RAPPORT VEDRめRENDE

EFP - PROJEKT

HめJISOLERET LET VEGELEMENT MED STOR TERMISK KAPACITET

Rapport 90-1
Danmarks tekniske Højskole Laboratoriet for Varmeisolering

Gennem en årrække er der i Danmark sket en ændring af ydervæggenes opbygning fra tunge til lette konstruktioner. Dette har bl.a. medført, at bygningernes varmeakkumuleringsevne og dermed den "indbyggede" temperaturregulering er reduceret. Desuden udnyttes de anvendte materialer ikke optimalt, hvilket betyder uhensigtsmæssige kuldebroer og ressourcespild.

Ideen i dette projekt er at finde metoder til at løse disse problemer ved hjælp af et let "sammenspændt" vægelement med indbygget varmeakkumuleringsmedium, som er udviklet til anvendelse ved energilagring og i solfangersystemer.

Energiministeriet har under EFP-87 "Energianvendelser i Bygninger" støttet gennemførelsen af et projekt foreslået af professor Vagn Korsgaard, Laboratoriet for Varmeisolering, DtH. Projektet er gennemført i samarbejde med private erhvervsvirksomheder og med en kemi konsulent.

Resultatet af projektet fremgår af denne rapport's afsnit 15 for så vidt angår bygningstekniske forhold og af afsnit 68 samt BILAG 5 for så vidt angår de kemisk/termiske forhold.

Lyngby, Juni 1990
V. Korsgaard

Projektet har sigtet mod udvikling af et h申jisoleret, let vægelement med stor termisk kapacitet. Vægelementet opbygges af tynde yderflanger af fx. krydsfiner, spånplade eller gipskartonplade, hvorimellem er anbragt et varmeisolerende lag af mineraluld. De to tynde yderflanger sammenspændes om mineralulden ved hjælp af gennemgående tynde strittere af f. eks. rustfast stål, så mineralulden komprimeres passende. Herved opnås dels at friktionen imellem flangepladerne og mineralulden overflødiggør limning, dels at flangepladernes indadgående udbøjning forhindres ved lodret belastning. Den ikke-stive sammenkobling af de to flangeplader forhindrer, at elementet krummer, når det udsættes for forskellig luftfugtighed på yder- og indersiden. Den store varmekapacitet opnăs ved, at flangerne - fortrinsvis inderflangen - mættes med en parafin med et smeltepunkt svarende til normal stuetemperatur. Smeltevarmen bevirker en betydelig forøgelse af vægelementets varmekapacitet.

Baggrunden for projektet er, at lette, bærende vægelementer hidtil har været karakteriseret ved et unødvendigt stort materialeforbrug, idet de indgående materialers specifikke egenskaber ikke har været udnyttet fuldt ud. I de fa tilfælde, hvor dette har været fors申gt, har det medført mindre gode egenskaber og/eller en væsentlig fordyrelse. Den stigende interesse for passiv udnyttelse af solvarme er desuden vanskelig at tilgodese i de lette vægelementer med lav varmekapacitet.

Formålet er derfor at udvikle et let, højisoleret vægelement med stor varmekapacitet med et minimum af materialeforbrug og lave produktionsomkostninger, som vil kunne finde anvendelse til montagebyggeri, dels til bærende ydervægge og skillevægge i parcelhuse, dels til udfyldningselementer og skillevægge i etagebyggeri.

Målgruppen vil primært være mindre typehusfirmaer og håndværksmestre, som bygger parcelhuse, og med- eller selvbyggere. Standardelementer vil eventuelt kunne lagerføres af byggemarkeder. For udfyldningselementernes vedkommende vil mågruppen også være større byggefirmaer.

PROJEKTORGANISATION

Projektet er gennemført af en arbejdsgruppe bestående af:

- Professor Vagn Korsgaard, Laboratoriet for Varmeioslering
- Direktør Viggo Thrane, Tåsinge Træ A/S
- Afdelingschef Mogens Toksværd, Danogips A/S (fra april til august 1988)
- Laboratoriechef Carl Erik Bech, Danogips A/S (fra august 1988)
- Chefingeniør Kurt Stokbæk, Rockwool Insulation Holding

Professor Vagn Korsgaard har virket som projektleder og chefingeniør Kurt Stokbæk som faglig sekretær for arbejdsgruppen.

Lic. scient. Erik Pedersen har været tilknyttet som kemi konsulent og er blevet honoreret efter tidsforbrug medens gruppemedlemmerne har deltaget uden vederlag.

Arbejdet er foregået ved møder, hvorunder problemer, arbejdsdeling og forslag blev drøftet. Der har ialt været afholdt 11 mфder i gruppen samt enkelte møder med reduceret deltagerantal. Desuden er der udsendt 3 statusrapporter mellem møderne.

3. PROJEKTPLAN

Den oprindelige plan omfattede følgende 2 faser:

1. fase: Et antal prøveelementer med forskellige flangematerialer og tykkelser opbygges og prøves for såvel statiske som dynamiske, termiske, brandmæssige og lydmæssige egenskaber. De forskellige flangematerialers evne til opsugning af parafiner vil blive undersøgt, og varmekapaciteten målt. Tilgængelig udenlandsk viden på området vil blive udnyttet i størst muligt omfang.
2. fase: Såfremt 1. fase fører frem til brugbare elementer, vil disse blive detailudviklet i en anden fase, der også vil omfatte samlingsdetaljer mellem elementerne indbyrdes og tilslutninger til andre byggekomponenter som vinduer, døre, tag og fundament.

Aktivitets og tidsplan for 1. fase fremgår af BILAG 1 "Aktivitetsplan" af 1987-07-09.

Under projektets gennemførelse er der hentet informationer i litteraturmateriale som angivet i BILAG 2.
4. ELEMENTPRINCIP

Dimensioner og Vægt

I projektbeskrivelsen er det anført, at der er tale om et lavenergielement. Tykkelsem må dog ikke være så stor, at det giver praktiske problemer, eller at det giver andre betænkeligheder hos brugerne. Det er besluttet, at gennemføre projektet med et element med 200 mm tyk ROCKWOOL A-Batts +2 gange beklædningstykkelse. Dette giver en U-værdi pa 0,16$0,17 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$, afhængig af valg af klimaskærm, hvilket med rimelighed kan betegnes som et lavenergielement, nar der tages hensyn til den forøgede termiske kapacitet.

Det ideelle vil umiddelbart være et format på $1,2 \mathrm{x} \quad 2,5 \mathrm{~m}$. Bredden skal dog tilpasses således, at et element kan bæres af 2 personer.

Der findes imidlertid ikke faste (aftalte) regler for max. vægt. Dette er afhængig af løfteform, byrdegeometri, løftehyppighed o. lign.

Vi er bekendt med, at man for elementer kan gå op til ca. 50 $\mathrm{kg} / \mathrm{person}, \mathrm{dvs}$. at vi i projektet bør sigte efter, at et element, som bæres af 2 personer, max. må veje 80 kg , idet der så er indbygget "reserve" i tilfælde af, at praksis ændres til lavere vægtgrænser.

Forudsat

$$
\begin{aligned}
& \text { - elementformat } 1,2 \times 2,4 \mathrm{~m}\left(=2,88 \mathrm{~m}^{2}\right) \\
& \text { - beklædningsplader (} 2 \mathrm{sider)} \text { af } 12 \mathrm{~mm} \text { gipsplader } \\
& \text { - gipsdensitet } 800 \mathrm{~kg} / \mathrm{m}^{3} \\
& \text { - ROCKWOOL-isolering tykkelse }=200 \mathrm{~mm} \\
& \text { densitet }=30 \mathrm{~kg} / \mathrm{m}^{3}
\end{aligned}
$$

vil elementet veje ca. 75 kg .

Med træbaserede beklædningsmaterialer vil vægten være lavere, dvs. at elementvægten ikke forventes at give problemer med det angivne format.

5. SAMMENSPANDING

Baseret på erfaringer indhøstet under indledende forsøg hos Rockwool i 1986 er det valgt at "forspænde" elementerne med en kraft på $50 \mathrm{~kg} / \mathrm{m}^{2}$. Sammenspændingsbeslag skal helst være af rustfrit stå, idet dette giver minimal kuldebroeffekt.

Ved valg af sammenspændingsbeslag skal man være opmærksom på, at plastbeslag kan give problemer med hensyn til brandegenskaber. Dette kan eventuelt elimineres med en supplerende gipsbeklædning. Herved kunne der samtidig etableres hulrum/ kanaler til skjulte installationer. Metoden er dog fordyrende og b申r vurderes nærmere sammenholdt med valg af beklædningspladetype og beslagstype.

Det har vist sig at være vanskeligt at finde beslag, som er skjult på begge sider af elementet. En metode til sammenspænding er vist på BILAG 3. Det forudsætter, at kun én elementside skal have skjult beslag. Denne side kan så enten være en færdig facadeside (til erhvervs/institutionsbyggeri) eller en indvendig ydervægsflade (til skalmuret boligbyggeri).

De viste trapezlægter skal udformes således, at "klæbefladen" mod beklædningen har tilstrækkelig styrke til at optage sammenspændingskraften. Lægtens side mod isolering skal være tilstrækkelig bred til at sikre, at skruen "fanges" af lægten, og lægtens tykkelse skal dimensioneres efter, at skruen ikke må kunne trækkes ud af sammenspændingskraften. Antal og dimension af skruer/skiver skal afpasses med beklædningspladens stivhed, idet denne ikke må få synlige deformationer mellem beslagene.

Trapezlægterne kan være anbragt lodret eller vandret. Vandret placering vil give de bedste muligheder for befæstigelse i vindueshuller o. lign. samt for fugeløsninger.

Ved dette princip er der behov for at sikre elementet mod deformering (sammentrykning) på grund af vandrette påvirkninger under brug (fra møbler, personer o. lign.) samt ved eventuel vandret transport. Dette kan sikres med indbyggede afstands-"beslag". Plast el-rør anses for at være uhensigtsmæssige på grund af kuldebroeffekt. Åbne plastprofiler (Teller I-formede), hvoraf der findes standard-profiler på markedet, vil være bedre.

Sammenspænding med skruer som skitseret kan formentlig anvendes med krydsfinér på den flade, hvori skruerne skrues. Alternativt kan fladen forsynes med "revler" af krydsfinér eller stal.

Der har været kontakt med et firma angående skruetyper og disses styrkemæssige egenskaber. Hovedkonklusionen heraf er, at med en sammenspændingskraft på $50 \mathrm{KN} / \mathrm{m}^{2}$ skal vi regne med skruer pr. $250 \mathrm{x} 250 \mathrm{~mm}\left(16 \mathrm{stk} / \mathrm{m}^{2}\right)$ hvilket virker voldsomt.

Der har desuden været kontakt til et plastfirma angående afstandsprofiler. Firmaet Primo Plast kan udføre profiler, der er egnede til anvendelse i elementet.

Det er desuden blevet observeret, at de elementer, der tidligere er udført hos Rockwool viser tydelige deformationer, dette gælder især spånpladebeklædninger.

Gruppens vurderinger af disse forhold er, at et forspændt element vil give problemer af produktionsmæssig og muligvis også af anvendelsesmæssig karakter.

En alternativ løsning kan baseres på et kassettebyggesystem til lavenergihuse ("Domikas" huset) udviklet med støtte fra Energiministeriet og BUR. Principielt er disse elementer bygget op af spanplader forbundet med masonitplader, der er limet ind i noter i spånpladerne. Dette element har dog vist sig at krumme på grund af uens fugtpåvirkning på yder-og inderside. Dette problem kan formentlig løses ved at undlade limning på en af beklædningspladerne, til gengæld skal det så sikres, at pladerne hænger sammen fx. ved hjælp af skruer.

Drøftelserne omkring dette alternativ endte med, at det blev aftalt at arbejde videre med et element uden forspænding, opbygget som vist på BILAG 4.

Trælægten er gennemgående og skal have en dimension, som giver tilstrækkelig vedhæftning (med fugtbestandig polyurethanlim) til beklædningspladen. Desuden skal der sikres mod flækning ved montering af skruer. $35 \times 35 \mathrm{~mm}$ skønnes indledningsvis at være tilstrækkelig til at opfylde de to krav. Dog kan der opstå problemer ved klæbning på gipsplader, som er belagt med karton, idet kartonen bliver det svage led. Dette problem kan muligvis løses ved at supplere limningen med søm eller skruer.

Ved projektets start blev der arbejdet med at skulle anvende et termisk kapacitetsmedium af såkaldt Phase Change Material, forkortet til PCM. Disse materialer er en slags parafin, som afgiver/optager energi ved faseskifte fra flydende til fast form og vice versa. Sådanne produkter er allerede udviklet og afprøvet fx. til anvendelse som medie for lagring/ transport af energi i solvarmeanlæg. Der opstod dog tidligt i projektet tvivl om materialetypernes egnethed, især med hensyn til risikoen for, at materialet kan/vil omfordele sig i flydende tilstand.

Derfor blev det besluttet alene at arbejde videre med såkaldte Solid State Phase Change Materials, forkortet til SSPCM. Disse materialer forekommer i krystalinsk form, som de bibeholder ved faseskift. Af amerikansk litteratur fremgår det endvidere, at sådanne materialer kan "dimensioneres" til at optage/afgive energi (faseskift) ved valgte temperaturer. I dette projekt sigtedes der efter faseskift omkring komforttemperatur dvs. ved $20-23^{\circ} \mathrm{C}$.

Ved en grov beregning baseret på materialedata oplyst i litteraturen blev det fastlagt, at faseændringsvarmen af ca. 70 kg SSPCM svarer til transmissionstabet gennem ca. $30 \mathrm{~m}^{2}$ yder$v æ g$ med $U=0,30 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ ved en temperaturdifference på $32^{\circ} \mathrm{C}$. 70 kg SSPCM svarer til, at der indbygges ca. 1 kg SSPCM pr. m^{2} væg- og loftsflade i et rum pa $20 \mathrm{~m}^{2}$. Den angivne faseændringsvarme svarer til varmeakkumuleringsevnen af et lag gipsplade i tykkelse $12,5 \mathrm{~mm}$ ved temperaturforskel på $32^{\circ} \mathrm{C}$.

Ud fra litteraturen blev der valgt 3 forskellige blandinger af SSPCM, som blev testet med hensyn til "indbygning" i byggematerialer, samt med hensyn til faseskiftetemperatur og energiakkumuleringseffekt.

7. "INDBYGNING" AF TERMISK KAPACITETSMEDIUM

Fors ϕ g med "indbygning" af de valgte SSPCMs omfattede i første omgang fastlæggelse af i hvilken grad disse i smeltet tilstand kan opsuges i

- spånplader
- kryfsfinér
- gipskartonplader
- fibergipsplader

Resultatet af forsøgene er følgende:

- Spånplader opsuger relativt store mængder SSPCM men bindemidlet i spånpladen opløses kraftigt.
- Krydsfinér og fibergipsplader opsuger næsten intet SSPCM.
- Gipskartonplader opsuger relativt store mængder SSPCM.

Supplerende forsøg med opsugning i ROCKWOOL har vist, at det er særdeles let at få opsuget smeltet SSPCM heri, det går faktisk så hurtigt, at det vil kunne give problemer i en løbende produktion.

Detaljeret beskrivelse af forsøgene fremgår af BILAG 5
Det blev på dette grundlag besluttet at arbejde videre med gipskartonplader som beklædning. Heraf følger i \varnothing vrigt, - som tidligere anført - at der kan opstå problemer, såfremt det samtidig vælges at sammenspænde vægelementerne.

Efter forslag fra gipspladeproducenten blev det valgt at arbejde videre med gipsplader med SSPCM indbygget direkte i pladerne under produktionen, idet dette forventes at være en simplere (billigere) metode end smeltning og opsugning.

Vi er opmærksomme på, at der findes et patent i USA med nr. 4.572 .864 af Feb . 25.1986, samt at lignende patenter er s申gt i Japan og Frankrig. Heri beskrives anvendelse af specifikke (bestemte) SSPCM i en række specificerede materialer, herunder gipsplader og mineraluldsplader. Dette betyder, at de nævnte SSPCM kombineret med de nævnte materialer i USA, Japan og Frankrig kun kan anvendes efter aftale med patentindehaverne.

8．FASTLEGGELSE AF FASESKIFTFORHOLD

Forsøg til bestemmelse af faseskifttemperatur og energiakku－ mulering blev udført på Danogips＇laboratorier i samarbejde med lic．scient．Erik Petersen．

Fors申gene blev udført i flere omgange med varierende fors申gs－ forhold og blandingsforhold for SSPCM．

Resultaterne af forsøgene viste，at faseskift for energiopta－ gelse for de valgte materialer ligger i området $35-45^{\circ} \mathrm{C}$ dvs． alt for $h \phi j t$ ，medens energiafgivelse sker ved ca． $16^{\circ} \mathrm{C}$ ，hvil－ ket er rimelig tæt på komforttemperaturen．

Detaljeret beskrivelse af fors申gene fremgår af BILAG 5.
Fors申gsresultaterne indebærer，at en væsentlig forudsætning for idéen med elementer med høj termisk kapacitet ikke har kunnet eftervises，hvilket betyder，at der formentlig skal gennemføres en omfattende，ressourcekrævende grundforskning／ granskning for at kunne komme videre med projektet．Det blev derfor besluttet at indstille videre arbejde i projektet， d．v．s．at fase 2 udgår helt．

Under forsøgene er der i ϕ vrigt observeret／vurderet en række forhold af praktisk karakter fx．：
－SSPCM forsøg er kun udført med relativ smà prøveserier．
－dvs．det er ikke med sikkerhed vist，om SSPCM bibeholder evnen til energiakkumulering efter et større antal faseskift．
－SSPCM kan muligvis afgive giftige dampe og
－under opvarmning（fx．ved hærdning af gipsplader） optræder der lugtgener fra SSPCM．
－SSPCM kan（vil）give brandmæssige problemer og
－ved opsugning er det vanskeligt at styre den op－ sugede mængde SSPCM（især i porøse materialer）．
－Det skønnes at indbygning af SSPCM ikke vil фge fugtopsugning i pladematerialer eller at disses overflader bliver mindre egnede til overfladebe－ handling（maling，tapetsering）．

Disse forhold er dog baseret på et begrænset grundlag og kræ－ ver derfor nærmere unders申gelser，$f \not \subset r$ der kan foretages en sikker vurdering．

KONKLUSION

Konklusionen for projektet er, at det formodentlig er muligt at udvikle et let vægelement med høj termisk kapacitet, opbygget af gipskartonplader med indbygget SSPCM, med ROCKWOOLisolering uden "sammenspænding" og med lille kuldebroareal. Forudsat at et egnet SSPCM kan findes og at de produktionstekniske og miljømæssige problemer kan løses.

I projektet er der fastlagt/belyst en række konstruktive detaljer samt konstateret en række uafklarede spørgsmål, hvoraf det væsentligste er fastlæggelse af hvilken type (blanding) af SSPCM der skifter fase ved komforttemperatur, og hvilke energimængder der akkumuleres/afgives ved faseskift.

Besvarelsen af dette spørgsmå kræver omfattende ressourcer, som ikke har været til rådighed i dette projekt.

Såfremt dette problem skal l申ses, vil det formentligt være nødvendigt at samarbejde med en erhvervsvirksomhed, som er interesseret i at udnytte idéen erhvervsmæssigt eller med forskere/forskerinstitutioner i USA og/eller Canada, som har indhøstet erfaringer med SSPCM.

LITTERATTURIISTE

- In Review June 1986
- In Review Okt./Nov. 1986
- D.K. Benson mfl.:
"New Phase-Change Thermal Energy Storage Materials for Buildings" (SERI-report Sept. 1985)
- Smeltevarmelagringsmateriale til anvendelse i solvægge (LFV-rapport)
- D.K. Benson, R.W. Burrows and J.D. Webb: "Solid State Phase Transition in Pentaerythrifol and related Polyhydric Alcohols" - Oktober 1985
- Liste over ca. 100 litteraturemner, udarbejdet af Danmarks Tekniske Bibliotek
- SERI-report TR-255-1828 DE 85008779, March 1985: "Materials Research for Passive Solar Systems: SSPCMs"
- M.M. Shapio, D. Feldman, D. Hawes and D. Bann:
"Solar Today" - Jan./Feb. 1988 (page 7-9)
LETELEMENTPROJEKT

IITTERATURIISTE

- In Review June 1986
- In Review Okt./Nov. 1986
- D.K. Benson mfl.:
"New Phase-Change Thermal Energy Storage Materials for Buildings" (SERI-report Sept. 1985)
- Smeltevarmelagringsmateriale til anvendelse i solvægge (LFV-rapport)
- D.K. Benson, R.W. Burrows and J.D. Webb: "Solid State Phase Transition in Pentaerythrifol and related Polyhydric Alcohols" - Oktober 1985
- Liste over ca. 100 litteraturemner, udarbejdet af Danmarks Tekniske Bibliotek
- SERI-report TR-255-1828 DE 85008779, March 1985: "Materials Research for Passive Solar Systems: SSPCMs"
- M.M. Shapio, D. Feldman, D. Hawes and D. Bann: "Solar Today" - Jan./Feb. 1988 (page 7-9)

EFP-PROJEKT
Let vægelement med høj termisk kapacitet
FORSLAG TIL SAMMENSPAENDING

EFP-PROJEKT
Let vægelement med høj termisk kapacitet

FORSLAG TIL ELEMENT UDEN FORSPAENDING

Vandret snit

SOLID STATE PHASE CHANGE MATERIALS
\section*{$S S P C M$}
HめJISOIERET TET VAEEIEMENT
MED STOR TERMISK KAPACTTET

Anvendelsen af solid state phase change materials (SSPCM) til energiakkumulering i lette bygningsmaterialer har givet anledning til adskillige optimistiske overvejelser og eksperimenter i den seneste tid (se litteraturlisten).

Omdannelse mellem to faste faser er velkendt i mange kemiske systemer. Men for at have nogen praktisk interesse i forbindelse med bygningsmaterialer skal disse SSPCM's opfylde en lang rakke krav, som tilsammen er meget vanskelige at opfylde. F. eks. kan nævnes: 1) Faseomdannelse skal ske omkring stuetemperatur og skal være reversibel inden for rimelig tidsskala. 2) Temperaturhysteresen skal være lille. 3) Overgangsenthalpien skal være stor (stor energitæthed). 4) Smeltepunktet skal være højt. 5) Materialet må hverken under bearbejdning eller brug være særlig giftigt, brændbart, lugtende eller pa anden vis skadeligt. 6) Prisen skal være særdeles lav, hvis der sammenlignes med priser på kemikalier.

Kravene 1) - 4) forekommer uforenelige. En klar forudsætning må være ret små molekyler, bundet sammen ved middelstærke kemiske vekselvirkninger, som pá trods af ændringer i bindingsforholdene kan holde sammen på molekylerne i en fast fase. I denne sammenhæng er det nærliggende at tænke på molekyler bundet sammen med stærke hydrogenbindinger, som vi kender dem i f. eks. vand, alkoholer og lignende polære forbindelser. Næsten alle kendte stoffer smelter imidlertid, når der tilføres sá stor varmeenergi, at hydrogenbindingerne brydes. Det svarer til, at molekylerne bevæger sig kaotisk rundt mellem hinanden. I nogle enkelte stoffer begynder molekylerne imidlertid at rotere om sig selv ved temperaturer et godt stykke under smeltepunktet. Ingen rene stoffer, hvoraf der er kendt mange millioner, menes at opfylde krave 1) - 6). Egenskaber for blandinger/opløsninger, hvoraf der jo derfor er et utal, kan ikke forudsiges med særlig stor nøjagtighed, især ikke nå det drejer sig om reversible fastfase-omlejringer.

Pá denne baggrund valgte vi indledningsvis at undersøge SSPCM's, som var mere eller mindre velkarakteriserede i litteraturen (se
litteraturlisten), og forst derefter foretage mindre variationer af sammensætningen. Valget af mindre polyalkoholer med høj molekylsymmetri er ret oplagt ud fra kravene 1) - 6).

Blandinger af følgende komponenter blev undersøgt:

$$
\begin{aligned}
& 1,1,1 \text {-tris(hydroxomethyl)ethan, ("PG"). } \\
& 1,1,1 \text {-tris(hydroxomethyl)propan, ("HG"). } \\
& 2,2 \text {-dimethyl-1, 3-propandiol, ("NPG"). } \\
& 1,2,3 \text {-propantriol, glycerol, ("G"). } \\
& \text { Vand. }
\end{aligned}
$$

Undersøgelser af disse blandinger er beskrevet i de efterfølgende rapporter fra DANOGIPS, ROCKWOOL og herfra. Detaljer vil ikke blive resumeret her.

Tidligt koncentreredes interessen omkring en blanding "A", bestående af $40 \mathrm{~mol}-\% \mathrm{PG}$ og $60 \mathrm{~mol}-\%$ NPG, fordi overgangstemperaturen her syntes at være i nærheden af den onskede stuetemperatur. Denne blanding undersøgtes dels i ren tilstand, dels opsuget efter smeltning (ca. $150 \mathrm{gr} . \mathrm{C}) \mathrm{i}$ forskellige materialer som gips, rockwool, fiberplade, spanplade, m.m. Limen i de to sidste kunne ikke tale denne behandling.
"A" opsuget i hærdet gips eller "A" blandet i gips/vand for den efterfølgende hærdning skal ikke nødvendigvis opføre sig som ren "A": I nærvær af gips er der mulighed for at molekylerne i "A" ogsá kan lave hydrogenbindinger til Ca^{2+}, SOs ${ }^{2-}$ og $\mathrm{H}_{2} \mathrm{O}$. De forogede muligheder for hydrogenbinding giver tendens til stigende overgangstemperatur; de forskellige muligheder giver tendens til bredere temperaturinterval for overgangen. Det er lige netop det, som ses i praksis.

Fasesammensætningen af "A" i gips undersøgtes ved hjælp af rönt-gen-pulver-teknik (Guinier). "A" viste sig som ventet at bestá af én fase uden spor af PG og NPG. Gips med ca. 10 vegt-\% "A" viste skarpe linier fra ren gips, meget brede linier fra "A", samt en diffus baggrund. De sidste to sæt linier var svage. Nár blandingen "A" befinder sig på gips, synes fasesammensatningen derfor ikke at være helt velbestemt. Måske består den af både ekstremt smả og noget større krystaller. Dette er ogsa i overensstemmelse med det brede temperaturinterval.

Den eksperimentelt fundne overgangstemperatur, som er en del højere end den i litteraturen beskrevne, forsøgtes reduceret ved at ændre sammensætningen. F. eks. undersøgtes "A" tilsat 10 vægt$\% \mathrm{HG}, 10 \mathrm{v} \not \mathrm{vgt}-\% \mathrm{G}$ og $5 \mathrm{vægt-} \mathrm{\%}$ vand, samt blandingerne $50 / 50 \mathrm{~mol}-\%$ PG/NPG og $30 / 70$ mol-\% PG/NPG. Disse ændringer havde ikke den mirakuløse virkning. Hertil må siges, at hvis det havde drejet sig om at reducere et smeltepunkt, sá ville den slags forsøg have nogenlunde forudsigelige udfald og normalt fore til reduktion af smeltepunktet.

Med hensyn til giftighed betragtes de nævnte alkoholer normalt som harmløse. Selv NPG, som jo er en glycol, er fredelig. Den omdannes ikke som ethylenglycol i organismen til oxalsyre. I
rapporten fra DANOGIPS af 29/9-89 omtales, at dampene er giftige ved høje koncentrationer (LD5o $=0.0032 \mathrm{~g} / \mathrm{g}$ kropsvægt angives). Hertil må tilføjes oplysninger fra ECDIN databasen (Ispra Establishment of the Joint Research Centre of the Commission of the European Communities). Heraf fremgår kun, at $L_{\text {Lo }}=3200.0 \mathrm{mg} / \mathrm{kg}$ for en enkelt oral dosis til rotter. Hvis dette kan overfores til mennesker, vil det svare til, at et voksent menneske skal indtage mindst 0.2 kg NPG for at $f a \operatorname{pag} i s e l i g e ~ g e n e r$. Kokkensalt er langt mere giftigt. For PG fandtes ikke tilsvarende data. Det skal imidlertid pointeres, at eksperimentatorerne hos DANOGIPS har fuldstendig ret i, at varm teknisk NPG ikke er rar at omgás på grund af lugtgener. Lugten fra forskellige proparater er dog meget forskellig, og det formodes derfor, at generne skyldes urenheder, som kan udgøre op til 1% iflg. specifikationerne. LD-værdierne for urenhederne kan være langt mere truende.

Med hensyn til brandfare kan nævnes, at NPG, som er den værste, har flammepunkt og antændelsestemperatur på hhv. 115 os $380 \mathrm{gr} . \mathrm{C}$.

Foreløbige priser ved levering på det europæiske marked opnåedes fra de store producenter. Billigste tilbud på NPG var $10 \mathrm{kr} . / \mathrm{kg}$ ved levering af mindst 30 tons pr. gang. Tilbud pa PG var 8.22 DM/kg uden kvantumrabat op til senere forhanding. Dato for tilbud var 28/4-89.

MONEKIUSION

De resultater, som er omtalt i litteraturen om SSPCM's, kan ikke alle reproduceres. Mindre variationer i sammensætninger for mere lovende blandinger af polyalkoholer har ikke givet håb om at finde en umiddelbart anvendelig sammensetning. Forsøg på at finde en sådan sammensætning falder helt uden for dette projekts rammer. idet det vil kræve et meget stort og trivielt arbejde.

Til : Vagn Korsgaard, Viggo Thrane,	LAB-NR:	PU-NR:	$88 / 001$
	Erik Petersen, Kurt Stokbæk		
Kopi:	CS, TJJ		

Indledning.
De tidligere DSC forsøg med forskellige SSPCM blandinger blev lovet fulgt op med forsøg, som skulle afklare ved hvilken temperatur den optagne varme afgives igen. Med andre ord hvor stor hysterese, der er ved faststof-faseændringen. Disse forsøg afrapporteres i denne rapport.

Desuden vil de opnảede resultater blive diskuteret på baggrund af den litteratur, som jeg modtog fra Kurt Stokbæk d. 26.09.89.

Forsøget.

Til forsøget er brugt de samme 5 blandinger som blev brugt i de foregatende forsøg (se rapport af 18.04.89/CEB). De gennemførte hysterese forsøg er gennemført ved, at en passende mængde prøvemateriale er afvejet i en aluminiumsdigel forsynet med et lille hul til trykudligning. Diglen opvarmes og nedkøles et antal gange under samtidig registrering af temperatur og tilført varmemængde (DSC).

Ved de første forsøg var prøveopstillingen placeret i laboratoriet, og nedkøling kunne derfor kun gennemføres til minimalt 18 C, når der var koldt nok udenfor (hvilket der ikke var hele sommeren). Dette troede vi var tilstrækkeligt, men de opnáede kurver tydede pá, at der først begyndte at ske varmeafgivelse igen lige omkring forsøgets afslutning. Derfor besluttede vi at placere prøveopstillingen i et køleskab, saledes at vi kunne starte og slutte prøvecyklus ved en lavere temperatur. Blanding 2-4er startet ved 15 C .

Resultater af DSC-forsøg. Uddrag af kurver ses i bilag 1 - 5 (ialt 15 bilagssider).

 Tabel 1. Blandinger og omdannelses starttemperatur.

Blanding 1: Varmeoptagelsen ødelægges efter blot 1 cyklus til 58 C .
Blanding 2: Varmeoptagelseseffekten meget svag fra starten.
Blanding 3: Effekten ødelægges delvist efter 1. cyklus, men der bliver en tydelig tvedelt top tilbage. Varmeafgivelsen er tydelig ved denne blanding, men skubbes tilsyneladende 1 grad nedad efter blot 2 cykler. Hysteresen er bestemt til 27 C .
Blanding 4: Varmeoptagelsen ødelægges efter blot 1 cyklus til 58 C.
Blanding 5: Varmeoptagelsen ødelægges efter blot 1 cyklus til 58 C .

Tabel 2. Kommentarer til DSC kurverne.
Diskussion.
I rapporten SERI/TR-255-1828 "Materials Research for Passive Solar Systems: Solid-State Phase-Change Materials" fra marts 1985 genfindes alt det arbejde, som vi har gennemført siden marts. Kopi af figur 3-1, 3-3, 3-9 og 1-2 er gengivet i bilag 6.

Overgangsenthalpien for faststofblandinger af PG og NPG fremgår af tabel 3-1 og figur 3-3. Heraf kan aflæses, at overgangsenthalpien for en 40 mol-\% PG og 60 mol\% NPG kan forventes at blive $8.4 \mathrm{~kJ} / \mathrm{mol}$, hvilket omregnet giver $76 \mathrm{~J} / \mathrm{g}$. Vi har tidligere bestemt denne blandings overgangsenthalpi til $80.5 \mathrm{~J} / \mathrm{g}$, hvilket má siges at være en god overensstemmelse. De rene blandinger har begge højere overgangsenthalpi og overgangstemperatur:

$$
\begin{array}{ll}
\text { PG } \vdots \\
\text { NPG: } & 139 \mathrm{~J} / \mathrm{g} \text { ved } 89 \mathrm{C} \\
119 \mathrm{~J} / \mathrm{g} \text { ved } 48 \mathrm{C}
\end{array}
$$

Den forventede overgangstemperatur for $40 / 60$ blandingen er 26 C, men som det fremgảr af figur 3-1, er der i virkeligheden tale om et overgangsinterval pả ca. 20 grader. Hvis man ser godt efter, vil man kunne se, at blandingerne med lavt indhold af PG ($25 \mathrm{og} 12.5 \mathrm{~mol}-\frac{8}{\circ}$) begge har en tvedelt top. Tidligere har vi malt overgangstemperaturen til et interval mellem 28 og 44 C med en top ved 39 C , og det er ikke lykkedes at pávirke disse overgangstemperaturer væsentligt ved tilsætning af andre kemikalier.

I figur 3-9 ses hvorledes den lagrede varmeenergi afgives igen ved betydeligt lavere temperatur. Denne hysterese er hos SERI målt til 43 C ved en temperaturandringshastighed pá $20 \mathrm{C} / \mathrm{min}$ og til 16 C ved $0.1 \mathrm{C} / \mathrm{min}$. Ved den hastighed, som vi har kørt med ($1 \mathrm{C} / \mathrm{min}$) kan forventes en hysterese mellem 17 og 27 C . For blanding nr. 3, som er den eneste, det har været muligt at bestemme hysteresen pả, har vi mált 27 C . Da hysteresen hænger sammen med, at vi arbejder med en termisk aktiveret kemisk proces, kan denne ikke fjernes. Den kan imidlertid pávirkes. SERI har fundet frem til, at fint formalet grafit kan pavirke denne proces, idet varmeledningsevnen bliver forbedret. En tilsætning pá 0.1 vægt-o var
tilstrækkelig til at bringe hysteresen ned pá ca. 10 C .
Det sikkerhedsmæssige aspekt er ogsá nævnt i SERI rapporten. PG regnes for ikke-farligt. NPG kan give svage irritationer pá huden. Derimod er NPG dampe giftige ved høje koncentrationer (LD50 $=0.0032 \mathrm{~g} / \mathrm{g}$ kropsvægt) og irriterer slimhinderne i øjne, næse og svælg.

SERI regnede ogsá pá økonomien ved sammenligning mellem en solfangervæg af beton og en tilsvarende solfangervæg indeholdende SSPCM. Selvom betonvæggen skal veje 8 gange sá meget for at have samme termiske lagringskapacitet, sa bliver væggen med SSPCM alligevel 11 \% dyrere. Hos SERI er konklusionen, at der enten skal ske væsentlige forbedringer hos SSPCM materialernes termiske lagringskapacitet eller anden optimering ved fremstillingsprocessen.

Konklusion.
Med de overgangstemperaturer, som vi har fundet, kan man sige, at SSPCM materialerne formentlig er teknisk egnet til passiv solvarme pá steder, hvor solen skinner direkte pá væggen.

Andre stoffer kan pavirke varmeoptagelsesevnen i negativ retning, og blandingernes stabilitet ser ikke ud til at være alt for god.

Miljømæssigt har jeg store betænkeligheder, idet opvarming af blot nogle fa gram af SSPCM blandingerne giver en kvalmende lugt. Nar dampene oven i købet er klassificeret som farlige, ser jeg ingen grund til at bringe dem ind i vore boliger i store mængder.

Da de billigste kostpriser pà SSPCM blandingerer pa mindst 10 $\mathrm{kr} / \mathrm{kg}$, er 2 almindelige gipsplader en billigere løsning end 1 gipsplade med 10 vægt-\% SSPCM. Varmeoptagelsen vil være den samme, hvis blot overgangintervallet er større end 6.4 C , hvilket det ser ud til at være.

Komfort-aspektet omkring et plademateriale med SSPCM er sværere at tolke entydigt. Hvis starttemperaturen for varmeoptagelse ligger over 25 C og hvis varmeafgivelse ikke starter lige omkring 20 C , sả kan jeg ikke forestille mig, at komforten vil blive særlig forbedret.

De nødvendige forbedringere for at ná frem til noget kommercielt brugeligt ligner mere og mere grundforskning, som vist falder uden for dette projekts rammer. Jeg foreslar derfor, at projektet afsluttes, og at vi i de kommende ár holder $\emptyset j e$ med, hvad der fremkommer af forskningsresultater pá omradet.

20-5EP-89
IDENT. NO.
88.011
11.399

HEAT FLOW EXOTHERMAL $->$

1:- bin mb

HYSTERESE FOR SOG
BILAG /A.

57.9

HEAT FLOW EXOTHERMAL--*

EMPEFATUFE DC

TEMPERATURE OC

HEAT FLOW EXOTHERMAL-->
? Mic ran

\qquad

TEMFEFATURE OC
HEAT FLOW EXOTHERMAL-->

21-SEF-89 9:52
IDENT. NO.
WEIGHT mG

BLANDING NR. 2
89.021
12.862

HYSTERESE FORSOG.

HEAT FLUW EXOTHEFMAL-->

END SCFEEN EC 57.9

TEMFEFATUFE SC

HEAT FLOW
EXOTHEFMAL-->

HEAT FLOW
EXOTHEFMAL--

IDENT. NO.
WEIGHT mG
89.031
9.022

BILDG 3 D.

HEAT FLOW
EXOTHERMAL-->

END SCREEN EC

TEMFEFATUFE IC
57.9

EXOTHERMAL--
$2 \mathrm{Ma⿻} \mathrm{ma}$
$\therefore \quad-\quad$
1.GANE OP

END SCFEEN OC

TEMFERATURE IC

HEAT FLOW
EXOTHERMAL--

END SCREEN $\because C$
57.9

TEMPERATURE OC

> HEAT FLOW
> EXOTHERMAL-->

$$
1 \text { non mb }
$$

> HEAT FLOW
> EXOTHEFMAL-->

BILAG $3 E$.

END SCFEEN OC
15.1

******** METTLEF TASOOO SYSTEM *********

25-SEF-89 11:33
IDENT. NO.
WEIGHT
89.041
23.180

HEAT FLOW EXOTHERMAL-- >

10.00 mb

57.9

TEMPERATURE EC
HEAT FLOW
EXOTHERMAL-->

$=$ men mid

1. Gang
op

END SCREEN EC
57.9

TEMFEFATURE EC
HEAT FLON
EXOTHEFMAL--

METHOD MO
25-SEF-89 15:08
IDENT. NO.
WEIGHT mG

$$
30.565
$$

HEAT FLOW EXOTHEFMAL-->

1 gnis mb

TEMFERATURE OC

END SCFEEN OC
15.1

TEMFEFATURE IC

Figure 3-1. Differential Scanning Calorimetry Recordings of Solid Solution Mixtures of PG and NPG ($x=$ molar fraction of $P G$ in the mixture)

Figure 3-3. Measured Enthalpies and Temperatures of Solid-State Transformation for Mixtures of $P G$ in NPG (Heating rate of $20 \mathrm{~K} / \mathrm{min}$)

Figure 3-9. Differential Scanning Calorimetry Recordings of the Thermal Absorption and Thermal Rnergy Release from PG at Different Heating and Cooling Rates. (The temperature difference ΔT between the solid-state transition during heating and the reverse transition during cooling is an undercooling effect attributable to the kinetics of transformation.)

PE
Pentaerythritol $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{4}$

PG
Pentaglycerine $\mathrm{C}_{5} \mathrm{H}_{12} \mathrm{O}_{3}$

NPG
Neopentyl Glycol
$C_{5} \mathrm{H}_{12} \mathrm{O}_{2}$

Figure 1-2. Structural Formulas for Three Polyols. (All are tetrahedral molecules with two to four hydroxyl groups attached at the vertices of the tetrahedron.)

Indledning.

Ved mødet d. 15.11 .88 blev det af EP fremført, at polyalkoholblanding A skulle have været reageret for at virke efter hensigten. En spand reageret materiale fremstillet af EP blev modtaget fra Rockwool medio februar.

Forsøget.

Til brug for forsøget blev der i laboratoriet støbt 2 gipspladeprøver, som i forhold til stucco blev tilsat 10 \% af den fremstillede SSPCM blanding A, som har følgende sammensætning:

> 4 mol-\% af $1,1^{\prime}, 1^{\prime \prime}$-tris(hydroxomethyl)ethan
> 6 mol- 8 af 2,2 -dimethyl-1,3-propandiol.

Efter hærdning vil matricen indeholde 7.8 vægt- $\%$ polyalkohol.

Resultater.
Afbindingsfors \varnothing.
Forud for støbningen af prøvepladerne blev det undersøgt, om den fremstillede blandingspolyalkohol havde nogen uheldig indflydelse pá gipsens hærdeforløb. Temperaturforløbet i en gipsslurry hældt i en isoleret beholder blev fulgt ved hjalp af termoelementer. Af temperaturstigningskurven udledes to tidspunkter, som mál for henholdsvis starttidspunkt og sluttidspunkt for hærdningen. Resultaterne af disse forsøg
ses i tabel 1 .


```
    Tilsætningsstof
    1. set
    2. set
    min min
1,1',1''-tris(hydroxomethyl)ethan
2,2'-dimethyl-1,3-propandiol 6 17.5
Benyttet recept: 50 g stucco, 38 g vand, 5 g polyalkohol---
en
==================================================================
Tabel 1. Retarderingsfors\emptysetg med polyalkoholer.
```


DSC-fors ϕ.

Hos Danogips har vi fremskyndet en planlagt investering i et differentielt scanning calorimeter fra Mettler. I stedet for at gennemføre de sammenlignende forsøg på samme made som sidst, er undersøgelserne derfor gennemført pá det nye udstyr.

Fra de støbte plader (tørret ca. 2 uger ved 40 C) og fra den reagerede klump polyalkohol afskrabes en lille mængde materiale, som vejes og anbringes i en aluminiumdigel forsynet med et lille hul til trykudiigning. Diglen opvarmes under samtidig registrering af temperatur og tilført varmemængde. Resultaterne ses i bilagene.

Bilag 0: Rent SSPCM (blanding A). Ikke tørret på forhánd.
Bilag 1: Gipsplade med 7.8 \% SSPCM. Bilag 2: Gipsplade med 7.8 of SSPCM. Bilag 3: Reference gipsplade produceret på pladefabrikken.

Diskussion.
Den rene blanding starter sit faseskift ved 28 C og topper ved 39 C , som det ses af bilag 0.2. I bilag 0.3 er overgangsenthalpien beregnet til $80.5 \mathrm{~J} / \mathrm{g}$, hvilket stemmer fint overens med litteraturværdien $76 \mathrm{~J} / \mathrm{g}$.

Imellem 18 og 23 C optræder der 2 eller 3 toppe pà kurverne for såvel rent SSPCM, gips + SSPCM og reference gipsen. Om disse toppe evt. skyldes indsvingningsfænomener eller evt. kan tilskrives, at udstyret kun er kalibreret fra 20 C og opad er endnu uafklaret. Hvis de er reelle fænomener kan toppen ved ca. 19 C kan stamme fra SSPCM, men kan ogsa stamme fra fordampningen af adsorberet vand (hygroskopiske materialer). Toppen ved ca. 21 C er ret markant og vil blive undersøgt nærmere under nedkøling og ved opvarmning fra lavere temperaturer end 18 C .

Som bilag 1.1 viser, er det umuligt at fá \varnothing je pà en markant top ved 39 C , men om dette evt. skyldes at SSPCM ikke er repræsenteret i den udtagne prøve er endnu uvist. Der vil blive undersøgt flere prøver for at afklare dette.

Konklusion.
Støbningen af prøvepladerne var ogsa med det reagerede materiale forbundet med store lugtgener.

Det udvalgte SSPCM salt har tilsyneladende en overgangstemperatur, der ligger i intervallet $28-44 \mathrm{C}$ med top i nærheden af 39 C . Denne værdi stemmer godt sammen med de tidligere forsøg med opvarmning af gipsplader, der viste et overgangsinterval mellem 24 og 44 C .

Overgangstemperaturen for saltet skal være lavere, ellers vil den \varnothing nskede temperaturregulering ikke finde sted.

Det er endnu ikke lykkedes at eftervise saltets varmeakkumulerende evner i en gipsplade. Flere forsøg er på vej.

16-MAF-89 15:44
16-MAF-99 15:22 **
FEAK: INTEGFATION
DYN; ISロ 1\%2 1
AUTULIMTT O
STAFT
END
GTAFTE. LINE END B. LINE BASELINE TYFE FLDT CM
FLDT MUDE
10
101
IDENT. NO.
FATE FKMIN.
WEIGHT mG
88.001
1
9.24.
WAFNING
-EMFEFATUFE \because
Sact
H ENDO MJ
H
PEAK TEMF. IC
25.477
2.7563
20.7
******** METTLEF TAZOOO SYSTEM

17-MAR-89	$8: 22$		$B / L A G$		0.2
16-MAR-89	15:50	**			
SCFEEN					
DYN/ISO	$1 / 2$	1	SSPCM		
START		13			
END		58	2. OPVRRANING	18-58	${ }^{\circ} \mathrm{C}$
BASELINE T	TYFE	1	2. OPVARANING	18-58	${ }^{\circ} \mathrm{C}$
PLDT	CM	10			
FLOT MDDE		1			
IDENT. NO.		88.001			
FATE K/M	MIN.	1			
WE I GHT	$m G$	9.243			
END SCREEN	1 C	57.7			

TEMFERATUFE E
HEAT FLOW EXOTHEFMAL --

17-MAR-89
$8: 39$
B/LAG 0.3

16-MAF-89 15:50
FEAK INTEGRATION
DYN/ISO $1 / 2 \quad 1$
AUTOLIMIT O/1 O
START 28
28 SSPCh
END
44
STAFT B. LINE
28
END E. LINE
44
GASELINE TYFE
FLGT CM
FLOT MODE
IDENT. ND.
RATE K/MIN.
WEIGHT mG
8
10
101
88.001

1
9.243

TEMFEFATUFE OC
HEAT FLOW
EXOTHERMAL-->

H ENDO $\quad \mathrm{mJ}$
HEAK TEMF. C
744.20
80.515
39.1
$17-$ MAR-89
14:31
BILAG 1.1.

17 -MAR-89 11:44
SCFEEN
DYN/ISD $1 / 21$
STAFT 18
END 58
BASELINE TYFE
1
GIPS + SspCn
FLOT CM
10
FLOT MODE 1

$$
\text { 1. GANG } 18-58^{\circ} \mathrm{C} \text {. }
$$

IDENT. NO.
RATE K/MIN.
WEIGHT mG
88.201

END SCREEN OC
21.339
57.9

HEAT FLOW EXOTHEFMAL-->

17-MAR-89
$14: 38$
$B / L A G 1.2$.
17-MAF-89 11:44**
PEAK INTEGFATION
DYN/ISO $1 / 2 \quad 1$
AUTOLIMIT $0 / 1$
STAFT
END
STAFIT B. LINE
END B. LINE
EASELINE TYFE
FLOT CM
FLOT MDDE
IDENT. NO.
RATE K/MIN.
WEIGHT ing
1
18
GIPS + SSPCM
23
18

1. GANG $18.58^{\circ} \mathrm{C}$
WAFNING
7

$$
\begin{aligned}
& \mathrm{H} \text { ENDO } \mathrm{mJ} \\
& \mathrm{BH} \text { FAF TEMF. } \mathrm{J}
\end{aligned}
$$

$$
\begin{array}{r}
39.711 \\
1.8510 \\
20.4
\end{array}
$$

$C F E E N$

16-MAR-89 $10: 46 \quad B / L A G \quad 2$.
16-MAF-89 10:12**
SCFEEN

DYN/ISO

END
BASELINE TYFE
PLOT CM
PLOT MODE
IDENT. NO.
FATE K/MIN.
WEIGHT mG

1
20
30 1.OPVARINING TIL $40^{\circ} \mathrm{C}$
1 10 2152
88.201

1
15.441

MFEFATUFE ${ }^{\circ} \mathrm{C} \quad$	HEAT FLOW
	EXOTHEFMAL-
	$\mathrm{mW} / 100 \mathrm{mG}$

DERIVATIVE mW/S

EAF INTEGFAGTITA

$\because H$ ENDO $\quad \mathrm{MJ}$
FEAK TEMF
35.982
2.3 .508
20.8
******** METTLEF TATOOO SYSTEM

SGFEEM

HEAT FLOW
EXOTHEFMAL--

TEMFEFATUFE C	HEAT FLOW
	EXOTHEFMAL- $>$

$$
\begin{aligned}
& \mathrm{AH} \text { EXO } \quad \mathrm{mJ} \\
& \mathrm{EH} \\
& \text { FEAK TEMF. } \mathrm{C}
\end{aligned}
$$

$$
\begin{array}{r}
105.26 \\
6.8169 \\
18.6
\end{array}
$$

SIGFEEM

$$
\begin{aligned}
& \text { 16-MAR-89 13:51 } \\
& \text { B/LAG 3.1 } \\
& \text { 16-MAF-89 13:16** } \\
& \text { SCFEEN } \\
& \text { DYN/ISO 1/2 } 1 \\
& \text { STAFT } \\
& \text { END } \\
& \text { BASELINE TYFE } \\
& \text { FLOT CM } \\
& \text { FLOT MODE } \\
& \text { IDENT. ND. } \\
& \text { FATE E゙/MIN. } \\
& \text { WEIGHT mG } \\
& \text { REFERENCE GIPSPLADE. } \\
& \text { END SCREEN OC } 27.9
\end{aligned}
$$

TEMFERATUFE DC

HEAT FLOW EXDTHEFMAL-->

FClit mb

F-EAF IMTEGF゙ATIDR
16-MAF-89
13:55
16-MAF-89 13:16**

FEAK INTEGRATION DYN/ISO $1 / 2$

1
AUTOLIMIT O/1 START

REFERENCE GIPSPLADE.

END
-23
STAFIT B. LINE
18
END B. LINE
EASELINE TYFE
23
FLOT CM
FLOT MODE
10

IDENT. NO.
FATE K/MIN. WEIGHT
mG
WAFNING
7
-EMFEFATUFE C
HEAT FLOW
EXOTHEFMAL-->

$$
2
$$

$$
\begin{aligned}
& \mathrm{ZH} \text { ENDO } \\
& \text { FH J J J } \\
& \text { FEAK TEMF. } \mathrm{C}
\end{aligned}
$$

$$
\begin{array}{r}
35.203 \\
2.2256 \\
20.4
\end{array}
$$

Højisoleret let vægelement med stor termisk kapacitet. DSC forsøg pa forskellige SSPCM blandinger.

Indledning.

I forbindelse med mødet hos Rockwool d. 20.03 .89 blev det aftalt, at EP fremstillede nogle blandinger af polyalkoholer med forventet lavere omdannelsestemperaturer. CEB lovede at undersøge disse i DSC.

Forsøget.

I slutningen af marts modtog vi 5 prøver med sammensætninger som ses i bilag 6. De fire første blandinger var faste, hvorimod den 5. prøve virkede cremeagtig. Fra toppen i hvert glas blev der afskrabet prøvemateriale, som vejes og anbringes i en aluminiumdigel forsynet med et lille hul til trykudligning. Diglen opvarmes under samtidig registrering af temperatur og tilført varmemængde (DSC).

Resultater af DSC-forsøg.

Resultaterne ses i bilagene 1-5. Blandingsnummer svarer til bilagsnumrene. I tabel 1 ses en opsummering af resultaterne.

Tabel 1. Blandinger og aflæste vardier fra DSC-kurverne.
Diskussion.
Som det kan ses af tabel 1 og kurvernes udseende er der stor forskel pa omdannelsesenthalpien og pa omdannelsesforløbets udseende:
Blanding 1 har tendens til en tredeling af toppen.
Blanding 2 har en meget bred spids.
Blanding 3 og 4 har ret skarpe spidser.
Blanding 5 har todelt spids.
Konklusion.
Pa grund af vanskelighederne med at tolke kurverne, blev det aftalt med EP, at vi skulle forsøge at køre nogle forsøg oppe fra og ned samt at undersøge hysterese og repeterbarheden. Dette vil blive gjort.
11 -AFR-89 13:54
11 -APR-89 11:30 **

FEAK INTEGRATION
DYN/ISO $1 / 2$
1
AUTOLIMIT O/1 0
STAFT
23
END
45
START B. LINE 23
END B. LINE
BASELINE TYPE FLOT CM
FLOT MODE
8
10

IDENT. NO.
FATE K/MIN.
WEIGHT mG
88.011

1
15.470

```
TEMFEFAATUFE EC
HEAT FLOW EXOTHERMAL-->
```


$\triangle H$ ENDO $\quad \mathrm{mJ}$
AH
FEAK TEMF. C
1280.2
82.755

צ6. 3

END SCREEN OC

TEMFERATUFE ${ }^{\circ} \mathrm{C}$
57.9

HEAT FLOW
EXOTHERMAL--

FEARE INTEGF:ATIGN
12-APR-89 9:43
11 -AFR-89 13:57 *

B/LAG 2 A

FEAK INTEGRATION
DYN/ISO $1 / 21$
AUTOLIMIT $0 / 1$
START
0
END
24
45
START B. LINE
24
END B. LINE
45
BASELINE TYFE
FLOT CM
PLOT MODE
IDENT. NO.
FATE K/MIN.
WEIGHT mG
8
10
101
88.021

1
17.374

TEMFERATURE C

HEAT FLOW
EXOTHERMAL-->

$\triangle H$ ENDO $\quad \mathrm{mJ}$	422.96	
$\therefore H$	O / G	24.344
FEAK TEMF. C	30.7	

******** METTLER TA3OOO SYSTEM

HEAT FLOW
EXOTHEFMAL-->

FEATM ITUTEGF:ATITA」
6-AFF-89 16:12
$5-A F F-89 \quad 10: 38$
$B / \angle A G 3 A$.
FEAK INTEGFATION
DYN/ISO $1 / 21$
AUTOLIMIT O/1 O
STAFT
25
END 55
STAFT B. LINE
END E. LINE
25
BASELINE TYFE
55
FLOT CM
FLDT MODE
10
101

IDENT. ND.
RATE K/MIN.
WEIGHT mG

TEMFEFATURE E

> HEAT FLOW
> EXOTHEFMAL-->

$\triangle H$ ENDO $\quad \mathrm{mJ}$	1675.1	
$\triangle H$	94.566	
FEAK TEMF. B	C	41.0

******** METTLEF TASOOO SYSTEM

F•EAド MMTEGFATTMN

12-AFR-89 11:08
$12-A P R-89 \quad 9: 47 * * \quad B / L G G A$
FEAK INTEGRATION
DYN/ISO $1 / 21$
AUTOLIMIT $0 / 10$
START
24
END
START B. LINE
24
END B. LINE
45
BASELINE TYFE
8
PLOT CM
10
PLOT MODE
101
IDENT. NO.
FATE K/MIN.
WEIGHT mG
88.041

1
28.125

TEMFERATUFE OC	HEAT FLOW
	EXOTHERMAL $\rightarrow>$

H ENDO mJ	678.07	
ZH	J / G	24.109
FEAK TEMF. OC	34.4	

END SCREEN OC
57.9

B/LAG $4 B$
TEMPERATURE DC
HEAT FLOW
EXOTHERMAL-->

******** METTLE TABOO SYSTEM

F•EAF゙ INTEGF゙ATIGN
12-APR-89 13:02
12-AFR-89 11:11**
BILAG 5A
FEAK INTEGFATION
DYN/ISO $1 / 2 \quad 1$
AUTOLIMIT $0 / 1$
STAFTT
0

END
25
STAFT B. LINE 45

END E. LINE
25
BASELINE TYFE
FLOT CM
PLOT MODE
45
10
101
IDENT. NO.
FATE K/MIN.
WEIGHT mG
WEIGHT mG
88.051

1
36. 570

TEMFERATURE SC
HEAT FLOW
EXOTHERMAL-->

******** METTLER TASOOO SYSTEM *********
Civ.ing. Carl Erik Bech

Danogips A/S
Kl申vermarksvej
9500 Hobro.

Som vi aftalte pa m申det hos Rockwool sender jeg hermed fem prover til DSC. SA godt som intet fordampede under smeltningerne, sà de anf $\phi r t e$ sammensætninger er pålidelige.

Flg. forkortelser er brugt: $\mathrm{NPG}=$ neopentylglycol $=2,2-$ dimethyl-1,3-propandiol. $P G \quad$ pentaglycerol (afsindigt trivialnayn $)=1,1,1$-tris (hydroxymethyl)ethan og $H G=$ hexaglycerol (lige si afsindigt hjemmegjort trivialnavn) = 1,1.1tris(hydroxymethyl)propan.

$40 / 60$ mol-\% blandingen er den vi tidligere har eksperimenteret med.

Med venlig hilsen,

Erik Pedersen.
cc: Vagn Korsgaard, Kurt Stokbæk, Viggo Thrane.

Til : Kopi: Fra :	Vagn Korsgaard, Erik Petersen, MT, CS, TJJ Carl Erik Bech	Viggo Thrane, Kurt Stokbæk	$\begin{array}{r} \text { LAB-NR: } \\ \text { PU-NR: } \\ \text { PG-NR: } \end{array}$	$\begin{gathered} 88 / 001 \\ * \end{gathered}$
Højisoleret let vægelement med stor termisk kapacitet. Forsøg med varmeakkumulering i gipskartonplader med SSPCM				

Indledning.

Det gennemførte forsøg havde til formal at undersøge, om gipsplader tilsat 10 vægt-\% af fastfaseskiftende polyalkoholer vil have en anden varmeakkumuleringsevne end en referenceplade. Desuden skulle det undersøges, om tilsætningsstofferne umiddelbart havde uheldig indflydelse på gipspladen eller dens fremstilling.

Forsøget.

Til brug for forsøget var der i laboratoriet støbt en gipsplade, som i forhold til stucco blev tilsat

4 vægt-\% af $1,1^{\prime}, 1^{\prime \prime}-t r i s(h y d r o x o m e t h y l) e t h a n ~$
6 vægt-\% af $2,2^{\prime}$-dimethyl-1, 3-propandiol.
Efter hærdning vil matricen indeholde 7.8 vægt-\% polyalkohol. Blandingen skulle ifølge Erik Pdersens notat af 21.06 .88 have en overgangstemperatur på 26 C .

For at undersøge varmeakkumuleringen blev der lavet en forsøgsopstilling. To gipspladestumper af hver af henholdsvis prøvepladen og en referenceplade placeres pà hver side af en elektrisk varmefolie. For at kunne f $\varnothing 1$ ge temperaturen er der forsænket i overfladen monteret et termoelement. Et tredje termoelement berører en del af varmefolien, som rager uden for gipspladerne, og de sidste to termoelementer maler omgivelsernes temperatur lige over overfladen af referencepladen. Det ene af de to udvendige termoelementer er sluttet til et kompenseret håndmåleapparat og bruges til at efterkorrigere de \varnothing vrige termoelementers målinger med. Alle 4 prøvestykker (ca. 100 x 100 mm) og de 2 varmefolier er spændt sammen ved hjælp af to skruetvingere og placeret i et ovnkammer, hvis temperatur kan styres. De 2 varmefolier er forbundet i serie til en variabel vekselstroms spændingsforsyning.

Resultater.
Afbindingsfors ϕ g.
Forud for støbningen af prøvepladerne blev det undersøgt, om de mulige polyalkoholer havde nogen uheldig indflydelse på
gipsens hærdeforl \varnothing b. Temperaturforløbet i en gipsslurry hældt i en isoleret beholder blev fulgt ved hjælp af termoelementer. Af temperaturstigningskurven udledes to tidspunkter, som mal for henholdsvis starttidspunkt og sluttidspunkt for hærdningen. Resultaterne af disse forsøg ses i tabel 1 .

Benyttet recept: 50 g stucco, 38 g vand, 5 g polyalkohol.

Tabel 1. Retarderingsforsøg med polyalkoholer. LAB-NR 88-065.

Styrkeforsøq.

Det blev ogsá undersøgt, om styrken skulle være pảvirket. Resultatet af bøjetrækstyrkeforsøgene i langs retning ses i bilag 1. Med fladevægte pả henholdsvis 12.8 og $12.3 \mathrm{~kg} / \mathrm{m} 2$ ser styrkerne normale ud.

Varmeakkumuleringsforsøgene.

For at bestemme overgangstemperaturen blev det besluttet at tilføre pladematerialet en energimængde, som skulle kunne hæve temperaturen med ca. 2 C . Varmetilførslen skulle gentages med forskellige udgangstemperaturer.

Forsøgene blev udført pả følgende måde: Efter opnảelse af temperaturligevægt, blev der tændt for varmefolien i 2 min. Da der ikke blev benyttet en stabiliseret spanding svingende spændingen over de to folier op til 5 of afhængig af starttemperatur. Med en typisk målt vekselspænding på 10.7 V og en samlet modstand i de to varmefolier pa 4.5 ohm er det beregnet, at der blev afsat $106 \mathrm{~W} / \mathrm{m}^{2}$ gipsplade - i løbet af de 2 min . altsá $12740 \mathrm{~J} / \mathrm{m}^{2}$.

Prøvepladen havde en fladevægt pả $12.52 \mathrm{~kg} / \mathrm{m}^{2}$ og en tykkelse på 12.7 mm , hvilket giver en densitet pà $986 \mathrm{~kg} / \mathrm{m}^{3}$.
Referencepladen havde en fladevægt på $11.30 \mathrm{~kg} / \mathrm{m}^{2} \mathrm{og}$ en tykkelse på 12.45 mm , hvilket giver en densitet på $908 \mathrm{~kg} / \mathrm{m}^{3}$.

I bilagene 2 til 7 ses resultaterne af impulsforsøgene.
Starttemperaturerne var følgende:

Forsøg	nr 2	22.6
Fors $\dagger \mathrm{g}$	nr 3	29
Fors $\varnothing \mathrm{g}$	nr 4	30
Or	nr 5:	34

```
Fors\emptysetg nr 6: 40.9 C.
Fors\emptysetg nr 7: 45.8 C.
```

Ved det sidste forsøg var der en tydelig sødlig, vammel lugt af de tilsatte polyalkoholer.

Da de første 6 fors $\varnothing \mathrm{g}$ ikke gav det forventede resultat (en tydelig temperaturforskel mellem de to plader) blev det fors $\varnothing \mathrm{gt}$ at tilf \varnothing re en betydeligt større energimængde ved hjælp af en impuls med en varighed pa 30 min. Dette fors $\varnothing \mathrm{g}$ svarer næsten til en differentiel termisk analyse, DTA. Resultatet af det sidste fors \varnothing g ses i bilag $8 \mathrm{~A}-8 \mathrm{~F}$.

Diskussion.
Gipsens varmekapacitet ved 25 C er $1.08 \mathrm{~J} / \mathrm{g} \mathrm{C}$. Med den tilførte energimængde på $12740 \mathrm{~J} / \mathrm{m}^{2}$ og en fladevægt pả 12520 $\mathrm{g} / \mathrm{m}^{2}$ skulle pladen i gennemsnit kunne opvarmes med 0.94 C . Pả grund af temperaturgradienten over pladen ses i forsøgene temperaturstigninger på ca. 3 grader.

De første 6 forsøg viser ikke nogen tydelig forskel i opførsel mellem pladen med SSPCM og referencepladen. I fors $\varnothing \mathrm{g} 6$ og 7 ses en temperaturforskel, men den skyldes vist snarere, at der ikke var opnået temperaturligevægt ved forsøgets start. Temperaturforskellen holder sig i hvert fald konstant.

I forsøg 8 observeres en temperaturforskel imellem prøvepladen og referencepladen. Referencepladen varmes hurtigere op end prøvepladen. Denne effekt ophører igen inden varmetilførslen stopper, hvilket ikke skulle forventes, hvis der kun var tale om en temperaturforskel forarsaget af de forskellige densiteter. Den temperatur, ved hvilken effekten ophører, synes at ligge imellem 35 og 40 C .

Konklusion.
Hvis de gjorte observationer er forårsaget af det faseskiftende salt, så má det konkluderes, at faseskiftet ikke sker ved en bestemt temperatur, men snarere over et temperaturinterval pà op til 15 grader. Intervallets grænser kan ikke fastlægges præcist pà grundlag af de gennemførte fors $\varnothing \mathrm{g}$, men en $\emptyset \mathrm{vre}$ grænse omkring 35-40 C er formentlig ikke helt ved siden af.

Det er muligt at fremstille gipsplader med polyalkoholer, men det er urealistisk at fremstille dem pa det eksisterende anlæg på grund af lugtgenerne. Blot fremstillingen af laboratoriepladerne, hvortil der blev brugt nogle fa hundrede gram af polyalkoholerne, gav en uacceptabel stank i hele laboratoriet.

Internt afsnit.

Eksempel 1.
Det temperaturinterval, som en gipsvæg i et hus má have lov
til at svinge indenfor, er ukendt for mig, men lad os i
første eksempel antage et stort temperaturinterval pá 15 grader.

En normal gipsplade på $9.3 \mathrm{~kg} / \mathrm{m}^{2}$ vil over et temperaturinterval pả 15 C kunne optage $1.08 * 15 * 9300=150660 \mathrm{~J} / \mathrm{m}^{2}$.
Til sammenligning vil en gipsplade med 10 vægt- $\%$ polyalkohol kunne optage $(1.08 * 15 * 9300 * 0.9)+(76 * 9300 * 0.1)=206274 \mathrm{~J} / \mathrm{m}^{2}$.

Eksempel 2.
Hvis det tilladte temperaturinterval kun er 1 grad, sá vil den normale gipsplade kunne optage
$1.08 * 1 * 9300=10044 \mathrm{~J} / \mathrm{m}^{2}$.
Gipspladen med 10 vægt-\% polyalkohol vil kunne optage $(1.08 * 1 * 9300 * 0.9)+(76 * 9300 * 0.1)=79719 \mathrm{~J} / \mathrm{m}^{2}$.

Eksempel 3.
Varmekapaciteten $i 2$ lag gipsplader sammenlignet med 1 lag gipsplade med 10 vægt-\% polyalkohol er den samme, hvis temperaturintervallet er 6.4 C .

Da polyalkoholerne koster $5-10 \mathrm{kr} / \mathrm{kg}$, vil det i dette eksempel betyde, at det vil være billigere at opsætte 2 gipsplader, hvis der blot skal tages hensyn til pladens kostpris. Hvis transporthensyn og arbejdslon tages med i betragtningen, forøges grænsen selvfølgelig.

1	$=$ Stress at Peak
3	$=$ Stress at End
5	$=$ Flexure Modulus
8	$=$ Deflection at $3.80 M P a$
10	$=$ Thickness

MPa	$2=$ Deflection at Peak
MPa	4
MPa	$7=5 e f l e c t i o n ~ a t ~ E n d ~$
$m m$	
mm	

alc. No	1	2	3	4	5	6	7	8	9	10
$\begin{gathered} \text { sample } \\ 2 \\ 2 \end{gathered}$	$\begin{aligned} & 3.802 \\ & 4.128 \end{aligned}$	$\begin{aligned} & 4.619 \\ & 5.306 \end{aligned}$	$\begin{array}{r} 0.054 \\ -0.008 \end{array}$	$\begin{aligned} & 6.795 \\ & 6.375 \end{aligned}$	2606		3.802 4.098	6.581 5.115	$\begin{array}{r} 105.2 \\ 105.4 \end{array}$	12.40
$\begin{aligned} & \text { EAN } \\ & \text { EUIAN: } \end{aligned}$ ANGE	3.965 0.965 3.965 0.326	4.962 0.366 4.962 0.687	0.023 0.031 0.023 0.062	$\begin{aligned} & 6.585 \\ & 0.210 \\ & 6.585 \\ & 0.420 \end{aligned}$	$\begin{aligned} & 2649 \\ & 1575 \\ & 2649 \\ & 315.0 \end{aligned}$		3.950 0.1988 3.950 0.296	$\begin{aligned} & 4.848 \\ & 0.267 \\ & 6.888 \\ & 0.534 \end{aligned}$	$\begin{gathered} 105.3 \\ 105.300 \\ 0.200 \end{gathered}$	$\begin{gathered} 12.55 \\ 0.50 \\ 12.55 \\ 0.500 \end{gathered}$

σ
E

38
37
36
35
34
33
32
31
30
29
28
500

[^0]Pu aspon
45
44
43
42
41
40
39
38
37
36

35 $\begin{array}{lllll}500 & 2000 & 2500 & 3000 & 3500 \\ 4000\end{array}$ Tid, sek.
Reference
Varmefolie

$\mathrm{PI} 189 / 001$
startemperatur: 45.8 C .

PU 8.3/0131
Startemparatur: 23.3 B .
o impiadural


```
Dato 1989-01-26
Ref. PBH/BB
```

Vedr. 372-01 Tilsatsmiddel
Opsugning af SSPCM i Rockwool

Stikord:
Forsøg, rapport, Rockwool, imprægnering

Formal: At undersøge Rockwools evne til at opsuge SSPCM materiale og vurdere SSPCM materialets effekt på mekaniske egenskaber.

Konklusion: Flydende SSPCM opsuges i Rockwool, indtil stort set al luft i Rockwool-strukturen er fordrevet. Man kan sailedes let opsuge og fastholde en mængde SSPCM materiale, der svarer til 1 mm SSPCM i en Rockwool A-Batts.

En del af SSPCM materialet dræner imidlertid af, hvis der er tale om en A-Batts, mens der ved et tungere produkt (ca. $145 \mathrm{~kg} / \mathrm{m}^{3}$) næsten ikke finder afdræning sted. Prøver af denne densitet bliver sȧledes næsten massive ved neddypning i SSPCM.

SSPCM's indflydelse pá mekaniske egenskaber: Rockwool forbliver dimensionsstabilt efter opsugning af SSPCM, og der konstateres ingen svækkelse af bindemidlet i en grænsezone mellem ren Rockwool og Rockwool med opsuget SSPCM.

Sagens

fortsættelse:	Undersøgelsens resultater overgives hermed til KS,
	der tager stilling til sagens videre forløb. Re-
	sterende sSPCM materiale opbevares hos "PLQ" indtil
	videre.

 372-01 Tilsatsmiddel
 Opsugning af SSPCM i Rockwool

Beskrivelse af forsøget

SSPCM materialet er en blanding af 2,2-dimethyl-1,3-propandiol og 1,1,1-trishydroxymethylethanol.

Det optradte inden smeltning som et hvidt granulat og smeltede ved ca. $130-180^{\circ} \mathrm{C}$.

Ved neddypning af Rockwool-prover i det smeltede SSPCM materiale sank de øjeblikkeligt til bunds, idet luften i Rockwool-strukturen blev fordrevet.

Smeltningen foregik i et stinkskab, og en del damp undslap smelten. Denne damp fortættedes ved afkøling i stinkskabet til "snekrystaller" af et stort volumen. Smelten dampede under hele smelteforløbet fra ca. $130^{\circ} \mathrm{C}$ til $\mathrm{ca} .180^{\circ} \mathrm{C}$, men der konstateredes ingen kraftig ubehagelig lugt. Der vil dog ved smeltning uden afsugning optræde en vis lugtgene.

Ved rensning af stinkskabet konstateredes det, at hvis smeltningen havde stȧet pá i lidt længere tid, ville luftkanalerne være blevet tilstoppet med "sne". Alt tilsvinet udstyr kunne dog renses med lunkent vand.

Vedr.: EFP-PROJEKT, LET VEGELRMENT MED HOJ TERMISK KAPACITET

D\& Erundlag af litteraturundersøgelser valgtes tre sammensætninger til brug som SSPCM (Solid State Phase Changing Materials).

$$
\begin{aligned}
\text { A: } & 40,0 \mathrm{mol-} \mathrm{\%} 1,1^{\prime}, 1^{\prime \prime} \text {-tris(hydroxomethyl) ethan } \\
& 60,0 \mathrm{~mol} \% \mathrm{\%} 2,2^{\prime} \text {-dimethyl-1,3-propandiol }
\end{aligned}
$$

B: 100 mol-\% 2,2'- dimethyl-1,3-propandiol
$C: 55.9$ mol-\% pentaerythritol
$44.1 \mathrm{~mol} \%$ glycerol

Folgende litteraturværdier er fundet:

	A	B	C
Overgangstemperatur $\left({ }^{\circ} \mathrm{C}\right)$	26	43	~ 28
Overgangsenthalpi $(\mathrm{kJ} / \mathrm{kg})$	76	131	90
Smeltepunkt $\left({ }^{\circ} \mathrm{C}\right)$	142	128	-
Massefylde $\left(\mathrm{kg} / \mathrm{m}^{3}\right)$	1070	1041	1300
Termisk ledningsevne $(\mathrm{W} / \mathrm{m} / \mathrm{K})$	0,24	0,25	-

De anvendte kemikalier var tekniske produkter med renheder over 98% bortset fra glycerol, som var en kemisk ren $87 \mathrm{w} / \mathrm{w} \%$ blanding med vand. Blanding C fremstilledes ved afdestillation af vand ved $170^{\circ} \mathrm{C}$.

Gips, fibergips, spånplade og krydsfiner impregneredes med $A, B, o f r$ ved neddypning i smelter ved $150^{\circ} \mathrm{C}$. Vagtforggelserne máltes efter 10 min . of frivillig afdrypning. Dette gentoges efter yderligere 10 min . i smelterne. Vacuumimpregnering viste sig ikke praktisk mulig p. gr. af ret hoje damptryk ved $150{ }^{\circ} \mathrm{C}$. Naterialestorrelserme for pladerne var $95 \times 95 \times$ ca. 12 mm .

De optagne vagtmængder er anført i følgende tabel.

Gipsplade	A	B	C
82,54 \%	8,77 E; 15.20 g		
32,32 5		17,68 6; 19,94 6	
80,81 g			5,57 8; 14,09 \%
Fibergips			
107,05 g	4,05 g; 8,69 g		
106,47 5		3,11 g; j,41 \%	
106,01 \%			-0,17 g; -0,87 g
Spånolade			
73,12 g			
72,81 g	Limen mere eller mindre oplost.		
76,62 8			
X-finer			
61,35 E	0,43 g; 0,33 5		
63,20 5		0,65 5; 0,51 g	
60,56 g			6,14 g; 5,87 g

Som oversigten viser, er der en rigt varieret opførsel. Hogle hovedpunkter kan nævnes: (1) Spånplade tåler hverken A, B, eller C, da limen oploses. (2) Gipsplade suger vasentlig mere end de andre materialer, f.eks. op til $24 \mathrm{w} / \mathrm{w}-\%$ B af egenvanten er observeret. Opsugnincen ser endda ikke ud til at være fardis efter 20 min . (3) Fibergips suger $8 \mathrm{w} / \mathrm{w} \% \mathrm{~A}$ eller mere, $3 \mathrm{w} / \mathrm{w}-\% \mathrm{~B}$, men intet C . (4) X-finer suger hverien A eller E men ca. $10 \mathrm{w} / \mathrm{w}-\% \mathrm{C}$.

På denne bagcrund kan det foreslås at foretage termiske undersøgelser på flg.:

```
Gipsplade mattet med A, B, of C.
Fibergips mattet med A.
X-finer mattet med C.
```

Under impregneringsarbejdet gjordes den erfarjng, at smelterne A of B ved $150{ }^{\circ} \mathrm{C}$ har ret høje damptryk of $2,2^{\prime}$-dimethyl-1,3-propandiol med tilhørende lugtgener. In del heraf skyldes muligvis urenheder.

[^0]: Storttemparatur. 34.15 C

