SOLAR PILOT TEST FACILITY

 FINAL REPORT - DENMARKKlaus Ellehauge
Ole Balslev Olesen
Nick Biorn Andersen
Therfial Insulation Laboratory
Teconicall University of Denmark

Contract-ESA-T-003-DK

SOLAR PILOT TEST FACILITY

FINAL REPORT - DENMARK

BY
KLAUS ELLEHAUGE
OLE BALSLEV OLESEN
NICK BJORN ANDERSEN

THERMAL INSULATION LABORATORY
TECHNICAL UNIVERSITY OF DENMARK

OKTOBER 1983
MEDDELELSE NR. 136
Abstract 1
Preface 2
Introduction 4

1. SPTF-operation 7
1.1 Data production 7
1.2 Central control system 8
1.3 Data storage 8
1.4 Operational check procedures 10
1.4.1 Checking the SS1-data 11
1.4.2 Checking the SS2-data 11
1.5 Control accuracy SS1/SS2 13
1.6 Calibration of various instruments 13
1.7 System parameter measurements SS1 14
1.8 System parameter measurements SS2 18
1.8.1 Storage heat loss 18
1.8.2 Storage capacity 20
1.8.3 Other parameters 20
2. System behaviour studies SS1 23
2.1 The stratification of storage temperatures 23
2.2 System performance SS1 25
2.3 Links between the studies of the participants from the different countries 26
3. System behaviour studies SS2 29
3.1 System SS2.2 - Combined system 29
3.1.1 Description of the system 29
3.1.2 Measured data and calculations 31
3.2 System SS2.3 - Thermal valve 33
3.2.1 Description 33
3.2.2 Measurements 34
3.2.3 Results 34
3.3 System SS2.4 - Combined system 34
3.3.1 Background 34
3.3.2 Description of the system 35
3.3.3 Measurements 37
3.3.4 Expected performance 37
3.3.5 Economy 37
4. EMG + PTF - results 38
4.1 Introduction 38
4.2 Physical system 38
4.3 Simulation model 39
5. Conclusions and recommendations for further work 45
Appendices:
Appendix 1: List of participants
Appendix 2: Data descriptors, Logsheets
Appendix 3: Design Drawings
Appendix 4: Installation descriptors
Appendix 5: Contents of the cassettes

Abstract

This report describes the work on the Danish Solar Pilot Test Facility in the period from October 1981 to June 1983. This work has been part of a "concerted action" within the project A of the solar energy programme under the Commission of the European Communities (CEC). The Solar pilot Test Facility Group consists of participants from the following 8 membercountries: Belgium, Denmark, France, Federal Republic of Germany, Ireland, Italy, the Netherlands and the United Kingdom. In the contractual period described in this report the work on the Danish SPTF has consisted in routined collection of measurements on different system configurations. In the SPTF's there are two measuring and control installations, the SS1 and the SS2. On the SS1 installation the system has been changed to a domestic hot water system and the effect of stratification and the effect of different heat exchangers has been investigated.

On the SS2 installation there has been investigations on solar systems for combined space heating and domestic hot water. Two combined systems have been mounted and the latter is to be considered as a 2. generation "ready to install" system. The investigations have been closely linked to the work in the European Modelling Group and calculations made of the Danish member of this group have formed the basis by the optimization of the system.

Preface

The Solar Pilot Test Facilities are one of several "concerted actions" within the project A of the solar energy programme under the Commission of the European Communities (CEC).
Under this project the topics studied are in general

- the development of European test procedures for solar components (collectors, heat storage systems, etc.)
- the development of uniform approaches for total system design, monitoring and evaluation of total system performance and validation of computer simulation models for different solar systems, both for active and passive solar designs, etc.

The activities as listed above are in general directed towards design, development and improvements of solar systems (passive and active) in order to stimulate the implementation of these systems within Europe.

The Solar Pilot Test Facilities are a valuable tool in this work. The Solar Pilot Test Facility Group consists of parm ticipants from the following 8 member-countries: Belgium, Denmark, France, Federal Republic of Germany, Ireland, Italy, the Netherlands and the United Kingdom. The work of each participant is funded partly by the CEC, who is also fully funding the co-ordination of the group.

The Solar Pilot Test Facility is a test rig where you can mount two solar systems at a time. Furthermore it consists of a physical simulator which controls the load imposed on the system. This simulater is interactive with the prevailing weather conditions and can be programed to represent any type of house construction, type of heat distribution system and occupancy.

In this way you can define the test conditions in a way which is not possible if the solar system is mounted in a real occupied house.

One of the solar systems (solar system one) is as far as possible identical in the eight locations, the other (solar system two) is designed by the individual participant to reflect both national interests and the climate of the location.

The most important aspect of the work on the Solar Pilot Test Facilities is the production of measuring data to be used of the European Modelling Group for the validation of computer based simulation models of solar system performance. The development of these models is a necessity for real optimization of solar system design. For the purpose of this validation work the measuring data have to be detailed and accurate and furthermore it is a big advantage to have the possibility of making changes in the solar system to get measuring data for variations of the system design.

The Solar Pilot Test Facilities fit very well for these purposes.

Another important aspect of the work is the system development studies. with the solar system two a widespread number of different solar systems are being tested. With the exchanges of information and measuring data within the group and to the European Modelling Group, every country can draw advantages of the results of testing in all the countries.

Project participants:
Civil engineer Klaus Ellehauge
Civil engineer Ole Balslev-Olesen
Civil engineer Nick Bjørn Andersen
Technican
Technican
Technican
Secretary
Drawings
Ole Ravn
Bertil Morelli
Flemming Karn
Hanne Godtfredsen
Kenneth Sørensen

Introduction

The Solar Pilot Test Facilities Group (SPTF-group) together with the European Modelling Group (EMG) were created 1977 by the Commission of the European Communities (CEC). The objective of the SPTF-group was to supply the EMG with reliable experimental data and also to undertake system development studies.

The objective of the EMG group was to improve and develop mathematical models simulating the thermal behaviour of solar sy stems. In this work the data produced by the sprF-group are used to validate the models.

The construction of the eight SPTF's (Belgium, Denmark, France, Federal Republic of Germany, Ireland, Italy, the Netherlands and the United Kingdom) started in 1978.

The basic design of the test facility and of the solar system one was delivered by COSTIC (France) which also took care of the coordination of the group.

The solar system two was designed by the national organisations. The construction of the SPTF's was completed in the middle of 1979. After this different trials took place to verify that the SPTF's were operating well and that the measurements were of a certain accuracy.

These trials took place until July 1980 when the first year of operation started.

During this year of operation some problems about the data prom duction were addressed.

The period until July 1981 belongs to earlier contracts and for the Danish participant this period has been reported in ref (1).

After this two years of operation and measuring took place. The systems in the SPTF's have been changed or modified in order to obtain more information from the measurements. These
two years of operation belong to the contractional period which is taken up in this report.

The work on the Danish SPIF has followed the same scedule as mentioned above. After having established the SPTF the first measurements of sufficient quality are from April 1980. In the precedent contractual period the work on the solar system one consisted of making different heat demand load's and in changing the control system.

On the solar system two we have tested two solar systems for combined space heating and domestic hot water.

For the present contractual period the work has consisted in: For the SS1 there has been four new system configurations. The main topic has been the temperature stratification of the storm age. It has been interesting to operate the system as a domestic hot water system and the system configuration has been changing in accordance with this. Experiments have been carried out by changing the inlet to the storage and furthermore we have changed the heat exchanger between the primary and secondary loop.

During the different configurations of the SS1,data for model validating has been produced but the changes have also been evaluated without the use of computer models.

Concerning the SS2, the work has been concentrated on systems for combined space heating and domestic hot water as in the preceding contractual period.

In October 1981 we were still operating a system which was the second SS2 system on the SPTF. This system was remarkable because it had a storage which was an ordinary manufactured container with a mantle around it. The domestic hot water was contained in the mantle while the rest of the container was used for the space heating.

Having the relatively cold domestic water in the mantle the heat losses were reduced.

After having measured on this system in detail we decided to design a new system to be considered as a "2. generation" system and to be based on the experience of the first two systems. This system should be designed and built to a "ready to install" state to be quite sure of the performance of the system under completely realistic conditions.

While designing the new system we had room on the SPTF for carm rying out an experiment with a "thermal valve".

This valve should secure that when operating a solar system for space heating then the outlet temperature to the heating system would be the return temperature from the radiators if this was higher than the temperature in the storage. Otherwise if the temperature in the storage was higher than the return temperature from the radiators then the temperature in the storage should be used.

The valve was functioning with thermal stratification and without any mechanical or electronic devise.

The new designed SS2 for space heating and domestic hot water was constructed in the autumn of 1982 and the measurements started at the end of 1982. We used some time to find the sym stem characteristics and had some trouble with the data acqusition system. Regular data for model validation are available from May 1983. The yearly performance of the system has been calculated with the EMGP2 programme to be $311 \mathrm{kWh} / \mathrm{m}^{2}$ solar collector with a solar fraction for domestic hot water on 66%, a solar fraction for space heating on 19% and a solar fraction for the total demand on 28%.

In the contractual period the Danish participant in the EMG Ole Balslev Olesen has also been a member of the Danish SPTF group. This has been a great advantage since all the computationel work has been done very closely linked to the SPTF work. The design of the third SS2 has for example been based on contemporary calculations.

1. SPTF-operation

Most of the time the measuring equipment has been functioning very well but in the spring 1983 the system was interrupted several times due to power supply drop outs and computer break down, Now the system has been opera ting since May 83 without breakdowns.

1.1

Data production
At the SPTF all measuring points are scanned every twenty seconds and the mean values over a period of half an hour are stored on magnetic tape cassettes. For the moment a magnetic file contains 400 files and every file contains data for four half hour periods (36 lines).

The temperatures are measured by means of copper-constanten thermo elements of the highest calibration class. The reference element is placed in a box with a temperature of $40^{\circ} \mathrm{C}$. Temperature differences are measured by thermopiles with 10 elements in each pile.

The solar radiation is measured by pyranometers from Kipp \& Zonen.

The flow measurements are measured by means of ring piston meters from Aqua-Metro.

The heat flows are calculated on the basis of flow, temperature difference, specific heat and density of the single circuits. The heat flow is calculated every twenty seconds, and a mean value is found.

The energy flow is calculated by:

$$
E=\frac{1}{3.6} \cdot \frac{1}{\mathbb{N}} \Sigma \Delta T \cdot \rho \cdot C_{p} \cdot E
$$

where
$\mathbb{N}=$ number of 20 sec intervals in which the flow rate in the considered pipe is not zero
$\Delta T=$ temperature difference measured every 20 sec. With an uncertainty interval at $0.1^{\circ} \mathrm{C}$
$\mathrm{F}=$ Flow rate measured every 20 sec .
$\rho=$ fluid density, calculated $\rho=\rho(T)$
every 20 sec.
$C_{p}=$ specific heat, calculated $C_{p}=C_{p}$ every 20 sec.

Measuring and control equipment

The measuring system has been based on a 80-channel datalogger system from Hewlett-Pachard, 3025A. This system consists of the following components:

1. Scanner	HP 3495 A
2. Voltmeter	HP 3455 A
3. Disk-calculator (controller)	HP 9825 A
4. Multi-programmer	HP 6940 B

5. Magnetic-band station, Penny and Giles 2100 D.

Most of the time the equipment has been well functioning, though there has been some troubles especially in the spring 1983, where in a few periods it has been impossible to read the tapes produced by the Penny and Giles recorder. The memory of the HP-9825A computer has broke down once in this period and moreover there has been some power supply drop outs.

1.3 Data storage

The half hour values are converted to SAS-datasets (Statism tical Analysis System, SAS Institute Inc., Cary, N.C., USA) on the regional data machine according to this SAS-program which at the same time is a list of the variables used in the latest version of the system one and system two (ID1.ID2).

```
DATA A
    INFILE PTA MTSSOVER:
    INPUT && TDWII & DAY MONTH YEAR HOUR NDAY NHOUR NMIN ,
        &2 AT STT1 W
        NS CTDA CTDG OCT1 STT4 IPT1 PTDI ITDI OITA EIT 
        LQ HPS RUM:
    YEAR=YEAR-2900:
    DAY=CAYY'IDAY:
    IF DAY>3! THEN NONTH=PMONTH+1:
    IF DAY>31 THEN DAY=DAY-\Xi1:
    DATE=MDY(MCNTH, IAY,YEAR):
    TID=OHAS (DATE, NHOUR,HMIN,O):
    TIDI=TID:
    FORMAT TIDI DATE""IME13.3:
```

The data on the SAS-datasets are being used for further computations and of course for control of the data reliability (see section 1.4). Also the data have been kept as datasets in the ordinary way and these are put on magnetic tape cassettes and send to the data bank.

The obtained measurements are seen on the following schemes.

Measurements obtained at the Danish SPTF:

1) $1980 / 81$

Cassette no.	DDO	DD1	DD2	ID1	ID2	N	
2001	1	1	1	1	1	184	
2	1	1	2	1	1	231	
3	1	1	2	1	1	378	
4	1	1	2	1	1	259	
5	1	1	2	1	1	209	
6	1	1	2	1	1	399	
7	1	1	2	1	1	386	
8	1	1	3	1	1	399	
9	1	1	3	1	1	237	
10	1	1	3	1	1	330	
11	1	1	3	1	2	331	
12	1	1	3	1	3	221	
13	2	2	4	2	4	140	
14	2	2	4	2	4	353	
15	2	2	4	2	4	338	
16	2	2	4	2	4	382	
17	2	2	4	2	$*$	383	
26	3	3	5	3	5	111	
27	3	3	5	3	5	331	
28	3	3	5	3	5	336	
31	3	3	5	3	5	361	
32	3	3	5	4	5	354	
33	3	3	5	4	5	363	
34	3	3	5	4	5	379	

N: Number of hour-values
DD: Data descriptor
ID: Installation descriptor
2) $1982 / 83$

Cassette NO.	DD0	DD1	DD2	ID1	ID2	N
2036	3	3	5	5	5	332
37	3	3	5	5	5	183
38	3	3	5	5	5	327
39	3	3	5	5	5	188
40	3	3	5	5	5	362
41	3	3	5	5	5	309
42	3	3	5	5	5	150
45	4	4		6		306
46	4	4		6		307
47	4	4		6		187
49	4	4		6		379
50	4	4		6		299
51	4	5		7		399
52	4	5		7		340
53	4	5		7		365
54	4	5		7		381
55	4	5		7		123

N: Number of hour-values
DD: Data describtor
ID: Installation descriptor
The format of the stored data is included in appendix 2.

1.4 Operational check procedures

While there has been a lot of troubles in the first months of 1983 a considerable amount of work has been done on checking the measured data on the spot using the printer in the HP 9825 with the central control and monitoring equipment.

When making this report the problems seem to be solved and the necessity of checking the data on the spot has been reduced.

1.4.1 Checking the SS1-data

Some variables are selected to be printed out in the following way:

With this output the energy transport etc. is visualized and the energy quantities can then be compared.

1.4.2 Checking the SS2-data

Solar gain
The solar gain, the efficiency of the solar collectors etc. is printed and the printed data form the basis of checking the functioning of the primary circuit. The progress of temperatures (T1-T4) can be followed.

Domestic hot water

The tapping of the warm water is checked by use of this printed output:

00s	TIDI	F1	F3	r ${ }^{1}$	T2	T3	74	U357	U855
1	O3MAY83:12:00	$\because 0.079$	$\therefore 0.079$	9.52	21.74	22.03	49.22	8.884	20523
2	OJMAY83:16:30	0.078	0.078	0.82	21.73	22.06	44.39	80811	2. 884
3	O4MAYロ3: $07: 00$	0.050	0.050	10.82	21.42	21087	50.45	0.757	1.92缶
A	O4AAY83:07:30	$\therefore 0.020$	0.020	7.97	28.25	21.19	31.53	0.321	0.273
5	O4MAY33:12:00	0.077	0.077	9.48	21.09	21.33	44.98	8.041	2.246
6	S4MAY33:16:30	0.078	0.073	12.52	21.02	21.33	45.36	8.035	2.248
7	05:1AYG3: 07:0.0	0.055	0.055	80.334	21.27	21.86	50.17	0.689	1.885
8	05mAY83:07:30	0.022	0.022	7.96	20.96	20.92	31.52	0.335	0.332

As seen on the table the tapped volume is about 801 three times a day and the tapping temperature is about $45-50^{\circ} \mathrm{C}$ when the tapping starts.

Heat removal

The heat removal in the interface system is controlled by the computer. The return temperature from the interface is calculated and set by the computer according to the actual heat demand and the measured return temperature can be compared with the computer return temperature.

This output is to check that the interface return temperature is set to the right value.

1.5 Control accuracy Ss1/SS2

The pump control in the primary circuit is an ELECTROMATIC ST 185 with two ETR temperature transducers. The result of testing the accuracy was that the difference between the set difference temperature and the measured difference temperature would be as a maximum:
$0,8^{\circ} \mathrm{C}$ for the start differens
$0,5^{\circ} \mathrm{C}$ for the stop differens

1.6 Calibration of various instruments

Flowmeters: When the systems were installed the accurcy of the flowmeters was checked by counting the pulses according to a measured volume in a measured period. The flowmeters showed the right value with a maximum deviation of 1% 。

After two years of operation they were checked again and the result was the same.

Solarimeter: When mounted it has been checked and calibrated and every year the calibration is checked again. Uncertainty 5\%.

Temperatures:
The uncertainties are:

$$
\begin{array}{ll}
\text { temp. diff. } & 0,10^{\circ} \mathrm{C} \\
\text { Temp. abs. } & 0,35^{\circ} \mathrm{C}
\end{array}
$$

During the last working period the system has been changed from a space heating to a domestic hot water system with a draw off profile according to the consumption of 20 dwellings.

The system is shown on the next page (fig. 1.7).
The cold water inlet is in the bottom of the storage tank and the outlet from the top. The secondary collector loop is modified so the heated water from the heat exchanger is returned into the middle layer of the storage tank. The primary collector loop is unchanged.

The storage tank of the system will function as a preheating tank. The auxiliary is not included in this experiment, but it can be calculated by simulation program.

The system is characterized by a high degree of stratification in storage which will be of interest in the modelling work.

Parameters measured in the previous work period
Most of the parameters were already determined at the start of this contractual period, for more information see ref (1). The already determined parameters are:

Collector

Total heat loss:

$$
\mathrm{UA}=174 \mathrm{~W} /{ }^{\circ} \mathrm{C} \pm 5 \%
$$

Capacity of collector:

		HOUR		
	$1-2$	$2-3$	$3-4$	
$\triangle O C T 1$	$\left({ }^{\circ} \mathrm{C}\right)$	7.3	4.4	3.1
$\triangle \tau$	(s)	3600	3600	3600
HOCl	(W)	-5290	-5400	-5570
TM	$\left({ }^{\circ} \mathrm{C}\right)$	17.6	24.0	28.0
C	$\left(\mathrm{kJ} /{ }^{\circ} \mathrm{C}\right)$	1194	1214	1176
$\delta(\mathrm{C})$	$\left(\mathrm{kJ} /{ }^{\circ} \mathrm{C}\right)$	160	310	520

```
TM = (OCT1 - 0.5 ' CTD1 - AT) mean
```

$$
\begin{aligned}
& \text { Back and side losses } \\
& \qquad \mathrm{UA}=91 \mathrm{~W} /{ }^{\circ} \mathrm{C} \pm 5 \%
\end{aligned}
$$

Piping
Pipe loss: $\mathrm{U}=1,12 \mathrm{~W} /{ }^{\mathrm{O}} \mathrm{C} \pm 20 \%$
Heat capacity of piping

	HOUR	
	$0-1$	1-2
$\triangle \mathrm{T} \quad\left({ }^{\circ} \mathrm{C}\right)$	$57.6-49.8=7.8$	$49.8-45.4=4.4$
$\Delta \tau \quad(s)$	3600	3600
$Q_{\text {in }}$ (W)	210	210
$Q_{\text {out }}(W)$	1735	1326
TM $\quad\left({ }^{\circ} \mathrm{C}\right)$	31.15	23.8
C $\quad\left(\mathrm{kJ} /{ }^{\circ} \mathrm{C}\right)$	700	900
$\frac{\delta C}{C}$	0.2	0.2

Heat exchange
Effectiveness $\quad 0,37 \quad \pm 3 \%$

Storage

Heat loss coefficient:	UA	$=15,6 \mathrm{~W} / \mathrm{K}$	$\pm 5 \%$
Capacity	C	$=13.400 \mathrm{~kJ} / \mathrm{K} \quad \pm 7 \%$	

The heat loss coefficient in fact was obtained by means of two different methods which are reported in ref (1).

Other parameters

The following is a list of all the parameters including the measured ones：

```
System parameters
Collector:
    Absorber area
    Tilt
    Azimuth
    Cover refractive index
    Absorber absorptance 0.93
    Absorber emittance
        0.30
        Space between cover and absorber
        Back and side losses incl.
        their connections
        91.0 \pm5% (W/K)
        Heat capacity for all collectors
        and their connections incl. fluid
        Specific heat of fluid
        Density of fluid
        Optical factor of collector (\alphar) 0.85
        1200 土138 (kJ/K)
        3.91 \pm2% (kJ/K kg)
        1060 \pm2% (kg/m
Piping (primary collector circuit):
    Length of cold side piping
    Outside length (cold side)
    Heat capacity incl. content
    Heat loss
    Electrical power of the pumps
    Power delivered to the fluid
    Length of hot side piping
    Outside length (hot side)
    16.9 土0.2 (m)
    11.6 \pm0.2 (m)
Control:
    Start differential }\Delta\mathrm{ Ton 喑 1
    Stop differential \DeltaToff 0 0 l
    (K)
Heat exchanger：
Heat exchanger effectiveness \(\quad 0,553+1,116 \cdot 10^{-3} \cdot \operatorname{IHT} 1 \pm 2 \%\)
```

Storage tank:
Volume of tank
Length of secondary circuit
Specific heat of the fluid
Density of the fluid
Heat capacity of tank incl. secondary collector circuit
Heat loss coefficient of tank
Heat loss coefficient of piping
Electrical power of the pump
Power delivered to the fluid

	3
7 ± 0.2	$(\mathrm{~m})^{3}$
7	$(\mathrm{~m})$
$4.2 \pm 2 \%$	$(\mathrm{~kJ} / \mathrm{kg} \mathrm{K})$
$1000 \pm 2 \%$	$\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
$13400 \pm 7 \%$	$(\mathrm{~kJ} / \mathrm{kg} \mathrm{K})$
$15.4 \pm 3 \%$	$(\mathrm{~W} / \mathrm{K})$
$3.5 \pm 20 \%$	$(\mathrm{~W} / \mathrm{K})$
$230 \pm 5 \%$	$(\mathrm{~W})$
$115 \pm 20 \%$	$(\mathrm{~W})$

Draw off profile.
Consumption for 20 dwellings: $3500 \mathrm{l} /$ day
Distribution!

Distribution of the domestic hot water
for a block of flats.

System parameter measurements SS2

Only the parameters measured in the present contractual period are to be found in the following. Concerning system SS2.2 - the combined system (DHW+SH) the parameter measurements have been reported in ref (1) and concerning system SS2.3 there was no need for parameter measurements.

Some experiments have been carried out to determine the main parameters of system SS2.4. The measuring points of interest are shown on fig. 1.8.

Fig. 1.8. System configuration SS2.4

1.8 .1 Storage heat loss

The storage heat loss has been obtained under steady state conditions. With use of the electric heater in the interface system the mean storage temperature is kept at a certain constant value and the heat loss coefficient is evaluated by the formula:
where

```
U2 = F2 - RO - CP - ITD2
    RO : fluid density
    CP : fluid thermal capacity
```

and the storage mean temperature TL :

$$
\begin{aligned}
& \mathrm{TL}=(\operatorname{STI} 1+\operatorname{STI} 2+\operatorname{STI} 3+\operatorname{STI} 4+\operatorname{STY} 1 \\
&+\operatorname{STY} 2+\operatorname{STY} 3+5 T Y 4) / 8 \\
& \text { ILT }: \text { room temperature }
\end{aligned}
$$

OBS	TL $\left[{ }^{\circ} \mathrm{C}\right]$	UA $\left[\mathrm{W} /{ }^{\circ} \mathrm{C}\right]$	STD ERROR OF MEAN
46	58,56	5,95	0,010
220	79,11	6,72	0,008
47	84,06	6,96	0,019

where the standard error of mean is given by $\operatorname{STD}(\bar{X})=\frac{\operatorname{STD}(X)}{\sqrt{N}}$
These results incorporated in the SAS-general linear models procedure give the following dependence:

$$
\begin{aligned}
\mathrm{UA}=3,662+0,038983 \cdot & \mathrm{TL} \quad\left[\mathrm{~W} /{ }^{\circ} \mathrm{C}\right] \\
& \mathrm{TL}>\mathrm{ILT}
\end{aligned}
$$

This linear dependence is shown on fig.1.8.1:

Fig. 1.8.1 Storage heat loss coefficient
versus storage temperature.
One of the reasons why the heat loss coefficient is strongly dependant on the storage temperature is the temperature der pendance of the thermal conductivity of the insulation. Furthermore you can imagine changes in the pattern of convection, but a full explanation can not be given for the moment.

The expected value of the heat loss coefficient obtained by computation is approx. $2.9 \mathrm{~W} /{ }^{\circ} \mathrm{C}$ at $50^{\circ} \mathrm{C}$.

This coefficient only takes into account the heat transmisw sion through 10 cm Rockwool, but neither the losses due to the pipes going through the insulation nor the temperature dependance of the thermal conductivity.

1.8.2 Storage capacity

The storage capacity is evaluated under an unsteady warmup period by this procedure:
$C P=$ EAUCC $/(T S T O P-T S T A R T)$
where the accumulated energy EACCU is given by:
EACCU $=\sum_{N}(\mathrm{U} 2-(T L-I L T) \cdot U A) \Delta t$
for a warm-up period of N times $\Delta t(1800 \mathrm{sec})$
U2 : delivered energy to storage (TL - ILT) •UA: storage heat loss

The result of computing CP from four different warm-up periods was:

period	
1	5263,5
2	5318,3
3	5560,6
4	5452,3

and the mean value

$$
\mathrm{CP} \quad=5399 \mathrm{KJ} /{ }^{\circ} \mathrm{C} \quad(\pm 3 \%)
$$

Simple computations of the capacity of the water and steel give the value of:

$$
\mathrm{CP}=5150 \mathrm{~kJ} /{ }^{\circ} \mathrm{C}
$$

1.8.3 Other parameters

The other parameters which also are listed in installation description ID2. 206 are estimated to be (the measured parameters are marked with an M):

Collector:

Absorber area	15.7	$\pm 1 \%$	$\left(m^{2}\right)$
Tilt	56.0	± 1	(0)
Azimuth	0.0	± 1	(0)
Cover refractive index	1.52		
Absorber emittance	0.1	$\pm 10 \%$	
Space between cover and absorber	0.018	± 0.00	(m)
Back and side loss (for all collectors)	28.3	$\pm 1 \%$	(W/K)
Heat capacity for all collectors and their connections incl. fluid	160	$\pm 15 \%$	(kJ / K)
Fluid content (for all connectors + connections)	0.044	$\pm 5 \%$	(m^{3})
Specific heat of fluid	3.515	$\pm 1 \%$	(kJ/kgK)
M Density of fluid	1037	$\pm 1 \%$	$\left(\mathrm{kg} / \mathrm{m}^{3}\right)$
M Optical factor of collector	0.85	$\pm 2 \%$	($W / m^{2} \mathrm{~K}$)
M Constant therm of the top heat loss coefficient	4.5	$\pm 2 \%$	$\left(W / m^{2} \mathrm{~K}\right)$
M Temperature coefficient of the top heat loss coefficient	0.015	$\pm 2 \%$	$\left(W / m^{2} K^{2}\right)$
Piping; cold side:			
Total lenght of cold side piping	25.0	± 0.3	(m)
Outside length	21.5	± 0.25	(m)
Heat capacity (inside piping)	6.8	$\pm 10 \%$	(kJ / K)
Heat capacity (outside piping)	41.7	$\pm 10 \%$	(kJ / K)
Heat loss coefficient (inside piping)	0.88	$\pm 5 \%$	(W/K)
Heat loss coefficient (outside piping)	5.38	$\pm 5 \%$	(W/K)
Electrical power of the pump	77	$\pm 5 \%$	(W)
Power delivered to the fluid	38	$\pm 20 \%$	(W)

Piping, hot side:
Total length of hot side piping Outside length
Heat capacity (inside piping)
Heat capacity (outside piping)
Heat loss coefficient (inside piping)
0.88 ± 5 \%
(W/K)
Heat loss coefficient (outside piping)
$7.25 \pm 5 \%$

Control:
Δt on
3
± 1
(K)
Δt off
0 ± 1
(K)

Heat exchanger:

$$
\text { Heat exchanger efficiency } 0.7 \quad \pm 7 \%
$$

Storage:
Volume of tank
Specific heat of the fluid
Density of the fluid
Heat capacity of tank
Heat loss coefficient of tank

1.1916	$\pm 1 \%$	$\left(\mathrm{~m}^{3}\right)$
4.182	± 0.01	$(\mathrm{~kJ} / \mathrm{kgK}$
998.2	± 3	$\left(\mathrm{~kg} / \mathrm{m}^{3}\right.$
5399	$\pm 3 \%$	$(\mathrm{~kJ} / \mathrm{K})$

Volume of tank for domestic hot water

3,662 + $0,038983 \cdot T_{L} \pm \frac{1}{2} \%(W / K)$

$$
\left(\mathrm{m}^{3}\right)
$$

Heat transfer coefficient between tanks

$$
0,206 \quad \pm 1 \%
$$between tanks

2. System behaviour studies SS1

During the last four years of operation on the SS1 device eight different system configurations have been connected to the measuring and control equipment.

Combined system

ID1.201*): Common configuration
ID1.202*):ID1.201 + lower heat demand and lower requested distribution temperature
ID1.203*):ID1.201 + ID1.202 + renewed collector control System and stratified storage tank
ID1.205: ID1.204 + new control strategy
ID1. 206 : ID1. 205 + new heat exchanger

Domestic hot water system
ID1.204*):ID1.201 + ID1. 203 + domestic hot water production
ID1.207 : ID1.206 + another inlet position
ID1. 208 : ID1. 207 + new heat exchanger
*) See ref (1)

The work and the results for the first four of them have been reported in ref (1). In this contractual period the main topic has been the temperature stratification of the storage.

2.1 The stratification of storage temperatures

The reason why the focus has been put on this subject is that the system performance is very much dependant of the available higher temperatures of the system. The early system configurations simply had the inlets to the storage tank in the bottom and the outlets in the top as shown on the diagram 2.1 (installations descriptor ID1.201-202).

Fig. 2.1 Schematic disgram of the solar zystem one, ssi.

This strategy has shown to be unappropriate. Consequently the flow direction was changed (installation descriptor ID1.203) as the heated water from the heat exchanger is led into the top of the storage. In order to measure the temperature gradient, the stratification, a rod with five thermocouples is placed vertically in the center of the storage.

With a persistent flow in the secondary collector loop as a consequence of solar insolation the hot water from the top of the storage will be mixed with the colder water from the bottom and hereby the temperature stratification will be destroyed.

Therefore another configuration has been set up (installation descriptor ID1.207).

Here the inlet from the heat exchanger is lowered to permit the hot layer in the top not to be mixed with the cold water in the bottom unless the inlet temperature is higher that the temperature in the top layer. The system is now for the purpose of producing domestic hot water only.

System performance SS1

Comparisons have been made between the temperature curves for the unstratified and the stratified storage. As seen on the fig. $2.2 . b$ the temperature rise due to solar gain had not disturbed the high temperature in the top of the storage (point 1). One and a half hour later at point 2 the temperature is falling, but it is now due to the tappe ing of hot water.

The unstratified storage is behaving otherwise. When the pump starts the top temperature is falling down immediately and the high top temperature can not be obtained. (Fig. 2.2.a).

Fig. 2.2.b

2.3 Links between the studies of the participants from the different countries

During most of the second contractual period the focus has been put on the following topics.

Primary circuit
I - on-off controll
static
dynamic
threshold studies
II - flow rates correlation between flow rates and on-off control (dynamic)
heat exchanger effectiveness
III - pump control reduction of pump consumption action 3 with actions $1 \& 2$
Solar storage
IV - storage volume/collector area ration same ratio obtained in different ways action $4+$ stratification
V - stratification action obtained by actions $2 \& 3$ actions carried out simultaneously with actions 6,7 \& 9

Secondary circuit

VI - requested distribution temperature

$$
\left.\begin{array}{l}
0 \text { permanent } \\
0 \text { seasonal }
\end{array}\right\} \quad \text { reduction }
$$

VII - heating demand reduction
VIII - control system strategies
control of return temperature
optimization of day/night behaviour
IX - combination of function
space heating + domestic hot water

Others
$X-$ components and arrangements.

Fig. 2.3.a
SS』 1981001982

.- 2nd year of operistion of SSt

Fig. 2.3.b

	$\begin{aligned} & 1.09 \\ & 1 \mathrm{st} \end{aligned}$	$\begin{array}{r} 20.10 \\ 2 \mathrm{nd} \end{array}$	$\left\lvert\, \begin{array}{r} 15.12 \\ 3 \mathrm{xd} \end{array}\right.$	$\left.\right\|_{1.02} ^{4 \mathrm{th}}$	$\left.\right\|_{5 \mathrm{ch}} ^{20.3}$	$\left\lvert\, \begin{array}{r} 15.05 \\ 6 \mathrm{ch} \end{array}\right.$
BELGIUM			I+II+III	$\mathrm{T}+\mathrm{II}+\mathrm{IXI}$	IV +V	TV +V
DENMARK	rx	IX	IX	VIII	VIII	VIII
France	IV	IV	IV	VII	I	I
germany	$\underline{1}$	II	II	VII	VII	I
IRELAND	VIII	VIII.	III	III	VII	VII
ITALY	IV	IV	$\underline{1}$	I	v	v
THE NETHERLANDS	V	V	VIII	VIIY	VII	VII.
UNITED KLNGDOM	V	V	IV	IV	IX	IX

PROGRAMME OF ACTIONS $\infty 1982-1983$

Efforts have been done to deal with the mentioned topics as well as possible. Therefore the researches concerning a specific topic have been done in more than a single country. The information about the work done by the different participants has been exchanged on the meetings of the SPTF-group. A comparison between the work of all participants is shown on fig. 2.3.a and fig. 2.3.b.
3. System behaviour studies SS2

The SS2 Pilot Test Eacility has been of great use
for the development of combined systems for SH and DHW, the main scope of the work on the SS2 installation of the Danish SPTF. In the four years contractual period measurements have been done on three different combined systems. The results from the first of them (system Ss2.1) have already been reported in ref (1). The work and the results from the two others (the system SS2.2 and SS2.4) will be presented in this chapter which also includes a presentation of a special thermal valve (system SS2.3).

3.1 System SS2. 2 - Combined system

The system is a combined space-heating and domestic hot water supply system. The size of the system is determined in order to reach a suitable delivery of energy of about $20-25 \%$ of the demand of a standard dwelling for one family.

3.1.1 Description of the system

The system consists of a storage ($1,4 \mathrm{~m}^{3}$) with a mantle around it, the mantle containing the hot water ($0,13 \mathrm{~m}^{3}$). The solar collectors $\left(18,84 \mathrm{~m}^{2}\right)$ are liquid based and with one layer of glass and selective absorber coating. A diam gram of the system is shown on fig. 3.1.1.

Elg. 3.1. 1

This system is equipped with an advanced primary circuit control system including four sensors.

One sensor is placed at the back on one of the absorbers, another at the bottom of the storage tank and two sensors in the collector circuit very close to the storage tank. The sensors in the collector circuit stop the pump when the energy flow to the tank is negative.

Data for the system

Solar collectors:	$\begin{aligned} & 18.84 \mathrm{~m}^{2} \text { sunline } \\ & \text { absorbers }\left(1,57 \mathrm{~m}^{2}\right. \text { each) } \\ & 1 \text { layer of glass } \end{aligned}$
Control:	diffexential thermostat
Storage:	hot water tarik 130 l storage (excl. hot water) 14001
Heat exchange:	```effiveness: 0.61 (40' C) heat transfer coefficient: 1538 W/PC (40'```

3.1.2 Measured data and calculations

The measured results for five measuring periods in 1981 are shown in table 3.1.2.a. In this table is also shown the thermal performance as calculated from the actual weather data with the SVS computer program.*) It is seen that there is a fairly good agreement between predicted and measured results.

Fig. 3.1.2.a

The yearly thermal performance has been calculated with the weather data from the Test Reference Year and the results are shown in table 3.1.2.b. It is seen that the total contribution of solar energy is 33% of the total heat requirement and that the system delivers $301 \mathrm{kWh} / \mathrm{m}^{2}$ collector per year. In particular the solar contribution to the space heating is high certainly because of the choice of simulating a floor heating distribution system. This is dimensioned for a supply temperature of $33^{\circ} \mathrm{C}$.

In the third solar system (SS2.4) this distribution system is changed to a more common one for a dwelling.
*) SVS computer program: Program developed at the Danish Thermal Insulation Laboratory.

Table 3.1.2.b: Yearly performances of plant SS2-2

Solar radiation on collector $\left(18.8\left[\mathrm{~m}^{2}\right]\right)$	20138 [kWh]
heat requixement for space heating	14076 [kWh$]$
solar heat for space heating	$4118[\mathrm{kWh}]$
covering $\%$	29
heat requirement for domestic hot water	3143 [kwh]
solar heat for DHW	$1555[k W h]$
covering \%	49
total heat xequirement	$17219[\mathrm{kWh}]$
total solar contribution	5673 [kWh]
$\begin{aligned} & \text { covering } \\ & \frac{\%}{8} \end{aligned}$	33
$5673[\mathrm{kWh}] \sim 301\left[\mathrm{kWh} / \mathrm{m}^{2}\right.$ of collector]	

3.2 System SS2.3-Thermal valve

The system is a "thermal valve" connected to the SS2
interface. Measurements have been obtained during the period from June to August 1982. The thermal value is a simple construction made to control f.ex. the heat delivery from a solar storage tank without the use of electromechanical control devices. The advantages are obvious - a cheaper system which requests no maintenance.

3.2.1 Description

The thermal value is a mixing box which is connected with pipes to the storage tank and to the external device. The purpose of the value is to give the highest possible temperature at the outlet terminal T out. This temperature can be either $T_{i n}$, the inlet temperature, or T st' the storage temperature. The function of the value can be described in the following formulas:

$$
\begin{array}{llll}
T_{\text {out }} & =T_{\text {in }} & \text { if } & T_{\text {in }}>T_{\text {st }} \\
T_{\text {out }} & =T_{\text {st }} & \text { if } & T_{\text {in }}<T_{\text {st }}
\end{array}
$$

The driving forces are the differences in density at the different temperatures.

The pipes in the self-circulating circuit are of a bigger dimension to lower the pressure drop - the configuration is shown on fig. 3.2.1.

Fig. 3.2.1: Thermal valve

3.2.2 Measurements

The valve has been tested under variation of the inlet temperature, the inlet flowrate and the storage temperature. The storage is heated with an electric spiralmeater and the inlet temperature is set by use of the SS2 interface equipment. All the mentioned temperatures are measured by the computer through the voltmeter and the scanner in the PTF data sampling system. Some of the results are presented in the next section.

3.2.3 Results

As seen on the diagram the thermal valve is functioning very well. The output temperature is the highest possible.

3.3 System SS2.4 - Combined system

This system, which for the moment is connected to the $\operatorname{ss} 2$ installation, has been build up during the period from sept. to Dec. 1982 and the measurements have started at the end of Dec. The system is a combined spacewheating and domestic hot water supply system and it is designed for an ordinary dwelling of $130 \mathrm{~m}^{2}$ in size.

3.3.1 Background

Several years of investigations under the SPTF-program and under the Danish National Solar Energy Program have made it possible to recommend a valid construction of a $\mathrm{SH}+\mathrm{DHW}$ system. The experiences drawn from these investigations have been the basis of the design work.

The energy consumption of the house, which the system is designed for, is about 13.600 kWh for the space heating and 3.200 kWh for the domestic hot water supply.

3.3.2 Description of the system

The DHW storage tank $\left(0.2 \mathrm{~m}^{3}\right)$ is placed inside the SH storage tank $\left(1.0 \mathrm{~m}^{3}\right)$ and it has nearly the same height as the SH tank. The solar collector system is liquid based and it is connected to the storage with a pipe heat exchanger placed in the bottom part of the $\mathrm{SH}-$ storage. The inlet of the cold water is placed at the bottom at the DHW-tank and the outlet is placed at the top. This storage configuration provides higher efficiences of the primary circuit because the cold inlet will cool down the bottom of the storage and give higher temperature differences between the fluid in the primary circuit and the water in the storage tank.

Fig. 3.3.2: Solar system Ss2.4

Back up (simulated)
As seen on the diagram of the system configuration the system is backed up with a boiler. In summer the no-load loss of the boiler would have been of considerable magnim tude in comparison with the demand for DHW. Therefore the boilex is cut off when there is no heat demand and the DHW supply is backed up with an electric heater, which has only little no-load loss.

Seperate readiator: (simulated)
The space heating system is equipped with a separate radiator for the solar space heating. This seperate heater is placed in the largest room of the dwelling, which has f.ex. 25% of the total demand for space heating, and it will make better conditions for using low storage temperatures.

Data for the SS2 system

Solar collectors:	10 elements with selective surface (product sunline)
	1 layer of glas transparent area: $15,7 \mathrm{~m}^{2}$
	liquid: propylene glycol
	flow: $0.111 \mathrm{~kg} / \mathrm{s}\left(0.4 \mathrm{l} / \mathrm{min} / \mathrm{m}^{2}\right)$
Control:	differential thermostat with separate setting of the start- and stop difference
Storage:	hot water tank: 2001 storage (excl. hot water) 10001
Heat exchanger:	20 meter of $16 \mathrm{~mm} / 18 \mathrm{~mm}$ copper tupe
Electric water hea	301 and 1.2 kw

3.3.3 Measurements

The measurements have started at the end of December and the period from the start to about the 1 st March has been used to the storage. From the beginning of March and to June the system is put into the solar-gain mode of operation and the measurements here will be used for validation of an EMGP2-model of the system (see also chapter 4.). In collaboration with the Danish EMG-member the expected performance for a whole year has been computed

3.3.4 Expected performance

The expected performance for a year is computed by the EMGP2-program and the results were presented in table 4. 5 in chapter 4. The main result is that the solar system will deliver 66% of the DHW-demand, 19% of the SH -demand and 28% of the total demand.

3.3.5 Economy

Installation costs (estimated)

Components	ECU
Storage tank with hot water tank	$710 .-$
Pipes, fittings, etc.	$610 .-$
Solar collectors 10 á 307.--	$3070 .-$
Control	$125 .-$
Space heating component	
pump	$50 .-$
control	$125 .-$
radiator	$\underline{360 .-}$
	$\underline{5050 .-}$

Wages

Plumber, piping, fittings	$970 .-$
Electrician	$75 .-$
Insulation work	$\frac{160 .-}{1205 .-}$
	$\underline{6255 .-}$
tal excl. sales tax	$\underline{1376 .-}$
les tax	$\underline{7631 .-}$

4. \quad EMG + PTF - results

4.1 Introduction

In view of economic aspects the cost of a solar heating system must be low and the annual useful output must be high. Therefore, a simple system with a small to medium sized collector array and a small storage is selected for the Danish SPTF installation, SS2.

Together with planning a combined system for space heating and domestic hot water production the system performance is simulated with EMGP2. The purpose is to optimize the system performance and secure good operation. Different system parameters are optimized

```
The collector flow rate
SH-demand
Flow rate in the distribution system
Heat transfer coefficient
```


4.2

Physical system
A schematic diagram of the system is given on fig. 4.2.

Fig. 4.2 Schematic diagram of solar heating system SS2.

The system is a combined space heating and domestic hot water system. The collector loop contains a collector array with 10 collectors $\left(15.7 \mathrm{~m}^{2}\right)$ and a submerged heat exchangex in the bottom of the main storage. The preheating tank for domestic hot water is submerged in the main storage extending from bottom to the top layer. The distribution system for space heating is not included in the SPTF installation but is controlled as a separate system with parallel auxiliary. The installation contains an auxiliary storage for heating domestic hot water.

Simulation model

A schematic diagram of the simulation model is given on fig. 4.3. The element serial members are indicated and the elements type members are given between brachets. The main storage is modelled as a stratified liquid storage tank with 4 thermal layers. The domestic hot water tank is mom delled as a submerged stratified liquid storage with 4 layers extending over the four layers in the main storage. The heat exchanger is submerged into the bottom layer of the main storage. The collector array is modelled as two series connected elements since the dependence of the collector flow rate is investigated.

Fig. 4. 3 Schematic diagram of the simulation model ss2.

System parameters

Collector:

Collector surface area
$15.7 \mathrm{~m}^{2}$
Single glass collector with selectiv absorber.
Collector efficiency curve:

$$
n_{0}=n_{0}-k_{0}\left(T_{m}-T_{a}\right) / I-k_{1} \cdot\left(T_{m}-T_{a}\right)^{2} / I
$$

with

$$
\begin{array}{ll}
\mathrm{n}_{\mathrm{o}}=0.85 & \mathrm{~T}_{\mathrm{m}}=\text { mean collector fluid temp. } \\
\mathrm{k}_{\mathrm{o}}=4.5 & \mathrm{~T}_{\mathrm{a}}=\text { ambient temp } . \\
\mathrm{k}_{1}=0.015 & \mathrm{I}=\text { solar irradiance }
\end{array}
$$

Thermal capacity per unit surface area incl.pipings $20 \mathrm{~kJ} / \mathrm{m}^{2} \mathrm{~F}$
Storage

storage	layer MO	$\mathrm{P}(1)$ $\mathrm{T}_{\text {int }}$ C_{C}	$\mathrm{P}(2)$ m^{2}	$\mathrm{P}(3)$ L m	$\mathrm{P}(4)$ K W / K	$\mathrm{P}(5)$ C $\mathrm{CJ} / \mathrm{m}_{\mathrm{K}}$
main	5	20	0,5695	0,425	2	4530
main	6	20	0,5695	0,425	1,3	4530
main	7	20	0,5695	0,425	1,3	4530
main	8	20	0,5695	0,425	1,3	4530
sub.	9	20	0,121	0,425	0,32	4530
sub.	10	20	0,121	0,425	0	4530
sub.	11	20	0,121	0,425	0	4530
sub.	12	20	0,121	0,425	0	4530

$P(1)$ initial temperature
P(2) cross-sectional area
$P(3)$ height of one layer
$P(4)$ total heat loss coefficient
$P(5)$ effective thermal capacity
Ambient temperature $20^{\circ} \mathrm{C}$

Piping of the collector loop

Pump power
50% of the pump power is dissipated in the fluid and the circulation pump is located in the cold pipe
Heat loss coefficient
Length of cold pipe 20 m
Length of hot pipe 20 m
Piping ambient temp.: outside temp.

```
Submerged heat exchanger 0,6
DHW-draw off
    Flow rate
    Cold water inlet
    Consumption temp.
    Daily consumption
        4,5 1/min
        8 O}\textrm{C
        45 O}\textrm{C
        202.5 1
        with the following profile
        15 min starting 7
        67,5 1
        15 min starting 12
        67,5 1
        15 min starting 19
            67,5 1
```

A dynamic heat balance of the dwelling is used together with heat extraction algorithm for space heating and has the following characteristics:

No usefull heat loss of other elements initial temperature $20^{\circ} \mathrm{C}$

Total heat loss coefficient $200 \mathrm{~W} /{ }^{\circ} \mathrm{C}$

Thermal heat capacity $20000 \mathrm{~kJ} / \mathrm{K}$

The space heating demand is zero during same period of the year, which is specified as follows:
$129<$ number of the day <266

Table 4.1

DHW demand
$11450 \mathrm{MJ} /$ year
SH demand $48835 \mathrm{MJ} /$ year

Heat transfer coefficient between main storage and preheating tank.
for one layer $75 \mathrm{~W} / \mathrm{K}$

Collector £low rate $1 / \mathrm{hm}^{2}$	Solar heat SH MJ	DHW MJ	SH $\%$	Solar fraction DHW $\%$	SH+DHW $\%$
$21.6 *$	7330	8082	64	17	26
$47.8 *$	7638	9393	67	19	28
47.8	7661	9521	67	19	29
31.8	7544	9038	66	19	28

* Only one element for the collector array

Table 4.2
DHW demand $11450 \mathrm{MJ} /$ year
SH demand $48835 \mathrm{MJ} /$ year
Collector flow rate
$31.81 / \mathrm{h} \mathrm{m}^{2}$
Flow rate in distribution system:
$0.14 \mathrm{~kW} /{ }^{\circ} \mathrm{C}$

UA	solar heat SH W/K			DHW MJ
50	9025	7514		
75	9038	7544		
100	9042	7562		

Table 4.3

DHW demand
Collector flow rate
$11450 \mathrm{MJ} / \mathrm{year}$ $31.8 \mathrm{I} / \mathrm{h} \mathrm{m}^{2}$
Heat transfer coefficient between
main storage and preheating
tank for one layer $75 \mathrm{~W} / \mathrm{K}$

SH	demand	Solar fraction			System performance $\mathrm{kWh} / \mathrm{m}^{2}$ year
	MJ	$\begin{gathered} \text { DHW } \\ \% \end{gathered}$	$\underset{\mathrm{O}}{\mathrm{SH}}$	SH+DHW	
1	22325	69	31	44	261
2	48835	66	19	28	293
3	81650	64	12	18	303

1: $130 \mathrm{~m}^{2}$ house with a today level of insulation
2: $130 \mathrm{~m}^{2}$ house according to the Danish building regulation of 1977

3: $130 \mathrm{~m}^{2}$ house with an insulation according to the level before 1960

Table 4.4
SH demand $48835 \mathrm{MJ} /$ year
DHW demand
$11450 \mathrm{MJ} /$ year
Heat transfer coefficient between
main storage and preheating
tank for one layer
$75 \mathrm{~W} / \mathrm{K}$
Collector flow rate $21.61 / \mathrm{hm}^{2}$

Flow rate in distribution
$\mathrm{kW} /{ }^{\circ} \mathrm{C}$
0.14
0.07

7829
Solar heat
$\begin{array}{lcc}\text { DHW } & \text { SH } & \text { SH+DHW } \\ \text { MJ } & \text { MJ } & \text { MJ }\end{array}$
3308082

15412
14112

Monthly values of the solar output from the combined space heating and domestic hot water system, installed on SPTF, SS2, are given in fig. 4.5.

Measurement from the system will be used to validate the EMGP2 with a similar model configuration.

Additional system data

System efficiency

$$
\frac{\text { System output }}{\text { Collector global radiator }}=\frac{16583 \mathrm{MJ}}{62265 \mathrm{MJ}}=27 \%
$$

Collector efficiency

$$
\frac{\text { Collector heat withdrawal }}{\text { Collector global radiation }}=\frac{22519 \mathrm{MJ}}{62265 \mathrm{MJ}}=36 \%
$$

Pipe efficiency

$$
\frac{\text { Solar storage input }}{\text { Collector heat withdrawal }}=\frac{20631 \mathrm{MJ}}{22519 \mathrm{MJ}}=92 \%
$$

Storage efficiency

$$
\frac{\text { System output }}{\text { Solar storage input }}=\frac{16583 \mathrm{MJ}}{20631 \mathrm{MJ}}=80 \%
$$

Table 4.5

	Solar Output		Heat demand		Solar fraction		
	DHW	SH	DHW	SH	DHW	SH	SH+DHW
	MJ	MJ	MJ	MJ	\%		
Jan	320	242	972	8734	33	3	6
Feb	393	700	878	7738	45	9	13
Mar	471	906	972	6756	48	13	18
Apr	656	1799	941	4295	70	42	47
May	787	2034	972	2544	81	80	80
Jun	941	0	941	0	100	-	100
Jul	972	0	972	0	100	\cdots	100
Aug	972	52	972	41	100	100	100
Sep	752	1445	941	1484	80	97	91
Oct	527	1055	972	3823	54	28	33
Nov	380	451	941	5811	40	8	12
Dec	373	353	972	7606	38	5	8
Tot	7545	9038	11450	48833	66	19	28

Conclusions and recommendations for further work
During the last two years of operation the SPrF groups have established a routine in acquisition and exchange of measuring data. Collaboration has also been established with the European Modelling Group with the purpose of validation models. This collaboration has for the Danish participant proved valuable not only for the validation but also for the immediate evaluation of the measured solar system and for new designs.

For the Danish SPTF the data acquisition has worked very well except for some power supply drop outs and computer break downs in the spring of 1983. In the period 17 data cassettes have been produced so the total number of produced data cas settes is now 41. The measurements have been obtained with good accuracy and there have been none or only unimportant problems with the measuring equipment. The data have been checked visually before being sent to the data bank.

At the SS1 system four new system configurations have been tested. The SSi system has in this period been changed to a system producing only domestic hot water and the efforts have mainly been put on the investigation of stratification in the storage. The Danish work on the SS1 has been coordinated with the work of the rest of the SPTF group so that many aspects of the SS1 system have been investigated.

For the SS2 system the work has consisted in development and improvement of systems for combined space heating and domestick hot water. The first system in this period was a system using a storage with a mantle for the domestic hot water. It had a collector area of $18,8 \mathrm{~m}^{2}$ and was operated to feed a floor heating system. From a model validated with the measurements an annual performance was calculated to be $301 \mathrm{KwH} / \mathrm{m}^{2}$ with a solar fraction of 33%. From a thermal point of view the idea of the system was good but the system was abandoned because of construction problems with the domestic hot water in the mantle.

After this a "thermal valve" was investigated. This was constructed to control the heat delivery from a solax storage tank without the use of electro - mechanical control devices. The valve worked very well.

The last SS2 system was constructed during 1982 and lots of effort was put on optimizing the system using the experiences gained from the first systems and using the validated situation model. Furthermore, the system was developed to be "ready to install".

From model calculations it was found that the system would have an anual performance of $300 \mathrm{kWh} / \mathrm{m}^{2}$ with a solar fraction of 66% for the DHW-demand, 19% for the space heating demand and 28% for the total demand.

The system is designed to fit existing houses and the price is calculated to be 51.000 D. Crs. It is expected to be possible to reduce this price by further improvements of the system and the components, so that the system will have a sound economy. The system has been carefully modelled with the EMG 2 simulation programme (the simulation programme developed by the European Modelling Group). The results of this are described in chapter 4 of this report.

The last two years of operation have proved that the SPTF's are very valuable tools to obtain accurate and detailed measuring data of solar systems. Furthermore, the SPTF's are designed so that it is very easy to modify or change the solar systems installed on the SPTF's. The characteristics of the SPTF make it suitable for every kind of experimental work with solar systems.

Though the work of the SPTE group has found a form where the carrying out of the different tasks is a matter of routine some problems still have to be solved.

The group has already carried out some work as to which criteria the characteristics of the time series have to fulfil to be valid for data analysis. For example you must have some heat demand, some solar insulation etc.

The length of the time serie is also very important and some theoretical work has also been made about it. Any final conclusion has not yet been found so the group has to reconsider this question.

After the expexience gained during the last years of operation it should also be worthwhile to reevaluate the working prom cedures which have been established.

For example the following questions could be considered:
a) Are the measurements accurate and uniform enough for the validation purposes?

This question could be answered from the modelling group where the validation has been going on for some time.
b) Does the operation procedure secure maximum use of the SPIE installations?

Until now the group has operated with a least six operation sequences per year.

However, it has been proved that if you are making major changes on the systems (for example if you dismount a solar system and construct a new one) then half a year could easily pass before you are ready to make new measurements. On the other hand if you are only making modifications on the system then it could be caxried out in less than a week.

A planned programme of action should therefore be flexible but it should also secure that results even though they are not coming in a regular order could be handled as effectively as possible.

A last question which is to be taken up is for what purposes the SPTF has to be operated in the future.

The two purposes, which has been considered, are the validam tion and the system development studies.

From the Danish point of view we agree with these purposes and think that they can easily go hand in hand.

Appendix 1
List of participants

Comordinator:	G. Olive Ministére de l'Urbanisme et du Logement Direction de la Construction 2 Avenue de Parc de Passy 45775 Paris Cedex 16
Belgium:	W.L. Dutrẻ A. Debosscher Catholic University of Leuven Laboratorium voor Warmteoverdracht en Reaktorkunde Instituut voor Mechanica Celectijnenlaan, 300 A 3030 Heverlee
France:	R. Ployart CEN Cadarache BP 1 13115 Saint Paul Lez Durance
Germany:	```R. Hanitsch K.D. Bergmann Institut furr Elektrische Machinen Technische Universität Berlin Sekr. EM4 Einsteinufer 13-15 1000 Berlin```
Ireland:	```I.J. Cowan Institute for Industrial Research & Standards Energy Development & Promotion Dep. I.I.R.S. Ballymun Road Dublin 9```
Italy:	L. Grassi Enel-Phoebus Via Leopardi 148 95127 Catania
The Netherlands:	C. den Ouden Institute of Applied Physics T.P.D. - T.N.O. Heat Instrumentation Department P.O. Box 155 2600 Delft

The Netherlands \quadE. Van Galen Van Amerongen	
	Institute of Applied Physics
	Stieltjesweg 1
	2628 CK Delft
United Kingdom	
	C.J. Baker
	N. Potter
	BSRIA
	Old Bracknell Lane West
	Bracknell, Berkshire, RG 12 4AH
	Klaus Ellehauge
	Ole Balslev-olesen
	Nick Bjorn Andersen
	Thermal Insulation Laboratory
	Technical University of Denmark
	Building 118
	DK-2800 Lyngby

Appendix 2

Data descriptors
Logsheets

Data descriptors

DDO:

DDO. 204

TOWN DAY MONTH YEAR HOUR NDAY NHOUR NMIN HGR HDR CGR WV AT SH ILT

FORMAT
linie No.
$1 \mathrm{C} 10,2 \mathrm{~F} 3.0, \mathrm{~F} 5.0, \mathrm{~F} 3.0, \mathrm{~F} 4.0,2 \mathrm{~F} 3.0$
2 3F8.3, F6.1, F7.1, 2F6.1

DD1: DD1. 203
3 OCTl CTDl IPTl PTDI IIT1 ITDI THTL HTDI
4 PCFI SPFl ITFI FPFl STTI STT2 STT3 STT4 STT5
5 TLI HP1 AHP1 SSG1 HOCl HT1
FORMAT
Each value is separated by a blank " "

3 8F1.1
4 4F8.3. 5F6.1
5 6F6.2

DD1.204

OCT1 CTD1 IPT1 PTD1 OIT1 ITD1 IHT1 HTD1
PCF1 SPF1 IIF1 EPF1 STT1 STT2 STT3 STT4 STT5
IL1 HP1 AHP1 SSG1 HOC1 HH

EORMAT

Iinie No.

```
3F6.1
    4FE.3, 5F6.1
    5 6F7.2
```

 00070 IMPUT 11 TOUN \& DAY MONTH YEAR MDUR NDAY NHOUR NMIN
 00100 H2 HOR HDR CGR WV AT SH ILT
 00110 G OCT1 CTD1 TPT1 FTDL OIT1 TTDI THT1 HTDI
 00120 स PCFI SPFI ITFI FFFL STT1 STTE STTS STTA STTS
 00130 \#S ILI HP1 AHP1 GSG1 HOC1 HH
 00140 HG OETE ETDE IPTE PTEZ OITE ITDE IDTE DTD2

00170 GY SIFI SIT1 RDTI X1 X2 GCLI
00180 \#10 E2C3CA
FORMAT:
*1 C10, 2F3.0, F5.0, F3.0, F4.0, 2F3.0
2 3F8.3, F5.1, F7.1, 2F5. 1
38 F 6.1
4 4F8.3. 5F6. 1
56 F 6.2
$6 \quad 8 \mathrm{~F} 6.1$
7 8F6. 1
8 E61, 3E7.3. 4F7.2
9 F6.2, 2F6.1, 3F7. 2
$10 \quad 3 F 7.2$

```
Data Descriptor: DD1.205
```

```
GS OCT1 CTDI IPTI PTDI OITI ITDI IHT1 HTDI
E4 PCFI SPFI IIFI FPFL STTI STT2 STTS STT4 STTS
G5 ILI GDI QDE 5SG. HOCI HH:
```

Format:

```
Line 3: 8F6.1
    4: 4F8.3, 5F6.1
    5: 6F7.2
```


New variable

QD1 : Measured integrated DHW-draw off reset at midnight

QD2 : Requested integrated DHW-draw off reset at midnight

DD2: DD2.205
6 OCT2 CTD2 IPT2 PTD2 OIT2 ITD2 ODT2 DTD2
7 T10 T11 T12 T13 T15 T16 T17 T18
8 T19 FPF2 TTF2 FDIW2 HOC2 JL2 ODIWW SSG2
9 SIIE] SOIT1 RDT1 X1 X2 SCLI
10 C2 C3 C4
FORMAT
Each value is separated by a blank " "
68 F 6.1
7.F7.2.2F6.1. 3F7.2

8 E6.1. 3F7.3, 4F7.2
9 3F7. 2

Numenclature

Ifine 1

$\left.\begin{array}{l}\text { TOWN: } \\ \text { DAY } \\ \text { MONTH } \\ \text { YEAR } \\ \text { HOUR }\end{array}\right\}$ Beginning of data storage sequence
$\left.\begin{array}{l}\text { NDAY } \\ \text { NHOUR } \\ \text { NMIN }\end{array}\right\}$ Data storage file

Line 2
HGR: Horizontal global radiation $\left[\mathrm{kWh} / \mathrm{m}^{2}\right]$
HDR: Horizontal diffuse radiation [kWh/m $\left.{ }^{2}\right]$
CGR: Collector global radiation $\left[\mathrm{kWh} / \mathrm{m}^{2}\right]$
WV : Wind velocity
AT : Air temperature
SH : Specific humidity, not measured
ILT: Interiox laboratory temperature

Line 3 Data from SS1
OCT1: Out of collector temperature
[$\left.{ }^{\circ} \mathrm{C}\right]$
CTD1: Collector temperature difference
$\left[{ }^{\circ} \mathrm{C}\right]$
IPT1: Inlet primary temperature
[$\left.{ }^{\circ} \mathrm{C}\right]$
PDT1: Primary temperature difference
$\left[{ }^{\circ} \mathrm{C}\right]$
OIT1: Out of interface temperature
$\left[{ }^{\circ} \mathrm{C}\right]$
ITD1: Interface temperature difference
IHT1: Inlet heat exchanger temperature in primary collector circuit
HTD1: Heat exchanger temperature difference in primary collector circuit
Line 4. Data from SS1
PCF1: Partial collector flowrate $\left[\mathrm{m}^{3} / \mathrm{h}\right]$SPF1: Secondare collector flowrate$\left[\mathrm{m}^{3} / \mathrm{h}\right]$IIF1: Interface flowrateFPF1: Primary collector flowrateSTT1: Top storage tank temperature
STr2: storage tank temperature
STT3: storage tank temperature
STT4: storage tank temperature$\left[m^{3} / h\right]$$\left[m^{3} / h\right]$
STT5: Bottom storage tank tamperature
Line 5, Data from SS1
IL1 : Interface losses [kWh]
HP1 : Heating power [kWh]
AHP1: Auxiliary heating power [kWh]
SSG1: Solar storage gain [kWh]
HOC1: Heat out of collector [kWh]
HH : Heat into heat exchanger [kWh]
Line 8, Data from SS 2
T19: Storage tank temperature [${ }^{\circ} \mathrm{C}$]
F1 : Flow in collector circuit
F2 : Flow in interface$\left[m^{3} / \mathrm{h}\right]$
F3 : Domestic hot water flow
Q1 : Heat gain from collector$\left[\mathrm{m}^{3} / \mathrm{h}\right]$
Q2 : Heat gain to interface$\left[m^{2} / h\right]$
[kWh][kWh]
Q3 : Heat gain for domestic hot water
Q1A : Heat storage gain [kWh]
Line 9
SIF1: Set interface flow, predicted by SIMUL
SIT1: Set interface temperature, predicted by sImUL $\left[{ }^{\circ} \mathrm{C}\right]$
RDT1: Requested distribution temperature predictedby SIMUL
X1 : Control parameter
x2 : Control parameter
SCL1: Space cooling load
Line 10 Data from SS2
C2 : Integrated space heating load, predicted by SIMUL [kWh]C3 : Integrated heat gain from solar system,predicted by SImut
C4 : Integrated storage loss[kWh]

START					DD							ID				END				
					u	DDO		D01		DD2		IDI		102						
$\stackrel{M}{1}$	p	$\stackrel{H}{+}$	m	$\left.\right\|^{F}$		c	1^{V}	c	1	c	${ }^{V}$	c	${ }^{1}$	c	V^{V}	$\stackrel{M}{M}$	0	4	q	L^{F}
7	4	13	0	100	3	2	03	2	03	2	05	2	04	2	05	7	20	8	0	479
												\square								
												1								
											.									
															\therefore					
															-					,
											-									
					,															

REMARKS

SS1: The value of HP 1 and AHP1 is missing, but use x 1 and x 2 in line 9 instead

$$
\mathrm{HP} 1=\mathrm{x} 1 \text { and } \mathrm{AHP} 1=\mathrm{x} 2
$$

Schematic diagram of the solar system SS2.3

Schematic diagram of the solar system SS2.4

Appendix 4
Installation descriptors

The installation descriptors - solar system one

The installation descriptors each describing a certain system configuration are here presented:

Solar system one

Combined system

ID1.201*): Common configuration
ID1.202*):ID1.201 + lower heat demand and lower requested distribution temperature
ID1.203*):ID1.201 + ID1. 202 + renewed collector control System and stratified storage tank
ID1. 205 : ID1. 204 + new control strategy
ID1.206: ID1. 205 + new heat exchange

Domestic hot water system
ID1.204*):ID1.201 + ID1.203 + domestic hot water production
ID1.207: ID1.206 + another inlet position
ID1.208: ID1. 207 + new heat exchange
*) See ref (1)

Solar system two

ID2.201*): $30 \mathrm{~m}^{2}$ black-painted solar collector $1.2 \mathrm{~m}^{3}$ storage tank with an $0.2 \mathrm{~m}^{3}$ preheating tank inside.

ID2.202*):ID2.201, but with $20 \mathrm{~m}^{2}$ collector area.
ID2.203*): ID2.201, but with $10 \mathrm{~m}^{2}$ collector area.

ID2.204*): ID2.201, but with renewed storage tank with an $0.1 \mathrm{~m}^{3}$ preheating tank outside. Renewed control system with four sensors.

ID2.205*):ID2.204, but with renewed solar collector with selective absorber.

ID2.206: $16 \mathrm{~m}^{2}$ selectiv absorber $1.0 \mathrm{~m}^{3}$ storage tank with an $0.2 \mathrm{~m}^{3}$ DHWtank inside.

Installation descriptor ID1.205:

The system configuration now differs from the original configuration. The requested distribution temperature and the house heating demand are lowered according to the installation descriptor ID1.202. Another control strategy for the collector circuits is introduced according to the ID1.203. These two modifications are also included in the installation descriptor ID1.205.

The installation descriptor ID1. 205 comprises an investigation of the starting and the stopping temperature difference of the collector control system.

$$
\begin{aligned}
& \Delta T_{\text {On }}=8^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C} \\
& \Delta T_{\text {Off }}=0^{\circ} \mathrm{C} \pm 1{ }^{\circ} \mathrm{C}
\end{aligned}
$$

Installation descriptor ID1.206:

The heat exchanger between the two collector circuits is replaced by a counterflow heat exchanger. Besides the heat exchanger the installation descriptor ID1. 206 also includes the modifications according to ID1.202. ID1.203 and ID1.205.

Because of wrong information given by the manufacturer, the pressure drops across the heat exchanger is greater than expected. To secure a reasonable flow rate in the collector circuits the pump power is increased.

```
Primary circuit: 600 W, 50% to the fluid
Secondary circuit: 345 W, 50% to the fluid
```

By using measurement olvained in llay 1982 the heat exchanger effectiveness and the heat transfer coefficient is found.

The effectiveness is found by

$$
\begin{aligned}
\varepsilon & =\frac{\dot{Q}_{\text {actual }}}{\dot{Q}_{\text {maximum }}} \\
& =\frac{\operatorname{SPF} 1 \quad C_{p} \cdot \rho \cdot \operatorname{PTD} 1}{\dot{C}_{\min }(I H T 1-O P T 1)}
\end{aligned}
$$

Sincethe capacity flow rate in the secondary collector circuit is the minimum flow rate, the equation then becomes

$$
\varepsilon=\frac{\operatorname{PTD} 1}{\operatorname{IHT} 1-\operatorname{IPT} 1+\operatorname{PTD} 1}
$$

The overall heat transfer coefficient (UA) can be found by

```
Q}=UA \cdot 目⿰
Q : heat transfer (SSG1)
0 In : logarithmic mean temperature difference
UA = \frac{SSG1}{HTMD1- PTD1 }
```

A linear relation between ε and the temperature IHT1 is found:

```
\varepsilon=1.16 \cdot 10-3. IHT1 + 0.553.
```

A linear relation between UA and the temperature IHT1 is found:

$$
\mathrm{UA}=5.22 \cdot 10^{-3} \cdot \operatorname{IHT} 1+1.814 \quad\left[\mathrm{~kW} /{ }^{\circ} \mathrm{C}\right]
$$

The main results are listed in the table 1 , and all the measurements used are listed in the appended list.

VARIABLE	N	MEAN	gtandard DEVIATION	MINIMUM VALUE	MAXIMUM value
FPF1	134	2.50513433	0.02786940	2.4 .4800000	
SPFI	134	1.45925373	0.01217892	1.41700000	1.4760000
SHT1	134	56.03507463	10.71416922	32.40000000	80.7000000
IPTI	134	50.99179104	10.80006299	29.70000000	77.7000000
HTDL	134	5.06492537	1.64573983	2.00000000	8.4000000
PTD 1	134	0.17164179	2.65260864	3.30000000	13.5000000
E	134	0.61743574	0.01354223	0.57812500	0.6412214
UA	134	2.10676053	0.07029155	1.35692164	2.210172

Table 1. UA: [$\left.\mathrm{kW} /{ }^{\circ} \mathrm{C}\right]$

Installation descriptor IDI. 207

The system on the Danish solar pilot test facility is a domestic hot water system with a draw of profile according to a consumption of 20 dwellings.

The system is indicated on fig. 1. The cold water inlet is in the bottom of the storage tank and the outlet from the top. The water from the heat exchanger in the secondary collector circuit is returned into the middle layer of the storage tank.

The collector circuits are controled by a differential thermostat which starts the pumps when the temperature of the backside of the absorber plate is higher than the temperature at the bottom of the storage tank.

Parametre:

Collector:

Absorber area	$46.47 \mathrm{~m}^{2}$
Tilt	$56.0{ }^{0}+1^{0}$
Azimut	$0.0{ }^{0} \pm 1^{0}$
Cover refractive index	1.52
Absorber absorptance	0.93
Absorber emittance	0.3
Space between cover and absorber	0.035 m
Back and side lasses incl. their connections	$91.0 \pm 5 \% \mathrm{~W} / \mathrm{K}$
Heat capacity for all collectors and their connections incl. fluid	$1200 \pm 13 \% \mathrm{~kJ} / \mathrm{K}$
Specific heat of fluid	$3.91 \pm 2 \% \mathrm{KJ} / \mathrm{kg} \mathrm{K}$
Density of fluid	$1060 \pm 2 \% \mathrm{~kg} / \mathrm{m}^{3}$
Optical factor of collector ($\alpha \tau$)	0.85
Piping (primary collector loop):	
Length of cold side piping	$32.4+0.2 \mathrm{~m}$
Outside length (cold side)	$23.2 \pm 0.2 \mathrm{~m}$
Heat capacity incl. content	$16.0 \pm 20 \% \mathrm{~kJ} / \mathrm{K} \mathrm{m}$
Heat loss	$1.12 \pm 20 \% \mathrm{~W} / \mathrm{K} \mathrm{m}$
Electrical power of the pump	$600 \pm 5 \% \mathrm{~W}$
Power delivered to the fluid	$300 \pm 20 \% \mathrm{~W}$
Length of hot side piping	$16.9 \pm 0.2 \mathrm{~m}$
Outside length (hot side)	$11.6 \pm 0.2 \mathrm{~m}$
Controler:	
Start differential ΔT on	$8 \pm 1{ }^{\circ} \mathrm{C}$
Stop differential ΔT off	$0 \pm 1^{\circ} \mathrm{C}$
Heat exchanger:	
Heat exchanger effectiveness	$0.62 \pm 3 \%$

Storage tank:

Volume of tank
Length of secondary circuit
Specific heat of the fluid
Density of the fluid
Heat capacity of tank incl. secondary collector circuits
Heat loss coefficient of tank
Heat loss coefficient of piping Electrical power of pump
Power delivered to the fluid
$3 \mathrm{~m}^{3}$
$7 \pm 0.2 \mathrm{~m}$
$4.2 \mathrm{~kJ} / \mathrm{kgK}$
$1000 \mathrm{~kg} / \mathrm{m}^{3}$
$13400 \pm 7 \% \mathrm{~kJ} / \mathrm{K}$
$15.4 \pm 3 \% \mathrm{~W} / \mathrm{K}$
$3.5 \pm 20 \%$
$345 \pm 5 \% \mathrm{~W}$
$170 \pm 20 \% \mathrm{~W}$

Installation descriptor ID1. 208
The heat exchanger used between the two collector circuits according to installation ID1. 206 has now been replaced.by the one originally used in the sS1-system (ID1.201-205). This means that the performance now can be expressed as:

Heat exchanger effectiveness $0,37 \pm 3 \%$

Furthermore the $r_{V}\left(C_{V}\right)$ value of the controlled value A in the tapping pipe has been changed.

The system is still a domestic hot water system with a draw off profile according to the consumption of 20 dwellings.

System parameters

Collector:

Absorber area
Tilt
Azimuth
Cover refractive index
Absorber absorptance
Absorber emittance
Space between cover and absorber
Back and side losses incl.
their connections
Heat capacity for all collectors and their connections incl. fluid
Specific heat of fluid
Density of fluid
Optical factor of collector ($\alpha \tau$)

Piping (primary collector circuit):
Length of cold side piping
Outside length (cold side)
Heat capacity incl. content Heat loss

Electrical power of the pump
Power delivered to the fluid
Length of hot side piping
Outside length (hot side)

Control:
Start differential $\Delta T_{o n} \quad 8 \quad \pm 1^{\circ} \mathrm{C}$
Stop differential Δ Toff $0 \pm 1^{\circ} \mathrm{C}$

Heat exchanger:
Heat exchanger effectiveness $0.37 \pm 3 \%$
$46.47\left(\mathrm{~m}^{2}\right)$
$56.0^{\circ} \pm 1^{\circ}$

1. 52
0.93
0.30
0.035 (m)
2. $0 \pm 5 \% \quad(\mathrm{~W} / \mathrm{K})$
0.85
$32.4 \pm 0.2(\mathrm{~m})$
$23.2 \pm 0.2(\mathrm{~m})$
$600 \pm 5 \%$ (W)
$300 \pm 20 \%$
$16.9 \pm 0.2(\mathrm{~m})$
$11.6 \pm 0.2(\mathrm{~m})$
$0.0^{\circ} \pm 1^{\circ} \quad$ (south)
$1200 \pm 13 \%(\mathrm{~kJ} / \mathrm{K})$
3.91 ± 2 ㅇ ($\mathrm{kJ} / \mathrm{K} \mathrm{kg}$)
$1060 \pm 2 \%\left(\mathrm{~kg} / \mathrm{m}^{3}\right)$
$16.0 \pm 20 \%(\mathrm{~kJ} / \mathrm{K} \mathrm{m})$
$1.12 \pm 20 \% ~(W / K ~ m ~$

Volume of tank	3	$(\mathrm{m})^{3}$
Length of secondary circuit	7 ± 0.2	(m)
Specific heat of the fluid	$4.2 \pm 2 \%$	($\mathrm{kJ} / \mathrm{kg} \mathrm{K}$)
Density of the fluid	1000 ± 2 \%	($\mathrm{kg} / \mathrm{m}^{3}$)
Heat capacity of tank incl. secondary collector circuit	$13400 \pm 7 \%$	($\mathrm{kJ} / \mathrm{kg} \mathrm{K}$)
Heat loss coefficient of tank	15.4 $\pm 3 \%$	(W/K)
Heat loss coefficient of piping	$3.5 \pm 20 \%$	(W/K)
Electrical power of the pump	$345 \pm 5 \%$	(w)
Power delivered to the fluid	$170 \pm 20 \%$	(W)

SChematic diagram of the solar system SSI IDI. 208

The installation descriptors - solar system two

Installation descriptor ID2. 205
The collectors are replaced by collectors with selective absorber coating. The requested space heating load is the same as for SSI.IDl.203, calculated by SIMUL.

System parameters
Collector:
Absorber area for all collectors $18.84 \mathrm{~m}^{2}$
Further information about the effectiveness of the collector can be found in ref (1) section 6 .

Installation descriptor ID 2.206

On the SS2 installation, the system in question is a combined space-heating and domestic hot water supply system, which is designed for an ordinary dwelling $130 \mathrm{~m}^{2}$ in size and with an energy consumption of 14.000 kWh for space heating and 3.500 kWh for the domestic hot water supply.

The DHW storage tank $\left(0,2 \mathrm{~m}^{3}\right)$ is placed inside the SH storage tank ($1,0 \mathrm{~m}^{3}$) and it has nearly the same height as the SH tank. The solar collector system is liquid based and it is connected to the storage with a pipe heate exchanger placed in the bottom part of the su-storage. The inlet of the cold water is placed at the bottom at the DHW-tank and the outlet is placed at the top. This storage configuration provides higher efficiences of the primary circuit because the cold inlet will cool down the bottom of the storage and give higher temperature differences between the fluid in the primary circuit and the water in the storage tank.

ABSORBERS	VALUE	UNIT	UNCERTAINTY	
			VALUE	$A B S$. or REL.
P (1,1) : ABSORBER AREA FOR ALL COLLECTORS	15,7	m^{2}	0.01	R
P (1,2): TILT	56	\bigcirc	1	A
P (1,3) : AZIMUTH	0	\bigcirc	1	
P (1,4) : COVER ABSORPTANCE				
$P(1,5)$: COVER REFRACTIVE INDEX	1.52			
$P(1,6):$ ABSORBER ABSORPTANCE				
$P(1,7):$ ABSORBER EMITTANCE	0.1		0.1	R
$P(1,8)$: SPACE BETWEEN COVER AND ABSORBER	0.018	m	0.001	A
$p(1,9): \begin{aligned} & \text { BACK AND SIDE LOSS } \\ & \text { (FOR ALL COLLECTORS) } \end{aligned}$	28.3	W/K	0.1	R
$\begin{aligned} & \text { HEAT CAPACITY for all conllectors } \\ & P(1,10): \text { and their connections incl. fluid } \end{aligned}$	160	kJ/K	0.15	R
$P(1,11): \begin{aligned} & \text { FLUID CONTENT (FOR ALL CONNEC- } \\ & \text { TORS }+ \text { CONNECTIONS }) \end{aligned}$	"0.044	m^{3}	0.05	R
$P(1,12)$: SPECIFIC HEAT OF FLUID ($20\left[{ }^{\circ} \mathrm{C}\right]$)	3.515	$\mathrm{kJ} / \mathrm{kgK}$	0.01	R
$p(1,13)$: DENSITY OF FLUID ($20\left[{ }^{\circ} \mathrm{C}\right]$)	1037	$\mathrm{kg} / \mathrm{m}^{3}$	0.01	R
$\begin{aligned} & \mathrm{P}(1,14): \text { OPTICAL FACTOR OF COLLECTOR } \\ & \text { WITH VARIABEE }(T \mathrm{C}) \text { OPTION } \\ & \hline \end{aligned}$				
$\begin{gathered} \mathrm{p}(1,15): \text { OPTICAL FACTOR OF COLLECTOR } \\ \text { WITH CONSTANT }(\tau, 0) \text { OPTION } \\ \hline \end{gathered}$	0.85	$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$	0.02	R

ABSORBERS	VALUE	UNIT	UNCERTAINTY	
			VALUE	ABS. or REL.
$\mathrm{P}(1,16):$CONSTANT THERM OF THE TOP HEAT LOSS COEFFICIENT	4.5	$\mathrm{W} / \mathrm{m}^{2} \mathrm{~K}$	0.02	R
$\text { P }(1,17) \text { : TEMPERATURE COEFFICIENT OF THE }$	0.015	$\mathrm{W} / \mathrm{m}^{2} \mathrm{k}^{2}$	0.02	R
p				
P PIPING. COLD.SIDE				
$\mathrm{P}(2,1)$: TOTAL LENGTH OF COLD SIDEPIPING	25,0	m	0.3	ABS
P (2,2) : OUTSIDE LENGTH	21,5	m	0.25	ABS
P $(2,3)$: TOTAL VOLUME				
$P(2,4)$: HEAT CAPACITY (INSIDEPIPING)	6.8	kJ / K	0.1	R
$P(2,5)$: HEAT CAPACITY (OUTSIDE PIPING)	41,7	kJ/K	0.1	R
$\begin{aligned} & \mathrm{P}(2,6): \begin{array}{l} \text { HEAT LOSS COEFFICIENT } \\ \text { (INSIDE PIPING) } \end{array} \\ & \hline \end{aligned}$	0,88	W/K	0.05	R
$\mathrm{P}(2,7): \text { HEAT LOSS COEFFICIENT }$	5,38	W/K.	0.05	R
$\mathrm{P}(2,8)$: ELECTRICAL POWER OF THE PUMP	77	W	0.05	R
P (2,9) : POWER DELIVERED TO THE FLUID	38	W	0.2	R
P (2,10): VOLUPE OF THE BYPASS				
P				

IDI/.../...

PIPING. HOT SIDE	VAIUE	UNIT	UNCERTAINTY	
			VAlue	ABS or REL.
$P(3,1)$: TOTAL LENGTH OF HOTSIDE PIPING	32.5	m	0.5	ABS
$p(3,2)$: OUTSIDE LENGTH	29,0	m	0.4	ABS
$P(3,3):$ TOTAL VOLUME				
$\mathrm{P}(3,4): \text { HEAT CAPACITY }$	6,8	kJ / K	0.1	R
$P(3,5): \begin{aligned} & \text { HEAT CAPACITY } \\ & \text { (OUTSIDE PIPING) } \end{aligned}$	56,3	kJ / K	0.1	R
$p(3,6): \text { HEAT LOSS COEFFICIENT }$	0,88	W / K	0.05	R
$P(3,7):(\text { HEAT LOSS COEFFIGIENT }$	7.25	W / K	0.05	R
p				
P CONTROL				
$P(4,1): \triangle T O N$	3	K	1	ABS
$P(4,2): \triangle T$ OFF	0	K.	1	ABS
P				
P				
P				
P				

HEAT EXCHANGER	value	unit	Uncertatnty	
			value	ABS. or Rel.
$\mathrm{P}(5,1)$: heat transfer coefficient				
$\mathrm{P}^{(5,2)}$: heat transfer area				
$\mathrm{P}(5,3)$: heat exchanger efficiency	0,7		0.07	R
${ }^{P}(5,4)$: heat loss coefficient				
P				
P				
p				
P				
P				
p				
P				
p				
P				
P				

STORAGE	Value	UNIT	UNCERTATNTY	
			VALUE	$A B S$ or REL.
$P(6,1)$: VOLUME OF TANK	- 1.1916	m^{3}	0.01	REL (beregn)
$P(6,2)$: VOLUME OF SECONDARY CIPCUIT			;	
P (6,3) : LENGTH OF SECONDAPY LOOP				
$g(6,4): \begin{aligned} & \text { SPECIFIC HEAT OF. THE FLUID } \\ & (20[O C 1) \end{aligned}$	4.182	kJ/kgk	0.01	ABS
$\mathrm{P}(6,5):$ DENSITY OF THE FLUID $\left(20\left[{ }^{\circ} \mathrm{C}\right]\right)$	998.2	$\mathrm{kg} / \mathrm{m}^{3}$	3	$A B S$
$P(6,6):$ HEAT CAPACITY OF TANK INCL FIUID	5399	kJ / K	0.03	REL (målt)
$P(6,7): \begin{aligned} & \text { HEAT CAPACITY OF PIPING } \\ & \text { (INCL. FLUID) } \end{aligned}$				Rヒエ (majt)
$P(6,8): \text { HEAT LOSS COEFFICIENT OF TANK }$	$\begin{array}{r} 3,662+ \\ 0,038983 \cdot \mathrm{~T}_{I} \\ \hline \end{array}$	W / K	0.005	REIs (mail)
$\underline{P(6,9): ~ H E A T ~ L O S S ~ C O E F F I C I E N T ~ O F ~ P I P I N G ~}$				REI (malt)
$P(6,10):$ ELECTRICAL POWER OF THE PUMP				
$P(6,11)$: POWER DELIVERED TO THE FLUID	;			
$p(6,12): \text { VOLUME OF TANK FOR DOMESTIC HOT }$	0.206	m^{3}	0.01	REL (beregn)
$\begin{aligned} & \text { P }(6,13): \begin{array}{l} \text { HEAT TRANSFER COEFFICIENT } \\ \text { BETWEEN TANKS } \end{array} \\ & \hline \end{aligned}$	200	W/OC	0.3	REL
P				
P				

ID1/1/02

	VALle	σ	ABS.OE REL.
$1 \quad \frac{\text { Collecior iraciance }}{-C G R}$	$15.7 \mathrm{~m}^{2}$	$\begin{aligned} & 0.05 \\ & 0.01 \end{aligned}$	R 8
$\begin{gathered} \text { 2 Collector hear withorawal } \\ \text { - dersisy } \\ \text { - specisic hear } \\ \text { - FPE1 } \\ \text { - CID } \end{gathered}$	$\begin{gathered} 1037 \mathrm{~kg} / \mathrm{m}^{3} \\ 3,515 \mathrm{~kg} / \mathrm{kgK} \\ 340 \mathrm{~L} / \mathrm{h} \end{gathered}$	$\begin{aligned} & 0.01 \\ & 0.01 \\ & 0.03 \\ & 0.1{ }^{\circ} \mathrm{C} \end{aligned}$	8 8 8 8 8
j Solar stomage eains - density - specieje hear - Spry - PDI	$\begin{aligned} & 998,2 \mathrm{~kg} / \mathrm{m}^{3} \\ & 4,182 \mathrm{~kg} / \mathrm{kg} \mathrm{k}^{\circ} \\ & - \end{aligned}$	$\begin{aligned} & 0.003 \\ & 0.03 \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & A \end{aligned}$
4 $\begin{aligned} & \frac{\text { Interface losjes }}{\text { - dersity }} \\ & \text { - specific hear } \\ & \text { - OIFl } \\ & \text { - ITD } \end{aligned}$	$\left\lvert\, \begin{aligned} & 998,2 \mathrm{~kg} / \mathrm{ma}^{3} \\ & 4,182 \mathrm{~kg} / \mathrm{kgK} \\ & - \\ & - \end{aligned}\right.$	$\begin{aligned} & 0.003 \\ & 0.01 \\ & 0.03 \\ & 0.1^{\circ} \mathrm{C} \end{aligned}$	$\begin{aligned} & 8 \\ & \dot{8} \\ & \& \\ & \& \end{aligned}$
5Climezie measurements $-H G R$ $-H D R$ $-C G R$ $-A T$		$\begin{aligned} & 0.05 \\ & 0.05 \\ & 0.05 \\ & 0.35{ }^{\circ} \mathrm{C} \\ & 0.35 \end{aligned}{ }^{\circ} \mathrm{C}$	$\begin{aligned} & 8 \\ & 8 \\ & 8 \\ & A \\ & A \\ & 8 \end{aligned}$

EMGP1-INPUI DATA WRICH ARE NOT IN IDI.

	VALUE	UnIT	UNCERTATXTY	
1. Collectors			VALUE	ABS. OX PEL.
Inicial Collecror pemperarure				
Inicial Collecror Temperacure	5	${ }^{\circ} \mathrm{C}$	10.0	
Cover emitsance	0.94	-		A
Efficiency factor F^{\prime}	. 98	-		A
First primary flow	0.98	\cdots	0.005	A
Cover extinction coefeicient	340	L/h	0.03	
Cover extinction coefticient	0.16	CM^{-1}	. 02	8
Cover rhickness	0.4		. 02	4
		CM.	0.01	A
2. Storage				
Inxisal gemperatuse	20			
Second Primary Flow	20	${ }^{\circ} \mathrm{C}$	0.5	A
		L/h	-	8

Appendix 5
Contents of the cassettes

Measurements obtained at the Danish SPTE:

1) $1+2$ year (1979-81)

Cassette no.	DDO	DD1	DD2	ID1	ID2	N	
2001	1	1	1	1	1	184	
2	1	1	2	1	1	231	
3	1	1	2	1	1	378	
4	1	1	2	1	1	259	
5	1	1	2	1	1	209	
6	1	1	2	1	1	399	
7	1	1	2	1	1	386	
8	1	1	3	1	1	399	
9	1	1	3	1	1	237	
10	1	1	3	1	1	330	
11	1	1	3	1	2	331	
12	1	1	3	1	3	221	
13	2	2	4	2	4	140	
14	2	2	4	2	4	353	
15	2	2	4	2	4	338	
16	2	2	4	2	4	382	
17	2	2	4	2	$*$	383	
26	3	3	5	3	5	111	
27	3	3	5	3	5	331	
28	3	3	5	3	5	336	
31	3	3	5	3	5	361	
32	3	3	5	4	5	354	
33	3	3	5	4	5	363	
34	3	3	5	4	5	379	

N: Number of hour-values
DD: Data descriptor
ID: Installation descriptor
2) $3+4$ year $(1981-83)$

Cassette NO.	DDO	DD1	DD2	ID1	ID2	N	FROM	TO	YEA	
2036	3	3	5	5	5	332	$4 / 9$	$18 / 9$	81	
37	3	3	5	5	5	183	$23 / 9$	$1 / 10$	81	
38	3	3	5	5	5	327	$5 / 10$	$19 / 10$	81	
39	3	3	5	5	5	188	$20 / 10$	$1 / 11$	81	
40	3	3	5	5	5	362	$2 / 11$	$23 / 11$	81	
41	3	3	5	5	5	309	$24 / 11$	$13 / 12$	81	
42	3	3	5	5	5	150	$2 / 2 / 2$	$16 / 2$	82	
45	4	4		6		306	$3 / 2$			
46	4	4		6		307	$18 / 2$	$3 / 3$	82	
47	4	4		6		187	$3 / 3$	$15 / 3$	82	
49	4	4		6		379	$30 / 3$	$15 / 4$	82	
50	4	4		6		299	$25 / 4$	$27 / 4$	82	
51	4	5		7		399	$20 / 8$	$7 / 9$	82	
52	4	5		7		340	$7 / 9$	$21 / 9$	82	
53	4	5		7		365	$21 / 9$	$5 / 10$	82	
54	4	5		7		381	$6 / 10$	$22 / 10$	82	
55	4	5		7		123	$22 / 10$	$27 / 10$	84	

N: Number of hour-values
DD: Data describtor
ID: Installation descriptor

