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dbstract: 1 theory has previously been developed by the author which predicts stiffness and internal
stresses of twu-ghase materials with arbitrary phase geometry. The theory has been successfully applied
in research on stiffness and strength of porous materials am daapin? of i:%regnated materials, In this
article the theory forms the basis of a rational method subsequently developed to predict shrinkage,
svelling, and internal stresses of com%osite naterials where the constituent fhases gxperience hygro-
thernal strain or voluse change by solidification of liq%xid impregnant (including ice formation in
porous materials). The method applies for any phase geometry. Three special composites, however, are
considered in more details: Particle reinforced materials (like concrete and chopped fiber composites),
Powder composites (compacted powders), and Lamella composites (where any phase has a continuous geome-
tr{ like man 11n{)regnated porous materials). Examples are iiven. hmong others: Thermal expansion of
salt infected tile, Expansion and damage of Yorcus naterials due to ice formation in pores. An al-
qorithn is presented bg which the numerical calculations involved are easily made on a small computer,
Some possibilities of damage detection are briefiy discussed.

As a curiosum it is shown how the stiffness results of the method developed can easily be used also to
predict a number of other phzsical properties of composites with arbitrary internal geometry. Examples
are thermal and electric conductivity, dielectric constant and magnetic permeability,

feyvords: Composite material, Porous material, Phase geometry, Hygro-thermal strain, Shrinkage,
Swelling, Internal stress, Stiffness, Imprequation, Frost damage, Damage detection, Thermal conductiv-
ity, Electrical conductivity, Dielectric constant.

I. INTRODUCTION

A rational prediction method is developed for shrinkage, swelling, and
internal stresses in isotropic composite materials of arbitrary phase
geometry. The composites are two-phase materials exposed to hygro-
thermal action (volumetric deformation caused by change of moisture
and temperature) or volume change by solidification of liquid impreg-
nant (ice formation included).

No prediction method considering such behavior of composite materials
can be better than the method applied to predict the bulk modulus of
the material considered. This is a consequence of results obtained in
the paper that stress and strain in a composite subjected to hygro-
thermal action can be determined exactly when composite bulk modu-
lus is known. Thus, from a users point of view the most important
feature of a rational prediction method is its ability to handle geo-
metrical information defining the composites considered - whether
they are fiber composites, for example, or impregnated porous materi-
als.

This point is considered in Section II as the first step of a rational
"hygro-thermal" prediction method: Appropriate parts of the authors
own composite stiffness theory (1) are summarized, adapted, and jus-
tified to form a proper basis of prediction. Incidentally, the stiffness



L. Fuglsang Hielsen: Shrinkage, Swelling, and Stiffness of Composites

theory referred to has recently been used successfully by the author
(e.g. 2,3,4) in studies on strength-stiffness relations of porous mate-
rials and elasticity and damping of impregnated materials where the
question of phase geometry is also of vital interest.

The final steps in developing a hygro-thermal prediction method are
taken in Sections III and IV where composite stiffness information
and information on hygro-thermal and other wvolumetric actions are
brought together in an analysis producing the prediction results
wanted. An algorithm is hereby given where input data and steps of

calculations are arranged in a way appropriate for computer predic-
tion.

Applications of the prediction method are demonstrated in Section V
considering thermal expansion of salt infected tile, for example, and
expansion and damage of bricks due to ice formation in pores. As
previously indicated, the method applies in general for any phase ge-
ometry. Three special composites, however, are considered in more
details: Particle reinforced materials (like concrete and chopped fiber
composites), Powder composites (compacted powders), and Lamella
composites (where any phase has a continuous geometry like many
impregnated porous materials).

Curiosum: The stiffness results presented in the paper can be used
easily also to predict a number of other physical properties of com-
posites of arbitrary internal geometry. Examples are thermal and elec-
tric conductivity, dielectric constant and magnetic permeability. This
feature is considered in Appendix A and referred to in Section VI
where possibilities of damage detection in composite materials are
briefly discussed.

The terminology used in the stress-strain analysis considering hygro-
thermal action is shown in the following list.

Volume and Stiffness

V;
¢ = Vp/(Vs + Vp)
l-c

Volume of phase i = §,P
Volume concentration of phase P
Volume concentration of phase §

E; Young's modulus of phase i = §5,P

Vi Poisson's ratio of phase i = §,P

Ki= E;/(1-2v;)/3 Bulk modulus of phase i = §,P

Gi= E; /(1+v;)/2  Shear modulus of phase i = §,

n = Ep/Es Young stiffness ratio

ngy = Ke/Ks Bulk stiffness ratio

ng = Gp/Gs Shear stiffness ratio

K* Bulk modulus of composite material

k* = K*/Ks Relative bulk modulus of composite material
Stress and strain

Okk Volumetric stress on composite material

€xx = oxg/3K* Volumetric strain of composite material

Oi,kk Volumetric stress of phase i = 5,P

€i,kk = 0i,kk/K;i Volumetric strain of phase i = S,P

Qi,kk Free vol. hygro-thermal strain, phase i = S,P

ark Free vol. hygro-thermal strain of composite
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Bulk stiffness ratio, ng, and shear stiffness ratio, ng, are related to
Young stiffness ratio, n, and associated Poisson's ratios as follows

ng = n 7---5== ng = n 7-7-=% @y = 2 Tmo—==% (1)

where 63 is an auxiliary parameter used in the subsequent section. It
is noticed that

vs =vp = 0.2 =) ng =n; =n and 63 = 1 (2)

II. STIFFNESS OF COMPOSITE MATERIAL

It has previously been mentioned that bulk modulus prediction is the
very important basic part of any prediction method considering the
behavior of composites being subjected to hygro-thermal and other
volumetric actions. In this section we obtain this basic information
from (1) which considers stiffness in general of isotropically linear
elastic two-phase materials with arbitrary phase geometry.

The information from (1) is adapted for the present purpose and
summarized in a user-orientated form without any theoretical verifi-
cations. Some examples, however, are given which justify the applica-
bility of the method. Comments are also given which relate the method

presented to other stiffness prediction methods available in the liter-
ature.

The bulk modulus expressions given in this section apply in principle
also when shear modulus and Young's modulus of composite materials
are considered. Only a few simple modifications explained in (1) have
to be introduced. Good estimates, however, can be obtained directly
when v = v = 0.2.

Geometlry

Critical concentrations: In general we consider two-phase materials
where both phases may change their geometries from discrete to fully
continuous at increasing respective concentrations. This feature is
illustrated in Figure 1 where each phase is represented by a "geom-
etry cylinder". The critical concentrations (of phase P) are cq where
the phase S geometry becomes discrete, and c¢p where the phase P
geometry leaves the state of being discrete. A critical concentration
defines the "middle" of a transition area. At the "continuous side"
there is a partly continuous zone with some discrete elements. At the
"discrete side" there are discrete elements "getting ready" to con-
glomerate into elements of continuous geometries.

The two geometry cylinders can be shifted relative to each other
defining different types of composites. The critical concentration cg
can be shifted from O to infinity defining discrete and continuous
phase geometry respectively of phase S at any concentration. The
critical concentration cp can be shifted from 1 to negative infinity
defining discrete and continuous phase geometry respectively of
phase P at any concentration. Critical "concentrations" outside the
area ¢ = 0 - 1 do not have an immediate physical meaning. Still, how-
ever, they define the main trends of change in phase geometry
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Special composites are classified according to their critical concentra-
tions. Ideal Particle reinforced materials have (cg4,cp) = (®»,1) corre-
sponding to discrete particles in a continuous matrix. Ideal Powder
composites have (cq,cp) ® (0.5,0.5) corresponding to a compacted mix-
ture of phase P and phase S powders. Ideal Lamella composites have

(cq,cp) = (w,~») defining both phases to have continuous geometries
like ribbons or dendrites.

COMBINATION OF PHASE GEOMETRIES
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Figure 1. Phase geometries and combinations of ge-
ometries considered in the paper.

Shape factors: These factors, p, and p',, consider the low concentra-
tion geometrical complexity of phase P (at ¢ = 0) and phase S (at ¢ =
1) respectively. In general shape factors are smaller than 1 (spherical
particles) and greater than 0 (spherical shells). An estimate of shape
factors applying to arbitrary geometries in between these extremes
are obtained from Table 1.

Predominant phase geometry-

try at small respective Shape factor  Example
volume concentrations Ho, Mo

Enveloping network tending crumbled
to subdivide the other Low plate-work
phase into particles (0-0.4)

Lamella, f. ex Medium impregnation
Dendrites, Ribbons (0.3-0.7)

Particles defined High needles
by enveloging network (0.6-1) grains

of the other phase

Table 1. Shape factors of composite materials as a func-
tion of phase geometry. Orders of magnitudes.

Bulk modulus

The bulk modulus of an isotropic two phase material can be predicted
by the following expression
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_K* _ng + <&)>[1 + c(nx - 1)]

k'—KS" ng + 6> —-clng - 1) (3)

where the influence of phase geometry is introduced by the geometry
function, 8s £ <8> < ngbs,

<8
8, - 0:5(n * nop' +A(p+ nop')? + dng(1l - p - ')l (4)

The so-called shape functions, p and p', are defined as follows by
the critical concentrations and shape factors previously explained,

o = u(c) monotonically decreasing (5)
02 po = pu(0) <1 ; u(eg) =0 ; cg 20

a' = pu'(c) monotonically increasing (6)
0 p's =p'(1) 1 ; p'(cp) =0 ; cp £1; cp £ ¢Cq

Interaction between phases and individual phase elements is propor-
tional to the derivatives of the shape functions.

Composite Ca cp Ho A
_ ® 1 1 0
H/S-bounds 0 - 0 1
Budiansky 0.5 0.5 1 1
Particulate ) 1 1 0.8 0.8
powder 0-1 0-1 0.7 0.7
lamella
and plates 21 <0 0.7 <0.7

Table 2. Geometrical parameters for composites. Examples.

The extreme phase geometries previously referred to are defined by
by (mp') = (1,0) and (pp') = (0,1) corresponding to non-interacting
phase P spheres in a continuous phase S matrix and non-interacting
phase S spheres in a continuous phase P matrix respectively. The ge-
ometry functions associated are given by Equation 4. We get <&> = 65
and <8> = ngBs respectively by which the Hashin-Shtrikman's (H/S)
bounds (5) are correctly described by Equation 3. The exact bulk
modulus solution obtained by Hashin (6) for the so-called CSA-mate-
rial is closely related to the H/S boundary expressions. In the pre-
sent context the exact solution is described by Equation 3 with <&> =
©s5. (CSA = Composite Spheres Assemblage = a tight mixture of con-
gruent spherical composite elements each consisting of a matrix, cen-
trally reinforced with a spherical particle of constant concentration).

Porous material: Phase P is an empty pore system. The porosity is c¢
and stiffness is 0 involving ng = 0. The bulk modulus of a porous
material is obtained from Equation 3 as follows

% - I.(.:.O.. . _‘1_:_9
k.‘""Ks "e°eo+c (7)
6, = Ospu ; (F0at c)cq) (8)
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At low porosities we get the following linear approximation,
1 ,
X x> -— + —————— N
k* ~ 1 (1 Des)c ;s (low porosity) (9)

Shape functions: The basic shape functions used in this paper are
the following with p(c>cq) = -p(2cq-¢) and p'(c<cp) = -p'(2cp-c),

B o= po(F55=== ; K= o ’(g-:---) (10)

where the interaction power M : 0 modifies interaction relative to the
"moderate" one described by M = 1. It has previously been indicated
that interaction effects between phases and individual phase elements
are proportional to the numerical slopes of p and p'. Thus, de-
creasing interaction is described by Equation 10 with increasing cg,
decreasing cp, and/or decreasing M. (At M = 0 no interaction is pre-
sent before it becomes "complete" at a critical concentration). It is
concluded in (1) from FEM-analysis on bulk moduli of composites that
M = 1 is appropriate when both critical concentrations are in the
range, ¢ = 0 - 1., Otherwise M < 1.

In the numerical evaluations of the present study we simplify matters
by introducing M = 1. This step is well justified when we at the same
time modify the critical concentrations (outside ¢ = 0 - 1) such that
interaction (derivative of shape function) will not change signifi-
cantly. An extreme example is that Equation 10 describes the same in-
teraction and change of geometry in ¢ = 0 - 1 with (cq,M) = (2,0) and
(ca,M) = (w,1) respectively.

Figure 2. Basic elements of the TROC- and CR-materials.
» The TROC-material is a perfect particle reinforced ma-
terial. « The CR-material is a perfect (phase-symmetric)
lamella material. ,

Some examples of composite descriptions are given in Table 2. Also
shown in this table are geometrical parameters by which the H/S-
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bounds previously referred to and the Budiansky SCS-solution (7)
(Self Consistence Scheme) are predicted by the present theory.

Pseudo phase-symmetric composites: Pseudo phase-symmetric are com-
posites where the geometry of phase P at concentration ¢ = c¢p is
identical to the phase S geometry at concentration (still of phase P),
¢ = 2€syy - Cp, Where the symmetry concentration, csyy, is given by

csyw = (ca + ¢p)/2 (11)

Given one shape function (master shape function), p(e) or pu'(c), the
other one is obtained as follows

p' = p(ca + cp - c)
u=p'(ca +cp - c) (12)

The composite model considered by Budiansky (7) is one where phase
P and phase S are spherical particles at ¢ = 0 and ¢ = 1 respec-
tively. At any concentrations ¢ and l1-c phase P and phase S respec-—
tively have identical geometries. In the present terminology the result
obtained by Budiansky corresponds to u = 1 - 2c, meaning csyy = cq
= ¢p = 0.5 (real phase-symmetry) together with g, = 1 (and M = 1).

Many two-phase materials can be considered approximately as pseudo
phase-symmetric composites. The master shape function must be cho-
sen such that both shape factors, p, and p', < 1. This is safely ob-
tained choosing p from Equation 10 as master shape function when
csyy 2 0.5 and p' when cgyy < 0.5.

Curiosum: The following observation may be of interest exploring the
possibilities of generalizing Equation 3 also to consider anisotropic
composites by introducing “anisotropic" geometry functions: The
Paul/Hansen's upper and lower bounds (8,9) are predicted by Equa-
tion 3 introducing <> -> » and <@ -> 0 respectively. Apparently
<&> is in a way proportional to a "phase aspect ratio", A, defined by
phase "length" parallel to "load" divided by phase "thickness"
perpendicular to load. The materials models such defined by A x <8&>
=w and A & <@ = 0 are exactly those used by Hansen (9) to estab-
lish the upper and lower bound respectively for stiffness of compos-
ites with unrestricted phase geometry.

Justification of prediction method

Finite element analysis (10,11) have been made to determine stiffness
in general (bulk and shear) of the TROC-material and the CR-material
illustrated in Figure 2. The TROC-material is a particle reinforced
material consisting of identical composite elements each having the
shape of a TRuncated OCtahedron. The composite element is reinforced
by a centrally placed particle the shape and orientation of which are
similar to the shape and orientation of the composite element itself.
The CR-material is a CRoss reinforced pseudo phase-symmetric com-
posite. Both models are cubically elastic. However, the results ob-
tained by the FEM analysis are easily transformed to apply for
‘isotropic mixtures.

The bulk modulus FEM-data shown by dots in Figure 3 are based on
both phases having a Poisson ratio of 0.2. The theoretical results also
shown are obtained by the method described in this section with
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shape functions given by Equation 10. s TROC-material: (ca,Coipoif' o)
M) = (»,1,1,0,1). = CR-material: (cq,cp,to.p'o,.M) = (2,-1,0.6,0.6,1).

An excellent agreement is observed between theory and (FEM)experi-
ments. (This observation holds in (1) also when Poisson's ratios dif-
ferent from 0.2 and modified phase geometries are considered). It is
further noticed from Figure 3 that the TROC-material has a bulk
modulus very close to the exact result of the CSA-material previously
referred to obtained by Hashin. The moduli of the CR-material are in
general closest to the H/S-upper bounds. For the TROC-material this
only applies when the stiffness ratio is less than unity.

It is now justified that the stiffness theory presented qualifies as a
sound basis in the analysis made in the subsequent section on stress
and strain in composite materials subjected to hygro-thermal and
similar actions.

: TROC--MATERIAL _ CR~MATERIAL
»,, 1000 ! +, 10003 : T -
3 / Ng==ng
| b | ] / 1000
¢ 1004 - : N-'n”l () 1003 o
gj E ey = // 100
a ] 100} 2 ] -
o E s o ’0= < vl
: o mmamee=] 1 =]
é 1-_{‘—;,’4— 3 5 1: ﬁ—————""‘ 3
E oD 3
m 3 %&\0—-\1& o E et _1/3
b - ] \ ———
W \\-\ 1/19 W s s T
= 0.1 = 0.1
= o = 1/100]
< S
L 1 ' & ] ‘ [
o018 0.2 8 1.0 001 T o2 T 10

" 04 | 08 Ol " 04 08 08
VOL-CONC - C VOL-~CONC -~ C

Figure 3. Bulk moduli of TROC- and CR-materials. Dots:
FEM-analysis (10,11). Lines: Theoretically predicted mod-
uli.

III. STRESS AND STRAIN IN COMPOSITE MATERIAL

In this section we consider stress and strain in a composite sub-
jected to hygro-thermal action. The constituent phases are at first
solid. Realizing, however, that many real composites like impregnated
materials can not be modelled in this way modifications are introduced
in a separate sub-section which consider the situation of one phase
being porous.

Mechanical load: The following expressions considering average stress
and average strain in a composite loaded by oyxx are obtained from
(1). They are exact which can easily be checked by the work of Hill
(12).

- . 1l/ng - 1/k* . N /. Sl
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- k* - ng . -1 - kX
€s,kk = ) €k ) €p,kk = et ="n0) 597 (14)

Hygro-thermal load: We now consider a composite material exposed to
hygro-thermal action. The composites free hygro-thermal strain, ok,
- is defined by the volume strain which is hereby experienced by the
composite. The free (unrestraint) hygro-thermal strains of phase S
and P are as,kk and ap,xk respectively.

akk and the phase stresses os,xx and op,rx set up by the hygro-
thermal strain differences can be determined as follows by Equations
13 and 14 (with €xx = axk) utilizing additionally that the wvolumetric
stress average must be 0 (no external load),

cop, gk + (1 ~ c)os,kr = 0 (15)

The composite is loaded fictitiously with oPyy such that a) phase P
obtains its free hygro-thermal strain, which at the same time b) will
make phase P stress free.

Ps,
a) agp + gj‘(l‘;& = ap, kk (16)
b) opkk + oPkx KT 1 (17)

c(l/ng - 1) =

The fictitious load, oP,xk, can be eliminated from these equations pro-
ducing the following relation between free composite hygro-thermal
strain, axk, and phase P stress, op,xkk,

- op, kk c(1/ng = 1)
akk ap, kit 3K* 1/kze -1 (18)

A relation between free composite hygro-thermal strain, oxx, and
phase S stress, os,kk, is obtained in a similar way - now applying a
fictitious load, oSk, to obtain a stress free phase S. We get

S,
a) agp + gf(-{‘;& = as, kk (19)

1/ng - 1/k*

S =

by which the following relation is produced between free composite
hygro-thermal strain, axx, and phase § stress, os,«kk,

Os.kk (1 - ¢c)(l/ng ~ 1)
3% i/ng - 1/k* (21)

Qixr = as,kk *t

The free composite hygro-thermal strain and the internal stresses are
now obtained combining Equations 15, 18 and 21 and introducing the

hygro-thermal strain difference, Nkx = ap,xx — O5,kk- We get
- 1/k> - 1 . - - as
ark = as,kk + Mk /00 =1 ; Mk = ap,pk — as,kk (22)
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siyy, (ML LA = 1/ag)

gp, kk = C(l/n!( - 1)2 (23)
= —gr* Ak - 1)1/&k: - 1/ng)
Os,kk < SK nkk (1 - C)(l/nx - 1)2 (24)

The problem of hygro-thermal loading of composites has also been
considered by other authors. Quantitatively Equation 22 is identical to
a more complex expression given in (13) on the coefficient of thermal
expansion of composites. The shrinkage problem in concrete has been
studied in (e.g. 14,15,16,17). Thermal expansion of particle-reinforced
materials in general has been studied in (e.g. 18,19). A general review
on the physical properties of composite materials is given in (20). The
present study of the problem has the advantage of reflecting the in-
fluence of any phase geometry and at the same time predict the in-
ternal composite stresses.

Equations 22 - 24 relate internal stresses as follows to difference
between free volume strains of composite and phase S,

cop,kk = =(1-¢)os,kx = 3K*(axk — Qs,kk) 1K - 1/ng (25)

When porous materials especially are considered with nx = 0 Equation
25 reduces as follows relating volume expansion of porous material to
pore pressure

— e gy = = o TEKE _ —e) Z8.kk
Ak k as, kk c 3K* (1 C) 3K* (26)

Shrinkage of a composite material with only phase S shrinking is im-
mediately given by Equation 22. We get

_ | when ngy = 0
agr_ _ 1/mg - 1/k* _ {1 -c whenng =1 (27)
as,kk  1l/ng - 1 ! 1/k*. when ng =

Impregnated materials

Lamella composites include porous materials where pores (phase P)
have been impregnated by solidification of a liquid. For several rea-
sons such a procedure may cause incomplete impregnation leaving
empty pore space. A stress-strain analysis of impregnated porous
materials exposed to hygro-thermal action can be made as explained
in the preceding sections for lamella composites introducing the ef-
fective phase P stiffness and hygro-thermal properties suggested in
the following text. The question of stress-strain caused by volume
change of liquid due to solidification is also considered here. A free
effective solidification pore phase strain, Tpk, is suggested by
which the problem of impregnant solidification can be solved like the
problem of hygro-thermal action previously considered simply by re-

placing ap,kk with I'p,kx. The terminology applied is explained in the
following list.

B Pore saturation of solidifiable liquid. (Volume im-
pregnant relative to pore volume).

10
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ars,kk Free volumetric hygro-thermal strain of solid
impregnant

I'ps,rk Free volumetric solidification strain of impregnant

I'p,kr  Free volumetric solidification strain of pore phase

Ik Free volumetric solidification strain of composite
Kps Bulk modulus of solid impregnant.

Eps Young's modulus of solid impregnant.

Vps Poisson's ratio of solid impregnant.

The pore saturation may depend on temperature and pore size. Water
in very narrow pores, for example, may still not be frozen at a
temperature of - 10 oC. Pore saturation B “counts" only the freezable
part of the water.

Effective pore phase stiffness: The effective phase P bulk modulus is
estimated considering phase P to be a porous material where pores
are volume not occupied by the impregnant. We introduce the follow-
ing "pore" parameters, (c,cq,po,M) = (1-8,1,A,0), and get by Equations
7 and 8 (with 65 ~ 1)

Kp = Kpg 3‘;‘%’2:-/3 (28)

where flat voids and spherical voids have A ~ 0.3 and A & 1 respec-
tively. The effective Young's modulus of the pore system can be ap-
proximated to vary with saturation in the same way as Kp, meaning
Ep/Ers # Kp/Kps. The effective Poisson's ratio can then be considered
a constant, meaning v % vps. It is noted that we have implicitly as-
sumed that stiffness moduli developed by solidification of liquid is
independent of restraint (pressure or tension).

Effective free hygro-thermal strain of pore phase: Hygro-thermal
strain of a porous material is known (e.g. 17,21) to be invariant with
respect to porosity. Thus

ap,kk = APS,kk (29)

Effective free solidification strain of pore phase: Looking at the pore
phase as an ideal smooth and continuous system no gross (visible)
volume expansion and pore pressure will be observed at solidification
of impregnant before P > 1/(1+I'ps,ikk). Real pore walls, however, are
not smooth and many narrow necks will provide conditions obstruct-
ing the free flow of impregnant, such that the "build in" solidified
impregnant also at B < 1/(1+I'pg,kk) will produce pore pressure (or
tension) corresponding to an effective free solidification strain, I'p, k.

Generally it is impossible to quantify this statement theoretically. The
problem to solve is too complex involving pore size distribution and a
number of un-known quantities like type of pore wall texture for ex-
ample. At the present we have no other choice than proceed sug-
gesting a plausible expression relating T'p,xk to pore saturation such
that Tp,kk = 0 and Tp,kk = DI'ps,kk are predicted at p = 0 and 1 re-
spectively. We suggest the following simple type of expression which
produces the "steeper" variation between B = 1/(1+Ips,kk) and B =1,

11



L. Fuglsang Nielsen: Shrinkage, Swelling, and Stiffness of Composites

o, ik  BTps, ki [B + (1-B)pt/[(17B)iTps, kiil (30)

where the efficiency factor B < 1 has to be determined experimen-
tally. The factor will increase with increasing "roughness" of pore
walls and amount of narrow pores.

IV. PREDICTION METHOD

The information obtained in Section II and III are now integrated to
form a method of predicting the effects of hygro-thermal and similar
actions on isotropic two-phase materials of arbitrary internal geome-
try. In general no part of the method can be solved analytically. The
method is therefore presented as an algorithm where input data and
steps of calculations are arranged for computer examination of the
problem. The symbol < > indicates effective quantities of phase P
(considering solidification strain and incomplete impregnation) such
that calculation can proceed considering phase P to be "solid". We
superimpose solidification strain and hygro-thermal strain assuming
here that the latter strain is given "per unit moisture content or
temperature”, T.

To support an estimate of the shape factor, p's £ 1, we may use the

following expression which considers phase geometry to be pseudo-
symmetric,

#’o = fo (== (31)

Input: Materials properties

Stiffness: Ep(Eps), ve(vps), Es, Vs

Geometry: Cd, €p, Mo, H'c, H(=1)
Voids in impregn. A (¥ 1/3)

Vol.hygro-therm.strain/T: ap, ki (aps, kk), s, kk

Increase in T (moist.temp.) nNT
Free vol.solidific. strain: TIps, ik
Efficiency factor: B (¥ 0.02)

Independent variables

Volume concentration: ¢
Pore saturation: B

Auxiliary guantities

- Eps ___AB___ . = 1 - 2vs

<n>-Esl+A-ﬁ’ <ng)—<n>1_2vps
.y = At vs L= o d = 2vs
<ng> <n> 1% vrs €3 2 1% vs

ap,kk? = aps, k1T + PI'ps, ki [B + (I—B)ﬂl/[(l_B)’I'PS,kk ,]]
Composite stiffness

Shape functions: Equation 10
Geometry function: Equation 4
Relative bulk modulus: Equation 3
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Composite stress and strain

Phase P stress: Equation 23
Phase § stress: Equation 24
Composite strain: Equation 22

Output

Listings of composites strain, stress and bulk modulus as
functions of porosity c, or pore saturation B, of impreg-
nant

V. APPLICATIONS

The power of the prediction method developed is demonstrated in this
section on 1) Shrinkage of particulate material and lamella material, 2)
Thermal expansion of salt impregnated bricks, 3a) Internal stresses
build up by freezing of water in bricks, and 3b) Frost resistance of
wet bricks. Theoretical results are evaluated by the algorithm pre-
sented in Section IV.

Example 1 - Shrinkage

The TROC-material and CR-material previously referred to are consid-
ered with a shrinking phase S. The elastic moduli are Ep = 5Eg and
vo = vg = 0.2. The predicted composites shrinkage and internal
stresses are shown in Figure 4. It is noticed that a lamella phase P
reduces shrinkage much more than a particle phase P. This feature
becomes extremely significant when ng -> «.

RELATIVE SHRINKAGE

SHRINKAGE OF TROC~ AND CR--MATERIAL SHR[NKAGE OF TROC—~ AND CR—MATERIAL
i as.kk=1 . as'u‘=1 .
N apu=0 X otp =0 <
0.8 A\ N2 y 4 >
’ \ S . =
}\ pHASE s | 2= =" ®
\ [ .
~\\ z ! Py
0.6 AN < s
\ i 7] =
\\\Ox { °
\ \& a =F
0.4 S r. o : PHASE P -
%\\% \Q% v -1 : //
BN 4
AN g |7
N T

Ks=Es/31(1—2vs)

10 X3 0.2 0.4 0.8 0.8 1.0
VOL-CONC —~ C

0.0

o4 08 | 08
VOL-CONC - C

Figure 4. TROC-material and CR-material. s Shrinkage.
= Internal stresses. Theoretically predicted gquantities.
Example 1.

Comments: Portland cement concrete can in many ways be considered
as a particle reinforced material. Phase S is cement paste which
shrinks and phase P is aggregate (sand and gravel) which does not
shrink. A commonly used rule (e.g.22) is that relative shrinkage of

13
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concrete is proportional to » (1 - ¢)!.¢ which is of the same order of
magnitude applying to TROC shrinkage in Figure 4.

Example 2 - Thermal expansion

The thermal expansion of salt infected (impregnated) bricks has been
determined experimentally in (23) as related to porosity and weight
amount of salt (NaCl). The results are shown by dots in Figure 5.
Thermal expansion coefficients of plain rock salt (phase P) and plain
tile salt (phase S) were determined to be ap = 38*10-6/0C and wg =
6*10-¢/°C respectively. The Young's moduli were Ep = 15000 MPa and
Es = 14000 MPa. Both Poisson’s ratios are approximately 0.2. A mean
pore saturation of salt of B = 0.20 can be deduced from the experi-

mental data. All saturation data (except one, obviously false) were
bounded by 0.15 < B < 0.25.

The lines shown in Figure 5 represent expansion and phase stresses
theoretically predicted with (c4,Cp,poip'o,M) = (0.6,0.0,0.75,1.0,1) de-
scribing a materials model where a continuous matrix is penetrated by
continuous pores (¢p = 0) which dissolve the matrix phase into parti-
cles at ¢ = cqg = 0.6. The pores have pockets at low concentrations
(to = 0.75). The (fictitious) matrix phase particles at ¢ = 1 are
spherical (p'c = 1). A shape factor of A = 0.35 is assumed for voids
in impregnant (salt). Also shown in Figure 5 are the upper and lower
bounds on expansion which are obtained introducing composite stiff-
ness as given by the H/S-bounds previously referred to.

THERMAL EXPANSION OF SALT INFECTED TILE ‘ THERMAL EXPANSION OF SALT INFECTED TILE
12 - y
S oot
o SATURATION: &} | SATURATION: _
8,=0.25 —— L $u=0.20 /""" ‘
o) Bu=0.20 o 7
© £=0.15 —— o .02 -
~ = v
* 10 - /////PM$S
I & : °
! & a
| N Z 0.00
; 4, <
z 2 N
Qs e PHASE P
(%2} [72] e
= (n —0.02 =
5 7 0
3 2 BOUNDS ARE = ] /
{J G FOR p=0,20 n _—"
%o T T o8 =0.04 1.0

0.2 ) 04 0.4 0.6 08
POROSITY - C POROSITY — C

Figure 5. Salt infected tile. » Thermal expansion. = In-
ternal stresses. Dots: Experimental expansion data from
(23). Lines: Theoretically predicted quantities. Example 2.

Example 3 - Frost

We now look at bricks with the same geometrical and elastic proper-
ties as those considered in Example 2. The empty pores are impreg-
nated with water which is then solidified to ice lowering the temper-
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ature. Given the following additional data (24,25). = Ice: Ep = 9000
MPa, vp » 0.2. Volumetric solidification of water -> ice, I'ps,xx = 0.09.
» Tile: High temperature fired: Porosity, ¢ » 0.3, Tensile strength, S
= 6 - 10 MPa. Normal temperature fired: (¢,S5) » (0.4, 4-8 MPa). Low
temperature fired: (c,8) ~ (0.5, 2-6 MPa). » As a first approximation
we neglect thermal expansion (ap,xx = as,kk = 0) and consider only
water which is freezable. An efficiency factor of B = 0.02 is assumed

in Equation 30 when pore pressures are considered at saturations, B
< 1. ‘

ICE FORMATION IN BRICK ! A ICE FORMAT!ON IN BRICK
0.005 60 <
C=0.35 A C=0.35 /
' ‘2w
¥ 0.004 o /
[ = e
| S 20
— 0003 a /
O Z PHASE S
O Z I
m o
% 0.002 © \ PHASE P
& @ -20
i ]
0.001 B 4
H/SHUPPER ] ; : \
oo | WSIUPPR /S LOWER
oo 02 04 06 08 1.0 -0 02 0% 0.6 08 1.0
SATURATION— BETA SATURATION — BETA

Figure 6. Frost in water impregnated brick. = Expan-
sion due to ice formation. = Stresses set up by ice for-
mation. Theoretically predicted quantities. Example 3a.

Problem a: Ice is formed in a brick of porosity 35 %. Predict brick
expansion and internal stresses as a function of pore saturation.
» The predicted results are presented graphically in Figure 6. It is
noticed that both brick expansion and solid phase tensile stress in-
-crease steeply at g > 0.7. The latter feature may cause brick failure
as the solid structures strength is approached. This phenomenon is
considered in the following problem.

Problem b: Brick damage may appear at a certain critical pore satura-
tion, Bcr. Predict Bcr as a function of porosity and tensile strength
of the three brick types previously described. = The predicted re-
sults are shown in Figure 7. They are obtained introducing a maxi-
mum os,kx = 35p where Sp is "pore strength" given by the following
expression derived in Appendix B,

Sp ¥ I Ey - (52)

It is emphasized that the Example 3 analysis is based on an estimate,
B = 0.02, of the efficiency factor appearing in Equation 30. The es-
timate, however, might be quite reasonable. Critical pore saturations
of Bcr ® 0.75 for bricks were observed experimentally by Fagerlund
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(26) who has published a number of papers (e.g. 27,28) on freezing of
porous materials.

Comments on frost resistance: We recall that p is relative amount of
freezable water. For most real porous materials this means that p =
100 % is a highly theoretical quantity which can only be approached
at high pressure impregnation and extremely low temperatures where
ice formation can occur also in narrow pores. In practice pore satu-
ration is very much dependent on environment and pore size distri-
bution. Examples on water uptake mechanisms are: » A) sorption (from
damp atmosphere), = B) suction (from damp atmosphere and contact
with water surface), and = C) water submergence. The amount of wa-
ter uptake increases in the order A - C, meaning that large pores
have low A and B pore saturations. Thus, if the amount of large
pores is relatively high, then the porous material considered may al-
ways be frost resistant under conditions A and B, while the material
may be frost damaged under condition C.

FROST DAMAGE CRITERION FOR BRICKS
B LESS THAN fea —~ NO DAMAGE

o
@

o
o

o
»

SATURATION — Ber

T
ooy
o N T

TENSILE STRENGTH — S(MPa)

0.0

Figure 7. Critical pore saturation of water in bricks be-
low which no frost damage will appear. Theoretically pre-
dicted quantities. Example 3b.

It is noticed from Figure 6 that the phase S tension increases steeply
in the area B ~ 0.7 - 1. This means that even a slight decrease in
pore saturation at A and B water uptakes may increase considerably
the frost resistance of the porous material considered. Adding a rela-
tively small amount of relatively large spherical air bubbles to con-
crete, for example, does improve frost durability (e.g.29). An ad-
ditional positive effect in this respect is that air bubbles act as
crack arresters and increase the effective shape factor, po, which in-
crease pore strength, see Equation 32.

VI. FINAL REMARKS

A rational method has been developed which predicts stress and
strain in two-phase materials exposed to hygro-thermal action or sim-
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ilar actions like volume change by solidification or freezing of liquid
impregnant in porous materials.

The most important feature of the method is its ability to consider
arbitrary phase geometries - from perfectly particle reinforced mate-
rials to perfectly laminated materials. This means, for example, that
the method can be used in materials design - or in detection of mate-
rials destruction by comparing physical properties as determined by
theory and by experiments respectively. Destruction changes the in-
ternal geometry of composites which is reflected by spontaneous de-
viation from theoretically expected materials behavior. A recent work
by the present author (3) might be of interest in this respect where
stiffness-strength relations are developed for porous materials. Other
physical properties like thermal and electric conductivity, dielectric
constants and magnetic permeability for example may also be thought
of in the context of damage detection in composites. Basic information
on this subject is presented in Appendix A.

Optimal behavior prediction of composites and optimal design of such
materials depend very much on knowledge on the influence of phase
geometries. A number of high priority future research projects are
hereby defined including consistent quantifications by shape func-
tions of phase geometry distributions. Thorough studies on pore size
distributions in clay bricks (30), for example, is the first step to es-
tablish a safe frost damage criterion for this material or to improve
its stiffness and strength qualities by. pore modification. Studies are
presently made by the author (31,32) involving residual physical
properties of frost damaged porous materials as related to pore char-
acteristics. A subsequent paper deals with this and related problems
like strength reduction by alkali~aggregate reactions (e.g. 33) in ce-
mentitious materials. Parallel experimental studies are made by the
author and the concrete division of AE-Consult, Denmark.

Finally: » It is noticed that the influence of hygro-thermal and simi-
lar actions on plane isotropic two phase composites (like wood) can be
analyzed in exactly the same way as given in this paper for isotropic
composites. The basic information needed for this purpose are avail-
able in (1). = A number of building materials behave viscoelastically.
Procedures are demonstrated in (e.g. 2,17,21,34) by which the results
obtained in the present analysis can be generalized also to apply
when linear-viscoelastic composites are considered. « The expressions
given in Section II to predict bulk modulus of a composite material
apply in principle also when shear modulus and Young's modulus are
considered. Only a few simple modifications explained in (1) have to
be introduced. Good estimates, however, can be obtained directly
when Poisson's ratios are approximately 0.2.

APPENDIX A
Other physical properties

‘It is well-known (e.g. 20) that a number of physical properties of
composites (like thermal and electric conductivity, dielectric constant
and magnetic permeability) are related to the properties of the con-
stituent phases in a way which is analogous to the relations consid-
ering stiffness properties. Bounds on the dielectric constants of
isotropic two phase composites were developed by Hashin and Shtrik-

17



L. Fuglsang Nielsen: Shrinkage, Swelling, and Stiffness of Composites

man in (35). It is shown in (1) that any of the physical properties
just referred to are described by the present stiffness theory only
by introducing vs = vp = 0 => 65 = 2. Thus, when Q is the physical
property considered we get by Equations 3 and 4

q* = S: = ”{f‘?;flfc‘},ﬂ“-'zﬁu S(n = 0p/0s) (A1)

where the influence of phase geometry is introduced by the following
geometry function, 2 ¢ <8&> < 2n,

@> = p +nu' +f(u+op')2 +4n(l -p-p') (A2)

and shape functions p and p' are the same (Eq. 10) as used in the
main text predicting bulk modulus.

The following rough estimate on a relation between critical concentra-
tion, cq, and shape factor, p,, is obtained comparing the results ob-
tained by the present theory with the dilute spherical dispersion
mixture relation developed by Rayleigh (36) and the dielectric con-
stant solution obtained by the B&ttcher SCS-approximation (37) (Self

Consistence Scheme) for spheres of finite concentration in a contin-
uous matrix.

2 5 (43)

APPENDIX B
Pore strength

Pore strength is the particular (hydraulic) pore pressure which just
causes cracks to become unstable. Pore strength, Sp, is related ap-

proximately to uni-axial strength, S, by the following arguments ad-
vanced by the author in (31,32):

Strength of porous materials externally loaded have been considered
successfully in (3) with pores modelled by "pore cracks" (circular
tunnels or spheres of diameters 2L with crossing concentric cracks of
diameter 21 (> 2.5L)). We now replace external load with a (hydraulic)
pore pressure, op (also acting in crack zones) and consider the ap-
propriate stress intensity factor given in (38) applying for a hole of
diameter 2L crossed by a co-centered crack of length 21 (> 2L),

K = opfml * £(L/1) ; f=f(L/1) (B1)

The correction factor given in (38) can be related approximately to
shape factor, po, as follows introducing the logarithmic mean, po =
(L/1)2-5, of the orders of magnitudes, Ho = (L/1)?2 and po =~ (L/1)3
applying for tunnel pore cracks and spherical pore cracks respec-
tively (3). We get

£ (1-p,2)1/2 (B2)

Now, comparing the pore pressure stress intensity factor in Equation
B2 with the basic factor used in (3), namely K = oy(ml) applying for
uni-axial tension, o, it is obvious that pore strength and conventional
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tensile strength are related as given in Equation 32 in the main text
of the paper.
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