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Abstract

This literature survey presents the state-of-the-art (early 1990s) of potential and existing
indirect methods for determination of dry matter content and basic density of wood. For each
reviewed method an evaluation of its applicability for pulp wood scaling is given. Near

infrared analysis is identified as the single most promising method for this purpose and is
therefore given the most thorough treatment.
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Preface

This literature survey is submitted in partial fulfillment of the requirements for passing the
minor subject "Non-destructive evaluation". The minor subject forms a part of the
requirements for obtaining the Danish Ph.D. degree. The report is written under the guidance
of Preben Hoffmeyer, Building Materials Laboratory, the Technical University of Denmark.

The aim of the Ph.D. project is to study and develop methods for determination of
dry matter content and basic density of pulp wood. The methods should be applicable in
practice for scaling pulp wood upon arrival at the pulp mill. In the nordic countries, the
dominant scaling method for pulp wood is presently volume scaling. Apart from providing a

more fair scaling, knowledge of dry matter content and basic density would allow a better
regulation of the pulping process.

Lot G. Thygsom
Lisbeth G. Thygesen
MSc (forestry), graduate student
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Chapter 1 Introduction 1

1 Introduction

"The determination of moisture content is an important measurement in connection
with many operations in the wood based industries. Various physical principles have
been used for this purpose, but for most applications ideal, i.e. accurate, reliable, fast
and inexpensive gauges are still lacking."

[Magnusson et al. 1972]

The article from which the above is a citation was written 22 years ago. Sadly, the situation
hasn’t improved much since then. In the nordic countries, the main scaling method for pulp
wood is still volume scaling, although both sellers and buyers agree on the shortcomings of
this scaling method. Research has gone on, however, and this literature survey gives the early
1990s state-of-the-art of the main part of (potential) methods for measuring moisture content
and basic density of pulp wood. These two variables are considered the two most relevant pulp
wood characterizing variables, both for scaling purposes and for optimization of the pulping
process. In the report, promising methods are treated in greater detail than more peripheral
methods. Prior to the reviews, a basic treatment of indirect methods of measuring pulp wood
is given (chapter 2).

In this work, the following terms are used for moisture contents, dry matter contents
and densities:

Moisture content (dry basis) Weight of water per unit weight dry matter.

Moisture content (wet basis) Weight of water per unit weight wet wood.

Dry matter content Weight of dry matter per unit fresh (wet) weight.

Basic density Weight of dry matter per unit fresh (wet) volume.

Specific density Weight per unit volume, both at a specified
moisture content.

Bulk density Weight per unit volume, both weight and volume

' including water and air as is (for example for a

bucket of chips).

Dry density Weight of dry matter per unit volume dry wood.

The abbreviation FSP is used for fiber saturation point. I am aware of the fact that
research using nuclear magnetic resonance (NMR) have revealed that the FSP-based view of
water distribution in wood is a simplification, see for example [Hartley et al. 1992]. However,
many principles for measuring moisture content in wood show a shift in sensitivity at moisture
contents traditionally interpreted as the FSP. Therefore the concept is useful for this report.
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2 Indirect methods of measuring pulp wood

This chapter first describes the indirect measuring principle and calibration. Thereafter
an overview is given of Swedish investigations of the variation in basic density and dry matter
content in pulp wood. Finally it is considered what this variation means for the evaluation of
indirect methods for pulp wood.

2.1 The indirect measuring principle

All non-destructive evaluation techniques for the determination of basic density and/or
dry matter content of wood are indirect. That is, for all types of instruments described in this
report it is necessary to interpret the response signal to get the dry matter content/the basic
density. The interpretation is established by calibration of the instrument..

There are, however, "degrees of indirectness". For example, the NMR technique for
determination of dry matter content gives response signals that are directly proportional to the
number of water-bound hydrogen atoms in the measured volume. Thus, for a given instrument,
the NMR response signal depends on only one variable (the amount of water bound
hydrogen), and the variable is directly proportional to the amount of water in the measured
volume. Among the other extremes, there is the electric resistance through a piece of wood.
This will depend not only on the amount of water, but also on the distribution of the water,
the type and amount of ions in the water, the frequency of the applied current, the temperature
of the wood, the contact between the electrodes and the wood, and other variables. The
resistance will not be a linear function of the water content for all moisture ranges. One could
say the NMR technique is more selective and less indirect than the resistance technique. The
more selective a measuring principle is, and the more simple the relationship is between the
response signal and the desired wood property (direct proportionality being the most simple
case possible), the more simple it is to establish a calibration, all other things being equal.

To calibrate is to produce a mathematical equation that links the response signal to
the desired wood property, so that the property can be calculated from the response signal.
Such an equation is called a calibration model. The interrelation between the response signal
and the wood property of interest may or may not be understood according to some scientific
theory, i.e. the interrelation may be causal or empirical. A causal calibration model implies
that one has a theory that explains why and how the instrument works. In addition to the
academic satisfaction of this it is advantageous when setting up limits for the range of
operation for the instrument. However, refusing to try out a new measuring principle because
it should not work according to one’s a priori knowledge may shut out principles that work;
theories can be incomplete or wrong. In the history of natural sciences it has often been the
results that did not fit into the existing paradigm that have led to new understandings.
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2.1.1 Calibration

How is a calibration model made? The basis of a calibration is a set of samples (the
calibration set) for which two things are known: The response signal of the instrument in
question and the desired wood property measured according to a direct method - the reference
method. For dry matter content the reference method could be weighing - drying - weighing,
for basic density it could be the water displacement method.

In the most simple case, where the instrument measures according to a highly
selective principle, where the instrument response is only one variable (univariate) and where
the noise level is low, one can use univariate calibration. That is, plot the reference value
against the instrument response, consider which type of function best describes the
interrelation, and use least squares (or maximum likelihood) regression to estimate the
coefficients of the function in the desired range. If the model is causal, the plot is used for
confirmation of the expected type of relationship. In the causal case the expected interrelation
will often be linear because instruments normally are constructed to provide linear response
within certain limits. In the univariate case the normal approach when facing nonlinearity
problems, selectivity problems etc. is to try to pretreat the samples in another way or to adjust
the sampling procedure and/or the measuring procedure to secure a higher selectivity and/or
a lower noise level. In more complicated cases, where the instrument is less selective, where
the response signal is multivariate and/or the noise level is high, these remedies will often be
less fruitful than to replace the univariate calibration with a multivariate calibration. That is,
the relevant information is extracted from the response signals using Principal Component
Regression (PCR), Partial Least Squares Regression (PLSR) or Artificial Neural Networks
(ANN) (see Appendix A). If multivariate calibration should have a chance to result in a useful
calibration model it is necessary that the response signal hold some information of the desired
wood property. However, the response needs not be linear, the method needs not be selective
and the noise level needs not be low. Causal univariate calibration models are often based on
some assumptions about the sample and/or the measuring situation. When these assumptions
are not fulfilled, it is likely that an empirical multivariate calibration model will work better
for many prediction purposes. Furthermore, analysis and interpretation of the empirical
multivariate calibration might later result in a better understanding of the model and of which
factors affect it; thereby turning the empirical model into a new causal model.

From the above description of calibration models it is clear that a single prediction
using a calibration model for an indirect method can never be more precise than the reference
method used for the calibration. However, normally the point in using an indirect method is
not to get more precise single measurements, but to get data faster and cheaper, thereby
providing more information at the same cost or providing information where earlier on there
was none. In the current applications of indirect measurements in the wood industries, the
information gained is used for intensifying process- and quality control. .
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On the other hand, it would be a simplification to claim that the reference method
always gives a better result than the indirect method. In cases where a large deviation is found
between the reference and the indirect measurement for a sample in the calibration set, the
reference value as well as the indirect value might prove to be erroneous. A special problem
arises when the reference method is more coarse or even more indirect than the indirect
method. If two or more samples in the calibration set are given the same value according to
the reference value, but actually differ in a way that affect the value of the response variable
of the indirect method, a good calibration model is impossible to obtain. This problem is often
encountered when calibrations for old, well established quality parameters are attempted. For
examples of this coarseness problem, see [Martens and Nees 1989 p.134] and [Borgd et al.
1992]. The problems related to obtaining an accurate (unbiased) representation when sampling
are the same, regardless of the measuring method (direct or indirect). But because indirect
methods normally are both faster and cheaper, the problem of measuring enough samples to
get a precise estimate is normally smaller for indirect methods. The same, or even a better
precision than that of a single direct measurement of a sample may be reached if more than
one measurement is made with the indirect method, since the standard deviation of a number
of measurements of the same sample theoretically is reduced by the square root of the number
of repetitions (see for example [Box et al. 1978 p.68]). For the calicration of indirect methods
there is a further sampling problem if the direct and indirect methods require different sample
volumes. If for example only subsamples of the samples can be measured according to the
indirect method, one must make sure that these subsamples correctly represent the samples
from which they are taken, for example by averaging the response value for a number of
subsamples per sample.

What is the maximum number of possible independent calibrations for a given data
set? For univariate calibration, the number of independent response variables measured gives
the number of possible independent calibrations. When using bilinear multivariate calibration
(PCR or PLSR, see appendix A), the upper limit for the number of possible independent
calibrations equals the number of PLS/PCR-factors. Le., normally no upper limit is
encountered. When calibrating using neural networks, each independent response variable
requires its own specially trained network.

What is a good calibration? Martens & Neas [1989 p.60] list three things, that are
needed in a calibration:

"1. Clear goal formulation, including population considerations.
2. Good validation procedures to ensure predictive ability.
3. Good models, giving sufficient predictive ability and allowing interpretation

and model criticism."

Concerning no. 1:

It is an absolute necessity to know the purpose of the calibration. This depends on
the measurements, which are to be done later using the calibrated instrument. When
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formulating this purpose, one can take start from careful consideration of the following three
questions formulated by Johansson [1991 p.3] (the author’s translation):

"1. Why is the measurement to be done?
2. What is to be measured?
3. Which quality is required from the measurement?"

"The measurement” here refers to the measurements to be done later using the calibrated
instrument.

The selection of samples for the calibration is crucial. The samples used for the
calibration must correctly represent the population from which future samples for
measurements using the indirect method are to be taken (the prediction population). If they
affect the response signal, also the measuring procedure and the conditions when measuring
must be identical, or adjusted for if possible. Concerning selection of samples for calibration
in near infrared spectroscopy Nas & Isaksson [1989] and Isaksson & Nas [1990] have treated
the subject thoroughly. Their conclusion is that it is important for the predictive ability of the
calibration model that the calibration set covers the prediction population as good as possible.
Not only concerning the constituent calibrated for but also concerning other constituents
affecting the response signal. Whether the distribution of samples should be even or follow
the distribution of the prediction population depends on the required precision of the
calibration model: if the same precision is required for samples near the edge of the prediction
population as for those near the centre of the prediction population, the distribution of samples
for calibration should be even. If a higher precision is required for samples near the centre
than for samples near the edge of the prediction population, the distribution should be the
same as for the prediction population (for example a normal distribution). It is my guess that
these guidelines also apply for other methods subject to multivariate calibration.

Under certain circumstances, an alternate way of selecting samples for the calibration
may be appealing. It consists of measuring many random selected samples using the fast,
indirect method to be calibrated and then see how the samples are distributed with respect to
the response signal (if the response is multivariate, one can factor-analyze the data). From the
resulting distribution one can then pick a smaller, but well distributed number of samples to
be measured by the reference method. These samples will then make up the calibration set.
Among others Isaksson & Nas [1990] and Shenk & Westerhaus [1991] have suggested this
method. The approach implies that the indirect method is truly non-destructive, i.e. that the
reference method can be applied to the samples after they have been measured according to
the indirect method. The slower/the more expensive the reference method is, the more relevant
is this approach.

Concerning no.2:
Validation of the model implies test of its predictive ability. This is done by using
the model to predict the wood property in question for a set of samples from the prediction
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population, which has not had any influence on the model (the test set), and for which also
the result of a measurement according to the reference method (the actual value) is known.
What is mentioned above about the selection of the calibration set also applies for the test set,
i.e. the test set should correctly represent the prediction population. The smaller the deviations
between the predicted values and the actual values, the better is the predictive ability of the
calibration model. While developing the model it may be useful to use cross validation,
especially if the number of samples available for the calibration is small. However, only a

proper test set validation as described above can provide the data necessary for an evaluation
of the model.

Concerning no. 3:

When trying to specify what a good model is, Martens & Nas 1989 [p.60] among
other things write:

"A model is a simplified intermediate representation, intended to have, from a specific
perspective and for a specific purpose, a structural or functional analogy to some phenomenon
in the inaccessible, more complex reality. A good model in calibration is then a model that
gives an adequate compromise between simplicity and completeness. The former implies
sufficient interpretability; the latter implies sufficient realism and detailed description."

Hence, even if the model is empirical and closely fitted to data, it should preferably
show some general structure and not be a "black box".

Martens & Nas [1989 p.60] also stress the importance of knowing the limits to the
models application. Preferably, when trying to predict outside the model range, the instrument
should identify the sample as an outlier and give a (quantitative) warning. For multivariate
calibration with PCR or PLSR this is possible.

In addition to this I will stress the importance of realising that ‘a calibration for a
given wood property is never finished. For continuous attainment of reliable data, the
calibration model must be maintained, that is verified (i.e. validated using test sets) and
adjusted regularly. This is because both the prediction population, the sampling procedure and
the instrument itself is likely to change over time. One must not forget the cost of this when
considering whether to introduce a new indirect method or not. Further, one must remember
that transfer of a calibration model from one instrument to another, or to the same instrument
after replacement of some vital part is not a trivial problem for all methods and all
instruments. Concerning NIR/NIT, calibration models cannot normally be transferred as is; a
new calibration from scratch or at least an adjustment is normally required. Instrument makers
in the field are aware of the problem and are beginning to find ways to overcome it (see for
example [Workman 1993]).

A thorough treatment of calibration theory is given by Martens and Nees [1989],
while Pedersen & Martens [1989] give a summary of the subject.
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2.2 The variation in dry matter content and basic density in pulp wood

and what this variation implies for indirect measurement of these
properties

An overview of variations in dry matter content and basic density found in Swedish
pulp wood investigations is given in Table 1 to Table 6. Only investigations, which fulfill the
following restrictions are included:

1. The basic density must be found using the water displacement method on
debarked discs. In most studies included in the overview, knots and decay
have been avoided when cutting out discs for determination of basic density.

The reported variation in basic density is therefore probably a little lower
than the actual variation.

2. Only investigations on delimbed pulp wood are included.

3. Only variations in pulp wood within areas sufficiently small to deliver pulp
wood to the same pulp mill are interesting in this connection. Data for the
overall variation in pulp wood properties in Sweden are therefore excluded.

The largest areas accepted are areas corresponding to scaling associations
(VMPF’s).

4. For investigations where pulp wood has been divided into strata according
to origin and/or some wood property, the refered variation includes the
variation between strata. The variation reported from such studies is

presumably a little higher than in a random sample of pulp wood from the
area.

The overview is divided into

- Spruce, which is Norway spruce (Picea Abies (L.) Karst),

- Pine, which is Scots pine (Pinus silvéstris L.),

- Softwood, which is a mixture of Scots pine and decayed Norway spruce, and

- Birch, which is a mixture of Silver birch (Betula Pendula Roth.) and White
birch (Betula pubescens Ehrh.)
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Concerning basic density, Table 1 to Table 3 give the general impression that the
variation within piles is about twice the variation between piles. For Spruce and Pine it is
around 40-45 to 20 kgm™, for Birch it is about 30-35 to 15-20 kgm™. Concerning dry matter
content, the picture is more divers. For Spruce (Table 4), the variation within piles is generally
somewhat larger than between piles (5 to 3 per cent dry matter). For Pine (Table 5) and Birch
(Table 6) there is no general trend in the relationship between the variation between piles and
the variation within piles (around 3-5 per cent dry matter).

What are the consequences of the above reported variation for indirect measuring of
pulp wood in terms of the number of measurements needed per pile for attaining a given

precision? The coefficient of variation cv of the estimate of the mean value Y of some
property Y is

cv = S (1)

where s is the standard deviation between logs in the same pile and » the number of measured
logs. s includes the measuring error. From the above tables it is possible to calculate the cv
for given values of n (or vice versa). These calculations will only be valid if measurements
are done according to the direct methods used in the studies. To get an idea of the relationship
between cv and » if instead an indirect method is used, one must include an estimate of the
measuring error of the indirect method. Normally this measuring error is only known relative
to the reference method, and only for a test set different from the data for which s has been
found. Henrik Stryhn, statistician at the Royal Veterinary- and Agricultural University has
kindly derived me a formula for the estimation of c¢v under such circumstances. The formula
gives the estimate of what the cv for a set of samples measured according to a direct method
would have been, if the samples instead had been measured according to an indirect method,

given that the direct method in question is the reference method used for calibration of the
indirect method.

[ﬁ +___(a*2 _02)]%
¥ 37 (2)
cy =
3
where
s is the sample standard deviation of the data measured according to the direct

method, calculated according to the formula

1 ¢ =
s2=———~2 Y.-Y)?
n-1 *:-¥)

i=l
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~|

is the mean value of the set of samples measured according to the direct

method,

Y* is the mean value of the set of samples measured according to the indirect

method,
c is the estimate of the measuring error of the direct method and
o is the estimate of the measuring error of the indirect method, calculated

according to the formula 6. = s, - 6°, where
N is the mean value of the squared differences between the Y-values
according to the direct method and the indirect method, i.e.:

n
s =Ly ny
nig

Formula (2) assumes that the number of logs n measured from one pile is small compared to
the total number of logs N in the pile. If this does not hold, the right hand side should be
multiplied by the correction factor (I-n/N)”. According to Henrik Stryhn [Pers. com. 1993],
the correction factor is normally omitted, if it is less than 1/10. The formula also assumes that
for both the direct and the indirect method the estimates of Y are unbiased, that the expected
value of the measuring error is zero and that the measuring errors are independent.

With formula (2), I have calculated cv for different values of n and vise versa. The results are

shown in Table 7 (basic density) and Table 8 (dry matter content). The used valuesof ¥ , ¥*

and s are estimated from Table 1 to Table 6. The same estimate (Y) has been used for both ¥

and Y* . The used values of s, and G are estimates based on the authors experience with

direct and indirect measuring of basic density and dry matter content of Spruce. Hence the
calculations are purely hypothetical, but constructed to be realistic. In Table 8, the numbers
in parenthesis are cv estimated according to formula (1), when this estimate differs from the
estimate according to formula (2).
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18 Chapter 2 Indirect measuring of pulp wood

In Table 7 and 8 the numbers in parenthesis are cv (column 6) and # (column 7) estimated
according to formula (1), when this estimate differs from the estimate according to formula
(2). The results of the calculations according to the two formulas are the same for a precise
NDE method (low s,). Table 7 and Table 8 show that for the coefficient of variation of the
estimate of the pile mean value of basic density or dry matter content to be approximately four
per cent, the number of samples per pile should be between five and ten for softwood, below
five for Birch. The different examples for Spruce indicate that the within pile variation in
relation to the pile mean value is the main source of variation in the coefficient of variation
of the estimate of the pile mean. The measuring error of each single measurement has less
influence. Therefore the most influential controllable variable for the precision of the estimate
of the pile mean is the number of samples taken from the pile. Hence the attainable precision
of a non destructive method for measuring average dry matter content or basic density of pulp
wood piles is closely connected to how fast the application can perform a single measurement,
because this is decisive for how many samples can be taken from a pile when measuring in
practice.

When evaluating a method it is not only the attainable precision that counts. Also it’s
consequences for the (working) environment as well as the price of installing and running the
system is important.
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3 Electrical properties

This chapter describes the use of various forms of interaction between wood and electricity
for determination of water content and/or basic density of wood.

3.1 Resistance

That the electrical resistance of wood is connected to the water content has been known since
the 1920s, and the principle is used in many applications for the wood industries [Skaar 1988
p-207, Kollmann & Coté 1968 p.184]. The method is only established for moisture contents
below fiber saturation. According to Skaar [1988 p.211] the resistance in wood above fiber
saturation is mainly determined by the type and amount of ions in the cell-cavity water.
Nevertheless research is going on with the aim to extend the range of electric moisture meters
to above fiber saturation: Bohner et al. [1993] describe a test of a new electrode developed
for measuring high moisture contents in softwood, i.e. above 100% on a dry weight basis. For
these moisture contents, the deviation between the gravimetrically determined moisture content
and the moisture content according to the electrode was up to 30% for individual test
specimens.

According to Skaar [1988 p.219] no consistent relationship has been found between
the density of different woods and their electrical conductivity. According to Andreas
Bergstedt, RVAU [pers. com. 1994], resistance based moisture meters normally have one
empirically found setting per tree species.

When measuring water content, the principle of the method is to measure the
resistance through the wood between two electrodes. The electrodes can either be needle-like
and driven into the wood, flat plates pressed onto the surface or roller electrodes. Through a
calibration a relationship is established between resistance and moisture content. Vermaas
[1975] lists the factors affecting moisture measurements of wood using resistance meters.
From this paper it is clear that the measured resistance depends on several factors beside the
moisture content, both wood variables (for example the moisture distribution and grain
direction) and experimental variables (for example the applied voltage (the Evershed effect)
and the contact resistance between electrodes and wood). Therefore, a calibration model must
either include these factors or they must be kept at the same level as during calibration. The
most influential factor is the temperature of the wood. James [1968] shows data for the
relationship between DC conductance, moisture content and temperature for four different
North American species. At constant moisture content the conductance increases with
increasing temperature. Polarization, ohmic heating and electrolysis alter the resistance during
measuring when measuring continuously. Forrer & Vermaas [1987] describe the development
of a moisture meter in which the influence of these three factors and of temperature are
reduced.



20 Chapter 3 Electrical properties

According to Skaar [1988 p.221] it affects the measurement whether the current
between the two electrodes is parallel or perpendicular to the moisture isostere layers: in the
first case (for example pin electrodes parallel to the grain), the layer of highest moisture
content through which the electrodes pass tends to dominate the reading, giving an
overestimation of the average water content between the electrodes. In the second case (for
example flat plate electrodes on either side of a veneer) the layer with the lowest water
content tends to dominate, giving too low apparent average water contents.

Since the technique neither makes possible accurate measurements of the water
content above the FSP, nor of the basic density, it has no potential for pulp wood.

3.2 Dielectric properties

This section is based on [James 1975], [Skaar 1988 p.237-262] and [Lin 1967].

The dielectric properties of a nonconducting material, like wood, characterize the
interaction between the material and electric fields. The two interactions of importance are
absorption and storage of electric energy in the material due to polarization and the rate in
which this energy is lost (dissipated). The first interaction is quantitatively described by the
dielectric constant, which is the ratio of the capacitance of a given capacitor with the material
as the insulating medium to the capacitance of the same capacitor with vacuum. The more
readily the material is polarized, the higher the dielectric constant. Various parameters are used
to describe the rate of energy loss. They all refer to the complex dielectric constant, defined
as €* = € - ie”. € is the real part of the dielectric constant
(defined above) and €” is the imaginary part. The complex A
dielectric constant expresses the total current as a vector sum c’ e*
of loss current in phase with the applied voltage and charging
current that is 7/2 out of phase with the applied voltage, see
Figure 1. The angle between €” and €* is called the phase
angle and is denoted 6. The angle between €” and £* is called
the loss angle and is denoted 8. The wider the loss angle, the
faster the energy is dissipated. The rate of loss is described by
tand, sind or cosB. Tand is called the loss tangent, or the
dissipation factor and is equal to £”/¢’. Sind is called the loss 8
factor by Skaar [1988 p.242], while both James [1975] and 3] c”
Lin [1967] define loss factor as the imaginary part of the -
complex dielectric constant. Sind is equal to €”/e*. cosO iS Figure I. The dielectric constant
identical with sind but is called the power factor. According &* and its components € and €”. @
to Skaar [1988] tand is often called the loss factor because sin ' ™€ phase angle, 8 is the loss

. angle. Adapted from [Skaar 1988
and tan are essentially equal for small angles. p.241].

Polarization of wood involves four different mechanisms [Skaar 1988 p.239]:
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Electronic polarization is caused by displacement of electrons with respect to the nucleus
within the atom. It occurs at optical and ultraviolet frequencies (approximately 10 - 10" Hz).
Atomic polarization is caused by stretching and bending of bonds between atoms of a
molecule. It occurs at infrared frequencies (approximately 10" - 10" Hz). Dipole polarization
(Debye effect) is caused by permanent dipoles such as hydroxyl groups. They rotate in an
applied electric field and contribute to the dielectric constant at frequencies sufficiently low
to allow the dipoles to follow the changes in the AC voltage (40 - 10° Hz). Interfacial
polarization (Maxwell-Wagner effect) is believed to be caused by the accumulation of charged
ions at interfaces between different regions within the cell wall. Interfacial polarization occurs
at even lower frequencies than dipole polarization (<10 Hz). In addition, James [1975]
distinguishes between displacement of individual electrons in an atom, which he calls
electronic polarization, and displacement of the atomic nucleus in relation to the group of
atomic electrons, which he calls atomic polarization. All polarizations require a finite time to
occur, so the polarization never follows a varying electric field exactly. The rate at which a
polarization process occurs is expressed quantitatively by the time constant. The time constant
is the time required for the polarization under zero field (or the difference between the
polarization and its final value under constant field) to decrease by a factor 1/e [James 1975],
i.e. to about 2/3 of the total rotation they would have in a steady DC field [Skaar 1988 p.239].
The time constant is longest for interfacial polarization (in the order of milliseconds to
minutes at room temperature), shortest for electronic polarization (less than picoseconds)
[Skaar 1988 p.239]. This variation in time constant is the reason why the dielectric properties
depend on the frequency.

3.2.1 Factors affecting the dielectric properties of wood

The dielectric properties of wood vary with frequency, moisture content, temperature and
density ([Skaar 1988], [James & Hamill 1965], [James 1968 and 1977], [Lin 1967],
[Peyskens et al. 1984] and others) and to a lesser degree with mineral content and grain
orientation [Lin 1967]. Further, studies by James [1981] show that the electrode design
influences the readings and by that the apparent dielectric properties of wood, especially at
low frequencies (20-1000 Hz) and at water contents above 7 per cent.

Frequency
At a given moisture content and temperature the dielectric constant decreases with increasing
frequency [James 1975], see Figure 2. v

The loss tangent has maximum and minimum values at various frequencies,
depending on the temperature and water content [James 1975].

Moisture content

At a given frequency and temperature the dielectric constant increases strongly with increasing
moisture content [Lin 1967], [Skaar 1988 p. 254]. The increase is exponential below FSP,
linear above [Lin 1967]. According to Skaar [1988 p.246 + 249], the dielectric constant for
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dry wood is about 2-3, while the diélectric e

constant of water is near 80 below 10° Hz, \ s Lwal

decreasing to about 5 above 10" Hz (at 25 °C). A e
How the loss tangent is affected by the

moisture content depends on the frequency (and
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higher frequencies, the loss tangent shows a L 11 “l* 3%,
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for which the loss tangent peaks shifts upward Figure 2. "Dielectric constant of Douglas-fir, field

with increasing water content [Skaar 1988 parallel to the grain, at various frequencies and

p.257]. humidities, at 25°C. ... Vertical bars indicate 95 per
cent confidence intervals...". ‘From [James 1975].

Temperature :

The dielectric constant increases continuously with increasing temperature [James 1975], and
as for water content, the peak in loss tangent shifts to higher frequencies when the temperature
increases [Skaar 1988 p.259].

Density ‘

Both the dielectric constant and the loss tangent increase with increasing density of wood [Lin
1967], [Skaar 1988]. Figure 3 shows the relationship between frequency, water content,
specific density and dielectric constant.

Mineral content

According to Lin [1967] the mineral content of wood affects the loss factor (i.e. £€”) at audio
frequencies, and the power factor and the loss tangent at radio frequencies. The dielectric
constant is reported to vary more with mineral content at audio frequencies than at radio
frequencies.

Grain orientation

Lin [1967] reports that the dielectric values are higher e

along the grain than across the grain, probably due to a - (e e /
higher degree of alignment of hydroxyl groups along the S 5]
cellulose axes in the cell walls than across. He also " 1o¢
reports a difference in dielectric behaviour between the | ¢ - ;/
radial and tangential direction and explains this as a z_/o{
result of the cell wall orientation. James [1981] found L

no difference in dielectric behaviour between radial and % R YR T I p—)
tangential direction. Ge

Figure 3. "Curves showing increase of

. . . . dielectric constant €' with increasing wood
Dielectric moisture meters based on either . SaSHIE WO
moisture content and specific gravity

measurements of the dielectric constant or the loss (After Uyemura 1960)". From [Skaar
1967].
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tangent exist, and are often used in the wood industry [Skaar 1988 p. 262]. Measurements of
density are also possible. Usually the microwave region is used (see section 4.8).

3.3 Eddy current
This section is based on [Madsen et. al. 1988].

When using eddy current to measure the properties of a sample of a material, a coil

is placed next to the sample. The electric and magnetic properties of the sample will affect
the magnetic field from the coil and determine which signal returns to it (one can think of the
coil as the primary coil and the sample as the secondary coil in an imaginary transformer).
Two signals are read: one reflects the conductance, the other the phase displacement. The
method is mostly used for detecting flaws in metals.
Madsen et. al. [1988] tested the potential of the method as a means to detect decay in wood.
He experienced that in the available range from 1 kHz to 1 MHz, the return signal was very
weak. For water contents up to approximately 50 per cent, the signal showed a weak tendency
towards higher values for higher water contents. At 50 kHz the penetration was 35-40 mm,
for higher frequencies approximately 20 mm. The penetration depth did not vary with the
water content. Whether the signal depends on the basic density was not tested.

To my knowledge, practically no experience exists concerning eddy current as a
technique for measuring water content or density of wood. The findings of Madsen et. al.

[1988] suggest that a new test ought to apply a more sensitive instrument and/or another
frequency range.

3.4 Piezoelectric effect
This section is based on [Knuffel & Pizzi 1986].

Like some crystals, wood exhibit piezoelectric effect, i.e., a short lived electrical
charge develops on the surface when a pressure is applied to the material. In wood, the
piezoelectric effect is caused by shear stresses. When shear stress is applied in the tangential-
longitudinal plane, polarization is generated in the radial direction. When shear stress is
applied in the radial-longitudinal plane, polarization is generated in the tangential direction.
The magnitude of the piezoelectric effect depends on the degree of crystallinity, the density
and the water content. The higher the degree of crystallinity, the more polarized will the wood
be in the radial direction when subject to a given shear stress. An increase in density gives
an increase in polarization in the tangential direction (/Bazhenov 1961 p.71] and Hirai et al.
[1968b]) and a decrease in the radial direction [Bazhenov l.c.]. Moisture interferes with the
measurements because it raises the speed of the piezoelectric signal (better conductance), but
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not the stress wave, whereby the stress wave coincide with the piezoelectric effect. Due to this
phenomenon measurements are obstructed at approximately 20 per cent moisture content.

Since piezoelectric effect apparently is obstructed by the moisture in wood already
below the FSP, it lacks potential for measuring pulp wood.
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4 Electromagnetic waves

The greater part of the existing and potential indirect methods for determination of moisture
content and/or basic density of wood uses the interaction between electromagnetic radiation
and wood. Primarily, the interaction between radiation and matter depends on the relationship
between the energy of the incident light quantum (photon) and the association energy of the
electron/atom that is hit. The energy of photons is proportional to their frequency, that is
inverse proportional to their wavelength. Figure 4 shows
the electromagnetic spectrum. The borders between the
wavelength ranges are labile, different authors use

different borders. The first section of this chapter gives Wavelength  Frequency  Region
a short description of photon - matter interaction, while (nm) o Hz)
types of response from instruments using L o® _—
electromagnetic radiation are discussed briefly in the 10’
second section. The rest of the chapter describes the use , o’
of various wavelength ranges. 0 --|o'°
o ? MICROWAVE
.-10“
4.1 Photon - matter interaction 10° <
, "
Two parallel approachés to description of photon - ‘°5‘_w‘3 L enacneo
matter interaction exist. The micro level or chemical .
approach concentrates on the energy transfer from " q_wu
photon to electron/atom/molecule, while the macro or 10 NEAR-INFRARED
physical approach seeks to describe how radiation is -10"® visieLe
affected by matter. 10’ - N
10
17
4.1.1 Micro level approach . _—
_‘o‘a X=RAY
If the energy of an incoming photon is large relative to %'
the association energy of the electron/atom/molecule that 10"
is hit, the photon is likely to cause photodecomposition. o i CAMMA-mAY
That is, bonds between atoms are disrupted because new w_d‘“

particles are formed or because existing electrons are
excited by photons. Waves shorter than UV-light
(approximately) have this effect on biological material. Figure 4.  Electromagnetic  spectrum.
Three processes dominate in photodecomposition: pair f ;f’;;;e adapted from [Murray & Williams
production, Compton scattering and photoelectric '

absorption (also denoted photo absorption or _

photoelectric effect). The shorter the wavelength, the more frequent is Compton scattering
relative to photo absorption [Lindgren 1973], while pair production dominates for even shorter
frequencies [Johns & Cunningham 1971 p.166-168]. According to Johns & Cunningham
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[1971 Lc.], Compton scattering dominates for photon energies between 200 kev and 5 Mev,
while photo absorption dominates for lower energies and pair production for higher energies.
In pair production, a photon under influence of the electric/magnetic field near a nucleus
changes into an electron and a positron. Formation of the two particles requires 1.02 Mev.
Any excess energy goes to kinetic energy of the newly formed particles. In Compton
scattering, a part of the energy of the photon is transferred to an electron when they collide.
The electron gains enough kinetic energy to depart from its orbital. The photon keeps part of
the energy, and leaves from the collision in a new direction and with a longer wavelength. In
photo absorption, all the energy from the photon is transferred to the electron, which also in
this case leaves its orbital. In all three cases, the emitted particles may again collide with other
particles and cause additional radiation and photo decomposition. In addition to the mentioned
influence of the energy (frequency) of the radiation, the relative importance of the three
processes depends on the atomic number of the elements comprising the specimen. Both pair
production and photo absorption increase with increasing atomic number, while the probability

for Compton scattering is independent of atomic number [Johns & Cunningham 1971 p.135-
171].

If the energy of the photon is of the same order as the association energy of the
electron, that is UV and visible light, the photon is likely to cause electron transition from a
low energy position to a higher energy position. When the electron falls back to its original
position, the excess energy may be exited as a photon. This process is used in fluorescence
spectroscopy. Normally the exited photon has a longer wavelength than the exciting photon
(denoted Stokes fluorescence, which is normal for solutions) [Guilbault 1989]. In special cases
the emitted photon may have the same wavelength as the exciting photon (denoted resonance
fluorescence. Tt never occurs in solutions, but is possible for gases and crystals), or even
shorter (denoted anti-Stokes fluorescence. It is often observed for dilute gases at high
temperatures) [Guilbault op. cit.].

Parallel to the three processes described above, photons may be scattered without
energy transfer to the electron. This process is described by formulas for Rayleigh scattering
(or for Thomson scattering, if the photon energy is much greater than the association energy).
Satellite bands to the Rayleigh peaks occur due to the Raman effect (vibrational energy of the
exciting photon) [Guilbault op. cit.].

If the energy of the incoming photon is less than the association energy, i.e. near
infrared or longer wavelengths, the photon will cause vibration or rotation of atoms, groups
of atoms in a molecule or whole molecules. This type of energy transfer is treated thoroughly
by Murray & Williams [1987]. Where no other reference is mentioned, the rest of this section
is based on Murray and Williams [1987].

The covalent bonds between atoms in organic molecules are natural oscillators that
vibrate continuously. The frequency depends on the atoms (which elements) and how they are
connected. For complex molecules, more than one type of motion is possible: for nonlinear
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molecules, there are up to 3n-6 different modes of movement of the » atoms relative to each
other (various kinds of stretching and bending). In addition to these vibrations, rotation is also
possible. For linear molecules the number of possible vibration modes is 3n-5. Normally the
molecule is in the ground state, i.e. at the lowest energy level. If the molecule is hit by a
photon with the right amount of energy, the molecule will absorb the energy of the photon,
thereby being excited to a higher energy level. The wavelength where excitation from the
ground state to one of the 3n-6 next lowest energy levels occurs is called a fundamental.
Fundamental absorption normally occurs somewhere between 2,500 and 15,000 nm. If the
energy of the photon corresponds to the difference between the ground state and one of the
third lowest energy levels or a higher energy level, the molecule is exited to that level instead.
The wavelengths where this occurs are called first overtone, second overtone etc. The first
overtone is approximately one half of the wavelength of the fundamental, the second one third
etc'. The higher the energy level, the fewer molecules will reach it, resulting in lower
absorption peaks. For practical, quantitative purposes overtones higher than the third are of
little significance. Overtones in the near infra red region relates to fundamentals in the 5-
8,000 nm range. These fundamentals correspond to vibration of light atoms with strong
molecular bonds, i.e. predominately hydrogen attached to nitrogen, oxygen or carbon [Wetzel
1983]. In addition to fundamentals and overtones, absorption also occurs at combination bands
and due to Fermi resonance. Combination bands are wavelengths where the energy of the
photon equals the sum of two or more different vibrations, which then couple. Le., the
molecule is thought to vibrate according to both modes simultaneously. Most combination
bands are found between 1,800 and 2,700 nm [Shenk et al. 1992]. Fermi resonance is an
effect, which can sometimes be observed, when the wavelength of a fundamental is close to
the wavelength of an overtone or a combination involving another fundamental. It results in
two absorbancies with the same intensity, both involving both absorptions, over and below the
wavelength, where the two signals were expected. The oscillation of covalent bonds depends
on their surroundings, such as which molecules are located nearby. The energy states and
thereby the wavelength of the photons needed for excitation of a given bond therefore varies.
For example, free water and water in wood will not absorb at the same wavelengths. Also
there is an effect of the dependency of hydrogen bonds of moisture content and temperature
(see section 4.1.3).

4.1.2 Macro level approach

Various sets of equations exist for the interaction between ray and matter. The equation sets
apply to different situations.

The oscillation of the covalent bonds between atoms is not strictly simple harmonic motion. Therefore
it does not strictly obey Hooke’s law, the wavelength of overtones (or harmonics) being slightly longer
than whole number fractions of the fundamental. This phenomenon is called anharmonicity.
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The Fresnel equations describe the specular reflection and refraction of radiation for
a non absorbing material consisting of particles with diameters larger than the wavelength of
the incident radiation. In this case, the directions of the radiation leaving the material can be
calculated. The Fresnel equations are given by Kortiim [1969 p.6-7].

For densely packed particles, the intensity of remitted radiation will be (almost)
independent of the angle of the incident radiation and of the angle of observation. This is
called diffuse reflectance. This case is described by the Lambert cosine law [Kortiim 1969
p-28] that relates the remitted radiation flux in a certain direction from a small area to the
angle of incidence and to the angle of observation.

When the particles have diameters smaller than or equal to the wavelength, the
remitted radiation cannot be split into refraction and reflection. In this case the remitted
radiation is collectively referred to as scatter. Two theories exist for scatter: Rayleigh
scattering [Kortiim 1969 p.75-83] and Mie scattering [Kortiim 1969 p.83-96]. Both concerns
single scatter. Single scattering is scattering of (monochromatic) light by particles so far apart
that the scatter from one particle does not interfere with the scatter from any other particle.
Rayleigh scattering applies to particles (molecules) that are small relative to the wavelength,
while Mie scattering applies to isotropic spherical particles.

For multiple scatter, where the particles are so close that interference occurs, only
phenomenologic theories exist. The most dominant of these is the Kubelka-Munk theory,
treated by for example [Kortiim 1969] and by [Olinger and Griffiths 1992]. Here the central
Kubelka-Munk expression is shown in the form used for quantitative analysis:

(1-R)? _ (in10)pc
2R s

where

is the reflectance, infinite sample thickness assumed,
is the absorptivity (a coefficient, unit: m™),

is the concentration of the absorbing analyte, and

is a constant, known as the scattering coefficient.

Tt 6 T X

In arriving at this equation, Kubelka and Munk made several assumptions concerning the
sample texture and the radiation flux. The left side of the equation is known as the Kubelka-
Munk function, and is usually denoted f{(R). As can be seen, the equation indicates a linear
relationship between f{R) and c. According to [Olinger & Griffiths 1992] this is not true if the
analyte is surrounded by an absorbing matrix or if the absorption bands are strong
(fundamentals and/or high analyte concentration).

The Beer-Lambert law describes the loss (attenuation) in intensity of a flux of
radiation when passing through a material. Strictly speaking, the Beer-Lambert law is only
valid for attenuation of a collimated, monochromatic beam by a uniform absorber [Tiitta et
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al. 1993]. However, the law is widely applied, also for situations where these conditions are
not completely fulfilled. The Beer-Lambert law is written:

- —ux B PX
I =1Ie Ie ™

where [ is the intensity of the ray after passage of the material,
1, is the intensity of the incident ray,
J7} is the absorptivity (also denoted the linear attenuation coefficient, unit: m™),
X is the thickness of the material,
U, is the mass attenuation coefficient, i.e. the absorptivity divided by the
density of the material (unit: m?g), and where
p is the bulk density of the material (unit: gm™)

Thus, if the two intensities, the mass attenuation coefficient and the thickness of a measured
specimen is known, its bulk density can be calculated. Use of this approach is called direct
scanning densitometry. Both the linear and the mass attenuation coefficient depend on the
wave length (energy) of the radiation and on the absorbing material (the elemental
composition), but unlike the linear mass attenuation coefficient, the mass attenuation
coefficient is independent of the density of the absorber. According to Olson & Arganbright
[1981], mass attenuation coefficients for wood are essentially the same, regardless of the
chemical composition of the wood, if the radiation energy is above 40 kev. Using a 60 kev
source, Malan & Marais [1991] found mass attenuation coefficients ranging from 0.170 to
0.210 cm’g" for a set of wood specimens. Use of direct scanning (regardless of wavelength
range) reqiures that the mass attenuation coefficient for the applied radiation energy is known
for the type of specimen measured. The mass attenuation coefficient varies from elemental to
elemental and increases rapidly with atomic number. Therefore, though wood consists almost
completely of carbon, oxygen and hydrogen in more or less stabile proportions, the minuscule
but varying content of trace elements such as potassium and magnesium might influence
density measurements locally [Pernestdl & Jonsson 1992]. The theory of calculating mass
attenuation coefficients for wood is treated by Liu et al. [1988].

Other
descriptors of ray
attenuation are @) ©
absorbance, which is
equal to log(I,/I) and (a) Specular Reflectance
transmittance, which (b) Diffuse Refiectance
is equal to /I, (c) Absorption

(d) Transmittance

Figure 5 (e) Refraction
shows the different | 4y scattering -
kinds of interactions v
between near ‘
infrared radiation

Figure 5. "Interaction of near-infrared radiation with solid particles in a sample".
Figure and text from [Shenk et al. 1992].
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and a sample consisting of solid particles.

4.1.3 Factors affecting the interaction

Apart from the dominant influence of the energy relationships on the ray - matter interaction,
a few other factors can in some situations influence the interaction.

For small particles and for wavelengths in the visible and longer ranges, the particle
size affects the absorbtion level. Particles that are large compared to the wavelength will
absorb less than particles that are only moderately larger than the wavelength. This is because
light that hits the smaller particles will scatter more and will not penetrate so deep. If the
particles are even smaller, that is, have diameters of the same size order as the wavelength,
the absorption will again increase. This is because the specular reflection will be negligible
for such small particles [Kortiim 1969 p.60-73].

The reflectance of small particles also will depend on whether they are surrounded

by water or air. If surrounded by water, the particles will reflect more [Kortiim 1969 p.241-
243].

Composite bands in the NIR region consisting of multiple overlapping bands will
change position with changes in temperature and moisture content due to changes in the
relative proportions of the individual bands making up the composite band. The largest
variations are caused by changes in hydrogen bonding [Shenk et al. 1992].

For wavelengths causing vibration/rotation, the response also will depend on the state
of the sample. Rotation will for example normally only be encountered in the vapour state,
because in other states rotations are dampened out by molecule collisions [Murray & Williams
1987].

4.2 Response from instruments based on electromagnetic radiation

An instrument based on electromagnetic radiation records one or more characteristics of the
radiation after interaction with the sample, often relative to the same characteristic of the
incident ray. In cases where the characteristic is difficult to record for the incident ray or
where the absolute value of the response variable cannot be obtained, the response is instead
recorded relative to the response of a standard sample, measured with the same instrument
settings. Figure 5 in the previous section shows various kinds of interaction between near
infrared radiation and a sample. The shorter the wavelength, the more dominant is the
transmittance. Knowledge of the sample is mainly gained from the transmitted or reflected part
of the radiation, because these parts are affected by the sample in other ways than by change
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of direction’. What is measured is either the bulk loss in energy of the radiation, i.e.
attenuation, the change in one or more wave characteristics, or the propagation speed
(transmittance only). Attenuation can for example be given as intensity after interaction with
the sample relative to intensity of the incident ray (in for example J m? s?). The wave
characteristics can for example be wavelength distribution (a spectrum) or one of the dielectric
properties (for example phase displacement).

Electromagnetic waves can be used with various degrees of spacial resolution. In the
most crude applications, the waves are sent through the material in a few points, and the
cumulative attenuation is recorded for each path. This "zero dimensional" approach a priori

seems most appropriate for pulp wood. When used for more detailed studies, the attenuation
can be measured

- along a profile, using a thin strip of wood, homogeneous in thickness, i.e.
a one dimensional approach,

- on a surface (for example a cross section), i.e. a two dimensional approach
resulting in achievement of information per unit area (pixel), or

- for each spacial unit (voxel), i.e. a three dimensional approach.

Descriptions of electromagnetic waves for quantitative analysis using univariate
calibration illustrate what is mentioned in section 2.1.1 regarding the maximum number of
independent calibrations per data set: the number of independent response variables measured
gives the number of possible independent calibrations. When the applied radiation is
monochromatic and only one characteristic of the radiation is recorded, then only one
characteristic of the sample can be subject to calibration (for example moisture content). If
another characteristic of the sample also influences the response (for example the basic
density), then it must be kept at the same level as during calibration, or measured using
another method and corrected for. If the characteristic is recorded for two different
wavelengths, or if two independent characteristics of the monochromatic radiation are
recorded, then calibrations for two independent characteristics of the sample are possible (for
example moisture content and basic density).

4.3 Gamma rays

Gamma rays are high energetic, short waves (wavelength range 0.01 to 0.001 nm). Therefore,
all applications of gamma rays imply health hazards and environmental risks. All reported uses

Some spectroscopes working in the visible and/or near infrared range record a combination of
transmittance and reflectance. They are called transflectance instruments.
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of gamma rays for wood density or moisture measurements are variants of direct scanning (see
p-29).

The gamma source used most frequently in studies is the *) Am source, but also the
¥Cs, the *'°Pb and the *Fe sources are reported used. For wood with a specific density of 0.5
gem™, the penetration of gamma rays is between 40 and 400 milimeters [Loos 1965]. Most
applications for wood implies use of monochromatic rays and measurement of attenuation.
Such applications with only one response signal makes it possible to make calibrations for
only one characteristic at a time, i.e. moisture content or density. This technique was used in
a zero dimensional approach for clear wood samples by Loos [1961] (specific density or
moisture content) and by Malan & Marais [1991] (specific density). Ranta & May [1978] and
Laufenberg [1986] recorded profiles of specific density for boards, while Woods and Lawhon
[1974] used the technique for acquiring specific density profiles of increment cores. If the
sample is measured both in wet and dry condition, both the moisture content in wet condition
and the dry density can be determined. Tiitta et al. [7/993] and Davis et al. [1993] describe
measuring routines based on this approach. As I see it, this type of measurement offers only
a slight improvement compared to traditional direct moisture content and density measurement.

Moschler & Dougal [1988] give a calibration procedure for a direct scanning, gamma ray
densitometer.

The potential of using a dual energy gamma radiation method for simultaneous
measurement of moisture content and density of wood was evaluated by Olson et al. [1982].
The evaluation method was error analysis, and three different approaches were examined.
Olson et al. conclude that with the present costs and the available technology, the technique
does not have industrial potential. A problem in obtaining acceptable errors is the small
difference in mass attenuation coefficient between water and dry wood.

The results of Olson et al. [1982] indicate that dual energy gamma ray attenuation
has little or no potential for simultaneous measurement of moisture content and basic density.
Use of monochromatic gamma rays for determination of either basic density or moisture
content requires that the other property is measured using another method and corrected for,
as none of the two properties can be assumed to be constant. Approaches using a combination
of gamma and neutron rays (see section 6.2) for simultaneous assessment of moisture content
and basic density are described by Gibson & Rusten [1964] and by Richesson et al. [1967].

4.4 X-rays

X-rays are electromagnetic waves with wavelengths between 0.01 and 10 nm. When used for
evaluation of wood, their attenuation when passing through the wood is measured. In most
applications, only one feature of the interaction between monochromatic waves and the wood
is measured. In these cases, X-rays cannot be used for simultaneous measurement of moisture
content and basic density. One must be known to get the other. For evaluation of density or
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moisture content of wood, X-rays have been reported used in three ways: for densitometry,
for computed tomography (CT) and for dichromatic photon absorptiometry. All applications
of X-rays imply health hazards and environmental risks.

4.4.1 X-ray densitometry

X-ray densitometry is the use of X-rays for establishing density profiles. When applied to
solid wood, the profiles are often measured on a cross section and used for detailed analysis
of density variations within and between annual rings. Two forms of X-ray densitometry exist:
photo densitometry and direct scanning densitometry. In both forms, the intensity after passage
of a thin wood sample (1-5 mm) is registered. Both forms require samples with a stabile water
content and homogeneous water distribution.

In photo densitometry, the wood sample is first placed on top of a X-ray sensitive
film and exposed to X-rays for a definite time (in the order of hours). Then the resulting grey
tone photo negative is analyzed using an optical densitometer. The grey tones are transformed
to density values using photos of samples with known density. Photo densitometry for wood
was introduced by Polge in the sixties, [Polge 1965] and [Polge & Nicholls 1972].
Improvements to the method are described by Lenz et al. [1976] and by Rudman et al. [1969]

while Dupont et al. [1987] specify how to optimize the method. Danborg & Pedini [1990]
give a short review of photo densitometry.

In direct scanning X-ray densitometry, the transmitted rays are recorded directly using
detectors. When the thickness of the sample, the incident flux and the mass absorption
coefficient of the sample is known, its density can be calculated using the Beer-Lambert law
(see p.28). Direct X-ray densitometry is of a later date than photo densitometry. Direct
scanning X-ray densitometry is described by Cown & Clement [1983], Hoag & McKimmy
[1988] and Jonsson et al. [1990]. The system described by Cown & Clement uses X-ray

radiation from a radio active isotope (*’Fe), while the system developed by Johnson et al. uses
an X-ray tube.

For a possible pulp wood application, X-ray densitometry is not relevant. The method
gives the specific density at a preset water content, but neither the water content nor the basic
density can be measured. Furthermore, the careful sample preparation and conditioning is too
time consuming, also for the direct approach.
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4.4.2 Computed tomography
This section is based on [Lindgren 1992].

Computed tomograhy (CT), also denoted computed axial tomography (CAT), is the
computation of two-dimensional sectional views of three-dimensional bodies. In X-ray CT the
density is computed for small elements (voxels) of the body (typical voxel side lengths are a
few millimeters). What is recorded is the CT-number, i.c., the linear attenuation coefficient
4, normalised by the linear attenuation coefficient for water g,

CT-number = 1000 -£x_Fwater

Hsvater

A CT-number of -1000 corresponds to air density, while a CT-number of O indicates water
density. A calibration model is established between CT-number and density using calibration
objects with known density. Lindgren [1992] presents a linear calibration model for this. The
model is not validated. For wood, it is a problem to measure reference densities of the small
volumes that new CT-scanners offer (voxels with side lengths in the order of pm).

CT can also be used for indirect determination of water distribution. This implies
measurement of the density distribution twice for each sample: in wet condition and as oven
dry. After correction for shrinkage, the two images can be subtracted from each other, and the
difference in density is due to water. If the average moisture content of the sample when
scanned in wet condition is known, the recorded density differences can be transformed to
moisture contents. Determination of average moisture content is also possible. Calibration then
requires determination of average CT-number for samples with equal density but conditioned
to different moisture contents. Lindgren [1992] shows calibration models that link water
content to average CT-number for two different density levels. Each model has a linear term
for moisture content below FSP and one for moisture content above FSP. The models are not
validated.

CT offers detailed investigation of wood structure (annual rings, knots), wood density-
or moisture content distributions in solid wood. If one is only interested in log means or pile
means, as is the case for pulp wood, the method is not adequate. It would be "to use a sledge
hammer to crack a nut".

4.4.3 Dichromatic photon absorptiometry

Dissing & Nylinder [1981] tried dichromatic photon absorptiometry for determination of the
fractional water content of chips. They define the fractional water content as the water content
on a fresh weight base. The method consists of simultaneous (or consecutive) measurement
of the attenuation of X-ray photons with two different energies. One photon energy per
constituent element is needed, but for this application wood can be treated as a compound of
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only two elements: dry wood and water. If the mass attenuation coefficient is known for each
element and photon energy, the fractional water content can then be calculated through the set

of equations presented by Dissing and Nylinder [op. cit. p.8]. The equations are based on
Beer-Lambert’s law.

Dichromatic photon absorptiometry might be a possibility for water content
determination of pulp wood.

4.5 Fluorescence spectroscopy
This section is based on [Guilbault 1989].

Fluorescence is light emitted by molecules during the period in which they are excited
by photons. Photons in the ultraviolet and visible regions (about 10 to 10> nm and 10? to
10’ nm) of the electromagnetic spectrum have energies that may cause electronic transition
and by that fluorescence. More energetic photons (shorter wavelengths) are more likely to
result in photodecomposition than fluorescence, while less energetic photons only have energy
enough to result in vibrational or rotational transitions, which result in much weaker
fluorescence. A molecule will only give fluorescence if the energy of the photons matches the
gap between two of its energy states. If no adequate gap exists, the molecule will not show
autofluorescence or primary fluorescence. However, addition of reagents, which for example
change the specimen’s pH can change some of
its components in such a way, that they become fluorescent. Fluorescence accompliced in this
way is called secondary fluorescence. Lignin is autofluorescent, while secondary fluorescence
from cellulose might be achieved by use of the chemical Calcofluor [Munck 1993 pers. com.]
(concerning Calcofluor, see [Munck 1989 p.19]). The fluorescence normally observed from
solutions is reemission of less energetic photons, than the emitting photons, i.e. photons with
longer wavelengths. Fluorescence is described by three characteristics:

1. The quantum yield (also denoted the quantum efficiency), which is the ratio
of the total energy emitted per quantum of energy absorbed. The higher the
quantum yield, the greater the fluorescence of the compound.

2. The excitation spectrum, which is the relative efficiency of different
wavelengths of exiting radiation to cause fluorescence.

3. The emission spectrum, which is the relative intensity of radiation emitted

at various wavelengths.

Theoretically, the shape of the excitation spectrum should be independent of the wavelength
at which the fluorescence is measured and it should be identical with the shape of the
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emission spectrum. Because of instrumental artifacts, this is seldom the case. The three

characteristics are normally very specific (i.e., two different substances seldom have the same
‘three characteristics).

In a fluorometer light is emitted from a source through a filter to the sample. The
wavelength to be measured is selected by a second filter placed at a 90° angle from the
incident optical path. After passage through this filter the selected light is intercepted by a
detector. The output from the detector is an electrical current proportional to the intensity of
the fluorescent energy. In more expensive instruments the filters are replaced by prism or
grating monochromators. The bent construction assures that only fluorescent light reaches the
detector, while the transmitted part of the incident light continues straight forward. This is a
factor that contributes to the high sensitivity of the fluorometer. The response signal from the
instrument can either be used for imaging purposes, qualitative analyses or quantitative
determination of the constituents. In the last case calibration may be either uni- or
multivariate.

The main disadvantage of the method is its serious dependence on environmental
factors such as temperature and pH. Another is the risk of photochemical changes in the
compound being measured. Further, there is the risk of what is called quenching. This is a
reduction of fluorescence by a competing deactivating process resulting from the specific
interaction between a fluorophore and another substance present in the system. Quenching can
be caused by oxygen, impurities, high temperatures and high concentrations of the fluorophore.
To avoid concentration quenching in solutions, the solution should absorb less than 5 percent
of the exciting radiation.

The present technique is for use in laboratories, while to my knowledge instruments
for use on-line in the industry do not yet exist.

Concerning pulp wood, the method is not appropriate in the present form. It is too
dependent on environmental factors, which are not easy to control in a practical measuring
situation. It also implies careful sample preparation, perhaps even chemical treatment of the
wood. Only if an application is found in which these problems are dealt with, the method
might have a potential. A multivariate approach, where the most influential environmental
factors are also measured and included in the calibration model might solve the first problem.

4.6 Near infrared spectroscopy (NIR)

Near infrared reflectance spectroscopy (NIRR) and near infrared transmission spectroscopy
(NIT) uses wavelengths in the 700 to 3.000 nm range. Because of the presumably high

potential of the NIR measuring principle, it is treated in greater detail than any other method
mentioned in this report.
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4.6.1 History

As mentioned in section 4.1.1, the absorption bands observed in the near infrared range are
overtones and combinations. A list of absorbtion bands in the near infrared range is given in
appendix B. Overtones and combinations are weaker than the fundamentals in the mid infrared
region, and thermal-sensitive devices able of detecting infrared bands cannot detect in the near
infrared range. Therefore it wasn’t until photoelectric detectors were invented that
measurements in the NIR range became possible [Osborne 1981]. The first attempts to us NIR
for analysis were carried out in the 1950s [Werzel 1983]. In the 1960s commercial single-
purpose dual-wavelength NIR diffuse-reflectance production line instruments appeared [Wetzel
op. cit.]. For an example for paper, see [Beutler 1965]. The instrument presented in that
article uses the wavelength 1940 nm for moisture detection and the 1800 nm wavelength as
a reference. In the late 1960s Norris and co-workers recognized the potential of
multiwavelength NIR for quantitative analysis of agricultural products [Weizel op. cit.]. This
work led to commercial multiwavelength filter instruments, in USA in the 1970s, in Europe
in the 1980s [Wetzel op.cit]. In filter instruments, the different wavelengths are generated by
letting white light through a filter that permits only light of a certain wavelength to pass. Filter
instruments can have from two to twenty filters, which sequentially are placed in front of the
white light beam. A late branch of NIR instruments development consists of scanning
instruments, which generate and measures at up to several hundred (neighbouring)
wavelengths. The output from a scanning instrument is a spectrum.

Filter instruments are normally calibrated using multiple linear regression, while
calibration of scanning instruments requires multivariate calibration. An overview over
multivariate calibration in NIR is given in Appendix A.

Reviews on NIR history are given by Wetzel [1983] and by Burns and
Margoshes [1992], who give references to other review articles on NIR.

4.6.2 Instrumentation

The basic configuration of NIR/NIT instruments is shown in Figure 6. The light source is
often a tungsten-halogen lamp or near infrared emitting diodes (NIR-ED’s), in which case no
monochromators are needed.

Most currently available filter instruments use tilting/rotating filters, see [Polesello
‘& Giangiacomo 1982], [Williams 1987a] and [Workman & Burns 1992] for examples.
Scanning instruments traditionally use grating monochromators, but according to [Kemmeny
1992a] two new technologies for generating multiple wavelengths are in progress: diode arrays
and acoustooptical tunable filters (AOTF). Both technologies are inherently faster because the
~ wavelengths are selected electronically instead of mechanically.
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NIR-ED’s can be used in (at
least) two different ways: either as Q_,
sequential emitters (i.e., one diode
emits at a time) or as parallel source  monochromator  sample detector
detectors, i.e., white light is sent Near-infrared Transmittance (NIT)
through (or at) the sample and the
intensity of the transmitted (reflected) n
light is detected simultaneously using %
one diode per wavelength. The seriel Q.,
approach is used in the instrument ¥
design described by Hyvirinen et al. souree monachromator O
[1992], while Stark [1992] describes detectors
the parallel approach. According to
Hyvirinen et al. [op.cit.], the presently
available ED’s are best suited for use Figure 6. Basic NIR/NIT instrument configurations (from
in the visible region and the lower end [Workman & Bumns 1992]).
of the NIR wavelength region. They
also mention that the wavelength resolution of the light emitted from ED’s is relatively poor.
Their instrument corrects for this.

- [—

sample

Near-infrared Reflectance (NIR)

In AOTF-based spectroscopy, white, polarized light is sent through a TeO, crystal,
through which an ultrasonic wave propagates. The wave is induced by a piezoelectric acoustic
transducer (made from LiNbO,). The light beam will be split three: two identical polarized,
monochromatic beams and one beam of unaltered white light. The wavelength of the
monochromatic beams is regulated by the frequency applied to the transducer. Normally radio
frequencies are used. The AOTF technique is described by Kemmeny [1992a and b] and by
Pickuth et al. [1992]. According to Kemmeny [1992a], the wavelength resolution of AOTF
instruments is equal to that of instruments based on grating monochromaters, while the long-
term wavelength repeatability is better.

The detector is normally a semiconductor such as PbS, Si or InGaAs. PbS detects in
the range from about 600 up to about 3000 nm (normally the 1200 to 2400 nm is utilized).
PbS is a relatively slow detector. Si is faster, but is only capable of detecting up to about
1000 nm. InGaAs can be used for scanning from approximately 800 to 1600 nm. An InGaAs
detector normally has a higher signal to noise ratio than a PbS detector (i.e., it is more
sensitive) and is relatively quick [Claus Borggaard, Danish Meat Research Institute, pers.
com. 1994].

As previously mentioned, it is normally the reflectance relative to a ceramic disc
which is measured in NIR. In this case it is not necessary that all light reflected from the
sample reaches the detector. However, some instruments are designed to measure the absolute
reflectance and/or to measure weak reflectance. This is achieved by encapsulating the sample
and the detector(s) in an integrating sphere (not shown in Figure 6). Generally it is
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advantageous to collect a maximum of the diffusely reflected radiation. This will give a
stronger signal and more directions will be represented and averaged [Wetzel 1983]. The first

gives less susceptibility to instrument noise, the second gives less susceptibility to sample
texture.

In addition to the NIR-Ed’s and the AOTF techniques mentioned above, novel
instrument development includes separation of the NIR/NIT instrument from the sample point
by use of fiber-optics [Kemmeny 1992a]. Thereby the wear on the instrument is reduced,
because it allows placing the instrument in a more friendly environment (for example an
environment with less dust, moisture and vibrations). Fiber-optics are also used for reducing
installation costs (fewer instruments necessary) and for eliminating the calibration-transfer
problem (see p.6). This is achieved by letting one instrument receive signals from several
sensors (multiplexing). Furthermore, work is carried out on making NIR instruments smaller
(handheld), more robust (no moving parts) and with better wavelength resolution. In addition
to these hardware refinements, research and development in this field concentrate on tuning
existing calibration techniques, inventing new multivariate calibration techniques, improving
the possiblitities for calibration transfer and refining the software for multivariate calibration.

A new NIR scanning instrument costs approximately 500,000 to 700,000 DKK,
depending on which technology it uses. A NIR instrument measuring at a few wavelengths
can be purchased for approximately 20,000 DKK, while a filter instrument with 15-20 filters
costs approximately 200,000 DKK.

Overviews over NIR instrumentation are given by McClure [1987] and by Workman
& Burns [1992], who among other things give a word list and a list of distinguishing
characteristics of NIR instrumentation, which can by useful when purchasing a NIR
instrument. Williams [1987a] outlines the design of a considerable number of different
commercial NIR/NIT instruments, while the latest (1992) technical improvements are
described in [Kemmeny 1992a].

4.6.3 Existing applications

As mentioned in section 4.6.1, mutiple wavelength NIR determination was introduced
around 1970. It is now a well established technic in the agricultural, the food and the
pharmaceutical industries. The main use is for quantitative determination of constituents in raw
materials, intermediate and final products. The information gained allows for tight, automatic
process and quality control. The technic is constantly improving, and new application areas
are found. Examples of applications are given in [Burns & Ciurczak 1992] and in [Anonymous
1993a].

With regard to wood, NIR based on a few wavelengths is in use for moisture
determination on chips during chip board manufacturing, [Andersson & Yngvesson 1992] and
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[Pedersen et al. 1993]. Research with promising results is going on concerning the potential
of NIR in the pulp industry ([Birkett & Gambino 1989], [Easty et al. 1990] and [Wallbdick
et al. 1991a and b]) and in chip board manufacturing for characterization of resin/chip
mixtures, [Kniest 1992] and [Niemz et al. 1992]. Borga et al. [1992] investigated the use of
NIR for revealing storage time and water quality of wet-stored timber, while Hagman [1992]
tested NIR for classification of wooden surfaces. Nair & Lodder [1993] used NIR for
identification of solid wood. Also basic research on application of NIR to wood is carried out
({Tsuchikawa et al. 1992] and [Schultz & Burns 1990]). Pedersen et al. [1993] explored NIR
for measuring dry density of small clear wood specimens and obtained promising results.
Concerning basic density, the results from a pilot study carried out by the author are
encouraging, but further development is needed (results are to be published separately).

Thus, NIR measurement of moisture in wood is already established, while NIR
measurement of basic density requires some development. NIR measurement of wood
constituents (cellulose, lignin) is possible.

4.6.4 Parameters influencing NIR measurements

A number of parameters concerning the sample and how it is presented to the instrument
affect the response from a NIR instrument. This section sums up the influence of the more
important ones. Most parameters can be adjusted for by multivariate calibration and/or
preprocessing. Nevertheless it is important to know of their influence also when scanning

instruments are used, especially to avoid systematic differences between calibration samples
and the prediction population.

Moisture
Scattering of light is influenced by whether the sample is wet or not. If water (or water

vapour) replaces the air in and around a sample, the scattering will decrease, and the
reflectance will increase (see section 4.1.3).

Generally, the predictive ability of NIR calibrations is lower for wet samples than for
dried [Reeves 1992]. Water causes smoothening and broadening of peaks as well as peak
shifts. Williams [71987b] mentions that constituents of biological origin (for example proteins)
are likely to be hydrated to different degrees if the moisture content varies. This could be the
reason for some observed peak shifts. Abrams et al. [71988] further suggest that solvents damp
vibrations of solutes. Also water is reported to alter composite bands ([Shenk et al. 1992], see
section 4.1.3). However, Reeves et al. [1989] did not found an unambiguous negative effect
of water on SMLR calibrations for constituents of silage, when comparing between
calibrations based on dry and wet samples. The reason for this is perhaps that some of the
constituents calibrated for are volatile and evaporated during drying, while all reference
chemical analyses were carried out on undried subsamples.
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Temperature

The influence of temperature on MLR calibrations for protein and moisture content in wheat
was investigated by Williams et al. [1982]. For some filter instruments, the effect was
negligible. A particular instrument gave 0.1 per cent differences in protein content per 5 °C
(temperatures from -10 to 45 °C). They found that the difference between filter instruments
could be subscribed to the use of different wavelengths, i.c. the absorbtion at some
wavelengths is more affected by temperature than at others. They further concluded that
protein calibrations unsensitive to temperature changes tended to be more sensitive towards
other parameters such as moisture content. Delwiche et al. [1992] studied the effect of
temperature on water absorbtion bands (1400-1500 nm and 1900-2000 nm) of transmittance
spectra of starch and cellulose. They found that the bands shifted sligthly towards shorter
wavelengths as the temperature increased from -80 to 60 °C. According to Kemmeny [1992a]
the effect of temperature on NIR measurements is due to the effect on hydrogen bonding,
leading to peak shifts of composite bands.

Absorbing matrix

A matrix absorbing at the same wavelength as the analyte can be a problem in NIR if
univariate calibration and the Kubelka-Munk function (see appendix A) is used. It will lead
to a concave relationship between the K-M function and concentration rather than a linear
[Olinger & Griffith 1988].

Sample movement

The possibility of letting the sample move, for example on a conveyer, while NIRR
measurements are taken is considered by Kemmeny et al. [1988] and by Kemmeny [1992a].
These papers demonstrate that if the readings of consecutive measuring points vary and are
uncorrelated, a large number of fast averaging is needed if a reliable estimate of the mean is
to be found. However, if all measuring points are fully correlated, no improvement with an
increasing number of samples will occur (this of course applies to all replications of
measurements, not only moving samples). If the scanning rate (or rate of change between
filters) is low compared to the speed of the moving sample, large fluctuations in the spectra
can be expected. The reason for this is that different wavelengths comprising the same scan
will be reflected from different parts of the sample. This will enhance the need of averaging
many spectra.

For samples consisting of particles, two additional parameters influence the measurement:

Particle size
Within certain limits for particle size relative to the wavelength of the incident light, the size
and shape of the particles and the variation in these two parameters among the particles
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influence the scattering of the light. Scattering diminishes with increasing mean particle size.
Light will therefore penetrate deeper into a sample consisting of larger particles, and the
reflectance will be lower. The effect on NIRR spectra is thus a baseline shift. For NIRR, an
effect of particle size is seen for particles up to about one or two millimeters in diameter. For
larger particles specular reflectance overrules the effect of particle size. I guess this is the
reason why Reeves and Blosser [1991] did not find any effect of particle size for ground
silage samples up to 9.5 mm in size. The effect of particle size is most pronounced at
wavelengths at which the sample absorbs strongly [Norris & Williams 1984]. Low energetic
photons (long wavelengths) will be absorbed to a higher degree than high energetic photons
(short wavelengths), all other things being equal. Therefore differences in particle size between
samples give both baseline shifts and differences in slope. A preprocessing method aimed at
eliminating these effects is the multiplicative signal correction (MSC), which is described in
appendix A. Norris and Williams [op.cit.] found that MLR calibrations based on samples with
a high in-sample variation in particle size gave better predictions than calibrations based on
more homogene samples. Their results are for wheat particles in the 0.35 to 1 mm range.
Olinger & Griffiths [1993] also found the above mentioned baseline shifts for NIR spectra of
sucrose particles. No band distortions were found.

Particle size influences how many different parts of a sample are covered by a single
NIR measurement, i.e. particle size influence representation. Smaller particles allow a greater
variation to be presented in a given area, but at the same time smaller particles give more
shallow penetration. The general rule of thumb in NIR analysis is the smaller particles, the
better calibrations can be expected. However, Reeves & Blosser [1991] found that for
calibrations for silage samples, finely ground samples did not give better calibrations for dry
matter content than coarsely ground samples, when both types of samples were measured
once. Calibrations for ground samples were marked better than for intact samples, also when
three subsamples per intact samples were measured. They found essentially no difference
between using one, two, three or the average spectra per intact sample. From this they
conclude that the problem with intact samples is related to the particle size itself (by which
I guess they refer to the high specular reflection from large particles), not a representation
problem. They therefore deducts that for the instrument configuration and calibration
procedures used, intact samples, even when measured many times will always result in poorer
calibrations than ground samples. I doubt that this conclusion is fully justified. The standard
deviation in dry matter content for the samples they used is approximately 12 per cent, the
mean value approximately 50 per cent (alfalfa and alfalfa with grass silage). If the in-sample
standard deviation is assumed to be of the same order as the between-sample standard
deviation (which is not unrealistic for biological material), this means that approximately 370
subsamples should be measured per sample, if the confidence interval for the estimate of the
mean value should be approximately five per cent of the mean value (formula from [Rudemo
1979 p.182] uvsed). To conclude anything about the effect of representation based on one to
three subsamples per sample therefore seems inappropriate.
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Packing density

The packing density affects the structure of the surface of the sample, and thereby its optical
properties [Williams 1987b]. Differences in packing densities between samples should
therefore be avoided, for example by using samples of approximately the same weight.
According to Williams [op.cit], high bulk densities are generally easier to reproduce than low
bulk densities. He recommends sample grinding to allow more dense packing. For
measurements in the mid infrared area, Yeboah et al. [1984] found that band intensities
became more reproducible when powdered samples were compressed, as long as the pressure
applied was too low to cause the samples to become transparent.

I have found no literature explicit commenting on the relationship between sample
bulk density and NIR penetration. If the penetration depth equals a certain number of particles,
as described by Olinger & Griffith [7988], low bulk densities theoretically should lead to

deeper penetration. High bulk density presumably results in a more even surface, which leads
to more specular reflectance.

4.6.5 Evaluation

NIR determination is currently the most promising technique for solving the problem in
question. It is a fast method, and it is already well established in other fields, i.e., presumably
a pulp wood application would imply less "teething trouble" than a newly introduced
measuring principle. Because there is a market pull for further use of NIR, the technique is
rapidly improving. Further, the method a priori must be considered robust to changes in
scaling, especially if scanning instruments are used. That is, it seems likely that a new prize
setting quality parameter (for example mean cellulose content) wouldn’t need new
instrumentation, but could be introduced by adding another calibration (or replacing an

existent). This advantage is not exclusive to NIR, but applies to all methods calibrated by
multivariate calibration.

The three main problems that must be considered prior to an introduction of NIR to
scaling purposes are

* Representation. How many samples are needed? Section 2.2 in this report

in part answers this question.

* Presentation. How should the wood be presented to the instrument? Should
the instrument come to the wood (for example surface measurements or via
a probe in drilled holes) or should samples be taken to the instrument? In
the last case: which form should the samples have (dust, shavings, chips)?

* Calibration. Calibration is a matter of reliability and trust. How to ensure
continuous top quality calibration maintenance?
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In addition, there is, as for any other measuring principle various technical and practical
problems to consider in connection with applying NIR.

4.7 Infrared spectroscopy

Infrared radiation, i.e. radiation in the 3000 to 10° nm range, is widely used in analytical
chemistry for qualitative and quantitative analysis using spectroscopy. Though faster than "wet
chemistry" methods, IR normally requires time consuming pretreatment of the samples. Like
NIR, IR can be applied either in transmittance or reflectance mode. Normally the spectra are
mathematically treated using derivation or deconvolution in the Fourier space (FTIR) (see
McClure [1992] and [Mark 1992a] for an introduction to Fourier transforms in spectroscopy).
This treatment enhances the resolution of the spectra, i.e., moderately overlapping and noisy
peaks can be extracted and clarified. For analysis of native biological material, IR
spectroscopy is less adequate because the peaks normally will be very broad and overlapping.
For such peaks, derivation and deconvolution tend to increase the noise and may give
meaningless peaks [Schultz & Burns 1990]. However, FTIR has been reported used with
success for quantitative analysis of wood. Schultz et al. [1985] attained calibrations with high
predictive ability for glucose, xylose and lignin content of hardwood samples. Both [Schultz
& Burns 1990] and [Schultz et al. 1985] give literature references to further examples of FTIR
used for determination of constituents in wood.

Infrared spectroscopy is a useful laboratory method, but in its present form it has no
potential for measuring pulp wood in practice.

In applications for moisture content measurement using thermal conductivity, infrared
radiation is used for heating and infrared emission from the specimens is used for sensing
temperature changes (see chapter 8).

4.8 Microwaves

The microwave wavelength range is between 10® and 10° m, i.e. 10® to 10" Hz. As for
electromagnetic waves of other wavelengths, the principle when determining wood properties
is to measure how the wood affects the waves and establish connections to the desired wood
properties by a calibration model. The measured parameters are either the propagation speed,
attenuation or phase shift of the waves or (one of) the dielectrical properties (the dielectric
constant and/or the loss tangent). When using microwaves for detection of knots or other areas
with irregular grain, a linear polarized wave is used. The depolarization of the wave will then
be a measure of the grain direction [James et al. 1985]. The waves can be detected and
analyzed either when reflected from the wood or when transmitted through it.
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According to James et al. [1985] the attenuation of microwaves predominantly is a
measure of the water content, while the phase shift reflects both moisture content and density.
Both Tiuri et al. /1980] and Kraszewski [1980] discuss the difficulties in measuring the water
content of wood using microwaves, when one does not have knowledge of the density.
Measuring just one wave parameter will then not be enough because the feading will reflect
both moisture content and density. The problem can be solved by either measuring the density
by using another technique (for example y-ray as described by Tiuri [op. cit.]) or by
measuring another wave parameter in addition (for example the phase shift as described by
Kraszewski [op.cit.]) and then solve the two resulting equations for the two wood properties
(see [Kraszewski op. cit.] for details). James et al. [1985] describe measurements with a
4.81 Ghz transmission instrument. From analysis of the amplitude and the phase of the
transmitted waves it was possible to infer both moisture content (up to above 100 per cent)
and density, if the thickness of the sample was known. They experienced some problems with
spurious reflection of microwaves from the sample holder.

If one is only interested in the moisture content and not the density, one way to
handle the problem of density affecting moisture content measurements seems to be to use
longer wave lengths, i.e. radio frequencies. Dennis & Beall [1977] tested a moisture meter
working at 7 MHz and found that the density of the specimens did not influence the readings.
They did, however, find a dependency of specimen thickness because the instrument was one-
sided and was affected only by wood within a certain distance. For stems or boards with
normal decreasing moisture gradients from centre to surface, a given instrument reading will

accordingly correspond to a higher average moisture content for a thick specimen than for a
thin specimen.

What is mentioned in 3.2 about how the dielectric properties are affected by the
moisture content and density of wood also applies to the microwave range. Dielectric moisture
meters use the differences in either dielectric constant (capacitance meters) or in loss factor
(power loss meters). A study by Lowery and Kotok [1967] showed that a relatively high
accuracy can be attained when measuring the moisture content of green and dry boards with
a capacitance meter, but that the readings are sensitive to the density and the temperature, i.e.,
these factors are not included in the calibration but must be held at the same level as during
calibration. Also Busker [71968] experienced temperature influence on moister measurements.
He ascribed the influence of temperature to changes in hydrogen bonding. Busker [op.cit.]
apparently succeeded in avoiding problems with sample holders by letting both energy source
and detector be separated from the sample by air gaps. Measurements made by Mackay [1976]
indicate that power loss meters penetrate less than 5 mm into the wood.

Concerning pulp wood, microwave instruments have the advantage of being able to
measure both water content above FSP and density simultaneously. Since water causes
considerable attenuation one can anticipate problems, if the surfaces of the samples are wet.
I.e., measurements direct on the stems are probably not possible with the present technique.
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4.8.1 Radar

Blomqvist et. al [1986] tested the radar technique for measuring the dry matter content of
sawdust. A 500 MHz radar signal was sent through the sawdust and was reflected from the
container bottom. Higher frequencies would give better resolution, but also weaker reflections,
since more energy would be absorbed. The wavelength was on average 0.25 m. The speed of
propagation was calculated from the path length (the thickness of the sawdust layer, which
was around 2.5 m) and the time from the signal was sent until the reflection from the
container bottom was received (in the order of ns). For each container, the reference average
dry matter content was found from samples. A good linear relationship was found between
speed and dry matter content of non-frozen sawdust (based on 26 containers, 3 radar
measurements per container), while a small study on partly frozen sawdust gave poor results.
Apart from water content, the speed also depends on temperature, density and chemical
composition, but the results show that the water content overrules these factors.

The speed of propagation is determined by the water content "per metre", i.e. per
volume unit, while the water content of interest (the reference) is measured on a weight basis.
Therefore the stability of a calibration depends on a constant interrelation between water
content per volume unit and dry matter content per weight unit, i.e. constant packing and
constant basic density. Concerning a possible application for pulpwood, this dependency is a
drawback of the method. Smaller practical problems are the need of a reflector and of
measurement of the path length. Since 1986, no further research has been carried out on the
technique [Mats Nylinder, pers. com. 1993].
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5 Mechanical waves

As for electromagnetic waves, non-destructive testing by use of mechanical waves is based
on comparison between the applied waves and characteristics of the waves after interaction
with the specimen to be measured. There are four different types of mechanical waves (listed
in descending order of velocity):

1. Longitudinal waves (also denoted compression waves) for which the particle
movement is parallel to the direction of wave propagation.

2. Transverse waves (also denoted shear waves) for which the particle
movement is perpendicular to the direction of propagation.

3. Torsional waves for which each transverse section of the material remains
in its original plane and rotates about the axis of propagation.

4. Surface (or Rayleigh) waves, which are a kind of transverse waves confined
to the surface layer.

Non-destructive testing methods are classified according to the wavelength applied
and how the propagating waves are induced into the wood. This can either be done by
mechanical stress or by use of transducers. The three main techniques are acoustic emission
(AE), ultrasonics (US) and acousto-ultrasonics (AU). Their main differences and similarities
from a flaw detection view point are presented in Table 9.

Acoustic Emission (AE) | Ultrasonics Acousto-ultrasonics
us) (AU)

Energy source Active fracture External Transducer

Frequency 30 kHz - 1 MHz 0.5-2.0 MHz ‘ 100 kHz - 1 MHz

Signals Not repeatable Repeatable

Flaw imaging Not possible Macroscopic Microscopic

Flaw source location Triangulation Scanning Triangulation or
scanning

Major Parameter Emission rate and Velocity change Energy dissipation

measured amplitude

Table 9. "General comparison of ultrasonics techniques for defect sensing". Table and text from [Beall 1989].

A review of the three techniques mentioned in Table 9 as applied to wood is given by [Beall
1989]. The review includes a glossary and a comprehensive list of references. Adjacent



48 Chapter 5 Mechanical Waves

techniques based on inducing mechanical waves are vibration response and stress wave
techniques. In both methods the waves are induced mechanically (for example by use of a
hammer). In vibration response, the effect is measured in terms of the resulting vibration of
the specimen, while for stress wave techniques the propagating wave is considered.

Regardless of the method, the wave characteristic normally measured is either the
attenuation (which expresses the energy dissipation and is frequency dependent) or the
propagation speed. For constant spacing of wave inducer and receiver, transit time, also
denoted time-of-flight is often used instead of propagation speed. The wave inducer and the
receiver can either be placed on opposite sites of the medium, i.e. transmission measurement
or on the same side. In the last case two different set-ups are possible, if transducers are used:
pulse-echo, in which case one transducer both induces and receives, and pitch—catch, in which
one transducer is dedicated at inducing waves, while the other receives. The pulse-echo

approach requires a damped transducer that is ready to receive the echo shortly after having
induced a wave.

For solid wood, both propagation velocity and attenuation depend on the direction of
the wave in relation to the grain. The velocity in the longitudinal direction is approximately
three times the velocity in the radial direction, which in turn is almost double the velocity in
the tangential direction [Burmester 1967], [Bucur 1983]. Attenuation is between 10 to 30 per
cent larger in the tangential and radial directions than in the axial [Burmester op.cit.].

The acoustic impedance of a material is defined as the product of the density of the
material and the sound velocity in the material. When sound waves propagating in one
material hit the boundary to another material, the relationship between the impedance of the
two materials will be decisive for how large a part of the wave energy will be reflected from
the boundary and how large a part will be transmitted. If the impedance differs greatly
between the two materials, essentially all wave energy will be reflected. This is the case
between wood and air, while the difference between water and wood is less pronounced /Birch
1990]. When applying sound waves to wood by use of transducers, it is therefore of the
outmost importance to prevent that the waves have to travel between air and wood. One way
is to secure the contact between transducer and wood by use of a water based high viscosity
coupling medium, another to submerge the wood in water. The contact can also be established
by using pin like steel waveguides driven into the wood. Generally, coupling between

transducers and wood is the main problem when applying ultrasonics to wood, [Beall 1989]
and others.

A considerable part of the available publications on the use of mechanical waves for
non-destructive evaluation of solid wood or boards concerns measuring the strength of the
specimens, i.e. the modulus of elasticity (MOE) or the modulus of rupture (MOR). Examples
are [Dunlop 1980], [Waubke & Mdrkl 1982], [Dean & Kaiserlik 1984], [Greubel & Merkel
1987], [Ross & Pellerin 1988], [Sandoz 1989] and [Arrima et al. 1990 and 1991]. Another
group of publications concentrates on the use of mechanical waves for detection of decay, see
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for example [Waid & Woodman 1957], [Konarski & Wazny 1977] and [Wilcox 1988]. The
bulk of the articles mention the effect of moisture content and/or density (normally mass or
specific density) en passant or as parameters to be included in the calibration models for
strength to reduce the model error. The findings concerning the influence of moisture content

or density on the velocity or attenuation of mechanical waves are not completely in agreement
as the following list indicates:

[Arima et al. 1990]: Effect on frequency of both specific density and moisture content, both
below and above FSP (longitudinal vibration response, solid wood).

[Arima et al. 1991]: Frequency of longitudinal wave varies with gross density. Moisture
effects the response below FSP, no affect above FSP (longitudinal vibration response, solid
wood).

[Beall 1989]. Attenuation (US and AU) parallel to grain is inverse proportional to density
(kind of density not specified).

[Konarski & Wazny 1977]: Moisture content (below FSP) and gross density effect transit time
of ultrasonic waves. :

[Pellerin 1965]. Moisture content (below FSP) effects the readings (vibration response).
[Szymani & McDonald 1981]: Ultrasonic waves are not affected by density or moisture
content (solid wood).

Three publications concentrating on clarifying which factors effect the propagation of
ultrasonic waves through wood are [Burmester 1965 and 1967] and [Lemaster & Quarles
1990]. Burmester [1965] finds that the velocity of ultrasonic waves at 100 KHz decrease
linearly with increasing moisture content of wood (Scots pine), both below and above the FSP.
The rate of decrease is larger below the FSP. For specific density at 12 per cent moisture
content, no clear relationship to ultrasonic velocity was found, i.e. the relationship differs from
tree species to tree species (five different species were considered). Lemaster & Quarles
[1990] found no systematic effect of density or moisture content on attenuation (AU, solid
wood).

In all, vibration response seems to be affected by moisture content (at least below the
FSP), while there is no clear pattern for whether and in which way sonic and ultrasonic waves
propagating in wood are influenced by moisture and density.

Because the influence of basic density and moisture content on the attenuation and
velocity of mechanical waves in wood apparently isn’t clarified, no conclusion concerning its
possible use for pulp wood can be given. Perhaps the very fact that the relationship isn’t
clarified yet, even though non-destructive testing of wood by mechanical waves was
introduced more than thirty years ago indicates that the relationships are not simple.
Whichever the relationship, the literature found indicates that problems with coupling between
wood and transducers can be anticipated for methods including transducers. The literature also
suggests that relatively low frequencies should be used (i.e. 1-200 kHz, which is low
compared to the frequencies normally applied for flaw detection in metals).
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6 Particle absorption/slowing

This chapter presents evaluation methods based on absorption or slowing of particles sent
through the sample. Beta particles and neutrons are used for this purpose, while their limited
range have limited the use of alpa particles [Loos 1965]. All applications of beta and neutron
rays imply health hazards and environmental risks.

6.1 Beta rays

Beta ray transmission was the first radiation technique used for densitometry of wood [Polge
1969]. Beta particles are high energy electrons emitted from certain unstable nuclei [Cameron
et al. 1959]. Their range in wood with a specific density around 0.5 is approximately two
centimeteres [Loos 1965]. Cameron et al. [op.cit.] describe a system using a **Sr source in
equilibrium with its daughter product *°Y, while Phillips [1968] uses the weaker emitter *C
as a source. The technique was introduced for wood by Phillips and co-workers around 1960
[Cameron et al. 1959], [Phillips 1960]. Kleuters [1964] describes how to optimize the
method. The beta ray method is very similar to direct scanning X-ray densitometry. Beta rays
from the source are collimated and sent through the sample, the transmitted rays are detected
and a density profile is recorded. The density profile is then used for detailed analysis of
density variation patterns within and between rings. See [Harris & Polge 1967], [Phillips
1968] and [Polge 1969] for a comparison of X-ray photo densitometry and the beta ray
technique and discussion of their strong and weak sides. As for X-ray densitometry, it is the
specific density that is measured. Similarly, the measurement requires a fixed water content
and the thickness of the sample must be known.

Like X-ray densitometry, the beta ray densitometry has no potential for pulpwood
scaling.

6.2 Neutron rays

Where no other reference is mentioned, the following is based on [Aslyng 1976].

A fast neutron source consists of an alpha emitting radioactive isotope (for example
?Ra or *'Am) in connection with beryllium. One alpha particle reacts with one beryllium
atom resulting in one carbon atom and a fast neutron. When a fast neutron collides with an
atom, part of its energy is transferred to the atom. After a number of collisions, the energy left
for the neutron will be so low, that it now only moves due to diffusion. Such slow neutrons
are denoted thermal neutrons. Thermal neutrons can be detected using a Geiger-Miiller tube
or a scintillator. Hydrogen is by far the elemental that most effectively slows down neutrons.
If the content of hydrogen is constant in the dry part of a substance, the number of thermal
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neutrons detected is therefore proportional to the water content per unit volume, when samples
of the substance are radiated with fast neutrons.

According to Szymani and McDonald [1981] applications of moisture content
determination using neutron rays exist for soil, food and bulk materials. Gibson & Rusten
[1964] describe determination of moisture content (weight water per unit volume) in pulp
chips by use of neutron rays. The radioactive source used (***Ra) also emits gamma rays, and
gamma ray back scattering is used for obtaining bulk density (weight of wet chips per unit
volume wet chips). Moisture content on dry (or wet) weight basis can then be calculated.

For determination of moisture content of pulp wood by use of neutron rays it is a
problem that it is the water content per unit volume and not the water content per unit weight
that is determined. The approach used by Gibson and Rusten [op.cit.] solves this problem.
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7 Nuclear magnetic resonance (NMR)

Where no other reference is mentioned, the first four paragraphs of this chapter are based on
[Fukushima & Roeder 1981].

As the name indicates, nuclear magnetic resonance (NMR) is a technique based on
the magnetic spin of nuclei. Normally the nuclei are oriented randomly. But when placed in
a magnetic field, the nuclei will align parallel to the field, because this is the position in which
they possess less potential energy. If energy is supplied in the form of electromagnetic
radiation with the right wavelength, the nuclei will change orientation and will start to precess
around an anti parallel direction. The frequency for which a nucleon resonates (i.e. tips to an
antiparalle] direction) is unique for each combination of field strength and isotope, and is
denoted the Larmor frequency v;. The Larmor frequency is related to the strength of the
magnetic field H, by the Larmor equation: v, = YH,, where Y is a parameter denoted the
gyromagnetic ratio. For the field strengths normally applied, the Larmor frequency belongs
in the radio frequency range. When nuclei have absorbed radiation, they will emit radiation
at the same wavelength and change back to the lowest energy state. Thus the Larmor
frequency is
characterized by both
strong absorbtion and
strong  emission  of RF Oscillator > Amplifier @
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The basic arrangement of continuous NMR is shown in Figure 7. The sample is
subject to both an alternating RF field at a constant frequency and a strong homogeneous
magnetic field. The strength of the applied magnetic field is varied. The nuclei will absorb and
emit when the Larmor equation is fulfilled. In this way a spectrum of energy absorbed versus
magnetic field strength is obtained. A measure of the energy absorbed is obtained from the
voltage induced in the coil, the coil works both as transmitter and receiver of RF radiation.
The resulting spectrum normally has the form of "concentric" Gauss or Lorentzian curves, i.e.
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centered on the same field strength, but with different amplitude and width. Generally, water-
hydrogen produces a high, narrow peak, while hydrogen build-in in the solid part of a sample
produces a low, broad peak.

. How Nuclear Magnetic Resonance Works
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Figure 8. Pulsed NMR. From [Nicholls 1991].

The basic principle of pulse NMR is shown in the left part of Figure 8, while a
diagram of the setup is shown to the right. When first placed in the homogeneous magnetic
field, the nuclei of the sample will begin to align parallel to the field. The time constant
characterizing the rate at which this happens is called the longitudinal or the spin-lattice
relaxation time, T',. After the 90° pulse, the amplitude of the sinusoidal alternating electricity
induced in the receiver coil will decay exponentially with a time constant called the transverse
or spin-spin relaxation time, T,". The signal induced in the coil as a function of elapsed time
since the pulse is called free induction decay (FID). The resulting curve is called a FID curve
or an interferogram. The amplitude of the signal is a measure of the number of (hydrogen)
nuclei present in the sample. A FID for moist wood will consist of a rapidly decaying signal
from the solid wood and a slowly decaying signal originating from the "free" water. The
relaxation times are measures of the rate of redistribution of energy following excitation of
the nuclei. 7, to the lattice, i.e., energy forms other than spinning in the rest of the sample,
for example vibration, T,” to magnetic spin of the surrounding nuclei. Both 7, and 7," depend
on the nuclei present and their binding states. For solids, 7, is much larger than 7,", while for
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liquids they are of the same size. T,  depends on both T, and T,’, which results from dipolar
processes:

1 1 1
L. L, 1 yan,
, 2T, T,

where AH,, is the inhomogenity of the applied magnetic field. 7, dominates for liquids, while
T,’ dominates for solids. Because of inhomogenity of the applied magnetic field, which is due
to magnet imperfections, all parts of the sample will not experience the same magnetic field
strength. Small volumes of the sample to which the same field strength is applied are called
spin isochromates. Each spin isochromate has its own intrinsic transverse relaxation time,
denoted T,. T, and T, are related by

L 1, 4m,

7, T

N

Thus, the more homogeneous the magnetic field, the smaller and more identical with T, will
T," be. One effect of the magnet imperfections is that when recording FID’s for moist samples,
the signals will be similar for samples holding more than a certain amount of water [Svensson
et al. 1992]. There is a way to overcome the problem of magnet imperfections, and that is to
use a sequence (or train) of pulses and echoes. The Carr-Purcell echo train [Carr & Purcell
1954] uses a 90° pulse followed by 180° pulses. This normally leads to an error accumulation
resulting in too short 7, being measured. The Meiboom-Gill modification [Meiboom & Gill
1958] of the Carr-Purcell sequence (denoted CPMG) avoids this problem by applying pulses
that are phase shifted 90° with respect to the initial 90° pulse. The curve through the
amplitude maxima of the signals equals a normal FID, and can be used for deriving T5.

Other types of NMR are FT-NMR, CP NMR and MAS NMR. In Fourier transform
NMR, Fourier transforms are used for resolving the FID curve into signals originating from
different types of nuclei or nuclei in different environments (i.e. with different bonding,
neigbour nuclei or at different temperatures). CP and MAS NMR or cross polarization and
“magic angle spinning NMR are kinds of NMR dealing with the dipolar interaction between
nuclei in solids. In CP NMR, the dipolar interaction between nuclei of one kind is used for
enhancing the FID from another kind of nuclei in the sample. In MAS NMR the dipolar
interactions are neutralized by spinning the sample at a certain angle (54.74°) relative to the
magnetic field. CP and MAS NMR can be combined.

NMR can also be used for tomography. This is called magnetic resonance imaging
(MRI). According to [Svensson et al. 1992], the principle is to apply a magnetic field gradient
in such a way that the field strength will vary linearly along the sample in the direction of the
gradient (for example along the length of the sample). According to the Larmor equation, the
nuclei ("H) will then resonate at different frequencies dependent upon their position in the
field. From the return signal cross sectional views of the sample along the gradient can be
constructed. The image construction requires a vast amount of complicated calculations. 'H
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based MRI for wood is explored by Hall & Rajanayagam [1986], Wang & Chang [1986],
Wang et al. [1987] and by Olson et al. [1990]. Two-dimensional imaging is used by Quick

et al. [1990] and by Araujo et al. [1992]. The structure seen in the images in these papers is
the water distribution.

Use of NMR for moisture measurements in wood have followed‘three lines.

The earliest experimenters used steady state NMR for measuring bulk water content.
Examples are [Nanassy 1973, 1974, 1976], [Karras & Rahkamaa 1971] (for pulp) and
[Magnusson et al. 1972] (wood and pulp). In his articles Nanassy split each spectrum in a
narrow peak and a broad peak. The narrow peak was ascribed to mobile or free water, the
broad peak to dry wood and tightly bound water. Below the FSP, Nanassy found an
approximate linear relationship between moisture content (dry basis) and the area under the
broad peak relative to the area under the broad peak for the same sample prior to
remoistening. Using the narrow peak, Karras and Rahkamaa [op.cit.] calculated both the area
under the curve and the peak height and plotted this against the moisture content. Sigmoid
curves were obtained for moisture contents below 10 per cent. Magnusson et al. [op cit.]
obtained linear relationships between moisture content up to 50 per cent (wet basis) and the
area under the curve relative to the sample weight.

Another approach for measuring moisture content in wood by use of NMR implies
pulse NMR. Sharp et al. [1978] found a linear relationship between the amplitude of the FID
curve at a certain time after the pulse (50 ps) and the moisture content, also above the FSP.
Svensson et al. [1992] use the CPMG spin-echo train. The first (or second) peak in the train
is ascribed to dry matter, while a latter peak is ascribed to water. The relative amplitude of
these two peaks shows a linear relationship to wet-based moisture content, also above FSP (if
dry-based moisture content is used, the curve will be slightly convex).

A third line of development use NMR as a tool for studying forms of water in wood,
i.e. its binding states. Different 7T,’s are extracted from the FID curve, and each of these
relaxation times is ascribed to a certain water environment, characterised by a certain binding
state of the water. Papers on this and related approaches include [Hsi et al. 1977], [Riggin et

al. 1979], [Peemoeller et al 1985], [Menon et al. 1987], [Flibotte 1990], [Hartley et al. 1992]
and [Araujo et al. 1994].

As the binding state affects the relaxation times of nuclei, one would expect NMR
moisture measurements of wood to be sensitive to temperature, and especially expect a
difference between water and ice. According to [Abragam 1961], the start amplitude of the
FID curve resulting from a pulse NMR measurement is inversely proportional to the absolute
temperature. Using steady state NMR for moisture measurements of solid wood, Nanassy
[1978] found no effect on the area under the absorbtion curve for temperature changes
between -30 and 100 °C. Below -30 °C the area decreased with decreasing temperature. For
moisture measurements in coal by pulse NMR, Unsworth et al. [/988] found an effect of



56 Chapter 7 Nuclear magnetic resonance (NMR)

temperature on transverse relaxation times, the 7, increasing with a factor 100 from about
- 80 °C to about 0 °C. They found a marked shift at approximately - 80 °C, but unexpectedly
none at 0 °C. From this it seems like temperature have only little or no effect on steady state
NMR measurements, while a temperature dependency probably will be encountered for pulse
NMR measurements of moisture in wood for temperatures normally encountered for nordic
pulp wood.

A concise review of studies of the use of NMR for moisture measurements in wood
is given in [Hartley et al. 1992].

Pulsed HTNMR might have a potential for measuring dry. matter content of pulp
wood. It is a very selective method. The moisture content measurement is not dependent on
the distribution of the moisture in the bulk volume measured, and is not disturbed by the
sample surface. Furthermore it seems to be unaffected by whether the water is frozen or not,
at least for temperatures only moderately below the freezing point. However, an effect of
temperature on transverse relaxations times may exist. According to Colin Nicholls [Pers.
com. 1992], one-sided instruments are possible to construct, but unless very powerful magnets
are used, the measured volume will not exceed a few cubic centimeters. NMR is p.t.
considered a non-hazardous method, but strong magnetic fields are presently under suspicion
for having carcinogenic effects.

According to Nicholls [7991] NMR implementation always needs some
customization, which keeps prices up. According to Svensson et al. [1992], prices for a
HTNMR sensor system start at approximately $ 50,000.

I have found no publications commenting on a possible relationship between a NMR -
signal and basic density of wood.
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8 Thermal conductivity

The thermal conductivity (unit: w m™K™) of a substance depends mainly on its elemental
composition and bulk density. A priori, there is therefore reason to believe that thermal
conductivity of wood would be affected by both moisture content and (basic) density.

Kotok et al. [1969] measured the surface temperature of boards during drying and
found that the temperature could be used as an indicator of moisture content. Troughton &
Clarke [1987] describe a system for measuring moisture content of veneer and lumber prior
to drying. The system is based on heating the wood by infrared heaters and measuring the
surface temperature rise by use of infrared heat sensors. Both below and above FSP, the
temperature rise, which is measured after a few seconds is mainly a function of the moisture
content. Good correlations between surface temperature rise and moisture content were found.

Madsen et. al. [1988] tested thermal conduction as a means to estimate the bio
degradation of solid wood. They found a difference in thermal conductivity between fresh and
severely degraded wood if the temperature change was measured sufficiently close to the
infrared heat source (i.e. closer than 10 mm). The moisture content of the tested wood is not
given, but it seems to have been below FSP. However, practical experiments aimed at
quantitatively acquiring the specific density at 12.5 and 4.9 per cent moisture content gave
poor results. Madsen et. al. [op.cit.] mention insufficient and unstable contact between heat
source and wood as a probable reason why only a rough qualitative measurement was
possible.

For pulp wood, thermal conductivity could probably be a viable principle for
measuring moisture content. For basic density, thermal conductivity probably lacks potential.
Measurements of moisture content seems to be unaffected by density. The above mentioned
initial test carried out below FSP gave low correlation between specific density and thermal
conductivity. Therefore there is reason to expect low correlation also between basic density
and thermal conductivity measured above FSP. Further, as only one response variable is
recorded, the method is only able of measuring one characteristic (see section 2.1).
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9 Energy absorption and drilling resistance

If the damage on the specimen caused by a measurement does not influence the planned or
continued use of the specimen, the method is in some contexts denoted a nondestructive or
quasi-nondestructive method. Concerning pulp wood, energy absorption and drilling resistance
belong in this category.

9.1 Energy absorption

The principle in energy absorption methods is to fire a pin into the specimen with exact
amount of energy and measure the penetration. The penetration will mainly depend on the
density and moisture content of the penetrated wood. Other factors influencing the penetration
include temperature, tree species, ring width, cell length and preservatives [Abbot & Elcock
1989]. The most widespread instrument working according to the energy absorption principle
is the Pilodyn. This instrument exists in several editions varying in energy level (6, 12 and
18 J), with different pin diameters (2-5 mm), tip finish (blunt or pointed) and with or without
mechanism for repeated firing [Kalhauge 1988]. The penetration for a non-repeating
instrument normally is between 20 and 40 mm.

Concerning moisture content of soft wood (Douglas fir), Smith. & Morrell [1986]
found a linear relationship between Pilodyn pin penetration and moisture content below FSP,
while penetration was unaffected by moisture content changes above FSP. Also Hoffmeyer
[1978] saw an influence of moisture content on penetration (for soft wood).

For density, Hoffmeyer [1978] found that Pilodyn penetration perpendicular to annual
rings could explain about 80% of the variation in dry density of boards (both soft wood and
hard wood) conditioned to 18-24 per cent moisture content. Cown [1982] found a significant
relationship between Pilodyn penetration and mean basic density of groups of standing trees.
The bark was removed before the pin was shot into the trees, and one measurement was done

per tree. [Taylor 1981] found a good correlation between Pilodyn penetration and specific
density.

Concerning pulp wood, energy absorption could be an alternative for classification
into basic density classes - as long as the wood is not frozen. For measuring moisture content
of pulp wood, the principle has no potential.

9.2 Drilling resistance

Drilling resistance instruments drill a hole in the wood to be tested. The tip of the boring
needle is normally 1-3 mm in diameter and the needle is normally 300-500 mm in length. The
tip of the needle must be wider than the rest of the needle to secure that the resistance
originates from the tip and not from the shaft. Drilling resistance instruments can work
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according to one of two principles. Either the propagation speed of the needle is held constant
and the current consumption is recorded or the current consumption is constant and the
propagation speed is recorded. Typical speeds are 70-280 mm/min [Anonymous 1993b]. In
both cases the result is a profile reflecting drilling resistance along the path of the needle tip.
Drilling resistance instruments can be used for in situ detection of decay and insect damages
in built-in timber and standing trees [Anonymous 1993b]. Some instruments can give more
detailed density profiles for tree ring analysis (i.e. a counterpart to X-ray densitometry).
Gorlacher [1991] used an instrument of the constant speed type for measuring average density
of small wood specimens (species not given). The mean effective drilling resistance was
calculated for each specimen by dividing the area under the drilling resistance curve by the
drilling distance. A good correlation to specific density at 12 per cent moisture content was
found. Gorlacher [op.cit.] assumes that also the moisture content affects the drilling resistance.

Concerning pulp wood, drilling resistance instruments might have a potential for
density estimation using the above described Gorlacher approach. But it requires that a
possible influence of moisture content is clarified, and that the boring speed is raised. Single
measurement times of approximately Y2 to 1 minute are probably too long for real time
applications. For frozen wood, the method might prove less adequate.
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10 Conclusion

Table 10 sums up the conclusions from the previous chapters concerning the applicability of
the presented measuring principles for pulp wood scaling. The evaluations are subjective and
may hold errors both due to lack of information and misjudgements. The abbreviations used
in the table are explained on the next page.

Principle Potential for measuring
MC BD siliv Pot.
meas. meas. for
MC<FSP | MC>Fsp | BD | dep- | dep. pulp
on on wood?
BD? MC?
Electricity Resistance yes no no yes - 1 no
Dielectric properties yes yes yes yes yes 1 yes
Eddy current ? ? ? ? ? A ?
Piezoelectric effect no (only 0- | no ? yes yes v no
20 %)
Electromagnetic Gamma rays yes yes yes yes yes 1 yes
waves X-rays® yes yes no no - 1 maybe
Fluorescence spectroscopy ? ? ? ? ? S no
Near infrared spectroscopy | yes yes yes? | no no siv yes
Infrared spectroscopy no? no? no? ? ? slv no
Microwaves yes yes yes yes yes s/l yes
Radiowaves yes yes no no - v yes
Mechanical waves Acoustic emission no no no - - - no
Ultrasonics ? ? ? 7 v no?
Acousto-ultrasonics ? ? ? ? v no?
Vibration response yes ? yes yes? yes? v no
Stress wave ? ? ? ? ? v no
NMR yes yes ? no ? v yes
Particle Beta rays no no no - - i no
absorption/slowing Neutron rays yes yes no yes - v maybe
Thermal conductivity yes yes no no - v yes
Energy absorption Energy absorption no no yes? | - no 1 maybe
and drilling Drilling resistance no? no? yes - no? 1 maybe
resistance

Table 10. Overview over the applicability for pulp wood of the measuring methods reviewed in

Dichromatic photon absorption, X-ray densitometry has no potential for pulp wood.

this report.
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Abbreviations used in Table 10:

MC moisture content

FSP  fiber saturation point

BD basic density

meas. measurement

dep. dependent

s/l/v  indicates whether measurement takes place on the surface of the sample, along a line
through the sample or covers a part of the sample volume.

The table indicates that NIR is the single most promising principle. Also NMR and
microwaves are promising techniques.

In this report, the potential of each of the various methods is evaluated separately.
However, in other parts of the wood working industries, one of the trends concerning NDE
is the use of combinations of principles rather than just one. For example simultaneous use
of gamma rays for density measurement and microwaves for moisture content determination.
Similar combinations could also be applied to pulp wood.
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Appendix A 7

Multivariate calibration in NIR

It is outside the scope of this report to give a covering description of multivariate calibration,
especially as various textbooks and tutorials exist on the subject. This appendix only gives an
introduction to analyzing techniques for multivariate calibration in near infrared spectroscopy
(NIR). An introduction to calibration and indirect measuring is given in section 2.1. This

appendix first gives an overview over the subject, then the various subjects are treated in more
detail.

As described in section 4.6, there are two types of NIR instruments: those measuring
at a few wavelengths (1-20) and those recording a whole scan (several hundred wavelengths).
Calibration of instruments belonging in the first category is normally done by multiple linear
regression (MLR), because the MLR presumption that the variables are independent of each
other holds for these instruments. Normal MLR calibration will not be described in this
appendix. For the other class the response signals from neighbouring wavelengths are normally
highly correlated, which makes MLR impossible. For these instruments the normal procedure
is to calibrate in two steps: first a data compression is carried out, which removes redundant
information, then a calibration model is produced linking the compressed data to the response
variable(s). For some calibration methods these two steps are tied together. In some cases a
mathematic preprocessing of the spectra before the compression can improve the calibration
model. The response variable(s) can either be qualitative or quantitative. In the qualitative case
the purpose of the calibration is to teach the instrument to assign an unknown sample to one
of a number of sample classes (or to none of them, if the sample deviates from all the types
the instrument knows). In the quantitative case, the purpose is to teach the instrument to give
an estimate of the value(s) of the response variable(s). In some NIR applications qualitative
analysis is followed by quantitative: first a qualitative analysis is applied to ascribe the sample
to one of a number of classes, then the value of the response variable(s) is predicted according
to a quantitative calibration model fitted to that class. The benchmark for the quality of a
calibration model is its predictive ability for unknown samples. The ability of the calibration

system to detect outliers (during calibration as well as when predicting for unknown samples)
is also important.

All aspects of quantitative multivariate calibration are treated thoroughly by Martens
and Nas [1989]. An overview over qualitative analysis using NIR is given by Mark [1992b].

Preprocessing ,

Mathematic preprocessing of near infrared spectra prior to the calibration can sometimes give
calibration models with better predictive ability and/or a more simple composition. On the
other hand, any preprocessing implies a risk of loosing information that might have been
useful in the calibration and of magnifying irrelevant noise. Therefore no preprocessing should
be applied without thorough consideration of its relevance and of its consequences. Below, an
overview is given over commonly used preprocessing.
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Preprocessing aimed at linearizing the response signal

Transformation to absorbance Relative (or absolute) reflectance and transmittance can be
transformed to absorbance A by the formula A=log(1/X) where X is either reflectance or
transmittance. This formula originates from Beer-Lambert’s law, i.e. I = I, e**, where I is the
intensity of radiation after passage of substance of the thickness x and with the absorptivity
U, when the start intensity of the radiation is I,. The formula can be transformed to log(1/I)
= A, where A is equal to ux (u adjusted to logarithmic base 10). A is sometimes denoted
Optical Density (0.D.), and is given in O.D.-units. Transmittance is defined as 1/],, hence the
above formula when X is transmittance. When the formula is used also for reflectance, it is
based on the assumption that reflectance and transmittance hold the same information of the
object. Thus, the transformation is only loosely founded for reflectance. Further, the above
formulas presupposes that transmittance is measured absolute, not relative. Perhaps one should
therefore instead think of the transformation only as a remedy, which can sometimes linearize
the relationship between the response signal and the response variable.

Kubelka-Munk Kubelka & Munk [1932] gave a formula for the relatiohship between the
reflectance R and the concentration ¢ of an absorbing analyte with the absorptivity u:

(1-R} _(in10)uc
2R S

where § is a constant known as the scattering coefficient.

In arriving at this equation, Kubelka and Munk made several assumptions concerning the
sample texture and the radiation flux. The left side of the equation is known as the Kubelka-
Munk function, and is usually denoted f(R). It is this function that is used for transformation
of reflectance spectra. As can be seen, the equation indicates a linear relationship between f(R)
and c. According to Olinger & Griffiths [7992] this will not hold if the analyte is surrounded

by an absorbing matrix or if the absorption bands are strong (fundamentals and/or high analyte
concentration).

Preprocessing aimed at giving all variables equal chance for influencing the model
Standardization (also called autoscaling) is to multiply for each object the value of each
variable with 1/standard deviation for that variable. If the values of all variables have
approximately the same range (as in spectroscopy), standardization is normally not necessary.
If the values of the various variables differ with orders of magnitude, standardization will
normally greatly improve the calibration model. One should, however, keep in mind that
standardization will magnify the importance of variables that differ only a little in value
between objects and minify the importance of variables that differ much in value between
objects, regardless of how relevant the variables are for the response variable. If
standardization is carried out, one should therefore carefully consider the resulting weights of
the variables in the light of ones a priori knowledge of the measuring technique and situation,
and decide whether the weighing makes sense.
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Logarithmic transformation of an indepemdent or response variable can give a better ground
for the modelling in the case where a few objects have very high values for that variable,
while the rest have very low. If logarithmic transformation is not carried out, the few objects
will occupy almost all variation in the variable, whereby the possibly useful information laying
in the differences between the rest of the objects will be suppressed.

PCA of groups of variables PCA is described in the section on qualitative analysis. PCA of
groups of variables is a way to handle the case where one wants to give groups of variables
equal chance rather than each variable. An example: both a 500 datapoints spectrum and the
temperature is measured for each object. Based on knowledge about the system it is decided
to give the temperature higher weight than the default 1/501. One way to do this is to replace
the spectra with their scores for the first principal components, increasing the relative
importance of the temperature to for example 1/5, if the first four components are used.

Preprocessing aimed at separating relevant information from noise or irrelevant information
Smoothing The purpose of smoothing is to remove from the spectra high frequency noise
manifested as sawtooths. According to McClure [1992] the three most popular methods for
smoothing spectra are 1) Moving point average (MPA) 2) Polynomial and 3) Fourier.

MPA implies replacing each data point in the spectrum with the average of the point
and of a number of neighbour points on both sides. The higher the number, the more severe
is the smoothing. A number of points (dependent on the number of points used in the
averaging) are lost in both ends of the spectrum.

In polynomial smoothing a polynomial is first fitted by least-squares techniques to
a number of sequential data points around the point in question. The value for this centre point
is afterwards computed from the resulting polynomial. Also in this case points are lost in both
ends of the spectrum.

In Fourier regression, each spectrum is approximated by a sum of cosine and/or sine
functions. By including many functions a spectrum can be approximated very closely, but by
omitting some of the functions, the spectrum will instead be smoothened. When formulated
as a Fourier regression, a spectrum can more easily be subject to various mathematical
treatments (see e.g. [McClure 1992] and [Dam 1988]).

Derivation is useful for removing baseline shifts between objects and baseline slops at the
same time as it emphases changes of slope. In spectroscopy, derivation means replacement of
each data point in the spectra by the slope of an adjacent secant. The secant can for example
be the one from the datapoint in question to the next datapoint, the one from the previous data
point to the datapoint in question or the one from the previous point to the next data point.
Broader gaps between end points of the secants can also be used. One or more points are lost
in one or both ends of the spectrum (unless the derivation is calculated by Fourier
transformation as described by McClure [1992]). Which ever the case, what is computed is



80 Appendix A ‘ Multivariate calibration in NIR

actually a difference spectrum but it is normally denoted a derivation spectrum. Second
derivatives may sometimes give more informative spectra than raw spectra or first derivatives,
especially if the purpose is detailed study of weak absorption bands. For noisy spectra

derivation is normally followed by MPA (described above), because derivation magnify
sawtooth-like noise. ‘

Normalization The purpose of normalization is to transform the data to approximately the
same scaling, thereby reducing baseline shifts between objects. For every object normalization
can for example be done by replacing each datapoint by the ratio between the reflectance
(absorption) at that wavelength and the average reflectance (absorption) for the spectrum for
that object. However, the word "normalization" is ambiguous, and if the software one uses
offers "normalization", one should check what is meant by this word for this particular
program, before applying.

Multiplicative Signal Correction (MSC) is a method aimed at separating relevant information
from additive and multiplicative noise. It was developed for removing scatter effects from near
infrared reflectance spectra, and was originally called multiplicative scatter correction. The
method is described by Geladi et al. [/985] and by Isaksson & Nes [1988]. In the form
normally applied to NIR, an average spectrum X,,, is calculated, and each spectrum X is
regressed on this spectrum: X = a + b X, + E, where a and b are the regression coefficients.
E is the unexplained part of the spectrum, ideally the relevant information to be used in the
following multivariate calibration. Each corrected spectrum X, is afterwards calculated by
X, = (X - a)/b. MSC has been further developed to PMSC (Piece-wise MSC). In PMSC the
regression coefficients are calculated for each data point of each spectrum rather than for each
spectrum. The regression coefficients are based on the average spectrum of the surrounding
wavelengths. PMSC is described by Isaksson & Kowalski [1993]. Another version of MSC
is EMSC (Extended MSC). In EMSC an extra term aimed at compensating for known

chemical variabilities is included when estimating a and b. EMSC is described by Martens &
Stark [1991].

Spectral interference subtraction (SIS) consists of subtracting the spectra of known interferants.
The assumption is that the spectrum for a sample is the sum of the spectra of the sample
constituents, and that subtraction of the spectra of known interferant constituents leads to more
simple and interpretable models with better predictive ability. SIS is described by Martens &
Stark [1991].

Table 11 gives examples of the effect of some of the types of preprocessing
mentioned above. The data is near infrared reflectance spectra for wood shavings. The models
are PCR models (described in the section on quantitative analysis) for basic density. The
models are based on a calibration set with 56 objects and are tested on a test set with 14
objects. The table gives the number of components corresponding to the first local minimum
in RMSEP and the RMSEP for this number of components (RMSEP is explained in the section
on model quality assessment). The table shows that transformation to absorbance or Kubelka-
Munk units improves the predictive ability of the model slightly while retaining the optimum
number of factors. Derivation, normalization or MSC reduces the prediction error with more
than 25 percent, but at the cost of more complicated models (nine factors instead of four).
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Preprocessing No. of factors RMSEP (in kgm™)
None 4 19.1
Transformation to absorbance 4 18.1
Kubelka-Munk 4 17.0
Derivation 9 14.4
Normalization 9 134
MSC 9 143

Table 11. Example of the effect of five different types of preprocessing.

Qualitative analysis

Qualitative analysis is to ascribe unknown samples to one or none of a number of predefined
classes. NIR qualitative analysis can be based on a few wavelengths or on whole spectra.
Qualitative analysis requires that the response is distinctly different between classes. In the one
wavelength case, the classes must differ in level of the measured response (reflectance,
transmittance or absorbance). In the spectra case, the shape or the level of the spectra should
differ between classes. For manual sorting of samples, it is in many cases sufficient to look
at the response signal and compare with the typical response signals of the classes. But if one
wants to automate the sorting, for example in an on-line sorting of objects based on NIR
spectra, a quantification of the qualitative differences in response (i.e. shape/level of the
spectra) is necessary. Limits for the response level for the various classes must also be
defined. One way to accomplish this is by use of Principal Component Analysis (PCA) and
Mahalonobis distances. Among others, Martens and Nes [1989], Wold et al. [1987] and Mark
[1992a] describe PCA. Mahalonobis distances were first described by Mahalonobis [71936].

A short description is given by Weisberg [1980]. Mark [1992b] gives an overview over
qualitative analysis in NIR.

Principal Component Analysis (PCA)
PCA is a technique for analyzing variance structures in multivariate, possibly collinear data

sets. Automatization of qualitative analysis based on spectra is only one of its many possible
applications.

In PCA, the NxK X matrix consisting of the measured values of K variables for N
objects is first centered. That is, for each variable, i.e. column in the matrix, the mean value
is subtracted from each element in that column. In spectroscopy, the variables represent
wavelengths and the objects correspond to samples (or spectra, if the matrix holds more than
one spectrum per sample). Then the X matrix is transformed according to:
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Xo=T -P"+E
Where X, is the centered X matrix, dimensions NxK,
T is a NxA matrix holding the A score vectors t,,
P is a KXA matrix holding the A loading vectors p, and where
E is a NxK matrix holding the residuals.

The meaning of the equation is considered below:

Geometrically one can think of the process like this: all N spectra are plotted in a K
dimensional space, where each axis corresponds to one variable (wavelength). In this space
each spectrum is represented by a point. The first principal component (also denoted factor
or loading vector) is then one of the two opposite unit vectors that gives the direction in the
point cloud in which the point cloud vary the most. The second principal component is the
unit vector that gives the direction with the second highest variation in the point cloud under
the restrain that the principal components should be orthogonal to each other. If this process
is continued until K (or N, whichever is less) principal components are calculated, the space
spanned by the principal components describes the point cloud as precisely as the original K
dimensional space, i.e., the operation equals a change to another system of coordinates. If
fewer principal components are subtracted, the space spanned by the principal components will
not hold all information on the position of the points. The distances between the points and
their projections on the principal component hyper plane are called residuals.

An example: If N =2 K and K = 3, the maximum number of principal components is
three. If A = 2, the residuals will be the distance between the points and their projection on
the plane spanned by the first two principal components. If A = 1, the residuals will be the

distance between the points and their projections on the line defined by the first principal
component.

As the loading vectors are unit vectors, their coordinates can be interpreted as the
cosine to the angles between the principal components and the axes in the K dimensional
space, and therefore all loadings are between -1 and 1, if they are not scaled. Each of the A
loading vectors has as many coordinates (loadings) as variables (wavelengths). Loadings can
among other things be used for analyzing which variables influence or dominate which
principal components (numerically high loadings correspond to high influence).

The score vectors hold the coordinates (scores) of the projections of the points onto
the A dimensional hyper plane spanned by the principal components. Each score vector has
one score per object (sample or spectrum) and there is as many score vectors as principal
components. If no scaling is carried out, all scores are numerically less than the numerically
greatest number in the X matrix (or rarely equal to). Scores can among other things be used
for analyzing which objects influence or dominate which principal components (numerically
high coordinates correspond to high influence).

The terminology presented above is not the only one in use. Different textbooks and
articles in the field use different versions of the scores/loadings concept. Also, the words
scores and loadings are sometimes used as short notions for what is above called score vectors
and loading vectors.
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In the mathematic description of PCA, the loading vectors are eigenvectors of the
cross-product matrix X,"X,. The score vectors are eigenvectors of the X,X,T matrix, scaled
to lengths equal to the square root of the eigenvalues of X,"X,. This implies that the
eigenvalue corresponding to each score vector can be calculated as t,'t,, i.e., there is a positive
relationship between the eigenvalues and the lengths of the score vectors. Thus the eigenvalues
(which are in this context always positive or zero) will descend from the first to the last
principal component. The higher the eigenvalue, the longer the score vector and the more
variability in the data is explained by that principal component. Both score and loading vectors
are orthogonal, i.e., t;'t; = 0 and p;"p; = 0 for i # .

The algorithm normally used in NIR for decomposition of data to principal
components is the NIPALS algorithm, which was first described by Wold [1966]. 1t is also
given in for example [Martens and Nees 1989 p.111]. NIPALS calculates the principal
components one by one, starting from the largest eigenvalue/component. For each component
the algorithm uses an iterative approach to calculate the scores and loadings. This "one at a
time" approach is useful in spectroscopy, where the data normally is highly redundant, because
the redundance implies that the first few principal components often are enough to describe
the data almost completely. In other contexts algorithms that calculate all principal
components simultaneously can be more useful.

One important feature about PCA is that it do not presuppose any relationship
between the variables as traditional statistic models do. Therefore it has no meaning to speak
of independent and/or response variables in PCA. PCA is simply a tool for analyzing and
describing structures of variation in data sets.

Example - NIR and PCA for identifying type of moisture in wood shavings

This example refers to a PCA analysis on near infrared reflectance spectra (1200-2400 nm)
of three types of wood shavings: Fresh shavings (14 samples), which have a moisture content
slightly under that of standing trees, dry shavings (9 samples), which are oven dried shavings
remoistened to moisture contents below fiber saturation and wet shavings (10 samples), which
are also oven dried shavings, but remoistened to full water saturation. Typical spectra for the
three types of shavings are shown in Figure 9a). There are marked differences in shape. The
typical spectrum for the wet shavings has a lower level and less dominant bands than the
spectra for the fresh and dry shavings. The fresh and dry shavings differ mainly just in the
beginning of the spectra and above approximately 2000 nm. Figure 9b) shows the scores for
the first two principal components (factors). These two components explain 99.4 per cent of
the variation in the data. The figure shows that factor one holds the difference between the
wet shavings and the other two types of shavings, while factor two holds the difference
between fresh and dry shavings. The figure also indicates that object W4 is an outlier, since
it does not follow the pattern of the other wet shavings. Figure 9¢c) shows the loadings for
factor one and two. It shows that almost all wavelengths contribute equally to factor one,
confirming that factor one describes the differences in level between wet shavings and the
other two types of shavings. The figure also shows that it is mainly wavelengths just above
1200 nm and above approximately 2000 nm that influence factor two. This stems with the
above mentioned about factor two being a factor holding the differences between fresh and
dry shavings. Figure 9d) shows the scores for factor one plotted against the scores for factor
two. A distinct grouping of the samples is seen, and the outlier (W4) is easy to spot.
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Figure 9. Example of PCA on shavings with different types of moisture content. See text for explanations.
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A hypothetical use of the PCA model in this example could be to ascribe unknown
samples of shavings to one or none of the three types. Forgetting for a moment that it
probably would be more easy just to look at the shape of the spectrum and compare to the
known spectra, the procedure in a manual approach would be:

1) Multiply the spectrum of the unknown sample with the loading vectors of factor one
and two. The result will be one scalar per loading vector, each scalar corresponding
to a score, i.e. a coordinate in the plane spanned by the first two score vectors.

2) Plot the point in Figure 9d).

3) Consider which group the new point belongs to.

If the procedure should be automated, step three needs quantifying. That is: define the borders
of the groups and see if the new point is inside any of the groups. A useful tool for defining
such borders is Mahalonobis distances, which are described in the next section. It should,
however, be noted that PCA is not the best tool for grouping - methods drilled for exactly this
aplication exsist [Per Brockhoff, RVAU, pers. com. 1994].

Mahalonobis distances

A Mahalonobis distance is a distance measure aimed at describing the distance from a point
to a cloud of points in a multidimensional space. The Mahalonobis distance takes the variation
structure of the point cloud into account so that the unit distance is longer in those directions
where the point cloud is oblong. That is, points with the same Mahalonobis distance to a given
cloud of points are located on the perimeter of an ellipsoid circumscribing the point cloud,
where the direction of the long axis of the ellipsoid is given by the first principal component
for the point cloud. According to Mark [7992b] the Mahalonobis distance D from a point with
the position vector X to the centre X; of a point cloud is given by:

D’ = (X - X)"M (X-X))

where M is a matrix determining the distance measures. Weisberg [1980] sets M equal to
(n-1)(X,"X,)", where n is the number of points in the cloud and where X, is the centered
matrix holding the vectors to the points in the cloud. In this formulation the Mahalonobis
distance is a function of the covariance between the points in the cloud.

For qualitative analysis in NIR, the Mahalonobis distances from a new point to the
centers of groups of known points in the score space are first calculated. Then the point is
ascribed to a group, if the point is closer to the centre of the group than the border of the
group, the border being preset to an appropriate value of D. The number of dimensions in the
score space is determined by the appropriate number of principal components, it is not limited
to two as in the example in the previous section.

Quantitative analysis

Quantitative analysis in NIR is to estimate the value of one or more response variables from
the spectroscopic measurement of unknown samples. The relationship between response
variable and spectroscopic response is established by a calibration model, as described in
section 2.1. This section presents the three dominant techniques for multivariate calibration
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in NIR: Principal Component Regression (PCR), Partial Least Squares Regression (PLSR) and
Artificial Neural Networks (ANN). In the normal versions of the methods, PCR and PLSR
both presupposes a linear or nearly linear relationship between the (preprocessed)
spectroscopic response and the response variable, while ANN has no such limitations.

Principal component regression (PCR)

PCR is the regression variant of PCA (described in the section on qualitative analysis). First
each spectrum in the calibration set is compressed to a number of scores. Then the response
variable is regressed on these scores using MLR. MLR can be used on the scores, because the
score vectors are orthogonal, i.e. independent. One can say, that in PCR for NIR, the spectra

are compressed to their most dominant dimensions before the response variable is regressed
on them.

The model is

y=Tq+f
where y is a Nx1 column vector holding the reference values of the response variable
for the N objects in the calibration set,
T is a NxA matrix holding the A score vectors,
q is a Ax1 column vector holding the y-loadings, i.e. the regression
coefficients for the scores estimated by least squares regression of y on T.
f is a Nx1 column vector holding the errors, i.e. the differences between y and

its estimate Tq.

When the y-loadings are found, they can be transformed to regression coefficients
(normally denoted b) for the original X-data, se [Martens & Nees 1989 p.101].

If there are more than one response variable, PCR is equivalent to carrying out one
PCR per response variable. The PCA compression will be the same regardless of the response
variable, but the y-loadings will differ.

An important difference between PCR and MLR directly on the variables is that PCR
is able to handle collinear data. Another is that in PCR the "independent" (the X- data) are
not assumed to be error free, since one can discard part of the variation in the X-data during
the data compression step (the PCA) by not including the full number of principal
components. ‘

Nas et. al [1990] and Nes & Isaksson [1992] demonstrate a calibration method
based on PCR called Locally Weighted Regression (LWR). LWR is aimed at giving better
predictions by putting more weight on calibration samples that resembles the sample to be
predicted than on those that deviate from it. One approach is to measure resemblance as a
function of Mahalonobis distances in the principal component score space. LWR is linear, but
because the lines are fitted to shorter intervals than in PCR, its potential for modelling non-
linear relationships is better.

Partial Least Squares Regression (PLSR)

PLSR is a bilinear regression method for which the data compression step and the regression
step are mixed. That is, the response variable(s) influence(s) the rotation of the loading
vectors. Computationally this is accomplished by exchange of scores between the X and Y
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matrices during the calculations. One can say that in PLSR for NIR, the spectra are
compressed to those dimensions, which are most relevant for the response variables on which
they are regressed. By letting the Y loadings influence the X matrix score, the X matrix score
vectors will not be orthogonal. However, if so is wished, orthogonal X matrix score vectors
can be obtained by extending the algorithm with an extra step and an extra set of loadings,
denoted loading weights. Algorithms for PLSR regression are présented by Martens & Nas
[1989 p.119ff+157]. The algorithms differ in having orthogonal score vectors or not, in the
no. of Y variables (the PLS1 algorithm applies for one Y variable, PL.S2 for two or more) and
in being iterative or non-iterative. An understandable tutorial on PLSR is given by Geladi and
Kowalski [1986].

In the form of PLSR normally applied for NIR, the relationship (denoted the inner
relation) between the X-matrix score vectors and the Y-matrix score vectors (or the Y-variable
itself in the case of only one response variable) is linear. However, Wold [1992] have
presented a version of PLSR with spline inner relation. Other modifications also exist.

Artificial Neural Networks (ANN)

An artificial neural network is a (layered) structure consisting of processing units (nodes)
connected by flows of information. The purpose of an ANN is to give certain outputs for
certain inputs. The connection between input and output needs not be linear for an ANN to
be able to model the connection. One seeks to accomplish the ANN’s purpose by presenting
the ANN to pairs of corresponding input and desired output and letting it adjust the parameters
that influence the flows of information between the nodes until the network gives output
acceptably close to the desired. This procedure is called to train the network. In NIR, and
other indirect measuring methods, ANN can be used for calibrating instruments. In this case
the input is the spectroscopic data and the desired output is the value of the reference.
Training the network thus corresponds to calibration. The networks normally used for NIR
consists of three layers: an input layer, a hidden layer and an output layer. In the first attempts
to adopt ANN to NIR, the whole spectrum was used for input, i.e. one input node per
datapoint in the spectrum as described by [Long et al. 1990] and [McClure et al. 1992].
Westerhaus and Reeves [1992] presents an approach were the spectra are first reduced using
MPA. However, it has turned out to be more fruitful to compress the spectroscopic data by
PCA (or more seldom by PLSR) and then use the scores as input, [Gemperline et al. 1991],
[Borggaard & Rasmussen 1992], [Borggaard & Thodberg 1992] and [Kvaal et al. 1992].
Like data for PCR and PLSR, it is sometimes beneficent to preprocess data before presenting
it to an ANN. As noted by Borggaard & Thodberg [1992], there is no point in trying too hard
to linearize data, as ANN can model non-linear connections. The input variables are normally
scaled (for example autoscaled). In cases were the output from the network is scaled, also the
response variable is scaled to get comparable numbers. Figure 10 shows the forward flow of
information through a small ANN. The input corresponding to one spectruin goes to the units
in the input layer, one score a, (or variable) per node. The input layer distributes inputs to the
hidden layer. Each hidden unit then calculates a weighted sum of the inputs, adds a bias and
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transforms the result using a transfer
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sigmoid output function. In NIR calibration, the output layer normally consists of only one
unit. [Borggaard & Thodberg 1992] also let the output unit receive the output from the input
units, so called direct connections. In this way the network also includes linear regression on
the PCA scores, ensuring that the net will not do worse than PCR. During training the output
is compared to the desired output, and adjustments to the weights and biases are
backpropagated through the net. Long et al. [71990] use this formula to calculate the weight
adjustment Aw; to the weight w;; between unit j in the hidden layer and unit i in the input
layer:

Aw;(n) =n6,,0,, +a Aw;(n-1)

where is a parameter called the learning rate,
8, is the error term for observation (spectrum) p at the hidden unit j (the
formulation of the error term depends on which output function is used),
Oy is the output from input unit i for observation p,
o is a parameter called the momentum and were
n refers to the present iteration.

In the example given by Borggaard & Thodberg [1992], ANN calibration gave better
predictions than PCR and PLSR calibrations.

Model quality assessment
This section describes how the quality of calibration models is assessed, the quality parameters

used and how these parameters are calculated. Lastly, the problem of finding the best
calibration is considered.

The benchmark for the quality of a calibration model is its predictive ability for
unknown samples belonging to the prediction population. Two things that also contribute to
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the quality of a calibration is the structure/complexity of the model and the ability of the
calibration system to identify and describe abnormal samples.

Predictive ability

As mentioned in section 2.1, the predictive ability of a model is checked by a validation. That
is, the predicted values of the response variable(s) are compared to their actual values as
measured by the direct reference method. Validation approaches are cross validation,
validation for a test set and leverage correction. An important visual validation is to check the
plot of actual values vs. predicted values for the test samples.

In cross validation, one or a few samples are left out, the calibration model is
calculated for the rest of the samples and the predictions are compared to the actual value(s)
of the left out sample(s). Then another (group of) sample(s) is left out and so on until all
samples have been left out once. The form of cross validation where one object a time is left
out until all objects have been left out once is denoted full cross validation. The predictive
ability validated by cross validation is quantified by the root mean square error of prediction,
cross validated RMSECV:

N
) RMSEP?
RMSECV? =2L
N

where
17
2
RMSEPn = 72 (yi Y pred)z
pi=l
and where N is the number of cross validation segments,

I, is the number of objects per cross validation segment and where

y; and y,,,,, are the reference value and the predicted value of the response
variable for object i.

When calibrating using a test set, the ability of the model to predict for the test set
is quantified by the root mean square error of prediction RMSEP. This quantity is calculated
by a formula similar to the above given for RMSEP,. In this case I, is the number of objects
in the test set. The RMSECYV and the RMSEP can either be given as absolute numbers, as a
percentage of the mean value of the reference values for the set of samples or, more seldom,
but perhaps more informatively, relative to the standard deviation between the reference values
of the (test) set of samples or to the RMSECV or RMSEP for O-factor prediction. A quantity
often used in connection with RMSEP is the standard error of calibration RMSEC, which is
calculated similar to RMSEP, but for the calibration set. RMSEC is not a validation quantity.
The above described terminology is not the only one in use. In some textbooks and articles
SEP = RMSEP? and SEC = RMSEC? are used, in others SEP and SEC are used for the
quantities, which are here denoted RMSEP and RMSEC. Sometimes SEP is instead called the
standard error of performance, and sometimes SEE, standard error of estimate is used for what
is here called SEC. In some software, what is denoted SEP is in fact based on both the
calibration set and the test set. In short: For every new paper you read/software you use in this
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area: check the exact meaning of the SE - abbreviations used. A list of various statistical terms
and abbreviations, including the above is given by Workman [7992]. Some authors prefer the
prediction sum of squares PRESS to RMSECYV. PRESS is equal to I, RMSECV? for full cross
validation, i.e. the sum of the squared differences between actual and predicted values for all
samples, where predictions are according to models based on all other samples in the set.

A third method sometimes used for "quick and dirty" validation is leverage correction.
"Leverage" is explained later, in the subsection on abnormal objects. A model checked by
leverage correction is not validated properly, since the method uses the calibration set to
simulate prediction errors. This is done by enhancing the differences between the actual and
predicted values of the response variable for the calibration through division with the leverage.

In addition to the above, a plot of actual vs. predicted values can be used for visual
assessment of the predictive ability. One should especially be aware of any patterns in the
residuals. Also the correlation between actual and predicted values can help quantifying the
model quality. Useful is also records of how much of the variation in X and Y data the model
explains, i.e. an expression of errors and RMSEP relative to the variation in the data. Many
quantities used in normal regression (e.g. F-values) can be used also for quantifying predictive
ability, see [Workman 1992].

Model complexity

The structure/complexity of a model contributes to its quality. For multivariate calibration
models complexity is measured in the number of included factors/components/loading vectors.
The rule of thumb is: the more simple, the better, as long as the predictive ability is
acceptable. The main reason for this is that simple models normally are more robust than
complex models, and therefore will give better predictions for unknown samples, i.e. the more
complicated, the higher is the risk of overfitting. The other reason is that simple models
normally are easier to comprehend and interpret, that is, the structure in the model reflects the
structure in the system it describes in an understandable way.

Abnormal objects

The third entity decisive for system quality is the ability to handle abnormal/unusual objects,
normally denoted outliers. Outliers can occur both during calibration and prediction, and both
in X and Y data. Types of outliers are objects with high residuals and objects with high
leverage. The X-residuals are the distances from the points to the hyperspace spanned by the
factors, while the Y-residuals are the differences between the actual and predicted values.
Leverage is a measure of how much an object (or a variable) potentially influences a model.
A definition of leverage A, for calibration object i out of I objects is given by Martens & Nas
[1989 p.276]:

h

1 T -
y = (T™1) 3,

where T is the score matrix for the calibration set and where #” is the row vector for object
i in this matrix. Thus, leverage is in fact a Mahalonobis distance. If the object is outside the
calibration set, the vector 7 holds the scores for the object calculated as the product of the
spectrum and the loading vectors for the calibration set. The leverage for an object in the
calibration set is between 1/ and 1. A leverage close to 1 indicates high influence on the
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model. For objects outside the calibration set the leverage has no upper limit. The general
principle in automatic outlier detection is to compare the residual or leverage of an object to
the average residual or leverage for the calibration set. A warning is then given if the residual
or leverage is greater than the mean value multiplied by some arbitrarily set constant. In -
multivariate calibration of spectroscopic data the constant is normally set to three, four or five
for residuals and to 0.9 for leverage. A useful way of investigating types of outliers is the so
called influence plot, in which the residual is plotted against the leverage for each object. An

excellent treatment of outlier detection in multivariate calibration is given by Martens & Nas
[1989 p.267-296].

Finding the best calibration model

Given that you have chosen the calibration set and test set in a correct way (see section 2.1)
and done the measurements, the next problem is how to make the best calibration model based
on the available data. Should the spectra be preprocessed? Should PCR, PLSR or ANN be
used? How should the model be validated? Which quality parameters should be used? In the
case of PCR or PLSR: how many factors should be included? In the case of ANN: which
architecture should the net have and what should the parameters be set to? Unfortunately there
are no general answers to these questions. The reason for this is that the answers depend on
the data and on the aim of the calibration model, i.e. its planned use. One way to handle the
problem of finding a good calibration model is to use a two level approach. First there is the
question of chosing a calibration method (for example PCR, PLSR or ANN), then there is the
question of optimizing the chosen method. On both levels, the choice of quality parameters

depends on the intended use of the model. Normally, one would consider the predictive ability
important.

One way to settle the first question is to learn from the comparisons already carried
out and described in the litterature (see for example [Brockhoff et al. 1993] and references
herein). Be aware of how the comparisons between methods are made (which data set is used
- and how, which quality parameteres are used, how are the models validated etc.), both when
comparing the results of one reference to the results of another reference and when applying
the results to your own modelling. Another approach to the question of chosing a method is

to try the different methods on the data and chose from the quality of the accopmlished
models.

The question of optimizing depends on the method chosen. For determining the
number of factors in PCR and PL.SR models an operational approach exists. It consists of
making the model with too many factors, calculate the RMSEP or RMSECYV for each number
of factors and then choose the number of factors corresponding to the first local minimum in
the test entity. If no minimum is reached, models with too few factors were calculated. The
idea behind this approach is to get a simple model with good predictive ability. For training
ANN, Borggaard & Thodberg [1992] present an algorithm partly based on trial and error.
When trying to optimize en ANN one should be aware of the consequence of the random start
weights: probably two networks with the same architecture and the same parameter values will
not have identical weights after training, even when trained on the same data set.

For other questions, for example the choice of pretreatment there is p.t. no other way
than to use ones knowledge of the data and how they were measured, experience from
previous multivariate calibrations and when there is no other way out: trial and error. That is,
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look at the model quality parameters in relation to the aim of the calibration and choose the
best model. If the comparison does not clearly point to one of the possibilities, the test
indicates that the different possibilities are almost equal. In that case the choosing is not
crucial, and you can choose any of the possibilities, for example the most simple.

Which ever the chosen strategy, before setting out to find the best calibration model,
it is a good idea to set up an algorithm or plan to follow (which preprocessing methods to try,
which validation method to use, which quality parameters to attach importance to etc.).

The software available for multivariate calibration is of the GIGO-type (Garbage In,
Garbage Out). Hence, the programs are good tools if you have taken the time to study
multivariate calibration thoroughly, but as a novice you will soon be frustrated. The programs
will enable you to produce a dozen different calibration models in very short time, but when
it comes to evaluating them relative to each other and choosing the best one, the software will
not help you other than by providing the model quality data on which you can base. your

decision. A hammer is a good tool for the carpenter, but the apprentice is likely to miss the
spike and hurt his fingers.
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Appendix B
Absorption bands in the NIR region

This appendix gives en overview over absorption bands in the NIR region. The first table
holds bands assigned by various authors to major wood constituents. The rest of the tables
hold tentative general band assignments for organic substances. Be aware of the fact that
measurements on which band assignments are based normally are carried out on pure
substances, and that bands may shift considerably (tens of nm), when the substance forms part
of composites/biological material.

Wood constituent Absorption bands (nm)

Water (major bands in ltalics) [Williams & Norris 1987].

834, 938, 958, 978, 986, 994, 1010,
1030, 1099, 1153, 1409, 1460, 1780,
1910, 2305, 2345, 2510

[Shenk et al. 1992]:
1940

[Andersson & Yngvesson 1992]:
1200, 1430, 1940, 2950

Cellulose (major bands in Italics) [Williams & Norris 1987]:

860, 905, 920, 978, 1058, 1160, 1190,
1220, 1275, 1363, 1425, 1460, 1520,
1585, 1702, 1825, 2050, 2079, 2103,
2145, 2172, 2268, 2335, 2355, 2370,
2390, 2410, 2445, 2480, 2530, 2560,
2582

[Shenk et al. 1992]:
2336

[Elvidge 1990]:
1220, 1480, 1930, 2100, 2280, 2340,
2480

Lignin [Shenk et al. 1992]:
2270

[Elvidge 1990]:
1450, 1680, 1930, 2050-2140, 2270,
2330, 2380, 2500

Hemicellulose [Elvidge 1990], for xylan: ]
1210, 1450, 1720, 1790, 1930, 2090,
2260, 2330, 2500

[Elvidge 1990], for arabinogalactan:
990, 1210, 1450, 1550, 1740, 1930,
2100, 2280, 2320, 2500




Appendix B

Absorption bands in the NIR region

The rest of the tables in this appendix are from [Murray & Williams 1987].

Simple Bond Combinations Likely to Cause Absorbances

in Near-Infrared Region

-C-C- H—O N-H -O-H =P-P -S-H
Cc=C Intramolecular -NH; -0-O- =P-C- -S-S-
-C-H and -NH; -O-S- =P-H -S8-C-
CH; intermolecular NH: S=0 S=C
-CH, hydrogen -NH -O-N= -S-P=
-CH;-phenyl bonds -N=N- O=N-
-CH=CH; vinyl N-N -O-C-
.C-N= N-P 0O=C
=C=N- -N=P- -O-P
-C=N- =N-§- O=P-
-N=S-

Approximate Location of Absorbers Involving Nitrogen and Hydrogen

Wavelength (nm) .
st Overtone 2nd Overtone 3rd Overtone Tentative Assignment
2,540~2,600 1,910-2,080 Amide 111: Combination N-H stretch with C-O stretch, secondary amides
1,950—1,980 Amide I11: N-H stretch, trans-secondary amides
2,330-2,390 1,760~1,800 Amide 1V: N-H bend, primary amides
2,270-2,320 1,710-1,730 N-H bend, cis-secondary amides
2,200-2,250 1,640-1,680 NHs+ NH deformation; “amino acid 11"
2,140-2,180 1,600-1,630 N-H bend, trans-secondary amides
2,050-2,140 1,540~1,600 Ring deformation, pyrimidines, quinolines
2,080—2,220 1,560~1,670 Amide I1: N-H deformation coupled with C-H stretching, secondary amides,
especially peptides
2,040-2,110 1,530-1,580 N=N stretching, unsaturated nitrogen compounds
2,030-2,100 1,520~1,570 NH; deformation; “amino acid 1™
2,020-2,150 1,510-1,610 N-H deformation, primary and secondary amines
1,810-1,970 1,200—1,310 Unknown absorber in most amino acids
1,660-2,500 1,110-1,670 1,000~1,250 N-H stretch, symmetrical, all amino acids and hydrochiorides
1,590-1,650 1,060~1,100 Asymmetrical N-H stretch, all amino acids and hydrochlorides
1,600~1,630 1,070—1,090 N-H stretch, secondary amides, cis and trans
1,570—1,600 1,040—1,060 N-H stretch, secondary amides, cis-bonded NH
1,520—1,620 1,010-1,080 Hydrogen bonding, peptide links, protein helices
1,530~1,580 1,040-1,070 N-H stretch, primary amides, bonded NH
1,500—1,530 1,000—1,020 N-H stretch trans-bonded NH, primary amides
1,510-1,530 1,000~1,020 Unidentified absorber, all proteins
1,490-1,510 -1,000 N-H stretch, imines (e.g., histidine)
1,490-1,510 1,000—1,020 N-H stretch, alkylated primary amines
Approximate Location of C-N Bands in Near-Infrared Region
Wavelength (nm)
1st Overtone 2nd Overtone 3rd Overtone Tentative Assignment
2,420—2,440 C-N stretch, primary-tertiary amines
2,400~2,420 C-N stretch, primary amines, primary alpha-carbon atoms
2,310-2,340 C-N stretch, primary amines, primary alpha-carbon atoms
2,110-2,140 C-N stretch, secondary amines, secondary carbon atoms
2,480~2,600 1,850-2,000 C-N stretch, acrylamines, alkyl amines, primary-tertiary
2,450-2,550 1,840-1,870 C-N stretch, cis-secondary amides
2,340-2,380 1,770-1,800 C-N stretch, amides with no N substitution
1,970-2,100 1,470-1,570 C-N stretch, unsaturated nitrogen compounds
2,310-2,350 1,540-1,570 1,150-1,170 C-N stretch, -N=C=N-
1,490~-1,510 900-1,000 C-N stretch, amines
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Absorption bands in the NIR region

Approximate Location of C-O Bands in Near-Infrared Region

. Wavelength (nm) .
st Overtone 2nd Overtone 3rd Overtone Tentative Assignment
2,220-2,380 C-O stretch, primary alcohols
2,150-2,180 C-O stretch, tertiary alcohols
2,050-2,100 C-O stretch, phenols
2,100-2,180 C-O stretch, long-chain fatty acids
2,590-2,640 1,920-2,080 C-O stretch, amide 11l combination, secondary amides
2,330-2,540 1,780-2,080 Coupled C-O and O-H stretch, carboxylic acids
2,380-2,500 1,780—1,920 C-0O symmetrical vibrations, zwitterions
2,140-2,360 1,600~1,770 C-O stretch, amino acid ionized carbonyls
1,980-2,220 1,480-1,670 C=0 stretch, urea, amide I, especially lower frequencies
2,070-2,150 1,550-1,620 C-O bending, COO zwitterions
2,080-2,140 1,560-1,610 C-O stretch, COOH, amino acids
2,000-2,050 1,510—1,530 C=0 stretch, solid primary amines, amide |
1,990-2,030 1,490-1,520 C=0 stretch, internally bonded, saturated aliphatic carboxylic acids
1,950-1,990 1,460—1,490 C=0 stretch, a-8 unsaturated aldehydes
1,970-2,080 1,470—1,570 C=0 stretch, a-8 unsaturated ketones
1,920-1,960 1,440-1,470 C=0 stretch, ketones
1,930-1,970 1,440-1,470 C=0 stretch, saturated aliphatic carboxylic acids
1,910-1,930 1,430~1,450 C=0 stretch, saturated aliphatic acids and esters
1,800~1,920 1,350—1,440 C=0 vibrations, open-chain acid anhydrides )
2,330-2,420 1,550-1,610 1,160~-1,210 COO stretch, or combination band, most amino acids
2,330-2,360 1,530-1.570 1,160—1,180 COOstretch, or combination band ionized amino acids

Approximate Location of O-H Bands in Near-Infrared Region

Wavelength (nm)
1st Overtone 2nd Overtone 3rd Overtone Tentative Assignment
1,950-2,020 O-H deformation, secondary alcohols

2,330-2,540 1,780-2,080 C-0O/ O-H stretch coupled, carboxylic acids

2,510-2,600 1,860-1,900 O-H deformation, primary alcohols

2,440-2,500 1,820-1,870 O-H deformation, secondary alcohols

2,000-2,090 1,510-1,540 O-H deformation, hydroxyl .
2,060-2.150 C-0, O-H stretching combination, primary alcohol
1,920-1,950 O-H stretch/ O-H deformation combination hydroxyl
1,620-1,700 1,110-1,140 O-H stretch, carboxylic acid dimers
1,560-2,000 1,030-1,330 O-H stretch, intramolecular OH bonds, polymers
1,470-1,560 950-1,040 O-H stretch, internal OH bonds, single bridge, polymeric
1,400—-1.450 O-H stretch, internal OH bonds, single bridge
1,400~1,430 O-H stretch, COOH groups
1,390-1,420 O-H stretch, intramolecular OH bonds, single bridge
1,380—1,400 O-H stretch, phenols
1,360~1,390 O-H stretch, tertiary alcohols
1,370-1,390 O-H stretch, primary alcohols
1,360—1,380

O-H stretch, secondary alcohols
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Approximate Location of C-H Bands in Near-Infrared Region

Wavelength (nm)
ist Overtone 2nd Overtone 3rd Overtone Tentative Assignment
ce 2,120-2,150 (CH;)-C; skeletal vibrations
2,460-2,540 1,850-2,120 C-H bend, CH in long<chain fatty acids
1,980-2,040 (CH3)-C; skeletal vibrations
2,540-2,580 1,900-1,940 -CH=CH-:-CH=CH:; CH in phase deformation
2,460-2,500 1,850—1,880 " -CH-; CH deformation
2,410-2,460 1,820-1,850 «CH:)s;; CH deformations
2,390-2,440 1,810—1,840 -C(CHjs)s; CH deformation
2,370-2,400 1,770-1,790 C-H in-phase deformation, CHO groups
2.340-2,370 1,750-1,780 -CH=CHj; in-phase CH: deformation
2,300-2,350 C-H stretching, methylene groups, combination
2,320-2,520 1,740-1,890 C-H stretch aliphatic compounds
2,270-2,300 1,710—-1,740 C-CH;; CH asymmetrical deformation
2,260-2,300 1,700-1,730 -CH:-; CH asymmetrical deformation
2,190-2,360 1,640-1,770 Pyrimidines and quinolines, ring deformation
2,200-2,250 1,650-1,680 Benzene rings deformation
2,140-2,190 C-H stretching, cis unsaturation, combination
2,100-2,200 C-H stretching, skeletal in-plane deformation, combination
2,060-2,150 1,550-1,620 Benzene rings deformation
2,070-2,100 1,550-1,580 -C=C- stretch, conjugated chains
2,020-2,060 1,510-1,550 -C=C- stretch, nonconjugated chains
1,720-1,860 1,150-1,240 C-H stretch, carbonyl compounds
1,680—1.740 1,120-1,170 C-H stretch, CH; groups (A1)
1,700-1,760 1,130-1,170 C-H stretch, CH; groups (A2)
1,700-1,740 1,140-1,160 C-H stretch, -CH= (43)
1,640—1,670 1.090-1,120 -CH=CH-; CH stretch, cis and trans
1,610-1,670 1,090-1,120 C-H stretch, quinolines
. 1,610-1,660 1.070~1,110 C-H stretch, pyrimidines
1,620-1.650 1,080-1,100 C-H; C-H stretch, aromatics
1,610-1,640 1,070-1.090 C-H stretch, pyridines
1,620~1,640 1,070-1,090 -CH=CH_; vinyi, C-H stretch

Assignment of Inorganic Absorbers in Near-Infrared Region

Wavelength (nm)
1st Overtone 2nd Overtone 3rd Overtone Tentative Assignment
2,460-2,670 1,480-1,600 P=0 free
2.410-2,500 1,440—-1,500 NO3-
2,330-2,400 1,390—1,440 NH+
2,290-2,340 P-(phenyl ring)
2,270-2,500 1,510-1,670 C=N, SCN=
2,230-2,360 1,340-1,420 Carbonates
2,030-2.200 1,350-1.470 P-H stretching
1,850-1,950 1,230-1,300 P-OH stretching
1,818-2,200 Silicates
1,810-2,000 Phosphates, PO, all
1,760—1,860 Sulphates, SOs=
1,750-1.900 Phosphates, PO;=
1,690~-1,910 1,130-1,307 -SH stretch (very weak)
1,600-1.800 P=0 hydrogen bonded
1,600-1,630 NO-
1,510~1,830 Phosphates, PO»-

1,510-1,650 1,010-1,100 NHy+




