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Viscoelastic material properties

determined from experimental vibration analysis of systems

Lauge Fuglsang Nielsen

Abstract

A method is explained by which experimental vibration analysis of systems can be
generalized to become a useful analytical tool also in the research on materials rheology.
When the method is used on data obtained from modern experimental vibration analysis
of systems (using Briiel & Kjar type 2035 for example) rheological information of
materials can be detected continuously in the time range from a very small fraction of a
second to a couple of minutes. This range is very important from a materials science point
of view. Basic mechanisms can be detected or estimated which control the materials long-
term behavior such as creep, relaxation, and damping for example.

Examples from practice on building materials where such information are valuable are:
Quality control in materials production, non-destructive testing of materials such as
concrete and wood, detection and quantification of progressing materials decomposition
due to freezing or salt infection, change of materials behavior with respect to temperature
such as in cement- and asphaltic concretes, change of composite materials behavior in
general with respect to mixture variations. Theoretically there is no problem in increasing
the working range of an experimental vibration analysis from the few minutes previously
mentioned to longer times. For long-time studies on the rheology of materials it is,
however, more appropriate to combine experimental vibration analysis with alternate
methods suggested in the paper.
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1. Introduction

Very accurate vibration studies on structures can be made to day with advanced

experimental vibration-analysis equipment (ex 1). Such equipment, however, can
be used also as a powerful tool in material research. Rheological (viscoelastic)
properties of materials can be determined from modern experimental vibration

analysis on test specimens (systems) made of the material considered”.

In principle all material properties which can be obtained by modern vibration
analysis can also be obtained by the well-known resonance frequency method (2).
The former method, however, is very superior with respect to data utilization and
practical handling. All vibration data are used and only one test specimen is
required. In a resonance frequency analysis only data at resonance frequencies can
be used which means that a large number of different test specimens have to be
prepared. Another advantage of using modern vibration analysis is that the results
obtained are more reliable when materials are tested with strong internal damping.

The theoretical basics of rheological material properties determined from
experimental vibration analysis of systems are presented in this paper as they are
lectured (ex 3,4) by the author in Course 6110: Material Mechanics and used
(ex 5) at the Building Materials Laboratory, Technical University of Denmark:

- The stress-strain behavior of viscoelastic materials is related theoretically
to the stress-strain behavior of elastic materials.

- The force-deflection behavior of viscoelastic systems is related theoretically
to the force-deflection behavior of elastic systems and viscoelastic material
properties.

- The viscoelastic material properties (such as complex stiffness, creep and

relaxation) are deduced from the (experimentally obtained) force-deflection
relationship of the viscoelastic system.

Material properties and system properties are stiffnesses defined as stress/strain
[Pa] and force/deflection [N/m] respectively. The material property deduced by the
method presented is the one which controls the materials influence on the test
systems behavior. Example from this paper: Material properties to determine are
those which relate uni-directional stress to strain in viscoelastic materials. The

obvious choice of test system for this purpose is an axially loaded bar.

The method presented can easily be modified to consider other material properties
(associated with bending or shear for example) by using test systems appropriately
designed for this purpose.

*) An example is presented by N. Johan Wismer in the second paper of this DSM-publication.
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The paper is organized according to the steps outlined in previous section.
Perspectives of the method presented are discussed in the final section of the

__paper. Three auxiliary sections are added separately at the end of the paper:

Appendix A: Useful expressions on the handling of complex numbers are presented
in this section. No further information on complex numbers are needed in reading
the theoretical sections of the paper. For application of the theory computer math-
programs are needed with complex number facilities.

Appendix B: Some information on the rheology of basic material models are
presented in this section. They are useful when training the method presented in
the paper - and also when the results obtained by the method are evaluated.

Appendix C: An elastic analysis is made on the bar system applied in this paper.
The results obtained might as well be reproduced directly from the literature on
elastic vibrations of structures. A detailed analysis, however, may be helpful in a
more deep understanding of the main subject considered in the paper, systems
versus materials.

1.2 Notations

Symbols frequently used in the paper are explained in the following list. Others
are explained as they appear in the text.

Materials
G, € Stress, strain
E = E,y  Elastic stiffness (Dynamic Young’s modulus)
(from high speed test)

J=1/E  Elastic flexibility
c(b), r(t) Creep function, relaxation function
T Relaxation time
b  Creep power
E.=E; +1iE;, Complex stiffness
1 complex unit
Ep, E;  Real part and imaginary part respectively of E
Jo = 1/E;  Complex flexibility
| Ecl,|Jc] Num. complex stiffness, num. complex flexibility
0, tangp  Loss angle, loss tangent
System (bar fixed at one end)
1  Length
A Cross-section area
p Specific mass
u  Mass per unit length of bar (= Ap)
m Mass of bar (= 1Ap = 1)



Discrete-mass-at-free-end——

P, u Force at end of bar, deflection
S = P/u(end of bar), Elastic stiffness
H=1/S Elastic flexibility
Sc=Sg +1S;  Complex stiffness (analogue to elastic S)
1 complex unit - -
Sg>» S;  Real part and imaginary part respectively of S
H. = 1/S¢ Complex flexibility
S|, | He | Num. complex stiffness, num. complex flexibility
9, tand Loss angle, loss tangent
®, Resonance frequency
Others
t Time
T Oscillation time
® =2n/T  Angular frequency
f=1/T=w/(2nr) Frequency (conventional)




2. Materials

2.1 Elastic material

Stress and strain in so-called linear-
elastic materials are related by the
R m— »o well-known Hooke’s law presented in
Equation 1. This relationship can be
expressed with materials stiffness (E)
—— or with materials flexibility J = 1/E)
STRESS o = forcefarea as shown in Equation 1. Normally the
STRAIN ¢ = displacement/length . .

former version is used. In subsequent
text the terms elastic and linear-elastic

Figure 1. Stress on, and strain of elastic or
viscoelastic material considered in this are used synonymously.

paper. Hooke’s law does not depend on time

which, for example, means that € = o(t)/E always applies. This simple stress-
strain-time relationship does not apply for the so-called viscoelastic materials
subsequently considered.

e=Jo ; O©=Ee ; (flexibility J = 1/E) (D

2.2 Viscoelastic material

2.2.1 Creep and relaxation

Viscoelastic materials - exhibit -time -dependent behavior even if -subjected to
constant loads. Creep functions (strain under constant load) and relaxation

functions (stress under constant strain) are important characteristics for the =

behavior of viscoelastic materials.

An important class of viscoelastic materials are the linear-viscoelastic materials.
They have creep functions which vary proportional to constant load used in creep
experiment - and relaxation functions which vary proportional to constant strain

used in relaxation experiment. The elastic materials previously considered are
included in this description as a the special class of viscoelastic materials which
have creep functions and relaxation functions which do not vary with time. The
viscoelastic materials considered in this paper are of the linear type. In subsequent
text the terms viscoelastic and linear-viscoelastic are used synonymously.

Creep functions c(t) are used in the meaning, "strain detected at constant stress =
1". In a similar way relaxation functions r(t) are used in the meaning, "stress

detected at constant strain = 1". In this definition of creep function and relaxation
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function elastic materials are included with c(t) = 1/E and r(t) = E. Typical creep

functions and relaxation functions look like the examples shown in Figures 2
and 3.

o)

A Creep function - Relaxation function

e=c(t) r=o(t)
//—’ E

c=1 e=1
1/Ei -

| §
0 time -t v 0 Time-t

A 4

Figure 2. Creep function is strain of Figure 3. Relaxation function is stress in
material subjected to a constant stress of material subjected to a constant strain of
magnitude 1. magnitude 1.

Creep functions and relaxation functions for a number of material models are
presented in Appendix A at the end of the paper. Of special interest in the context

of building materials is the Power law creep expression considered separately in
Section 2.2.5.

Note: Materials with "higher" creep functions have "lower" relaxation functions.
When subjected to constant loads they seem to become "softer"” reducing there
original stiffness as time proceeds .

2.2.2 Stress-strain relation

It can be shown (ex 6) that viscoelastic stress-strain relations can be formulated
as presented in Equation 2. The following analogy to elasticity is observed:
Integral operators based on creep functions (c(t)) and relaxation functions (r(t))

replace the elastic flexibility (1/E) and elastic stiffness (E) respectively in the
elastic stress-strain relations (Equation 1). The so-called elastic-viscoelastic

analogy subsequently considered is a consequence of this observation.

e = [ote - e)_;g_de ;o= fre - e)%de )

0 0

The stress-strain relations in Eqaution 2 are fully correlated, just as their elastic
counterparts in Equation 1 are. The viscoelastic behavior of a material is
completely defined through one of them. The creep function and the relaxation
function are related through the following expression

(. dr(®)
'!c(t 0) 5

dc(0)
do

de =1 3)

do = tfr(t -0)
0




'] - . ] £ ]
tilastic=viscoelastic anaitogy

The following elastic-viscoelastic analogy (sligthly re-formulated) was used
implicitely in (7,8) and stated explicitely in (9).

A general stress-strain analysis of a linear-viscoelastic structure can be made
by replacing the coefficient of elasticity in a corresponding linear-elastic
analysis by its associated viscoelastic operator,

do

1 adl] [ § @)
== Ofc(z 0Sdo or E = Or(t 02 140

2.2.3 Harmonic stress variation

It can be shown (ex 6) that Equation 2 reduces as follows when stress varies
harmonically like sine or cosine waves.

g = Ei with G = Gexp(ien) = G [cos(wp) + i sin(r)] (5)
C

The complex stiffness E. of the material is a quantity which depends on angular
frequency ® of loading and the creep/relaxation properties of the material

considered. E. can be determined from Equation 6 reproduced from
(10,11,12),

1

E. = E4iw) where E*(s) = ST
sY[c

= sLr(®)]
(6)

The intermediate quantity E*(s) in Equation 6 is the so-called analogue stiffness
which, as shown in references just mentioned, can be used very efficiently in the
general analysis of viscoelastic materials and structures.

Analogue stiffnesses, and thus complex stiffnesses, for a number of material

models-are-presented in-Appendix A. The complex stiffness associated with the
Power law creep expression previously referred to is presented separately in
Section 2.2.5.

Elastic-viscoelastic analogy

It comes from the analogy previously presented in Section 2.2.2 that the analogy
observed between Equation 5 and its elastic counterpart in Equation 1 can be

LIfD]-= »ff(-t-)e-vlsw’dtw-» —(Laplace-transformed-with-complex-variable sy} -
0

generalized as follows:



The analysis-of a viscoelastic problem with sine (or-cosine) varying-load can
be made by the theory of elasticity with Young'’s modulus replaced by its
viscoelastic counterpart, namely the complex Young’s modulus.

The complex stiffness can in general be written as presented in Equation 7 where
|E¢| and ¢ denote numerical complex stiffness and loss angle respectively.

E.=E, +iE, = ]Eclexp(iq)) complex stiffness
IECI = EZ + E; numerical complex stiffness (7)
E

tan(¢p) = loss tangent

Strain and energy loss

The general strain solution associated with Equation 5 becomes

e = £ exp(i(0r-9)) = & [cos(wz-0)) + i sin(wr-9]
o, (3)
8 -

o EC

which illustrates that stress and strain vary in similar ways. Two phenomenons,
however, clearly demonstrates the influence of creep. Strain is delayed by ¢, and
its magnitude is modified by a factor of B/ | E.| relative to the elastic counterpart
solution € = o/E (¢ = 0).

The energy loss W per volume unit per load cycle is given by

T 2
_(de, _ T, tan(9) , _
W fc S - . (T = 2/w) 9)

2.2.4 Graphical summary of theory

A graphical summary of the basic theoretical results discussed in this chapter is

presented in Figures 4 and 5: The results from a stress-strain test ("cigar
experiment") on a viscoelastic material are presented in Figure 4. The stress was
programmed to follow a sinus variation with time T used per cycle.

Equations 5 and 8 are illustrated by plotting stress applied in the experiment and
strain detected respectively against time. Normalized versions of these graphs are
shown in Figure 5. Energy loss according to Equation 9 is represented by the

shaded area in Figure 4.

10



NORMALIZED CREEP & RELAX

1.0 - e o
A O ¢ N
’ AN £,=0,/E¢|
(o7 / \
N~ % Z o5 5
Gy = 0,£0S(0) / 5 Ep = T E s ;
_ 0o . Y 'u_a O-R/o'o \ €R/€0 /
1Ecl= o - 2 \\ /I
€ & 00 \ L
[ € & Y
= R ) a \ I/
i \ ,
= b A /
n \ 7
Ej=1EclV1-( 04/66)* 205 \ \ ;
/
cos(¢)= T/ 0o & o =(albyn \ ,
’
N /
-1.0 ) /l

0.0 1.0

TIME(t)/ OSCII?S\TlON TIME(T)
Figure 5. Oscillation time T, = frequency
f= I/T, (angular frequency ® = 27f).

Figure 4. Stress-strain test of viscoelastic
material subjected to harmonic vibration.
("Cigar experiment")

Note: Viscoelastic materials increase their stiffness | E.| with increasing load
frequency. Energy loss is reduced at the same time. The stiffness of elastic
materials does not depend on frequency - and there is no energy loss.

2.2.5 Power law creep

It has often been demonstrated in the literature on creep of materials (ex 13)
that many building materials (such as wood) exibit creep which can be fitted
sufficiently well by expressions of the
power law type c(t) = (1 + at®)/E
where a and b are thought to be
material constants. However, the
quality of an expression to fit creep
data does not necessarily qualify this

]

CREEP FUNC

[

N | RELAX FUNG expression as an appropriate creep

function —in—further — viscoelastic
studies. It is, for example, very unfor-
. tunate that the constant "a" -in-the —
power law expression just considered
cannot be taken seriously as a real
material constant. "a" has the dimen-

sion of time raised to minus the other constant "b" involved.

o

o

200 800 1000

400 600
TIME — DAYS

~ Figure 6. Normalized Power law creep

Junction Ec(t), and normalized relax func-
tion r(t)/E (b = 0.25, © = 600 days).

The power law creep description can, however, very easily be re-formulated to
become a qualified creep function in stress-strain analysis of viscoelastic materials.
The modified power law creep function presented in Equation 10 is the result of
an analysis made in (12,14) on power law creep. The constants now introduced
can be considered real material properties. The relaxation time T (creep doubling
time, c(T) = 2¢(0)) decreases with increasing humidity and increasing temperature.
The creep power b is usually not influenced very much by climatic conditions.

11



The relaxation functionalso presented in Equation ‘10 was developed in (12)

consistently with the concept of power law creep. (Gamma function I'(1+x) = x!).
An example of associated creep and relaxation is presented graphically in

Figure 6.

iy = U1« (Y| . [ b is creep power (often b = 1/4)
E T > | T is relaxation time (depends on climate)
- (X b 10
W0 =EY X i x =T + b L (10)
Z T + kb) T

L when b < 0.3
c(®)

U

Complex stiffness

The complex stiffness associated with Power law creep is presented in Equation 11
reproduced from (12). Special versions are presented in Equation 12 which apply
when load oscillates with very high or very low frequencies respectively.

E| = E . tand = Ysin(bn/2)
¢ ’ 1 + Ycos(bm/2)
\/ 1 + Y% + 2Ycos(bn/2)
!
win y =14 *D b (11)
(To)’ (Te)’
_ 1 + Ycos(bm/2) . 3 Ysin(bmt/2)
E, =E - , E, =E .
1 +Y* + 2Ycos(bm/2) 1 +Y* + 2Ycos(bn/2)
|E|—->(E when @ — o tan(d))—-—>(0 when ® — o (12)
€ \G when-@ =0 \t«m(vﬂ'Z) when—@—=>0

Remark: The Power law creep model degenerates with b = 1 to the so-called
Maxwell model defined in Appendix A. The stiffness quantities become very
simple as demonstrated in Equation 13.

|E.| = E G R E cos(d) ; tan(dp) = 1 ;. (Maxwell) (13)
1 + (Tw)? R

12



2.2.6 Example

The viscoelastic behavior of wood can, at certain climatic conditions, be defined
by the Power law creep function (Equation 10) with E = 11000 MPa, b = 0.25, ©
= 1000 days. The results of a consistent complex stiffness analysis by Equation
11 are shown in Figures 7 and 8.

4.045 0.015

~~ /
%U— / / 0.010 \
| / s \
- 4.035 / <Z(
o " N\
(5? 0.005 \
9 \
\\\

4.025 .000
h = 0.0

o -3
LOG«o(f — Hz)

Q
LOGyo(f — Hz)

Figure 7. Numerical complex stiffness of Figure 8. Loss tangent of wood considered
wood considered in example, Section 2.2.6.  in example, Section 2.2.6.
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3. Systems

The analysis of viscoelastic systems subjected to harmonic load vibration proceeds
along quite similar patterns as used in the analysis of materials. This feature
(which is a direct result of the elastic-viscoelastic analogy formulated in Section
2.2.3) is illustrated in this section. The system considered is the bar defined in Fig-
ure 9 which can also be thought of as describing the test set-up in an experimental
vibration analysis.

U T

% = length of bar

A = cross-section area
= -1  p=specific mass

m = {Ap = mass of bar
E = Young 's modulus

—=— M = lumped mass |
XU p= Pgsin(wt) 0 f

Harmonic force vibration oo B, i B-2 ok Eﬁa ok 104 12‘57135 2
VIBRATION PARAMETER - 8
Figure 9. System considered in elastic and  Figure 10. Resonance frequencies. When

viscoelastic analysis. lumped mass M = 0: f§, = (7/2)(2n-1).

N

Q}\/ m)ﬂ

COTAN(B)

Coordinate x and deflection u

3.1 Elastic system - harmonic vibration

The stiffness (S) of the system considered is expressed by Equation 14 where the
so-called vibration parameter is defined in Equation 15 (see Appendix C)

(%)
I

- o mB®) _ ) (14)

N

u(l) B )

B=w I % (elastic vibration parameter) (15)

It is noticed that stiffness becomes zero at resonance frequencies ®, determined by
Equation 16, see Figure 10.

14



3.1.1 Low frequencies

Equation 14 reduces as follows at frequencies well below first resonance frequency
where forces of inertia become negligible.
A
S—>7E as ® =0 (17)

3.2 Viscoelastic system - harmonic vibration

We now use the elastic-viscoelastic analogy formulated in Section 2.2.3. This
means that the viscoelastic solution to the problem considered is obtained by the
elastic solution when stiffness E is replaced by complex stiffness E.. Thus, the
systems complex stiffness is obtained immidiately as follows from Section 3.1.

5, - o mcot(BC) Y (18)
C
B, = An;El (complex vibration parameter) (19)

S. =8, +iS, = |S.|exp(id)  complex system stiffness

2 2 . .
1S.| = ER + S numerical complex system stiffness (20)
tan(d) = TS‘L system loss tangent

3.2.1 Low frequencies

Equation 18 reduces as follows at frequencies well below first resonance frequency
where forces of inertia become negligible.

A)

A T £ 1)
c — _lzc as o — 0 <L)
l

3.2.2 Example

A vibration test is made on a bar made of the wood material previously considered
in Section 2.2.6. The wood density is 500 kg/m’. The test set-up is as shown in
Figure 9 with 1 = 15 cm, A = 9 cm?, M = 50 gr. The complex stiffness of the bar

15



1s calculated by Equation 18. The numerical complex flexibility |H.| = 1/] S|

and the loss tangent of the bar are shown in Figures 11 and 12.

5
5

\\I..

i

LOGyo(f — Hz)
Figure 11. Numerical complex flexibility
(|H:| = 1/]8.]) of system described in
example, Section 3.2.2.

LOGyo(IHel — m/N)
]

0.025

TAN(6)
8

-0.025

—0.050

LOGo(f — Hz)

Figure 12. Loss tangent (tan(d)) of system
described in example, Section 3.2.2.

Remark: The data representations chosen in Figures 11 and 12 are those which
will appear on a computer screen in modern experimental vibration analysis of
systems. Notice that local maxima of flexibilities | H.| have finite values. The

elastic counterparts are infinite.
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4. Material versus system

4.1 In general

The results of Section 3.2 can be used as follows to deduce material properties
from a system analysis: Solve Equation 18 (the "screen data" in Figures 11
and 12) with respect to B.. Then, by Equation 19,

- ’7’;{[3 . E, - RE) ; E = XE)
B 22)
=>tan(¢)=Ei; |E.| =|E; + E;

A convenient algorithm (3,5) for the calculations just outlined is described in
Table 1. Newton’s principle of iteration is implemented, and works on Y as
defined in Equation 23 (based on Equation 18). First B.-estimate used in this
paper is the simple one shown in Table 1. Other estimates can be used. At low
frequencies, for example, B. = w(m/Sy)** is a very accurate estimate (express B
in Equation 19 with E. derived from Equation 21).

Table 1. Viscoelastic material stiffness deduced from viscoelastic system stiffness.

Given:
Length, cross-section, and mass of bar (I, A, m)
Lumped mass: M
Experimental data: w, |S,| =1/ | H,|, tan(5)
Calculations:

@ (angular frequency considered)

B. =@ +ix0) (first estimate, next estim. is B, from preceeding )
4 S.=|S8,]| (cosd + i sind)

X7/

' y Y h V4 o J
caicuiuie 1 and 1

[y

Be.vmw

=B, - R (Newton's principle of iteration)
< Y/ p

error = | B . 1/18.] -1
if (| error| < 0.0001) go to 2

¢~ VMeny
gotol
l 2
2 E =712
A BC
E
E,=RE) ; E =XE) ; tan¢>=f’- ; |E,| =|E, +E
R

write w, | E_ |, tang

w = w + Aw (w should vary with same distance on a log-scale)
go to 4

17



Y = Y(8) = mo'cos(B) - Bsin(B)[Me? + S = 0

- jg = msin) - (Mo' + S)[sin(B) + Bcos(B)]

(23)

4.2 Special frequencies

Equation 22 reduces considerably when low frequencies and resonance frequencies
are approached. The results are subsequently presented in Equation 24, Equation
25 and Figure 13 respectively.

4.2.2 Low frequencies

At low load frequencies (well below first resonance frequency) we can deduce
material properties very easily from Equation 21. We get

!
| E.| =

¢ E'Scl and ¢ -6 as o —0 (24)

which shows that material properties at low frequencies, where forces of inertia
can be ignored, can be read directly from the simple system tests ("cigar experi-
ments”) outlined in Figure 4. When bar tests are considered we translate the
symbols stress (ay), strain (), and stiffnesses (Ex,E,, | Ec | ) in Figure 4 to force
(Py), deflection (u,), and stiffnesses of bar (AE/LLAE/LA | E. | /1) respectively.

4.2.1 Resonance frequencies

0.00007

It can be shown that complex moduli

- W determined by the method described

% in Section 4.1 at resonance fre-
! L quencies(and —small loss—tangents

35: assumed) equal those predicted by the

g T, well-known resonance frequency

e e method (ex 2,15,16). Figure 13

R - ;,;vz) “  and Equation 25 illustrate how this

Figure 13. Numerical stiffness and loss ~ method "works" on the bar system

angel at resonance frequency n. considered in this paper with vibra-

tion parameters B, determined from
Equation 16.

|E,| = ml = 7 ; as long as ¢, =~ tan(¢) 25)

¢ A

18



Ilustration: The example in Section 3.2.2 is recalled. Figure 13 is a blow-up-of ——

Figure 11 at the first resonance frequency (n = 1). The following frequencies are
observed, (f;;, f, f;y) = (4750.91, 4751.56, 4752.21) Hz. Then from Equation 25,
¢, =0.0002736, | E. |, = 11000 MPa which compare very well with the properties
of the bar material described in Section 2.2.6, Figures 7 and 8.

Remark: The resonance frequency method is bound to produce a discrete mapping
of complex stiffness versus load frequency - and can be used only on materials
with low loss tangents. The method presented in this paper does not have any of
these restrictions.

4.3 Creep and relaxation

When complex material stiffnes is deduced creep and relaxation properties of the
material can be derived by the following expressions presented in (12,14)

@ = E - 2 [E(@) 129 4
T ® (26)
y _ E
ot) = L+ 2 (1@ L200®) 4y g = D1
E w3y ® |E_|?

where E is dynamic Young’s modulus (= | E.| at very high frequencies). It is re-
called that one of the functions considered can be determined from the other one
by Equation 3.

4.3.1 Numerical procedures

Equation 26 is highly theoretical. Complete descriptions of E; and J; are assumed
from ® = 0 to e. Our experimental data are based on a "continuous" distribution

of frequencies between a lower value of ® = @ and an upper value of ® = @,
which means that approximative versions of Equation 26 have to be established
in order to predict relaxation functions and creep functions from complex stiffness
data available.

First method

Equation 26 can be written as shown in Equation 28 when it is assumed that the
integrands vary linearely between ® = 0 and ®; with a value of 0 at ® = 0. The
latter assumption requires E(0) and J,(0) to be O or finite quantities (see Equation
27). This is always true for E,(0). It is true also for J;(0) when creep functions are
considered with dc/dt — 0 as t — oo (which applies for the Power law creep
function with b < 1).
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1 - cost@n) .%cot2 for ® = 0 (27)
®

It is further more assumed in Equation 28 that my is high enough to simulate very
high frequencies (Epyy = | Ec(0y |).

2| 1-cos(®,?) ®
o) = |E@y) |- o ——— (o) fE,(m)(l—cos(mz))dlog(m)
o d (28)
_ 1 L2 1 -cos(®,?) :’" )
o(t) = - TR J(®,) !J,((x))(l cos(wf)d log()

General method

From preceding section is known that relaxation functions can always be
determined by Equation 28. Creep functions, however, can only be determined by
this expression when dc/dt — 0 as t — oo, If this condition is violated (or it is un-
known) the latter expression in Equation 3 can be used numerically to convert a
known relaxation function to its associated creep function. A very rough algorithm
for this purpose is shown in Equation 29. More refined algorithms are found in
(4,17). Before using the algorithms a continuous r(t) description must be
established from the discrete r(t)-quantities determined by Equation 28 (computer-
fit with r(0) = Epyy)-

1
Ac(t.) = . t..=10
Aelt;) 5 t v
EDYN_ 1
1 N-1 ‘ (O0)
Ac(ty) = —1 = Y Act)r(z, 1) J N =2, 3,4, .. (22)
EDYN_ n=l
N
cty) =Y, Ac(t)
n=1

4.3.2 Other rheological properties

Creep functions or relaxation functions are the principal material properties of
viscoelastic materials in the area of building materials. In other areas alternate
properties may very well be more appropriate. Examples are relaxation spectra and
retardation spectra in polymer science. Various information on theoretical and
~experimental coupling between rheological characteristics of materials can be

found in (ex 12,18,19,20).

20



5. Example

The following "experimental" vibration analysis has been made to test the
procedures presented in chapter 4: The wood material previously considered in
Sections 2.2.6 and 3.2.2 has been made wet such that density, Young’s modulus
(dynamic stiffness), and relaxation time are now 700 kg/m®, E = 9000 MPa, and
T = 30 days. Creep power is maintained at b = 0.25. (We know from other sources
about these changes of properties. The material, however, does not).

The test set-up is maintained at 1 = 15 cm, A = 9 cm?, M = 50 gr. The "experi-
mental"” data (based on Equation 18) shown in Figures 14 and 15 appear on the
screen. It is assumed that signals in the experimental vibration analysis are emitted
and received without any noise or numerical disturbances.

A | 0.025
1
5

TAN(6)
8

\

LOGso(f — Hz) LOGo(f — Hz)
Figure 14. "Experimental” data in examp- Tigure 15. "Experimental” data in example,

le, Chapter 5. Numerical complex flexibility Chapter 5. Loss tangent of system tested.
of system tested.
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Figure 16. Numerical complex material Figure 17. Loss tangent of material
stiffness deduced from test on system deduced from test on system described in
described in example, Chapter 5. example, Chapter 5.

The algorithm in Table 1 is now used on the "experimental" data. The resulting
viscoelastic properties of the material tested are shown in Figures 16 and 17.
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Equation 28 is-then-used on these data to determine creep-and relaxation-of-the

material (for simplicity of the example: we know from other sources that dc/dt
never stops decreasing). The results are shown by dots in Figures 18 and 19.

Remark: It has previously been mentioned that qualified estimates on 0- and co-
quantities are required in the numerical handling of Equation 28. These estimates
depend on lower frequency f; and upper frequency f;; applied when collecting the
input-data (Figures 14 and 15) by experimental vibration analysis. The Briiel &
Kjer equipment (Type 2035) used at the Building Materials Laboratory, Technical
University of Denmark has an upper limit of f = 10° Hz which is therefor used as
a fixed f;;,. The lower frequencies of f, = 10 Hz and 10° Hz used to obtain the
r(t) and c(t) results presented in Figures 18 and 19 have the purpose of testing the
sensitivity of the numerical procedure applied with respect to estimated O-
quantities. The subdivision of frequencies applied in this example was 5000 on a
log-scale between f; and f;.
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Figure 18. c(t) and r(t) from system tests. Figure 19. c(t) and r(t) from system tests.
Test freq. (f,, fy) = (10°, 10°) Hz. |E.| at Test freq. (f, f,) = (10°, 10°) Hz. |E.| at
Jy used as E (Epyy). fy used as E (Epyy).

5.1 Discussion

The procedures presented in this chapter on how to deduce material properties
from vibration tests are clearly justified by the example considered. We know
from Equation 10 the true answers to the creep- and and relaxation functions of
the material considered. They are shown in Figures 18 and 19 by dotted lines.

The figures indicate that f;, = 10° Hz is adequate as an upper limit in the
integration process of Equation 28. The question of a qualified lower frequency
for integration is answered as would be expected: To get creep and relaxation right
at longer times t we must use a lower frequency of magnitude f; < = 0.1/t. This
means that supplementary tests of the kind discussed in Sections 2.2.4 and 4.2.2
and illustrated in Figure 4 become relevant when creep/relaxation properties for
t > a few minutes are of interest. The significance of subdivision of frequency
- range has not been considered. The Briiel & Kjer equipment previously referred
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————to-has-a frequency-subdivison-of -800-on-a linear-scale-(can-be-changed-to-log

scale).

It is emphasized that only the plain mathematical procedures explained in Section
4 are evaluated in this example. No attemps have been made to evaluate the

~influence on the results obtained of noise and numerical disturbances associated
with transfer of signals in practice.
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~6. Perspectives and final remarks

The method explained in this paper on material properties determined by
experimental vibration analysis of systems has been demonstrated on a bar system.
The method, however, applies to any test system for which the elastic vibration
solution is known. Examples of appropriate test specimens for which such
solutions are available in an analytical form are simple beams or plates with
different boundary conditions (ex 15,21,22,23). An example of the method
applied to a fixed-free test beam in bending is presented in (24). Recent studies
(25) have been made on how to couple the method to numerically determined
elastic solutions (FEM).

When the method presented is used on data obtained from modern experimental
vibration analysis of systems (using B&K type 2035 for example) rheological
information of materials can, theoretically, be detected in the range of time, from
10 seconds to a couple of minutes. This range (in practice: from a very small
fraction of a second to a couple of minutes) is very important from a materials
science point of view. Basic mechanisms can be detected or estimated which
control the materials long-term behavior such as creep, relaxation, and damping
(loss tangent) for example.

Examples from practice where such information can prove very valuable in the
area of building materials are: Quality control in materials production, non-
destructive testing of materials such as concrete and wood, quantification of
progressing materials decomposition due to freezing or salt infection, change of
materials behavior with respect to temperature such as in cement- and asphaltic
concretes, change of composite materials behavior in general with respect to

mixture variations.

Theoretically there is no problem in increasing the working range of an

experimental vibration analysis from the few minutes previously mentioned to
longer times. For long time studies, however, it is more appropriate to combine
experimental vibration analysis (< 1 minute) with alternate methods such as the
"cigar" experiment outlined in Figure 4 (< 1 day) - and ordinary creep experiments

(>1day). As creep functions and relaxation functions are related through Equation
3 the latter method can be replaced by ordinary relaxation experiments.
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Appendix A

Complex numbers

Calculation with complex numbers is an essential mathematical element in any
vibration analysis. Some useful expressions reproduced from the mathematical
literature (ex 26) are presented in this section:

Complex number A. Real part A;. Imaginary part A;. Numerical or absolute value
| Ac | . Delay angle 0. Imaginary unit is i.

Algebraic notation:
A, =A() =A, +i A, ; tanb =A /A, (AD

Acl = A + A} = JAL)xa )

Trigonometric notation:
A, = ]AC][COSG +isin] ; tan® = A, /A, (A2)
A, = |A_lcos® ; A, = |A_|sin®

Exponential notation:
A, = |A.|exp(i) = |A_.|[cosB + i sinB]

(A3)

i = exp[iﬁ] s Qb= exp(iﬁj = cos(bf.) + i sin(bf)

2 2 2 2

Others:

|AL[? = ALy *A (D)

Ag = AL + ALD] 5 A, = - A - AL-D)]

tan® = —i D = AL (A%)

A + AL-D)
At o b exp(-i) _ Al Ay A
Jd=_ = = = i
AC l14C| |Ac‘2 'Aclz |Acl2

Al = A |" exp(in®) = |A.|" [cos(ne) + sin(ne)}
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Appendix B

Some basic viscoelastic models

E n
W —W—l—
HOOKE MAXWELL
Fk V V E
oS e
= THOMSON
EkV V n E
— . PN
L BURGER

Figure Bl. Viscoelastic material models.
Appropriate combinations of material
parameters are presented in Equation Bl.

A summary based on (11,12,14) is
presented in this appendix on the rhe-
ology of some basic viscoelastic
materials. Creep functions c(t), relax-
ation functions r(t), and complex
stiffnesses E. of the models shown in
Figure B1 are considered. The latter
quantities are presented in a very con-
densed form which needs Appendix A
to be split up into real stiffness E; and
imaginary stiffness E,.

Abreviations
T=l1_ ; TK=E ; oc=£ ;o mp=1+a0
E E E,
(B1)
Mo o ) e K 1+oc+k _ 4
Mp, 2 T T T
Creep and relaxation
HOOKE: c(®) = % ; r(t) = E
MAXWELL:  c(f) = %(1 + 1) . K@) = E exp(-t)
THOMSON:  c(f) = .Ll..[l + (L - exp(~i/ty) 52
E
r@) = — oa[l + 0 exp(—m,t/’cx)]
BURGER: (1) = %[1 +Losofl - exp(—t/’cK))]
E
r(f) = [ (my, - Dexp(-mytit,) - (my, - 1)exp(—m32t/’cK)]
Mp; = Mpy
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ARXPFATAITIRTTATNY

The complex stiffness is obtained from the so-called analogue stiffness E* = E*(s)

by replacing the argument s with i®, meaning E. = E*(iw).

HOOKE: EA=E
MAXWELL: EA=E_"

1 + ts

1 +71
THOMSON:  EA =E___ &

My + TS
BURGER: E4 =

Tes (1 + T,9)

(my, + T8)(my, + T,S)

(B3)

Power Law creep: A material with Power Law creep, defined in Equation 10, has

the following analogue stiffness

b
POWER LAW: E* = E (Ts)

with T'—function I'(1 + b) = b!

(1 + b) + (t5)°

(B4)
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Elastic system analysis

The elastic force-deflection relation of the bar system considered in the main text
of the paper (se Figure 9) is developed as follows from the mechanical model
outlined in Figure C1 with forces of gravity ignored. The solution can also be
reproduced directly from the literature (ex 23,22).

Z
N p(62u/ otR)dx
]
¢ N + {ON/ox)dx
NA AM(52u/ 3t?)
v p Figure CIl. System considered. Mass per
XU P =P sin(ot) length unit of bar is u = Ap where p is

density of material. M is lumped mass.

Geometry, equilibrium, and physical condition (Hooke’s law) requires that the bar
element shown in Figure C1 will move (u) with position (x) and time (t) as
described in Equation C1.

ON _ &u N

— = U——  Equilibrium

Ox ot? u _ AE &u Basic.d . (CDH
5u N > == . asic deflection

— =__  Hooke's law ot boox

ox AE

which can be split up into two differential equations as shown in Equation C2.
The influence of time on deflection is considered in a time function T. The
influence of position on deflection is considered in a position function U. The two
functions are coupled through the constant ® the significance of which as a

frequency will appear in the subsequent analysis.

u=UxTt =

2 2 (C2)
1dT=AE1dU=constant=—g2

T dr? p U dx?
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The two equations are solved in Equation C3 with constants A,, A,, (or A,, ), B,,

and B, to be determined from the boundary conditions shown in Equation C4.

d*T . .
= + 'T =0 = T =Acos(0) + Asin(ef) = A, sin(or + 7)
2
au E U=0 = U=Bgcos|BZ |+ Bsin[BZ| with (C3)
dx* l l l
frequency parameter B = ® Aillf (m = Alp is mass of bar)
The boundary conditions are at any time, see Figure C1,
atx =0: u(@0)=0
2
atx =1 N=AEM =p sin(or) - mS" (€4
ox 52

by which the general solution expressed by Equation C2 with U and T from
Equation C3 is reduced as follows (@ = load frequency ®, B; = 0, and y = 0).

P sin(ot) sin(Bx/l) )
(System deflection)
@*[(m/B)cosP - Msin]
(C5)

with B =® % (vibration parameter)

u(x) =

with resonance frequencies (frequencies ®, at which u — o) determined by

AE
cot(B) = —B, = @, =P, |—  Reson-freq. non = 123,.
0 = M _AE when M =0
" 2 ml
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