## Solfangeres driftssikkerhed og holdbarhed

En vurdering af 22 solfangere på grundlag af afprøvninger

# Solfangeres driftsikkerhed og holdbarhed 

En vurdering af 22 solfangere på
grundlag af prøvninger

Peder Vejsig Pedersen
Svend Erik Mikkelsen

Laboratoriet for Varmeisolering
Danmarks Tekniske Højskole
Meddelelse nr. 133

Energiministeriets Solvarmeprogram-rapport nr. 20
Juli 1983
FORORD ..... 1
KONKLUSTON ..... 4

1. INDLEDNING ..... 8
1.1 Hvad forstås ved driftsikkerhed og holdbarhed ..... 8
2. 2 Status for provning af solfangere og solfangermaterialers holdbarhed ..... 11
3. PRØVNINGSPROCEDURER ..... 15
2.1 Lufttæthedsprovning ..... 15
2.2 Procedurer for indendørs temperatur- provning og trykprøvning ..... 16
2.3 Provning af solfangerens regntathed med og uden simuleret vindpåvirkning ..... 18
2.4 Prøvning af solfangerens bestandighed over for vindlast på dæklaget ..... 19
2.5 Udendors provningsprocedure ..... 19
4. FORHOLD DER VURDERES UD FRA PRDVNINGERNE ..... 20
3.1 Materialernes termiske udvidelser ..... 21
3.2 Udgasning fra solfangerens konstruktions- materialer ..... 22
3.3 Absorberen ..... 24
3.4 Driftstryk ..... 25
3.5 Udluftningsmuligheder for absorberen ..... 25
3.6 Korrosions- og ældningsforhold for de anvendte materialer ..... 25
3.7 Tæthed ved regnpåvirkning (slagregn) ..... 26
3.8 Rørgennemforng i solfangerkassen ..... 27
3.9 Ventilation af solfangeren ..... 28
3.10 Dræning af solfangerkassen ..... 29
3.11 Montering og inddækning ..... 29
3.12 Mekanisk styrke ..... 30
3.13 Mulighed for vedligeholdelse og reparation ..... 30
3.14 Solfangerens effektivitet ..... 31
5. BESKRIVELSE AF PROVNINGSRESULTATER ..... 33
RAPPORTERINGSJOURNAL - Solfanger 1 ..... 36
Solfanger 2 ..... 40
Solfanger 3 ..... 45
Solfanger 5 ..... 50
Solfanger 9 ..... 55
Solfanger 10 ..... 59
Solfanger 11 ..... 63
Solfanger 12 ..... 68
Solfanger 13 ..... 72
Solfanger 16 ..... 76
Solfanger 19 ..... 80
Solfanger 21 ..... 84
Solfanger $25+26$ ..... 88
Solfanger 29 ..... 96
Solfanger 30 ..... 101
Solfanger 31 ..... 105
Solfanger 34 ..... 110
Solfanger 35 ..... 116
Solfanger 36 ..... 119
Solfanger 37 ..... 123
6. SAMMENFATNING AF PRØVNINGSRESULTATERNE ..... 127
5.1 Samlet oversigt over hvordan solfangerne klarede provningerne ..... 127
5.2 Placering af solfangerne $i$ holdbarhedsgrupper ..... 129
5.3 En analyse af forskellige forhold for solfan- gerne på grundlag af prøuningsresultaterne ..... 131
5.4 Kondensdaninelse $i$ de provede solfangere ..... 139
5.5 Gode detaljer som kan fremhæves for de provede solfangere ..... 144
7. LEVETIDENS BETYDNING FOR ØKONOMIEN I SOLVARMEANLEG ..... 148
8. VURDERING AF PRØVNINGSPROCEDURENE ..... 151
7.1 Lufttæthedsprevning ..... 151
7.2 Temperaturprøvning og trykprovning ..... 151
7.3 Regntæthedsprøvning ..... 152
7.4 Vindbelastning ..... 153
7.5 Opstilling af solfangere i udendørs stag- nationstilstande gennem længere tid ..... 153
7.6 Forslag til nye prøvninger ..... 154
Referencer ..... 156
Supplerende litteratur ..... 156
Summary ..... 159
Appendix 1 : Prøvningsudstyr
2 : Inspektionsformat3 : Kondensproblemer i tagindbyggede solfangere
4 : Energiministeriets solvarmeprogram.

## FORORD

Wærværende rapport markerer atslutningen pä arbejdet med sol-tanger-provminger under projekterne "Provning at drittssikkerhed og holdbarhed af soltangere" og Accellerede provninger at solfangerens holdbarhea", aer begge er projekter under energiministerlets solvarmeprogram.

I perioden juni 1979 til december 1980 blev alle solfangere pä det danske marked effektivitetsprovet pả Laboratoriet for Varmeisolering. Næxværende projekt skal ses som en naturlig videretørelse herat. Flertallet at disse soltangere er siden blevet afprovet $i$ et udstyr til indendors provning af driftssikkerhed og holdbarhed, der er udviklet inden for samarbejdet angãende solfangerens holdbarhed under det Internationale Energi Agentur (IEA).

Som en fortsættelse af de indendors prover er solfangerne opstillet udendors i utilsluttet tilstand, dvs. udsat for aet naturlige vejrlig og en varierende temperaturbelastning, som er noget hådere end normal drift. Dette er et forsøg pat at udføre egentlige accellerede prover, uden at der dog kan gives korrelation mellem aenne provning og virkeligheden. Samtidig vurderes de indendors prover vea at sammenligne en indendors og udendors afprovet solfanger.

Der er foretaget kontinuerte man linger af klimaparametre og solfangernes stagnationstemperaturer siden opsætningen udendors 1 sommeren 1981. Hensigten er at ta undersøgt om andranger 1 solfangeres holdbarhed kan registreres ved en relativ ændring 1 stagnationstemperaturen $i$ nedadgăende retning. Denne problematik vil blive rapporteret ved en senere lejlighed, mens erfaringerne fra visuelle inspektioner at solfangerne bringes i nærvarende rapport.

Skal solvarmeanleg blive en attraktiv toranstaltning, er cet helt nodvendigt at solvarmesystemer, herunder soltangeren, kan opnả en tilfredsstiliende levetid med begrænsede uaglfter til vealigeholdelse. I almincielighed antages en Levetid pä 20 är at vare tiliredsstillende. Det ex dog nodvendigt at sam-
menholde pris og levetid. Solfangere, som er omhandlet i denne rapport, er karakteriseret ved en relativ kompliseret opbygning ofte med dyre komponenter. Hvis solfangere ud fra dagens prisleje skal kunne tjene sig selv hjem igeng skal de kunne fungere problemfrit $i$ mange ár. Det vil være fordelaga tigt at indbygge en mulighed for vedligeholdelse og reparation i solfangerkonstruktionen să enkeltdele, f.eks. absorber eller daklag kan udskiftes, hvis det bliver nodvendigt. Det vil äbne mulighed for at opnả levetider pa mere end 20 ár for nogle dele af solfangerkonstruktionen, hoor enkeltdele, der har en kortere levetid, kan udskiftes hen ad vejen. En sadan strategi vil især være hensigtmæssig i forbindelse med bygningsintegrerede solfangere. Her kunne man feeks. tænke sig at satse pá en levetid pả linje med andre bygningskomponenter for dæklag, inddækninger, rammekonstruktion og isolering, mens absorberdelen med rorforbindelser vurderes pă linie med almindelig VVS-teknologi.

Solfangere kan også tænkes konstrueret af mindre ædle og billigere plastmaterialer, samlet ved limning og andre, samligsmetoder, der er velegnede for automatiseret produktion. Sådanne solfangere er ikke blevet produceret $i$ Danmark, vel fordi markedet er for lille, men der har varet beskrevet solfangere $i$ udlandet baseret på sad danne principper, der kan produceres for $400 \mathrm{kr} / \mathrm{m}^{2}$. Det vil måke ikke være muligt at skille en sảdan solfanger ad, og pga de indgăende materialer vil levetiden være mindre end de 20 ảr, men prisen væsentig lavere.

Rapporten deler sig i 3 afsnit:

1) Beskrivelse af provningerne og de forhold, der har været genstand for overvejelser.
2) Provningsjournaler med beskrivelse af solfangerne, prøvningsresultater, omtaie af specielle forhola og en sammenfattende vurdering for den enkelte solfanger.
3) Sammenfatning og konklusioner vedrorende provningsprocedurer. de enkelte problemomräder og generelle forhold vedrorende solfangerholdbarhed.

Her gives også en oversigt over gode konstruktionsdetaljer fra de undersøgte solfangere.

Kun fag af de undersøgte solfangere er pa markedet 1 dag. Dels er antallet at solfangertabrikanter vosentifgt reduceret siden de forste provninger blev foretaget, 7 fabrikanter er tilbage af 20 undersogte, dels har fabrikanterne andret deres produkter, heldigvis generelt til det bedre.

Narværende rapport skal derfor ses som en beskrivelse af en rokke solfangere med en identifikation af de problemer, der knytter sig til de forskellige konstruktioner og materialevalg. Den vil som sadan have værdi som en konstruktionsvegm ledning og som et grundlag for det videre arbejde med problemex vedrorende solfangeres driftssikkerhed og holdbarhed.

Et andet vasentligt formal med projektet har været at afprove provningsmetoderne og provningsprocedurerne. Som sảdan har projektet haft stor værdi, idet det er lykkedes at identificere en række provninger, dex hax været egentiig selektive. (Udvælgende).

Som forlangelse heraf er det tanken, at provningerne skal standardiseres og indgá i en godkendelsesprocedure pá linle med effektivitetsprovning af solfangere, som ogsa foretages pă Laboratoriet for Varmeisolering, under provestationen for solvarmeanlæg。

I kapitel 7 er der pả baggrund af de rapporterede ertaringer med brug af provningsprocedurene foretaget en evaluering af disse og givet en rakke anbefalinger, som kan udnyttes af "Provestationen for solvarmeanlæg"。 Der forventes i ovrigt inden tor det internationale samarbejde om solfangerholdbarhed $i$ IEA og EF, at der bliver udarbejdet forslag til fælles provningsprocedurer pá omradet pả baggrund af erfaringer i deltagerlandene. På grund af forskelle i klimatorhold og traaitioner 1 landene er det dog sporgsmalet, hvor omfattende man kan torvente af en sadan falles provningsprocedure vil blıve.

## KONKLUSION

Der er gennemtort indendors provninger at gode 20 forskellige soltangere, som hererter er blevet inspiceret lobende over $1 \frac{1}{2}$ ăr etter placering pä sydvendte stativer udendors.

For en del af solfangerne er der til sammenlıgning sket inspektioner at solfangere at samme rabrikat installeret i torbindelse med solvarmeanlag 1 drift. Pả baggrund at ertaringer tra dette arbejde er det narliggende at tage stilling til sporgsmalet om solfangerne generelt var gode nok eller om de generelt var tor dărlige.

- Ca. 40\% at soltangerne klarede provningerne indendors uden problemer, og der var en tydelig tendens til, at det ved inspektioner udendors og ved anlæg 1 drift vax de samme, der stadig klarede sig godt. (2-5 ár efter opsætning) 。
- Andre $40 \%$ af solfangerne udviste virkelig alvorlige problemer med holdbarheden, især pga. manglende regntathed eller brug af ikke temperaturstabile materialer. Der var flere af disse, som ikke så godt udefter "kun" $\frac{1}{2}$ ärs placering udendors 1 stagnation. Exfaringerne for disse solfangere $i$ alm. drift viser det samme. Dette er ikke enestående for de her provede solfangere, men er ogsá erfaringer fra udlandet.
- De sidste $20 \%$ kan karakteriseres som solfangere med relativt alvorlige problemer, som imidlertid kan udbedres uden gennemgribende andring at konstruktionen.

De alvorligste problemer, der er konstateret, knytter sig til 2 forhold. For det forste Fugtbelastning af absorber og absorberoverflade og for det andet temperaturbelastning af det indre af solfangeren.

Soltangere, som lkke er regntatte ellex har problemer med kondens i lange perioder, kar ikke forventes at have nogen lang levetid. Et afgorende krav til solfangere i det vade nordeuropæiske klima er derfor et regntat og passende ventilecet design. Regntatheden ex oftest et resultat af tejl
ved kasse/dæklag samling, rorgennemtorang ellex solfangerhoorner. Ventilation skal være udfort, sả kondens dannet om natten kan oploses 1 varm ventilationsluft i solfangeren om dagen og ledes væk uden at atsætte kondensvandi uønskede steder.

De efterhånden meget ef̈fektive selektive solfangere stiller ekstra krav til valg at materlaler og konstruktive losninger, som kan klare temperaturen som folge at stagnationstilstande, hvor absorberen kan blive mere ena $180^{\circ} \mathrm{C}$ varm. skumisoleringsmaterialer klarer sjældent over ilo- $130^{\circ} \mathrm{C}$ uden at neabrydes. udgasninger tra temperaturbelasteae materialer nedsætter transmissioner og kan maske have en korrosiv effekt. Plastdaklag risikerer at kollapse ved stagnation pga. en kombination af stor udvidelse og lav varmeledningsevne. Et forhold der bl.a. kan modvirkes ved en oppustning eller profilering at dæklaget.

Nasten alle solfangere var kencetegnet ved at være konstrueret med ofte tlete gode detaillosninger, og med mange eksempler pa heldig anvendelse af materialex. Det var desvarte samtidig betegnende, at mange havde en eller flere fejl i konstruktionen, og at man 1 mange tilfalde ikke havde taget hensyn til alle de torholden solfanger skal kunne klaxe。

De fleste at cie provede solfangere talder ind under, hvad man kan kalde 1. generationsprodukter, hvor produktudviklingen endnu ikke er tilpasset erfarıngen fra brug 1 mange ár.

Samtidig er kun $0-7$ at de provede solfangere stadig pá markedet og disse er ændret i forhold til den afprøvede solfanger, oftest til det bedre. Prouningsresultaterne er saledes ikke et udtryk for det nuvarende marked. Siden prevningerne er toretaget er cer sket en gunstig udvikling säledes, at de solfangere, der er pa markedet lday, gennemgäende er mere eftektive og har farre holdbarhedsproblemer.

Desvarre har der ikke samtidig varet et prisfald på suitangere, som nogen havae forventet. Dette sammen med de dárlage
driftserfaringer og de lave ydelser pä l. generation af solvarmeanlæg har medfort et meget vigende marked.

Der er nu i flere sammenhænge dokumenteret tilfredsstillende ydelser og en mere problemfri drift med solvarmeanlag. Solfangeren udgor $i$ dag en vasentlig del at investeringen i solvarmeanlæg og et prisfald på solfangere kunne fa afgorende betydning for interessen for solvarmeanlæg.

Et vasentligt prisfald på solfangere vil kun være muligt på basis af nye konstruktive losninger, og det er en forudsætning at kravet om effektiviteten og specielt holdbarhed opretholdes.

Inden for det sidste års tid har der pá forsogsbasis varet fremstillet solfangere, der ydelses- og holdbarhedsmæssigt er bedre end de bedste af de her afprovede, og som vil kunne produceres til priser under $1000 \mathrm{kr} / \mathrm{m}^{2}$. Der er eksperimenteret med udvikling af 2 solfangertyper, der konstruktionsmassigt afviger en del fra de her afprovede. Ved den ene type anvendes der plastmaterialer bảde til kasse og til dæklag. Disse solfangere er endvidere.meget lettere end den traditionelle solfanger, hvilket letter transport og installation og muliggor fremstilling at storce elementer, f.eks. et element på $5 \mathrm{~m}^{2}$ til et brugsvandsanlag.

Den anden type er en systemopbygget tagintegreret solfanger, som delvist opbygges pa stedet. Denne er en videreudvikling af den ret almindeligt bxugte pa stedet opbyggede solfanger med drivhusglas eller glasltagsafdækning. Her benyttes en termolægteramme og et færdigt samlet glasafdakningsgitter som en del af konstruktionen, og der er ved udformningen taget hensyn til mulighed for nem reperation og vedligeholdelse.

Beregninger har vist, at systemopbyggede tagintegrerede solfangere kan udfores meget billigt i forbindelse med Indt storre solvarmeanlæg til nybyggeri. Der kan her opnäs en lav pris, isar fordi udgifterne til inddækninger m.v. bliver reduceret ved store solfangerarealer, og fordi opbygning kan indpasses 1 byggeprocessen.

De fornævnte billige og lette plastbaserede solfangere vil sandsynligvis også kunne uavakles til brug ved scorre tagmonterede sollangere. Der kan $t$ 。eks. tænkes udviklet solfangerelementer, der er udformet som et tagelement saledes, at en del at taget udlagges som solfangere. Dette vil lose ae indarkningsproblemer, det glver, nar en firkantet kasse skal mubygges a en traditionel tagflade. Med de nye lette solfangere (under 15 $\mathrm{kg} / \mathrm{m}^{2}$ ) er cier lkke noget hảnciteringsmæssigt problem.

Med hensyn til meget store solfangeraxealer der skal opstilm les pá stativer pà en mark, vil en losning med store elementer (5-15 $\mathrm{m}^{2}$ ) nok vare at toretrakke.

I den senere tid har der vist sig tendenser til lavere soltangerpriser. Således ex der i Uppsala i Sverige optort et $4000 \mathrm{~m}^{2}$ solvarmeanlag (meget etfektive solfangere) til en pris incl. rorsystem og montage pä $1500 \mathrm{kr} / \mathrm{m}^{2}$. I USA er der udviklet en plastsolfanger, der skulle kunne produceres for $400 \mathrm{kr} / \mathrm{m}^{2}$. den er dog ikke markedstort. Herhjemme har der ogsả varet torskellige bua pa soltangere med lave produktionsomkostninger.

Solvarmeanlæg er $i$ forhold til traditionel varmeforsyning relativ investeringstung, hvorimod driftsudgifterne er små. Det er derfor nodvendigt, at hensynet til driftssikkerhed og holdbarhed skærpes, saledes at mange ars arift uden for mange driftsforstyrrelser opnås.

### 1.1 Hvad forstås ved driftsikkerhed og holdbarhed

Der er normalt 3 ting, som er ar interesse, nar en solfanger skal vurderes. Det er for det forste effektiviteten eller nyttevirkningen, som ex en relativ let forståelig og målbar storrelse, som foeks. kan fremstilles ved en effektivitetskurve. Af lige sà stor vigtighed men noget vanskeligere at satte mål for er driftsikkerheden og holdbarheden. Der skal i det folgende gøres forsøg på at definere disse storrelser $i$ en kvantitativ og forenklet sammenhæng.

Driftsikkerheden for et solfangersystem karakteriserer driften eller funktionen af systemet. Den er også lig med sandsynligheden for, at der over en bestemt tidsperiode under bestemte miljo- og driftsbetingelser kan opnås en tilfredsstillende kalkuleret nyttevirkning af systemet.

Holdbarhed Eor et solfangersystem karakteriserer det samlede tidsrum for en god funktion af systemet. Det er evnen for systemet til at opna den forventede funktionstid med en tilfredsstillende nyttevirkning under bestemte drifts- og miljoforhold, uden at der kræves større ikke planlagte indgreb. Der regnes her med at systemet afvikles. nå udgifterne til at drive systemet er storre end udbyttet.

Sammenhængen mellem driftsikkerhed og holdbarhed kan angives som i figur 1.1 .


Figur 1.1
Figuren forsøger at fremstille hvordan et solfangersystems funktion kan karakteriseres ved begreberne driftssikkerhed og holdbarhed. Holdbarheden er tidsrummet for en tilfredsstillende nyttevirkning og driftssikkerheden er en tidsspecifik storrelse, som kan fremstilles som en sandsynlighed for at undgå uønsliede driftshændelser.


Fig. 1.2
Driftssikkerheden kan afspejles ved det løbende krav til vedligeholdelse og reparation, sa længe det antages man kan reparere sig væk fra problemerne.

Driftsikkerhed som kvantitativ storrelse kan angives ud fra, hvor stort et krav til indgreb eller vedligeholdelse der er, f.eks. som:
$D S=1-$ (lobende krav til vedligeholdelse)

Holdbarhed kan kvantitativt angives som en tidslangde med en Eastsat nyttevirkning. Den samlede holdbarhed at et solfangersystem kan derfor angives som:

```
HB = HBi HBi angiver de forskellige
    perioder med en bestemt holdbarhed
    for solfangersystemet som tal eller
    en Eunktion.
```

I figur 1.2 kan holdbarheden angives som:
$H B=\left(t_{2} t_{1}\right)+a_{1}\left(t_{1} t_{0}\right)+a_{2}\left(t_{3} t_{2}\right)$
al og a2 er konstanter mindre end $l_{\text {, som angiver at sy- }}$ stemet har en lidt mindre nyttevirkning i perioderne $t_{0}-t_{1}$ og $t_{2} t_{3}$ end den normale.

Holdbarheden er bl.a. afhangig af

- system design
- materialer, miljo, konstruktion
- kvalitet af udforelse
- kvalitetskontrol ved produktion. installation og reparation
- fejlsikkerhed eller driftsikkerhed
- fejltolerance

Den mest omfattende indsats vedrørende udvikling af standander for prøvninger af solfangeres holdbarhed er sket i USA, hvor man i 1978 nedsatte ASTM-komite nr. E-44, som skulle beskaftige sig med hele omradet "solenergiudnyttelse". I figur 1.3 er vist en oversigt over eksisterende ASTM-standarder på solenergiområdet. De provninger, der findes her omfatter inden for solvarme, provninger af hele solfangere, anvisninger for solvarmeinstallation og en lang rakke prøvningex af solfangermaterialer. Det er typisk for næsten alle provninger, at de går ud pa at udsætte proveemnerne for en ræke veldefinerede påvirkninger, som gerne skulle kunne klares på tilfredsstillende vis. På den måde farr man luget det varste fra. Men som det ofte er tilfældet, er der ikke etableret nogen beviselig sammenhæng mellem provningerne og virkeligheden, de gerne skulle afspejle. Derfor er det heller ikke muligt at kome med noget kvalificeret positivt udsagn om forventet levetid for en solfanger på grundlag af disse provninger.

Provningerne benytter sig ofte af en accelereret påvirk ning af proveemner, så det bliver muligt f.eks. at opnå en relativ hurtig udvikling af korrosion, som normalt ville have taget flere ar. Der eksisterer heller ikke her nogen beviselig korrelation til nedbrydning af solfangere under normale driftsforhold.

Inden for det internationale samarbejde under det Internationale Energi Agentur, IEA er der planer for et ambitiøst samarbejdsprogram i perioden 1983-1986, hvor målsatningen skal være at opnå den nodvendige baggrund for at opstille krav til holdbarhed og opnå en kvalificeret levetidsvurdering af solfangersystemer.

## CONTENTS

## ASTM STANDARDS ON SOLAR ENERGY

Since the standards in this book are arranged in numeric sequence, no page numbers are given in this contents.
In the serial designations prefixed to the following titles, the number following the dash indicates the year of adoption as standard or, in the case of revision, the year of last revision. Thus, standards adopted or revised during the year 1980 have as their final number. 80. A letter following this number indicates more than one revision during that year, that is, 80a indicates the second revision in 1980, 80b the third revision, elc. Standards that have been reapproved without change are indicated by the year of last reapproval in parentheses as part of the designation number, for example (1980).

B 638-81 Spec. for Copper and Copper-Alloy Solar Heat Absorber Panels
D 3667-78 Spec. for Rubber Seals Used in Flat-Plate Solar Collectors
D 3771-79 Spec. for Rubber Seals Used in Concentrating Solar Cullectors
D 3832-79 Spec. for Rubber Seals Contacting Liquids in Solar Energy Systems
D 3903-80 Spec, for Rubber Seals Used in Air-Heat Transport of Solar Energy Systems
D 3952-80 Spec. for Rubber Hose Used in Solar Energy Systems
E 408-71 (1980) Test for Total Normal Emittance of Surfaces Using Inspection-Meter Techniques
E424-71 Test for Solar Energy Transmittance and Reflectance (Terrestrial) of Sheet Materials
E434-71(1980) Test for Calorimetric Determination of Hemispherical Emittance and the Ratio of Solar Absorptance to Hemispherical Emittance Using Solar Simulation
E 490-73a Solar Constant and Air Mass Zero Solar Spectral Irradiance Tables
E 683-79 Practice for Installation and Service of Solar Space Heating Systems for One- and Two-Family Dwellings
E712-80 Practice for Laboratory Screening of Metallic Contanment Materials for Use with Liquids in Solar Heating and Cooling Systems
E744-80
E745-80 tions
Practice for Simulated Service Testing for Corrosion of Metallic Containment Materia!s for Use with Heat Transfer Fluids in Solar Heating and Cooling Systems
E. 765-80

E $77{ }^{\circ}$ (10)
E 781-81
Practice for Evaluating Absorptive Solar Receiver Materials When Exposed to Conditions Simulating Stagnation in Solar Collectors with Cover Plates
E782-81
Practice for Exposure of Cover Materials for Solar Collectors to Natural Weathering Under Conditions Simulating Operational Mode
E 816-81
E 822-81
E 823-81
E 824-81 for Field Use
Practice for Determining Resistance of Solar Collector Covers to Hail by Impact with Propelled loe Balls
Practice for Nonoperational Exposure and Inspection of a Solar Collector
Transfer of Calibration from Reference to Fild Pyranometers
Figur 1.3
Oversigt over eksisterende ASTM-standarder på solenergiområdet.

IEA-arbejdet angående solfangerholdbarhed, som er blevet delvist ledet fra dansk side siden 1980, er blevet opdelt i 3 forskellige dele:

1. Inspektioner af solfangersystemer i drift
2. Prøuning af solfangermaterialer
3. Prøvning af hele solfangere

Der skal udarbejdes en database for driftssikkerhedsog holdbarhedsproblemex for solfangere ved hjalp af udfyldte solfangerinspektionsrapporter fra deltagerlandene. En dansk udgave af det benyttede inspektionsw format findes i appendix 2. Nedbrydningsfaktorer og nedbrydningsmekanismer (korrosion ældning o.l.) skal identificeres og undersøges med henblik på udvikling af velegnede accelererede provningsmetoder og resultater fra driftssikkerhedsprøvninger skal sammenlignes med virkeligheden. Når det drejer sig om bestemmelse af nedbrydningsfaktorer for solfangere er især de udendørs klimaforhold, klimaet inde i solfangere, driftsforhold og kondens og udgasning af betydning. Korrrosionsklasser kan vare et nyttigt redskab her. Måling af temperatur og fugtighed i solfangere under forskellige forhold vil give mulighed for en bestemmelse af de korrosive forhold E.eks. udtrykt ved korrosionsklasse 1,2 eller 3 , som en absorberoverfladebehanding skal leve op til. Optimale ventilationsrater for at reducere kondens må identificeres sammen med metoder til at opnå ventilation uden regnutathed. En vurdering af den brugbare levetid for en solfanger kan f.eks. baseres på:

- levetiden af dæklagsmaterialet
- levetiden af nødvendige tætningssystemer kasse/dæklag samling, rørgennemforinger, kassesamlinger evt. inddækningssystem)
- levetiden af absorberen (afhængig af solfangerens indre klimaforhold angivet i korrosionsklasse)
- levetiden af rørsamlinger og rørsystem
- betydningen af kondens og udgasning
- muligheden for vedligeholdelse og reparation (kan f.eks. dæklaget udskiftes?)

Her er det vigtigt at bemærke, at man ikke onsker at begrænse sig til selve solfangeren, men også rorsamlinger, rorsystemer og varmelager eller varmeveksler, hele det begreb som dakkes af ordet ${ }^{\text {" }}$ solfangersystem".

Det er ogsa meningen, at man inden for IEA-samarbejdet skal beskaftige sig med de positive erfaringer på omraidet solfangerholdbarhed. Der skal etableres en database over gode solfangerdesign. gode materialer og konstruktionsdetaljer med henblik pà udarbejdelse af anvisninger på omradet solfangersystemex. Desuden skal der legges sarlig vagt på udveksling af erfaringer med brug af solfangere som integrerede dele af bygningsdesign. Den ideelle levetid bor her, forudsat den nodvendige vedligeholdelse sker, vaxe nar den normale levetid for bygninger (som illustreret i kapitel 6) . Betydningen af forskellige klimaforhold og bygningstraditioner vil også blive søgt belyst på dette område.

Forst gennemgås provningsproceduren for de indendors provninger og herefter i afsnit 2.5 et forslag til udendors provningsprocedure.

Provningsproceduren for indendors provning af solfangeres driftsikkerhed og holdbarhed omfatter Eolgende provningex:

- LUFTYRTMEDSPRDVNING FOR SOLFANGERE
- INDENDORS TEMPERATURPROVNTNG OG TRYKPROVNING AE SOLFANGERE, HERUNDER:
- Stagnation og herefter provning af bestandighed over for temperaturchok - afkoling af absorber
- Trykprøvning af absorber og bestandighed over for hoje temperaturer - torkogning og stagnation
- Provning af bestandighed over for temperaturchok afkoling aE doklag
- Provning af bestandighed over for termisk cykling ved hoje temperaturer - efterfulgt af stagnation
- PROVNING AF SOLFANGERENS REGNTETHED MED OG UDEN STMULERET VINDPAVIRKNING
- PROVNING AF SOLFANGERENS BESTANDIGHED OVER FOR VTNDLAST PA DERLAGET

Provningerne rapporteres ved udfyldning af en provningsjournal, som vist i kapitel 4.

### 2.1 Lufttathedsprovning

Solfangeren forsynes med 2 huller i siden mellem absorberen og glasset. Via det ene hul tilsluttes en kreds med blaser og flow. Til det andet hul tilsluttes et umrorsmanometer. Hvis solfangeren er beregnet på indbygning i tagflader, og derfor har en utat bund, lagges der lufttat plastfolie over bunden. plastfolien klabes fast pa solfangerens sider. Ved passende overtryk og undertryk i
intervallet -500 Pa til 500 Pa bestemmes solfangerens utæthed $i$ intervaller på 100 Pa.

Resultatet af målingen angives $i$ et diagram med flow som funktion af under- og overtryk. Hældningen af kurverne siger noget om solfangerens utathedsgrad f.eks. angivet i liniariseret form som

$$
\frac{\mathrm{m}^{3} / \mathrm{h}}{100 \mathrm{~Pa}}
$$

Denne storrelse ligger normalt i området $0,5-20$.

### 2.2 Procedurer for indendors temperaturprovning og trykprovning

Der skal $i$ dette afsnit omtales procedurer, som udfores i forbindelse med den $i$ appendix 1 beskrevne temperatur -provnings-solsimulator. Prøvningerne kan normalt udfores pá 2 dage, hvor provning 2.1 og 2.2 laves på en dag. Efter hver enkelt provning slukkes solsimulatoren og solw fangeren undersoges visuelt for skader. Temperaturer registreres kontinuert ved hjalp af en 12 kanal skriver.
a) Stagnation og herefter prouning af solfangeres bestandighed over for temperaturchok - afkøling af absorber

Solfangeren anbringes vandret $i$ en solsimulator, hvor middelintensiteten er ca. $1300 \mathrm{~W} / \mathrm{m}^{2}$.

Solfangerens ene tilslutning kobles til et lodret ror placeret med udlobet $1,5 \mathrm{~m}$ over solfangeren, og dens anden tilslutning kobles til en slange via en afspærringsventil, så den pludselig kan fyldes med koldt vand ved $10^{\circ} \mathrm{C}$.

Solfangeren er tom til at starte med. Solsimulatoren tændes og varmer solfangeren op til stagnationstemperaturen, og simulatoren er tændt i. 4 timer. Derefter fyldes solfangeren pludseligt med koldt vand ( $1,0 \mathrm{~m}^{3} / \mathrm{h}$ ). Der sendes vand igennem i ca. $\frac{1}{2}$ minut svarende til 10 liter.
b) Trykprovning af absorber og provning af solfangeres bestandighed over for høje temperaturec - torkogning og stagnation

Absorberen udsættes for et tryk på $1,3 x$ maximalt angivet driftstryk i 30 minutter. Herefter tændes solsimulatoren, hvor solfangeren stadig er anbragt i 6 timer ialt, så absorberen koger tor. Stagnationstemperaturen nås på et tidspunkt inden for de 6 timer, alt afhængigt af solfangerkonstruktionen.
c) Prouning af solfangerens bestandighed over for temperaturchok - afkoling af daklag

Solfangeren tommes for vand og udsattes nu i tom tilstand for stråling. Når den har nået stagnationstemperaturen, sprojtes glasset over med koldt vand $\left(10^{\circ} \mathrm{C}\right)$ i 1 minut $\left(0,36 \mathrm{~m}^{3} / \mathrm{h}\right)$. Dette gores i alt 3 gange, hvor $90 \%$ stagnation nåes ind imellem. Efter forsøget torres dæklaget af og solfangeren undersøges fox eventuel vandindtrangen eller kondensdannelse. Hvis der er sket vandindtrangning i. solfangeren kan kondensdannelse pa indersiden af glasset ved den samtidige afkoling af dette vare et udtryk for, at der er en høj fugtighed i solfangeren.
d) Provning af solfangerens bestandighed over for termisk cykling ved hoje temperaturer - efterfulgt af stagnation

Efter de foregående prøvninger i solsimulatoren sørges der for, at solfangeren er tomt for væske og med abne tilslutninger, inden forsøget med cyklisk pavirkning af solfangeren kan starte.

Solsimulatoren skal være tændt og slukket skiftevis således, at absorbertemperaturen veksler mellem lufttemperaturen og stagnationstemperaturen, uden dog nodvendigvis at ná helt op eller helt ned på disse temperaturer. Temperaturvariationen skal være mindst $50 \%$ af forskellen mellem stagnations-- og lufttemperaturen. Der gennemføres

5-8 komplette cykler på denne måde.

### 2.3 Provning af solfangerens regntathed med og uden simuleret vindpåvirkning

Solfangeren anbringes med én hældning på $30^{\circ}$ fra vandret i en slagregnmaskine (app. 1). Her udattes solfangeren for kraftig vandpåsprojtning forfra og fra siden. De dele af solfangeren, som f.eks. ved indbygning i en tagflade ikke bliver udsat for regnvejr under virkelige forhold, afskarmes inden provningen. Hvis der er tale om en uafskærmet bund, kan den dakkes med plastfolie, som fastgores til solfangerens sider. For bedre at kunne registrere en eventuel vandindtrængning ved provningen bores et 8 mm hul i solfangerens nedadvendte side. Dette forsynes med en prop, som kan aftages efter provningen. Solfangeren udsættes forst for vandpasprøjtning i een time, hvorpä der foretages visuel inspektion. Derefter udsættes den for vandpåsprojtning, samtidig med at trykket i solfangerkassen sænkes med 500 Pa (ca. 50 mmVs ) i forhold til atmosfæretrykket. Dette er et forsøg på at skabe betingelsex. som kendes fra vindpåirkning af solfangere, hvor der kan måles en trykforskel mellem solfangerens indre og udeluften, dog af en noget mindre storrelse. Samtidigt skal provningen forstærke eventuelle tendenser til vandindtrængen så de bedre kan registreces ved visuel inspektion. Tryksænkningen udfores ca. hvert andet minut, og undertrykket holdes i ca. 30 sekunder. Efter forspget, der varer i ca. 20 minutter, undersoges solfangeren igen for eventuel vandindtrangen. Til sidst udsattes solfangeren for vandpåsprøjtning i en time med et undertryk på 500 pa. Det undersøges, om der nu er trangt vand ind og daklaget torres grundigt af. Der tages stilling til, om en eventuel regnum tathed kan henfores til glas/kasse samling, hjorner eller rørgennemføringer.

## 2.4

Provning af solfangerens bestandighed over for vindlast på daklaget

Denne provning udfores efter regntwthedsprovningen, mens solfangeren endnu ligger i slagregnmaskinen. Solfangeren udsattes 5 gange efter hinanden for et overtryk pa 1000 Pa $i$ et halvt minut, med et halvt minuts mellemrum. Herefter Eoretages samme procedure, men denne gang med et undertryk pà 1000 pa. Solfangeren undersoges visuelt. og da det er den sidste provning, tages der nu stilling til, om den eventuelt skal skilles ad, E.eks. om kasse/daklag samlingen skal underswges.

## Udendors provningsprocedure

Solfangeren placeres pa et sydvendt stativ. som har en heldning pả $30^{\circ}$ Era vandxet. Solfangeren er tom for Vaske og med àbne tilslutninger. Hyis solfangeren kun ex beregnet til indbygning afskarmes rorgennemioringen og bagside pà samme måde, som det ville vace tilfaldet ved indbygningen. provningen kan gennemfores med maling af stagnationstemperaturen pa bagsiden aE absorbexen i en periode lige efter opsatning og rilsvarende efter 1 ar. Skagnationscemperaturer kan her registrexes midr pá dagen pá en dag med helt klar sol og en udetemperatur pa omkring $20^{\circ} \mathrm{C}$, sà et eventuelt Eald kan identificexes. Der bor foretages visuel inspektion af solfangeren med en manedes mellemrum, hvor eventuelle andringer skal registreres ved brug af inspektionsformatet $i$ appendix 2 , som ogsa vil vare velegnet at bruge som provningsjournal. Solfangeren skal vare placeret udendors 1 1-2 ar, hyis der skal foretages en crovaxdig holdbaxhedsvurdexing, men afsloring af deciderede dxiftssikkerhedsproblemer kraver kun $\frac{1}{2}$ ars udendors placexing, sà bade sommer og vinter forhold ex dækket ind.

## KAPITEL 3. FORHOLD DER VURDERES UD FRA PRDVNINGERNE

På forhand havde vi opstillet en liste over 14 forhold, som skulle vurderes for den enkelte solfanger. Vurderingen af de fleste af disse forhold bygger på en kombination af provningsresultaterne og en konstruktiv vurdering af solfangeren. Da der er tale om en ikke destruktiv provning, er solfangeren ikke blevet adskilt for inspektion. Det har saledes ikke altid varet muligt præcist at konstatere, hoor f.eks. vandindtrangning har fundet sted. Endvidere har det ikke altid været muligt at få pracise oplysninger om solfangernes konstruktive opbygning og de indgående materialer.

De 14 forhold er som følger:

1) Materialernes termiske udvidelser
2) Udgasning fra solfangerens konstruktionsmaterialer
3) Absorberen: Konstruktion, matexialer og overfladebehandling
4) Driftstryk
5) Udluftningsmuligheder (absorberen)
6) Korrosions- og aldningsforhold for de anvendte materialer
7) Tathed ved regnpávirkning (slagregn)
8) Rorgennemforing $i$ solfangerkassen
9) Ventilation af solfangeren
10) Dræning af solfangerkassen
11) Montexing og inddækning
12) Mekanisk styrke
13) Mulighed for vedligeholdelse og reparation
14) Solfangerens effektivitet

Dette kapitel behandler de 14 punkter med generelle kommentarer til de enkelte punkter baseret på de erfaringer, der er indhentet ved prøvningerne og ved den konstruktive vurdering. I kapitel 4 gennemgåes den enkelte solfanger, idet der kun omtales forhold, som er specielle for den enkelte solfanger. I kapitel 5 bringes en opsummering af resultaterne og en samlet og sammenlignende vurdering.

### 3.1 Materialernes termiske udvidelser

Ved opvarmning til stagnationstemperaturer vil de i solfangeren indgående materialer udvide sig afhængig af deres udvidelseskoefficient og temperaturniveauet, som kan variere fra måske $30^{\circ} \mathrm{C}$ på rammen til $180^{\circ} \mathrm{C}$ på absorberen. De termiske bevægelser der opstå herved kan i nogle tilfalde deformere de indgående komponenter eller solfangeren som sådan.

Stagnation for en solfanger er identisk med den termiske balancetilstand en solfanger vil vare i, afhangig af de givne klimaforhold, når den ikke koles af en vaskem eller luftkreds. En selektiv solfanger som E.eks. opsattes utilsluttet om sommeren kan ved stark sol midt på dagen opnå en temperatur midt pá den overste del af absorberen på nær $200^{\circ} \mathrm{C}$. Samtidigt vil daklaget ud for kunne opna temperaturer på $80-100^{\circ} \mathrm{C}$.

Som omtalt i kapitel 2 bliver solfangeren udsat for en stagnationsprøve af 6 timers varighed samt en termisk cykling bestadende af gentagne opvarmninger og afkolinger. Under forudsotning af at solfangeren ikke bliver skadet ved den forste opvarmning til stagnationstemperatur, vil en senere odelaggelse af solfangeren $E$.eks. ved den termiske cykling normalt bevirke. at solfangerens stagnationstemperatur vil vare lavere end forste gang solfangeren var i stagnation. En sadan reduktion er kun blevet konstateret med en enkel solfanger, hvor stagnationstemperaturen tilmed var konstant faldende under den forste stagnationsprove. Denne opforsel kunne også skyldes en nedbrydning af isolationsmaterialet ved varmepavirkning. Om det ene eller andet er tilfældet kan bedst bestemmes ud fra en konstruktiv vurdering.

I en solfanger revnede glasset ved stagnationsproven. I to andre solfangere med daklag af acryl (kuppelformet) deformeredes dæklaget ved opvarmning, $i$ det ene tilfalde rettede det sig ud igen. I en solfanger med dæklag af glasfiberarmeret polyester bulede daklaget kraftigt ud, men rettede sig igen ved afkoling.

Når glasset revner skyldes det normalt, at glasset når en ret høj temperatur pa midten, mens glaskanten køles af solfangerkassen. Herved opstår der spandinger , som kan starte et brud f.eks. ved en lille kærv. Temperaturforskellen mellem midten og kanten má derfor helst ikke overstige $30-40^{\circ} \mathrm{C}$. Nedbuling af plastdaklag skyldes, at plast har en ret lav varmeledningsevne, så temperaturforskellen mellem overside og underside af dæklaget kan vare ret stor, omkring $10-20^{\circ} \mathrm{C}$. Derved udvider undersiden sig mere end oversiden.

### 3.2 Udgasning fra solfangerens konstruktionsmaterialer

Udgasning kan kome fra bindematerialet i mineraluld fra træ og ikke mindst fra plast- og gummimaterialer, der ikke er stabile over for temperaturpåirkninger og påirkninger fra UV-lys. Det viser sig som en belægning indvendigt på glasset, enten som en fedtet hinde, som små draber eller ligefrem som brune eller hvide pletter eller striber. I almindelighed viser udgasningen sig først som en klar hinde eller klare dråber, der så senere binder snavs og stov til sig, hvis sådant forefindes.

Der er konstateret udgasning fra nasten alle solfangere, omm kring halvdelen af væsentligt omfang. Det almindeligste, og alvorligste, er udgasning fra PUR-skum anvendt som isoleringsmateriale. I næsten alle solfangere med PuR-skum er der konstateret alvorlig udgasning. Vi har set, at det ikke forholder sig såsan, at en kortvarig påirkning af hoj temperatur svarer til en langvarig pảvirkning ved en mere moderat temperatur. Solfangere med PUR-skum, der har været rimeligt termisk isoleret fra absorberen, har ikke vist kraftig udgasning selv efter et ar i stagnation. Hvorimod solfangere med pur-skum i direkte forbindelse med absorberen fremviser kraftige belægninger efter få timer i stagnation. Dette tyder på, at pur-skum kun giver udgasning når en vis temperatur, afhængig af skumtypen, overskrides. En solfanger skal imidlertid konstrueres, så at den kan tåle stagnationstemperatur, da den evt. ved oplægning eller ved pumpesvigt vil komme i stagnation. Det er derfor ikke muligt at have PUR-skum i direkte forbindelse med
absorberen, med mindre skummet er indkapslet og indbygget, sa at udgasningsprodukterne ikke kan komme ind i rummet mellem absorber og glas. PUR-skummet er desuden ikke termisk stabilt ved de høje temperaturer $\left(180^{\circ} \mathrm{C}\right)$ og vil nedbrydes, det forkuller og skrumper. Dette er imidlertid knapt så kritisk som udgasningen, da processen går meget langsommere, således at solfangeren normalt ikke nedbrydes blot efter en enkelt dag i stagnation.

Udgasningen er et tegn på, at der er materialer, der ikke er temperaturstabile til stede. For så vidt udgasningen skyldes varmepåvirkning er provningen en ekstrem situation af meget hárdere karakter end normal drift. Udgasningen bevirker at glassets transmission nedsættes og ifglge ref (1) kan udgasm ningsstofferne $i$ kombination med fugt starte en nedbrydning af glasset med yderligere faldende transmission til folge.

Erfaringer på Laboratoriet for Varmeisolering med brug af PUR-skum i solfangere med selektiv folie viser, at man kan opnå en meget uheldig udvikling på grund af PUR-skums udgasningsprodukter. Forlobet er, at der i sommerperioden skex udgasning til daklaget, som viser sig som en hinde eller direkte som brune klumper. I fugtige perioder om efteraret og om vinteren oploses udgasningsprodukterne $i$ kondens pa indersiden af daklaget. Nar foraret kommer kan der registreres en hel række cirkelxunde pletter på storrelse med en femore på absorberen langs kanten. Hvor disse pletter forst er set. opstå der på et senere tidspunkt direkte korrosionsangreb med forskellig farve (hvid, gron, gul). Det er vores teori. at kondens/udgasningsoplosningen i sarlige, fugtige perioder har dryppet ned på absorberen. En undersggelse af korrosionsm pletterne i folien foretaget pả Afdelingen for Overfladebehanding på reknologisk Insticut viser, at der er tale om ætsningshullex.

Der er også konstateret udgasning fra olierester pa absorberen som folge af darlig rensning og udgasning af harpiks fra fycretræ, som er anvendt i en solfanger.

For at folge observerede udgasningsproblemer op i forbindelse med provningerne er der for en del solfangermaterialer blevet foretaget forsøg $i$ en specielt konstrueret udgasningskasse, som bestar af en termostatstyret varmeplade med kasse med glaslåg placeret ovenpå. (se appendix 2).

### 3.3 Absorberen

Ved temperaturprovninger i den kunstige sol kan absorberens termiske stabilitet og evne til at klare de termiske udvidelser undersøges. Endvidere kan det konstateres, om absorberoverfladen kan tale de termiske udvidelser. Vurderingen af disse forhold ex kun foretaget visuelt efter provningerne. Dex er ikke i nogen tilfalde konstateret skader pa absorberen eller absorberoverfladen, men i flere tilfalde blev der observeret en udbuling af absorberen sandsynligvis fordi den har varet For hårdt spandt op. De indendors driftsikkerhedsprovninger siger sådan set ikke noget direkte om absorberens vigtigste opgave: En god langtidsholdbarhed med uandrede optiske egenskaber. Hertil er de direkte materialeprovninger af overfladebehandlede absorbermaterialer et vigtigt middel, resultater fra provning af 14 absorbere ontales i kapitel

De tilknyttede udendors stagnationsprovninger over lang tid giver ogsá basis for en vurdering af absorberes korrosionsforhold $i$ de mere eller mindre regntatte solfangere, under noget som godt kan kaldes en accelleret provning, selv om korrelationen i virkeligheden ikke kendes pá nuvarende tidspunkt.

### 3.4 Driftstryk

En trykprovning har indgået $i$ disse undersogelser. En del absorbere kan maximalt (ifolge fabrikantens opgivelser) tåle et tryk, der er vasentligt mindre end det almindelige vandvarkstryk. I så fald bor det klart fremgá af et skilt pá solfangeren. Absorberne udsattes for 1,3 gange det maksimalt tilladte tryk i $\frac{1}{2}$ time. Alle solfangerne klaxede denne prove.

### 3.5 Udiuftningsmuligheder for absorberen

En almindelig og alvorlig driftforstyrrelse for solvarmeanlag sker nar der i et absorberelement danner sig en luftlomme, der forhindrer stromning gennem elementet. Det er et forhold der under drift kan konstateres ved en tydelig forskel mellem glastemperaturen for solfangerne. Problemet opstar hovedsageligt i forbindelse med bagudvendte studse, hvor der ved almindelig hældning kan dannes en luftlomme overst i elementet. Ca. $1 / 4$ af de undersøgte solfangere har bagudvendte studse.

Kanalsystemet kan også vare udformet, så der kan opstå luftlommer, der standser stromningen gennem en del af absorberen. Dette er ikke undersogt nærmere.
3.6 Korrosions og aldningsforhold for de anvendte materialer

Pa baggrund af eksisterende viden vurderes disse ting for de $i$ solfangerne indgáende materialer. En sadan vurdering er isar vigtig for absorberen og absorberens overfladebehandling. Der er sidelobende med de $i$ narvarende rapport beskrevne provninger foretaget accelererede materialeprovninger af en rakke absorberoverflader på Teknologisk Instituts afdeling for OverEladebehandiing. Dette ex delvist sket som led i IEA-samarbejdet angàende solfangerholdbarhed. Det har i den forbindelse varet muligt at rubricere absorberoverfladerne i korrosionsklasser Exa 0 til 4 , svarende til at de kan klare påvirkninger varierende fra et typisk indendors klima til udendors udsat
for vejr og vind. Som det fremgar af kapitel 5 var der ved disse provninger en tendens til at de selektive overflader kun kan klare korrosionsklasse 1 til 2 , mens de bedste af de sorte overflader. f.eks. sort polyester på stal blev placeret i korrosionsklasse 3 eller 4. Det er ikke på nuværende tidspunkt sikkert, hvilken korrosionsklasse en absorber placeret $i$ en god solfangerkasse skal kunne klare. Det har f.eks. vist sig, at nogle af de selektive overflader som kunne klare korrosionsklassetal fra $1-2$ under provningerne klarede sig uden synlig nedbrydning i $3-4$ ar under almindeig drift. Men samtidigt er det ogsa erfaringen, at en vedvarende fugtbelastning. f.eks. $i$ forbindelse med stark kondensdannelse kan have en starkt nedbrydende effekt på kun et par år sådan at man kunne argumentere for at styrken mod korrosion skulle vare sa stor at en vis fejlmargen mht. regntathed kunne klaces. Dette galder isar, hvor det ikke kun er overfladebehandingen, der nedbrydes men tillige absorbermaterialet.

### 3.7 Tathed ved regnpavirkning (slagregn)

Der er i ref (1) påist at tathed overfor regn er af afgorende betydning for en solfangers langtidsholabarhed. Der er i ref (1) under demontering foretaget en grundig undersogelse af 4 solfangere, der har varet udsat for det naturlige vejrlig under kontrollerede, realistiske driftsforhold igennem 3 àr. Det ex hexudira bl.a. fastlagt hvilken korrosionsklasse, man kunne henfore klimaet i'de enkelte solfangere til. To solfangere, hvor miljøet kunne henfores til korrosionsklasse 2, var ikke regntatte, hvorfor det indre af solfangeren var udsat for varierende fugtbelastning. Ved adskillelsen var der betydelige rustangreb på absorberne (stål) og mineraluldisoleringen var meget fugtig. De to andre solfangere var regntatte, på solfangeren med en ansat korrisionsklasse 0 var der på absorberen afskallede omrader med blotlagt stal uden korrosionsangreb.

Manglende regntæthed fører til ødelagt isoleringsevne, forøget korrosionsangreb på absorberen og i kassen, kondensdannelse og angreb på glasset. Derfor må absolut regntæthed
være helt nødvendigt, såfremt en fornøden langtidsholdbarhed skal opnås. Det er dog samtidig erfaringen, at der er stor forskel på, hvad konsekvenserne af den manglende regntæthed bliver afhængigt af om der er dræn og ventilationsmulighed indbygget. Med den nævnte baggrund er det klart, at prøvning i slagregnmaskine er en af de vigtigste provninger, der skal foretages. At en solfanger viser sig tat ved slagregnprøven er ikke ensbetydende med, at den vedbliver at vare tat. En konstruktiv vurdering og en vurdering af materialer og holdbarhed af anvendte fugebånd er derfor også nødvendig.

Omkring $1 / 3$ af de undersøgte solfangere viste utætheder ved slagregnproven. Utæthederne viste sig ved glas/kassesamlingen ved rorgennemforingen og i hjørnesamlinger, navnt i rakkefølge af betydning. For de solfangere, hvor det var muligt at skabe undertryk, er der også foretaget slagregnprove med varierende over- og undertryk i solfangeren. Ved denne prove var det muligt at "suge" vand ind i en stor del af de provede solfangere.

### 3.8 Rorgennemforing $i$ soleangerkassen

I Eorbindelse med rargennemforingerne er der specielle tathedsproblemer. Ved bagudvendte studse er problemet mindre. men til gengæld er der så som nævnt problemet med udiuftning.

I en del solfangere er tatheden udfort med gummityller, dette har vist sig at vare en rimelig god lasning mht. tathed. Derimod viste der sig utatheder ved nogle solfangere, hoor tatningen var udfort med fugemasse, da denne ofte arbejder sig los pga. de store termiske bevagelser mellem ror og kasse. Ved en enkelt solfanger var der overhovedet ingen tatning.

### 3.9 Ventilation af solfangeren

Erfaringer har vist, at der på mange solfangere dannes kondens pả indersiden af dæklaget ved bestemte vejrforhold. Det er især ved afkoling af solfangerens dæklag om natten i forbindelse med udstraling til himmelen, idet himmelstralingstemperaturen normalt er lavere end udetemperaturen. Det er almindeligt, at der f.eks. er dannet kondens i solfangere tidligt om morgenen, men at den så forsvinder, når solfangeren opvarmes op ad dagen. Kondensdannelsen má ikke være să kraftig, at der dannes dråber, der falder ned pa absorberen.

Kondensdannelsen kan normalt reguleres til et passende lavt niveau ved en kontrolleret ventilation af solfangeren. Om vinteren i meget fugtige og regnfulde perioder, er der dog erfaring for, at selv en kraftig ventilation kan være utilstrækkelig, og at kondensen først forsvinder, når der kommer lidt sol igen.

Man kunne ogsá reducere kondensdannelse i solfangere ved at gore dem helt lufttætte, men dette er vanskeligt at opnå i praksis over længere tid, og betyder, at man vil have meget svart ved at få fugt udaf solfangeren, hvis det forst er kommet ind.

Ventilation i solfangere kan opnås gennem specielle udiuftningshuller eller ved ventilation gennem en mineraluldisolexing eller en ikke tæt bagside. Undersøgelser tyder på, at ventilationen skal vare meget stor for at det gar ud over det termiske udbytte. (10 luftskifter i timen forøger normalt ikke solfangerens varmetab med mere end 1 \%).

Er solfangeren ikke helt regntat vil en passende ventilation også kunne hjælpe til at torre solfangeren ud og kan sandsynligvis også bortskaffe en del af diverse udgasningsprodukter.

Omkring $1 / 3$ af de undersøgte solfangere havde specielle huller til ventilation, endvidere var en del solfangere luftutatte ved rørgennemforingerne.

Ved inspektion af solfangerne udendørs er der især konstateret alvorlige kondensdannelser i de solfangere, der ikke er regntætte. Især i sommerhalvåret skiller de regnutatte solfangere sig ud og kan i flere tilfælde fremvise kondens selv på dage med sol.

Betydningen af ventilation for kondensdannelse i solfangere undersøges i et sidelobende projekt på Laboratoriet for Varmeisolering , og det er meningen, at de målte ventilationskurver skal være en hjælp i denne forbindelse. Emnet, kondensproblemer $i$ tagindbyggede solfangere, er detaljeret behandlet i Appendix (3).

### 3.10 Dræning af solfangerkassen

Solfangere skal vare regntatte, men det er samtidigt en fordel, at der er et dræningshul i bunden af solfangeren således at vand, der kommer ind, hvis uheldet er ude, kan komme ud igen.

Kun nogle fả af at de undersøgte solfangere havde et sådant dræningshul eller mulighed for draning $i$ det hele taget. En af de undersøgte solfangere med kombineret dræn- og ventilationshul var ikke helt regntat. Det er opfattelsen, at drænmuligheden reducerede korrosionsbelastningen ved denne solfanger betydeligt.

### 3.11 Montering og inddakning

Nogle få solfangere var udfart på en måde, så det vil være vanskeligt at fastgøre dem. Dette er dog ikke et forhold, der er systematisk undersøgt. En del solfangere er forberedt for inddækning i taget. Dette gøres normalt ved. at der er en fals langs solfangerkassen, som inddækningen kan fastgøres i. Ved flere solfangere var denne fals dog ikke bred nok til at sikre en regntat inddækning.

### 3.12 Mekanisk styrke

Solfangerens evne til at klare vind og snelastpavirkninger underseges ved at skabe under- og overtryk i solfangeren. Ved en del solfangere var det pga. 'utatheder ikke muligt at opna over- og undertryk i solfangeren hvorfor denne prove ikke kunne Eoretages.

Solfangerne er afprovet ved et tryk par op til + 500 pa. Der blev Eorsogsvis anvendt et tryk på 1000 pa på en. solfanger. der gennem flere ar havde vist, at den kunne klare almindelig vind- og snebelastning. Da glasset pà denne solfanger revnede efter 10 min på 1000 Pa blev provetrykket sat ned til 500 pa.

Ingen af de provede solfangere viste svagheder ved dette provetryk, og ingen af de solfangere, dex er sat op udendors, har vist manglende mekanisk styrke over for vindbelastning.

Det må da konkluderes, at de provede solfangere har haft tilstrækkelig (i mange tilfæde rigelig) mekanisk styrke。

Det er umuligt at vurdere provningen ud fra dette materiale, men det er givet, at virkelighedens vindbelastning foregar ved pludselige kortvarige vindstod, som ikke kan simuleres med det anvendte udstyr.

## 3. 13 Mulighed for vedligeholelse og reperation

Dette er et omrade, der normalt kun tages meget lidt hensyn til ved konstruktion af solfangere. Af hensyn til en rimelig levetidsøkonomi for et solfangersystem er det afgorende, at der kan foretages reparationer, når og hvis det er nodvendigt. Glasdæklag kan gå itu, der kan ske absorberlak eller en solfanger kan vise sig ikke at vare regntæt. Derfor bor solfangere udfores så dæklaget kan tages af uden storre problemer og efter reparation monteres igen. Hvis solfangerelementerne er inddakket $i$ et tag, bor inddakningssystemet vare udfort, så solfangerne kan nedtages relativt nemt. Erfaringen har vist, at manglende hensyn til reparationsmulighed kan fore
til meget store og uforudsete ekstra omkostninger. Hvis solfangere skal opnå levetider på 20-30 ảr, er det vigtigt, at enkelte dele kan udskiftes let og billigt. En forøget levetid pga. øget mulighed for vedligeholdelse og reparation vil f.eks. ved fastholdt levetidsøkonomi betyde at ret store årlige midler kan afsattes til vedligeholdelse og udskiftning af enkeltdele (se eksempel i kapitel 6).

### 3.14 Solfangerens effektivitet

Alle de undersøgte solfangere ex effektivitetsprovet pà Laboratoriet for Varmeisolering. Der findes ingen sammenhæng som tyder på at forsøg på at gore en solfanger holdbar til gengæld gor den mindre effektiv. Det ser snarere ud som om de solfangere, der har en dårlig holdbarhed heller ikke ex sarlig effektive. Det vasentlige både mht. holdbarhed og effektivitet er en gennemarbejdet konstruktion og rigtige materialevalg.

Under beskrivelsen af de enkelte solfangere er der angivet en ligning for solfangerens effektivitet. For at kunne sammenligne umiddelbart er kurven angivet lineært. Linien er konstruexet udfra den maite effektivitet ved en temperaturdifferens mellem vaske $i$ solfangeren og den omgivende luft på hhv。 $0{ }^{\circ} \mathrm{C}$ og $30^{\circ} \mathrm{C}$. Effektiviteten er således angivet ved

$$
n=n_{0}-k(T m-T l) / E
$$

hyor
n
$\mathrm{n}_{\mathrm{O}}$
$k$
$\mathrm{T}_{\mathrm{m}}$
$T_{1}$ E er solindfaldet i $\mathrm{W} / \mathrm{m}^{2}$

Da det er svært at sammenligne solfangerens effektivitetskurver med henblik på en vurdering, er der i tabel 5.3 vist en enkel metode, hvor man simpelthen indsætter en værdi for ( $\left.\mathrm{T}_{\mathrm{m}}-\mathrm{Tl}\right) / \mathrm{E}$ pa $0.05^{\circ} \mathrm{C} \mathrm{m} \mathrm{m}^{2} / \mathrm{W}$. Baggrunden for dette tal er en tankt driftstilstand, hvor $T_{\mathrm{m}}$ er $30^{\circ} \mathrm{C}$ højere end udeluften $\mathrm{T}_{1}$ og indstrålingen er $600 \mathrm{~m} / \mathrm{m}^{2}$. Alt afhængigt af hvilket formal man onsker at bruge solfangeren til og hoornår på året en god effektivitet er mest nødvendigt, kan man selv vælge den værdi for $\left(T_{m}-T_{1}\right) / E$ der skal bruges ved en sammenligning.

## KAPITEL 4. BESKRIVELSE AF PRØVNINGSRESULTATER

Dette kapitel indeholder rapporteringsjournaler for alle provede solfangere. I journalerne findes en beskrivelse af den enkelte solfanger og af provningsresultaterne samt kommentarer og en sammenfattende vurdering.

Fig. 4.l viser en oversigt over de provede solfangere mht. cil opbygning og materialevalg.

Rapporteringsjournalen er opbygget af 4 dele: Beskrivelse af solfanger: Storrelse, opbygning, materialevalg.
2) Prøvningsresultater:
a) Lufttæthedsprøvning og utæthedstal defineret ved utætheden $i \operatorname{m} / \mathrm{h}$ ved et overtryk $i$ solfangeren på 100 pa.
b) Temperaturprovning i den kunstige sol med tilw hørende visuel inspektion
c) Kommentarer til proven for regntathed
3) Figurer og foto. For hver solfanger er der et snit. der viser det vasentlige i solfangerens opbygning mest omkring kasse/daklag samlingen. Desuden er der foto, dels til illustration af solfangerens opbygning, dels til illustration af de konstaterede problemer. En del af disse foto er taget efter at solfangeren har staet i stagnation udendors i et ár og illustrerer således ikke solfangeren umiddelbart efter de indendors prover. Alle illustrationer horende til de enkelte solfangere er samlet hex under dette pkt. i journalen.
4) Vurdering af solfangeren. Her kommenteres specielt de problemer, der er konstateret vedr. den enkelte solfanger. I nogle tilfalde er der angivet forslag til forbedringer. Desuden gives en sammenfattende vurdering af solfangeren. En sammenfattende kommentar vedr. de enkelte problemer fremgår af kapitel 5.

Oversigt over de prøvede solfangere

|  |  | Solfan gerkas se | Bagside ${ }^{-}$ isole ring | Absorber | Daklag | ．．Vagt |  |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
|  | Trans－ parent areal $m^{2}$ |  |  |  |  | $\mathrm{kg} / \mathrm{m}^{2}$ | Effek－ tivitet （se afsn． 3．14） $\operatorname{eta}_{0} k$ |
| 1 | 0，65 | X | $\times \quad 20$ | $x \quad \mathrm{x}$ | X X | 14 | $0,73 \quad 8,8$ |
| 2 | 0，92 | $x$ | $x \quad 50$ | $x \quad x$ | x x | 39 | 0，88 8，6 |
| 3 | 2，03 | X | $\times \times 45$ | X X | X X | 21 | $0,79 \quad 6,9$ |
| 5 | 1，54 | X | $\times \quad 28$ | x x | x x | 19 | 0，74 7，5 |
| 9 | 0，95 | X | $x \quad 20$ | X | x x | 18 | $0,78 \quad 12,0$ |
| 10 | 1，49 | X | $x \quad 50$ | x x | x x | 30 | $0,78 \quad 8,3$ |
| 11 | 1，96 | x | $\times 35$ | $x \quad x$ | x X | 37 | 0，82 7，3 |
| 12 | 1，97 | x | $\times \quad 60$ | $x \quad x$ | x x | 41 | 0，66 5，1 |
| 13 | 2，06 | x | $\times \quad 37$ | x X | x X | 28 | 0，74 5，6 |
| 16 | 1，57 | X | $\mathrm{x} \quad 70$ | x x | X x | 27 | 0，83 8，0 |
| 19 | 1，38 | X | $\times \quad 50$ | $x \quad x$ | x X | 25 | $0,74 \quad 6,0$ |
| 21 | 2，00 | X | $\times \quad 50$ | $x \quad x$ | $\times \mathrm{x}$ | 15 | 0，73 5，4 |
| 25 | 1，81 | x | $\times \quad 55$ | $x$ x | X X | 23 | 0，80 7，8 |
| 26 | 1，81 | x | $\times \quad 55$ | X X | x X | 23 | 0，79 4，9 |
| 29 | 1，92 | X X | x 35 | $x \quad \mathrm{x}$ | x x | 31 | 0，63 7，3 |
| 30 | 1，82 | x | $\mathrm{x} \quad 50$ | x x | X X | 23 | 0，82 7，5 |
| 31 | 1，25 | x x | $\times \quad 37$ | $\mathrm{x} \times \quad \mathrm{x}$ | $x$ x | 24 | 0，73 5，8 |
| 34 | 1，70 | X | $x \quad 30$ | $x \quad x$ | $x$ x | 33 | 0，84 9，2 |
| 35 | 1，00 | X | $\times 45$ | $x \quad \mathrm{x}$ | $x \quad \mathrm{x}$ | 33 | 0，65 6，3 |
| 36 | 1，94 | X | $\times 40$ | x X | $x$ x | 37 | 0，82 7，7 |
| 37 | 1，86 | X | x 42 | x x x | x x | 27 | 0，84 10，0 |

Fig．4．1 Oversigt over de prøvede solfangere mht．
materiale，vegt og effektivitet．

```
RAPPORTERINGSJOURNAL - Indend\varnothingrs prøvning af solfangeres
                        driftssikkerhed og holdbarhed
SOLFANGER .........................: 1
YCre dimensioner (L x B x H) .....: 1,15\times0,7\times0,12 m
Transparant areal...............: 0,63 m
Vægt, tom ....................: 9 kg-14 kg/m
Vaskeindhold...................: 3,1 1-4,9 1/m
```




```
Bagsideisolering ................ 20 mm PUR-skum påimet alu-folie
Kantisolering
på begge sider
Hul ramme
```

Absorber

```
Kanalplade, sort polypropylen
Forbincelsesteknik
:Absorberoverflade
                                    Indfarvet polypropylen
Max. tryk/anb.højeste driftstryk..: 1000 kPa/200 kPa
Dæklag
                                    3 mm dækplade af acryl
Afstand inderste dæklag/absorber : : 20-70 mm
Kasse/dæklag samling ............. Fugemasse på begge sider af acryl
                                    plade. Glasliste af gra pVC pop-
                                    nittet til ramme
Placering af tilslutninger/tatning: Gummislanger \emptyset#9 mm midt for
                                    enderne/gummityller
Anbefalet inddækning/placering ...: Uden pa tag
Ventilationsmulighed
Ingen udluftningshuller
Effektivitetskurve, lineariseret . : 0,73-8,8 (Tm-T ( 
```


## LUFTTETEEDSPROVNING

Meget utæt

$$
\begin{aligned}
& \text { utæthedstal } \\
& >20 \mathrm{~m}^{3} / \mathrm{h} \text { pr. } 100 \mathrm{pa}
\end{aligned}
$$

## TERPERATURPRØVNING



Visuel inspektion efter temperaturprøvning:

REGNTRMHED
Solfangeren var regntæt ved den udendørs prøvning


Fig. S1. 1 snit $i$ solfanger.

1. Dæklag, 3mm acryl
2. Glasliste af PVC
3. Ramme, polypropylen
4. Absorber, sort polypropylen
5. Studs, gummislange
6. Bagsideisolering, PUR-skum

Fig. S1. 2
Foto af solfanger.

VURDERING AF SOLFANGEREN
Solfanger nr. 1

## Bemarkninger til specielle forhold

Denne solfanger er som den eneste af de prøvede solfangere fremstillet helt i plast. Absorberen af polypropylen har klaret temperaturen op til $140^{\circ} \mathrm{C}$ uden problemer. Solfangeren har klaret indendørs regntæthedsprøvning uden problemer, men efter placering udendørs i stagnation $i \frac{1}{2}$ år kan en for$\phi$ get tendens til kondensdanndelse tyde på, at der måske er kommet lidt vand ind med tiden. Dæklagslisterne forneden har en stor kant, der kan opsamle vand,så den måske bliver utæt med tiden. Dette kan eventuelt være årsagen til vandindtrængen, da kondensdannelsen netop observeres ved bunden af solfangeren.

## Sammenfattende vurdering af solfangeren

Solfangeren har klaret prøvningerne uden problemer og har også fungeret relativt godt gennem længere tids stagnation udendørs. Solfangerens størrelse er dog urealistisk lille ( $0.63 \mathrm{~m}^{2}$ ), der skal mindst bruges omkring 10 moduler til et lille brugsvandsanlæg。

```
RAPPORTERINGGJOURNAL - Indendørs prøvning af solfangeres
    driftssikkerhed og holdbarhed
SOLEANGER .......................... 2
Yare dimensioner (L x B x H)......: 1,38\times0,98\times0,008 m
Transparant areal................: 0,92 m
Vægt, tom ........................: 36 kg - 39 kg/m
Væskeindhold .....................: 3,4 l - 3,7 1/m}\mp@subsup{}{}{2
Solfangerkasse ................... Helstøbt kasse af glasfiberarme-
ret polyester, sort.
Bagside Kasse og bund ud i et
Bagsideisolering ................... 50 mm mineraluld
Kantisolering
40 mm mineraluld med sortmalet al-folie
Absorber ............................... Ståi, kanalplade
Forbindelsesteknik .................. Rulle og punktsvejsning
Absorberoverflade .................. Sort maling
Max. tryk/anb.højeste driftstryk..: \(400 \mathrm{kPa} / 250 \mathrm{kPa}\)
```



```
Placering af tilslutninger/tatning: 4 stilrør ud af siden/sort silikonefugemasse
Anbefalet inddækning/placering ...: Uden på tagbeklædning
Ventilationsmulighed .............. Gennem huller i bagpladen
Effektivitetskurve, lineariseret .: \(0,88-8,6\left(T_{m}-T_{1}\right) / E\)
```

Meget utæt

> utæthedstal
> $>20 \mathrm{~m}^{3} / \mathrm{h}$ pr. 100 Pa

## TERPERATURPRØVNING

```
    Opvarmningstid (90% af stagnationstemperatur) ... 135 min
    Absorbertemperatur minus lufttemp., midt ........ 103 }\mp@subsup{}{}{\circ}\textrm{C
    Dæklagstemperatur minus lufttemp., midt ......... 50 % }\mp@subsup{}{}{\circ}\textrm{C
    Dæklagstemperatur minus lufttemp., v. glasliste.. 47 }\mp@subsup{}{}{\circ}\textrm{C
    Temperatur pa glasliste minus lufttemp........... 51 % }\mp@subsup{}{}{\circ}\textrm{C
    Lufttemp. i simulator .......................... }37\mp@subsup{7}{}{\circ}\mp@subsup{}{C}{C
Visuel inspektion efter temperaturpr\phivning:
    Intet at bemærke
```


## REGNTETHED

Ingen vandindtrængning ved påsprøjtning uden sug。

## FIGURER Solfanger nr. 2



Fig. S2. 1 Snit i solfanger.


Fig. S2. 2 Hjørne af solfanger nr . 2.


Fig. S2. 3
Solfanger nr. 2

## VURDERING AF SOLFANGEREN

Solfanger nr. 2

## Bemærkninger til specielle forhold

Denne solfanger er, som det også fremgår af figurene, opbygget ud fra en helstøbt solfangerkasse af glasfiberarmeret polyester. Kassen har fire huller til rørgennemføring i siderne og fire ventilationshuller $i$ bagsiden samt en indbygget fals foroven til placering af glasdæklag. Rørgennemføringerne er tætnet med sort silicone fugemasse og er tilsyneladende stadig velfungerende med hensyn til at optage termiske bevægelser og afvise regnindtrængning efter at solfangeren har været placeret i udendørs stagnation i $1 \frac{1}{2}$ ar. Det ville dog med hensyn til langtidsholdbarhed være en fordel om samlingen mellem rør og kasse var beskyttet med sollys og direkte regnpåvirkning. Endelig må det også påpeges, at det tilsyneladende ved denne konstruktion ville være umuligt at udskifte en absorber eller komme til i solfangerkassen. Kasse/dæklagsamlingen sker som vist på fig. S2. 1 ved at glasset hviler på et gummibåd og afstanden til kassens sidetop er tætnet med silicone. Dette er en samling, som i praksis har vist sig ganske god; dog kunne udførelsen være bedre, så man undgik, at der opsamles vand i siliconefugen. Nogle glasholderbeslag ville også være en fordel, f.eks. to langs hver side, så det ikke kun er siliconefugen, der fastholder glasdæklaget.

## Sammenfattende vurdering

Solfangeren indeholder flere goder konstruktionsdetaljer og er et sint eksempel på et nyt og spændende materialevalg til brug i. en solfangerkasse. Der er påpeget en række småting ved konstruktionen, som burde rettes. Bl.a. vil det være vigtigt, at absorberen i givet fald kan udskiftes. Men alt i alt er det et solfang, som har klaret sig meget fint med hensyn til driftssikkerhedsprøvningen og som efter opstilling udendørs i $1 \frac{1}{2}$ år i stagnation stadig virker holdbar og regntæt.

```
RAPPORTERINGSJOURNAL - \begin{tabular}{rl} 
& Indendørs prøVning af solfangeres \\
& driftssikkerhed og holdbarhed
\end{tabular}
```

SOLFANGER ..... 3
Yare dimensioner ( $L \times B \times H$ ) $\ldots \ldots$ : $2,08 \times 1,14 \times 0,13 \mathrm{~m}$
vægt, tom ..... $42 \mathrm{~kg}-21 \mathrm{~kg} / \mathrm{m}^{2}$
Væskeindhold ..... $3,51-1,71 / \mathrm{m}^{2}$
Solfangerkasse
Ekstruderet
i hjørnerne

```BagsideBagsideisolering25 mm mineraluld +20 mm polyurethan-
```

Kantisolering skum med alu-folie

```20 mm mineraluld
```

Absorber stal, kanalplade

```ForbindelsesteknikRulle og punktsvejsningAbsorberoverfladeSort maling
```

Max. tryk/anb.højeste driftstryk ..... $350 \mathrm{kPa} / 250 \mathrm{kPa}$
Dæklag
3 mm acryl $+0,1 \mathrm{~mm}$ polyester
Afstand inderste dæklag/absorber

```\(\mathrm{Ca}\).
```

Kasse/dæklag samling
Glaslister popnittet til rammen, gummitætningsliste
Placering af tilslutninger/tætning 4 bagudvendte studse
Anbefalet inddækning/placering Kan indbygges

```VentilationsmulighedUdluftningshul i hvert hjørne
```

Effektivitetskurve, lineariseret ..... $0,79-6,9\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{\mathrm{l}}\right) / \mathrm{E}$

## LUFTTETEEDSPRØVNING


utæthedstal
$12 \mathrm{~m}^{3} / \mathrm{h}$ pr. 100 pa

## TEMPERATURPRØVNING

Opvarmningstid (90\% af stagnationstemperatur) ... 33 min
Absorbertemperatur minus lufttemp. midt ........ $137^{\circ}{ }^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., miat .......... $49{ }^{\circ}{ }_{C}$
Dæklagstemperatur minus lufttemp., v. glasliste.. $39^{\circ} \mathrm{C}$
Temperatur på glasliste minus lufttemp............ $13{ }^{\circ} \mathrm{C}$
Lufttemp. i simulator........................................ $35^{\circ}{ }_{C}$
Visuel inspektion efter temperaturpxøvning:
Intet at bemærke

## REGNTETHED

Ingen vandindtrængning ved påsprøjtning uden sug.


Fig. S3. 2
Foto af et hjørne af olfangexen.


Fig. S3. 3
Foto der viser det
kuppelformede dæklag.

## VURDERING AF SOLFANGEREN

Solfanger nr. 3

Bemærkninger til specielle forhold (se oversigt fig.)

Det kuppelformede dæklag af acryl har ikke lidt overlast, temperaturen under stagnationsproven nåede her $49{ }^{\circ} \mathrm{C}$ over lufttemperaturen ialt omkring $90^{\circ} \mathrm{C}$, hvilket acryl kan tåle i. tor tilstand.

Der opsamles vand forneden foran kantlisten. Dette kan give problemer ved frost/tø påvirkninger, samt ved den langvarige påirkning med vand af kantliste og gummipakning. Fugemasse bag ved gummipakning giver dog ekstra sikkerhed mod vandindtrængningen, og drænhuller i konstruktionen er et plus, hvis vand forst er komnet ind. Ved 100 Pa undertryk i solfangeren kom der vand ind ved kantlisten, men vandpasprøjtning alene gav ikke problemer, ligesom solfangeren stadig ser regntat udefter placering i udendors stagnation i 1 å. Et tætningsbånd mellem folie og acryldæklag er dog losnet et par steder (fig. ). Solfangerens glasliste er ombøjet med en passende stor afstand til solfangerkassen, så der opnås god mulighed for inddrkning.

Solfangeren indeholder PUR-skum. Når der ikke har været problemer med udgasning skyldes det, at der over PUR-skummet ligger 25 mm mineraluld, således at der ikke opnås så høje temperaturer i skummet.

## Sammenfattende vurdering af solfangeren

Solfangeren er veludført og godt konstrueret. Dette hænger maske sammen med, at det er en meget solgt solfanger i det meste af Europa. En virkelig gennemtænkt og produktudviklet solfanger med en effektivitet, som er rimelig god men alligevel ikke kan måle sig med selektive solfangere.


```
utæthedstal
    >20 m}\mp@subsup{\textrm{m}}{}{3}/\textrm{h pr. 100 Pa
```


## TEMPERATURPRØVNING

Opvarmningstic (90\% af stagnationstemperatur) ... 34 min
Absorbertemperatur minus lufttemp. midt ........ $100{ }^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., midt .......... 45 -
Dæklagstemperatur minus lufttemp., v. glasliste.. 35 -
Temperatur på glasliste minus lufttemp............ 25 -
Lufttemp. i simulator ........................................... 40 -
Visuel inspektion efter temperaturprøvning:
Svag udgasning på dæklag.

REGNTAMHED
Ved påsprøjtning uden sug vandindtrængning adskillige steder.


Fig. S5. 2
Hjørne af
solfangeren.
Solfangeren har
stået i stagnation
udendørs et år.


Fig. S5. 3
Silikonefugen har løsnet sig, sàledes at vand kan løbe lige ned i solfangeren.


# VURDERING AF SOLFANGEREN 

Solfanger nr. 5

Bemærkninger til specielle forhold

Silikone fugen er særdeles dårligt udfort og vedhæftningen dårlig, således at vand kan lobe direkte ned i solfangeren. Specielt er der problemer omkring hjørnerne, hvor profilerne, der bærer glasset, ikke er i samme niveau.

Der er ingen form for tætning omkring rørgennemføringerne. Endvidere er der ingen monteringsbeslag.
Solfangeren må betegnes som utæt over for regnpåvirkning.

Udgasning på glasset var ret svag på trods af, at der er anvendt PUR-skum. Dette skyldes nok anvendelse af den mere temperaturbestandige PUR-skum og en stagnationstemperatur, som kun er $135^{\circ} \mathrm{C}$.

## Sammenfattende vurdering

Solfangeren er præget af manglende konstruktionsdetaljer samt en meget dårlig udførelse. Iøvrigt må de benyttede materialer siges at være fornuftige. Det må formodes, at solfangeren relativt hurtigt bliver nedbrudt som følge af den darlige tathed over for regn.


PRCVININGSRESULTATER solfanger nr. g

LUFTTETEEDSPRDVMING

LUFTTETHED

overtryk

TENPERATURPRØVNING
Opvarmningstid (90\% af stagnationstemperatur) ... 33 min
Absorbertemperatur minus lufttemp., midt....... $88{ }^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., midt......... $24-$
Dæklagstemperatur minus lufttemp., v. glasliste.。 32 -
Temperatur på glasliste minus lufttemp........... 26 -
Lufttemp. i simulator ......................................... 40 -
Visuel inspektion efter temperaturprøvning:
Svag udgasning på dæklag

REGNTKLHED
Ved vandpåsprøjtning vandindtrængning ved det ene hjørne.

## FIGURER Solfanger nr . 9



Fig. S9. 2
Snit $i$ solfanger.


Fig. S9. 2
Hjørne af solfanger.

```
VURDERING AF SOLFANGEREN
Solfanger nr. }
Bemarkninger til speciele forhold
```

Denne solfanger har et meget stort vaxmetab. Dette skyldes de"s, at bagsideisoleringen er for tynd, kun 20 mm g dels at der ingen kantisolering er, og at afstanden mellem absorber og daklag ( 15 mm ) er i underkanten. Målingerne viser da også en meget lav stagnationstemperatur samt en hoj temperatur på glaslisten.

Tætningen mellem glasset og sporet i aluminiumprofilet er svær at udføre med den anvendte konstruktion. Der blev da ogsa konstateret indtrængning af vand ved det ene hjorne ved a*indelig vandpåsprojtning. Der er ingen trening mellem glas og aluminiumprofil. Dette kan pga. kapilax virkning føre til regnutathed.

## Sammenfattende vurdering

Materialevalget er $i$ orden, men solfangerens konstruktion med den vanskelige tætning mellem glas og ramme er diskutabel. Solfangeren har et helt uakseptabelt stort varmetab, alene af den grund bor konstruktionen laves om.
RAPPORTERINGGJOURNAL - Indendørs prøvning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER ..... 10
Ydre dimensioner (L X B X H) ..... $220 \times 0.86 \times 0.12 \mathrm{~m}$
Transparant areal ..... 1,49
Vægt, tom ..... $45 \mathrm{~kg}-30 \mathrm{~kg} / \mathrm{m}^{2}$
Vaskeindhold ..... $1.31-0.91 / \mathrm{m}^{2}$
Solfangerkasse Imprægneret fyrretræ (20x120 mm), de korte sider dobbelte med 50 mm spalte
Bagside 4 mm træfiberplade
Bagsideisolering 50 mm mineraluld
Kantisolering Ingen ud over rammen af træ
Absorber Aluminium, kanalplade
Forbindelsesteknik Roll-bond
Absorberoverflade Sort maling
Max. tryk/anb.højeste driftstryk ..... $300 \mathrm{kPa} / 100 \mathrm{kPa}$
Dæklag 1 lag 4 mm glas
Afstand inderste dæklag/absorber : Ca. 35 mm
Kasse/dæklag samling Glasset hvilex på indvendig liste,fastholdes af glaslister af træ,tætnet med fugeband. Afdækketmed alu-kapsel. Forneden er glas-set ført ud.
Placering af tilslutninger/tætning: 2 stk. gennem lange sider
Anbefalet inddakning/placering Indbygget eller uden pa tag
Ventilationsmulighed
Ingen udluftningshuller
Effektivitetskurve lineariseret ..... $0.78 \div$
8.3 $\left.T_{m}-T_{1}\right)$ ..... /E

```
utæthedstal
    \(>20 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{~Pa}\)
```


## TEMPERATURPRQVNING

```
Opvarmningstid (90% af stagnationstemperatur) ... 33 min
Absorbertemperatur minus lufttemp., midt......... 104 }\mp@subsup{}{}{\circ}\textrm{C
Dæklagstemperatur minus lufttemp., midt ......... 54 O}\mp@subsup{}{C}{C
Dæklagstemperatur minus lufttemp., v. glasliste.. 52 O}\textrm{C
Temperatur pa glasliste minus lufttemp........... 34 % }\mp@subsup{}{}{\circ}\textrm{C
```



```
Visuel inspektion efter temperaturprøvning:
Intet at bemærke
```


## REGNTETHED

Ingen vandindtrængning ved påsprøjtning.


FIG. S10.2
Hjørne nederst på solfangeren. Glasset fortsætter ned til pilen.

## VURDERING AF SOLFANGEREN

Solfanger nr. 10

## Bemærkninger til specielle forhold

Solfangeren er opbygget af impregneret fyrretræ, dette kan ved varmepåvirkning afgive harpiks, der i forbindelse med fugt over lang tid kan danne en ret tæt belægning på glasset. Dette er ikke konstateret ved afprøvningen, hvilket nok skyldes den ringe fugtbelastning. Ved de udendors prøver der har e berfulgt disse har der efter et ar dannet sig en mindre hinde, men det virker ikke slemt $i$ forhold til andre solfangere.

Solfangeren hax en uheldig glasholderliste for neden, hvor vand kan opsamles i kanten og kapilært kan ledes ind i solfangeren. Det sidste kan konstateres på solfangeren, der har været placeret i udendors stagnation i lar. Hvis man anser det for nødvendigt med noget til at holde på glasset forneden, ville et par smalle stopklodser være nok. Glaslistens ombojede inddækningskant i siden er meget smal. (fig. Slo.2).

Solfangeren har drænhuller. Solfangeren var regntæt ved regntætningsprøvningen, og ser næsten ud som ny efter lảrs placering udendors.

Sammenfattende vurdering

Solfangeren er veludført med gennemtankte konstruktionsdetaljer. Dog kunne den nederste glasholderliste undværes og evt. erstattes med et par smalle stopkoldser.


```
utæthedstal
\(>20 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{~Pa}\)
```

TEMPERATURPRØVNING
Opvarmningstid (90\% af stagnationstemperatur) ... 58 min
Absorbertemperatur minus lufttemp., midt ........ $105^{\circ} \mathrm{C}$
Daklagstemperatur minus lufttemp., midt......... $51{ }^{\circ} \mathrm{C}$
Daklagstemperatur minus lufttemp., v. glasliste.. $42{ }^{\circ} \mathrm{C}$
Temperatur på glasliste minus lufttemp............. $22^{\circ}{ }^{\circ} \mathrm{C}$
Lufttemp. i simulator .............................. $36^{\circ}{ }^{\circ}$
Visuel inspektion efter cemperaturprøvning:
Kraftig belægning pa indersiden af dæklag.

## REGNTRTHED

Ingen vandindtrængning ved påsprøjtning.

## FIGURER Solfanger nr. 11



Fig. S11.1
Snit der viser kasse/dæklag samlingen.


Fig. S11.2
Hjørne af solfangeren.


Fig. S11.3
Hjørne af solfangeren der viser kasse/dæklag samlingen med silikonefugen.

## VURDERING AF SOLFANGEREN

Solfanger nr. 11

## Bemærkninger til specielle forhold

Bagsideisoleringen udgores af PUR-skum. Dette gav anledning til kraftige udgasninger på indersiden af glasset ved stagnationsprøven. Udgasningen havde allerede vist sig ved den forudgående effektivitetsprovning, men blev forvarret.

Tætningen mellem glas og kasse er udfort som med solfanger nr. 5, men mere omhyggeligt, og der blev ikke konstateret vandindtrængning ved provningerne. Efter et år udendors, er der dog enkelte steder tegn på dålig vedhæftning mellem glas og silikone (fugen kan trækkes af), og det er et sporgsmå om losningen er langtidsholdbar med de store krav, der stilles til regntæthed. Der er ingen mekanisk fastholelse af glasset, hvilket er risikabelt, da siliconefugen alene skal holde igen ved vindsug. To smalle beslag på hver side af solfangeren ville være tilstrækkeligt.

## Sammenfattende vurdering

Solfangeren fremtræder veludfort. Nedbrydningen af Purskummet og den tilhorende udgasning er et alvorligt problem. Endvidere er langtidsholdbarheden af tatningen mellem glas og kasse tvivlsom.


Meget utæt

> utæthedstal $$
20 \mathrm{~m}^{3} / \mathrm{h} \text { pr. } 100 \mathrm{~Pa}
$$

TEMPERATURPRØVNING


Visuel inspektion efter temperaturprøvning:
Kraftig belægning på indersiden af dæklag.

REGNTETHED

Ved vandpaisprøjtning vandindtrængning ved hjørner og tilslutningsstudse. Vand løber gennem utætheder ved tætningsliste ned $i$ sideisolering.


Fig. S12. 1
Snit der viser kasse/dæklag samlingen


Fig. S12.2
Hjørne af solfangeren

VURDERING AF SOLFANGEREN

Solfanger nr. 12

Bemarkninger til specielle forhold

Der blev konstateret kraftige udgasninger på glasset. Ud fra en vurdering af de indgående materialer må det formodes, at udgasningen stammer Era en oliering af absorberen, da materialerne i sig selv er stabile.

Glaslisten er skruet fast til rammen. Afstanden mellem skruerne er stor ( cm ) og losningen med de forskudte gummilister uheldig. Dette har givet en dårlig komprimering, og da der heller ikke er nogen topforsejling er solfangeren meget utat over for regn. Endvidere bevirker den darlige komprimering, at der kan opstå abninger i hjornerne ved gummibåndets krympning. Ved vandpåsprøjtning opsamles vand tydeligvis ved den nederste glaslistekant.

Tilslutningsstudsene er kun tatnet imod kassen med en sijikonefuge, hvilket ikke er en holdbar losning. Efter et ar udendors er denne silikonefuge flere steder faldet helt af, da den ikke binder på det delvist korroderede ror.

Sammenfattende vurdering

Solfangeren er dårligt udfort og dảrligt konstrueret og må formodes at vare nedbrudt efter fa ars drift.


```
utæthedstal
    >20 m}\mp@subsup{\textrm{m}}{}{3}/\textrm{h pr}.100 \textrm{Pa
```


## TERMPERATURPR $\emptyset V N I N G$

Opvarmningstid (90\% af stagnationstemperatur) ... 105 min
Absorbertemperatur minus Iufttemp. midt........ $131{ }^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., miat ........... $50{ }^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., v. glasliste..
Temperatur på glasliste minus lufttemp...........
Lufttemp. i simulator.............................................. $33^{\circ}{ }_{C}$
Visuel inspektion efter temperaturprøvning:
Intet at bemærke

## REGNTRMHED

Ved påsprøjtning vandindtrængning ved gummiliste, dråber kunne ses flere steder på absorber. Ved undertryk og pasprøjtning stor vandindtrængning.


Fig. S13.1
Snit i solfangeren.

1. Absorber
2. Aluminiumsfolie
3. Luftmellemrum
4. PUR-skum
5. Profil af aluminium
6. Glas
7. Kondenshul
8. Bagside, plast


Fig. S13. 2
Hjørne af solfangeren. Bemærk gummibåndets krympning.

VURDERING AF SOLFANGEREN

Solfanger nr. 13

## Bemærkninger til specielle forhold

Twtningen mellem glas og kasse med det U-formede gummiprofil Eort ubrudt rundt om hjornerne, er ikke regntat, saledes som den er udfort med en svag glassliste. Solfangeren er fuget med silicone i hjornerne mellem glas og glasliste. Selv om solfangeren ikke er regntæt, betyder 2 store drænhullex i den nederste solfangerside og en stor ventilation, at det indtrengende vand bliver et kort bekendskab. Der er da ogsa kun en ringe korrosionpavirkning af absorberen efter l árs placering udendørs, når man tager regntætheden $i$ betragtning (en smule ir ved rørlodninger). Rorgennemforingsklodsen er ikke regntæt.

## Sammenfattende vurdering

Solfangeren indeholder mange gode konstruktionslosninger. Den er imidlertid ikke regntæt, hvorfor langtidsholdbarheden ikke er sikret selv med dranhuller og god ventilation. Solfangeren er iøvrigt konstrueret til et andet klima end vores, hvor regntætheden ikke har samme betydning og hvor langtidsholdbarheden derfor sandsynligvis vil være i orden.



TEMPERATURPR $\varnothing V N I N G$
Opvarmningstid (90\% af stagnationstemperatur) ...
Absorbertemperatur minus lufttemp., midt ........ $105^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., miat .......... $68^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., v. glasliste.. $42^{\circ} \mathrm{C}$
Temperatur pà glasliste minus lufttemp........... $35^{\circ} \mathrm{C}$
Lufttemp. i simulator........................................ $36^{\circ} \mathrm{C}$
Visuel inspektion efter temperaturprøvning:
Solfangeren blev først prøvet med Albarino glas med lavt jernindhold, det sprang ved stagnationsprøvningen.
Svag belægning på indersiden af dæklag efter temperatur... provning med almindeligt glas.

## REGNTRTHED

Ved vandpåsprøjtning vandindtrængning ved den ene tilslutningsstuds, isoleringen vad.

FIGURER Solfanger nr. 16


Fig. S16.1 Snit i solfangeren.


Fig. s 16.2
Hjørne af solfangeren. I den afprøvede model var glasset anbragt direkte på profilet.

VURDERING AF SOLFANGEREN
Solfanger nr. 16

Bemarkninger til specielle forhold

Glasset hviler direkte på en kant på alumprofilet. Dette bevirker, at glassets kant koles kraftigt, hvilket foroger solfangerens varmetab og gor den mere udsat for vindpåirkninger, specielt pludselige vindstod, da glasset ikke kan bevage sig i lodret retning. Endvidere forgger det risikoen Eor brud pá daklaget som folge af de relativt store temperatuxforskelle fra midten af daklaget til kanten. Dette fremgik tydeligt af, at temperaturprovninen med Albarinoglas betod, at glasset knakkede. Det er dog en fordel, at daklaget ikke ligger i spænd.

Den nederste glasliste bor erstattes af smalle glasholderbeslag på den nye udgave af solfangeren. Inddakningen af solfangeren ex vanskelig og kan give utathed pga. meget kort afstand mellem inddakningsliste og sideprofilet.

Der blev observeret en udbuling op mod glasset af absorberen ved stagnation. Grunden er nok, at absorberen bliver varmere pa midten end langs med kanten, og at den kun er $1 \frac{1}{2}$ mm tyk.

Tacningen omkxing roxgennemforingerne er udrort med en gummitylle i rammeprofilet. Der blev konstateret vandindtrangning her. Der blev ogsa konstateret en smule udgasning. Det kan ikke afgores med sikkerhed, hvor den kommer fra, men mả nok tilskrives mineraluldens bindermateriale. Solfangeren blev udsat for vindlastorovning pà det dobbelte af almindeligt, 1000 Pa , uden at der var problemer.

Sammenfattende vurdering

Solfangeren fremtræder veludført. Efter en losning af problemet med rørgennemføringerne og glassets understøtning har man en god solfanger. Problemet med glassets understotning er lost $i$ en nyere udgave.



Fig. S19.1
Snit der viser
kasse/dæklag
samling.


Fig. S19.2
Hjorne af
solfanger.


Fig. S19.3
Glasset knækkede under temperatur -provning.

LUFTTETEEDSPR $\emptyset V I V I N G$


TEMPERATURPRØVNING
Opvarmningstid (90\% af stagnationstemperatur) ... 30 min
Absorbertemperatur minus lufttemp. midt ........ $124{ }^{\circ} \mathrm{C}$
Daklagstemperatur minus lufttemp., midt .......... $36^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., v. glasliste.. $44^{\circ} \mathrm{C}$
Temperatur på glasliste minus lufttemp............ $17{ }^{\circ} \mathrm{C}$
Lufttemp. i simulator ..................................... $36^{\circ}{ }^{\circ}$
Visuel inspektion efter temperaturprøvning:
Glasset knækket

REGNTRTHED

Ingen vandindtrængning ved påsprøjtning.

## VURDERING AF SOLFANGEREN

Solfanger nr. 19

## Bemarkninger til specielle forhold

Ved stagnationsproven knokkede glasset på langs. (sefig. fl9.3). Glasset er monteret med Eugebánd på begge sider komprimeret ved klemning om alu-profilet. Der har ikke varet tale om særlig store temperaturforskelle mellem midten af glasset og kanten. Glasset kan være revnet som folge af den uensaxtede Komprimering ved klemning og/oller fordi det har varet for fastspandt. Et tilsvarende element men noget mindre, har varet placeret udendors $i$ et ar her er glasset ikke revnet. Den valgte losning for daklagssamlingen betyder at daklaget ikke vil kunne skilles Era solfangerkassen ved behov for reparation.

På det lille element har gummibåndene nogle steder arbejdet sig los og er blevet skubbet frem. Komprimeringen ved klemning har bevirket, at der er vandrette krafter pa gummibåndene, idet "glaslisten" ikke er helt i plan med glasset.

Solfangeren er utæt ved rorgennemforingerne, hvor der ingen tatning er.

## Sammenfattende vurdering

Det er usikkert om glasset ville revne under en udendors stagnation, alligevel er kasse/dxklag samlingen kritisk på grund af, at fugebåndene arbejder sig løs. Iøvrigt er solfangeren god.
RAPPORTERINGSJOURNAL - Indendørs prøvning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER ..... 21
Ydre dimensioner ( $L$ x $B$ x H ) $\ldots \ldots . \cos 2,05 \times 1,05 \times 0,07 \mathrm{~m}$
Transparant areal ..... $2,00 \mathrm{~m}^{2}$
Vægt, tom ..... $30 \mathrm{~kg}-15 \mathrm{~kg} / \mathrm{m}^{2}$
Vaskeindhold ..... $2,71-1,31 / \mathrm{m}^{2}$
Soliangerkasse $0,7 \mathrm{~mm}$ galvaniseret stalplade. samlet med flige og popnittex. rre tværstivere
Bagside ..... :
Bagsideisolering 50 mm mineraluld
Kantisolering Ingen
Absorber Kobber, plade-rør
Forbindelsesteknik ..... Lodning
Absorberoverflade selektiv, sort krom
Max. tryk/anb.højeste driftstryk. ..... $400 \mathrm{kPa} / 300 \mathrm{kPa}$
Daklag 1 lag 1 mm glasfiberarmeretAfstand inderste dæklag/absorber polyester med uv-beskyttelseslag
Kasse/dæklag samling U-formet glasliste af plastbelagtstål trykket ind over en flig irammen og polyesteren. Tætning m.tape mellem flig og polyester.
Placering af tilslutninger/tatning: 2 stk. studse gennem korte sider/ gummityller.
Anbefalet inddækning/placering .... Indbygget eller uden på tag
Ventilationsmulighed4 stk. 8 mm huller $i$ hver af delange sider
Effektivitetskurve, lineariseret : $: 0,73-5,4\left(T_{m}{ }^{-T}\right) / E$ (meget krum)

LUFTTETEEDSPRDVIVING

Meget utæt

> utæthedstal
> $>20 \mathrm{~m}^{3} / \mathrm{h}$ pr. 100 Pa

## TEMPERATURPRØVNING



Visuel inspektion efter temperaturprøvning:

Dæklaget bulede ud, men rettede sig igen ved afkøling

REGNTRTHED

Ingen vandindtrængning ved påsprøjtning.



Fig. S21.2 Hjørne.
Glaslisten klemt om dæklaget.


Fig. S21. 2
Dæklaget. Glasfiberarmeret polyester (GPR).

## VURDERING AF SOLFANGEREN

Solfanger nr. 21

## Bemærkninger til specielle forhold

Ved stagnationsproven bulede daklaget (glasfiberarmeret polyester) en del ud, det rettede sig imidlertid helt ud ved afkøling, og der var ikke opstàet skader.

Kasse/dæklag samlingen har vist sig tæt, også efter et år udendors. Samlingen opnås ved en meget hard klemning af en tynd jernplade omkring daklagskanten, som kan tåle dette, fordi den er af plast. Absorberens tilstand er svær at vurdere, fordi daklaget næsten er umuligt at se igennem. Pa solfangeren som er placeret udendors kan dog ses lidt ir i enderne af tværstiverne.

## Sammenfattende vurdering

Solfangeren har klaret de indendors afprøvninger uden bemærkninger.

RAPPORTERINGSJOURNAL - Indendørs prøVning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER 26, som nr. 25 , men med selektiv folie
Ydre dimensioner (L X B x H) ..... :
Transparant areal

```Vægt, tom:
```

Vaskeindhold ..... :
Solfangerkasse .....  :
Bagside .....  :
Bagsideisolering ..... :
Kantisolering ..... :
Absorber .....  :
Forbindelsesteknik

```AbsorberoverfladePåklæbet selektiv folie
```

Max. tryk/anb.højeste driftstryk..

```sort nikkel (Maxorb)
```

Dæklag

```:
```

Afstand inderste dæklag/absorber ..... :
Kasse/dæklag samling

```
```

Placering af tilslutninger/tætning
Anbefalet inddækning/placering .....  :
Ventilationsmulighed .....
Effektivitetskurve, lineariseret .....  :
$0,79-4,9\left(T_{m}-T_{1}\right) / E$

LUFTTETEEDSPRøVINING


TERPERATURPR $\emptyset V N I N G$


## REGNTETHED

Ingen vandindtrængning ved påsprøjtning.

LUFTTETEEDSPRDVVINING
LUFTTATHED

overtryk
undertryk
utæthedstal
$4 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{pa}$

TERPERATURPRØVNING

$$
\begin{aligned}
& \text { Opvarmningstid (90\% af stagnationstemperatur) ... } 75 \mathrm{~min} \\
& \text { Absorbertemperatur minus lufttemp., midt ........ } 153^{\circ} \mathrm{C} \\
& \text { Dæklagstemperatur minus lufttemp., midt......... } 52 \text { - } \\
& \text { Dæklagstemperatur minus lufttemp., v. glasliste.. } 25 \text { - } \\
& \text { Temperatur på glasliste minus lufttemp............ } 17 \text { - } \\
& \text { Lufttemp. i simulator ....................................................... } 33 \text { - } \\
& \text { Visuel inspektion efter temperaturprøvning: }
\end{aligned}
$$

som 25

REGNTRTHED
som 25

SKRUE
GLASLISTE
RUSTFRIT STAL $\quad$ ALUMINIUM


Fig. S25.1
Snit der viser kasse/dæklag samlingen.


Fig. S25. 2
Hjørne af solfanger.
Billedet er taget en dag hvor der var kondensdannelser.


Fig. S25.3
Bagsiden af solfangeren hvor der var anvendt brandhæmmende PUR-skum. Skummet er bulet ud og stærkt forkullet.


Fig. S25.4
Misfarvning på den selektive folie der er klæbet på absorberen på solfanger nr. 26.

VURDERING AF SOLFANGER

Solfanger nr. 25 og 26

Bemarkninger til specielle forhold

Der blev konstateret kraftig udgasning på glassets inderside fra PUR-isoleringen, der er udstøbt i kassen. Udgasningsprodukterne har endvidere vist sig agressive (atsning) over for den anvendte selektive folie $i$ solfanger nr. 26. (se afsnit 3.2).

Kantisoleringen (PUR-skum) er ikke beskyttet mod solens lys. Den revnede adskillige steder. Bagsiden af solfangeren bulede kraftigt ud og blev misfarvet.

Den anvendte PUR-skum er således uegnet til de høje temperaturer, der opstår. Det har vist sig, at man har anvendt brændhæmmende PUR-skum der er mindre temperaturstabil end almindelig PUR-skum, som kan klare op til $110^{\circ} \mathrm{C}$ eller mere i kortere tid. I forbindelse med de udendors prøver er der anvendt en tilsvarende solfanger med en anden skumtype, som ikke er brændhæmmende. Det er dog sådan, at der i forbindelse med brug af selektive belægninger nås så høje stagnationstemperaturer som $180^{\circ} \mathrm{C}$, så denne skumtype også må melde pas. Den bliver ikke helt så beskadiget som den gamle type, men giver kraftig udgasning.

Der er løbende blevet konstateret stor kondensdannelse i solfangeren, som er placeret udendørs. En del af grunden hertil er nok en uheldig placering af to ventilationshuller i den nedadvendte side af solfangerkassen. Disse føres igennem en spalte beregnet til placering af inddækningsskinne. Der stå meget tit vand i denne spalte, således at ventilationsluften, som kommer ind i solfangeren, er meget fugtig.

Det er blevet konstateret, at udgasningsprodukterne pá dæklaget oplø es i den megen kondens i fugtige perioder. Nogle måneder senere er der blevet observeret ringformede misfarvninger på absorberfolien, hvor der senere opstår korro ionshuller (mest nær kantisoleringen). (Afsnit 3.2).

Inddækningsspalten er $i$ ovrigt for smal, så der ikke er plads nok til fugemasse.

Sammenfattende vurdering

Solfangexen virker sådan set gennemtankt og godt konstrueret. Problemet med uagasning og nedbrydning af pur-skummet er dog så alvorligt, at der bør vælges en konstruktion med en anden type sideisolering og varmebestandigt materiale nar absorberens bagside. Inddækningskanten bor gores bredere og undlades i det nedadvendte sideprofil.
RAPPORTERINGGJOURNAL -- Indendørs prøvning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER ..... 29
Ydre dimensioner ( $L \times B \times H$ ) $\ldots \ldots$ : $2,04 \times 1,04 \times 0,075 \mathrm{~m}$
Transparant areal ..... $1.92 \mathrm{~m}^{2}$
Vægt, tom ..... $60 \mathrm{~kg}-31 \mathrm{~kg} / \mathrm{m}^{2}$
Væskeindhold $2.7 \mathrm{l}-1.4 \mathrm{l} / \mathrm{m}^{2}$
Solfangerkasse f-formet galvaniseret stalprofil samlet ved svejsning. PUR-skum udstøbt i rammen. Afstandskrans af træ mellem absorber og dæklag
Bagside PUR-skum
Bagsideisolering 20-50 mm PuR-skum
Kantisolering 25 mm træ og PUR-skum
Absorber Stal, plade-rør
Forbindelsesteknik Punktsvejsning/klemning
Absorberoverflade Sort maling
Max. tryk/anb.højeste driftstryk. ..... $1000 \mathrm{kPa} / 200 \mathrm{kPa}$
Dæklag 1 lag 4 mm glas
Afstand inderste dæklag/absorber Ca. 16 mm
Kasse/dæklag samling Glasset understøttet af afstands. krans, fastholdt af rammens $\phi$ ver. ste del tætnet med fugeband
Placering af tilslutninger/tatning: 2 stk. bagudvendt diagonalt
Anbefalet inddakning/placering ... Indbygget og uden på tag
Ventilationsmulighed8 mm ventilationskanal bagabsorberen
Effektivitetskurve, linearisere ..... $: 0,63-7,3$

# utæthedstai <br> $<1 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{~Pa}$ 

## TEMPERATURPR $\emptyset V N I N G$

Opvarmningstid (90\% af stagnationstemperatur) ...
Absorbertemperatur minus lufttemp., midt ........
Dæklagstemperatur minus lufttemp., miat
Dæklagstemperatur minus lufttemp., v. glasliste..
Temperatur på glasliste minus lufttemp
Lufttemp. i simulator
Visuel inspektion efter temperaturprøvning:
Kraftig belægning på indersiden af dæklag

## REGNTETHED

Ingen vandindtrængning ved påsprøjtning.


Fig. S29.1
Snit i solfanger.


Fig. S29.3 Udgasningsprodukter har gjort glasset næsten uigennemsigtigt.

## VURDERING AF SOLFANGEREN

Solfanger nr. 29

## Bemærkninger til specielle Eorhold

Der blev konstateret kraftig udgasning stammende fra purisoleringen, olierester $i$ solfangeren og udgasninger fra
 belægningerne på glasset ualmindeligt kraftige, absorberen kan darligt nok ses. Der blev observeret kondens i solfangeren, som har været placeret udendors i 1 å ved inspektion $i$ torvejr og sol. Et stort fugtindhold i trakassen kan måske være årsagen.

Ved en indendors afprøvning var solfangeren regntat, efter et år udendors er den ret utæt. Det kan måske skyldes, at PUR-isoleringen er skrumpet og afstandskransen har sænket sig således, at der ikke er nogen kompression på fugebåndet. Der er også en uheldig glaslistekant forneden i solfangereng hvor der opsamles vand. En silicone topforsejling her ville sikkert hjælpe. Under almindelig drift var solfangeren ikke blevet nedbrudt sả hurtigt.

## Sammenfattende vurdering

Udgasningsproblemet ex alvorligt. Det er meget kritisk, hvis solfangerens tæthed overfor regn er baseret på " at PUR-skummet holder sin form.

Det er vigtigt at være opmærksom på, at regntathed er ekstra vigtigt, nar solfangeren, som her, indeholder materialer, som kan suge vand. Herved kan skabes et konstant fugtigt kiima i solfangeren, som bl.a. afslores ved kondensdannelse selv i varme perioder. Glaslistekanten forneden bor tætnes med en silicone topforsejling.

Solfangeren er iøvrigt ikke særlig effektiv. Mest pga. absorberens $\mathrm{F}^{\prime}$ vardi, der er lav som følge af dålig forbindelse mellem rør og plade.
RAPPORTERINGSJOURNAL - Indendørs prøVning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER ..... 30
Ydre dimensioner ( $L$ x $B \times H$ ) $2,09 \times 1,08 \times 0,15 \mathrm{~m}$
Transparant areal ..... $1,82 \mathrm{~m}^{2}$
Vægt, tom $48 \mathrm{~kg}-23 \mathrm{~kg} / \mathrm{m}^{2}$
Vaskeindhold $2,0 \mathrm{I}-1,1 \mathrm{I} / \mathrm{m}^{2}$
Solfangerkasse
Formstøbt glasfiberarmexet poly- ester
Bagside
Kasse og bagside i et
Bagsiāeisolering
50 mm mineraluld
Kantisolering25-50 mm mineraluld
Absorber
Stal, kanalpladeForbindelsesteknikRullesvejsning
Absorberoverflade
Sort maling
Max. tryk/anb.højeste driftstryk ..... $1500 \mathrm{kPa} / 250 \mathrm{kPa}$
Dæklag1 lag 4 mm acryl. 3-delt kuppei-Afstand inderste daklag/absorber . formet nedragende siderAss and inderste dæklag/absorber : $40-90 \mathrm{~mm}$Kasse/dæklag samlingTætningsliste mellem kuppel ogkasse. Fastgjort med skruer ogfjedrende underlagsskiver
Placering af tilslutninger/tætning: 4 stk. studse gennem korte sider/gummiklods
Anbefalet inddækning/placering Uden på tag
VentilationsmulighedIngen ventilationshulier
Effektivitetskurve, lineariseret .: .82

LUFTTETEEDSPROVNING


## TEMPERATURPRØVNING



REGNTKTHED

Ingen vandindtrængning ved vandpåsprøjtning.


Fig. S30.1
Snit i solfanger.


Fig. S30. 2
Dæklaget blev
deformeret under
temperaturprøvningen.


Fig. S30. 3
Hjørne af
solfangeren.

VURDERING AF SOLFANGEREN

Solfanger nr. 30

Bemarkninger til specielle forhold

Under stagnationsproven blev den midterste af de tre kupler pá acryldæklaget kraftigt deformeret, det rettede sig ikke ud ved afkoling. Temperaturen på daklaget nåede op på Co. En forværring af deformationen er ikke konstateret udendors.

Tilslsutningsstudsene er fort gennem nogle gummiklodser og losningen har vist sig tæt. Efter et ar udendors er der dog opstået revner overalt i gummiklodsens overflade, endvidere har der vist sig en misfarvning af acrylpladen de steder. hvor den berores af gummiet. Der er altsa anvendt en forkert gummitype.

Bortset fra nedbulingen ser acrylpladen efter et ár udendors stadig fin ud.

## Sammenfattende vurdering

So fangeren er en utraditionel og spændende konstruktion, der har gennemgảet provningen fint bortset fra dæklagets udbuling. Især losningen med at lade et acryl daklag gå udover solfangerkassens sider er god og giver stor sikkerhed for regntæthed. At udbuling af dæklaget kan undgås ved at udfore dæklaget kuppelformet viser f.eks. solfanger nr. 3 , her er der benyttet 4 udbulinger mod 3 for nærværende solfanger.
RAPPORTERINGSJOURNAL - Indendørs prøvning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER31
Ydre dimensioner (L x B x H) ......: $2,39 \times 0,59 \times 0,10$
Transparant areal ..... $\mathrm{m}^{2}$
Vægt, tom ..... $30 \mathrm{~kg}-24 \mathrm{~kg} / \mathrm{m}^{2}$
Væskeindhold ..... $2,21-1,81 / \mathrm{m}^{2}$
Solfangerkasse Profil af $0,5 \mathrm{~mm}$ plastbelagt stå
Bagside 3 mm Oliehærdet hård træfiberplad
Bagsiaeisolering 37 mm mineraluldKantisolering15 mm mineraluld
Absorber
Kobber/aluminium plade-rør
Forbindelsesteknik Valsning
Absorberoverflade Selektiv, anodiseret og farvet
Max. tryk/anb.højeste driftstryk. med nikkel
$400 \mathrm{kPa} / 120 \mathrm{kPa}$
Daklag 1 lag 4 mm glas
Afstand inderste dæklag/absorber ..... 54-57 mm
Kasse/dæklag samling Glasset anbragt i ramme af truderet alu-profil txtnet med fugebåd og silikone. Alu-profile skruet til stålrammen tætnet m.
Placering af tilslutninger/tætning: skumgummi Fordelerrør ført ud gennem siden/ gummibulg
Anbefalet inddakning/placering Indbygget og uden på tag
Ventilationsmulighed Ved rortilsiutninger. Kun tætnet med aluminium dæksel.
Effektivitetskurve, lineariseret.: 0,73-5,8( $\left.\mathrm{T}_{\mathrm{m}} \mathrm{T}_{1}\right) / \mathrm{E}$

```
PRQVININGSRESULTATER solfanger nr. 31
```

LUFTTETFEDSPRDVNING

Meget utæt

utathedstal<br>$>20 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{~Pa}$

```TEMPERATURPRØVNING
    Opvarmningstid (90% af stagnationstemperatur) ...
    Absorbertemperatur minus lufttemp., midt ........ 131 }\mp@subsup{}{}{\circ}\textrm{C
    Daklagstemperatux minus lufttemp., midat
    Dæklagstemperatur minus lufttemp., v. glasliste..
    Temperatur på glasliste minus lufttemp
```



```
Visuel inspektion efter temperaturprøvning:
    Intet at bemærke
```

REGNTRTHED

Ingen vandindtrængning ved påsprøjtning,


Fig。 S31. 1
Snit i solfanger.


Fig. S31.2
Hjørne af solfanger. Solfangerens rørtilslutning er placeret i siden og trukket ind sa elementerne kan placeres ret tæt.


Fig. 531.4
Foto af solfanger $31^{\prime \prime} s$ absorber efter placering udendørs i 1 år med et meget lav ventilationsgrad og stor kondens dannelse. Der ses tydeligt små hvide korrosions pletter.

VURDERING AF SOLFANGEREN

Solfanger nr. 31

Bemærkninger til specielle forhold

Glasdæklaget hviler på et butylbånd med en siliconetopforsejling. Solfangeren var regntat ved provningen.

Det vil være vanskeligt at opnå en helt regntæt inddækningg med den anvendte inddækningsflig. Der har været en vis fugtpåvirkning inde $i$ solfangeren opstillet udendors pga. en del kondensdannelse. Sandsynligvis som følge heraf er der blevet konstateret små korrosionspletter på absorberpladen. Grunden til den megen kondensdannelse er uden tvivl, at denne solfanger er blevet ekstra tætnet med tape ved rorgennemforingerne med heraf følgende forringet ventilation.

Sammenfattende vurdering

Denne solfanger er veludfort og gennemtankt konstrueret. Sporet i sideprofilet, som skal bruges ved indarkning, bor dog vare bredere.

```
\begin{tabular}{rl} 
RAPPORTERINGSJOURNAL - & Indendørs prøvning af solfangeres \\
& driftssikkerhed og holdbarhed
\end{tabular}
```

SOLFANGER ..... 34

Transparant areal ..... $1,70 \mathrm{~m}^{2}$
Vægt, tom ..... $57 \mathrm{~kg}-33 \mathrm{~kg} / \mathrm{m}^{2}$
Vaskeindhold ..... $5,6-3,31 / \mathrm{m}^{2}$

```Solfangerkasse.................. U-profil af 2 mm sortlakeretstå, svejst.
```



```Placering af tilslutninger/tatning: 4 bagudvendte studse
```

Anbefalet inddækning/placering ...: Indbygget og uden på tag
Ventilationsmulighed Sprække mellem absorber og ramme
Effektivitetskurve, lineariseret ..... $.0,84-9,2$
$\left(T_{m}-T_{1}\right) / E$

## Meget utæt

```
utæthedstal
>20 m}\mp@subsup{\textrm{m}}{}{3}/\textrm{h pr. 100 Pa
```


## TEMPERATURPRØVNING

Opvarmningstid (90\% af stagnationstemperatur) ...
Absorbertemperatur minus lufttemp., midt ........ $94^{\circ} \mathrm{C}$
Daklagstemperatur minus lufttemp. . midat
Dæklagstemperatur minus lufttemp., v. glasliste..
Temperatur på glasliste minus lufttemp............
Lufttemp. i simulator ........................................ $34^{\circ} \mathrm{C}$
Visuel inspektion efter temperaturprøvning:
Kraftig belægning på indersiden af dæklag.
REGNTRTHED
Ingen vandindtrængning。

## FIGURER Solfanger nr. 34



Fig. S34. 1
Snit der viser kasse/dæklag samlingen.


Fig. S34.2
Kraftig udgasning på glasset efter et år udendørs i stagnation.


Fig. S34.3 Solfanger 34 placeret udendørs med ny glas/hane samling. Fuge-båndet har arbejdet sig løs.


Fig. S34.4 Eksempel på korrosion i solfangeren efter flere års drift i et system. Det er tydeligvis regntætheden som er gået sig en tur.

VURDERING AF SOLFANGEREN

Solfanger nr. 34

Bemarkninger til specielle forhold

Der blev konstateret kraftig belagning indvendigt på glasset. Det formodes, at udgasningerne stammer fra stalabsorberen. der ikke er blevet affedtet. Udendors er konstateret en mindre udgasning, som sandsynligvis stammer fra mineraluldsbindermateriale. Solfangeren var regntæt ved provningen. men der kan med tiden opstả problemer med komprimeringen af dæklagssamlingen, da glaslisten er meget tynd. Ved hjornerne er der tatnet med en klump silicone, som med tiden kan b ive mindre elastisk og slippe vedhæftningen. Gummibåndene på den udendors opstillede solfanger er da også gået los flere steder i lobet af det 1 . å. Det skyldes sandsynligvis den svage glasliste. Silicone-topforsejlingen er også slået fra nogle steder.

En aldre udgave af denne solfanger er nærmere undersogt og beskrevet $i$ forbindelse med et projekt på Teknologisk Institut (ref. solfanger $C$ ), hvor den viste gode egenskaber mht. langtidsholdbarhed. I modsætning til den her afprøvede var der ikke gummibånd under glaslisten men kun silicone Der bor endelig nævnes erfaringer fra et solfangeranlæg, der er blevet inspiceret for nylig, hvor 8 ud af 10 solfangere af denne type (men købt i 1979) var starkt korroderede på absorberoverfladen. Grunden til dette er nok en kombination af en dårlig udført malebehandling og fugtpåvirkning. Endelig er en bagsideisolering på kun 30 mm utilstrakkelig, og bagudvendte studse kan give problemer med luft i solfangerkredsen.

## Sammenfattende vurdering

Den provede solfanger var regntæt ved den indendors prove, men kasse/dæklag samlingen er ikke holdbar i længden sandsynligvis pga. den svage glasliste, der bruges.

Hvis absorberens malebehandling er den samme, som blev brugt i 1979, bor den helt sikkert forbedres.

Solfangerens varmetab er, som folge af en relativ begrænset bagsideisolering og måske kuldebroer mellem absorber og ramme, uacceptabel stor.


```
utæthedstal
    0 m
```


## TEMPERATURPRØVNING



REGNTETHED
Helt tæt.

VURDERING AF SOLFANGEREN

Solfanger nr. 35

Bemærkninger til specielle forhold

På trods af at såvel bagsideisoleringen som kantisoleringen bestå af PUR-skum, er der ikke konstateret vosentlig udgasning med denne solfanger. Ialt fald har det ikke sat sig som en uigennemsigtig hinde på glasset. Dette skyldes nok mest, at solfangeren er helt tat og ikke indeholder stovende materialer som mineraluld, samtidig med at Eugtbelastningen er av. Udgasningen vil da forblive gennemsigtig. Elementet har været placeret udendors et ar nu og er stadig tat og med god transmission.

En medvirkende årsag til den gode tatheder, at elementet er ret ille, saledes at fugerne bliver korte og de termiske bevægelser små.

Solfangeren er nærmere undersøgt og beskrevet i forbindelse med et projekt på Teknologisk Institut (ref. solfanger D). Her blev der dog konstateret kraftige belagninger pa glas stammende fra PUR-skummet. Kassen vax her ikke $100 \%$ regnvandstat.

## Sammenfattende vurdering

Solfangeren er gået igennem prøvningerne uden anmarkninger. Effektiviteten af solfangeren er dog ret lav som følge af varmemodstand mellem rørslynge og absorberplade.
RAPPORTERINGSJOURNAL - Indendørs prøvning af solfangeres driftssikkerhed og holdbarhed
SOLFANGER36
Ydre dimensioner ( $L \times B \times H$ ) $\ldots \ldots$ : $2,04 \times 1,04 \times 0,065 \mathrm{~m}$
Transparant areal ..... $1.94 \mathrm{~m}^{2}$
Vægt, tom ..... $72 \mathrm{~kg}-37 \mathrm{~kg} / \mathrm{m}^{2}$
Væskeindhold $4,61-2,41 / m^{2}$
SolfangerkasseU-profil bukket i $1,5 \mathrm{~mm}$ galva-niseret stal, svejsning. Vinkel-profil forneden. PUR-skum støbti rammen
Bagside
$0,5 \mathrm{~mm}$ galvaniseret stålplade
Bagsideisolering 40 mm PUR-skum
Kantisolering15 mm PUR-skum
Absorber Stal, kanalplade
Forbindelsesteknik Rullesvejsning
Absorberoverflade
Sort maling
Max. tryk/anb.højeste driftstryk. $150 \mathrm{kPa} / 150 \mathrm{kPa}$
Dæklag1 lag 4 mm glas
Afstand inderste dæklag/absorber ..... 15 mm
Kasse/dæklag samling
Glasliste af 1 mm galvaniseret og sortlakeret stal, fastgjort med studser. Tætnet med svampegummi på begge sider og silikone.
Placering af tilslutninger/tatning: ..... 4 stk. bagudvendte
Anbefalet inddækning/placering

$\qquad$ Uden på tagVentilationsmulighedIngen ventilationshuller
Effektivitetskurve, lineariseret. ..... $0,82-7,7\left(\mathrm{~T}_{\mathrm{m}}-\mathrm{T}_{1}\right) / \mathrm{E}$

LUFTTETEEDSPRDVINING

utæthedstal
$0,5 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{~Pa}$

## TEMPERATURPRØVNING

Opvarmningstic (90\% af stagnationstemperatur) ...
Absorbertemperatur minus lufttemp., midt
Dæklagstemperatux minus lufttemp.. miát .......... $105^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp., v. glasliste..
Temperatur på glasliste minus lufttemp.
Lufttemp. i simulator ........................................ $33^{\circ} \mathrm{C}$
Visuel inspektion efter temperaturprøvning:
En del belægning på indersiden af dæklag。

REGNTKTHED

Vandindtrængning ved påsprøjtning

## FIGURER Solfanger nr. 36



Fig. S36.1 Snit i solfanger.


Fig. S36. 2
Hjørne af solfanger.

VURDERING AF SOLFANGEREN

Solfanger nr. 36

Bemærkninger til specielle forhold

Der blev konstateret en del udgasning stammende fra PURskumisoleringen.

Der er en revne ved glaslisten ved den nedadvendte side af solfangeren, som vil opsamle vand. En silicone-topforsejling her ville lysne på dette forhold.

Solfangeren var ikke regntat ved regntathedsprovningen indendørs. Det skyldes enten utatte hjornesamlinger eller utilstrakkelig kompression ved kasse/daklag samlingen. Den benyttede samlingsmetode sætter en fast granse for komprime ringen, sa der ikke kan gøres noget, hvis den ret tynde glasliste giver sig. Solfangeren udendors har kondens pa dæklaget $i$ meget store dele af áret, hvilket tyder på en våd atmosfrre $i$ kassen, som den ret lave ventilationsgrad ikke har nogen stor indflydelse på.

Endelig skal det nævnes, at absorberen har bagudvendte studse, som dog ikke er et problem her, da der er separat udluftningsventil til absorberens samlerør.

## Sammenfattende vurdering

Solfangeren er ikke regntæt og har problemer med udgasning fra PUR-skum isoleringen. Der skal anvendes en bedre kasse/dæklag samling med en starkere glasliste og bedre hjornesamlinger.

## RAPPORTERINGSJOURNAL－Indendørs prøvning af solfangeres driftssikkerhed og holdbarhed

SOLFANGER ..... 37


Bagside ．：
Bagsideisolering 42 mm PUR－skum，præfab。Kantisolering35
Absorber Ribbe－r申r，ribber af alu－r申r，
Forbindelsesteknik $r \varnothing r$ af Cu Klemning
Absorberoverflade Sort maling
Max．tryk／anb．højeste driftstryk ..... $1200 / 600 \mathrm{kPa}$
Dæklag 1 lag 3 mm glas， 2 delt
Afstand inderste dæklag／absorber ： 5 mm （overside ribber） Kasse／dæklag samling Glasset hviler pà kassen fast－
holdtaf glaslister，skruet fast
Placering af tilslutninger／tatning： Gennem sider／gummitylle
Anbefalet inddækning／placering ．．．：Uden på tagVentilationsmulighedIngen huller
Effektivitetskurve，lineariseret． ..... $\left(T_{m}-T_{1}\right) / E$

# PRGVININGSRESULTETER solfanger nr. 37 

LUFTTETEEDSPRDVNING

Meget utæt

$$
\begin{aligned}
& \text { utæthedstal } \\
& >20 \mathrm{~m}^{3} / \mathrm{h} \mathrm{pr} .100 \mathrm{~Pa}
\end{aligned}
$$

TEMPERATURPRØVNING
Opvarmningstid (90\% af stagnationstemperatur) ... 120 min
Absorbertemperatur minus lufttemp. . midt ..... $91{ }^{\circ} \mathrm{C}$
Dæklagstemperatur minus lufttemp.g midt ..... $48-$
Dæklagstemperatur minus lufttemp. V. glasliste. ..... $45=$
Temperatur på glasliste minus lufttemp ..... 30 -
Lufttemp. i simulator ..... $35=$
Visuel inspektion efter temperaturprøvning:


Fig. S37.1 Hjørne af solfanger nr. 37


Fig. S37.2 Kondensdannelse indvendigt på glasset efter vandpåsprøjtning (haveslange) pà en varm solfanger.

## VURDERING AF SOLFANGEREN

Solfanger nr. 37

Bemærkminger til specielle forhold
Denne solfanger er opbygget med en absorber, hvor samlerør og stigerør af kobber og varmeribber af aluminium, er fastgjort pa tværs af stigerørene. En del korrosion i form af ir, især ved loddesamlingerne pa absorberen er observeret efter placering udendørs i $1 \frac{1}{2}$ år $i$ stagnation. Dette tyder på, at solfangeren ikke er helt regntæt. Dette var også resultatet af regntæthedsprøvningen. Det er sandsynligvis kasse/dæklagsamlingen, hvor der bruges et U-formet gummibånd, som opskæres halvt og knækkes i hjørnerne, som ikke holder tæt. Glaslisten, som skal sørge for komprieringen, virker heller ikke særlig stærk til dette formal. En god ventilering af solfanget er med til at reducere problemet med kondens. Alligevel ex der i nogle perioder meget kondens på solfangerens dæklag, men dette må nok til dels tilskrives regnutætheden af kassen.

Kurven for solfangereffektiviteten tyder på, at de mange lodrette absorberribber virker positivt for absorbtion af solvarmen, men at varmetabet fra det ret store absorberareal er tilsvarende større og større, end det ville være ved en plan absorber. Solfangerens dæklag er delvist fedtet af udgasningsprodukter, som ma forventes at stamme fra PUR-skum isoleringen.

## Sammenfattende vurdering af solfangeren

Solfangeren er ikke helt regntæt, et problem der kan løses ved brug af en stærkere glasliste og ved ikke at bruge et U-formet gummiband som glastætning, eller i hvert fald skære det helt op i hjørnerne, så enderne kan stødes sammen. Der bør vælges et andet isoleringsmateriale end PUR-skum af hensyn til udgasning på dæklaget.

## KAPITEL 5 SAMMENEATNING AF PRØVNTNGSRESULTATERNE

I det følgende opstilles forst en oversigt ovex resultaterne fra de indendors driftsikkerhedsprovninger på grundlag af provningsjournalerne $i$ kapitel 4 . Der foretages en gruppeopdeling af solfangerne i 3 holdbarheds grupper. Heretcer foretages en analyse ar resultaterne, hvor der ogsá sidelobende inddrages resultater fra I ars udendors placering i stagnationstilstande, og resultater fra holdbarhedsprovning af absorberoverflader pá Teknologisk Instituts afdeling for Overfladebehandling. Endew lig skal der gores forsøg pa at give en samlet oversigt over gode materialeanvendelser og konstruktionsdetaljer.

### 5.1 Samlet oversigt over hvordan solfangerne klarede provningerne

I tabel 5.1 er vist en samlet oversigt over de i journalerne omtalte problemex opdelt pa daklag, absorber, isolexing og mht til regntathed, kasse/daklag samling. roxgennemforing, hjorner og indakking.

Kun 2 solfangexe fik odelagt daklaget ved provningen. pà en knakkede glasset og for en anden kollapsede plastdaklaget.

For 9 af de 22 solfangere var der tydelige tegn på udgasninger pá indersiden af daklaget efter temperatura provningerne. De indendors provningex păviste ingen problemer Eor absorberkonstruktionerne, men for 12 solfangere er der observeret mere eller mindre begyndende tegn pá koxrosion efter 1 ás udendors placering pa stativer. Isar regnutathed og kraftig kondensdannelse er årsagen til den begyndende korxosion og udgasning fra polyurethanskum hax tydeligvis ogsa haft en skadelig virkning. Disse ting má siges at vare den holdbarhedsmassige konsekvens af driftsikkerhedsmassige problemex Som regnutathed samt daxlig ventilations- og dranmulighed og brug af ikke-temperaturstabile materialer. 8 solfangere var utatte over for regnpasprojtning ved provningen

PROBLEMOVERSIGT FOR SOLFANGERNE

|  | Dæklag | Absorber | Isole- <br> ring | Kasse/ dæklag samling | Rørgennemf $\varnothing$ ring, $\qquad$ | $\begin{array}{\|l\|} \text { Inddæk } \\ \text { ning } \end{array}$ | ```I han- del d.d.``` |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  | x |  |  |  |
| 2 |  |  |  | x |  |  |  |
| 3 |  |  |  |  |  |  |  |
| 5 |  |  |  | x | x |  |  |
| 9 | (x) | x |  | x |  | x | ny |
| 10 |  |  |  |  |  | x |  |
| 11 | (x) |  | x | x |  |  |  |
| 12 | (x) | x |  | $x$ | $x$ |  | ny |
| 13 |  | x |  | x | x |  | x |
| 16 |  | x |  |  | x | x | ny |
| 19 | x |  |  | x | x |  |  |
| 21 |  | x |  |  |  |  |  |
| 25 | (x) |  | x |  |  | x |  |
| 26 | (x) | x | x |  |  | x | x |
| 29 | (x) | x | x | x |  |  | ny |
| 30 | * | x |  |  | x |  |  |
| 31 |  | x |  |  |  | x |  |
| 34 | (x) | x |  | x | $x$ |  |  |
| 35 |  |  | x |  |  |  |  |
| 36 | (x) |  | x | x |  |  |  |
| 37 | (x) | x |  | x |  |  |  |
| 41 |  | x |  |  | x | x | ny |

Tabel 5.1
Kommentarer i solfangerjournalerne angaonde problemer for de enkelte solfangerdele. Der henvises her bade til erfaringer fra indendørs prøvning og udendørs opstilling i 1 ars stagnationstilstande.
(x) for dæklag står for udgasning på daklaget.
indendørs, mens næsten alle solfangere har kondensdannelse i storre eller mindre grad i vinterperioden.

## 5.2

placering af solfangerne i holdbarhedsgrupper
Ud fra det foregãende er solfangerne forsogt opdelt i 3 grupper. I gruppe I placeres de solfangere, som kom igennem de indendors driftsikkerheds- og holdbarhedsprovninger uden anmarkninger. I gruppe 2 placeres de solfangere, som har faet anmarkninger, der dog kan klares relativt nemt uden gennemgribende andring af solfangerkonstruktionen. I gruppe 3 placeres resten af solfangerne, d.v.s. alle solfangere, som má siges at have alvorlige problemer, dex ikke kan loses på en nem made, men mả krave gennemgribende andringer af materialer og konstruktion. Ved denne vurdering er absorberens korrosionsforhold ikke medtaget, fordi disse ikke er undersogt for alle solfangere, og fordi det ikke uden videre kan fastsattes hvilken korrosionsklasse, det er nodvendigt at leve op til.

Resultatet af gruppeopdelingen fremgår af tabel 5.2. 8 solfangere kommer i gruppe 1, 5 i gruppe 2 og 8 i gruppe 3. Dette resultat siger ikke noget direkte om holdbarheden af solfangere, der eksisterer på markedet i dag, da kun 6 ud af de 21 undersøgte solfangerfabrikanter eksisterer $i$ dag og 4 af disse 6 fabrikanter $i$ dag swlger en helt ny solfangerkonstruktion. (Tabel 5.1).

De importerede solfangere ligger meget på linie med de danske i falge gruppeopdelingen, men udviser alligevel et par virkelig gode eksempler på gennemtankte konstruktioner.

Som afslutning kan der med rimelighed konkluderes det positive, at de indendørs driftsikkerhedsprøvninger har varet selektive (udvælgende) og har desuden vist, at det kan lade sig gore at konstruere solfangere, der kan klare provningerne uden anmækninger, og dermed har opnået en vigtig basis for en god langtidsholdbarhed.

Holdbarhedsgrupper

| Solfanger | Holdbarhedsgruppe | Dansk produceret |
| :---: | :---: | :---: |
| 1 | 1 |  |
| 2 | 1 | X |
| 3 | 1 |  |
| 5 | 3 | X |
| 9 | 3 | x |
| 10 | 1 | x |
| 11 | 2 | $x$ |
| 12 | 3 | x |
| 13 | 2 |  |
| 16 | 1 | $x$ |
| 19 | 3 | x |
| 21 | 1 |  |
| 25 | 3 | x |
| 26 | 3 | x |
| 29 | 3 | X |
| 30 | 1 | x |
| 31 | 1 | x |
| 34 | 2 | 8 |
| 35 | 2 | X |
| 36 | 2 |  |
| 37 | 3 |  |
| 41 | 1 | X |

Tabel 5.2
Solfangerne opdeles i 3 holdbarhedsgrupper:
1: Solfangere uden driftssikkerhedsproblemer
2: 'Solfangere med problemer som relativt nemt kan udbedres uden gennemgribende ændringer i konstruktionen
3: Solfangere med alvorlige driftssikkerhedsproblemer, som vil medføre kort levetid

Gruppe 1: 9 solfangere

- 2: 5 -
- $3: 8$ -


### 5.3 En analyse af forskellige forhold for solfangerne på grundlag af provningsresultaterne

## Stagnationstemperaturer

I tabel 5.3 er 1 istet stagnationstemperaturer for de provede solfangere malt i temperaturprovnings-solsimulatoren, og stagnationstemperaturer målt på sydvendte $30^{\circ}$ haldende stativer udendors på provningsarealet den 22-7-1982 kl. 13. Indstralingen er her $912 \mathrm{~W} / \mathrm{m}^{2}$ og udetemperaturen $24^{\circ} \mathrm{C}$. Der blev malt stagnationstemperaturer udendors, som er $20-30^{\circ} \mathrm{C}$ lavere end de indendors må te stagnationstemperaturer. På 10 af de 22 indendors provede solfangere, er der måt udendors stagnationstemperaturer, kontinuert fra sommeren 1981. For 5 af disse måles der sidelobende på en solfanger, som ikke har varet udsat for stagnationstilstande for. Herved er det målet at fà sammenlignet indendors og udendors påvirkninger.

Der er også i tabel 5.3 vist stagnationstemperaturer for 4 andre solfangere, som der måles stagnationstemperatur pà udendors. Der er her tale om varianter af 26 og 31 og desuden en pa stedet bygget tagintegreret solfanger. som pa grund af en god bagsideisolering og reducerede absorbertab, opnår den hojeste af de måle stagnationstemperaturer. $181^{\circ} \mathrm{C}$ 。

## Udgasning

I tabel 5.4 er vist en oversigt over hvilke solfangere, der udviste udgasning pá indersiden af daklaget ved temperaturprovningen. Til sammenligning fremgår en vurdering af de samme solfangere placeret $1 \frac{1}{2}$ år i udendors stagnation. Det ses, at isar isolering med polyurethanskum giver meget udgasning i begge tilfalde. En enkelt solfanger havde ogsa udgasning stammende fra olierestex. Desuden er der $i$ mange tilfalde udgasning Era mineraluldsisolering (binder materiale). Denne viser sig forst efter nogen tid.

Efter 1 års stagnation udviste næsten alle solfangere

Stagnationstemperaturer og effektivitet

| NR. | STAGNATIONSTEMPERATUR |  | SOLFANGER EFFEKTIVITET |  |  |
| :---: | :---: | :---: | :---: | :---: | :---: |
|  | I SOLSIMULATOR <br> $T_{a s}{ }^{\circ} \mathrm{C}$ | UDEND $\emptyset R S$ <br> $T_{a u} \quad{ }^{\circ} \mathrm{C}$ | $\begin{gathered} \text { VED } \Delta T / I{ }^{2}= \\ { }^{\circ} \mathrm{C} \mathrm{~m}^{2} \\ 0.05 \frac{1}{2} \\ \hline \end{gathered}$ | $\left\{\begin{array}{l} \mathrm{T}_{\mathrm{as}} \\ \mathrm{~T} \text { au } \\ \left.\mathrm{C}^{\circ} \mathrm{C}\right) \end{array}\right.$ | $\triangle \mathrm{T}_{\mathrm{K}}$ |
| 1 | 152 | 121 | 0.29 | 31 |  |
| 2 | 138 | 117 | 0.45 | 21 |  |
| 3 | 172 |  | 0.45 |  | 26 |
| 5 | 135 |  | 0.37 |  | 10 |
| 9 | 117 |  | 0.18 |  | 6 |
| 10 | 137 | 120 | 0.37 | 17 | 18 |
| 11 | 136 |  | 0.46 |  | 20 |
| 12 | 173 |  | 0.41 |  | 18 |
| 13 | 158 | 134 | 0.46 | 24 | 2 |
| 16 | . |  | 0.43 |  |  |
| 19 | 158 |  | 0.44 |  |  |
| 21 | 150 | 130 | 0.46 |  | 3 |
| 25 | 138 |  | 0.41 |  | 17 |
| 26 | 192 | 167 | 0.55 | 25 | 9 |
| 29 | 126 | 117 | 0.27 | 9 | 19 |
| 30 | 149 |  | 0.45 |  | 46 |
| 31 | 166 | 147 | 0.44 | 19 | 9 |
| 32 |  | 134 | - |  |  |
| 33 |  | 114 | - |  |  |
| 34 | 128 | 112 | 0.38 | 16 | 18 |
| 35 | 142 |  | 0.34 |  | 23 |
| 36 | 138 | 119 | 0.44 | 19 | 20 |
| 37 |  |  | 0.29 |  |  |
| 41 |  | 171 |  |  |  |
| PSB |  | 181 |  |  |  |

Tabel 5.3.
Stagnationstemperaturer målt i solsimulator og udendørs. Den udendørs maling er fra d. $22 / 7-82 \mathrm{kl} .13 \mathrm{med}$ en indstråling på $912 \mathrm{~W} / \mathrm{m}^{2}$ og en udetemperatur på $24^{\circ} \mathrm{C}$, solfangerne har $30^{\circ}$ hældning bortset fra 41 og PSB, som har $45^{\circ}$ hældning fra vandret. Der er angivet solfangereffektivitet ved $\Delta T / I=0.05 \frac{{ }^{\circ} \mathrm{Cm}^{2}}{\mathrm{~W}}$. F.eks. Svarende til en solfanger udsat for en indstråling på $600 \mathrm{~W} / \mathrm{m}^{2}$ og med en temperaturforskel mellem indløb til solfanger og udetemperatur pa $30^{\circ} \mathrm{C}$. For en række solfangere er endvidere angivet forskellen i stagnationstemperatur i solsimulator og ved udendørs placering (ca. $10-30^{\circ} \mathrm{C}$ ), og desuden temperaturforskellen mellem glasliste og dæklagskant, $\Delta T_{K}$ som udtryk for afkøling ved solfangerkanten.
udgasningsprodukter på dæklaget i større eller mindre grad.

Det er ikke muligt ud fra provningsresultaterne at finde nogen sammenhæng mellem ventilationsgraden og udgasningsproblemet.

## Ventilation

I tabel 5.5 er de provede solfangeres ventilationsgrad vist. De er angivet med yderpunkterne meget utæt og lufttæt. Her imellem er 3 grupper med henholdsvis $10-20$. l-10 og under $1 \mathrm{~m}^{3} / \mathrm{h}$ pr. 100 Pa . i utæthedsgrad. Betydningen af ventilation af solfangerne mht. kondensdannelse omtales nærmere $i$ afsnit 5.4. Den forelobige konklusion er, at der bor anbefales ret hoje ventiltionsgrader svarende til gruppe 1 med en utathed på $20 \mathrm{~m}^{3} / \mathrm{h}$ eller mere pr. 100 Pa .

## Regnutathed

I tabel 5.6 er vist en oversigt over hvilke solfangere, der var utætte ved den indendors regntathedsprove, samt årsagen til utatheden.

Der er også angivet, hvordan solfangerne klarede det andet trin i regntæthedsprovningen med undertryk samtidigt. Det ses, at en mindre regnutathed skarpes vasentligt herved, og at solfangere, der ikke var regnutatte ved vandpásprøjtning alene, i nogle tilfælde suger lidt vand ind. Dette forhold er væsentligt, fordi det gør identifikationen af vandindtrangen lettere. Tabellen viser endvidere resultatet af en inspektion af de udendors opstillede solfangere foretaget efter at disse en dag med kraftigt solindfald blev påsprojtet med koldt vand. Trænger der vand ind vil en del af det straks fordampe for igen at kondensere på dæklaget, der jo køles. En utæthed viser sig da ved en kraftig kondensdannelse, der opstår på sekunder. Det fremgår, at en del af de solfangere, der var under mistanke for at vare utætte eller våde ved denne enkle prøve, straks viste kondensdannelse.

|  | Udgasning observeret <br> ved temperatur <br> prøvning i. <br> solsimulator. | ```Udgasning observeret ved inspektion udendørs efter 1 ars stagnation.``` | Kommentar |
| :---: | :---: | :---: | :---: |
| 1 |  | lidt |  |
| 2 |  | lidt |  |
| 3 |  | lidt | mineraluld + <br> FUR-skum |
| 5 |  | noget |  |
| 9 | lidt | meget |  |
| 10 |  | lidt |  |
| 11 | meget | meget | PUR-skum |
| 12 | meget | meget | olie |
| 13 |  | lidt |  |
| 16 |  | - |  |
| 19 |  | lidt |  |
| 21 |  | meget |  |
| 26 | meget | meget | PUR-skum |
| 29 | meget | meget | PUR-skum <br> og træ |
| 30 |  | noget |  |
| 31 | - | lidt |  |
| 34 | lidt | noget |  |
| 35 |  | lidt |  |
| 36 | meget | meget | PUR-skum |
| 37 | lidt | meget |  |
| 41 |  | lidt |  |

Tabel 5.4
Sammenligning mellem udgasning observeret ved indendørs temperaturprøvning og udgasning observeret for de samme solfangere efter placering udend $\phi$ s $i=1$ å.


Ventilationen for de prøvede solfangere er angivet i utæthed i $\mathrm{m}^{3} / \mathrm{h} p r .100 \mathrm{~Pa}$. Solfangerne er opdelt i 5 grupper med varierende ventilationsgrad. Der ses at være stor variation. (x) star for placering, hvis ventilationshuller eller utatheder

|  | utat ved indendørs regntest | årsag <br> til <br> utrothed | $\begin{aligned} & \text { regnutat } \\ & \text { ved } \\ & \text { under tryl } \end{aligned}$ | kondens ved kold pasorøjtn udendors | kondens ved inspektion 10/2-82 | korrosion på absorber | utectheds- grad |
| :---: | :---: | :---: | :---: | :---: | :---: | :---: | :---: |
| 1 |  |  |  |  | X | - | 5 |
| 2 |  |  | lidt |  |  |  | $5(2)$ |
| 3 |  |  | lidt | lidt | X |  | 4 |
| 5 | meget | $r \phi r g$ 。 | meget | meget | X |  | 5 |
| 9 | meget | hjorne, rorg. | meget | noget: | X | x | 2 |
| 10 |  |  |  |  | xx |  | 5 |
| 11 |  |  | lidt |  | x |  | 5 |
| 12 | meget | hjørne, rørg. | meget | lidt |  |  | 5 |
| 13 | meget | hjørne, rørg. | meget |  | X | X | 5 |
| 16 | lidt | $r ø r g$. | meget | - | - | - | 3 |
| 19 |  |  |  | lidt |  |  | 2 |
| 21 |  |  | Iidt | lidt |  | x | 5 |
| 24 |  |  |  |  | X |  |  |
| 25 |  |  | lidt |  | x |  | 2 |
| 26 |  |  | lidt |  | X | xx | 3 |
| 29 |  |  | lidt | en del |  |  | 2 |
| 30 |  |  | lidt | lidt | x |  | 3 |
| 31 |  |  | Lidt |  | xx | x | 5 (1) |
| 33 |  |  |  |  | XX |  |  |
| 34 |  |  |  |  | - | (x) | 5 |
| 35 |  |  |  |  |  |  | 1 |
| 36 |  |  |  | noget meget | $\begin{aligned} & \mathrm{xx} \\ & \mathrm{x} \end{aligned}$ |  | 5 |
| 37 41 | lidt | hjørner rørg. | meget meget | meget | $\begin{aligned} & \mathrm{x} \\ & \mathrm{x} \end{aligned}$ | $\begin{gathered} x \\ (x) \end{gathered}$ | 3 |

Tabel 5.6
Regnutathed for solfangerne er vist ved henholdsvis den almindelige regntathedsprøvning og regntathedsprøvming med kombineret undertryk $i$ solfangeren. Der er ogsa vist kondens, korrosionsforhold samt ventilationsgrad for solfangerne.

Det er også angivet i hvilke solfangere, der er blevet observeret kondens ved inspektion i foråret 1982. og ventilationsgraden for solfangerne er angivet.

Endelig er det vist for hvilke solfangere, der efter undenddørs opsatning i 1 år kunne observeres begyndende korrosion på absorberen. Det drejede sig om ialt 7 solfangere varierende fra en enkelt korrosionsplet til et enkelt tilfalde af fremskreden korrosion.

## Absorberholdbarhed

I tabel 5.7 er vist en oversigt over resultater fra holdbarhedsprovningen af overfladebehandlede absorbermaterialer foretaget pa Teknologisk Instituts afdeling for Overfladebehandling i midten af 1982. 5 af de her viste 8 kombinationer af materialer og overflader er fra samme solfangerabsorbere, som undersøges i nærværende rapport. Det er ud fra resultacerne forsøgt at inddele absorberne $i$ holdbarhedsgrupper fra 1 til 4, som dakker fra "under middel" til "god".

Hvis absorberen skal kunne klare mere end svarende til korcosionsklasse 1 , skal den helst op i holdbarhedsgruppe 3. svarende til "tilfredsstillende". Det viste sig ved provningerne at vare svart for de undersogte selektive overflader at klare mere end holdbarhedsgruppe $2^{\text {in middel }}$. Erfaring fra brug i praksis viser dog eksempler på, at gruppe 2 placerede selektive absorbere efter flere àrs placering i gode solfangerkasser udendors, ikke viser tegn på begyndende korrosion.

Samtidigt findes der erfaringer i udlandet mht provning af selektive overflader, som viser eksempler pa meget fin holdbarhed, især nar der er tale om brug af sort chrom. Da selektive overflader efterhånden anerkendes at være alfa og omega for at opnå en god solfangereffektivitet, må det anbefales, at der foretages tilbundsgående undersøgelser på området.

Korrosionstest

| $n \mathrm{r}$. | absorber type | absorber <br> materiale | absorber overflade | kommetar fra 1.års stagnation | $\begin{aligned} & \text { Grup- } \\ & \text { ge } \end{aligned}$ |
| :---: | :---: | :---: | :---: | :---: | :---: |
| 3 | alm.sort. | stål, zink fosfatering | mal.ing | ser pæn ud udendørs | 1-2 |
| 9 | alm.sort. | aluminium | alkydemalje | meget lille lagtykkelse, korrosion set ud | 1 |
| 16 | alm.sort. | aluminium | alkydemalje | - | 4 |
| 26 | selektiv | aluminium | maxorb-folie | korrosion <br> set ude | 2 |
| 31 | selektiv | aluminium | anodiseret <br> aluminium | enkelte korrosions pletter | 2 |
| A | selektiv | rustfri <br> stålplade | skysorb | - | 4 |
| B | selektiv | stal | selektiv <br> maling | . - | 3 |
| C | alm.sort. | aluminium | polyester | - | 4 |
| 4 |  |  |  |  |  |
|  | Gruppe 1 | nder middel |  |  |  |
|  | Gruppe 2 | middel |  |  |  |
|  | Gruppe 3 | tilfredsstil | ende |  |  |
|  | Gruppe 4 | god |  |  |  |

Tabel 5.7. Oversigt over hvordan 5 af solfangernes absorbere og 3 andre klarede de accelerede holdbarhedsprøvninger på Teknologisk Instituts afd. for overfladebehandling.

Gruppe 3 placerede kan leve op til en standard omkring korrom sionsklasse 2 , mens gruppe 2 placerede svarer til omkring korrosionsklasse 1. De fleste selektive behandinger har svært ved at klare sig bedre end gruppe 2. Det stiller høje krav til regntæthed og reducerede kondensproblemer. Pa den anden side synes erfaringer fra praksis at vise, at gruppe 2 placerede absorbere efter flere ars placering i. gode solfangerkasser ikke viser tegn pa begyndende korrosion.

## 5.4

Kondensdannelse $i$ de provede solfangere

Kondensforhold er som sagt en af de ting, der undersøges nøje, fordi kondens ofte kan vare et alvorligt prom blem. Inspektioner af solfangerne på forskellige tidspunkter af året og dagen har vist at alle solfangerne danner kondens i vinterhalvaret, mens kondensdannelsen om sommeren er relativt sjælden. Det er tydeligt, at de solfangere, der ikke er regntætte, er de der har størst problem med kondensdannelse, sảledes er der nogle få der endda er observeret kondens i på varme sommerdage med sol.

Der er foretaget mailing af temperatur og luftfugtighed inde i 2 solfangere over en uge $i$ efteråret 1982. Der var her tale om typisk "våde" solfangere med en del kondensproblemer. For disse solfangere betød opvarmningen af absorberen til maksimumtemperaturer på 90-1400C ikke nogen udtorring af luften i solfangerne, som begge havde en lav ventilationsgrad. Den relative fugtighed andrede sig typisk fra $90 \%$ om morgenen til $70 \%$ midt på dagen svarende til en forøgelse af vandindholdet i luften fra 9 gram vand/kg luft til 60 gram vand/kg luft. Dette svarer med et typisk luftvolumen til, at vandindholdet foroges fra 0.6 gram til 5 gram. Da et solfangerdæklag med kondens pá indersiden kan indeholde op til 100 gram vand i form af tunge dráber, behover den navnte udvikling i den relative luftfugtighed ikke nodvendigvis at vare udtryk for at solfangeren er vå i isoleringen, så fugten kommer derfra. Det kan også være udtryk for en for ringe ventilering af solfangeren. I det næunte tilfalde sker udviklingen over 4 timer, således at der skulle kræves et luftskifte på 5 gange pr. time til at fjerne maksimum kondens på glasset, nár det antages, at ændringen $i$ vandindholdet er på 50 gram vand pr. kg luft svarende til 5 gram vand for l luftskifte.

En metode som har varet meget brugt som forsog pa at reducere kondensproblemet i solfangere, har været at bore to 8 mm huller $i$ bundsiden af solfangeren for
herved at Eoroge ventilationen. Der vil i forbindelse med denne losning ske folgende, som vist i figur 5.l. Solfangeren med kondensdannelse på glasset om morgenen varmes op i lobet af formiddagen og udeluft med et ringe vandindhold suges ind $i$ bunden. bl. a. som folge af en skorstenserfeks i solfangeren. Hvis der ex luftutatheder i toppen af solfangeren f.eks. ud gennem bagsideisoleringen vil skorstensvirkningen foroge ventilationen og presse luft ud her. Den ude fra kommende luft varmes Forst op langs absorberen og Ealder siden ned langs glasset, hvor den optager noget af kondensen i sig. Vandindholdet stiger herved i den stedse varmere luft. mens den relative luftfugtighed stort set bibeholdes.

Huis solfangeren har fugt i isoleringsmaterialet, vil opvarminingen hjolpe med til at fordampe denne. Solfangeren indeholder derfor op af Eormiddagen en varm luft med et stort vandindhold, som helst skal ventileres vak.

Hyis solfangeren har luftutatheder i toppen gennem isoleringsmaterialet, kan det med de navnte forudsatninger vare meget uheldigt. Den varme fugtige luft vil nemig herved kondensere på sin vej ud af solfangexen og efterlade fugt i isoleringsmaterialet eller pa indersiden af solfangerkassen. Resultatet hexaf er en mere rugtig solfanger, som i maste kondensperiode skaber endnu mere kondens, dette vil i det lange lob have en klart nedbrydende effekt på absorberen.

Problemet kan E.eks. loses ved at sorge fox. at udluftningen af solfangeren sker gennem relativt store udlufte ningshuller, som er i metallisk kontakt med absorberen. Berved vil den varme fugtige luft ikke kondensere pásin vej ud, den vil forst blive afkolet i det ojeblik. den er ude og her vil den ofte oploses i udeluften.

Solfanger nr. 31 og nr. 33 er eksempler på solfangerdesign. hvor dette gor sig galdende. Disse to solfangere er opbygget med ens solfangerkasser, hvor absorberen er fastgjort med metallisk forbindelse til solfangerkassens


Fig. 5.1 Mange solfangere er forsynet med ventilationshuller $i$ bunden. Når absorberen varmer op $i$ solen, vil der skabes en skorstenseffekt i solfangeren, hvor opvarmet luft vil presses ud gennem utætheder i toppen af solfangerkassen. Dette vil hjælpe med til at kondens fordamper på indersiden af dæklaget og samtidigt bevirke, at den varme luft $i$ toppen af solfangeren har et for申get vandindhold. Herved kan afsættes uønsket kondensvand i solfangeren, hvis den varme luft afkøles på sin vej ud.
sider. I siderne er der foroven og forneden huller med 60 mim i diameter, hvor igennem rorgennemforing sker. Daklaget rager længere ud end solfangersiderne og beskyttex sammen med en lmstsiddende dakkapsel mod regninderangen. Solfanger 31 har i forbindelse med den udendoxs opstilling Eået dakket sidehullerne med tape, og konsekvensen har varet kraftig kondensdannelse i hele vintexhalvaret. Derimod er der kun sjeldent kondens at se i solfanger nr. 33. som ikke havde hullerne lukket med tape.

I solfanger 29, 34 og 36 er der om eftermiddagen pá dage med sol Elere gange blevet observeret kondensdannelse pá undersiden af dmelaget yed hjornerne: Dette kan forklares ud fra den samme mekanisme. I lobet af dagen efterlader indtrangende varm fugtig luft pas sin vej ud vade i bagsideisoleringen, ellex ved kassens indersider. Nảr solfangeren koles om eftermiddagen, befugtes inderangende tor luft hermed og kondenserer pà det nu relativt kolde daklag, hoor der er koldest og tat ved den indtrangende luft, f.eks. ved hjornerne.

Solfanger nr. 2 er et eksempel pà en anden solfangerkonstruktion, som klarer sig næsten uden kondensdannelse. Her sker udluftningen gennem bagsideisoleringen. og dex er som for solfanger nr. 31 og 33 tale om en hoj ventilationsgrad (tabel 5.5). I folge ovennavnte teori skulle der afsattes fugt i isoleringen, når varm luft med natlig kondens tranger ud. Dette sker sandsynligvis også men da der er tale om en helt regntat solfanger, som ex godt ventileret, ex der sikkert tale om ret begransede mangder. Denne relativt lille vandmængde oploses muligvis i tox indstrmmende luft i lobet af eftermiddagen, når solfangeren koles af. Endelig kan forskelle i trykforholdene ved solfangerens bagside p.g.a. vind vare skyld $\mathrm{i}_{\mathrm{n}}$ at der om formiddagen $i$ perioder presses kold tor luft ind i solfangeren. Fordi ventilationshullerne i bagsiden er den eneste luftutathed vil vindforhold således betyde en lobende og vekslende ind- og udåndings effekt for solfangeren.

Et studie aE tabel 5.6 angáende den malte ventilationsgrad for de provede solfangere kan nu sammenholdes med de naunte erfaringer for kondensdannelsen. Det er ret tydeligt, at det er de problemaciske solfangere med henw syn til kondens. som har små ventilationsgrader. Mens de solfangere, der har klaret sig bedst, typisk har en utethed pa $10 \mathrm{~m}^{3} / \mathrm{h}$ pr. 100 pa eller mere. Der er her tale om solfangere, der er sa utocte, at de ar svare at male De Eornaunte solfangere med meget begransede kondensproblemer horer begge til den sidstnaunte gruppe.

Meget tyder altsa på at yi sa smat er ved at skyde os ind par i hvilket niveau Luttutathedsgraden skal ligge og betydningen med hensyn til konstruktionslosninger for konensdannelsen, men der er endnu for fa målinger. der underbygger dette Derfor má en mere direkte anvisning pà omasdet afvente resultaterne Exa et yderligere antal kondensmalinger for de provede solfargere.

I det folgende skal dex for en rakke af de provede solfangere gives en koxt gennemgang med eksempler pá anbeEalelsesvardige detaillosninger med hensyn til gennemtankt konstruktion og nye máder at bruge kendte materialer pã. Oversigten beskattiger sig med solfangerne en af gangen. Det er ogsa muligt at finde disse ting samt at fa den samlede vurdering af hver solfanger i provningsjournalerne. Der findes ogsá billedmateriale her, som dokumenterer de navnte forhold.

Dette afsnit kan måske vare en hjalp til de Jasere af maporten, som er ved at vare fratte aE den megen beskatm tigen sig med solfangerproblamer, og som snarere kune tanke sig nogle oplysuinger, der Eremhaver, hvad der er godt yed de provede solfangere. Det ex opfatcelsen at der, nar man vurderer de provede solfangere under et hele Eindes eksempler pa detaillusninger for sa at sige alle solfangeres enkeludele, som kan fremhaves som gode.

## Solfanger 2

Deme solfanger er opoygget med en utraditionel men velfungerende solfangerkasse af glasfiberarmeret polyester. Bade daklagssamling og rorgennemforing ex helt regntat og tatnet med siliconefugemasse. Solfangeren har ventilationshuller placeret i bagsiden foroven og forneden hvis disse lukkes til er den nasten lutctat. Nar de er abne ex luttutathedsgraden blandt de hojeste fox de provede solfangere (gruppe 5) . Det er en af de solfangerlosninger. som i praksis har hart farxest kondensproblemer, hvilket sandsynligvis kan henenres til den gode regntathed samt at ventilationen bagfra giver en vis udtorrende virkning på isoleringsmaterialet.

## Solfanger 3

Denne solfanger er importeret og ex samtidig et eksempel pa en produktudviklet konstruktion hvor der er taget mange hensyn. Der ex benytcet et opblast acryldaklag. hvor kanten er beskyttet af en stark kancliste, som ogsa
giver gode inddakningsmuligheder. For at stive bunden af er der brugt en PUR-skum plade, som den nederste halvdel af bagsideisoleringen, men da den overste halvdel er mineraluld, forer dette ikke til temperaturproblemer. Absorberen har en stark, holdbax og almindelig sort overflade malebehandlet med polyester.

## Solfanger 10

Dette er et eksempel pa en solfanger, hvor kassens design minder om de velkendce Veluxvinduer. Selv om solfangerens glasliste af tra ikke fungerer sarligt tilfredsstillende. bevirker den anbragte tyndmetal hatte, som gar helt ned til glasset, at regnen stort set holdes vak Exa glas/kassesamlingen. Det trykimprægnerede fyrretræ under hatten ser pant ud. Solfangeren er ret aben ved sidehullerne til xargennemforingerne, dette hjolper med til en hurtigexe udtorring af solfangeren, når der dannes kondens, og hindrex at varm luft med et relativt stort vandindhold kondenserer pà vej ud af solfangeren.

## Solfanger 11

Solfangerens glas/kasse samling er regntat og relativ robust. Der er nasten ingen kant forneden til at holde på vandet.

## Solfanger 13

Her er et eksempel på et relativt stort kombineret ventilations- og dranhul i solfangerens nederste side, som tilsyneladende fungerer godt. Hullet Eorer ind til et luftlag under absoxberen. Pa trods af at solfangeren ikke er regntæt, ser den alligevel pan ud endnu. Luftlag mellem absorber og PUR-skum foranlediger sammen med en middeleffektivitet, at temperaturproblemet for skummet indskrænkes.

Solfanger 16
I solfangeren er kun anvendt mineraluld som isoleringsmateriale. Derfor er der næsten ingen udgasning at se på drklaget. Solfangeren ser ikke ud til at have taget skade efter placering udendørs i $1 \frac{1}{2}$ ár. Den nederste glasliste
er udfort med to huller i hjornerne, sà vand der opsamles kan lobe ud af disse. Absorberen er plan pá den ene side. så folle nemt kan fastgores.

Solfanger 25
Denne solfanger har haft store problemer med den anvendte skumisolering pa grund af temperaturbelastningen. Alligevel kan man som en god detalje godt femheve brugen af pur-skum til at stive kassen af med. Man kan godt bruge en stiv skumkasse som kasse til solfangeren blot man sorger for at isolere med mineraluld mod absorberen (f.eks. 30 mm). Rorgennemforingerne i denne solfanger, som er tatnet med en gummitylle og lim, hax tilsyneladende fungeret gode. Hjornesamingerne er tetnet med lim. herved opnăs en ekstra twthed.

## Solfanger 30

Denne solfanger benyteer sig Ijgesom soltanger 3 af et oppustet acxyldaklag, men her har man ladet acryl dakLaget fortgette ud over solfangexkassens sider. Dette giver en meget god sikkerhed for en regntat losning. Samtidig beskytces raxgennemfaringshullerne mod regn, og der opnåes en god ventilationsmulighed.

## Solfanger 31

Den anvendte kasse/daklag sambing har i paaksis og ved provningerne vist sig at vare regntat og robust. Deklagsm delen rager ud over solfangexens sider. Det betyder at roxsamlingerne mellem to solfangere beskytces mod sol og delvis mod regn.

Solfangeren er ventileret ved rorgennemforinger i siderne i top og bund, dette giver mulighed for en god skorstens ${ }^{\text {ventilation. som stort set begrænses til disse }}$ huller. En eventuel fugtig. opvarmet luft $i$ solfangeren vil kunne forlade det øverste rorgennemforingshul uden at blive afkolet og kondenserer, fordi der er en termisk overgang.

Solfangeren har en bagplade af masonit. Denne ser efter Elere árs placering udendørs pan ud endnu. Absorberen til denne solfanger, som er af svensk oprindelse bor ogsa fremhaves som god. Den kan som andre selektive overflader maske ikke leve op til de helt store korrosionsklassekrav, men udforslen, hvor en aluminiumsfinne er valset på et kobberror, ex sandsynligvis et resultat af holdbarhedsovervejelser. Svenske erfaringer efter 4 års brug af denne absorber tyder ikke på en dårlig holdbarhed i praksis.

Solfanger 34
For denne solfanger skal Eremhaves anvendelsen af en aluminiumfolie til at beskytte mod udgasning fra sideisom leringen. Efter flere ărs placering udendors ser folien stadig pan ud, og dette er faktisk en del bedre en for en rokke andre solfangere der har anvendt denne lasning.

KAPITEL 6. LEVETIDENS BETYDNTNG FOR DKONOMIEN I SOLVARMEANLAG

Nár man diskuterer gkonomien ved solvarmesystemer, regm ner man ofte med en levetid pa 20 ar. Man kan da opstille et skema ovex alle omkostninger og besparelser i systemets levetid under nogle fastsatte forudsatningex. pa dette grundlag kan systemets levetids okonomi, som mail for rencabilitet, udregnes. Undersogelser har vist, at den overhovedet vigtigste okonomiske parameter ved sadannne beregningex er udviklingen i brandselspriserne. Derfor er det narliggende at valge at bexegne levetidsokonomien af et solvarmesystem ud fra energibesparelsen i kwh i systemets leverid i stedet for i kr. Samtidig er det sadan, at driftsudgifterne til et solfangersystem er temmelig uberegnelige, bortset fra el til cirkulationspumpen. For nemheds skyld sattes dxiftomkostningerne til en vis procent af investeringen, der sa deles ligeligt over ievetiden.

En enkel og rimelig made at prasentere okonomien for et solvarmesystem på. ex at tage summen af investeringen og driftsomkostningerne i den forventede levetid og dividere denne med den samlede energibesparelse i kwh.

Dette forhold (EP) $k x / k W h$ kan bruges til at give et let overskueligt billede af, hvor attraktivt et givet solvarmesystem ex. EP kan nacurligt opdeles i to dele. Udgiften Eotbundet med solfangersystemet (EPS) og udgiften til resten af solvarmesystemet (EPV). For solfangersystemet har vi:
$E P S=\frac{I+D L}{P L}=\frac{I}{P I}+\frac{D}{P} \frac{k L}{k W h}$ her er:

```
EPS = prisen pre produceret kwh i systemets levetid kr/kwh
I = installationspris for solfanger kr/m
D = driftsomkostning for solfanger pr.år kr/m2 àr
P = ydelse aE solvarmeanlag kwh/m}\mp@subsup{}{}{2}\mathrm{ ar
L = forventet levetid år
I/P = investeringsfaktor kr ax/kwh)
D/P = driftsfaktor kx/kWh
```

Ved konstruktion af en solfanger kan man anlagge to Eorskellige strategier:
a) En relativ dyr solEanger, med en Eorventet god langtidsholdbarhed, der er opbygget saledes, at det er muligt at udskifte enkeltdele, feks. absorber eller daklag. Der kan sá opnas en lang levetid med visse udgifter til vedligeholdelse.
b) En solfangex baseret pả relativt billige plasta materialer fremstillet ved en rationel automatiseret produktionsproces således, at den ikke kan skilles ad, men udskiftes som et hele.

Solfanger a er karakteriseret ved dyre materialer (aluminium kobber) og relativt tidskrævende samlingsmetoder (skruer) og er velegnet til mindre serier. Solfanger ber karakteriseret ved billige materialer (plast) og billige rationelle samlingsmetoder (limning og varmesvejsning).

Solfanger a kan svare til de bedste af de solfangere vi ser i dag, hvor der blot er taget hojde for udskiftning af komponenter. Med hensyn til b har der varet forskellige bud fremme, der tyder pà at sadanne solfangere kan produceres for omkring $500 \mathrm{kr} / \mathrm{m}^{2}$ for selve modulet.

Det er naturligvis vanskeligt at fastsatte priser og levetider for de to typer solfangere, men eksempelvis kunne det se sadan ud:

Solfanger a

$$
\begin{aligned}
& I=800 \mathrm{kr} / \mathrm{m}^{2} \\
& D=20 \mathrm{kr} / \mathrm{m}^{2} \mathrm{ar} \\
& L=30 \mathrm{ar} \\
& \mathrm{D}=300 \mathrm{kWh} / \mathrm{m}^{2} \text { ar selektiv }
\end{aligned}
$$

Soltanger b

$$
\begin{aligned}
& I=600 \mathrm{kx} / \mathrm{m}^{2} \\
& D=0 \\
& L=15 \mathrm{gr} \\
& P=300 \mathrm{kWh} / \mathrm{m}^{2} \mathrm{ar} \\
& \mathrm{D}=250-\quad \text { selektiv } \\
& \mathrm{D}=2
\end{aligned}
$$

Drift- og vedligeholelsesudgifter for solfanger a suarer til $600 \mathrm{kr} . \mathrm{i}$ levetiden.

Med disse vardier Eas for solfanger a EPSa $=0.16 \mathrm{kr} / \mathrm{kwh}$ $(0,09+0,07)$ og for solcanger $b$ ligeledes $E P S_{b}=0.16$ for den ikke selektive.

Baseret pa dette eksempel er det saledes et abent sporgsmal. hvorledes den bedste levetidswkonomi opnas. En mere pracis beregning vil kreve en nojere vurdering ax levetiden saledes som det tilstrabes inden for et IEAsamarbejde om solfangerholdbarhed baseret pa konkrete prissatte solfangere. Endvidere er de finalsielle forhola af betydning, idet et dyrt anlag med lang levetid vil udvise det dårligste driftsregnskab de forste ax. Det har ofte en afgorende betydning for et eventuelt anske om investering.

### 7.1 Lufttathedsprovning

Formålet med denne provning må vare ved kommende prøvninger at fö opstillet et udtryk fox solfangerens utathedsgrad $E . e k s$. angivet $i \mathrm{~m} 3 / \mathrm{h}$ pr. 100 pa.

Kommende analyser af sammenhængen mellem kondensdannelse og kondensudtorting i forhold til stagnationstemperatur og utathedsgrad skulle gerne goxe det muljgt at fastsætte en mindste utathedsgrad, der skal opfyldes for en given solfanger for at hindre for kraftig kondensdannelse.

Nå dette er formålet med provningen vil det ikke vare nodvendigt at afdakke dele af solfangere med plastfolie for at male utatheden. Solfangere, der ikke kan opnas over/under tryk i, rubriceres blot som "meget luftutatte".

### 7.2 Temperaturprovning og trykprovning

Disse provninger har til formal at udsatte solfangere for temperatux og trykmassige pávirkninger der svarer til eller er lidt varre end hvad de kan blive udsat for i virkeligheden. Som sadan har de fungeret ganske godt, selv om de observerede visuelle forandringer for de provede solfangere stort set har begranset sig til at par tilfælde af daklagssammenbrud og påvisning af udgasningsproblemer. Ved kommende provninger under en godkendelsesordning anbefales det, at de forste 3 provninger beholdes $i$ stort set umndret form og at den sidste, texmisk cykling udgar. Den har ikke haft den effekt. der var formálet, nemlig en slags accelereret påvirkning af solfangeren, som skulle forstærke eventuelle problemer. Det har været erfaringen, at f.eks. brud opstar allerede under de 3 forste temperaturprovninger. Det foreslås i stedet, at afslutte de indendors provninger med, at de provede solfangere placeres udendors på sydvendte stativer $i 1$ år. Herved vil udgasningsproblemer forstarkes og indflydelse fra fugtige perioder $i$ form af begyndende
korrosion kunne observeres. Det er ikke nodvendigt at aEvente resultatet Era den udendors placering, for at godkende en solfanger, men erfaringen herfra kan indgá i. den generelle vurdering af solfangeren og hjalpe fabrikanten i sin produktudvikling.

Effekten af den tredie provning, chockafkøling af daklag med vandpasprojtning har vist sig at vore af en anden natur end det forst var meningen. Det har ikke varet muligt at opnå brud på nogen daklag med denne provning. men det har vist sig ved forsog udendors, at solfangere, der ikke var regntatte danner meget klar kondensdannelse på indersiden af daklaget. Dette skyldes at luften ved en hoj fugtighed inde i solfangexen nemt vil nå sit dugpunkt. når den kommer i kontakt med det afkolede daklag. Denne effekt ex ikke blevet studeret narmere ved de indendors provninger, men bor undersoges ved fremeidige prøvninger.

Ved konstatering af udgasningsprodukterne i forbindelse med temperaturprovningerne er det af stor vardi at kunne foretage udgasningsforsøg ved forskellige temperaturniveauer med materialer, som svarer til de i solfangerne anvendte. Hertil har den i app. 1 viste udgasningskasseopstilling varet meget anvendelig. og har bloa. gjort det muligt at opsamle passende mangder af interessante udgasningsprodukter, som f.eks. Era Pur-skum, og sende dem til kemisk analyse. Hvis det alene drejer sig om at udsatte materialer for et bestemt temperaturniveau for at se, hvordan de klarer dette, er brug af varmeskab den rigtige losning.

### 7.3 Regntathedsprovning

Denne provning har, som det også fremgår af nærværende rapport, varet meget anvendelig med henblik på at identificere ikke regntætte solfangere. Provningen er blevet forbedret lobende og fungerer nu i en formg som må siges at vare tilfredsstillende. Det burde måske alligevel fremhæves hex, at en måling af fugtigheden i isolerings-
materialet inde ved absorberen, kan foretages nemt i forbindelse med det udskårne hul til placering af termo elementet, ligesom fugtigheden imellem glas og absorber kan måles gennem de udborede sidehuller uden problemer. Dette bør nok gøres konsekvent ved fremtidige prøvninger. Det kan også overvejes om provningen burde foretages 2 gange, det vil sige bade for og efter temperaturprovningerne for at se, om de har pavirket regntatheden.

## Vindbelastning

Der er ikke registreret skader pa en eneste solfanger ved over/under tryk på 500 Pa. En forøgelse til 1000 Pa kunne måske hjælpe, men bor på den anden side ikke give resultater, som er ude af trit med virkeligheden. Ved placering i 1 år med 300 hældning tat ved jordoverfladen udendors har vindbelastning ikke varet et problem for nogen af de prøvede solfangere. Men ved stejlere haldninger og placeret oven på en bygning ville belastningen klart være storre. Det er et problem, at nogle solfangere ikke kunne proves, fordi det ikke under nogen omstændigheder var muligt at skabe over/under tryk. En starkere luftblaser kunne måske lose problemet. Hvis denne samtidigt havde en hurtig reaktion kunne pludselige vindstød måske også simuleres bedre.

### 7.5 Opstilling af solfangere i udendors stagnationstilstande gennem langere tid

Et vigtigt modstykke til de indendors driftssikkerhedsog holdbarhedsprøvninger, er prøvning af utilsuttede solfangere i længere tids stagnation udendors. Igennem 4 år er der sket regelmassige inspektioner af 14 solfangere, som har varet placeret på sydvendte stativer på laboratoriets udendørs prøvningsareal med en hældning på 300 fra vandret. Fra august 1981 er disse blevet suppleret med 20 af de indendørs prøvede solfangere. Kontinuerlige målinger af stagnationstemperaturer og klimaparametre er blevet gennemført $i$ mere end 1 år for at se om ændringer i solfangerholdbarhed kan registreres ved hjælp af den
såkaldte Biernbreier metode (ref.2). Seks af solfangerne er sammenlignet med nye solfangere af samme fabrikat. sa forskellen mellem udendors og indendors påvirkning kan vurderes. Alle solfangere bliver ved denne relativt billige provemetode udsat for det naturlige vejrlig igennem langere tid. Tempecaturmassigt bliver de udsat for betingelser, som er en del hardere end hvad solfangere normalt udsattes for ved almindelig drift. Ved udendors stagnation igennem langere tid opnas derfor en accelleret pavirkning af solfangeren, hvor vi dog endnu ikke kan Eastsatte nogen korrelation til påvirkningen ved normal drift.

Det er erfaringen, at mndringen $i$ solfangere pga. hoje temperaturer ret hurtigt kan registreres i sommermanederne, mens vandindtrangen og fugtproblemer kan konstateres $i$ den fugtige og rengfulde det af året. Det er ogsa erfaringen, at der ofte kan ses synlige konsekvenser, f.eks. i form af korrosion som folge af regnutathed, materialenedbrydning eller store udgasningsproblemer efter $1-2$ års placering $\dot{\text { i }}$ udendors stagnation.

Málinger af absorberstagnationstemperaturer henholdsvis ved indendors provning og opstilling udendors viser ca. 20 oc hojere temperaturer ved den indendors provning. Visuelle inspektioner af solfangerne udendors viser ikke nogen forskel mellem de indendors provede solfangere og nye solfangere af samme type, som kurn har varet opsat udendors. Det noget hojere temperaturniveau indendors anses derfor ikke at være en urealistisk hård belastning i forhold til betingelserne udendors.

### 7.6 Forslag til nye provninger

Som sagt begranser provningsprogrammet sig indtil nu til at dreje sig om solfangerkasser alene. Det vil være hensigtsmæssigt at få udarbejdet procedurer som også dakker pà stedet opbyggede solfangerkonstruktioner. En udendors prøvningsprocedure noget lig den, der bruges til modulsolfangere vil i forste omgang være mest velegnet. Der opbygges en storre tagflade pa forsogsarealet, hvori
opbygning kan ske også med det nødvendige inddækningssystem. Tagindbyggede modulsolfangere kan også afprøves her. Denne provning foretages ikke nødvendigvis rutinemæssigt, men kan bruges til at supplere en almindelig konstruktiv vurdering af tagindbyggede solfangere og til produktudvikling.

Indendors regn-- og temperaturprovning vil kunne foretages ved passende lille skalamodelopbygning af tagindbyggede solfangere.
Der undersøges indtil nu kun de fire områder, høje temperaturer, ventilation, regntæthed og vindbelastning. Det vil især være af værdi at udvide prøvningsmulighederne til ogsá at omfatte de andre komponenter, som naturligt indgár $i$ et samlet solfangersystem. Det vil sige inddakningssystem eller fastgøringssystem og rorsystemet solfangeren skal tilkobles. Inddakningssystemer kan proves ved opsætning udendors eller i en speciel slagregnmaskine. Styrken af en solfanger-fastgorelse kan proves ved en simpel trækprøve. Et solfanger-rorsystem kan måske undersøges ved opstilling udendors, således at solfangerens studse forbindes med et kort rorsystem, som indeholder de patankte rør- og varmevekslermaterialer. Øverst $i$ den lukkede kreds placeres en uisoleret mindre vandbeholder. Systemet bør også tilsluttes en lille trykekspansion og sikkerhedsventil og kan så påfyldes den anbefalede solfangervaske, hvorefter det udsættes for stagnationstilstande genem langere tid. Herved opnå en cykling mellem hoje og lave temperaturer og et passende flow sættes igang ved naturlig cirkulation. Efter en passende tid udtages prøver af væsken til kemisk analyse, og hvis der ses korrosionsprodukter heri, undersøges de indgående materialer nærmere. En sådan provning bør ikke foretages rum tinemassigt men snarere bruges til at opnå erfaring med hensyn til materialer $i$ solfanger-rørsystemer. Det kan bl.a. bruges som et tilbud til solvarmefabrikanterne i forbindelse med produktudvikling. En mulig holdbarhedstest, som kunne foretages i forlængelse af de indendors driftssikkerhedsprovninger, var prøvning af nye materialer og overfladebehandlinger i salttågekammer.

## Referencer

(1) Hansen, T.Vest et al

Solfangeres langtidsholdbarhed.
Energiministeriets solvarmeprogram, rapport nx. 7.
Teknologisk Institut. Juli 1980.
(2) Birmbreier, H.

Procedure for Longterm Tests with Solar Collectors.
Brown, Boveri \& Cie AG. Heidelberg , Germany.

Supplerende Iitteratur

- Argonne National Laboratories

Final reliability and materials design guidelines for solar domestic hot water systems.

- Jorgensen, O. et al

Statusrapport over solenergiforskningssamarbejdet under IEA.

Laboratoriet for Varmeisolering. Februar 1982.

- ASTM Standards on Solar Enexgy (Committee E-44) Maryland. USA. Oktober 1981.
- Skoda, L.F. Masters, L.W. NBSIR 77-1314 Solar Energy Systems - Survey of Materials Performance Washington, USA. October 1977.
- Masters, Seiler, Embree, Roberts

NBSIR 81-2232
Solar Energy Systems - Standards for absorber materials Washington, USA. January 1981.

- U.S. Department of Commerce Outdoor Exposure Tests of Solar Absorbtive Coatings. NBSIR 82-2583 Washington, USA. October 1982.
- Andersen, P.

Surface constancy of solar absorbers
IEA-rapport fremlagt på ekspertmøde i København, januar 1983. Teknologisk Institut, afd. for Overfladebehanding, Tåstrup. Januar 1983.

- Yding. F .

Korrosion $i$ solfangerabsorbere. Rapport 18. Energiministeriets solvarmeprogram. Juli 1982.

- Lagerkvist, K.O. \& Wennerholm, H. Durability of Solar Collectors - Dl: 1982. Byggforskningsrådet, stockholm。
- BS 5918:

1980 Code of Practice for Solar Heating Systems for Domestic Hot Water. (Uk standard).

- NBS - technical note 1132

Solax Energy Systems - Standards for Coverplates for Flatplate Solax Collectors Washington 1980 .

- Pedersen. P.V.

Solfangeres driftssikkerhed og holdbarhed udstyr og procedure til indendors provning af driftssikkerhed og holdbarhed af hele solfangerkonstruktioner.

Laoratoriet for Varmeisolering. Med. nr. 101. 1980.

- Pedersen. P.V. Failure modes of solar collectors. IEA programme, Task III. Laoratoriet for Varmeisolering. August 1981.
- Pedersen, P.V. IEA-Inspection Format - Reliability and Durability of Flatplate Solar Collectors. Findes på dansk: TEA-inspektionsformat - Driftssikkerhed og holdbarhed af solfangere. 1981.
- Pedersen. P.V.

Reliability and Durability of Solar Collectors. $=$ Outdoor test of reliability and durability of complete solar collectors. Report No. 80-17.
Laoratoriet for Varmeisolering. 1980.

- Pedersen P.V.

Forskning i solfangeres holdbarhed.
Laoxatoriet for Varmeisolering, rapport Nr. 80-31. September 1980.

- Pedersen. P.V.

Reliability and Durability of Solar Collectors in Denmark. Paper på ISES solenergikongres. Solar World Forum i

Brighton. August 1982. (Findes også på dansk).

## Summary

Reliability and Durability of Solar Collectors

- evaluation of 22 solar collectors based on tests.

Thermal Insulation Laboratory
Technical University of Denmark
Building 118
DK-2800 Lyngby

22 solar collectors have been tested on the laboratory's equipment for indoor cest of the reliability and durability of solar collectors. The collectors represent the Danish market in 1980 .

The followng tests have been made:
Air-leakage
Stagnation test
Temperature shock of absorber and cover
Thermal cycling
Rain-leakage with and without
simulated wind load on cover.

After the indoor test the collectors have been placed outdoors unconnected in stagnation for $1 \frac{1}{2}$ year, in order to carry out a kind of accellerated test and to verify the indoor test.

The result showed that the indoor test was useable, and especially the stagnation test and the rain-leakage test gave good information on the reliability and durability of solar collectors.

40\% of the collectors passed the indoor test without remarks. The same collectors did well in the outdoor test.

Another $40 \%$ of the collectors showed serious problems in the indoor test and for these collectors the expected operation time with a satisfactory output is not more than a few years. Many of them showed widespread corrosion after one year outdoors.

The last $20 \%$ of the collectors showed problems which could be solved easily.

The most serious problems were outgassing on the cover from plast-foam (polyurethane) and rain-leakage.

The outgassing results in a lower transmission and after some time in a degradation of the insulation material. For some collectors the outgassing became so severe that the absorberplate could not be seen. This happens when dust after some time is combined with the outgassing.

In the climate of Nothern Europe it is very important that collectors are raintight and that there is suitable ventilation in the collector so that moisture accumulating during nighttime can be ventilated out of the collector during daytime. Otherwise the absorber plate will corrode, as it was seen with many collectos in this test.

The tested collectors belong to the lst generation of collectors and the test pointed out some serious problems. On the other hand the test also proved that some collectors are satisfactory.

1. PRØVNINGSUDSTYR UDVIKLET PA LABORATORIET FOR VARMEISOLERING。
1.1. Temperaturprøvningsudstyr - den kunstige sol

Den kunstige sol er beregnet til prøvning af solfangerens evne til at klare store temperaturpåvirkninger (som den f.eks. kan komme ud for ved opsætning eller ved pumpestop). Lyskilden er en Osram XQ0 20.000 W Xenon lampe med en Siemens tandingsenhed og transformex. Lampen er placeret $i$ en reflektor, saledes at der opnås en rimelig jævn fordeling af den kortbølgede striling, der rammer solfangeren (se fig. l.l.) . Solfangeren er placeret $i$ en afstand på ca. 1 m fra reflektoråbningen, og der bestroles et areal pa $1.5 \times 2.0 \mathrm{~m}$, med en intensitet lidt over $1300 \mathrm{~W} / \mathrm{m}^{2}$. Varmestrålingen fra lampen stoppes ved hjelp af 1 lag glas, som dækker reflektorabningen, og 1 lag lexan, som dækker det halve af arealet. Imellem disse lag sendes ved hjælp af en ventilator en luftstrøm, som køler glas og lexan. Over prøvningsfeltet er der desuden monteret 4 dyser $i$ den ene side til vandpåsprøjtning af solfangeren $\left(0,36 \mathrm{~m}^{3} / \mathrm{h}\right), ~ o g$ en ventilator $i$ den anden side. Ventilatoren ventilerer prøverummet, for at temperaturen i solen kan falde til et leje, der er mere i overensstemmelse med, hvad solfangere vil komme ud for i virkeligheden, nemlig ca. $30^{\circ} \mathrm{C}$. Med henblik pa at foretage chokpåyldning af vand gennem absorberen under stagnationsforsøg i den kunstige sol, er der mulighed for at tilslutte solfangeren til et lodret ror med udløb 1.5 m over solfangeren, og luftudlader på hфjeste sted. Fors申g har vist, at den kunstige sol, med den udformning den har nu, kan po̊virke en solfanger til sprængning af dækglas, nå den ogsa i virkeligheden har haft problemer med, at dæklaget sprænger ved stagnation. Under prøvninger i den kunstige sol males temperaturen ved hjælp af termoelementer, og den udskrives på en Philips 12 kanal skriver.

Fig. 1.1 viser en skematisk tegning af den kunstige sol som den i dag er udformet til holdbarhedsfors $\phi \mathrm{g}$ med solfangere, og i tabel 1.1 er der en liste over de temperaturfølerplaceringer (termoelementer), som også er angivet på fig. 1.1.


Fig. 1.1. Kunstig sol til prøvning af solfangeres bestandighed over for hoje temperaturer. Se også tabel l.l.


Fig. 1.2. Den kunstige sol

Placering af termofølere $i$ den kunstige sol som vist i fig. 1.1.

| Måle <br> nr. | Placering |
| :---: | :---: |
| 1 | lufttemperatur bag |
| 2 | absorbertemperatur for enden |
| 3 | absorbertemperatur på midten |
| 4 | dæklagstemperatur i hjørne |
| 5 | dæklagstemperatur pa midten |
| 6 | lexantemperatur |
| 7 | lufttemperatur foran |
| 8 | lufttemperatur under solfanger |
| 9 | lufttemperatur nær lampe |
| 10 | absorbertemperatur midt på malt fra bagsiden |

Tabel l.l. Placering af termofølere $i$ den kunstige sol som vist i fig. l.l.


Fordeling af den kortbølgede straling (lysets) intensitet $i$ den kunstige sol i $\mathrm{w} / \mathrm{m}^{2}$.


Fig. l.3. Lysfordeling i den kunstige sol

På fig. l.3. er angivet, hvorledes lysintensiteten i den kunstige sol varierer. Den varierer mellem lloo og $1470 \mathrm{~W} / \mathrm{m}^{2}$, med et gennemsnit omkring $1300 \mathrm{~W} / \mathrm{m}^{2}$. Dette er en højere intensitet end hvad man normalt vil finde under virkelige forhold, og det er også højere end hvad der angives i NBSIR $78-1305 \mathrm{~A}\left(956-1165 \mathrm{~W} / \mathrm{m}^{2}\right)$. Lysintensiteten, som den er nu i den kunstige sol, skyldes, at vi bruger 1 lag glas og 1 lag lexan til afskærmning opadtil. Før i tiden brugte vi 2 lag glas i stedet for. Dette gav en lavere intensitet og større variation (mellem 750 og $1210 \mathrm{~W} / \mathrm{m}^{2}$ med et gennemsnit omkring $1000 \mathrm{~W} / \mathrm{m}^{2}$ ). Med denne kombination viste det sig, at vi under vore relativt korte prøvninger havde vanskeligt ved at frembringe svigt. De solfangere, hvor f.eks. dæklaget var sprængt under virkelige forhold, skete der ingenting med. Det er for at opnå mere realistiske resultater, at vi har forфget lysintensiteten. Selv om der måske bliver tale om hårdere påvirkninger, end man normalt vil komme ud for, giver dette en større garanti for, at de solfangere, der klarer prøvningerne, er gode nok.
1.2. Udstyr til kombineret regn- og vindbelastning af solfangere.

Der er i løbet af 1979 blevet opbygget et udstyr til prøvning af solfangere for kombineret regn- og vindbelastning, $i \operatorname{det} f \not \subset l g e n d e ~ o m t a l t ~ s o m ~ s l a g r e g n m a s k i n e n . ~ S l a g r e g n m a s k i-~-~$ nen er opbygget ved hjælp af en kasse med bundramme af vinkeljern med 4 stk. $50 \times 50 \mathrm{~cm}^{2}$ langsgående trælægter beklædt med en trapezprofileret aluminiumsplade. Kassen har plexiglas i siderne og pa toppen, fastgjort til vinkelprofiler af aluminium. Kassen er placeret på et stativ med hjul, som giver en hældning på $30^{\circ}$ fra vandret (se fig. 1.7.). For enden af trapezprofilpladen er der med et ophæng fastgjort en tagrende til opsamling af det på solfangeren påsprøjtede vand (se fig. l.4.). AL-profil/plexi-
glaskassen kan vippes omkring nogle hængsler, som er fastgjort til bundrammen, s̊̊ledes at man kan komme til inden i slagregnmaskinen. I toppen af kassen er placeret et rørsystem med 6 fuldkegledyser til at pasprøjte solfangeren ovenfra med vand. Solfangeren placeres i slagregnmaskinen i forhold til disse dyser og fastgøres i den $\varnothing$ nskede stilling. Der kan også ske påsprøjtning fra siden med vand. 2 rør med dyser kan indstilles i forhold til 2 af solfangerens sider, så man opnår en afstand til sidedyserne (fladstråledyser) på 15 cm (se fig. 1.5.) Der er endvidere opbygget et system til at simulere vindbelastninger i slagregnmaskinen. Det fungerer på den made at man, inden solfangeren lægges i slagregnmaskinen, borer 2 huller i siden af solfangeren imellem dæklag og absorber. Til det ene hul føres en plastslange, som har forbindelse med en støvsuger med variabel indstilling af pust og sug. Det andet hul forbindes med en plastslange til et manometer. Det er således muligt at opnå forskellige grader af over- og undertryk i solfangeren, samtidig med at der sker vandpasprøjtning af solfangeren. Fig.l.6. og 1.7. viser slagregnmaskinen henholdsvis når den er i gang, og når aluminium/plexiglaskassen er abnet.

På fig. 1.8 . er der en tegning af princippet bag styringen af over/undertryk i solfangeren, mens den ligger i slagregnmaskinen. Pa fig. 1.9. er der en tegning der viser hvorledes vandflowet i slagregnmaskinen styres og føres frem. Rørføringen til påsprøjtning af solfangeren og dyseplaceringen kan ses på fig. 1.10 .


Fig. 1.4. Slagregnmaskinen


Fig. l.5. Topdyser og sidedyser i slagregnmaskinen


Fig. 1.6. Slagregnmaskinen under drift


Fig. 1.7. Slagregnmaskinen i aben tilstand


- DYSER ER PLACERET 1 KASSEN TIL PASPRgJTNING AF VAND PA 2 SIDER AF SOLFANGEREN OG PA FRONTEN, MED HVER SIN SEPERATE KREDS, SA FLOW kan reguleres uafhengigt til hVer kreds.

Fig. l.8. Slagregnmaskine med over/undertryk i solfanger


Fig. 1.9. Slagregnmaskine - rorforing


Højde af kassen: 1000

Fig. l.l0. Dyseplacering i slagregnmaskinen
1.3. Uástyr til måling af lufttathed af solfanqere.

Der er her stort set tale om det samme udstyr, som bruges til at skabe over- og undertryk i solfangeren, når den ligger i slagregnmaskinen. Det vil sige flowmåler, støvsuger, variotransformer og stopur. Det eneste der er anderledes er, at vi bruger et U-rørsmanometer til at måle trykket i solfangeren. Det gør vi for at få så præcise aflæsninger af trykket som muligt, så man kan regne med en rimelig nøjagtighed ved sammenłigning af flere lufttæthedsmålinger. Desuden placerer vi kun solfangeren i slagregnmaskinen, når den alligevel skal prøves her bagefter, ellers placeres solfangeren på et rullebord. Ved lufttæthedsmålinger kører vi maksimalt op til tryk på $\pm 50 \mathrm{mmVs}$ af hensyn til solfangerens daklag.
1.4 Udstyr til prgvning af udgasning fra solfangermaterialer

Solfangermaterialer, som ikke virker temperaturstabile eller er under mistanke for at være årsag til udgasning ved en prøvning, kan afprøves i den i figur 1.11 viste udgasningskasse. Eventuelle udgasningsprodukter kan skabes af glasset og analyseres, hvis det anses for nødvendigt.


TERMOSTATISK VARMEPLADE DER KAN INDSTILLES OPTIL $200^{\circ} \mathrm{C}$. GERHARDT H22 ELECTRONIC.

Fig 1.11
Udgasningsopstilling består af en udgasningskasse med aftageligt glasdæklag, som er placeret $\mathrm{pa}^{\circ}$ en termostatstyret varmeplade.

Det Internationale Energi Agenturs forsknings- og udviklingsprogram for solvarme og solkoling

INSPEKTIONS-RAPPORT

## SOLFANGERES DRIFTSIKKERHED OG HOLDBARHED

Solvarmeinstallationens adresse

Rapportering udfort af

# SOLFANGERES DRIFTSIKKERHED OG HOLDBARHED 

## BRUG AF INSPEKTIONSSKEMA

Inspektionsskemaet til inspektion af solfangere i drift er udarbejdet for at give mulighed for at få samlet informationer om både solfangere, der klarer sig godt efter nogen tids drift, og solfangere der klarer sig mindre godt. Det er ønsket, at der skal samles erfaringer om dellosninger i solfangerkonstruk. tioner, som ingen fejl eller problemer har haft, og at fà indblik i hvad der er de mest almindelige fejl og problemer med solfangere og åsagerne til disse.
Inspektionsskemaet indeholder flere sider, hvor der bedes om generel information om solfangeren og det solvarmesystem den fungerer i. Det er vigtigt at give så detaljerede oplysninger om konstruktionen, anvendte materialer og installation som muligt. Oplysninger om overfladebehandling, forsejlingsmaterialer og gummibånd er af speciel interesse med henblik på at finde frem til holdbare metoder her.

Mindre tegninger og fotografier af detaljer i solfangeren, som fx dæklag/kasse samling, inddækningssystemet, rorføring og solfangerforbindelser vil også være en hjalp ved arbejdet med at vurdere solfangerkonstruktionen. Sidste side af inspektionsformatet har den samme indramning som de andre sider, men er ellers blank, sả den ved fotokopiering kan bruges til en udvidet rapportering, hvis det anses for nødvendigt.

Før man foretager en solfangerinspektion, vil det være en hjælp at studere checklisterne på side 5, 6 og 8 . Disse er baseret på erfaringer fra tidligere solfangerinspektioner, således at de fleste kendte problemer og fejl, der kan være med solfangere, er nævnt her.
Spørgsmålene på side 4 angående konstruktionsdetaljer og materialer bør også gennemlæses for en inspektion foretages.
Problemer og fejl, der observeres ved en solfangerinspektion, refereres der til ved brug af notationen der findes på checklisten på side 5 og 6. Fremtidige inspektioner af en solfangerinstallation kan rapporteres ved at bruge en kopi af siderne 5 til 9 sammen med forsiden. På forsiden skrives så "Geninspektion, dato: $\quad$. Kun nye observationer bor rapporteres ved sådanne senere inspektioner.
Efter enher solfangerinspektion skal siderne 7 og 9 bruges til at give en detaljeret beskrivelse af hhv. problemer og fejl og gode solfangerdetaljer.
Med hensyn til problemer og fejl bør arsagen søges angivet sammen med forslag
til forbedringer af solfangerkonstruktionen og installation af solfangeren.
Der bør også her gives forslag til eventuel reparation af solfangeren.
Det er meget vigtigt at beskrive de solfangerdetaljer, hvor der ikke er fundet problemer eller mangler og også at forklare, hvorfor solfangeren har klaret sig godt. Formålet er, at gode solfangerdesign med tiden kan identificeres og at få indsamlet informationer, som kan danne grundlag for anvisninger for konstruktion og installation af solfangere.
Inspektionsrapporter baseret på dette inspektionsskema skal bruges til at indsamle viden om driftsikkerhed og holdbarhed af solfangere og data om positive erfaringer angående solfangerdesign, konstruktion og installation.

Dette inspektionsskema er oprindeligt blevet udarbejdet på engelsk som et led i det internationale samarbejde inden for solfangerforskning og udvikling under det internationale Energiagentur, IEA Og EF samarbejdet.

```
Navn og adresse for installationen
Rapportering udfort af:
Institut:
Dato og klokkeslet for inspektion:
    BESKRIVELSE AF SOLVARMEANL&GGET
Beskrivelse af placering:
(fx villakvarter, industrikvarter,
på landet, nær havet, nær kemisk industri etc.)
Solfangertype:
(moduler på tag, integrerede
moduler eller på stedet bygget)
Solfangerfabrikant:
Opsætning og installation
udført af:
Dato for opsætning og installation:
Er der en garanti for
solfangerens driftsikkerhed ?
Effektivt solfangerareal og
antal solfangere:
Orientering og hældning af solfangerne:
Solfangervæske, additiver, flow:
Sikkerhedssystem:
(bl.a. frysnings-og kogningsbeskyttelse)
Maksimalt tilladt tryk i solfangeren:
```


## BESKRIVELSE AF SOLVARMEANLAGGET

FLOWDIAGRAM ELLER PRINCIPDIAGRAM:

EN KORT BESKRIVELSE AF ANLEGGETS DRIFTSFORMET:

## SOLFANGERES DRIFTSIKKERHED OG HOLDBARHED

## Materialer og fremstilling af solfanger

Dacklag, materialer og tykkelse:
Daklag, forseglingsmetode, fuger
og gummiband der bruges:
Absorber, materiale og dimensioner på
plade og rordel, fabrikationsmetode:
Absorberens overfladebehanding:

Isolering bagtil, materialer og tykkelse:
Isolering i siden, materialer og tykkelse:
Solfangerkasse, materialer som bagside og sider er udfort af:

Solfangerkasse, samlingsmetode og
tætningsmetode.
Solfangerens opsætning og installation
Metode til at fastgøre solfangeren til tag:
Metode til at inddække solfangeren itaget, materialer:

Inddakningsmetode mellem solfangerne, materialer:

Rorforing til lager, materialer, forbindelse, isolering:

Drift af solvarmeanlægget
Har der været problemer med styringen
(fx placering af folere)?
Har der været problemer med pumpen?
Har der været problemer med luft i anlægget?

Hvis der har været nogle afbrydelser i driften af anlagget, har dette så pavirket solfangerne?

Var solfangeren beskyttet mod stagnation under og efter opsætning inden drift ?

Har solfangerne været repareret ?
Er der planer om endringer eller reparation i fremtiden ?

## CHECKLISTE

PROBLEMER OG FEJL FUNDET VED SOLFANGERINSPEKTION
Brug venligst nedenstảende checkliste ved rapportering af solfangerinspektion. Problemer og fejl ved solfangere, som erfaringsmæssigt kendes bl.a. ved tidligere inspektioner, er blevet listet her som en hjælp.
OBERVERET, IKKE OBSERVERET og IKKE MULIGT AT INSPICERE henvises der til med hhv. $\checkmark, X$ og $/$. Antallet af paneler $i$ en solfangerkonstruktion, som der er problemer med eller fejl ved skrives i den højre kolonne af checklisten.

| Referencenummer | Problemer eller fejl ved solfangere | Observeret: $V$ <br> Ikke <br> observeret: X <br> Ikke <br> inspiceret: / | Antal solfangere med fejl eller problemer |
| :---: | :---: | :---: | :---: |
| 1. | Daklag |  |  |
| 1.1 | Kondens på indersiden af dæklaget |  |  |
| 1.2 | Udgasning, aflejring på indersiden af dæklag |  |  |
| 1.3 | Snavs på dæklagets yderside |  |  |
| 1.4 | Eldning (misfarvning, revner etc.) |  |  |
| 1.5 | Brud eller kollaps for dæklag |  |  |
| 1.6 | Rynket dæklag |  |  |
| 1.7 etc . | Andre (specificeres) .. |  |  |
| 2. | Absorber |  |  |
| 2.1 | Snavs eller stov pả absorber |  |  |
| 2.2 | Korrosion pa absorberoverflade |  |  |
| 2.3 | Revner eller afskalning på absorberoverflade |  |  |
| 2.4 | Læk i absorber |  |  |
| 2.5 | Deformation af absorber |  |  |
| 2.6 | Aflejring eller kondens på absorber |  |  |
| 2.7 etc. | Andre (specificeres) ..... |  |  |
| 3. | Daklag/kasse samling (gummibånd og fuger) |  |  |
| 3.1 | Daklag gået los fra kassen |  |  |
| 3.2 | Samlingen er utæt over for vand |  |  |
| 3.3 | Nedbrydning af fugemateriale |  |  |
| 3.4 etc. | Andre (speciferes) . |  |  |

SOLFANGERES DRIFTSIKKERHED OG HOLDBARHED

| Referencenummer | Problemer eller fejl ved solfanger | Observeret: $V$ Ikke observeret: X Ikke inspiceret: / | Antal solfangere med fej 1 eller problemer |
| :---: | :---: | :---: | :---: |
| 4. <br> 4.1 <br> 4.2 <br> 4.3 etc. <br> 5. <br> 5.1 <br> 5.2 <br> 5.6 etc. <br> 6. <br> 6.1 <br> 6.2 <br> 6.3 <br> 6.4 <br> 6.5 etc . <br> 7. <br> 7.1 <br> 7.2 <br> 7.3 <br> 7.4 <br> 7.5 <br> 7.6 <br> 7.7 <br> 8. <br> 8.1 | $\frac{\text { Isoleringen }}{\text { Nedbrydning el. ekspansion af isolering }}$ <br> Vand i isoleringen <br> Andre (specificeres) ........ <br> Solfangerkassen <br> Utæthed over for regnpavirkning <br> Korrosion af kassen og fastgørelsesskrue <br> Andre (specificeres) ....... <br> Opsætning af solfangeren <br> Læk ind i huset <br> Råddent tømmer <br> Fejl ved udførelse af opsætning <br> Læk ved inddækning <br> Andre (specificer)........ <br> Solfangerforbindelser og rørforing <br> Læk i solfangerforbindelser <br> Læk i rorføring <br> Dålig rørisolering <br> Problemer med termisk udvidelse <br> Dårlig lodning eller svejsning <br> Problemer med flowfordeling (luftlommer <br> etc.) <br> Andre (specificer) ....... |  |  |
| Når proble og vurderi Når der ikk så giv en den har væ et godt ma | mer eller fejl opdages ved inspektion, skal ing gives pa side 7. <br> ke er nogen problemer eller fejl for en best detaljeret beskrivelse af denne del af solfang ret problemfri på side 9. Skyldes det en god terialevalg eller et godt design for hele so | n detaljeret <br> mt del af sol geren og vurd detailkonstruk fangeren? | skivelse <br> ngeren, hvorfor tion. |

Diskuter mulige grunde til problemer og fejl og vurder i hvert enkelt tilfælde hvor alvorlige de er. Brug referencenumre fra checklisten ved behandingen. Tag stilling til hvordan problemer og fejl kan undgas i fremtiden og hvordan den aktuelle solfanger eventuelt kan repareres. Svar også på, om du tror at nogle af fejlene kunne være forudset ved brug af enten (a) materialprovninger, eller (b) holdbarheds- og driftsikkerhedsprovning af hele solfangermodulet.
A. Kondens og ventilation

Har solfangeren ventilationshuller ?
Afværges kondens ved hjælp af en passende ventilation?
Har solfangerkassen drænhuller ?
B. Beskyttelse mod vejrlig

Kan regn og sne nemt lgbe af fra dæaklag og kasse ?
Kan dæklaget modstå store belastninger fra vind, hagl og regn?
Er fastgorelsen af solfangeren stærk nok overfor store vindbelastninger ?
Er alle delkomponenter beskyttet passende mod vejret og korrosion ?
C. Beskyttelse af solfangerens indre

Har absorberen en holdbar overfladebehandling ?
Er dæklag og absorber beskyttet mod udgasning fra isoleringsmateriale og lign. ?
Kan isoleringen modstå forventede stagnationstemperaturer ?
Er der ved designet af solfangeren taget hensyn til galvanisk korrosion ?
Er der gjort foranstaltninger for en god ventilation af solfangeren ?
D. Konstruktionen generelt

Tages der i konstruktionen herisyn til termisk udvidelse ?
Er der tale om en solfanger af god design og konstruktion?
Er solfangeren rigtigt opsat og installeret ?
Er solfangeren let at vedigeholde og reparere?
Er alle materialer og komponenter velvalgte ?
E. Drift af solfangeren

Er driften tilfredsstillende ?
Er solvarmeanlægget driftsikkert
Bliver effektiviteten af solfangeren påvirket af de fundne problemer og fejl ?
Er brugeren tilfreds med anlæggets drift ?
Forventes en tilfredsstillende levetid for solfangeren ?
Forventet levetid fra opsætningsdato (bedes angivet herunder):

| Mindre end $3 \mathrm{ar}: \square$ | $5-10 \mathrm{a} r: \square$ |
| ---: | ---: |
| $3-5 \mathrm{ar}: \square$ | $10-15 \mathrm{ar}: \square \quad$ Mere end $20 \mathrm{a} r: \square$ |

Detaljeret beskrivelse og vurdering af gode solfangerdetaljer gives pà side 9 .

Detaljeret beskrivelse og vurdering af gode detaljer i solfangeren
Vær venlig at give en detaljeret beskrivelse af alle dele i solfangeren, som
har klaret sig godt. Det gores nemmest ud fra svarene i checklisterne på side 5, 6 og 8.
Tag stilling til hvorfor konkrete detaljer i solfangeren har fungeret godt for den aktuelle solfanger.

## KONDENSPROBLEMER I TAGINDBYGGEDE SOLFANGERE

P. Vejsig Pedersen<br>Laboratoriet for Varmeisolering Bygning 118, DTH 2800 Lyngby

APRIL 1983

Kondensdannelse på indersiden af glasdaklaget i solfangerkonstruktioner sker isar i kolde og fugtige perioder af året. Natlig varmeudstråling fra glasdæklaget til himmelrummet betyder en afkoling af dette på nogle få grader i forhold til udetemperaturen.

En passende ventilationsmulighed for en solfanger kan i princippet bringe kondensen til at forsvinde $i$ lobet af få timer, selv ved relativt små solindfald, hvor absorberen kun stiger nogle få grader over udetemperaturen. Alligevel viser erfaringen, at mange solfangerkonstruktioner som tegn pà et fugtigt miljø kan have kondens siddende i lange perioder, især $i$ vinterhalvåret. Grunden kan være, at de ikke er regntætte, at de ikke er afskærmet mod fugtig, indtrangende luft fra boligen, de er bygget ind $i, ~ e l l e r ~ a t ~$ de ikke er forsynet med passende ventilationsåbninger til udeluften. Resultatet har i visse tilfælde været en fuldstandig nedbrydning af solfangerabsorberens overfladebehandling $i$ lobet af nogle få år.

Som led i Energiministeriets solvarmeprogram er der på Laboratoriet for Varmeisolering igangsat arbejde med at få belyst problematikken angående kondensproblemer i solfangere. Det sker ved lobende inspektioner af solfangere i stagnation og i drift og ved måing af temperatur- og fugtforhold i en række solfangere pa Laboratoriets forsøgsareal.

Ud fra det eksisterende erfaringsgrundlag kan der opstilles en liste over forhold man skal være opmærksom pá, hvis der skal undgås alvorlige problemer med kondens i solfangere.

- En nødvendig forudsætning for at der kan undgås kondensdannelse på solfangerdaklaget er forst og fremmest en
- En tagindbygget solfangerkonstruktion bor altid udeores med indbygget ventilationsmulighed, således at en kombination mellem ventilation drevet af skorstenseffekten og ventilation forårsaget af vind kan udtorre kondens, der dannes på daklaget om natten. Man kan tillade sig endog ret høje luftskifter for et solfang, uden at det vil have nogen nævnevardig indflydelse på effektiviteten (10 luftskifter pr. time vil $f x$ kun give et varmetab, som er omkring $1 \%$ af solfangerens ovrige varmetab).
- Ventilation af solfangere, som er indbygget i taget bor ske med udeluft, med mindre solfangeren vender ind mod et godt ventileret loftsrum, hvor der med sikkerhed ikke tilfores luft fra boligen. Det vil derfor normalt vare nodvendigt at opsxtte en dampspaxre ind mod huset. Ventilation med udeluft vil alt andet lige betyde et koldere solfang om natten, hvor kondensdannelsen sker. Højere luftskifte end nodvendigt kan derfor fore til ekstra kondensdannelse. Dette forhold bor være baggrunden for en Qvre granse for ventilationen.
- Hvis der skal opnås en tilfredsstillende ventilation uden ubehagelige folger, er det ikke nok kun at sorge for ventilationsabninger $i$ bunden af en solfangerkonstruktion, hvor de er lettest at placere. Der skal ogsả være ventilationsåbninger $i$ toppen af solfangerkonstruktionen, afskærmet mod regnindtrongen og med nodvendigt hensyn til, at varm og relativ fugtig luft kan komme ud uden at kondensere et uønsket sted pa vejen. (se figur 1 ).
- Der skal tages højde for at eventuelt indtrængende regnvand ellex kondens kan komme ud af solfangeren igen. Det kan gøres med en indbygget drænmulighed i solfangeren.
- Ovenstående er gyldigt både for solfangere, som er opbygget pá stedet og solfangere opbygget af solfangerkasser som inddækkes $i$ taget. I det sidste tilfælde er det op til solfangerfabrikanten at tage hojde for kondensproblemet ved udformningen af solfangerkassen.

Kondensproblematikken for solfangere kan belyses ved et konkret eksempel.

En solfanger med kondensdannelse pa glasset om morgenen varmes op i lobet af formiddagen. Udeluft med et ringe vandindhold suges bl.a. på grund af skorstenseffekten ind gennem bunden af solfangeren. Luften inde $i$ solfangeren presses samtidig ud gennem luftutatheder i toppen af solfangeren. Den udefra kommende luft varmes op langs absorberdelen i solfangeren for herefter at bevæge sig ned langs glasm set, hoor den optager noget af kondensen i sig. Vandindholdet stiger herved $i$ den stedse varmere luft, mens den relative luftfugtighed kun ændres i mindre grad. For en solfanger med et relativt lavt luftskifte på fx 5 gange pr. time vil en forøgelse af vandindholdet for luften mellem absorber og daklag pa 30 g vand $/ \mathrm{kg}$ luft $i$ løbet af 4 timer om formiddagen svarer til, at den samlede ventilationsmængde på 0.8 m 3 luft har optaget ca .30 g vand pr. m 2 solfanger. Denne vandmangde svarer til en almindeligt forekommende kondensdannelse på indersiden af solfangerglasset, hvor det kun er et begrænset areal, der er kondens på, (se figur 2).

Det ses, at en ringe ventilation af solfangeren alene kan være grund til at kondens ikke forsvinder særlig hurtigt. problemet forværres selvsagt, hvis der ikke kun er vand ved glasdaklaget men også i solfangerkassen. Desuden bliver kravet til en god ventilation yderligere skærpet, hvis kravet er, at kondens dannet om natten også skal forsvinde i de forste morgentimer på dage med ringe sol. Dette krav viser sig i mange tilfælde at være muligt at klare, idet vindforholdene omkring solfangeren og den heraf foranledigede variation i tryk også kan give en betydelig ventilation af solfangeren. I meget fugtige perioder kan det dog være svart at få oplost kondensen selv med ret store mængder ventilationsluft. I så tilfælde er det en fordel med en hojeffektiv solfanger, som kan omsætte selv ret små solindfald til en forøgelse af absorbertemperaturen.

Problemet med en uheldig udluftningsmulighed i toppen af en solfanger, hvor varm, fugtig luft på sin vej ud efterlader kondens $i$ solfangerkassen, fører $i$ nogle tilfælde til en karakteristisk kondensdannelse ved dæklagets hjørner om
eftermiddagen. Det skyldes, at indtrængende tor udeluft befugtes af vaden pa sin vej ind i solfangeren og igen afsatter denne ved det efterhånden relativt kolde daklag.

Det má som sagt som en hovedregel altid anbefales, at ventilation af en tagindbygget solfanger sker med udeluft. For at sikre dette er det i mange tilfælde nodvendigt at opsatte en dampsparre ind til det rum solfangerens bagside vender imod. Der findes desvarie flere eksempler på at permanent kondens i lange perioder af vinterhalvaret kan tilskrives, at ventilationen fra boligen til dels sker ud gennem solfangerkonstruktionen. Selv om solfangeren vender ind mod ubenyttede loftsrum, kan der på forskellig vis alligevel tilføres fugt fra boligen.

Det er derfor kun loftsrum med en tydeligvis kraftig ventilation med udeluft og en lufttæt membran ned til boligen, som man kan fole sig sikker med.

Fordi problemer med regnutathed og kondens for solfangere er ret nart forbundne, kan det være svart at skelne mellem årsag og virkning. Det er sadang at kondensdannelse over lange perioder ofte er resultat af, at solfangerkonstruktionen er våd på grund af regnutathed, og saledes bliver et symptom på dette.

Kondensdannelse $i$ en regntæt solfanger, som er utilstrakkeligt ventileret, kan i nogle tilfalde vare et ligesa alvorligt problem. Herved kan der lobende dannes mere kondens, end der ventileres vak. Dette kan over en lang periode fore til et permanent vadt solfang med en meget begranset levetid for solfangerabsorberen til folge.


Kondenseret vand kan lobe ned.
Wigur 1 Det ovre ventilationshul i en solfanger med drivhusglasafdakning kan fx udformes så fugtig varm luft afkoles $i$ et indbygget ventilationshul, og kondenseret vand ledes vak uden at gore skade.


Figur 2. Luften $i$ en solfanger optager som vist kondens fra glasset $i$ sig, når solfangeren varmes op. Der stilles derfor ekstra store krav til ventileringen, sa varm fugtig luft på sin vej ud ikke afsætter kondensvand på uønskede steder.

Energiministeriets solvarmeprogram

Energiministeriets (tidligere Handelsministeriets) udvik-lings- og demonstrationsprogram for solvarme skal medvirke til udviklingen af solvarmeanlæg i Danmark.

Det er solvarmeprogrammet formal:

- at medvirke til at solvarmeanlag udformes saledes, at der opnås størst muligt termisk udbytte, stor driftssikkerhed og lang levetid.
- for herigennem at bidrage til en udvikling inden for solvarmeomradet, der medforer, at solvarmeanlæg kan blive konkurrencedygtige og på længere sigt give et væsentligt bidrag til dækning af energiforbruget til opvarmning i Danmark.


## Projektorganisation

## Styregruppe:

Energiministeriet har fra september 1981 udpeget folgende styregruppe for solvarmeprogrammet:
V. Korsgaard, professor, Laboratoriet for Varmeisolering, DTH, (formand).
P. Ahrenst, kontorchef, Boligselskabernes Landsforening.
P. Alling, direktor, Dansk Solvarme $K / S$.
E. Christoffersen, afdelingsleder, Statens Byggeforskningsinstitut.
P. Dirks, afdelingsingenior, Dansk kedelforening.
P. Dorph-Petersen, fuldmægtig, Energiministeriet.
K. Hallgreen, ingenior, Danfoss $A / S$.
K. Hyllested, ingenior, Energistyrelsen.
J. Jerking, Byggestyrelsen, Energikontoret.
N.I. Meyer, professor, Fys.Lab. III, DTH.
J.S.R. Nielsen, civilingenior, Birch og Krogboe.
V.S. Pejtersen, civilingenior, Risø.
E. Petersen, lektor, Kem.Lab.I, H.C. Drsteds Institutcet.
P. Steensen, civilingenior, Teknologisk Institut.
P.J. Snare, civilingenior, Energistyrelsen.

## Projektmedarbejdere

Laboratoriet for Varmeisolering:
O. Balslev-Olesen, civilingeniør.
K. Ellehauge, civilingenior.

Sv.E. Mikkelsen, civilingenior.
L. Olsen, civilingenior, stud.lic.techn.
N.B. Andersen, civilingeniør.
O. Dyxnum, civilingenior.
S. Furbo, civilingenior, stud.lic.techn.
S. Melson, civilingenior.
C. Paludan-Moller, civilingenior.
P.V. Pedersen, civilingenior.
B. Bøhm, civilingenior, lic.tech.

P。Engkjær, ingenior.
M. Grimmig, arkitekt m.a.a.
L. Hallgreen, ingenior, lic.techn.
T. Vest Hansen, ingenior.
M. Lange, ingenior
O. Paulsen, civilingeniør, lic.techn。
P. Steensen, civilingenior.

I forbindelse med demonstrationsanlaggene har endvidere medvirket de pågældende byggeriers arkitekt og rådgivende ingenior.

## Adressex:

Laoratoriet for Varmeisolering, Bygning 118, Danmarks tekniske Højskole, 2800 Lyngby - Telf. 02-883511.

Teknologisk Institut, Varmeteknik, Gregersensvej, 2630 Tåstrup - Telf. 02-996611.

