren er det især varmetabet, der kan nedsættes. I [12] er det angivet, at det ved omhyggelig optimering og materialevalg skulle være muligt at sænke varmetabet for solfangeren fra $5,5 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ (der gælder for de bedste solfangere idag) til $3 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ 。 I samme retning trækker ideerne om fremover at udfore solfangerne i storre moduler, idet kanttabene saledes reduceres.

En sadan forbedring af solfangeren vil for et typisk brugsvandsanleg ($4 \mathrm{~m}^{2}$ solfanger og 200 l lager) betyde et ϕ get udbytte på 11\%. Denne forbedring af solfangeren kan ske uden væsentligt højere produktionspris.

I stedet for en for申gelse af ydelsen, er det mere nærliggende at mindske solfangerarealet, saledes at den samme ydelse som idag opnås. For et typisk brugsvandsanlæg ($4 \mathrm{~m}^{2}$) vil det betyde en formindskelse i solfangerarealet pa $0,95 \mathrm{~m}^{2}$ eller næsten 25\%.

Også akkumuleringsbeholderne i solvarmeanlæg kan forbedres. Her er der flere ting, der kan gøres: Eorbedring af varmeoverføringen fra solfangervæsken, forøgelse af muligheden for temperaturlagdeling, formindskelse af varmetabet, forbedrede rørfфringer, m.m. Sådanne forbedringer i beholderudformningen vil for et typisk brugsvandsanlæg фge totaludbyttet mellem 5 og 10\%. Som beskrevet ovenfor vil det ogsa her være muligt i stedet at mindske solfangerarealet. Dette vil yderligere formindske den nødvendige anlagsstørrelse.

I dag arbejdes der pa at forbedre grundlaget for dimensionering af solvarmeanlæg. Det vil resultere i mindre anlægsstørrelsex, men med samme ydelse som idag. Den bedre og mere optimale dimensionering af anlægget vil i sig selv give en reduktion i anlægsprisen.

De solvarmekomponenter, der er på markedet idag, har alle været produceret i forholdsvis kort tid. Der må derfor med tiden ventes en prisreduktion alene som $f \varnothing l g e$ af optimal materialevalg og optimalt valg af produktionsproces.

En ændring i systemudformningen, således at solvarmeanlæggene opbygges af letsammenbyggelige moduler, vil lette montagen. Dette vil dels billiggøre anlæggene, dels formindske fejlmulighederne og derved \varnothing ge den gennemsnitiige ydelse fra anlæggene.

2.1.2 Prismæssig forbedring

For de enkelte anlægstyper kan en prismassig reduktion dels ske gennem et større salg, der vil formindske produktionsomkostningerne, dels gennem optimeret anvendelse af materialerne (evt. indførelse af nye materialer). Yderligere forbedringer i ydelsen (mindre anlæg), bedre systemløsninger og installationsvenlighed vil også virke prisreducerende.

2.1.2.1 Eventuel storproduktions indflydelse pa anlægsprisen

Prisen for solvarmeanlæg under $10 \mathrm{~m}^{2}$ kan idag opdeles på følgende måde:

solfanger	40%
beholder + andet tilbeh ϕr	30%
montage	$30 \%,[13]$.

"Andet tilbehør" er pumpe, styringssystem, rør, fittings o.s.v.

Gennem storproduktion kan priserne reduceres. Dette vil ske som følge af storindkøb af materialer (ingen halvfabrikata), rationalisering af arbejdsgangen, bedre udnyttelse af maskinparken m.m. I ref. [13] er det angivet, at ved en produktion pa over $40.000 \mathrm{~m}^{2}$ solfangere pr. ar pr. fabrikant (i 1981 har ingen dansk fabrikant leveret over $1.000 \mathrm{~m}^{2}$) vil detailprisen på solfangere kunne reduceres med ca. 43\%.

Prisen pr. m^{2} solfanger for en traditionel solfanger vil sa iflg. [13] blive 763 kr (1982-priser excl. moms). [12] angiver prisen for en solfanger med den svenske absorber "Sunstrip" til $64 \mathrm{ECU} / \mathrm{m}^{2} \simeq 510 \mathrm{kr} / \mathrm{m}^{2}(1983-\mathrm{kr}$ 。). I produktionen af "Sunstrip" er der virkelig tale om storproduktion, idet den installerede produktionskapacitet er på 2 mio $\mathrm{m}^{2} \mathrm{pr}$. år.
\emptyset get afsætning af solvarmeanlæg vil betyde, at fabrikation af akkumuleringstanke til solvarmeanlæg bliver en selvstændig produktion og ikke som idag en sideproduktion hos beholderfabrikanterne. Dette vil ifølge ref. [12] betyde en reduktion i prisen pa beholder + andet tilbehør på ornkring 20%.

Den \varnothing gede afsætning af solvarmeanlæg vil give plads for egentlige solvarmemontører. Disse vil blive så trænede i installation af solvarmeanlæg, at en reduktion i monteringsprisen ifølge ref. [13] på 25% ex mulig. En produktion af solvarmeanlæg i moduler vil yderligere reducere denne udgift.

Prisen på små solvarmeanlæg kan altså reduceres på følgende måde:

```
solfanger
beholder + andet tilbehør
montage
```

43\% af $40 \%=17 \%$
43% af $40 \%=17 \%$
20% of $30 \%=6 \%$
25% af $30 \%=\frac{7,5 \%}{30,5 \%}$

For større anlæg ($>10 \mathrm{~m}^{2}$) vil reduktionen blive større, idet solfangeren -- hvor den største reduktionsmulighed findes vil veje tungere i den samlede pris. [13] angiver den samlede m^{2}-pris for brugsvandsanleg mindre and $6 \mathrm{~m}^{2}$ (incl. stordriftsfordele) til $2.800-3.000 \mathrm{kr}$., hvorimod et anlæg pa $100 \mathrm{~m}^{2}$ antages at ville koste 1.600 kr . pro m^{2}.
2.2 Udvikling af nye typer komponenter og anlæg

Der arbejdes idag på flere omrader på at forbedre solvarmens konkurrenceevne. Dette arbejde foregå især inden for fire delområder: a) Anvendelse af billigere materialer, b) integrerede løsninger, c) andre mader at indsamle solenergien på og d) andre mader at lagre varmen på.
a) Der næres idag store forhåninger til plastic som et fremtidigt materiale i solfangere. Plastic har flere fordele: Det korroderer ikke, visse plasticsorter er
billigere, det er mindre energikrævende i fabrikation, lettere, m.m. Til gengæld har det i фjeblikket nogle ulemper: Dårlig stabilitet ved høje temperaturer og nedbrydning over for ultraviolet bestraling. Der er dog begrundet had om, at disse problemer kan loses inden for dette arti. I [12] regner man med, at det vil være muligt at fremstille absorbere til 176 kr . pr. m^{2}, der er pa højde med de højtydende absorbere, vi har idag. Absorberen "Sunstrip" (uden inddakning) koster omkring 300 kr . pr. m^{2}. En sadan reduktion i materialeprisen vil, selv efter at stordriftfordele er udnyttet, betyde, at prisen pa selve solfangeren kan halveres.
b) Der findes allerede idag adskillige anlæg, hvor solfanger og lagertank er integreret i en unit som f.eks. anbringes på et tag eller i haven. Herved spares ror, armatur, isolering o.s.v. samtidig med, at f.eks. rortabene reduceres. Udviklingen fremover vil nok vise nye bud pa sadanne anlæg. Men der er især muligheder for at integrere solvarmeanlægget med husets ϕ vxige varmesystem. Sadanne $1 \phi s$ ninger vil være oplagte i nybyggeri. ogsa i eksisterende byggeri vil sadanne "nøglefærdige" opvarmningssystemer komme pa tale ved renovering af eksisterende systemer. I et lavenergihus vil rumopvarmningsbehovet være af samme storrelsesorden som brugsvandsopvarmningen. De gængse oliefyr vil da vare overdimensionerede, og der må udvikles nye opvarmningssystemex.
Et solvarmeanlxg i kombination med f.eks.et gasfyr kan i sådanne tilfalde udføres billigt, især hvis det udføres i en rationel produktion.
c) I flere lande forskes der idag i højtydende solfangere。
 lille varmetab - $1 \mathrm{~W} / \mathrm{m}^{2}{ }^{\circ} \mathrm{C}$ (absorbere i evakuerede glas$r \varnothing r)$ eller koncentrerende solfangere. Disse solfangere vil (iflg. [12] og [14]) inden for en kortere arrække blive konkurrencedygtige med plane solfangere. Dette vil betyde, at markedet for solvarme bliver udvidet betydeligt, idet disse solfangere kan arbejde effektivt ogsa ved temperaturer over $100^{\circ} \mathrm{C}$. El-produktion v.h.a. solvarme, plus en Rankinéproces med kølemiddel (f.eks.
freon) som arbejdsmedium, kan da blive en mulighed.

Solfangere, hvor det varmetransporterende medium er luft, frembyder også nogle spandende muligheder for videre udvikling. Disse solfangere er især velegnede til rumopvarmning i huse med luftvarme, idet der her spares varmeveksling mellem solfangermedium og varmesystem. Luftsolfangere har en mindre ydelse pr. m^{2} end vaskesolfangere, til gengald er produktionsomkostningerne lavere.
d) Solvarmens største problem er, at energien især forekommer om sommeren, hvor der kun er et lille behov for den, medens behovet om vinteren er stort. Varmen skal altsà sæsonlagres for at kunne dække hele opvarmningsbehovet. En sadan lagring betyder, med de idag benyttede lagre, et stort varmetab. Derfor er det mest rentabelt med de i dag benyttede sma vandlagre kun at dække 65% af brugs vandsbehovet og under $1 / 3$ af rumopvarmningsbehovet.

Nar sæsonlagringsproblematikken $1 \phi s e s, ~ v i l$ dette være et afgørende skridt for solvarmens udnyttelse.
Der kan idag peges på følgende muligheder for mere \varnothing kom nomisk lagring af solvarme: Smeltevarmelagre, kemiske varmepumper og damvarmelagre.

Ved et smeltevarmelager forstås et lager, hvor en stor del af den lagrede varmemengde afgives/optages under materialets storkning/smeltning。Da smeltevarmen pr. volumenenhed er serlig stor for uorganiske salthydrater, er disse velegnede som lagringsmedium. Ydermere findes der en række uorganiske salthydrater med smeltepunkt i det (for aktive solvarmeanlæg) interessante temperaturomrade: $30^{\circ} \mathrm{C}-60^{\circ} \mathrm{C}$.

Et salthydrat er et vandfrit salt med tilsvarende krystalvand. Det vandfrie salt har den egenskab, at det under afkøling ved en vis temperatur - smeltepunktet - binder vand til sig i krystalgitre under afgivelse af varme. Tilm føres disse krystaller senere varme, smelter de ved en konstant temperatur - smeltepunktets temperatur - under
optagelse af varme. Smeltevarmen, som både optages og afgives ved smeltepunktets temperatur, anvendes således ved varmelagringen.

Fordelen ved et smeltevarmelager er stor varmelagringskapacitet i et snævert temperaturinterval omkring smeltepunktet. Disse lagre kræver derfor mindre plads og isolering end vandlagre. Desuden bliver muligheden for udnyttelse af stratifikationen i lagrene bedre pa grund af salthydratkrystallernes ringe varmeledningsevne. Ulempen ved lagrene er \varnothing get komplicitet og derved en fordyrelse pr. volumenenhed i forhold til vandlagre. Smeltevarmelagre kan blive ϕ konomisk attraktive i forhold til vandlagre, men der kræves yderligere udviklingsarbejde før dette må nås.

Smeltevarmelagre vil fortrinsvis finde anvendelse som korttidslagre, da denne lagringsform indebærer et vist vaxmetab, som dog er mindre end for vandagre.

I forbindelse med sæsonlagring frembyder den kemiske varmelagring (her en kemisk varmepumpe) to meget væsentlige fordele: Den ene ex energitatheden, der er op til 10 gange større end for vandlagre. Den anden fordel er, at energien kan lagres tabsfrit sa længe som ønsket. Princippet i kemisk varmelagring er at forbruge overskudsvarme (f.eks. solvarme) til en varmekrævende, reversibel kemisk proces, og derefter lade processen forløbe baglæns under varmeudvikling, nar der er behov for varmen. Ved at adskille reaktionsprodukterne, forhindres den varmeudviklende proces i at forløbe. Reaktionsprodukterne kan desuden lagres ved omgivelsernes temperatur, pà den måde opnås en tabsfri lagring af energien.

Den kemiske varmepumpe vil kunne udføres med en maksimal effektafgivelse inden for vide grænser og vil derfor sammen med et lager af passende størrelse kunne udføres til individuelle såvel som kollektive anlæg. Der vil blive
tale om anlæg, der i høj grad anvender kendt teknologi. Det må antages, at der til styring og hjælpeapparater skal bruges elektrisk energi svarende til 5-10\% af den omsatte varmemangde.

Der mangler stadigt et stort udviklingsarbejde, for den kemiske varmepumpe kommer pà markedet. Men alt tyder pà. at problemerne $k a n$ løses, og at denne lagringsmade vil blive ϕk onomisk fordelagtig i forhold til dagens vandlagre.

Hvis det drejex sig om kollektiv opvarmning v.h.a. solvarme er maske især lagring i store damme interessant. Her udnyttes, at overfladen og dermed varmetabet falder pr. volumenenhed, nar lageret gøres større. Da det kun er nødvendigt at isolere lageret i toppen, vil lageret blive billigt pr. m^{3} og pr. lagret kWh. Denne lagringsform beskrives ikke nærmere her, idet en udførlig beskrivelse findes i et andet notat [15] i samme sexie som dette notat. Idag tyder meget på, at anlægsprisen for damvarmelagre kan komme ned på $50 \mathrm{kr} . / \mathrm{m}^{3}$. Dette sammenholdt med en solfangerpris på $500 \mathrm{kr} . / \mathrm{m}^{2}$ (som jvf. de foregãende afsnit kan blive nået inden for en kortere arrokke) vil bevirke, at solvarme kan konkurrere med en fjernvarmepris pa ca. $0.30 \mathrm{kr} . / \mathrm{kWh}$ [15]. Prisen på fjernvarme er 0,3 og $0,53 \mathrm{kr} . / \mathrm{kWh}$ for henholdsvis K obenhavn og Hillexød [16].

De foregående afsnit beskriver nogle muligheder for reduktion af anlægsprisen pa solvarmeanlæg. Der beskrives dog ikke, hvor stor en reduktion der kan opnås, hvis flere af mulighederne udnyttes samtidigt. Det er ikke muligt at give en generel beskrivelse af den samlede mulige reduktion i anlægsprisen på solvame, idet den er afhængig af anlægstype, størrelse og anvendelsesform. Her vil blive gennemgået et eksempel for, hvor meget anlægsprisen for et brugsvandsanlæg på $4 \mathrm{~m}^{2}$ solfanger med 2001 lagerbeholder kan reduceres.

Indsatsomrade	Reduktion $i \frac{\circ}{o}$		
	Solfanger	Beholder + tilbeh ϕr	Montage
Forbedret ydelse	$25-? 1)$	-	-
Stordrift	43	20	25
Billigere materialer	$502)$	$? 3)$	-

Tabel 5. Reduktionsmuligheder af anlægsprisen.

1) Her er kun medtaget reduktionen som følge af mindsket varmetab fra solfangeren. Forbedringer af lagrene vil give en reduktion i samme størrelsesorden. Hvis begge forbedringer foretages samtidigt, vil den samlede reduktion blive mindre end summen af reduktionerne, men større end den største enkeltreduktion.
2) Halveringen af solfangerprisen er efter at stordriftfordelene er medregnet.
3) Andre materialer kan også inddrages i lagrene. I denne rapport er det dog ikke undresøgt, hvilke reduktionsmuligheder det vil give.

Som det fremgår af de foregående afsnit, er der mulighed for større reduktionsmulighedex end tabellen antyder. Hvis fordelingen over anlægsprisen fra side $2 l$ benyttes kan den samlede reduktionsmulighed beregnes.

Solfanger	$0,4 \cdot 0,75 \cdot 0,57 \cdot 0,5$	$=0,09$
Beholder + tilbehør	$0,3 \cdot 0,80$	
Montage	$0,3 \cdot 0,75$	
		0,23

Med de her foreslåede forbedringer kan anlægsprisen pa et lille brugsvandsanlag reduceres med 45%. For store solvarmeanlæg, hvor selve solfangeren (hvor der er den største reduktionsmulighed) vejer vasentligt tungere i den samlede anlægspris, samtidigt med at montagen bliver billigere pr. m^{2}, er der mulighed for en st申rre reduktion end eksemplet antyder.
3. Udnyttelsen af solvarmeteknologien set i sammenhæng med andre energiteknologiex og samfundsstrukturen

I det foregaende kapitel er vurderet, hvilke muligheder solvarmeteknologien i sig selv har Eremover. Det er klart, at i en vurdering af,hvilken rolle solvarmen kan spille i fremtiden, skal solvarmen bade ses i sammenhæng med andre energiteknologier og i sammenhæng med udviklingen i samfundet.
3.1. Overordnede betragtninger

Termisk solvarme er hovedsagelig en lavkvalitativ energiform, da virkningsgraden for anlæggene er højest ved lave temperaturer. Solvarmens marked ex derfor især rumopvarmning, varmt brugsvand og industrielle processer, hvor der kan anvendes lave temperaturer.

Solvarmens rolle i den fremtidige energiforsyning er saledes i høj grad afhængig af muligheden for at anvende lave temperaturer i opvarmningssystemerne.

Bestræbelser på at spare på den højkvalitative energi ved at omlægge forbruget til lavkvalitative energiformer vil øge den relative og absolutte rolle, solvarme vil spille i frem tiden.

Ogsa anvendelsesmåden af de forskellige energiformer har betydning. Saledes vil bestræbelser på kun at anvende højkvalitative energiformer, der hvor disse er nodvendige (kraft, lys, proces, o.s.v.), øge solvarmens muligheder, idet konkurrencen pa det lavkvalitative energimarked bliver mindre. Hvis f.eks. naturgassen blev udnyttet til kombineret el-og varmeproduktion i kraftvarmeværker, ville naturgassen fa en mindre del af det øvrige varmemarked, end der i dag planlægges med. Omrade IV (uden naturgas eller overskudsvarme) vil da vokse med deraf følgende mulighed for større udbredelse af solvarmen.

Den øgede kraftvarmeproduktion vil betyde flere fjernvarmenet. Hvis de opbygges som lavtemperatursystemer, vil muligheden for udbygning med solvarme ϕ ges.
3.2.

Solvarmens rolle i nybyggeri

Tendenser peger på, at bortset fra byfornyelsen i bykernen, vil en stor del af fremtidens byggeri blive udført som tæt lav bebyggelse. Sadanne bebyggelser vil være velegnede for indpasning af passiv solvarme, som sammen med isoleringsforanstaltninger vil bringe rumopvarmningsforbruget ned pa et meget lavt niveau. Endvidere vil de være velegnede for kollektive lavtemperaturanlæg。 Her vil solvarmeanlæg med sæsonlagring i kemisk varmepumpelager eller damvarmelager absolut blive en realistisk løsning.

For individuelle boliger vil opvarmningsbehovet kunne klares med et meget lille varmeanlæg. Her vil et mindre solvarmeanlæg, som er indpasset i varmesystemet, kunne levere en stor del af husets varmeforbrug på en ϕ konomisk fordelagtig måde.

I hvor høj grad solenergien vil finde anvendelse i nybyggeri, afhænger af byggeriets placering i forhold til omradeinddelingen og er derfor et energipolitisk spørgsmå.
3.3. Solvarme i det eksisterende byggeri

3.3.1 Kollektive anleg

I forbindelse med traditionelle fjernvarmenet kan individuel brugsvandsopvarmning med solenergi (i fyringssæsonen form varmning af brugsvand) blive en realistisk mulighed. Det vil da være muligt at standse fjernvarmeværket i sommermånederne og derved spare det store ledningstab pr. forbrugsenhed, der er i disse måneder.

Hvis solvarme skal dække en stor del af Danmarks energibehov, er det nødvendigt, at den udnyttes kollektivt. For her ligger det største opvarmningspotentiel samtidigt med, at sæson-
udjævningen bliver lettere at foretage.

Kollektiv udnyttelse af solvarme lader sig bedst praktisere i forbindelse med lavtemperaturfjernvarme. Effektiviteten af både solfanger og lager falder med et stigende temperaturniveau. Det skyldes, at varmetabet forøges med højere temperaturer. Hvor sadanne fjernvarmenet opbygges eller omstilles fra højtemperaturnet, vil det væxe muligt at kombinere solvarme med andre former for energikilder.

Specielt vil man med fordel kunne kombinere flere former for vedvarende energikilder med solvarme, idet disse energiform mer supplerer hinanden sæsonmæssigt. Udvikling af metoder til sæsonlagring af solvarme vil have en betydelig indvirkning på solvarmens fremtidige rolle i disse kombinerede systemer.

I tættere bymæssig bebyggelse er solvarme formentiig den eneste lokale energikilde, der kan give et ordentligt supplement til energiforsyningen. En ϕ get satsning på vedvarende energikilder kræver derfor, at solfangere i stort omfang opsættes på hustagene i byeme.

3.3.2. Individuelle anlæg

Individuel brugsvandsopvarmning og individuel kombineret rumog brugsvandsopvarmning ved hjælp af solvarme er en realistisk mulighed i eksisterende individuelle boliger. Udenfor omrade IV vil udbygningen med individuel solvarme dog blive hæmmet, hvis installationsudgiften og/eller den faste forbrugsafgift er for $h \phi j$ ved naturgas og fjernvarme. En $h \phi j$ installationsudgift vil umuliggøre en ellers lønsom investering i solvarme, fordi forbrugerne ofte ikke er i stand til at financiere to opvarmningssystemer. En høj fast forbrugsafgift vil mindske besparelsen og dermed rentabiliteten ved solvarme.

Solvarmen ma anses at have potentielle muligheder for at bidrage med en ikke ubetydelig andel af energiforsyningen de næste 50 år. Som det fremgar af foranstaende, er der mange mådex, hvorpå dette kan ske.

Et indtryk af potentiellet kan fas af folgende:

- Danmark har omkring $100 \mathrm{~km}^{2}$ tage, der er velorienteret for solvarme. Hvis disse tage alle tænkes forsynet med solfangere, der yder det samme som BV300-anlægget, vil det give et årligt energibidrag på 137 PJ. Dette svarer til 15% af Danmarks bruttoenergiforbrug i år 2000 efter EP-81's basisalternativ. $100 \mathrm{~km}^{2}$ er omkring 0.2\% af Danmarks samlede areal.

For at solvarme ikke bare skal spille en underordnet rolle i Eremtidiens energiforsyning, er det nødvendigt allerede i dag at inddrage den i planlægningen. Hvis der ikke i dag tages højde for en senere udnyttelse af solvarme, vil energiforsyningens struktur blokere for en ellers økonomisk udnyttelse af solvarme.

I den forbindelse er det særdeles vigtigt, at der holdes gang i den fabrikation $o g$ ekspertise, der findes på omradet. Produktionsapparatet og exfaringerne skulle gerne vare tilstede den dag, gennembruddet for solvarme kommer. Ellers vil enten muligheden for en betydelig udnyttelse af solvarme blive tabt på gulvet, eller også vil udenlansk produktion og ekspertise overtage det danske marked.

I dag betragtes solvarme udelukkende som et supplement - et vedhæng til andre forsyningsformer. Solvarme bliver derfor ofte anset som en form for luksus - en unødvendig investering. Men hvis solvarme på længere sigt skal spille en rolle i dansk energiforsyning, er det nødvendigt, at solvarme bliver betragtet som en integreret og uundværlig del af energiforsyningen.
[1] David K. McDaniels. "The Sun our future energysource". University of Oregon. 1979.
[2] Performance Monitoring Group. "Solar Water Heating. An analysis of design and performance data from 28 systems". Commission of the European Communities. 1981.
[3] Styregruppen for Pilotprojekt Vester Nebel. "Forsyningskatalog - Planlægning af varmeforsyning". Afsnit 37 01. 1983.
[4] Kjeld Johnsen, Michael Kvetny og Hans Skifter Andersen. " \emptyset konomisk vurdering af energibesparende foranstaltninger". SBI-anvisning 132. Statens Byggeforskningsinstitut. 1982.
[5] Energiministeriet. "Energiplanlægning - Statusnotat 1983." 1983.
[6] Søren ゆstergaard Jensen og Simon Furbo. "Lagertyper og lagerstørrelser i solvarmeanlæg til brugsvandsopvarmning". Laboratoriet for Varmeisolering, DTH. Udkommer årsskiftet 83/84.
[7] Styregruppen for Pilotprojekt Vester Nebel. "Forsyningskatalog - Planlægning af varmeforsyning". Afsnit 35 05. 9983.
[8] "Solliza Solvarme". Brochure fra firmaet Solliza Solvarme.
[9] P.E.Kristensen. "A solar water heating system for nothern Europe". Performance Monitoring Group. Commission of the European Communities. 1983.
[10] Nick Bjorn Andersen, Ole Balslev-Olesen. "Højtydende solvarmeanlæg pa Laboratoriet for Varmeisolering"。 Artikel i Ingeniøren d. 28. okt. 1983.
[11] P.E.Kristensen. "A solar water and space heating system for nothern Europe" Performance Monitoring Group. Commission of the Euxopean Communities. 1983.
[12] "Solax thermal energy in Europe". Solar energy $R \& D$ in the European Community, series A, Volume 3, 1983.
[13] Per Alling. "Vuxdering af prisniveau for solvarmeanlæg under rimelige afsætningsforhold". Dansk Solvaxme. 1982.
[14] Knud Ladekarl Thomsen. "Fokuserende solfangere med klimaskærm". Forsøgsstation RIS \varnothing. 1982.
[15] Kurt Kielsgaard Hansen, Preben Noxdgaard Hansen og Vagn Ussing. "Pexspektiver vedrørende damvarmelagre i fremtidens energiforsyning". Rapport nr. 83-39. Laboratoriet for Varmeisolering, DTH. 1983.
[16] "VVs", nr. 9. Sep. 1983. Teknisk Forlag.
[17] Vagn Korsgaard. "Vaxmeisoleringens betydning for det Exemtidige energisystem". Rapport nr. 83-37. Laboratoriet Eor Varmeisolering. DTH 1983.

