The Low-Energy House Project The Danish Ministry of Energy

SIMULTANEOUS TESTING OF HEATING SYSTEMS

The Low - Energy House Project, The Danish Ministry of Energy

EXPERIMENTAL LOW-ENERGY HOUSE AT THE

 TECHNICAL UNIVERSITY OF DENMARK, description of a system for simultaneous testing of heating systems for conservation houses under actual climate conditionsNIELS HENRIK RASMUSSEN - BJARNE SAXHOF

The Lowwenergy House project

```
Research team
Mogens R. Byberg, M Sc, project manager
Rolf G. Djurtoft, M Sc
Allan Aasbjerg Nielsen, M Sc
Gad Nissenbaum, B Sc
Johannes Poulsen, M Sc
Kirsten Engelund Poulsen, M Sc
Niels Henrik Rasmusseng M Sc
Bjarne Saxhof, MSC

PREFACE

The main part of this report was presented at the ENERGEX'82 SESCI Enexgy Confexence at Regina, Saskatchewan, Canada, August 23-29 1982. The content has been reedited and new material and illustrations have been added.

The Low-Energy House Project is carried out by the Thermal Insulation Laboratory at the Technical University of Denmark. The project is part of the National Energy Research Programme and is Eunded by the Danish Ministry of Energy.

INDEX

Heading
ABSTRACT ..... 1
INTRODUCTION ..... 2
THE EXPERTMENTAL LOW-ENERGY HOUSE ..... 4
THE TEST FACIXITY FOR HEAT SOURCES ..... 7
THE HEAT SOURCES ..... 12
CONCLUSION ..... 20
ACKNOWLEDGEMENT ..... 23
APPENDIX ..... 24

During the winter 1981－82 a test facility has been built in connection with a multiplewpurpose experimental low energy house．In this test facility different sources of heat，mainly for hydronic systems，can be tested sim－ ultaneously under actual climate conditions，each test unit at any time generating the quantity of heat demanded by the experimental house．The basic control unit of the simulation system is a sensitive differen－ tial controller operating a fast modulating magnetic three－way valve．A series of tests shows that these controls will adjust the distribution and return temper－ atures in the simulation system according to the system temperatures in the experimental house with a mean devi－ ation of less than to． 15 deg \(C\) 。

The first heat sources to be tested in the simulation system are two heat pumps－an air－to－water heat pump drawing heat from the external air and a water－to－water heat pump drawing heat from the ground．

The air－tomwater heat pump was installed in March 1982 。 and preliminary tests from the first period of operation （7 weeks）show efficiencies of the heat pump unit rang－ ing from 2.2 to 2.6 －the power consumption including the electricity used by the compressor and the evapora－ tor fan。

The watermo－water heat pump was installed in May 1982 。 The first measurements will be carxied out at the begin－ ning of the heating season 1982－83．

\section*{INTRODUCTION}

Most energy conservation houses are characterized by a high degree of insulation and air tightness, thus having a low energy demand due to transmission and ventilation losses. Equally important is the fact that compared to standard houses a larger percentage of the heat loss is met by free heat (solar heat gain and internal load due to emission of heat from persons, lighting, electric appliances etc). In the Danish climate up to \(40 \%\) of the demand may be met this way according to our experience.

Heating systems, however, are designed in total disregard of this, and furthermore the design external temperature is -12 deg \(C\) a temperature that occurs only a few times in a normal heating season. Denmark has approx 70,000 heating degree hours (17 deg C base) in a year, and the average extexnal temperature during the months October-April is 3.0 deg \(C\).

In energy conservation houses the normal operating conditions for such heating systems will be less than half the heat production capacity. Especially for piped heating systems this causes a decrease of efficiency, eg of boilers, and also increased no-load losses.

It must be emphasized that whereas these undesirable losses may be neglected in normal houses that cannot be done in low-energy houses as they can play a significant part in the energy balance for the heating systems.

To investigate heating systems for conservation houses under natural weather conditions a special test facility was designed and built at the Technical university of Denmark. The main element of the test facility is a multiple-purpose experimental low-energy house built in 1980 。

During the winter \(1981-82\) a smaller house has been built close to the experimental house, especially for the testing of heat sources. The general layout is outlined in Figure 1 . In the smaller house the heat demand of the larger house is simulated so that different heat sources can be tested simultaneously.


Figure 1. General layout. Window area equal to about \(5 \%\) of the floor area.

The experimental low-energy house is a one-storey house with a crawl space and a roof space, the latter being used as workshop and monitoring room. The house has a floor area of approx \(120 \mathrm{~m}^{2}\), divided by an insulated partition into an eastern and a western room of \(60 \mathrm{~m}^{2}\) each ( \(A\) and \(B\) in \(F i g-\) ure 2). The house is wood-built, the main storey being insulated with 300 mm mineral wool. Custom-built prefabricated building units have been used for the main storey, the wall elements being interchangeable. The joints between the elements are sealed with polyurethane foam, and the polyethylene vapour barrier has squeezed lap joints, cf Figure 3. Infiltration air change measurements indicate an air change rate of 0.008 per hour. Each room ( \(A\) and \(B\) ) has a ventilation system with a cxoss-flow plate type heat exchanger, normally giving a total air change of 0.5 a.c.h.


٪巛W THERMALLV LIGHT FLOOR
FINNED PIPES


Man

THERMALLY HEAVY FLOOR

ELECTRIC RESISTANCE HEATER

Figure 2. Experimental house - Floor plan showing the different heating systems. Window area equal to about \(5 \%\) of the floor area.

\(\$ 45\}\)


Figure 3. Experimental house - Building components. Mason ite beam (top), wall (or floor) element (center) and joining of two elements (bottom).

During the first heating season (1980-81) the house had no windows at all. During the heating season 1981-82 the window area was approx \(5 \%\) of the floor area - in the summer of 1982 the percentage was raised to 15. At 15\% window area the design heat loss by transmission, infiltration and controlled ventilation (recovery performance coefficient 0.7) is 3.2 kW (design internal to external temperature difference 32 deg \(C\) ) 。 During the preliminary tests in the spring of 1982 the design heat loss was only 2.5 kw due to the smaller window area.

In both test rooms four alternative heating systems have been installed:
- floor heating (embedded tubes)
- perimeter heating (finned pipes)
- electric resistance heaters
- electric hotwair heating connected to
the heat recovery unit.

The floor heating and the perimeter heating are low-temperature systems designed to have operating flow temperatures ranging from 25 deg \(C\) to 35 deg \(C\). Both systems are connected to an electric boiler (each room has its own).

In room \(A\) a traditional floor heating construction (concreted plastic tubes) has been employed - in room \(B\) a thermally lighter construction has been used having a floor surface of 22 mm chip board on top of 50 mm expanded polystyrene, the plastic tubes being placed in premilled grooves in the polystyrene. Metal sheets between the chip boards and the tubes contribute to giving a uniform surface temper ature. During the heating seasons 1980-81 and 1981-82 the heating systems have been tested with different control strategies, all controllers being based on room thermostats. The results of these tests will be published in the spring of 1983.

Detailed continuous measurements of energy consumption, internal temperatures, and weather data are carried out, thus creating a basis for thorough analyses and improved computer simulation programs, particularly regarding the solar heat gain。

THE TEST FACILITY FOR HEAT SOURCES

The heat source house (C in Figure 4) has a floor area of \(17 \mathrm{~m}^{2}\) and is located to the northeast of the experimental house.


HEAT SOURCE HOUSE
EXPERIMENTAL LOW-ENERGY HOUSE

Figure \(4 . \quad\) Schematic section of the two houses.

The physical separation of the heat sources and the heaters in combination with a very flexible simulation control system makes it possible to test a number of heat source systems simultaneously (the heating system temperatures being copied without interfering with the test programme for the experimental house) thus giving a good basis for a realistic comparison. At present two heat source systems can be operated from each room of the experimental house. For specific investigations of certain heat sources, especially heat
pumps, the system can be operated the other way around. The distribution temperature in the experimental house can be adjusted according to the system temperature generated by the heat source.


Alternative 1 (with mixing)


Alternative 2
(without mixing)

Figure 5. The connection between the heat sources and the heat distribution system.

Figure 6 shows diagrams of the simulation system and one of the heating systems in the experimental house according to the two operation strategies.

Alternative 1:

The heat source is controlled according to the demanded flow temperature of the simulation cycle. The room thermostat in the test room (A or B) controls the flow temperature in the test room. This temperature dictates the flow temperature of the simulation cycle。 Similarly, the return temperature in the test room dictates the return temperam ture of the simulation cycle. Thus the normal operation of the test room is not disturbed.

Alternative 2:

The room thermostat in the test room (A or B) cone trols the heat source directly. The simulation cycle flow temperature dictates the flow temperaw

\section*{ALTERNATIVE 1}

4. MAGNETIC THREE-WAY VALVE
(A) CIRCULATION PUMP

NON-RETURN VALVE
\(8-\square\) RADIATOR WITH FAN
DIFFERENTIAL CONTROLLER
ROOM TEMPERATURE

F/R FLOW/RETURN TEMPERATURE SENSOR
\(F_{Y} / R_{Y}\) FLOW/RETURN THREE-WAY VALVE
\(F_{R} / R_{R}\) REFERENCE FLOW/RETURN TEMPERATURE SENSOR


Figure 6. Diagrams of the simulation system and a heating system, according to the two strategies of operation。

\begin{abstract}
ture in the test room. The heat output in the test room gives a certain return temperature. This temperature dictates the return temperature of the simulation cycle This control strategy thus intexferes with the operation of the test room.
\end{abstract}

The basic control unit in the simulation system is a sensim tive difeerential controller RPR9 + RPR developed by stäfa Control system. The controller is equipped with special. high precision pta 100 temperature sensors. The controller operates a fast magnetic type modulating three-way valve (SCS M3P15G), mixing to keep any set temperature difference between the two sensors - the set value mostly being 0.0 deg \(C\).

The flow in the simulation cycle is mostly kept at twice the flow of the experimental house reference heating system to simulate the heat demand of a \(120 \mathrm{~m}^{2}\) conservation house. The flow is adjusted manually.

The heat delivered by the heat source is conducted away by ventilation as indicated in figure 6 .

Temperatures and Elows in both the simulation system and the heating system are measured every ten minutes by the datalogger equipment installed on the top floor of the experim mental house. These measurements show that the differential controllers and the magnetic threewway valves have funco tioned very satisfactorily. For a period of 10 days the mean deviation between the flow and return temperature difference of the perimeter heating system (test room A) and the corresponding difference of the simulation system was only 0.06 deg \(C\). Figure 7 presents some of the measured and calculated data from this 10-day period, operated according to Alternative 1 .
\begin{tabular}{|c|c|c|c|c|c|}
\hline & ```
    tF
(flow temp.)
    [deg C]
``` & \[
\begin{gathered}
\mathrm{t}_{\mathrm{R}} \\
(\text { return temp.) } \\
{[\operatorname{deg} \mathrm{C}]}
\end{gathered}
\] & \[
\begin{aligned}
& t_{F}-t_{R} \\
& {[\operatorname{deg} \mathrm{C}]}
\end{aligned}
\] & Flow
\[
\left[\mathrm{m}^{3}\right]
\] & \begin{tabular}{l}
Heat output \\
［ kWh ］
\end{tabular} \\
\hline \begin{tabular}{l}
PERIMETER HEATING： \\
Mean／total． \\
Standard deviation \\
SIMULATION SYSTEM： \\
Mean／total \\
Standard deviation
\end{tabular} & \[
\begin{array}{r}
26.66 \\
1.90 \\
\\
26.77 \\
1.88
\end{array}
\] & \[
\begin{array}{r}
25.86 \\
1.57 \\
\\
25.92 \\
1.56
\end{array}
\] & \[
\begin{gathered}
0.80 \\
\ldots \\
0.85 \\
-
\end{gathered}
\] & \[
218.34 \approx)
\]
\[
237.43
\] & \[
203.2 *)
\]
\[
236.7
\] \\
\hline Mean deviation between the two systems［\％］ & 0.4 & 0.2 & 6.3 & 8.7 & 16.2 \\
\hline ＊）Two times the true & output in te & room \(A\) 。 & & & \\
\hline
\end{tabular}

Figure 7．Results from 10 eday cest period of simulation system（Alternative 1）and a perimeter heating system。

As indicated in Figure 7 the Elow in the simulation cyole is a Iittle higher than two times the flow in test room A．If it is considered important to have exactly twice the flow careful trimming may reduce the deviation almost to o．It should be noticed that the flow／return temperature diffex ence is as low as 0.8 deg \(C\) ．Thus the small deviations in temperature result in a temperature difference deviation of 6． \(3 \%\) ．Even at these extremely unfavourable operating condim tions it will thus be possible to keep the difference of heat output in the two systems within \(100 \%\) ．

Figure 8 illustrates how little the flow／return tempexacure difference of the simulation system deviates from the corm responding temperature difference in the test room during a 24 －hour period．Attention is called to the scale of the ordinate axis。

DIFFERENCE BETWEEN:
THE FLOW-RETURN TEMPERATURE DIFFERENCE IN THE SIMULATION SYSTEM AND THE CORRE SPONDING DIFFERENCE IN THE PERIMETER HEATING SYSTEM (TESTROOM A).

Figure 8. Precision of the simulation equipment.

THE HEAT SOURCES

The first heat sources to be tested in the simulation system are two heat pumps, each designed to meet approx \(60 \%\) of the 3.2 kW design heat loss of the experimental low-energy house (15\% window area). Complementary to each heat pump an eleco tric heating element meets the peak load.

System 1 has a commercially produced vesttherm airmto-water heat pump drawing heat from the external aire The system and its control equipment are shown in principle in figure 9. The connections between the heat pump and the simulation system are arawn according to Figure 5 (Alternam tive 1). The mixing valve shown in figure 5 is not physically removed when the system is operated according to Alternative 2 (without mixing), but the differential on-off controller is short-circuited to leave the left gate permam
nently open. In this situation the room thermostat located in the experimental house controls the operating periods of the compressor and the evaporator fan directly.

System 2 has a specially designed water-to-water heat pump drawing heat from the ground through 130 m plastic tubes (40 mm bore) buried at a depth of 1.5 m (spacing 1.5 m). alternatively through a set of tubes buried at a depth of 0.9 m , as shown on the title page. The two sets of tubes will be used in different heating seasons. part of the experiment is to fill the tubes with plain water using no anti-freeze additives, eg ethylene glycol. Monitoring experience from a low-energy house at Hjortekær, north of Copenhagen, indicates that it should be possible It is desirable to avoid anti-freeze solutions for environmental reasons. The system and its control equipment are shown in principle in Figure 10 。

The connections between the heat pump and the simulation system are drawn according to Figure 5, Alternative 1. The mixing valve is operated as described for the air-to-water heat pump. A flow switch has been installed in the ground tube cycle. If the water temperature approaches the freez ing point the flow decrease will switch off the compressor and the corresponding circulation pump. The heat source system 2 was installed in the spring and was ready for operation by the end of May 1982.

The detailed monitoring programme includes measuring of input and output (from the heat pump as well as the auxiliary heating element), operating temperatures and flow, working and defrosting periods, and no-load losses.

Figure 11 and 12 illustrate the measuring systems (showing electricity meters, flow meters, thermocouples, thermopiles etc). All data is collected and stored in the central datalogger located on the top floor of the experimental house.

SMALL STORAGE UNIT \(\left(25 \times 10^{-3} \mathrm{~m}^{3}\right)\)

ELECTRIC HEATING ELEMENT (3.O RW)

CONDENSER

COMPRESSOR

\(T 1\) THERMOSTAT. ON-OFF CONTROL OF ELECTRIC HEATING ELEMENT.

THERMOSTAT INTEGRATED IN THE HEAT PUMP UNIT. ON-OFF CONTROL OF COMPRESSOR AND EVAPORATOR FAN.

DIFFERENTIAL CONTROLLER. ON-OFF CONTROL OF COMPRESSOR AND EVAPORATOR FAN. REFERENCE SENSOR PLACED IN THE FLOW TUBE JUST AFTER THE CIRCULOATION PUMP (SIMULATION CYCLE). OPERATION GENSOR PLACED IN STORAGE UNIT. (SET MIN/MAX TEMPERATURE DIF FERENCE EG \(1.5 \mathrm{C} / 4.0 \mathrm{C}\))
```

Figure 9. Heat source system 1. Air-to-water heat pump.
Figure 10. Heat source system 2. Water-to-water heat pump.
(opposite)

```

SMALL STORAGE UNIT \(\left(25 \times 10^{-3} \mathrm{~m}^{3}\right)\)

ELECTRIC HEATING ELEMENT (\(3.0 \mathrm{kW)}\)

CONDENSER

GROUND TUBES
CONE SYSTEM BURIED
AT A DEPTH OF 1.5 m ANOTHER OF 0.9 m)
\(T_{1}\) THERMOSTAT . ON-OFF CONTROL OF ELECTRIC HEATING ELEMENT.

THERMOSTAT. ON-OFF CONTROL OF COMPREGSOR AND CIRCULATION PUMP IN GROUND TUBE CYCLE.

PREGSURE SWITCH. MANDATORY (BY THE DANISH BUILDING CODE) . STOPS THE COMPRESSOR IF THE PRESGURE DROPS IN THE GROUND TUBES.

DIFFERENTIAL CONTROLLER. ON-OFF CONTROL OF THE COMPRESSOR AND THE CORRESPONDING CIRCULATION PUMP. REFERENCE SENGOR PLACED IN FLOW TUBE JUST AFTER THE CIRCULATION PUMP (SIMULATION CYCLE). OPERATION GENGOR PLACED IN STORAGE TANK. (SET MIN/MAX TEMPERATURE DIFFERENCE EG \(1.5 \mathrm{C} / 4.0 \mathrm{C}\)).

CIRCULATION PUMP COOLING RADIATOR

CIRCULATION PUMP

HEAT SOURCE SYSTEM:

STORAGE UNIT

ELECTRIC HEATING ELEMENT

HEAT PUMP

EVAPORATOR FAN

\(\square\) THERMOCOUPLE \(\prod\) THERMOPLLE \(\square^{\text {FLOW METER }}\)

Figure 11. Heat source system 1。 Diagram of monitoring system.

SIMULATION SYSTEM:

CIRCULATION PUMP
COOLING RADIATOR

CIRCULATION PUMP

HEAT SOURCE SYSTEM:

STORAGE UNIT

ELECTRIC HEATING ELEMENT

HEAT PUMP

CIRCULATION PUMP

GROUND TUBES

\(\square\) THERMOCOUPLE THERMOPILE FLOW METER

Figure 12. Heat source system 2。 Diagram of monitoring system.

The detailed monitoring of system 1 was started on March 1st. It was planned to keep the watex-to-water heat pump in system 2 working all summer to cool the ground to a reference temperature level measured at a low-energy house at Hjortekær. However, as shown in Figure 13 it was found that the temperature at the ground coil level regenerates during the summer, and therefore the system will be operated and monitored from the beginning of the heating season 1982-83.

Figure 13. Temperatures at ground coil level at Hjortekær and the external air temperature.

Figure 14 shows results from two testing periods corresw ponding to the two alternative test systems described in Figure 5 and 6 . The overall efficiency of the simulation system is found as the ratio of the heat output to the total power consumption for compressor, evaporator fan and circulation pump. The efficiency of the heat pump unit, however, is found as the ratio of the condensex heat output to the electricity consumption for compressor and evaporator fan.

The considerable pressure drop in the simulation cycle due to the radiator，the threewway valves，the flow meters and the numerous immersed temperature sensors necessitates a powerful pump as is evident from the results in Figure 14 。 This makes it a little difficult to simulate very small out－ puts from the heat source．

The preliminary tests of the air－towwater heat pump yielded the overall system efficiencies \(1.7 / 2.2\) and the heat pump unit efficiencies \(2.2 / 2.6\) by Alternative 1／Alternative 2 respectively。 As defrosting arrangement the fan is stopped and the hot fluid from the compressor is led directly to the evaporator．The efficiencies are not satisfactory but they can be improved through some modifications of the heat pump and the connections to the little storage tank．The parti－ tion separating the compressor space from the evaporator space was leaky and insufficiently lagged．As cold air（up to \(\left.1000 \mathrm{~m}^{3} / \mathrm{h}\right)\) passes through the evaporator space air tight－ ening and improved lagging will lessen the uncontrolled cooling of the compressor considerably，and as a special cooling circuit connects the condenser and the compressor the performance will improve．Secondy，by Alternative 1 the flow through the condenser is occasionally very low． The efficiency can be improved by installation of a secon－ dary circuit connecting the condenser and the small storage unit（as illustrated in Figure 15）thus ensuring a permanent minimum circulation through the condenser．These improven ments will be carried out in the near future．An even bet－ ter solution（but hardly feasible in this case）would be to have the condenser immersed in the storage tank．

Generally speaking，higher heat pump efficiencies can be expected from Alternative 2 than from Alternative 1。 because the flow through the condenser is larger in the first case （no part of the flow is diverted） fowever，that is not necessarily true of the overall system efficiencies，but that is one of the questions that will be answered after the forthcoming heating season．

\section*{ALTERNATIVE 2 : WITHOUT MIXING}

EXTERNAL AIR TEMPERATURE : T.0 DEGC
FLOW TEMPERATURE AFTER CONDENSER :24.5 DEGC
INTERMITTENT FLOW, RELATIVE OPERATING TIME OF PUMP: \(38 \%\)

Figure 14. Power consumption and heat output from air~towater heat pump (mean values from a monitoring period of about 14 days).

CIRCULATION PUMP (15 W) NON-RETURN VALVE

SMALL STORAGE UNIT
\(\left(25 \times 10^{-3} \mathrm{~m}^{3}\right)\)
ELECTRIC HEATING ELEMENT

CONDENSER

COMPRESSOR
EVAPORATOR
FiN

Figure 15. Heat source system 1. Installation of a secondary cycle.

\section*{CONCLUSION}

A test facility comprising an experimental low-energy house with different heating systems and a separate house for heat sources has been described, the two houses being connected by underground cables only. Also a description has been given of a system in the heat source house performing simultaneous simulation of the actual heat output in the experimental house or any output directly proportional to this.

The monitoring of the simulation system has so far indicated that it is possible to simulate the actual heat demand and dynamics of the experimental low-energy house even at unfavourable operating conditions with a deviation of less than \(\pm 10 \%\) 。

This opens up possibilities of testing several heat sources at the same time thus giving a good basis for comparisons.

The two heat pump systems described will be tested simultaneously during the forthcoming heating season after final trimming of the simulation systems during the summer of 1982.

No distinct and far-reaching conclusions about the air-towater heat pump should be drawn from the preliminary test results reported here, but it must be stated that the com mercial product has in some respects been found wanting however, only minor efforts are required to repair the defects.

\section*{ACKNOWLEDGEMENT}

We should like to thank our colleagues in the Low-Energy House Project research team, Mogens R. Byberg (project manager), Rolf Ge Djurtoft and Johannes poulsen, who have parw ticipated in either the planning or the construction of the simulation equipment.

\section*{APPENDIX}

The measuring systems are illustrated in Figure 11 and 12 。
\begin{tabular}{|c|c|c|c|c|c|}
\hline \multicolumn{6}{|c|}{Heat source system 1 with simulation system} \\
\hline & em & Desc & ription & Unit & Data \\
\hline & & SS: & Flow through sim. cycle & \(m^{3}\) & \(L+\mathrm{R}\) \\
\hline M & & SS: & Temp.diff. flow/return & C & L \\
\hline M & 3 & SS: & Flow temperature & C & \(\pm\) \\
\hline M & 4 & SS: & Electricity for pump & kWh & R \\
\hline M & 5 & SS: & Flow diverted from HS & \(\mathrm{m}^{3}\) & R \\
\hline M & 6 & HS: & Flow through condenser & \(\mathrm{m}^{3}\) & \(\mathrm{L}+\mathrm{R}\) \\
\hline M & 7 & HS: & Temperature in tank & C & J, \\
\hline & 8 & HS: & lectricity for heatex & kWh & L+R \\
\hline & 9 & HS: & perating time for heater & h & R \\
\hline & 10 & HS: & Number of starts for heater & ND & R \\
\hline & 11 & HS: & Condensex flow temperature & C & L \\
\hline M & 12 & HS: & Condenser flow temp.diff. & C & L \\
\hline M & 13 & HS: & Electricity for compressor & kWh & \(L+\mathrm{R}\) \\
\hline M & 14 & HS: & Operating time for M 13 & h & \(\mathrm{L}+\mathrm{R}\) \\
\hline M & 15 & HS: & Number of starts for M 13 & ND & \(L+\mathrm{R}\) \\
\hline M & 16 & HS: & Defrosting period & h & \(L+\mathrm{R}\) \\
\hline & 17 & HS: & Number of starts for M 16 & ND & R \\
\hline M & 18 & HS: & lectricity for evap. fan & kWh & R \\
\hline & 19 & HS: & Air temperature at evap. & C & L \\
\hline M & 20 & HS: & Air temp.diff. at evap. & C & L \\
\hline \multicolumn{6}{|l|}{HS \(=\) Heat source system (heat pump)} \\
\hline \multicolumn{6}{|l|}{SS = Simulation system} \\
\hline \multicolumn{6}{|l|}{\(L^{\prime}=\) Logged every 10 minutes (accumulated values for digital meters)} \\
\hline \multicolumn{6}{|l|}{\(\mathrm{R}=\) Daily (visual) meter readings} \\
\hline
\end{tabular}
```

