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LIFETIME AND FATIGUE OF WOOD
AND OTHER BUILDING MATERIALS
subjected to static and repeated loads

Lauge Fuglsang Nielsen
Building Materials” Laboratory
Technical University of Denmark
DK-2800 Lyngby, Denmark

Ubstract: ) lifetine theory has previously been developed by the present author which considers lifetine
of wood and other viscoelastic building materials like concrete subjected to ramp- and deadload mainiy
(static_fatlgue). The theory is based on the comcept of building materials behaving as a Damaged Vis-
coelastic Haterial and is therefore named the DVE-theory.

In the area of wood mechanical behavior which is especially considered in the paper the theory has fre-
quentI{ been shown to describe successfully the Iifetine bebavior of both clear wood and structaral wood.
Also other aspects of wood behavior like tertiary creep, strength reduction due to sustained load or dry-
ing and lifetine dependency on wood quality and humidity can be explained by the theory.

The DVi-theory is further developed in the work presented such that cyclic leading of viscoelastic
naterials can also be considered. Lifetine (real tine or number of cycles) is predicted as a function of
naxinum load, load amplitude, fractional time under maximum load, and load frequency. The amalysis in-
cludes prediction of residual strength during the process of load cycling - and it is shown how “Naster
graphs* can be constructed which are valid for any creep behavior (relaxation time), materials quality
(grading, stregth level), and mode of loading (e.g. tension, compression). It is hereby concinded that
nunber of cycles to failure is a poor design criterion. A simple time criterion is much better.

The theory is successfully compared vith data from experinents representing different wood products (and
glass fiber reinforced epoxy). The hypothesis is made that the master graphs cam be used oa wood products
1n general. Future fatigue research projects are outlined.

Reywords: Fatigue, Lifetine prediction, Cyclic load, Static load, Wood, Viscoelastic materials.

I. INTRODUCTION

Fatigue in engineering material is usually defined as the progressive
damage and failure that occurs when the material is subjected to re-
peated loads of a magnitude smaller than the static strength. This
definition originates from early lifetime studies on elastic materials
like many metals.

In the present paper which considers both elastic and wviscoelastic
materials the term, fatigue, has a broader meaning which at high fre-
quency loading or in the absence of creep includes Elastic Fatigue,
and at low frequency loading includes the so-called Duration of Load
phenomenon which considers lifetime of viscoelastic materials sub-
jected to constant loads. The term, Static Fatigue, is used synony-
mous with Duration of load effects.

Fatigue reduces the materials strength and lifetime to a degree which
has to be considered in design of structures. The frequency of load-
ing is hereby an important parameter when viscoelastic materials are
considered. The number of load cycles to failure of wood, for example,
may decrease 100 times lowering the frequency from 1 cycle per 10
seconds to 1 cycle per 2 hours. Thus, a number of cycles to failure
is not a very good design criterion. A simple time criterion is much
better. This fact which is considered in more details in the paper is
often overlooked in fatigue research on building materials. One cannot
in general accelerate fatigue tests on viscoelastic materials. Results
needed for practical design can only be obtained involving theoretical
research on the nature and mechanisms of the fatigue phenomenon. It
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is not realistic to think of experiments running under forecasted live
conditions.

These introductory remarks indicate the topics of the paper: Relations
are developed which predict fatigue lifetime (real time or number of
cycles) and remaining strength of materials. Fatigue solutions for
elastic materials subjected to repeated loads and static fatigue solu-
tions for viscoelastic materials are hereby included as limit solutions.

LOAD HISTORY
CYCLING TIME: T — LOAD RATIO: P=0yux/0wux

OMAxX OMax

LOAD

OyN OMIN

0 BT T  (1+8)T
TIME

Figure 1. Square wave loading considered in fatigue ana-
lysis.

The load history considered in the paper is outlined in Figure 1. The
terminology used in the paper to describe load is summarized below.
Normalized load quantities are with respect to short time strength,
ocr. Normalized time and load. frequency are with respect to the
creep relaxation time, 7, introduced in a subsequent section.

Load in general: o

Strength: ocR

Load level: SL = o/ockr

Minimum load: OMIN

Minimum load level SLyry = OMIN/OCR

Maximum load: OMAX

Maximum load level SLyaxy = UMAX/UCR

Load ratio : D = onrn/omax = SLyrn/SLyax
Load range: No = oyax—ounry = (1-P)owax
Load level range: NSL= SLyax—SLyry = (1-p)SLyax
Time t

Cycling time: T

Frequency f=1/T

Number of load cycles: N = t/T = f*t

Fractional time under oyax: B

Relaxation time (creep) T

Non-dimensional time t> = t/r

Non-dimensional frequency: <f> = v*f = v/T
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II. BACKGROUND AND MATERIALS CONCEPT

Wood has a natural content of defects and defect nuclei (like knots
and inherent cracks) - and wood exhibits time dependent behavior
(creep). It is therefore logical to state the hypothesis that wood be-
haves like a Damaged Viscoelastic Material (1). On this basis a lifetime
theory (referred to as the DVM-theory) has previously been de-
veloped by the present author (e.g. 2,3,4) which considers wood (and
other building materials) subjected to ramp- and deadload mainly. It
was hereby assumed that the bulk substance of the material consid-
ered behaves linear-viscoelastically.

The DVM-theory has been shown to describe successfully the lifetime
behavior of both clear wood (5,6) and structural wood (7,8). Also
other aspects of wood behavior like tertiary creep and stiffness-
strength relations, strength reduction due to sustained load or dry-
ing, and lifetime dependency of wood quality and humidity can be ex-
plained by the theory (9,10,11,12). The important conclusion of the
theory that lifetime of materials subjected to similar load levels
(load/strength) increases with decreasing strength agree with early
observations made by Madsen (13) from experimental lifetime studies
on structural wood. The conclusion is strongly supported also by
more recent experiments on clear wood (5,11) and plastic (14). It is
shown in (11) that the DVM-theory also agree with experimental ob-
servations (15,16) that wet wood has a shorter lifetime than dry
wood.

The results obtained by the DVM-theory are not bound to a defect
system which literally consists of cracks. Dislocations, for example,
not visible to the naked eye may also be the defect source. It is
known that the effects of a climbing group of edge dislocations are
described exactly by the same equations which govern the crack pro-
blem. At vital points of the analysis we therefore introduce the non-
dimensional quantities, “damage", "damage ratio", and "damage rate"
in stead of crack, crack length, and crack velocity respectively. In
this way the analysis takes the form of a so-called theory of damage
accumulation.

Incidentally, the introduction of non-dimensional quantities (or "lev-
els") has another purpose which is pointed out in (2,4,11): The imme-
diate results obtained in the analysis are based on the simplified
materials concept of a plane-stressed isotropic material weakened by
an opening mode crack. The non-dimensional results, however, are
valid in general for orthotropic materials like wood where cracks are
bound to follow the principal directions (17). Strength and relaxation
time are the common denominators considering mode of loading (e.g.
tension, shear) and other features like stress-strain states and envi-
ronmental effects respectively defining the crack problem.

Basically this means that the theory presented applies when strength
and creep have been determined according to the mode of loading
considered. When lifetime of wood in compression is of interest we
need information on compression strength and compression creep.
When tensile lifetime is of interest we need information on tensile
strength and tensile creep. Practically such information is a matter of
course. Thus, the theory can be considered practically qualified in
general to predict lifetime of wood (and other viscoelastic materials).
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If, however, for some theoretical reason the influence of orthotropy
on lifetime, for example, is of interest we only have to consider how
the "common denominators" mentioned above are influenced by ortho-
tropy. This matter has been considered by the author in (4,17).

The flexibility of the DVM-theory simultaneously to consider (identify)
the influence on lifetime of loading mode, strength (materials quality,
grading) and relaxation time (temperature and humidity) makes the
theory very qualified in the field of static fatigue of wood. The the-

ory is easy to apply (see Section VII) and the results agree with ex-
perimental evidence.

Other methods to predict static lifetime of viscoelastic materials are
given in the literature. Recent reviews on lifetime prediction and
wood are given in (18,19). Examples are methods based on empirical
crack mechanics (20), viscoelastic energy accumulation (21), viscoelas-
tic crack mechanics (22,23,24,25), damage accumulation (26,27), and
chemical kinetics considerations (28). None of these methods, however,
offer the flexibility of the DVM-method explained above - a property
which is much appreciated when evaluating the mechanical behavior
of natural materials like wood. A further advantage of the DVM-

method to consider higher loads is mentioned in the subsequent sec-
tion.

It is hereby justified that the DVM-concept of wood as defined by
the author in (2,4) is a realistic basis of developing further the the-
ory such that also fatigue lifetime under cyclic loading can be con-
sidered. The materials description given for wood applies in principle
for many viscoelastic building materials. Therefore, the term “wood"
is in many ways considered in this paper as a synonym for a number
of building materials like concrete for example for which can be as-
sumed that the bulk substance behaves linear-viscoelastically.

III. BASICS OF ANALYSIS

The elastic-viscoelastic analogy (29,30) is an important tool used in
the present article to determine damage influence on the behavior of
viscoelastic materials. The analogy can be formulated as follows: Simi-
lar solutions apply to a linear-elastic problem and to its exact but
linear-viscoelastic duplicate. The only difference is that coefficients
of elasticity in the elastic solution are represented by their vis-
coelastic counterparts (operators) in the viscoelastic solution.

This means, for example, that elastic displacements, ugp, and vis-
coelastic displacements, uyisc, are related by,

¢
wyrsc = | C(t—e)‘-’ggéde (1)
J

where t is time and C(t) is the normalized creep function defined by
C(t) = E*c(t) where E and c(t) denote Young's modulus and the (con-
ventional) creep function respectively.

Wood and a number of other important building materials (31,32) ex-
hibit Power-Law creep which is generally described as follows in the
literature,
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c(t) = i:'. (1 + a*(t)b) , (constants: a, b)

It has been shown by the present author (33) that this way of ex-
pressing creep is very unfortunate. No proper physical meaning can
be given to the parameter a. A simple re-writing, however, was sug-
gested in (33) which completely changes this feature. We rephrase:
Power law creep means that viscoelasticity is defined by a creep
function of the following type where tv and b denote relaxation time
(or creep doubling time) and creep power respectively,

ct) =L a+HY (2)

A complete rheological analysis of this expression has been made in
(33) and the following suggestions were made from comparing it with
experimental creep data from the literature: Relaxation time is the pa-
rameter most sensitive to changes in temperature and humidity. The
creep power, b, is practically independent of climatic conditions. The
consequences of these observations are obvious: Standard lifetime
solutions can be developed based on non-dimensional time, <t> = t/x.

The lifetime theory presented in this article is based primarily on
Power law creep as described by Equation 2. In principle, however,
the theory applies for any viscoelastic material. The equations pre-
sented in the paper can without greater effort be "translated" for
this purpose. The mathematical complexity involved solving the ex-
pressions is, however, heavily increased. A more easy way to analyze
numerically the fatigue behavior of materials not exhibiting Power-
Law creep is to subdivide time in intervals where creep is adapted to
follow a Power Law description. Such a method is demonstrated in
(34) to predict fatigue behavior of concrete and other aging vis-
coelastic materials.

The damaged materials model applied is the Dugdale crack model con-
sidered in the following section. The expressions presented apply
when load is smaller than practically 45 % of the un-cracked materials
strength. In most cases this restriction on the fatigue theory subse-
quently developed is of no practical importance.

The load limitation of approximately 45 % which applies for any of the
viscoelastic crack theories referred to in Section II is not required in
the original version of the DVM-theory (2,4). It is therefore quite
possible to develop further this theory to consider also repeated
loads at higher load levels. In the present paper, however, we desist
from doing this. The more heavy mathematics needed is generally out
of proportion to what is practically gained considering the present
quality of most commercial wood products.

The single crack model chosen is also a matter of avoiding dispro-
portionate mathematical efforts. In principle it is possible to examine
fatigue on the basis of a multi~crack model (11,17). However, the pre-
sent knowledge of defect distribution in wood cannot justify such an
approach. It is also questionable if more detailed studies would im-
prove significantly the results of practical interest. Two features
justify the use of a single-crack model: Failure in wood is very often
observed to be released by single major defects. The lifetime studies
previously referred to confirm that realistic lifetime predictions can
be obtained on the basis of a single-crack materials concept.
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Dugdale Crack

The Dugdale model of a cracked material (35) is shown in Figure 2.
Load, o, is applied at infinity perpendicular to the crack plane. The
uniformly distributed cohesive stress, o1, at the crack front may be
thought of as being the un-cracked materials strength. (Material
pulled out into the crack front zone is considered to be stiff and
perfectly plastic). The width of the crack front zone, R, and the
crack front opening, 6, are expressed as follows at plane stress
R _x2 (g_ )2 . 6 _mo?

1 8 ‘o3 ’ 1~ .E'al (3)

DUGDALE CRACK MODEL

1.5

£
O

CRACK TIP

COHESIVE STRESS oy,
0.5

CRACK PLANE

OPENING /COD

FRONT AREA

FRONT WIDTH, R CRACK LENGTH, L

1
S — TIP DISTANCE/R

Figure 2. Dugdale crack model. Terminology used in the
paper

Crack opening in general, v, and perpendicular to crack plane stress
at the crack front are given by the following approximations pre-
sented in (17) introducing the non-dimensional coordinate, s = dis-
tance from crack tip divided by R,

i 0 when s < 0

v/6 ~ | s2 when 0 < 5 < 1 (4)
VP 245 - 1/s when s > 1
i\ 1 - (2/m)arctamy-s when s < O

oy/o1 & | 1 when 0 < 5 < 1 (5)
P o when 1 < s

Two other parameters well-known from the crack mechanics literature
(e.g. 36) are related to the crack front opening as shown in Equation

6 below. T is strain energy release rate and X is stress intensity
factor.

I’=601=£%.ﬂ'1{=-/ﬁ'=a{;j (6)
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Strength, o.r, of a cracked material is predicted by Equation 3 in-
troducing the following failure criterion: A crack becomes unstable
when the crack front opening, 6§, approaches a critical value, &c.
This criterion, sometimes named the «critical COD (Crack Opening
Displacement) criterion, can also be formulated with respect to critical
strain energy release rate, I'cx = 016cg, or critical stress intensity
factor, Kcg = Y(ETcr). Thus, strength of a material containing a

crack of diameter 21, can be expressed as follows in three different
ways,

= (Boibcr_y1/2_ Elcp\1/2_ __Kcp

OCR (Eaﬂ_lo ) 7{10 ) - (11'10)1/2 (7)
all predicting a strength equal to the well-known Griffith load ca-
pacity (37).

Non-dimensional expressions: It is very convenient in crack analysis
to normalize strength (ocr), load (o), and damage size (1) with re-
spect to theoretical strength (o), strength (ocr), and initial crack
size (lo) respectively. In the order mentioned strength level, load
level, and damage ratio respectively are defined by,

FL = ocg/o1 ; SL =c/ock ; k = 1/1, (8)
The normalized version of Equation 3 yields
R/1 = (®2/8)(FL*SL)? ; 6/6cr = k*SL? (9)

The following expressions derived from the "6 terms" in Equations 3
and 7 are of interest in the analysis of crack propagation,

kcr = 1/5L2 (10)

Sg = ocr(k)/ocr = 1/{k ' (11)

The critical damage ratio, kcr, is damage ratio at which the material
considered will fail when exposed to a load level, SL < 1. Residual
strength(level), Sg, is strength remaining during crack propagation.
It is, strength, ocr(k), at damage ratio k relative to strength, ocr, at
initial damage ratio, ko = 1.

Curiosum: The consequences of introducing another cohesive stress
distribution in the Dugdale model than the one presently applied can
be analyzed using the crack theory of Barenblatt (38). Such an anal-
ysis has been made in (18,39,4) assuming a “concentrated" and a lin-
ear cohesive stress variation respectively. It was concluded that the
changes relative to the simple Dugdale solutions are too small to jus-
tify the more complicated model - especially when considering that we
actually know nothing about the real stress distribution.

Crack closure: Until now it has implicitly been assumed that load (and
consequently crack opening) is constant or increasing such that a
uniformly distributed stress of cohesion agrees with the assumption
of rigid-plastic materials behavior in the crack front zone. At de-
creasing load where the crack tries to return to its starting configu-
ration this assumption cannot be maintained. Rice (40) modified the
Dugdale solution also to consider a sudden reduction in load, No =
Omax — OmIN, Dby superimposing (on the max load situation) a sepa-
rate Dugdale load range solution where load is -No and cohesive
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stress is -201. A compressive theoretical strength, oci = o1, is hereby
assumed.

The Rice solution is illustrated in Figure 3. The reference quantities
referred to are from Equation 3 with o = oxax,

Ryax _ 72 owaxy2 . 6Syax _ moMax?
=g Gt e - T (12)

Crack opening is invariant at s < s, where

1 -5, = (1-p)2/4 (13)

Stress of cohesion is -o; for s > s, and somewhere between o; and -
o1 at s < s,. The displacement range, N6 = Syax — Sxr1n, is given by

Né/yax = (1-p)2/2 (14)
The minimum crack front deformation, 6yry, is given by

Suin/Suax = 1 - (1-p)2/2 ; (6uiwn,rEL/EMax = Pip!) (15)

The latter term in Equation 15 is the relaxed minimum & if no crack
closure effects were present. It is noticed that a constant reference
width of the crack front zone (Ruax) can only be maintained when s,
2 0, meaning p > pyiy where

Dury = = 1 ; (N&/6yax = 2, s, = 0) (16)

Né > 6max requires a sliding mode crack with symmetrical (with re-
spect to p = 0) crack closure effects. Normally we expect a maximum

N6 = 6uax which according to Equation 14 is obtained at the follow-—
ing critical load ratio,

Pcr =1 - 2 = 0.4 ;5 (N&/Syax = 1, 50 = 1/2) (17)

The following relations obtained by Equations 13 and 14 will be used
in the subsequent analysis,

Z = (1-s,) ggf; ; (Rice: Z = (1-p)4/8) (18)

1-s, = y2/2 ; No = NE/6yay = ¥22 (19)

Rice's analysis disregards any contact of opposite crack surfaces at s
> 1. Practically this is an over-simplification. The results, however,
present valuable qualitative information which must be considered in
fatigue analysis. We continue accepting the existence of a coordinate,
So, below which crack opening is invariant. An area of alternating
deflection is defined at s > s, where stress of cohesion alternates
between o1 and -o:. The actual quantities, however, or combination of
quantities, 1-s, and N§/6uax, are left to be deduced from experiments.

The Rice analysis can easily be modified to consider a compressive
theoretical strength, ocp, different from -o.. We desist from intro-
ducing such a modification as it will not change qualitatively the re-
sults already presented. The Rice crack closure analysis has been im-
proved by Budiansky and Hutchinson (41) to consider some crack
surface contact outside the crack front area. The results obtained in
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(41) have been used by the present author to develop a fatigue the-
ory for elastic and viscoelastic materials in (17). It was hereby con-
cluded that such a theory can still not be developed fully satis-
factory without substantial experimental information on 1-s, and
N&/6wax.

0 RICE-DUGDALE CRACK MODEL 5

MAX
/

LOAD |RATIO PO

/
é;’/

e
o

1
1
[
. S
1 & o | ©
8 1 Qb/ I <
(&) |// =
Eo.s :
Z |/RI—CE\(5m
Z !
EOA 4
o

s
L

o
L2]

e
o

0.0

0.0 1.0

0.2 04 06 0.8
S — TIP DISTANCE/Ruux

Figure 3. Crack opening predicted by the Rice-Dugdale
crack closure model. Example: p = 0.

Failure criterion: The failure criterion previously applied to predict
strength is generalized as follows also to apply when loads are alter-
nating: Failure appears when total energy dissipation at the crack
front approaches the critical energy release rate previously intro-
duced. This means,

I = (6yax+ZiN6i)or = Suaxo1(1+2(iN6!/Eyax)) —> I'cr = 6crol (20)
where I'cr and 6waxo1 are related as follows by Equation 9

Ier - 1
016yax  kSLyax?

(21)

We recall that the Dugdale expressions presented apply when load is
smaller than practically 45 % of the materials un-cracked strength. In
the present terminology this means strength level, FL < 0.45.

IV. ELASTIC FATIGUE

The lifetime of an elastic material subjected to varying loads can be
determined by the following procedure: We consider a location, X, de-
fined by the immediate crack tip. The propagating crack will open up
this location such that coherence fails after a period of time, Q,
which can be determined considering the energy dissipation involved
in the opening process. The associate distance travelled by the crack
is equal to the immediate crack front width, Ryax (Eq. 12), meaning
that crack (and damage) velocity is given by

dl _ Ryay _, dk _ (x2/8)(FL*SLyax)Zk
dt = o N T

(22)
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from which lifetime can be obtained by integration between the ini-
tial damage ratio, k = 1, and the critical quantity, k = kcr, given by
Equation 10 (with SL = SLyax).

Assuming a locally constant rate of propagation position X will experi-
ence an opening history which can be subdivided in two parts: 1) a
parabolically increasing opening history starting with 6 = 0 at time 0
and finishing with 6yax at time Q (so far unknown) where the crack
front is at position X - and 2) an alternating opening history start-
ing with O amplitude at time (1-s,)Q and approaching an amplitude of
N6 at time Q. The amplitudes are approximated to vary linearly be-
tween (1-s5,)Q and Q.

The energy dissipated at position X in this process is given by

I' = o16pax[1 + ‘Qé‘(l“so) e ] (23)
Suax T

where the terms in order correspond to the opening histories 1 and 2
previously considered. (Time under alternating opening is (1-s,)Q.
Each cycling time, T, contributes to dissipation with 2n6c,. Average
amplitude is N&/2).

As the crack front of a propagating crack is continuously failing we
may determine Q@ combining Equation 21 and Equation 23 with T = T'¢cg.
We get

1 - kSLyax?
kSLyax?

né
Syax

=2 s, (24)

by which crack velocity is determined as follows introducing /T
from Equation 22

dk _ wiFL? (kSLwax?)2 N& _
aN 8 1 - kSLyax? 6uax (1 = So) (25)

or

dk - g2FL2? (NK/Kcgp )4 nNé 1l - 5,
dN 8 1 - (Kuax/Kcr)? éuax (1 - p)4

(26)

where stress intensity factors have been introduced according to the
following list

Stress intensity factor (SIF): K = oyf(xl)

Critical SIF: Ker = ocri(mls)

Normalized SIF: K/Kcr = SLyk

Maximum SIF Kyax = oyaxy(wl)

Minimum SIF Kyin = onny(wl)

SIF range: NK = Kyax—Kurn = Noy(nl) = (1-p)Kuax

Normalized SIF range: K/Kcgr = NSLyk = (1~p)SLNA xvk

The empirically based, so-called Paris-Erdogan-Elber Law (42,43)
dl/dN =~ A*(U*NK)M (27)

is very often met in the experimental literature on fatigue of materi-
als (e.g. 44,45) - especially metals - where it frequently produces an
excellent data fit. "A" is a materials "constant" which, however, to

10
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some degree is dependent on load level. The efficiency factor, “U", is
also materials dependent. Elber (43) suggested U = 0.5 + 0.4p on the
basis of data from experiments (p > -0.1) on aluminum. "M" is a con-
stant which for a number of metals has a magnitude close to 4. Many
materials, however, exhibit M-values significantly different from 4. M
¥~ 2.3 was observed for a special steel in (46). The main rule seems to
be M > 4 (47). For example, M * 5 and M %~ 8.5 were obtained for so-
me polymers (48) and wood respectively (49). The hypothesis is sug-
gested by the present author that M is texture dependent such that
M increases with increasing roughness of the failure surface.

The quality of the Paris-Erdogan-Elber Law to fit data (where ouax
is not too close to ocr) is generally so convincing that any theory
developed in the area of fatigue must be able of "predicting" it.
Thus, by comparing Equations 26 and 27 we suggest

né C NK M-4
- Y - = = - ATIM ¢ =22
z Bunr (1 So) 3 (1 - p)4U (KCR) (28a)
_C M/2-2

= & w1 - p)1kSLuar?) (26b)

where the damage rate constant, C, and the damage rate power, M,
are considered to be material dependent fatigue parameters which can
be determined from experiments as shown in Section VIII.

Crack velocity can now be expressed by the following equation which
complies well with the Paris-Erdogan-Elber expression,

dk _ m2C FL? (UZNK/Kep) ¥

v = 64 1= (Kuax/Kon)? (29a)
w2 o, (UASI)M .
ol FL2 1= KSLyay? k¥/s (29b)

For the special case, U = 1 and (M,C) = (4,1) Equation 29a agrees
with an expression obtained by Weertman (50) on the basis of dislo-
cation theory. Rice (40) used his own crack closure theory to derive
dl/dN = constant*(NK)¢ which also compares positively with Equation
29a (M = 4).

Lifetime: Equations 29 can be solved analytically integrating between
k = 1 and k = kcg. The number of cycles to failure, Ncar, is given
by

1-SLyax¥-2 1-SLyayxM— ¢

G*Near = SL“X_Z[(H“Z)SLMAX”‘? T (H-4)SLyax¥-¢ (30)
where

G = C*FL2*[U(1-p)]¥/13 (31)
When M approaches 4 we get,

G*Ncar = SLyax~2[SLyax~? - 1 + 2*loge(SLyax)] . (H=4) (32)

It is noticed that lifetime can be presented graphically by “master
graphs" only considering SLyax and M.

11
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Efficiency factor: The factor, 1 > U 2 0, is a measure of the effi-
ciency of the crack closure mechanism. The &-range, NS, decreases
with decreasing U which decreases crack velocity (increases Ncar).
We suggest the following efficiency factor,

_ \ MAX[1+p, 1] when p 2 pcr
U= 0.5*% 33
-5 ‘mnya, (1-pcr)/(1-p)] when p < pcr (33)

where pcr ® -0.5 is a critical load ratio below which lifetime is pre-
dicted to be independent of p (see Equations 30 and 31). The critical
load ratio corresponds to pcr in Equation 17 based on the Rice analy-
sis. The efficiency factor suggested agrees well with the factor pre-
viously referred to given by Elber (43).

Residual strength: The materials strength decreases during the pro-
cess of fatigue. The (relative) strength, S, still remaining after
certain number of load cycles, N, where damage ratio has become k
k(N) is described very easily by Equation 11. This means, Sy
(k(N))-t/2  which leads to the following relation integrating Equation
29 between k = 1 and k = Sg2. We get

o P

1 = Sgh-2 1 - Sph-¢

ON = Suax = 2)5Lnx#2 ~ (H = )5Luzri-7 7 (34)

G*N = SLyax~—2[(1-5r2)SLyax—2 + 2*loge(Sr)] ;(=4) (35)

V. FATIGUE CREEP

Lifetime of a viscoelastic material can be determined following a simi-
lar procedure as previously used in the analysis of the elastic fa-
tigue phenomenon. Modifications of the method, however, have to be
introduced which consider creep and how creep is influenced by the
crack closure phenomenon. In the present section we will use the
elastic-viscoelastic analogy to establish such modifications by looking
at the following features: How does creep influence the opening of a
position being penetrated by a moving crack at constant load - and
how does crack closure influence creep in the crack front area of a
resting crack. The general problem, i.e. the opening of a position
being penetrated by a moving crack in a material subjected to re-
peated loads is then solved by combining the two separate solutions
previously obtained.

It is noticed that creep in the present context (in a crack front area)
refers to opening and/or sliding mode viscoelasticity, meaning that
relaxation refers to perpendicular to grain tensile creep and parallel
to grain shear creep more than it refers to parallel to grain creep
like bending creep f.ex. This subject is discussed in further details
in Section VIII.

Moving Crack Creep

As in Section IV we consider a position X defined by the immediate
crack tip location in an elastic material subjected to a constant load.
The crack is extended at constant speed such that X opens up from u
=0 att =0 to u =6g. at time t = Q. As the shape of the crack is
parabolic (see Equation 4) the total opening history which X experi-
ences is u = 6grL(t/Q)2. The corresponding opening history, uyisc of

12
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the crack in the duplicate viscoelastic system is determined by Equa-
tion 1. Assuming Power Law creep we get the following result relating

6L and 6Svisc = uvisc(Q) - and defining the moving crack creep
function, Cy

cn(@ = %41 = 1 + (£ = e (36)

The moving crack creep function is observed to be a simple time
shifted version of the basic creep function, C. The shift factor, g, is
given by

g = [(1tb)(2+b)/2] 1/ (37)

Resting Crack Closure Creep

The phenomenon of elastic crack closure with relaxing coherent
stresses has been studied theoretically by the present author in
(17b) and the Appendix of this paper. An important result is that ap-
proximately congruent relaxed crack closure profiles can be produced
with relaxed coherent stresses not violating the materials theoretical
strength (01). (Congruent means that the total profile relaxes as the
crack front opening, &ury). This observation and the elastic-vis-
coelastic analogy are used in the following two-step procedure to es-
tablish and quantify an opening history of a crack in a viscoelastic
material subjected to repeated loads as shown in Figure 1.

Step 1: We model the opening history by "generalizing" the history
applying to the "elastic" Dugdale-Rice crack shown in Figure 3: =
Looking at the first load cycle, a creeping Dugdale opening v =
vuax(t) is developed at max load. At time BT load drops to minimum
"producing a "frozen" opening for s < s, (v = vyax(BT)) and an open-
ing at s > s, which differs increasingly from vyax(BT) as s -> 1 such
that a crack front opening of 6urn(BT) = &max(BT) — NS(PT) is obtained
at s = 1. In the period of min load, BT - T, the crack profile is gen-
erally locked in position v = v(BT+) (an exception is explained in the
subsequent text). s Starting the next cycle load jumps to maximum at
t = T and crack opening jumps to vyax(T) from where it creeps to
vuax((1+B)T) just before load drops to minimum. In the period of min
load, (1+g)T - 2T the crack opening is locked in a similar way as in
the first cycle, i.e. v = v((1+B)T+). And so on ...

We define a creep-dependent 6-range as follows where NS is the elas-
tic &range. The é-range creep factor, W, is considered to be a mate-
rials property. W = 0 defines a 6-range independent of creep.

- w7 - Smax(0)
ns(t) = nNsf1 + W*(1 6M”(t))] (38)

Two features are un-known in the opening history outlined: We do
not know in details how creep developes and how big are the 6-
jumps associated with loads going from minimum to maximum.

Step 2: We now proceed using the elastic-viscoelastic analogy ex-
pressed by Equation 1 considering a fictitious elastic duplicate from
which is required that 6 is invariably 6yax when load is maximum. It
is noticed that the missing quantitative information previously men-
tioned on creep and 6-jumps at load increases are revealed by this

13
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supplementing boundery condition. An example of corresponding dis-
placement histories produced by Equation 1 is shown in Figure 4
which is based on the Rice crack closure results given by Equations
14 and 15. Any displacement in the figure is normalized with respect
to 6uax = 6uax(0). The elastic duplicate deformation history varies at
minimum load meaning that cohesive stresses reorganize ("relax")
simultaneously in both duplicates.

The condition of the viscoelastic 6yry being constant cannot be main-
tained when the elastic 6y1y during the relaxations process goes be-
low the relaxed minimum front opening, &uin,reL, given by Equation
15. The condition previously introduced of a constant viscoelastic
Syrxy must then be replaced by a constant elastic 6yix = OmIn,REL
which causes the viscoelastic 6yinx to increase (this modification is the
exception previously referred to concerning the crack profile being
locked in the period of time where load is at its minimum).

CRACK CLOSURE CREEP

20 B=0.3, 7/T=10, =0.1, W=2, P=0.5

iy e I NS L

rd s Ce=1H T L= -

Z P //_/
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Figure 4. Corresponding crack opening histories in an
elastic and a viscoelastic crack problem. The example
shown is based on the Rice &-range, N6/6xax = (1-p)2/2
and (W,p) = (2,0.5).

Crack closure creep function: It is convenient in the subsequent fa-
tigue analysis to describe the time influence on crack closure by
continuous functions. We therefore introduce the crack closure creep
function, Cs, and the &-range creep function, Cn respectively by the
following expressions,

cs(t) = 9L (39)
Ca(t) = Q%Q =1+W g%f%%}l (40)

where 6(t) is the graph which envelops a smoothed 6yax(t) and W is
the 6-range creep factor previously introduced. The normalized &-
jumps, N;, shown in Figure 4 at load reduction are given by Equa-
tions 40 with N, from Equations 19 and 28. We get

14



L. Fuglsang Hieisen: Fatique of Wood

N1 = N1(t) = NCn(t)  ; No = 22 (41)

Approximation: The crack closure creep function can only be deter-
mined numerically. An approximate solution, however, can be estab-
lished as follows shifting the original creep function, meaning Cs(t) =
C(t/h). The shift factor, h, can be determined considering the first
cycle by elementary rheological rules. We get

cs(r) ~ PR+ cpr) - 1y + 1,

¥ C(T) = MC((A-P)T) - (N:~N1)C((1-B)T/R) + N; (42)
where N; and N; denote 6-jumps at load reduction at t = BT and load
increase at t = T respectively. A relaxation factor of R = 1 can be

used for the present purpose. We determine N; by this equation in-
troducing Power Law creep. The result is

{1 = Bb + ;<E>D
N, = HIN | <f>b + (1 - B)b (43)
3 1 - pr’p:’

with non-dimensional frequency, <f> = f*r, and

~ C(T)-1
N ~ No(1 + W cer) ) (44)

The latter expression in Equation 43 considers the condition previ-

ously introduced that 6yiy must not go below 6yin,rer given by
Equation 15.

Finally, the shift factor, h, can be determined as follows,

Cs(T) = C(t/m) = 1+ GO = cca-mm) -+ = (45)

h=[B + (N, - Ny)<Erb] /P (46)

Computer calculations show that a better h is obtained replacing the
power, -1/b, with the following exponent,

e = -0.1(1+4N;-2)(1-B)/b (47)

Moving Crack Closure Creep

The general problem of determining the opening of a position being
penetrated by a moving crack in a viscoelastic material subjected to
repeated loads is solved approximately combining the separate solu-
tions previously considered. This means that the viscoelastic opening
relative to its elastic counterpart is given by the following creep
function,
t b
Cus(t) = C(t/(hq)) =1 + (3=-)

hgr (46)

The 6-range creep function defined in Equation 40 is modified ac-
cordingly, meaning that argument Cs is replaced by Cys.
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. VISCOELASTIC FATIGUE

We can now determine lifetime of viscoelastic materials applying ex-
actly the same procedure as used when elastic materials are consid-
ered. In energy calculations, however, we have to modified (amplify)
deformations according to the effective creep functions established in
Section V. Two states are examined. The initial, resting crack state
where energy is dissipated at the constant damage ratio, k = 1. When
energy dissipation has become critical at time ts (Ng) the crack starts
moving. The crack goes into the propagating state which ends at time
tcar (Ncat) where catastrophic failure occurs as the damage ratio
approaches the critical quantity, k = kcg.

Resting Crack

The energy dissipated at the "front fiber" of a resting crack (damage
ratio k = 1) is the sum of I'; caused by the general increase of the
crack front opening, and T'; which is caused by the alternating crack
front opening. The contributions are expressed as follows introducing
resting crack closure creep from Section V.

I'; = 0164axCs(t) (49)
= (2t
r, = T Cn(t/2)+ (1-B)[Cs(t)-1]} o16uax (50)
where T'; = Z(N1+N2)oL6uax. The total dissipation is then

2ty2Z c:;(g/zg -1

where N, = {(2Z) has been introduced from Equations 19 and 28b
(with k = 1).

The time, ts, it takes the crack to start propagating is given by
Equations 21 (with k = 1) and Equation 51 letting I' -> Tc¢r. The fol-
lowing expression is obtained introducing Power law creep and non-
dimensional time, <ts> = ts/r. We get

= [1+ (2-B)[Cs(t)-1] +

<ts>\b ({ts>/h)E 1-SLyax-
(2 ﬁ)( =)+ 2<f)<tb>{22 (1+W T+(<ts )/b)b) = SLnx? (52)
or in terms of load cycles, N5 = ts/T
- Ns _ [Ns/(h<E£2)]2 o 1-SLyax*
(2-p) h<f>) + WNsY2Z (140 TH[Ns/CA<ESNTB) = “Slmnr? (53)

which generally have to be solved numerically. Two important cases,
however, can be analyzed analytically:

Time to start of damage propagation when dead load is considered is
obtained by Equation 52 introducing SLyax = SL (T = w, B = 1). We
get

<ts> = (1/SL2 - 1)1k (<f> = 0, dead load) (54)

Number of cycles to initiate failure propagation in an elastic material
or in a viscoelastic material subjected to high load frequencies is ob-
tained by Equation 53 introducing <f> = o, We get
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Ns = 25k2 21 (<£> = w, el. fatigue) (55)
2y27

Time to start of damage propagation is often ignored in studies on
fatigue of materials because it is wusually small compared with the
lifetime subsequently experienced by the propagating crack (damage).

Curiosum: The dead load solution of time to start of damage propaga-
tion in Equation 54 can also be derived directly from Equations 6 and
7 replacing 1/E and T in the former expression with the creep func-
tion and the critical energy release rate respectively. We get

SL = [C(ts)]~1/2 => ts = C-1(1/5L2) (56)

applying for any viscoelastic material. The inverse creep function is
denoted by C-1. It is noticed that a crack will never start propagat-
ing when the load level considered is smaller than a threshold vaiue
SLryg given by

SLryg = [C(w)]~1/2 (57)

The materials primarily considered in this paper have a threshold
load level SLty = O because the "end value" of power law creep is
infinite. Thus, it is only a matter of time before these materials will
fail catastrophically. Other materials with a finite end creep value will
survive being loaded with SL < SLty. For example, if C(v) = 3 the
material can be deadloaded safely with SL < 60 %.

Propagating Crack

The time, Q, it takes a crack to propagate a distance, Ryax, in a vis-
coelastic material is determined by energy considerations just as in
Section IV looking at elastic fatigue. Displacements, however, appear-
ing in the energy expression will amplify according to moving crack
closure creep as explained in Section V. We get

Ter = 016uax[Cus(Q) + (1-5,) {19082 4 1B cys00)-1)3] (58)

which can also be written as follows introducing s, and N, according
to Equations 19 and 28b and the information given in Equation 21 on
Tcr

1-kSL 2 1-8){Z 2QCnh (2/2
T = Ons@-n)(1 + AL 4 BX0RA2)
_ , 2 b _aVsaoR) . 28 W(Q/(2ghT))P

where the latter expression is obtained by introducing Power Law
creep.

Q@ can be eliminated in Equation 59 introducing damage velocity,
dk/dN according to Equation 22 which can be written

% =& (FL? é-k‘g) [¢ = %i kSLyax?] (60)
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Finally, Equation 59 can be written as follows relating damage veloc-
ity to damage ratio, k,

Y =2;Xb + A:X-243 =0 (61)
where
X = FL2*dN/dk (62)
A; = [1 + (1-B)yZ/8] gP e = -2 (63)
1 ’ gh<f>
- W_(ex/2)b s _ WbZ$(6X/2)P
Az = Z2*9(1 + 7 +((é{{/2)b S (XrdRz /K= o1 ek 2y 5y (O
- 1 = KSLyax?
A3 = T KSluax? (65)

with Z expressed by Equations 28b + 33. Fatigue parameters needed
to establish Equation 61 are the damage rate constant C, the damage

rate power M, the critical load ratio pcr, and the &-range creep fac-
tor W.

At a fixed damage ratio, k, Equation 61 can be solved easily applying
the Newtons iteration principle,

A;Xb + AzX - A3

_ Y -
Xvew = X X bA;Xt-1 + A, + X*dA, /dX

T dysax ©

(66)

Lifetime: It is hereby indicated how lifetime, Ncart, is determined nu-
merically by Equation 61: Define a Nk (f.ex. (Kcr—1)/500). At a given k
= ki we determine dN/dk as just described. At k; = ki;+#Nk we have
N, = N;+(dN/dk)nk. A.s.o. between the initial damage ratio, k = 1, and
k = ker where damage rate becomes infinitely high.

An appropriate estimate of the initial value of X is obtained by Equa-
tions 54 (with Q@ x~ ts5) and Equation 60 (with k = 1). We get

o (1/SLyax? — 1)1/b
Xo & <E> L . (67)

Residual strength: The (relative) materials strength, Sp, still remain-
ing after a certain number of load cycles, N, where damage ratio has
become k = k(N) is predicted just as in Section IV considering elastic
fatigue. This means

Sg = ocr(k)/ock = 1/yk(N) (68)

is evaluated along with k in the algorithm outlined above to predict
lifetime. At N ¢ Ny we have Sz = 1 while Sg = SLyax at N = N¢ar.

It is important to notice that lifetime and residual strength are
determined non-dimensionally by Equations 61 and 68 respectively.
This means that "master" lifetime and residual strength graphs can
be constructed. For example, FL2*Ncyr versus non-dimensional fre-
quency, <f> and load level, SLyax, — or FL2*<{tcat> versus <f> and
SLuax where non-dimensional time to catastrophic failure is given by

18



L. Fuglsang Nielsen: Fatigue of Wood

tear> = tc”/"r.' Another example is residual strength Sy versus
FL2*N (01" FLz(t>), SLuax, and <f>.

The elastic fatigue results presented in Section IV are obtained by
Equation 61 with <f> -> », meaning t and/or f -> ». The static vis-
coelastic fatigue results (Duration of Load) are obtained as shown in
the following Section VII.

Reversed loading: The problem of reversed loading is solved by two
lifetime calculations. One considering a tensile reference state and one
considering a compressive state. The shorter lifetime predicted .is the
one of interest. Alternatively a reference state is chosen according to
the observed mechanism responsible for failure during a short time
test with Ncat » 10.

Threshold: There are many speculations on the existence of a thresh-
old on load alternation below which no fatigue failure will ever occur
in wood and other viscoelastic materials. Information given by Xoll-
mann and Coété (51) indicate a threshold load level ("endurance limit")
of 5Lty ® 1/4 for wood subjected to load variation with p = -1. (The
corresponding threshold on load level range is NSLtyg = 50 %). Koli-
mann and Coété state that the endurance limit for wood seems to be
"as a rule higher than for most metals". Their conclusions are based
on observations from experiments at relatively high load frequencies
(f > 15 Hz). No experimental evidence is present which supports the
threshold idea at arbitrary load frequency.

The existence of a threshold is widely accepted in the literature on
metal fatigue. Irving and McCartney (44) suggested on an empirical
basis that the threshold phenomenon can be considered practically by
replacing the stress range intensity factor in Equation 27 according
to NK4 => NK2*(NK2 - NKrtu2) where a threshold stress intensity
factor range, NKry, is introduced as a materials constant (information
given in (44) indicate NKruy/Kcr * 10 %). Examples given in (52)
demonstrate, however, that NKry is not in general a materials con-
stant for metals.

From these considerations we will continue developing a theory which
predicts a fatigue threshold for viscoelastic materials when loaded at
high frequencies. That is, we accept as a "must" that the observa-
tions made on metals and wood at high frequencies should be part of
a fatigue theory for building materials in general. Referring to Equa-
tion 57 no threshold is expected at very low frequencies (simple
creep failure) for the materials primarily considered in this paper.
The meaning of the term "threshold" is generalized, now defining a
transition limit below which lifetime becomes larger than "expected"
(not necessarily infinitely high).

The theory is based on the hypothesis that the crack closure mecha-
nism at very small N6 is more efficient than expressed by Equations
19 and 28b. We suggest that these expressions only apply when
N6/6cr is greater than a certain crack closure threshold value, Dty =
(NS /8¢cr)1H- When smaller, N6 must be reduced.

The 6-range relative to 6¢r is obtained by Equations 19 and 9. We
get

N6/6cr = y2Z kSLyax? 2 Dry = (N6/6cr) T (69)
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where the N6 criterion just formulated is introduced by the latter
term. A Z-threshold is now defined by Equations 69 and 28b,

Zrg = é ({Ne/bcrlrey2 (70)

expressing the value of Z below which N6 must be reduced. A simple
way of doing so is to introduce an effective Z expressed in the fol-
lowing way from Z given by Equation 28b,

Zerr = Z*MIN(1,2/Z75) (71)

The traditional meaning of the term "threshold" is approached raising
the term, Z/Zty, to a power, n —> w,

The following relations between crack closure threshold and thresh-
olds at k = 1 for max load level and load level range respectively are
obtained by Equations 70 and 28b. We get

[4*Drg2/Cl1/H
SL ; = 72
MAX, TH U(1-p) (72)

x 2 1/M
NSLyy = L4222L2Cl2 (73)

The threshold values previously referred to applying for wood are
obtained introducing Dty = 0.0005 and (C,M,pcr) = (3,9,-.5).

VII. STATIC VISCOELASTIC FATIGUE

Damage rate at static fatigue is obtained by Equation 61 with <> ->
0. We get ,

dk _ wiFL? SL.2k
dt = “Bgr [(SL7k)-1-1]1/% (74)

from which the following relation is obtained between non-dimensional
time, <t> = t/r, and damage ratio, k,

B B=1/5L? - 1

.. 8q_[Pxae

COFL2 = 2565 1 (110 X (75)
Ja a=1/(kSL2) - 1

Lifetime: Catastrophic failure appears when the damage ratio ap-
proaches the critical value k¢r = 1/SL2. Time to failure is then ob-
tained by Equation 75 with lower limit « = 0. Relevant lifetime results
for wood and other building materials are given below with the fol-
lowing abbreviations introduced

g = SL-2 - 1 (76)
tear? = tear/T (77)

and time to start of damage propagation ignored (Eq. 54),

<tearFL? = 22 [y - logs(u + 1)) [b=1]
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3/2 - -
<teadFL? = 5% (#305 — 2y - arctan(iin))] [b=2/5]
<t 2 = 2.2 uZ =
car>FL2 = SL? [2“ -y + loge(u + 1)] [b=1/2]
. S/2 3/2 - -
<toar>FL? = 29 AL MELZ y 5(qh - arctan(ya)] [b=2/5]
CteasTOFL2 = 3.1 ui gz b=
s 3.1 7/2 2us72 2372 - -
<tearsFLz = b (A5 - MELD 4 ML _p(qp-arctan(ia)] [b=2/7]
. 4 3 2
<teapFLe = T2 L2 L L2y joge(u + 1)) [b=1/4]
2 = 323 M5 _pd o pd o pl - =
CeardFL? = G5 [m ~ G+ 57 - G-+t p - logs(u + D] [b=1/5]

Residual strength: The strength, Sy, remaining during the fatigue
process is easily determined by the above mentioned lifetime integra-
tion introducing k = Sz~2 (Eq. 11). This means that residual strength
and time (with ts ignored) are related through Equation 75 simply by
introducing a lower limit of a = (Sr/SL)2-1. Residual strength starts
at Sgp = 1 and ends at Sz = SL where a = 0.

Curiosum: The lifetime Equation 75 is a special case of the more gen-
eral theory given in (2,4) which applies for any creep function. For

the sake of curiosity we give the following approximate general re-
sults,

dk SL2k
at ~ 0 FLYGTTTisT k) ~1] (76)
[Xz X2 =1/8L?
2 A 21 CII(x)
t*FL2 & 525 P 5% dx (79)
Jx; x1=1/(kSL?)

where the inverse normalized creep function is denoted by C-i. Life-
time is determined introducing a lower integration limit of x; = 1.

VIII. APPLICATION OF THEORY AND EXPERIMENTS

The static fatigue results presented in the article have previously
been shown to produce very realistic descriptions of experimental
data. References on this point are given in Section II. In the follow-
ing section it is demonstrated in Figures 6 to 13 that theoretically
predicted lifetime of materials subjected to repeated loads also agrees
with experimental evidence.

Experimental data are denoted in the figures by dots - theoretical
data by lines. Heavy lines represent actual lifetimes while dashed
lines denote limiting solutions at higher frequency loading (elastic fa-
tigue) or at lower frequency loading (deadload lifetime) predicted by
Equation 30 (no threshold) and Equation 75 respectively. Theoretical
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residual strength predictions at SLuax = 0.5 are shown by point-
dashed lines. The not real wood materials considered (glass fiber re-
inforced epoxy, particle board, hardboard, and Douglas-Fir fin-
gerjoints) have been "treated" like wood when estimating the param-—
eters needed for the analysis. A more detailed estimate is not needed
for the present purpose where these materials have been tested at
relatively high frequencies. Normal laboratory climatic conditions have
been assumed all over.

Parameters

Strength level: The strength level of wood can be estimated by a
method developed in (5,17) combining elementary expressions consid-
ering theoretical strength (e.g. 47) of materials and strength of Dug-
dale crack models (2,4). The result presented in (5) and shown in
Figure 5 is given by
- Ock _ 2 _ml a

FL = ol arccos [exp( 3 10)] (80)
where 1, and a denote major crack radius and defect nucleus diame-
ter respectively. The latter quantity refers to “yirgin clear wood"
where no real cracks have yet been developed. A number of inherent
defect nuclei (weak areas), however, are present like pit concentra-
tions, rays, ineffective overlapping zones or bad bonding between
fibers. Reference strength, o1, is strength of virgin clear wood sub-
stance between defect nuclei. Strength level can be considered inde-
pendent of climatic conditions as long as a and 1, keep constant.

STRENGTH LEVEL

:‘ Keg=o\ a)’ 2
‘" a=INH DEF NUCL DIAM
1,=CRACK RADIUS

1.0
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0.8

FL
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0.0 e
0 ) 10 15 20
1,/a

Figure 5. Strength ratio of wood. Inherent defect nu-
cleus diameter, and crack radius are denoted by a (¥ 0.3
mm) and lo respectively. Dashed line denotes "big knots"
approximation, FL = i(a/lo).

The areas of clear wood and structural wood indicated in Figure 5
are based on the following estimates: Defect nucleus diameter, a ® 0.3
mm (estimated by the present author from micro structural pho-
tographs), clear wood crack radius, lo *® 1.5 mm (estimated from
Schniewind and Lyon (53)), and structural crack radius, l¢ ®* 3 mm
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(minor knot radius). The term, “clear", should not be taken too rigor-
ously. Badly treated clear wood may easily exhibit a "structural"
wood strength level.

Creep parameters: It has previously been mentioned that creep in the
present context refers to opening and/or sliding mode viscoelasticity
in the vicinity of a crack, meaning that relaxation refers to perpen-
dicular to grain tensile creep and parallel to grain shear creep more
than it refers to parallel to grain creep like bending creep f.ex.

The following relaxation times are deduced from (54,55) applying for
clear wood at normal laboratory conditions (Power law creep with b =
0.23 - 0.28): v ~ 105 days, T ~ 104 days, T ~ 103 days, and T % 102
days for tension, bending, shear, and tension perp respectively.

This means that v * 100 - 1000 days should be appropriate in lifetime
studies of wood. However, it is not. In the authors experience (11,17)
a relaxation time of Tt ¥ 1 - 10 days is more relevant. A natural
explanation of this discrepancy is that lifetime prediction of wood
cannot be based on bulk creep parameters. Creep of wood is probably
a “small areas big events" phenomenon associated with boundary ar-
eas between fibers which also are the areas of minimum resistance to
crack propagation.

MATERIAL MODE b LOG10(T,days)
tension 1/4 241 +d
bending - 1+1+d

Clear compression - o+1+d
tension perp 1/3 0+1+d
tension

Structural bending - 1/4 1+1+d
compression

Table 1. Estimates of creep power, b, and relaxation
time, 7. Moisture content and temperature at equilibrium:
u= 15 % and T » 20 oC. Other conditions are considered
by the parameter, d, defined in Equation 81.

Creep parameters suggested for lifetime studies of wood are given in
Table 1 reproduced from (17). Temperature and moisture content at

equilibrium are considered by the following parameter suggested in
(33),

d ~ (15-u)/10 + (20-T)/15 (81)

Dynamic climatic changes influence relaxation time dramatically -
possibly by a factor less than 0.1 - 0.01. Creep power, b, can be
considered independent of climate. "Clear wood" quantities in Table 1
include structural wood with a decisive clear wood failure mode.

é6-range creep factor: A &-range creep factor of W » 0 is generally
assumed meaning that crack closure is not influenced by creep. The
results in Figures 11 - 13, however, indicate that this simplification
may not apply at loading perpendicular to grain.

Damage rate power and damage rate constant: The damage rate power,
M, and damage rate constant, C, are estimated as follows applying a
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method developed in (17): Results of fatigue tests at higher fre-
quencies (where creep effects are relatively small) are presented in a
logio(Ncat) - SLyax graph. Then, M is determined by

o . n - d[SLyax] __|
M~ -10[1 + 21 ) = -
[ 0g910(B)] B d({logio(Ncar)]tSLyax ~ 0.6 (82)

and C from utilizing that this parameter is responsible for parallel
shifting only of the lifetime graph (see Eq. 30). The results of Figure
9 on Pine heartwood in reversed bending have been used to estimate
M~ 9 and C » 3 (with FL ~ 0.4). It is noticed that the M estimate
agrees well with M = 8.5 previously referred to (49).

Critical load ratio: A critical load ratio of pcr = -0.5 is generally as-
sumed as previously suggested in Section IV.

Crack closure threshold: This parameter is generally assumed to be
Drg ® 0.0005 as determined in Section VI for wood and similar prod-
ucts.

Results

The experimental data shown in the following figures are from tests
with periodically repeated load cycles. Frequencies f 2 1 Hz refer to
sinusoidal load wvariation, while data for f < 1 refer to square wave
loading as shown in Figure 1. A fractional time of B = 0.5 under max
load applies when not otherwise indicated. Theoretically, sinusoidal
variations have been approximated by square waves with B = 0.5. This
procedure is justified evaluating the influence of load variation on
crack closure creep in Section V.

The data shown in Figures 11 - 13 are from experiments (56,57) to be
reported in a subsequent article on artificially cracked clear Douglas-
Fir specimens subjected to square wave tensile loading perpendicular
to grain. The specimen size is 140 mm perpendicular to grain (load
direction). The cross-section is 17*40 mm. A 10 mm parallel to grain
crack is cut through the specimen in the center of the 40*140 mm
face.

GLASS FIBER REINFORCED EPOXY
(F=19-34 Hz, P=0.1)
1.0 =

0.8 \ = \\\
: \a\:o L ‘-I‘
Eo.e _E,
75) 00
0.4 \
0.2
3 4 6 4
LOG0(Ncar)
Figure 6. Fatigue lifetime of glass fiber reinforced

epoxy. Tension in fiber direction. Experimental data Dby
Hashin and Rotem (58). Theory: = (C, M, pcr, W, Dry) =
(3, 9, -0.5, 0, 0.0005) =« (FL, b, t) = (0.4, 0.25, 1 day)
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PARTICLE BOARD AND HARDBOARD

i (F=15 Hz, P=0.1)
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Figure 7.

Fatigue lifetime of particle boards and hard-
boards in tension and interlaminar shear. Experimental
data by McNatt (59,60). Theory: « (C, M, pcr, W, Drg) =

(3, 9, -0.5, 0, 0.0005) « (FL, b, T) = (0.4, 0.25, 1 day)

DOUGLAS—-FIR FINGER JOINTS (F=15 Hz, P=0.1)
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Figure 8. Fatigue lifetime of Douglas-Fir fingerjoints in
tension parallel to grain. Experimental data by Bohannan
and Kanvik (61) as bounded according to McNatt (62).
Theory: = (C, M, pcr, W, Drg) = (3, 9, -0.5, 0, 0.0005) =
(FL, b, 7) = (0.4, 0.25, 1 day)

PINE HEARTWOOD (F=50 Hz, P=—1)
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Figure 9. Fatigue lifetime of pine (heartwood) in re-

versed (rotational) bending. Experimental data by Kraemer
(63) as represented in Kollmann and Cété (51). Theory: =

(C: M, Pcr, W, DTH) = (3: 9, -0.5, 0, 000005) . (FLI b, T) =
(0.4, 0.25, 1 day)
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SPRUCE (F=0.1-0.00001 Hz, P=0)
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Figure 10.

Fatigue lifetime of spruce compressed parallel
to grain. Experimental data by Bach (64). Theory: = (C,

M, Pcr, W, Drg) = (3, 9, -0.5, 0, 0.0005) « (FL, b, 1) =
(0.4, 0.25, 1 day)

DOUGLAS-FIR (F=1-0.00001 Hz)
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Figure 11.

N-lifetime of artificially defected Douglas-Fir
in tension perpendicular to grain. Experimental data by
Nielsen and Madsen (56b, 0.01 Hz and 0.0001 Hz), Nielsen
and Gray (57, 1 Hz), and McDowal (6, 10-5 Hz). Fractional
time under max loading is 50 %. Theory: « (C, M, pcr, W,

Drx) = (5, 9, -0.5, 5, 0.0005) s (FL, b, 7) = (0.25, 0.33, 1
day)
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DOUGLAS—-FIR (F=0.01 Hz — DEAD LOAD)
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Figure 12.

T-lifetime of artificially defected Douglas-Fir
in tension perpendicular to grain. Same experiments and
theoretical parameters as referred to in Figure 11.
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Figure 13. N-lifetime of artificially defected Douglas-Fir
in tension perpendicular to grain. Experimental data by
Nielsen and Madsen (56b). Fractional time under max load-
ing is 17 %. Theory: =« (C, M, pcr, W, Dtx) = (5, 9,-0.5, 20,
0.0005) = (FL, b, 7) = (0.25, 0.33, 1 day).

IX. CONCLUSIONS AND FINAL REMARKS

The agreement between theoretical results and experimental data
demonstrated in Section VIII, Figures 6 - 12, is very satisfactory. A

variety of different wood and wood-related products (and glass fiber
reinforced epoxy) at load ratios -1 < p < 0.1 reveal a remarkable
"fellowship"

in sharing fatigue parameters of the same orders of
magnitudes.

It seems hereby made probable to suggest the hypothesis that the
fatigue behavior of wood and wood related materials like particle-
boards and fingerjoints loaded by tension, compression, bending, or
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shear parallel to fibers (flakes or fingers) can be described/predicted
by one set of "master graphs" relating normalized quantities of
lifetime, residual strength, load, load frequency, and relaxation time.

Such master graphs are shown in Figures 14 - 16 referring to on-
and-off loading (p 0). They are calculated as shown in the article

with the following parameters: b = 0.25, § = 0.5, and (C, M, pcr, W,
Dry) = (8, 9,-0.5, 0, 0.0005).
. N-LIFETIME
10 L Bla=0.2
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Nge /// o4
E] 0.5
O 4
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Figure 14. Suggested master-graph for number of cycles
to catastrophic failure of wood and wood-related products
subjected to on-and-off loading.
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Figure 15. Suggested master-graph for real time to
catastrophic failure of wood and wood-related products
subjected to on-and-off loading.

It is noticed from the master graphs that lifetime is practically not
influenced by creep at non-dimensional load frequencies, <f> > 106. At
the other hand lifetime is practically not influenced by load frequen-
cies, <f> < 10. Thus, lifetime is practically elastic fatigue (& Egquation
30, SLyax > SLuax,rr) at <> > 106 and deadload lifetime (Equation 75)
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at <> < 10. A transition area, 10 < <f> < 10¢, is defined where both
creep and elastic fatigue mechanisms are active. From Figure 16 is
observed that strength reduction starts becoming serious when the
body considered has experienced 1/3 of its lifetime. The transition
area just defined shifts to higher frequencies at increasing load ratio
p, while the statement on strength keeps valid.

Example: Wood of quality FL = 0.4 and relaxation time v = 1 day is
used in a structural member which will experience a harmonic on-
and-off load variation with one cycle of SLyax = 0.45 each 17 minutes
(f = 0.001 Hz). = Conventional lifetime prediction based on acceler-
ated test results: FL2Ncat = 105.5 (Figure 14, right hand side) =>
Ncat = 106-3 => tcar = 63 years. s DVM lifetime prediction: <f> =
f*t = 101.9 => FL2<‘tCAT> = FLZ(tCAT/T) = 102.% (Figure 15) =y toarT
=5 years (NCAT = 105'2). ‘

1.0

RESIDUAL STRENGTH (SLyuux=0.30)

ALY

0.8

=8

LOGjo<F>

0.2

0.0

- 0 2 4 ¢
LOG o(FL3<t>)

Figure 16. Suggested master-graph for strength decay
in wood or wood-related product subjected to on-and-off

loading.

Future research: Until now we have considered repeated loads pri-
marily with a fractional time of p = 50 % under max load. There is no
doubt that p different from 50 % at high frequencies will not change
lifetime. At lower load frequencies, however, this statement is not that
obvious. The experimental results shown in Figure 13 indicate that
the é-range creep factor, W, might change with p such that peak load
variations (B = 0) might influence lifetime to be shorter than lifetime
experienced when load is constantly at the peak load level. This indi-
cates a very important research subject which presently is pursued
experimentally by the present author and Borg Madsen at the Univer-
sity of British Columbia.

The master graphs shown in Figures 14 and 15 are valid at “room
climate" primarily. The left hand side of the figures, however, which
considers creep dominated static fatigue are also valid at other cli-
matic conditions. Load frequency and lifetime are non-dimensional
with respect to relaxation time which relates to moisture content and
temperature through Equation 81. The right hand readings of the
graphs are not immediately that general. We do not know, for exam-
ple, how the "horizontal" and "transition" parts of the lifetime graphs
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in Figure 14 will shift at increasing moisture content in wood. More
information is needed on how climatic conditions influence fatigue

parameters in general, and at medium and higher frequencies in par-
ticular.

These considerations reveal other important research projects to be
made in the future such that more detailed transition areas for exam-
ple can be established between elastic fatigue and static fatigue life-
time. Experiments should include extreme temperatures and moisture
contents. In general, for more safe estimates of fatigue parameters we
need further experimental research on fatigue versus materials qual-
ity (e.g. grading, slope of grain), fatigue versus load ratio (including
reversed loading), fatigue versus mode of loading, and on the exis-
tence of thresholds. And finally, basic research must be made on vis-
coelasticity in crack front areas. It should hereby not be forgotten
that climatic changes occur at exactly these areas as a result of heat
being generated in the process of crack closure. Especially at higher
load frequencies this phenomenon might influence significantly the
effective relaxation time - and lifetime consequently.

Appendix
Crack closure relaxation

The following relations have been developed theoretically by the pre-
sent author in (17b) to examine the influence of relaxing coherent
stresses on crack closure displacements. The distribution of coherent
stresses, ocon, is ocog = or at 0 £ s & s, and ocoup Z OF at s, < 8 <
1. The numerical quantities ior! and io7! are & o1 which is the theo-
retical strength of the material considered. Terminology corresponds
to the one applied in the main text of the paper. Crack opening dis-

placement &way (and crack front width Ryax) are the Dugdale quanti-
ties from Equation 12.

Crack closure (org/o1 = -1):
Ve . E 52 ;(0 £ 5 £5,) an
Suax i (1 +p)(2ys - 155-2) - 52 J(50 £ 5 <1)
N6 1. 42
Swax 2 (1-p) (A2)
~ (L1R\2/3 . or - , L *tpP,2/3_
sox (HR) e e A (a3)

Deviations from the Rice crack closure solutions presented in Section
IIT of the main text are due to the different assumptions of coherent
stress distribution. This feature is of no significance in the present
context. Reasons have been given in Sections III and IV that the re-
sults of crack closure theories should not be used too rigorously in
fatigue analysis of materials
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Relaxing state (p 2 og/o; > -1):

i 9E + 2 p_z_(gr/o1) , g2 .
‘—’&Eézg [gl I+ p ]*s ;(0 £ s < s,) (a4)
Suax i 9E _, _ OF = - 1tp .

L gy STt (P - - 55F) (S0 <s5<1)
VREL . p _YeL . g = B(3-p) - (1-p)(or/o1)
Suax K Suax ;K 1+ 2p - p? (35)
or _ p=(1-¢50)(0r/01) (26)

a] {SO

It is noticed that relaxed crack closure profiles are predicted by
Equation A5 to be approximately congruent. This means that crack
opening at any location (s) varies approximately by the same "relax-
ation factor", K = K(ogr/o;), from the initial closure profile (v¢r) de-
fined at K(-1) = 1. An example of crack closure with relaxing coherent
stresses is given in Figure Al.

RELAXED CRACK CLOSURE (P=0.1, oy/o=-—0.5) RELAXED CRACK CLOSURE (P=0.1, oy/oy=—0.5)
1.0 1.2
THINN nl?m - 0]
APPROXIATION N os
Y]
9* ¥ &
z f L Y Y M S E—
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o 00
y I
0.4
= 7 r— 131
< : AT raax O-o04
[oe] 7 d § ' RELAX
x L !
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| JUR Ry
/ A (CLOSURE
0.0 j/ -12
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Figure Al. Crack closure at load ratio p = 0.1. Relaxation
of front coherent stress from or/o1 = -1 to -0.5.
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