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1. Introduction

In the past three decades considerable attention has been devoted to composite materials. A
number of useful equations referenced in (1,2,3,4) for example have been suggested in
the literature to predict macroscopic stiffness (elastic modulus/moduli) of composite materials
from elastic properties and volume characteristics of the constituent components. Most
equations are based on the very important results obtained in the early days of research in the
area of composite materials:

Exact bounds for the elastic moduli of composites were developed by Paul (5) for unre-

stricted phase geometry and by Hashin and Shtrikman (6) for phase geometries which cause
macroscopic isotropy.

Exact stiffness solutions of composites were developed for parallel layered materials by
Hansen (7), for isotropic materials reinforced by spherical particles by Hashin (8), for
isotropic composites with phases of equal shear moduli by Hill (9), for plane isotropic
composites with parallel and very long fibres of circular cross-sections by Hashin and Rosen
(10), and for plane isotropic composites with phases of equal shear moduli by Hill (11).

To date these early works still represent the only exact analysis of composites stiffness. At
present, we must except that only approximate predictions of elastic moduli of real composites
can be made. Real composites have geometries which can differ considerably from those
theoretically considered (spheres, parallel plates, long uni-directional fibres of circular cross-
sections). The influence of geometry on composites mechanical behavior is a most important
subject in the analysis of composites and in design of new materials. This feature has recently
been considered by the author in (3,12).

The subject of phase geometry is also dealt with in this paper. A simple self-consistent
approach is used in Section 2 to illustrate the influence of distribution and aspect ratios
(Iength/diameter) of straight fibres on the Young’s modulus of some anisotropic fibre-
reinforced materials modelled in Section 1.1, Figure 1. Aspect ratios considered range from
0 (penny fibres) to oo (very long cylindrical fibres). Special "fibre-reinforced” materials
considered are porous materials and cracked materials.

Solutions obtained for parallel chopped fibre-reinforced materials are discussed relative to the
Halpin-Tsai relation (13) often referred to in the literature on composite materials (e.g.
1,2,14,15,16). Solutions obtained for cubic fibre-reinforced materials are related to the
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authors general theory on isotropic composites in (3). The basic material model presented and
examples shown are reproduced from the author’s text notes (17) on material mechanics.
The terms, Young’s modulus and stiffness, are synonyms in subsequent text.

1.1 Material model

Uni-axially loaded fibre-reinforced materials are considered with matrix phase S and fibre
phase P. Both phases have equal Poisson’s ratios. The fibres and fibre systems considered are
defined in Figure 1 with quadratic straight cylinders of length 1 and cross-section d*d. Fibre
aspect ratio is A = 1/d. Orientations of fibres are parallel or perpendicular to the uniaxial load
o as illustrated. Fibres perpendicular to load need not have a direction of preference, meaning
that thick plates (relative to fibre diameter), for example, are also considered with plane
quadratic fibre arrangements. Other examples are orthotropic materials, cubic materials and
plane isotropic materials with plane of isotropy perpendicular to load. Cubic fibre-reinforced
materials have o = 1/3 with fibres in the cross-load plane being perpendicular to each other.
Isotropic materials are fairly well approximated by cubic models.

Parallel to load strain is € = ¢'/E* where E is the unknown composite Young’s modulus to
be determined. Relative composite stiffness and stiffness ratio are defined by ¢* = E'/Eg and

n = Ep/E; respectively. Volume concentration of fibres is denoted by ¢ (= vol of fibres/total
vol of composite).
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Fibres with « is fraction of fibres in.load direction
KTN Aspect rgﬁo other fibres are perpendicular to load
A=
Load l 1/

Figure 1. Fibres and basic fibre system considered with fibres of equal lengths and aspect
ratios. Fibres perpendicular to load need not have a direction of preference. Other fibre
systems are present each of which is congruent with the basic system. Thus, total fibre system
may consist of fibres of different lengths but constant aspect ratios.

1.2 Max fibre concentration and voids

Increasing fibre concentration may be thought of as the result of stepwise adding small
amounts of fibre systems each of which is congruent with the basic fibre system defined in
Figure 1. Difficulties are met in practice using this procedure to produce tight composites with
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high fibre concentrations - especially when fibres of constant lengths are used. Maximum
packing of fibres forming a fixed skeleton is obtained at ¢ = ¢ where the latter quantity is
fibre packing ratio (maximum fibre volume relative to total volume of a pile of fibres). Fibre
composites with ¢ > ¢ can only be produced by reducing the amount of matrix. It is easily
checked that the void concentration (relative to total composite volume) at ¢ > Cgp is
expressed by Equation 1. Voids reduce stiffness in a way which can be considered
approximately as shown in Section 3.13.

c - C
Cyop = MAX |0, = W

1.3 Stiffness bounds

The results developed must respect the Paul-Hansen bounds (5,7) considering composites with
non-restricted geometry. In the present context these bounds can be written as shown in
Equation 2, first expression. Cubic fiber systems are anticipated not to violate seriously the
Hashin-Shtrikman bounds (6) applying for isotropic composites. These bounds (with Poisson’s
ratios 0.2) are presented in Equation 2, second expression.

M <e*<1+ cn -1 (Anisotropy)

n - C(n - 1) (2)
2 +cn-1) <e.<n+1+c(n-1) Isotropy

2n -cn - 1) n+1-cn-1) \reverse signs when n>1

2. Analysis

Hill (9) has shown that the remarkably simple relations shown in Equation 3 exist between
averages (by volume) of stresses, strains, and stiffnesses of homogeneous (not necessarily
isotropic) composite materials consisting of homogeneous and isotropically elastic components.
In the present context €, 0, and E mean strain, stress, and Young’s modulus respectively in
load direction. Phase considered is referred to by subscript. The expressions can be organized
as shown in Equation 4 to predict composites stiffness from average stress in phase P (or to
predict average stress in phase P from composites stiffness).

cc=(01-¢)o, +co (4] (4] .
] ( ) Os Py =Ly g=2 e =2 ®)
e=0-0c¢g+ceg, E, E, E*

. G *
YVer -1 _ . % ;e = E (relative stiffness) @
Tn - 1 e E,

When phase P are fibres we may estimate 6, from a single particle-infinite matrix solution
replacing matrix property with the composites (not yet known) property. This means that one
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of the many particles in the composite is considered separately as embedded in an infinite
matrix of composite. This principle is known in composite theory (e.g. 18,19) as the "Self
Consistency Scheme" (SCS).

5 "_(1_;_:4’2 | Cylinder 1 -
_‘: ~ nn(l + 34) ;. fibre aspect ratio A = —
c L Cylinder d
| T+AQ + 20
) \
n'(l +4) _ nd +4) | Cylinder
Cp n*+A n + Ae* n'-EP- n 6)
c” n'+34) _  nd*38) ) Cconnder E* e’
|1+ A +2rn%) e + A(e” + 2n) )

The single particle solutions in Equation 5 have been developed and adapted for the current
purpose by the author from Eshelby’s classical analysis (20) of the stress field at an ellipsoi-
dal particle in an infinite matrix. The multi-particles solutions presented in Equation 6 are then

obtained by the SCS-approach replacing stiffness ratio n in Equation 5 with modified stiffness
ratio n" = E/E" = n/e".

For the anisotropic fibre systems considered in this paper a "single" particles stress can be
determined by the weighted average shown in Equation 7 where o denotes volume fraction
of fibres in load direction.

c c c
L o=al)+@ -a)-LL ; (ais fraction of fibres in load direction) )]
c* c*

*

2.1 Stiffness of multi-directional fiber-reinforced material

The stiffness quantities of interest are now easily obtained combining Equations 4 and 7. The
results are presented in Equation 8 which in general has to be solved by numerical means.
Analytical closed form solutions, however, can be obtained for some special materials such
as the porous materials (n = 0), parallel fibre-reinforced materials (oo = 1), and compact
particle-reinforced materials (A = 1) considered in subsequent sections 3.1, 3.21, and 3.4.

e* =05+[M + {M? + 4n/A ] with

®
M=1- i{in + c(l—n)(a(l +A)+ (1 - oz)(l + 34) (n +A€')Jj|
A 24n + (1 + A)e*
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3. Examples

Examples are presented in this section demonstrating the influence of fibre distribution and
aspect ratio on the stiffness of fibre-reinforced materials. "Ideal" tight materials are considered
primarily. Stiffness reduction due to voids is easily determined by the method presented in
Section 3.13.

3.1 Porous materials (n = 0) and geometrical parameters

Equation 8 reduces as shown in Equations 9 and 10 which predict stiffness to vary linearly
with porosity c. The so-called shape factor y, and critical concentration c; presented in
Equation 10 are important phase geometrical parameters (at any stiffness ratio n) introduced
into composite analysis by the author in (3). A brief explanation is given in Section 4 on the
physical meaning of p, and c,. The influence of fibre aspect ratio on shape factor and critical
concentration is demonstrated in Figures 2 and 3. It is observed that p, = 3/4 is approached
when cubic systems are considered with very long fibres. This quantity is close to a shape
factor of p, = 0.7 presented in (21) as a result of a FEM analysis (3) on special composite
materials (CR-materials) where both phases have the geometry of perfectly fitting
3-dimensional crosses. It should be noticed that simple relationships between W, and c, (such
as the one presented in Equation 10) are exceptions when composite materials in general are
considered, see Sections 4 and 5.

201 -
et=1-c¢f1+%1+4 +247d - o) (= O when predicted e* < 0) ®
Al + A)

e, =1 -( + i) c=1-2L (=0 when predicted e < 0)
o

[4

Al + A)
= shape factor 10
K, o+ A) < A0 %) (shape fi ) (10)
c, = K (critical concentration)
1 +p,
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3.11 Stiffness, pore geometry and distribution

It is noticed from Figure 2 and Equation 10 (first expression) that stiffness of porous materials
with o > = 0.5 will increase monotonically with increasing (fibre) pore aspect ratio. When o
<= 0.5 stiffness variation is not that simple. Stiffness increases monotonically with increasing
aspect ratio from A = 0 up to a certain A = Ay beyond which stiffness decreases
monotonically as A approaches infinity. When cubic fibre systems (o0 = 1/3) are considered
stiffness increases in the fibre aspect range going from A = 0 to A = 1, while it decreases
going from A =1 to A = oo. Stiffness of systems with o = 0 will always decrease with
increasing fibre aspect ration because Ag = 0.

3.12 Cracked material (n = 0, A — 0)

Cracked materials are porous materials with a vanishing pore aspect ratio, meaning that
porosity ¢ = pld®> = pAd® is introduced into Equation 10 together with A — 0. Crack density
p is number of cracks per volume unit. The result is presented in Equation 11 and Figure 4.
(Strength of cracked and porous materials has recently been considered by the author in
(22), see also (23). Strength in general of fibre-reinforced materials is considered in
special literature on this subject (e.g. 1,24,25,26,27,28)).

e* =1 -pod® with crack density p (11)
10
o8
‘o
! 0.6
:
g Figure 4. Stiffness of material with orthotropic
3., crack system. Crack density is p (number of
cracks per vol-unit). Cubic systems have o. =
00 1/3.
0.0 0.2 0.4 0.6 08 1.0
CRACK CONCENTRATION ~ pad®
1 C < Cpp
erep(€) = e, (Cyom)*e’(c) 3 e (c = 1 +p)c, -c¢
RED( ) ( VOID) ( ) ( VOID) MAX I:( l‘l‘o) FP , 0 ] c> CFP (12
In subsequent text is assumed: ¢, = c,

3.13 Stiffness reduction due to voids

It has been mentioned in Section 1.2 that tight fibre composites are impossible to produce with
fibre concentrations greater than the fibre packing ratio cg,. Voids are inevitable. The stiffness
reduction due to this phenomenon can be determined approximately as suggested in (3,29)
and reproduced by the first expression in Equation 12. Reduced modulus is €'ygp. "No voids"
stiffness is e'(c) (Equation 8). Reduction factor e” (Cyop) is stiffness of porous material

6



Lauge Fuglsang Nielsen

Stiffness of fibre composites

(Equation 10) at porosity cyop (Equation 1). Subscript "RED" is not used in the following text
as the proper meanings of the e"-quantities presented are quite obvious.

3.2 Parallel fibre-reinforced material

3.21 Parallel to load (o = 1)

The M factor in Equation 8 reduces as shown in Equation 13. Examples of stiffness
predictions are presented in Figures 5 and 6. Also shown in the figures are the anisotropic

(P/H) bounds from Equation 2.

M=n1-1A) + (1 - n[l - cA + 1A)]

(13)

3.22 Perpendicular to load (o = 0)

The results shown in Figures 7 and 8 are composite Young’s moduli of systems where all
fibres are perpendicular to load. Also shown in the figures are the anisotropic (P/H) bounds

from Equation 2.

1.0

N HEAVY LINE: A=10
DASHED LINE: A=1{
\ THINN LINE: A=1/10

DOTTED:P/HB INDS|
3
\

N
RN
\‘\ \\

kL \\
1]

0.33 0.67 1.00
FIBER CONCENTRATION — C

Figure 5. Stiffness of uni-directional fibre
system (o = 1). Stiffness ratio n = 0.001.

1.0

o8

COMP‘S)SITE - e
>

02

0.0
0.

HEAVY LINE: A=10
N N, DASHED LINE: A-d
N N, ITHINN LINE: A=1/10
08 NN DOTTED: P/H BOUNDS
A)
.0 \\ \\
\
los Al >
w \\ \\
= N
[72]
80" \‘ \ ~
= \\ i h,
8 *\ \
0.2 <
\
LN
0.0 \\ -
0.00 1.00

FIBER CONCENTRATION — C
Figure 7. Stiffness perpendicular to one or
two-dimensional fiber systems. No fibres in
load direction (0. = 0). Stiffness ratio is
n=0.001.

COMPOSITE ~ e’

HEAVY LINE: A=10
DASHED LINE: A=1
THINN LINE: A=1/10
DOTTED: P/H BOUNDS

77
77 //

. A
. //l//

o
0.00

0.33 0.67
FIBER CONCENTRATION — C

1.00

Figure 6. Stiffness of uni-directional fibre
system (o = 1). Stiffness ratio n = 10.

COMPOSITE -~ ¢’

HEAVY LINE: A=10

DASHED LINE: A=1
INN UNE: A=1/10

DOTTED: P/H BOUNDS

M

77 ]

L
4
7
4

-

-
—
I

oo

0.33 0.67
FIBER CONCENTRATION — C

1.00

Figure 8. Stiffness perpendicular to one or
two-dimensional fiber systems. No fibres in
load direction (o. = 0). Stiffness ratio is
n = 10.




Lauge Fuglsang Nielsen Stiffness of fibre composites

It is noticed from Figures 5 - 8 that predicted stiffness does not violate the anisotropic bounds
from Equation 2 (first expression). It is further noticed from Figures 5 and 7 that shorter fibres
reduce stiffness along the fibres and increase stiffness perpendicular to fibres respectively in
uni-directional fibre systems made with soft fibres (n << 1). This observation agrees with the
comments made in Section 3.11 on stiffness of porous materials as related to pore geometry.
A similar trend is observed from Figures 6 and 8 when fibres are stiff (n >> 1).

3.3 Cubic fibre-reinforced materials a.o. (o0 = 1/3)

Figures 9 and 10 refer to systems where 2/3 of the fibres are perpendicular to load (o = 1/3).
The isotropic bounds from Equation 2, second expression, are also shown in these figures.

It is noticed that predicted stiffness of a cubic fibre system does not violate seriously the
isotropic bounds. It is further noticed from Figure 9 that stiffness is decreased for soft fibre-
reinforced materials both when shorter (A < 1) and longer (A > 1) fibres are used. This
observation agrees with the comments made in Section 3.11 on stiffness of porous materials
versus pore geometry. The trend of stiffness variation just observed for soft fibres is reversed,
as can be seen from Figure 10, when stiff fibre-reinforced materials are considered.
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Figure 9. Stiffness in fibre direction x of Figure 10. Stiffness in fibre direction x of
fibre system with 67 % fibres perpendicular fibre system with 67 % fibres perpendicular
to x (0w = 1/3). Stiffness ratio n = 0.001. to x ( o = 1/3). Stiffness ratio n = 10.

3.4 Compact particle-reinforced material (A = 1)

Equation 8 reduces for any o as shown in Equation 14 which is identical to an expression
which can be be obtained from Budiansky’s analysis (19) on isotropic composites made by
compaction of powders of compact shapes.

et = %[(1 “ w1 - 20) + 4 - (1 - 202 + 4n ] (14)

4. Isotropic composite materials

Equation 15 has been developed by the author (3,12,21) to predict stiffness of isotropic
composite materials with arbitrary phase geometry.
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Shape factor Y, and critical volume concentration ¢, are parameters which characterize the
geometrical complexity of phase P (discrete, continuous, or mixed) at low concentrations and
interaction between phase elements at higher concentrations respectively. Spherical shapes
have the maximum shape factor of p, = 1. Shape factors decrease with increasing shape
complexity (away from spheres, higher specific surfaces). Phase elements like crumbled sheets
have shape factors close to the minimum of p, = 0. Estimates on shape factors versus phase
geometry are given in (3,12).

er = O[1 + c(n - 1)] with
n+0-cn-1)
0 = 0.5[n + ny' + \/(u +n'y +4n(l - pu - W) 1  Geometry function (15)
c, - c-cp .
Ho=pu, ; W =MIN |p, , 1 Shape functions
¢y ¥

Critical concentration ¢, is concentration where phase P dissolves phase S into discrete
particles. Extremely well graded phase P particles (maintaining their low porosity shapes) have
high critical volume concentration (c; > 1). Badly graded particles (increasing particles
agglomeration at increasing concentration) have lower critical concentrations (c; < 1). Thus,
the size of ¢, is very much a matter of fabrication technique. No fixed correlation exists
between L, and c; when real composite materials are considered. (Critical concentration ¢y, is
concentration where phase P leaves the state of being fully discrete).

The isotropic bounds in Equation 2 are predicted by Equation 15 introducing®=1and 0=n
respectively which according to (3) correspond to spheres (i, = 1) of phase P in a continuous
phase S (c4 = o) and phase S spheres in a continuous phase P (¢ = -o0) respectively.

4.1 Porous Materials

Equation 15 reduces as shown in Equation 16 when porous materials are considered with
n=0.

E

et =9l ¢

0 +c¢

e'—)l—(1+_1_)c whenc — 0 (16)

o

0=p0 -clk) Geometry function (= 0 when 0 < 0 is predicted)

4.2 Fibre-reinforced materials

The shape factor |, and critical concentration c, suggested in Equation 17 for isotropic fibre-
reinforced materials are suggested from Equations 10 with ai= 1/3. The critical concentration
Cp is an estimate based on numerical calculations comparing Equations 8 and 15. Examples
of predicting the stiffness of isotropic fibre-reinforced materials by Equation 15 with
geometrical parameters from Equation 17 are shown in Figures 11 and 12 which do not

9
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deviate very much from Figures 9 and 10 which represent the cubic results of the analysis
developed in Section 2 of this paper.
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4.3 Special observations on isotropy/anisotropy

It is noticed that the anisotropic lower and upper bounds in Equation 2 are described by
Equation 15 with @ = 0 and 6 = oo respectively. This feature indicates that it might be
worthwhile exploring the possibilities of generalizing Equation 15 also to consider anisotropic
composites. A first attempt of generalization might be to introduce a geometry function
8 = 2A®*Y” jnto Equation 15. Immediate consequences of this approach are the following:

Stiffness perpendicular to unidirectional fibre system (ot = 0, 8 = 2A™%): Upper and lower
anisotropic bounds from Equation 2 are approached as A — 0 and A — oo respectively.

Stiffness in one fibre direction of qubic fibre system: (o = 1/3, 8 = 2): Stiffness is predicted
independent of fibre aspect ratio.

10
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Stiffness parallel to unidirectional fibre system (o = 1, 6 = 2A): Upper and lower anisotropic
bounds from Equation 2 are approached as A — oo and A — 0 respectively.

Trend evaluation and order of magnitudes comparison between results obtained by the "model"
outlined above (8 = 2A®*D? in Equation 15) and the results obtained by Equation 8 in Section
2 show that the model might serve as a qualified basis of developing a proper and more
detailed generalization (also considering the stiffness ratio) of Equation 15 with more accurate
answers (for example, with respect to the stiffness influence of aspect ratio at o = 1/3).

It is of interest to notice that the Halpin-Tsai (H/T) expression (13) often used in practice to
predict parallel to fibre stiffness of uni-directional fibre systems complies well with the model
considered. The H/T expression can be re-formulated as Equation 15 with 6 = 2A. Examples
of H/T stiffness predictions are shown in Figure 14.

5. Conclusions and final remarks

Young’s moduli of some anisotropic fibre composites have been predicted by a method
developed in Section 2 and examplified in Section 3. The results obtained are admissible.
They do not violate the anisotropic bounds given in Equation 2. The anisotropic upper bound
stiffness is approached with very long fibres parallel to load (& = 1, A — o). Stiffness
quantities predicted for cubic fiber systems (a0 = 1/3) do not violate seriously the isotropic
bounds given in Equation 2 which indicates that stiffness of isotropic fibre systems can be
predicted reasonably well by the cubic expressions presented in the paper. When fibres are
compact particles (A = 1) stiffness results are predicted which are identical to results which
can be obtained from an analysis in (19) on composites made of compacted powders. Stiffness
moduli parallel to fibres in uni-directional fibre systems are obtained (Figure 6) which
compare positively with results predicted by the Halpin-Tsai expression (13), Figure 14.

Composite stiffness is significantly and systematically influenced by fibre geometry
(orientation and aspect ratio). This feature is discussed in details in Sections 3.11, 3.2 and 3.3.

The results obtained for cubic fibre systems are used in Section 4 to suggest how the stiffness
of real isotropic fibre systems can be predicted by a more general theory of isotropic
composites previously developed by the author. The general theory is more flexible with
respect to critical concentration (c;) which defines interaction between fibres in real fibre
systems. A further advantage offered by the general theory is that the effect of not-straight and
twisted fibres on stiffness can be considered with lower (experimentally deduced) quantities

of shape factor }t, and c, than what is predefined by the theoretical analysis presented in
Section 2.

A discussion is made in Section 4.3 on geometrical relationships between the methods
presented in the paper on stiffness prediction of anisotropic fibre-reinforced materials and on
isotropic composite materials respectively. A possible link between the two methods is
identified. It is shown, for example, how the Halpin/Tsai expression previously referred to can
be "predicted” by the isotropic theory presented.

A subsequent paper deals with viscoelastic properties, shrinkage, thermal expansion, and
thermal and electric conductivity of fibre reinforced materials.

11
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