DANMARKS TEKNISKE HØJSKOLE LABORATORIET FOR VARMEISOLERING

PERSPEKTIVER VEDRORENDE
DAMVARMELAGRE
I FREMTIDENS ENERGISYSTEM
AF
KURT KIELSGAARD HANSEN
PREBEN NORDGAARD HANSEN
VAGN USSING

NOTAT SOM DEL AF BAGGRUND FOR FORSØGSANLEG RISØ"S UDREDNINGSOPGAVE:
"DEN TEKNOLOGISKE UDVIKLING OG DENNES BETYDNING FOR UDFORMNINGEN AF DET FREMTIDIGE ENERGISYSTEM"

Indholdsfortegnelse

Side

1. Indledning 2
2. Damvarmelagrenes baggrund 4
3. Valg af lagersystem 6
4. Eksisterende varmelagre i fjernvarmesystemer 7
5. Andre eksempler på eksisterende store varme- 8 lagre i drift.
6. Prisen for den lagrede varme 9
7. Store damvarmelagres \varnothing konomi 13
8. Damvarmelagres anvendelsesomrader 17
9. Omfanget af damvarmelagres fremtidige 19 anvendelse
10. Solvarmeanlægs lønsomhed 20
11. Sammenfatning 22
12. Referencer 24

Perspektiver vedrørende damvarmelagre i fremtidens energisystem

1.

Indledning

Nærværende notat giver først baggrunden for damvarmelagrenes fremkomst og antyder dernæst at damvarmelagrene maske er de mest fleksible lagersystemer. Notatet omtaler eksisterende varmelagre i fjernvarmesystemer, der her i landet kun omfatter tanklagre. En række store i drift værende varmelagre i udlandet omtales og deres anlægsværdi antydes.

I en nøjere overvejelse af damvarmelagrenes \varnothing konomi redeg $\varnothing-$ res for det beregnede varmetab i forbindelse med et enkelt lade- og afladeforløb af varierende varighed. Der vises forholdene ved tre forskellige gennemsnitstemperaturer i lageret, nå dettes størrelse varierer fra $160 \mathrm{~m}^{3}$ til $530.000 \mathrm{~m}^{3}$.

Korttidsforløbene omfatter 1 døgn og 1 uge. Delsæsonforløbene omfatter 1 md. og 6 mdr. Sæsonforl申bet omfatter 12 mdr .

Efter en gennemgang af damvarmelagrenes anvendelsesomrader konstateres det, at delsæsonlagring og sæsonlagring for nybyggeri ma kræve projektering med lavtemperaturteknik.

Omfanget af damvarmelagrenes fremtidige anvendelse søges dernæst vurderet. Da store solvarmeanlægs lønsomhed vil være afgørende for omfanget af damvarmelagrenes anvendelse til sæsonlagring og da dette omfang i tilfælde af, at solvarmeanlæg kan konkurrere med andre store kollektive varmesystemer, vil blive af dominerende størrelse, behandles solvarmeanlægs lønsomhed nøjere.

Den viste oversigt over hovedkomponentprisernes indflydelse pa produktionsprisen for solvarme synes at vise, at det med en længere horisont (til år 2030) må forventes at enhedsprisen på såvel damvarmelagre $\left(\mathrm{kr} / \mathrm{m}^{3}\right)$ som solfangeranlæg ($\mathrm{kr} / \mathrm{m}^{2}$) vil na talstørrelser, der vil g申re solenergi til en interes-
sant energikilde i stigende omfang i perioden 2000-2030. I perioden fra 1985-2000 må udnyttelse af damvarmelagre til korttidslagre selv med de nuværende enhedspriser på damvarmelagre formodes at ske i et omfang, der vil muliggøre jævnt faldende priser i perioden. Dette vil sammenholdt med udviklingen af solfangere formodentlig føre til solenergis etablering som en ligeberettiget konkurrent mellem varmekilderne for de kollektive varmesystemer i første trediedel af næste åhundrede.

Fremtidsperspektiver inden for den teknologiske udvikling. baseres sædvanligvis på en viden om en hidtidig udvikling. For damvarmelagre er dette ikke muligt, idet disses anvendelse her i landet først påbegyndes i den nærmeste fremtid.

Det er måske af betydning for fremtidsperspektivet på damvarmelagrenes omrade at antyde en årsag til, at disse lagre overhovedet fremkommer og måske far betydning i de samlede energisystemer.

Under efterkrigstidens første kvarte århundrede havde dansk byggeri en meget kraftig realvækst. Energisystembeslutningerne bag dette byggeri var baseret på, at opvarmningsudgiften foruden af udgifter til drift og vediigeholdelse bestod af jævnbyrdige udgifter til afskrivning og forrentning af energisystemerne og til anskaffelse af primær energi (brændsel).

Prisforskydningerne i 1970-1980 på brændsel ændrede forholdet mellem komponenterne i opvarmningsprisen for bygninger radikalt. Selv om investeringerne til begrænsning af energitabene i systemerne ϕ gedes kraftigt, så blev brændselsprisernes andel af opvarmningsprisen kraftigt forøget.

Dette har medført, at systemernes effektive drift har faet en afgørende større betydning. En væsentlig ulempe for forbedringer i effektiviteten af en række varmesystemer har væ. ret, at produktionen af varme forudsattes at ske så vidt muligt i takt med det \varnothing jeblikkelige behov for varme.

Ingen anden industriel produktion bortset fra El-produktion har i stort omfang været tilrettelagt uden, at man mellem behovet og produktionen indsk \varnothing d et lager. Herved opnåedes i anden industri trinvis fuld kapacitetsudnyttelse og dermed højst mulig effektivitet. Disse sædvanlige industrielle principper må nu antages at vinde stor udbredelse pa varmeenergiens område.

Rationel varmeproduktion vil altså i fremtiden kræve systemer med lagermuligheder．

En anden væsentlig åsag til damvarmelagrenes fremkomst er tidsvarierende energikilder（sol og vind først og fremmest） der er på vej til at $f a ̊ ~ a n d e l ~ i ~ v o r e ~ s a m l e d e ~ e n e r g i s y s t e m e r . ~$ Allerede i 1976 skønnedes［11］solenergi i 1990 at ville dække 1% og i 2005 10\％af det til den tid forekommende opvarmnings－ behov．Anvendelse af solvarme til opvarmning kxæver egentlig ＂sæsonlagring＂。

Endelig har den \varnothing gede brændselspris skærpet interessen for in－ dustriernes overskudsvarme og procesvarme［12］．Disse ener－ giers fremkomst afviger ofte tidsmæssigt kraftigt fra de be－ hov，som de eventuelt skal medvirke til at dække，hvorfor lag－ ring bliver en naturlig forudsætning og lagertiderne som nævnt ofte lange．
T il de industrielle overskudsvarmenergier h申rer også den ved affalds－ forbrænding producerede varme．Disse produktionsanlæg kræver dels korttidslagring og dels i den udstrækning lokalsamfundets varmebehov i sommerhalvåret er mindre end affaldsvarmemængden en egentlig＂sæsonlagring＂。

Den største industrielt producerede overskudsvarmemængde frem－ kommer ved el－produktion．

De gennem efterkrigstidens indrettede meget effektive samarbej－ der mellem fjernvarme－og el－producenter har ogsa vist sig at kunne forbedres yderligere ved indbygning af lagerfacilite－ ter i systemerne．Dette skyldes dels el－produktionssystemets begrænsede muligheder for selv at udjævne svingningerne i el－ behovet，dels at den procentvise fordeling af varmebehovet over døgnets timer ikke falder sammen med den procentvise for－ deling af el－behovet over døgnet，hvorved der her opstar behov for store lagermuligheder indrettet til meget store omsatnings－ hastigheder．Indbygning af sådanne lagre må antages ofte at kunne reducere kravene til kapacitetsreserve i el－systemerne．

Valg af lagersystem

Varmelagring kan gennemføres på en række forskellige måder. Opmærksomheden har samlet sig om 3 hovedemner:

1) Varmeenergiændringer ved fysiske eller kemiske processer,
2) Varmeenergiændringer i store naturlige jord- eller bjergmasser,
3) Varmeenergiændringer i vandvolumener.

Varmeenergiændringer i forbindelse med fysiske eller kemiske processer har især været studeret i forbindelse med mindre varmelagre til tidsvarierende energikilder (f.eks. solanlæg til brugsvandsanlæg).

Varmeenergiændringer i store naturlige jord- eller bjergmasser er primært tænkt anvendt til langtidslagring ("sæsonlagring") idet hastige lageromsætninger synes vanskelige at opnå med rimelig effektivitet.

Varmeenergiændringer i store vandvolumener kan først og fremmest ske ved anvendelse af store isolerede tanklagre. Tanklagre over $100.000 \mathrm{~m}^{3}$ er næppe tænkelige i den nærmeste fremtid og prisen på tanklagrene gør fordelen ved deres anvendelse marginal i de fleste tilfælde. Tanklagrenes pris umuliggør her i landet \varnothing konomisk konkurrencedygtige kollektive solvarmeanlæg til boligopvarmning.

På denne baggrund er udviklingen af damvarmelagre begyndt. For at muliggøre \varnothing konomisk konkurrencedygtige kollektive solanlæg har laboratoriet i flere ar undersøgt anvendelsesmuligheden for store damvarmelagre med svommende, isoleret lag og uisoleret bund og sider [9]. Denne prisbillige lagertype kan med rimelig effektivitet konstrueres med en driftsmæsig fleksibilitet på linie med tanklagre, der muliggør savel korttidslagring med stor omsætningshastighed (hele volumenet pa 5-6 timer) som langtidslagring med lille omsætningshastighed.

4. Eksisterende varmelagre i fjernvarmesystemer

Som nævnt er vand indtil nu det foretrukne lagermedium i de fa store varmelagre, der er i drift i danske fjernvarmesystemer i dag. Vandet er pa samme tid varmetransportmedium (der behøves derfor ingen varmevekslere), det er biligt, let at håndtere, sikkert for omgivelserne, kun let korrosivt og så har det en $h \phi j$ varmekapacitet. Dets største ulempe er damptrykket, som stiger med temperaturen og som kræver relativt dyre tryktanke for temperaturer over $100^{\circ} \mathrm{C}$. Pa den anden side er lagertemperaturer lige under $100{ }^{\circ} \mathrm{C}$ tilstrækkelige for en meget stor del af fjernvarmesystemerne. Et anlæg med en tryktank er dog installeret i våsterås i Sverige [1].

Som et eksempel blandt en rakke trykløse varmeakkumulatorer i drift (Odense, Flensborg, Upsala m.v.) skal her omtales akkumulatoren i Herning.

Varmeakkumulatoren i Herning kan rumme en produktion svarende til seks timers fuldlastdrift [2]. Fjernvarmesystemet er indrettet således, at der altid sker en regulering over akkumulatortanken, nar der er uoverensstemmelse mellem den $\varnothing j e-$ blikkelige produktion og det øjeblikkelige forbrug af varme. I sommerperioden kan det samlede døgnforbrug produceres i fuldlast på 6-8 timer. Ved brug af akkumulatoren kan el-forsyningen tilbydes effekt pa tidspunkter af døgnet, hvor der er høj marginalpris på el, medens produktionsanlægget kan være ude af drift om natten. I vinterhalvaret må produktionsanlæg-

Varmeakkumulatoren er en vandtank (33 m i diameter og 42 m $h \not \subset j)$, der effektivt rummer $30.000 \mathrm{~m}^{3}$ vand. Den er samtidig ekspansions- og h申jdebeholder for transmissionssystemet. Ved en omhyggelig udformning af udtags- og indpumpningsarrangementerne er det muligt uden fysisk adskillelse at begrænse skillelaget mellem fremløbsvandet i toppen ($90^{\circ} \mathrm{C}$) og returvandet i bunden (ca. $55^{\circ} \mathrm{C}$) til ca. 1 m . Ved opladning udtages "det kolde vand" i bunden og sendes sammen med den
mængde, der kommer retur fra ledningsnettet, over turbinevarmevekslerne hvor det igen opvarmes til $90^{\circ} \mathrm{C}$. Transmissionspumperne sender den nødvendige mængde udi transmissionssystemet, medens resten går til toppen af akkumulatortanken. Hvis el-anlægget tages ud af drift, opretholdes varmeforsyningen ved at vende strømmen i akkumulatortanken, således at returvandet fra ledningsnettet går ind i bunden, og fremløbet tages fra toppen, indtil akkumulatoren er afladet og skillefladen er i top. Afladningskapaciteten er dimensioneret for $5000 \mathrm{~m}^{3} / \mathrm{h}$.

Andre eksempler på eksisterende store varmelagre i drift.
Det er som nævnt forsknings- og udviklingsarbejdet indenfor specielt solteknologien, der har ført til en malbevidst udvikling af mulighederne for at lagre varme, og specielt Sverige har mange demonstrationsprojekter med varmelagring i vandvolumener i jord (klippe) i drift.

En billig varmelagring for temperaturområdet $50-100{ }^{\circ} \mathrm{C}$ synes at være lagring i uisolerede bjergrum fyldt med vand (caverns), hvor størrelser pa $200.000 \mathrm{~m}^{3}$ ikke er urealistiske, men da denne lagringsmetode ikke kan anvendes i Danmark, vil den ikke yderligere blive omtalt.

I Ingelstad ved Växjö er der i forbindelse med en solfangerpark (placeret centralt på jorden) opført en $5057 \mathrm{~m}^{3}$ isoleret betontank over jorden [3]. Højden af tanken er ca. 8 m , diameteren er ca. 28 m og maksimaltemperaturen er $95^{\circ} \mathrm{C}$, idet tanken er tilsluttet et fjernvarmesystem med max. $80{ }^{\circ} \mathrm{C}$ via en varmeveksler. Den tilstræbte stratificering opnås ved indløb via en diffuser i toppen af tanken.

I Lambohov ved Linköping er der ligeledes i forbindelse med et stort solfangeranlæg (placeret på 55 rækkehuse) udgravet et $10.000 \mathrm{~m}^{3}$ cylindrisk bassin i jord og klippe [4]. Bassinet, der er isoleret med letbeton, er ca. 12 m dybt med en diameter på ca. 32 m , og det har en maksimaltemperatur på ca. $70^{\circ} \mathrm{C}$. En konisk diffuser i midten af bassinet sikrer
stratificering ved indløb. Udløbet i toppen fører direkte til forbrugere (luftvarme) henholdsvis til en varmepumpe når temperaturen er for lav til direkte udsendelse.

Varmelagring i jord vil måske ikke med fordel kunne ske ved temperaturer højere end ca. $60{ }^{\circ} \mathrm{C}$, nar varmevekslere (nedpressede $r \not p r)$ er indsat i jordvolumenet. I Kungsbacka er lerlageret pa ca. $87.000 \mathrm{~m}^{3}$ med 600 U -formede plastikrør drevet 35 meter ned under jordoverfladen [5]. I dette projekt arbejdes kun med et lille temperaturspænd over jordens middeltemperatur, hvilket kræver en varmepumpe for udnyttelse af varmeindholdet. De mange lodrette varmevekslere forbindes med vandrette fordelerrør umiddelbart over det opvarmede lermateriale, der kun er isoleret opadtil (med letklinker).

I Groningen i Holland er et tilsvarende projekt med lagring
i vandmættet sand ved at blive testet [6]. Dette lager er på $23.000 \mathrm{~m}^{3}$ (varmevekslernes (rørenes) længde er ca. 20 m) med en maksimal lagertemperatur på $60^{\circ} \mathrm{C}$. Også her bliver de lodrette varmevekslere forbundet med vandrette fordelerrør umiddelbart over det opvarmede sandmateriale. Isoleringen opadtil bestir af letklinker og foamglas, medens resten af begrænsningsfladerne også her er uisolerede. Ved denne udformning vil eventuel grundvandsstrøm og konvektion i sandet forøge varmetabet, medens reparation af varmevekslere og fordelerrør besværliggøres af isolering m。v. Det er en fordel, at toppen af denne type lagre kan anvendes til rekreative formå (græs- eller asfaltbelagt).
6. Prisen for den lagrede varme.

Prisen for den lagrede varme er meget afhængig af mange faktorer som systemløsning, varmekilde, temperaturniveau, størrelse, varmetab, varmepumpebehov m.m. Følgende figurer 1, 2 og 3 [7] kan give en indikation af anlægspriserne for de ovenfor nævnte lagringsmetoder.

Guccitic construction
cost US $\$ / \mathrm{kWh} / \mathrm{cycle}$

see Table 1 for
assumptions

for udtaget enerigi

$$
\begin{aligned}
& \text { la concrete tank } \\
& 1 \mathrm{lb} \text { steel tank } \\
& 2 \mathrm{a} \text { water pit fully insulated } \\
& 2 \mathrm{~b} \text { water pit partly insulated } \\
& 3 \text { rock cavern } \\
& 4 \text { aquifer } \\
& 5 \text { a earth storage } \\
& 5 b \text { vertical pipe system in clay } \\
& 6 \\
& \text { drilled rock }
\end{aligned}
$$

ASSUMPTIONS FOR THE CONVERSION FACTORS BETWEEN REFERENCE VOLUME AND RECOVERED ENERGY

STORAGE TYPE	1 CONCRETE \& STEEL TANKS	WATER PIT 2a FULLY 2 b INSULATED	$\begin{aligned} & \text { WATER PIT } \\ & \text { PARTLY } \\ & \text { INSULATED } \end{aligned}$	ROCK CAVERN	4 AQUIFER	$\begin{array}{ll} 5 a & \text { EARTH } \\ \text { STORAGE } \end{array}$	VERTICAL 5b SYSTEM IN CLAY	IPE 6 DRILLED ROCK
Storage medium volumetric heat capacity SCp [$\mathrm{kWh} / \mathrm{m} 3 \mathrm{~K}$]	1.16	1.16	1.16	1.16	0.75	0.70	0.80	0.63
Reference $\Delta T^{1 /}\left[{ }^{\circ} \mathrm{C}\right]$	55	55	55	55	55	55	15	55
Typical energy 1/ recovery factor	0.90	0.85	0.70	0.80	0.75	0.60	0.70	3.70
Conversion factor [$\mathrm{kWh} / \mathrm{m} 3$]	57	54	45	51	31	23	8	24

Fig, 3, Forudsætninger for beregningerne til Fig. 2. (Ref. [7]).

Overvejelser vedrørende indbygning af varmelagre i varmesystemer kan baseres pa en sammenligning af nuværdien af produktionsprisreduktionerne,som indbygningen muliggør i lagerets levetid, med anlægsværdien for lageret.

Produktionsprisens reduktion ma udregnes med hensyn taget til udgifterne i forbindelse med lagerets drift og vedligeholdelse. Af størst betydning for fastlæggelse af driftsudgifter er kendskab til varmetabet fra lageret i lagerperioden. Dette tab kan sammenlignes med tab hidrørende fra lagersvind i mange andre industrielle produktionssystemer. Tilsvarende de for disse systemer velkendte ϕ konomiske grundregler om lageromsætningshastighedens afgørende betydning for lageromkostningernes størrelse, gælder det for store varmelagre, at også her er lagertiden af afgørende betydning for varmetabets og de ϕ vrige driftsudgifters størrelse.

På de efterfølgende fig. 4, 5 og 6 er vist det procentvise tab i lagerindholdet under eet opladnings- og afladningsforløb af samlet længde på henholdsvis 1 døgn, 1 uge, 1 måned, $\frac{1}{2}$ år og 1 år som funktion af lagerets størrelse måt i m^{3} eller angivet ved det karakteristiske mal modulet i m. Modulet er lagerets volumendivideret med lagerets overflade mod jord. Middeltemperaturen i lageret er henholdsvis 25,50 og $75^{\circ} \mathrm{C}$, og temperatursvinget i lageret er i alle tilfælde $\pm 25^{\circ} \mathrm{C}$. Der er regnet med typiske danske jordbundsforhold (termisk diffusivitet $\alpha=22 \mathrm{~m}^{2} / \mathrm{ar}$) og med flydende topisolering svarende til ca. 0.5 m mineraluld eller polystyren. Endvidere er de anførte tab beregnet for lagerets 4. driftsår, og lageret er regnet udformet som en keglestub med anlæg 1:2.

Kurverne viser, at korttidslagring (mellem 1 døgn og 1 uge) ved alle de viste temperaturniveauer giver ubetydelige tab (< 1\%) selv for små lagre.

Note:
M er modulet (lagerets volumen divideret med lagerets overflade
mod jord)
V er lagerets volumen
Q er det maksimale teoretiske lagerindhold ved et temperatursving
pa $50^{\circ} \mathrm{C}$

Figur 4. Det procentvise tab af det maksimale lagerindhold fra damvarmelagre med størrelse $160 \mathrm{~m}^{3}$ til $530.000 \mathrm{~m}^{3}$ i. 4. driftsår under eet opladnings- og afladningsforløb af samlet længde på henholdsvis 1 døgn og l uge (korttid). Middeltemperaturen T_{m} i lageret er henholdsvis 25,50 og $75^{\circ} \mathrm{C}$ og temperatursvinget er i alle tilfælde $\pm 25^{\circ} \mathrm{C}$.

Note:
M er modulet (lagerets volumen divideret med lagerets overflade
mod jord)
V ex lagerets volumen
Q er det maksimale teoretiske lagerindhold ved et temperatursving
\quad pa $50^{\circ} \mathrm{C}$

Figur 5. Det procentvise tab af det maksimale lagerindhold fra damvarmelagre med størrelse $160 \mathrm{~m}^{3}$ til $530.000 \mathrm{~m}^{3}$ i 4 . driftsår under eet opladnings- og afladningsforløb af samlet længde pa henholdsvis 1 måned og 6 måneder (delsæson). Middeltemperaturen T_{m} i lageret er henholdsvis 25,50 og $75^{\circ} \mathrm{C}$ og temperatursvinget er i alle tilfælde $\pm 25^{\circ} \mathrm{C}$.

Note:
M er modulet (lagerets volumen divideret med lagerets overflade
mod jord)
V er lagerets volumen
Q er det maksimale teoretiske lagerindhold ved et temperatursving
pa $50^{\circ} \mathrm{C}$

Figur 6. Det procentvise tab af det maksimale lagerindhold fra damvarmelagre med størrelse $160 \mathrm{~m}^{3}$ til $530.000 \mathrm{~m}^{3}$ i 4 . driftsår under eet opladnings- og afladningsforløb af samlet længde på lar (sæson). Middeltemperaturen $T_{m} i$ lageret ex henholdsvis 25,50 og $75^{\circ} \mathrm{C}$ og temperatursvinget er i alle tilfælde $\pm 25^{\circ} \mathrm{C}$.

Ved lade- og afladeforløb pa 1 maned op til et halvt ar viser kurverne, at kun lagre med størrelser over $10.000 \mathrm{~m}^{3}$ for lavtemperaturlagre, over $50.000 \mathrm{~m}^{3}$ for mellemtemperaturlagre og over $100.000 \mathrm{~m}^{3}$ for $\mathrm{h} \phi j$ temperaturlagre giver tab under 10% af lagerbeholdningen.

Endelig viser kurverne, at lageret ved egentlig sæsonlagring (op- og afladningsforløbets tidsrum 1 ar) for lavtemperaturlagre må være over $30.000 \mathrm{~m}^{3}$, for mellemtemperaturlagre over $200.000 \mathrm{~m}^{3}$ og for $h \not \subset j$ temperaturlagre over $500.000 \mathrm{~m}^{3}$, dersom tabet skal begrænses til 10% eller mindre. De nævnte sæsonlagerstørrelser modsvarer lagerbeholdninger pa 1740 MWh for lavtemperaturlagrene, 11600 MWh for mellemtemperaturlagrene og 29.000 MWh for højtemperaturlagrene. Afhængig af enfamiliehusets størrelse og isoleringsstandard svarer disse lagerbeholdninger eksempelvis til ca. 250 , ca. 1300 og ca .3200 huse, nar der bortses fra distributionstabene.

De anførte tabsstørrelser viser, at sæsonlagring kun er \varnothing konomisk mulig i forbindelse med st申rre varmesystemer.

8.

Damvarmelagres anvendelsesomrader

Betragter vi først korttidslagring med lade- og afladeforl $\phi \mathrm{b}$ på 1 døgn op til 1 uge viser tabskurverne, at selv for $h \phi j-$ temperaturlagre er tabene under 1% for lagre over $20.000 \mathrm{~m}^{3}$ eller 1160 MWh .

Korttidslagring finder isæx anvendelse ved kraftvarmesystemer, hvor muligheden for afkobling af varmeproduktionen i 5-8 timer kan skabe en for kraftværket meget vardifuld el-kraftreserve. Den onskede afkobling fra kraftværket skal modsvares af en tilsvarende effekt ved leverance fra damvarmelageret. sadanne store effekter synes kun mulige ved vandlagre (tanklagre, bjergrum eller damvarmelagre). Korttidslagring har ogsa stor betydning ved tilrettelæggelse af kraftvarmeværkers drifts-
planer，idet korttidslagring kan muliggøre udnyttelse af system－ komponenterne med maksimal effektivitet i et tidsrum，der af－ viger fra varmeleveranceperioden．Ogsà i varmesystemer，der anvender affaldsbrændingsvarme eller industriel procesvarme， vil korttidslagring blive anvendt f．eks．i forbindelse med week－ end lukning af varmeproduktionen．

For måneds－og halvårslagring viser kurverne over lagertabene， at højtemperaturlagrene skal være fra $5.000-115.000 \mathrm{~m}^{3}$ for at begrænse tabet til 10% ．Sadanne lagre vil formentlig kunne fo－ rekomme i forbindelse med sæsonbegrænsede procesvarmeleverancer （sukkerproduktion）［12］eller i forbindelse med spidsbelastnings－ udjævning i større fjernvarmeanlæg。 I sådanne tilfælde vil lag－ rene，der almindeligvis arbejder ved højtemperatur，blive over $100.000 \mathrm{~m}^{3}$ og derved af en effektivitet，der g $\varnothing r$ dem meget $1 \not \varnothing n-$ somme．

For sæsonlagring viser kurverne，at kun for lavtemperaturlagre kan der opnås rimeligt smá tab（＜10\％）for lagre af størrelse mellem $30.000 \mathrm{~m}^{3} \mathrm{og} 160.000 \mathrm{~m}^{3} \mathrm{og}$ kun rimeligt sma tab（＜ 10% ） for mellemtemperaturlagre，dersom st申rrelsen er mellem $160.000 \mathrm{~m}^{3}$ og $500.000 \mathrm{~m}^{3}$ 。

Dersom det kollektive system，lageret skal betjene，eksisterer allerede，er det sandsynligt，at systemets fremlobstemperatur ligger mellem 90 og $100{ }^{\circ} \mathrm{C}$ ，og lageret derfor må være hфjtem－ peraturlager eller et mellemtemperaturlager med varmepumpe，der kan sikre aflevering af den lagrede varme ved den oprindeligt valgte fremløbstemperatur．Kraftforbruget til varmepumpen kan skønnes at være væsentlig mindre end det $\phi g e d e$ tab ved direkte højtemperaturlagring．Som et led i en mere ϕ konomisk anven－ delse af energi s申ges freml ϕ bstemperaturerne i de kollektive varmesystemer sænket［13］．Herved vil mellemtemperaturlagre blive anvendelige uden varmepumpe．

Kurverne viser tydeligt，at nye bebyggelser fordelagtigt vil kunne projekteres som lavtemperaturanlæg，hvor man f．eks．ved
luftvarmeanlæg arbejder med fremløbstemperaturer på $50^{\circ} \mathrm{C}$ og varmepumpe，der sikrer et temperatursving tæt pa de forudsat－ te $50^{\circ} \mathrm{C}$ i lageret．Anvendelse af lavtemperaturanlæg bliver også mere attraktivt，nar den fremtidige udvikling i bygnings－ isoleringen medtages i betragtningen［14］．Endring fra mel－ lemtemperaturomradet til lavtemperaturomradet 申ger effektivi－ teten af solfangersystemer ca． 20% samtidig med，at lagerta－ bet falder mellem 15% og 3.5% ved størrelser mellem $34.000 \mathrm{~m}^{3}$ og $530.000 \mathrm{~m}^{3}$ ．Der vil saledes blive rå til driftsudgifter til varmepumper，da disse næppe vil overstige 10% af lagerbe－ holdningen．

Omfanget af damvarmelagres fremtidige anvendelse

Som det fremgår af foranstående gennemgang af anvendelsesomrä－ derne，er korttidslagrene lønsomme 1 alle varmesystemer med kraftvarmekobling．Det synes rimeligt at antage，at ca．10－20 lagre（hфjtemperatur）hver pa ca． $50.000 \mathrm{~m}^{3}$ vil blive bygget i forbindelse med nuværende og kommende kraftvarmekoblinger． Disse anlægsarbejder vil næppe overstige mere end 10% af anlægs－ værdien af de spidslastværker，som indbygning af de nævnte dam－ varmelagre overfl申diggør．

En række af de større fjernvarmesystemer uden kraftværks－ kobling må ogsa forudses at ville forbedre driftsøkonomi og driftssikkerhed ved at indbygge et damvarmelager i systemet． Her er omfanget noget vanskeligere at forudse，fordi lønsom－ heden ex kraftigt afhængig af de enkelte systemers konstruk－ tion．

Omfanget af anvendelsen af måneds－og halvarslagre vil bero pa，i hvilket omfang industriel procesvarme med kraftige sæ－ sonsvingninger vil blive s申gt udnyttet i eksisterende og kom－ mende fjernvarmesystemer．Antallet vil næppe blive stort． En række mellemstore nuværende fjernvarmesystemer uden kraft－
værkskobling kan for at billiggøre spidslastdækningen tænkes at ville indbygge måneds- og halvårslagre efterhanden som udskiftning af eksisterende uøkonomiske spidslastkapaciteter bliver nødvendig.

Omfarret af anvendelsen af sæsondamvarmelagre beror pa grund af lageromkostningernes størrelse pa omfanget af anlæg til udnyttelse af solenergi eller spildvarme. Som anført ovenfor må anlægsstørrelserne være betydelige for, at tabene skal blive procentvis rimeligt små.

Solvarmeanlægs lønsomhed

Afgørende for omfanget af anvendelsen af sæsondamvarmelagre bliver sp申rgsmålet om store solvarmeanlægs lønsomhed [10].

Betragtes nuværdien af den ved et sadant anlæg vundne nettoenergimængde i anlæggets levetid korrigeret for anlæggets drifts- og vedligeholdelsesudgifter og sammenlignes denne med merinvesteringen (anlægsværdien for sæsonvarmelageret og solfangeranlægget med varmepumpe og \varnothing vrigt tilbehør fratrukket bebyggelsens konventionelle varmeanlægs anskaffelsesværdi) fremkommer en sammenhang mellem enhedsprisen for solfangerareal og damvarmeanlæg ved forskellige energipriser. Det fremgar af de pa fig. 7 viste kurver, at enhedspriser på $50 \mathrm{kr} / \mathrm{m}^{3}$ og $500 \mathrm{kr} / \mathrm{m}^{3}$ for henholdsvis lagerenhedspris og solfangerenhedspris vil gøre solenergisystemer konkurrencedygtig overfor fjernvarme.

Ud fra udviklingen i Sverige synes det ikke utænkeligt, at konkurrencedygtige enhedspriser kan nås inden 1990. Nar dette sker, vil anvendelsen af sæsondamvarmelagre stige. Større nye bebyggelser af typen "tæt lav" vil antagelig blive udført som lavtemperaturprojekter og hver 200 huse vil, dersom solanlæg foretrakkes, krave et damvarmelager pả over $30.000 \mathrm{~m}^{3}$. St申rre eksisterende anlæg vil maske i et vist omfang blive forsynet

Note:

- markerer et simuleret system [8] bestàende af 200 rækkehuse tilkoblet en solvarmecentral bestående af $6.600 \mathrm{~m}^{2}$ solfangere, $49.400 \mathrm{~m}^{3}$ damvarmelager, en varmepumpe og et lavtemperaturfjernvarmenet

Figur 7. Sammenhængen mellem systemkomponenternes enhedspriser og forskellige energiprisex for systemstørrelsen 2700 MWh.
med solanlæg og mellemtemperaturlagre med varmepumper.

Foruden ved solanlæg kommer sæsondamvarmelagre også på tale i forbindelse med spildvarmeudnyttelse og affaldsforbrænding. Nar spildvarmemængden eller affaldsforbrændingen overstiger fjernvarmesystemets sommerbehov, vil sæsonlagring i damvarmelagre være en mulighed. Sæsondamvarmelagre i sådanne systemer vil ofte blive meget store, og indplacering af sadanne lagre i byplanerne kan vise sig at rumme vanskeligheder.

Sammenfatning

Den ændrede relation mellem komponenterne i varmeprisen, som de kraftige stigninger i brændselspriserne 1973-80 har medfort, har skabt ϕ get interesse for rationel drift af kollektive varmeanlæg. Den hidtidige produktion af varme i noje takt med behovet vil i fremtiden blive afløst af rationel produktion til lager og derefter leverance fra lageret i takt med behovet.

Inddragelsen af en rakke tidsvarierende energikilder i varmesystemerne i fremtiden vil yderligere nødvendiggøre brugen af varmelagre.

Indskydelse af damvarmelagre i de eksisterende kraftvarmesystemer vil i mange tilfælde på en overordentlig ϕ konomisk made $\phi g e$ kapacitetsreserven i el-systemet. Den onskede afkobling fra kraftværket af varmeeffekt skal modsvares af en tilsvarende effekt ved leverance fra damvarmelageret. Sådanne store effektex synes kun mulige ved vandlagre (tanklagre, bjergrum eller damvarmelagre). De hidtil anvendte isolerede staltanke er dyrere end damvarmelagre. Lodrette jordslangeanlæg og aquiferanlæg vil ikke kunne bygges \varnothing konomisk til store omsætningshastigheder (effekter). Damvarmelagre synes at være de mest fleksible lagermuligheder til forbedret rationel drift af fjermvarmesystemer. Sæsonlagring af spildvarme eller affaldsforbrændingsvarme kan dog muligvis lagres billigere i jordlagre med lodrette jordslanger - eller i aquifer-anlæg. For sidst-
nævnte rummer driftsudgifterne i forbindelse med vandrensningen i hvert fald for højtemperaturlagre endnu nogle usikre momenter.

Korttidslagring i damvarmelagre (1-7 d申gns) giver uafhængigt af lagerstørrelsen og af temperaturniveauet meget sma lagertab. Delsæsonlagring i damvarmelagre ($1-6$ mdr.) kan ved lavtemperatur (middel $25^{\circ} \mathrm{C}$) i lagre $\geqslant 10.000 \mathrm{~m}^{3}$ ske med tab under 10%, ved mellemtemperatur (middel $50^{\circ} \mathrm{C}$) i lagre $>50.000 \mathrm{~m}^{3}$ ligeledes under 10% tab og ved $h \phi j t e m p e r a t u r$ (middel $75^{\circ} \mathrm{C}$) i lagre $>100.000 \mathrm{~m}^{3}$ fås ogsa mindre end 10% tab.

Sæsonlagring kan kun ske ved et tab mindre end 10%, dersom et lavtemperaturlager er over $30.000 \mathrm{~m}^{3}$, et mellemtemperaturlager er over $200.000 \mathrm{~m}^{3}$ og et hфjtemperaturlager er over $500.000 \mathrm{~m}^{3}$. Sæsonlagring kræver altså store kollektive anlæg.

Præcis som det er tilfældet med fjernvarmeanlæg og solfangersystemer er også fremtidens damvarmeanlæg mest \varnothing konomiske som lavtemperaturanlæg, hvis delsæson - eller sæsonlagring er påkrævet.

Nar såvel solfangersystemet som damvarmelagre kan anlægges til enhedspriser på henholdsvis $500 \mathrm{kr} / \mathrm{m}^{2}$ og $50 \mathrm{kr} / \mathrm{m}^{3} \mathrm{vil}$ solenergibaseret fjernvarme være konkurrencedygtig. Eksisterende højtemperaturanlæg kan evt. ved merisolering af husene eller ved systemombygning i varmeanlægget også blive helt eller delvist solenergiforsynede. Nybyggede anlæg vil blive planlagt som lavtemperaturanlæg med luftvarme og her vil solenergi være en konkurrencedygtig mulighed. Solfangeranlæg med sæsondamvarmelagre kan herved i første trediedel af næste arhundrede fa en stigende andel af varmemarkedet.

Referencer:

[1] Larsen, Ib: Kraftvarme og anden overskudsvarmes udnyttelse. Varmeakkumulatorer. Notat. Fynsværket. November 1980.
[2] Det energirigtige Herningværk er kommet vældig fint fra start. Fjernvarme no 4. 1983. p. 34-43.
[3] Reiler, Jan: The Ingelstad Project - A Solar Heating Plant with Seasonal Storage. Reiler Ingeniörsbyrå AB, Sverige 1980.
[4] Norbäck, Kjell, Hallenberg, Jonas: A Swedish Group Solar Heating Plant with Seasonal Storage. D36:1980. Byggforskningsrådet.
[5] Värmen kommer från solen och lagres i jorden. Sunclay-projektet Lindälvsskolen i Kungsbäcka. G14:1983. Statens råd för byggnadsforskning, stockholm.
[6] Wijsman, A.J.Th. M., de Feijter, J.W.: Field Test to Investigate the Performance of an Undeep Prototype Seasonal Heat Storage System with a Heat Capacity for 100 Solar Houses using the Soil as the Storage Medium. In Solar Energy Applications to Dwellings - Solar Energy R \& D in the European Community, Series A, Vol. 2, p. 395-403. (Ed. W.Palz and C. den Ouden). D. Reidel Publishing Company. 1983.
[7] Hadorn, J.C., Chuard, P.: Central Solar Heating Plants with Seasonal Storage. Cost Data and Cost Equations for Heat Storage Concepts. IEA Solar Heating and Cooling Program, Task VII, Subtask 1 (c). Sorane SA, Switzerland. 1983. (To be published).
[8] Dytczak, M., Kielsgaard Hansen, K., Nordgaard Hansen, P., Ussing, V.: "Hjortekær - A Central Solar Heating Plant with Seasonal Storage". In proceedings of the Swedish Council for Building Research Conference "Subsurface Heat storage - In theory and practice". Stockholm. Juni 1983.
[9] Hansen, K. Kielsgaard, Hansen, P. Nordgaard, Ussing, V.: "Seasonal Heat Storage in Underground Warm Water Stores Construction and Testing of a $500 \mathrm{~m}^{3}$ Store". Final report. Thermal Insulation Laboratory, Technical University of Denmark. Meddelelse nr. 134. July 1983.
[10] Klaus Ellehauge, Søren \varnothing stergaard Jensen. Perspektiver vedr. solvarme i fremtidens energiplan. Laboratoriet for Varmeisolering, Danmarks Tekniske Højskole. Oktober 1983. Rapport nr. 83-38.
[11] Sven Bjørnholm, Asger Hansen og Anders Holm. "Danmarks Energiforsyning 1990-2005 traditionelt og reduceret". Niels Bohr Instituttet Marts 1976.
[12] Energiministeriets energiforskningsprogram "Ejernvarme 9.1., projektrapport. Kortlægning af uudnyttet overskudsvarme". Danske Fjernvarmeværkers Forening. Maj 1983.
[13] COWI-consult og Laboratoriet for Varme- og Klimateknik, DTH: "Energiøkonomisk drift af eksisterende fjernvarmenet". Danske Fjernvarmeværkers Forening. November 1981.
[14] Vagn Korsgaard: "Varmeisoleringens betydning for det fremtidige energisystem". Laboratoriet for Varmeisolering, Danmarks Tekniske Højskole. Oktober 1983. Rapport nr. 83-37.

