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SUMMARY

A lifetime theory has previously been developed by the
present author which considers wood subjected to ramp-
and deadload mainly.

The theory (DVM-theory) which 1is based on the concept
of wood behaving as a Damaged Viscoelastic Material has
been shown to describe successfully the lifetime behav-
ior of both clear wood and structural wood. Also other
aspects of wood behavior like tertiary creep and stiff-
ness-strength relations, strength reduction due to sus-
tained load and lifetime dependency on wood quality can
be explained by the theory.

The present article expands the DVM-theory such that
cyclic loading 1is also considered. This means that fa-
tigue lifetime solutions are established which relate
defect structure, viscoelasticity, load amplitude,
fractional time under maximum load, and load frequency.
The conventional (elastic) fatigue phenomenon is hereby
approached at high frequency loading. Also deadload
lifetime is included as a special case.

The analysis includes prediction of residual quantities
of strength and critical stress intensity factor during
the process of fatigue. The effects of a possible load
threshold below which no fatigue occurs is discussed in
the final section of the article.
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Chspter I Introduction

Chaptwr 1

ImMtroduct ion

Fatigue in engineering material is defined as the pro-
gressive damage and failure that occurs when the mate-
rial is subjected to repeated loads of a magnitude
smaller than the static strength.

Fatigue reduces the materials strength and lifetime to
a degree which has to be considered in design of struc-
tures. Frequency of loading is here an important param-
eter. This is clearly demonstrated by the results pre-
sented by Bach (1) from tests on clear wood subjected
to compressive cyclic loading with a minimum load of ©.
At a maximum load of about 75 % of short time strength
lifetime number of cycles decreased by a factor 1060

lowering the frequency from 1 per 1@ seconds to 1 per
day.
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Figure 1.1 Square wave loading considered in
the fatigue analysis. Load ratio is defined

by P = Omin/Omax. Wave period is T and frac-
tional time under maximum load is B.

These introductory comments define the topic of the
present article:

Relations are developed which predict lifetime and re-
maining strength of clear wood and structural wood sub-
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Chapter 11 Introduction

on load below which no fatigue occurs is discussed in
the final section of the article.

The load history considered is outlined in Figure 1.1.
Maximum load and minimum 1load are denoted by omax and
omin respectively. Load ratio is defined by p =

Omin/Omax. Wave period is T and fractional time under
maximum load is 8.

1.1 BASBSICS OF ANALYSIS

Two basic observations on the structure and mechanical
behavior of wood are maintained in the present analy-
sis: 1) Wood has a natural content of defects and de-
fect nuclei (like knots and inherent c¢racks), and 2)
Wood exhibits time dependent behavior (creep).

It is logical to state the hypothesis that wood behaves
like a Damaged Viscoelastic Material (2). On this basis
a lifetime theory (referred to as the DVM-theory) has

previously been developed by the present author which

considers wood subjected to ramp- and deadload mainly
(e.g. 3,4).

The DVM-theory has been shown to describe successfully
the lifetime behavior of both clear wood (5,6) and
structural wood (7,8,9). Also other aspects of wood be-
havior like tertiary creep and stiffness-strength rela-
tions, strength reduction due to sustained 1load and
lifetime dependency of wood quality (10,11,4,12) can be
explained by the theory.

It seems hereby justified that the concept of wood be-
having as a damaged viscoelastic material is a realis-
tic basis of developing further the DVM-theory such
that also fatigue lifetime can be considered.

The basic damage model used is the so-called Dugdale
model (13) shown in Figure 1.2. The coherent stress,
0., at the crack front may be thought of as being the
materials theoretical strength. (Material pulled out

into the crack front zone is hereby considered to be
stiff and perfectly plastic).

As shown in Figure 1.2 the Dugdale model represents a
so-called mode I (or opening mode) crack in an isotro-



Chapter 13 Introduction

pic material. This is incidentally. The model applies
as well for cracks in mode 1II (sliding, shear in the
xy-plane) and mode III (tearing, shear in the xz-pla-
ne). Load and coherent stress indicated in Figure 1.2
should then be interpreted as appropriate shear load
and shear strength quantities respectively. Apart from
this the results of an analysis based on the opening
mode version of the Dugdale model only differ by the
elastic coefficients from results applying for other
modes. In a similar way the Dugdale model alsc applies
for orthotropic materials like wood. Here however, it
is required that crack planes coincide (as they actual-
ly do in wood) with the principal planes. (The changes
of elastic moduli according to mode - including the or-

thotropic case - are given in Appendix A at the end of
the article).

EENRREERRENREL
i

:' CRACK FRONT

g

T By
1__ - FRONT ZONE
HALF CRACK LENGTH

SURRREAERNERNE

Figure 1.2. Dugdale model. Terminology used

in the present paper. Load is denoted by o,
coherent stress by o:.

The consequences of the above considerations are that
it is possible (3) to generalize a lifetime analysis
based on the isotropic, opening mode results only by
normalizing with respect to the short time results (ti-
me ). In this way, mode and other features defining
the crack problem like stress situation (s.g. plane
stress, plane strain) type of coherent stress, ortho-
tropy, and failure criterion for example are considered

in total by the materials respective short time
strength.
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One restriction, however, apply to this normalizing
procedure. An assumption of balanced creep has implic-
itly been applied. Balanced creep means that time de-
pendency of fractional creep is independent of directi-
on. Previous 1lifetime studies by the present author (3
f.ex) have been based on an appropriately estimated a-
verage creep behavior of wood. In the present study a

theoretically more correct conception of orthotropic
creep is included.

“Dimensionless lifetime analysis" referred to in the
subsequent text is synonymous with "normalized lifetime
analysis" as defined by these comments.

3 CRACK OPENING
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Figure 1.3. Results of the Rice crack closu-
re model. Referring to the load history shown
in Pigure 1.1 8mmax and Smin mean crack front
opening at ¢ = Omax and om:n respectively. N8
is the alternating front opening.

A lifetime analysis of cracked viscoelastic materials
subjected to non-decreasing loads is relatively simple

‘to establish using the Dugdale model. This has been
shown in (3) for example.

For decreasing loads, however, some modifications (not
disturbing the normalizing features just described) ha-
ve to be introduced which consider the phenomenon of
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crack ¢losure: The opening of a crack is not a reversi-
ble process. Material which has been pulled out into
the crack front when defects are opened under increa-
sing load will oppose closure at decreasing load. The
influence of crack closure on the elastic fatigue life-
time of wood has been studied by the present author in
(14) on the basis of the Rice-modified Dugdale model
(15) some results of which are outlined in Figure 1.3.
The inclusion of the crack closure phenomenon in the
DVM-theory forms the central point of the present ana-
lysis such that viscoelastic fatigue lifetime can also
be predicted.

For this purpose some considerations on viscoelastic
crack closure are presented in Appendix B at the end of
the paper. Readers, however, interested especially in
modifying the Dugdale model (and its Rice modification)
for application to elastic fatigue of wood are referred
to (14). No full explanation of this topic will be gi-
ven in the present paper. Only final results relevant

for the analysis of viscoelastic fatigue will be pre-
sented here).

It should be emphasized that the results obtained in
the following are not bound to a defect system which
literally consists of cracks. Dislocations, for exam-
ple, may also be the defect source. It is well known
that the effects of a climbing group of edge disloca-
tions are described exactly by the same equations which
govern the crack problem. At vital points of the analy-
sis we therefore introduce the dimensionless quanti-
ties, '"damage'" (in stead of crack length) and ''damage
rate'" (in stead of crack velocity). 1In this way the

analysis takes the form of a so-called theory of damage
accumulation.

Being the very basics of the analysis presented damage

and creep of wood are topics which have to be consid-
ered rather detailed prior to the real analysis.

Section 2 below presents the authors opinion on how we
may model the overall failure mechanism of wood. Basi-

cally the first part of the section is a summary of
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some thoughts which were made in (14) in the context of
an elastic fatigue analysis of wood.

The rheology of wood is considered in Section 3.



Chapter 23 Failure of Wood

Chaptwsr =

Faililure of Wood

Wood is a material which is orthotropic in such a way
that cracks can only propagate parallel to grain. This
means that any attempt of a crack to cross grain (out-
side weak areas) is blunted by branching off parallel
to grain. (We exclude here very high speed, impact
loading) . '

Clear wood may be thought of as a ‘multiple finger
joint material'. The ratio of finger length, L, to fin-
ger root diameter, d, is of magnitude, L/d % 8.

A finger may be considered as the end of a ‘'super
fiber" made Dby bundles of wood fibers. (The extreme

case of a super fiber being a single wood fiber is not
excluded).

The boundary between fingers is produced by crack ex-
tension parallel to grain. The cracks involved in this
process originate primarily from the many inherent de-
fect nuclei 1like bad bonding between tracheids, inef-
fective overlapping zones, pit concentrations and rays.
Handling of wood, drying for example, creates internal
stresses at natural inhomogeneities by which some of
the defect nuclei - including those with a perpendicu-
lar to grain direction -~ turn into cracks with a lea-
ding edge parallel to grain, see Figure 2.1. An average
slope of d/(2L) % 1/16 of the final failure surface
(relative to grain) is made possible by a characteri-
stic rhythm of the defect nucleus structure (size, di-
stance, orientation, and distribution).

The cracks expand parallel to grain in a combined sli-
ding and opening mode. The path of expansion is indi-
cated by the pattern of defect nuclei and neighbouring
cracks. At perpendicular to grain loading the opening
mode is the overriding mode producing in the end a
cleavage surface by coalesce of nearly co-linear
cracks. At parallel to grain loading both modes are ac-
tive with sliding as the dominant part. Again failure
occurs by coalesce of nearly colinear cracks producing
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the typical ‘'finger splintering' type of failure sur-
face.

A 'cross grain'" failure 1is no exception in this re-

spect. The fingers, however, may be small, leaving -
for the naked eye - an apparently smooth failure surfa-
ce.

—————= GRAIN DIRECTION
DEFECT NUCLEUS CRACK

Figure 2.1. Basic elements of a failure mo-
del for wood. Dots indicate weak area. Repro-
duced from (14).

The same crack system is activated for both perpendicu-
lar and parallel to grain tensile loading. Only mode of
failure and stress state change. As we shall base our
fatigue analysis on dimensionless quantities we can
then in principles apply the solutions obtained irre-
spective of load direction. This has been shown in
(14): All Dbasic information on the materials elastic
behavior, failure mode and stress state needed for a
failure analysis are considered in total by the short
time strength defining the so-called load level, SL =
load/strength. (Simple modifications considering ortho-
tropic creep will be introduced in a subsequent secti-
on).

A special consequence of the failure model suggested is
that perpendicular to grain and parallel to grain ten-
sile strength (and shear strength along the grain) for
clear wood are equally damage influenced, meaning that
their ratios remain a constant.
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At compression parallel to grain where the load is low
enough not to induce instability of the fibers (or the
super fibers previously defined) the 'tensile' mecha-
nism described above is still a possible fatigue fail-

ure mechanism. At higher compressive loads the mecha-
nism acts as an introductory mechanism. At a certain
stage, however, two additional failure mechanisms be-
come activated: 1) A ‘'finger joint wedge' mechanism

bringing the finger roots into an opening mode tensile
state, and 2) A mechanism of instability: The fibers
are '"cut free" to a length which is not stable - and a
failure band of cgrushed, overturned fibers will show up

perpendicular to grain.

In principle the failure mechanisms of structural wood
and clear wood are similar. However, an overriding sys-
tem of major defects like knots and handling defects
are now the stress concentrators responsible for fai-
lure. Handling of structural wood, drying for example,
creates internal stresses at these inhomogeneities by
which major cracks are developed. Due to the special

orthotropic strength distribution in wood these cracks
- including those having a '“thickness', i.e. a perpen-
dicular to grain origin - will orientate themselves
parallel to grain; attempts to cross grain away from
defect nuclei and minor defects are blunted. In princi-
ple Figure 2.1 also illustrates the formation of major
cracks. The size of a major crack and and a character-
istic dimension of its nucleus will have the same order
of magnitude.

Two principal failure types of axially loaded struc-
tural wood may develop from major cracks.

Local failure; Major defects are involved in this fail-
ure type mainly by separating the area considered into
an ineffective part, shadowed by the defect thickness,
and an effective part where clear wood failure proceeds
as previously described.

Non-local failure:; Major cracks are actively involved
in the fracture process, meaning that they are part of
a nearly colinear crack system producing a far reaching
finger joint failure surface. Major defects propagate
along paths also preferred by minor cracks.
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Practically structural wood failure is a composite of
local and non-local failure. The "winning'" type is the
one producing the lower load capacity.

At compression the wedge and instability effects pre-
viously considered are of importance primarily for
clear wood and structural wood with local failure. When
structural wood 1is considered with non-local failure
involving large and far reaching fingers indicated by
knots (and other larger defects) sliding as considered
in the tensile situation of clear wood will be the
overriding mechanism. Areas of crushing will be local
and relatively small. A special consequence of this
statement is that structural wood may have tensile and
compressive strengths which are not too different.

The overall failure model suggested in this section is
invariable with respect to crack distance. However, an
assumption of widely separated (non-interacting) major
defects may be introduced. This assumption is supported
by the fact that deadload and rampload lifetime predic-
tions based on a single-crack model are shown to ex-

plain successfully a number of experimental data
(5,6,7,8,11).

Accepting (as we do in this paper) the above failure
hypothesis only minor modifications have to be introdu-
ced in the subsequent fatigue analysis going from ten-

sion to compression parallel to grain. The crushing
phenomenon in compression is considered approximately
reducing the failure resistance proportional to

strength. This means K..(compression) % 0.5%K.-(tensi-
onj.

2.1 CRACK MODEL AND STRENGTH LEVELS

The above considerations will now be summarized and
quantified from a simple composite and crack mechanical
point of view: Structural wood is clear wood damaged by

a single major defect. Clear wood is basic wood damaged
by minor defects.

It has been indicated in Section 2 that a single-damage
model applies practically well in lifetime studies of

10



Chapter 2y Failurs of Wood

deadloaded structural wood. It is anticipated that this
feature also applies when the fatigue phenomenon is
studied. However, not to exclude exceptions an easy
method is given in Section 5 which generalize the re-
sults obtained also to apply when interacting major de-
fects are present.

2 1la BASIC WOOD

Basic wood 1is the plain, nature given wood material
without any of the numerous defect nuclei having been

developed into cracks. The strength, o,, and critical

stress intensity factor, K.., c¢an be related approxi-
mately as follows

Ty, N }EE;S (2.1

where a 1is a characteristic dimension of a defect nu-
cleus. Equation 2.1 represents the approximate upper
strength bound for which the well-known Griffith
strength expression applies: our = Ke-/vy(xl) where

strength and crack half-length are denoted by o.,. and 1
respectively).

It is not possible from existing experimental litera-
ture to quantify size and density (number/unit area) of
defect nuclei. Plausible order of magnitudes, however,
might be the following as estimated by the present au-
thor on the basis of micro structural photographs: The
nucleus ''radius" is a ¥ 0.15 mm. The density is ® 5/mm*
corresponding to 1 nucleus per fiber along the grain
and 1 per 5 fibers perpendicular to grain.

2e1.2 CLEAR WOOD

This material is basic wood where some of the defect
nuclei have transformed into minor cracks. We model the
strength behavior of clear wood by a parallel to grain
array of equally sized cracks of length, 21,, and a

center distance, 2b. (Index o on 1 indicate initial
size of minor crack)

11
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The strength of a material such weakened is given by
the Griffith expression modified to include interaction
effects,

Oer ¥ 2TR1) Fo(lo7B) (2.2

where the interaction factor, f, = f(l.,/b), is given by
the following simple expression suggested in (10),

foo 8 [1 - (lu/b)=]—rs= (2.3

Introducing Equation 2.1 Equation 2.2 can also be writ-
ten

s

FL = 2% & f,~3x/3/l. (2.4)

Ta
which defines the so-called strength level, FL. Re-
specting that o0.. < 0, we have FL = 1 at 1, < a. A gra-

phical representation of Equation 2.4 is given in Figu-
re 2.2.

Schniewind & Lyon (16) suggested that normal clear wood
contains inherent cracks of size 2%1, % 2.5 mm. (We
will use 1 = 1.5 mm). If we assume that these cracks
are widely distributed (1./b < 1/3) Equation 2.6 pre-
dicts a strength level of FL % 1/3 for clear wood. Of

course, this value is not invariable. Bad drying, for

example, may have produced larger defects such that FL
< 1/3 is predicted.

At more closely situated minor cracks the strength
level will decrease. For example, when 1l.,/b = 0.6 is
introduced we get f,, = 1.25 and FL % 1/4.

As is the case for defect nuclei we cannot from exi-
sting literature quantify distance between minor
cracks. A reasonable guess might be that every second
nucleus develop into a minor crack. This means b % 3 mm
corresponding to a/b ®# 1/20 (and l.,/b & 0.5).

2.1.= S8TRUCTURAL WOOD

Structural wood is clear wood containing major defects
like knots and cross sawing. Following the failure
model suggested in Section 2 where failure is in gen-
eral a result of damage propagation parallel to the

12



Chapter 23 Failure of Wood

grain we expect that the major defects in structural
wood become résponsible (by drying or loading) for
amplification of minor defects parallel to grain. The
local amplification is such that cracks of a size equal
to the major defects turn up. A knot, for example, is
responsible for a parallel to grain crack length, 2L ®
D, where D is knot diameter.

Local failure: As indicated in Section 2 local failure
in axially 1loaded structural wood is the result of
clear wood failure in an area reduced proportional to
the perpendicular to grain dimension of the major de-
fect considered.

Non-local failure; Also indicated in Section 2 is a
failure type where the major cracks are included di-
rectly in the strength reducing crack system applying
for clear wood. In this case strength of structural
wood may be predicted approximately by means of the
composite critical stress intensity factor, K¥, given

’

in Equation 2.6 below. For a single major defect we get

. -
Cep R === = f~**Sa/L (2.5)

where L is (half) length of the major defect.

The composite critical stress intensity factor, K*
used above is given by

s

~ET- n £t ; (K = olf;;) (2.6)

obtained by Equation 2.2 considering approximately the
uniform crack array solution as the result of placing a

single crack in a matrix weakened by cracks of the same
kind.

The composite c¢oherent stress, o:%, at a crack front
can be approximated by Equation 2.6 as follows when the
the well-known relation, K¢, = ¥(E0;8u.-), is introduced
relating stress intensity factor to Young's modulus, E,
coherent stress, o¢., and critical crack front opening,
8ur (= critical crack opening displacement, COD). We
get

13
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still with * indicating composite property. This ex-
pression gives us the composite coherent stress as fol-
lows when we anticipate that stiffness and critical COD
only change slightly compared with the variation of
0¥,

gff B f,mE (2.7)
It should be noticed that o:.* is a calculational quan-
tity averaging the matrix strength in front of a major
crack. Clear wood strength is less than o *.

. £FL, (FL*/£ )

4 o 01 pa2y=1/2
8 fo-(T - (lo/b) )
.6 \\\
4 \ Clear woo;d

e Structural wood
.2 - e
e

0 HEH

~.b -2 0 .2 46 .8 1 1.2 1.41.6 1.8 2
Loglo(l/a) H (LoglO(L/a))

Figure 2.2. ‘“Truncated" Griffith representa-
tion of strength levels for clear wood and
structural wood <(guantities in parenthesis).
a”r .15 mm <1 % 1.5 mm <L 5 - 10 mm are

(halfl)sizes of defect nuclei, minor defect,
and major defect respectively. Interaction
factor, fuo = [1-(1l,/b)®1 where b is center

distance between minor defects.

The strength level of structural wooed (L > 1) is now
given by Equations 2.5 and 2.7. We get

FL* = %2 - f_*/(a/L) (2.8)

T *
which is illustrated graphically in Figure 2.2.

For widely separated minor cracks (a ® 0.15 mm) and a
single 2L = 10 mm knot a strength level of FL* & 1/6

Dot

for structural wood is predicted by Equations 2.8.

14



Chapter 2 Failure of UWood

A remark should be made concerning the introduction of

ics: Both types of defects (minor and major) grow. This
fact is of little practical importance when the rela-

tive change of K.,* is small. To check this the follow-
ing relation is derived from Equation 2.6

INKer*1 N1 (la/b)® nl

= o= --=c®LRIT_ . = (fo@-1)-- (2.9)

il < 0.06 : (la/b < 0.8) (2.10)

is required in the lifetime analysis of structural wood
(non-local failure) when lo/b < 6.2 (f, < 1.67) and
K- * /Kot < 0.1 is required. The assumption is
checked by a parallel clear wood analysis considering
only the growth of minor cracks.

For this purpose

............... ¥ formriLrin (2.11)

--------------- ¥ Vlw/L (2.12)

are derived from the expressions developed in this sec-
tion. Equation 2.11 relates strength level of the clear
wood fraction to strength level of composite (¥ =
struct. wood). Correspondingly Equation 2.12 relates

load level, SL = ¢/0u~, of clear wood to load level of
composite.

A practical notice: Index on FL and SL referring to

clear wood and structural wood are omitted in the sub-

sequent sections when the meaning is obvious from the
text.

15
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Chepter S

Rheology oof Wood

Practically the mechanical behavior of wood can be con-
sidered linear viscoelastic at loads lower than approx-
imately 60 % of the ultimate strength. The creep func-
tion, c(t), (strain developed by a unit stress applied
at time, t = ©0), is reasonably well described by the
so-called Power Law,

c(t) = é (1 + a*gw) (3.1)

In wood science Equation 3.1 is often referred to as
the Clouser function since Clouser (17) was the first
to suggest it for application to wood. The (dynamic)
Young's modulus is denoted by E. The constant, b £ 1
is dimensionless while the other constant, a, has a di-
mension of time to the power -b. The latter feature is,
of course, somewhat unfortunate. A much more convenient
equation for describing power law creep is

3

c(t) = 2 1 + (Eyeg (3.2)

E T
which has been considered in details by the present au-
thor in (18). The new constant, T, has the significant
meaning of defining the time at which the creep func-
tion has grown to twice its initial value. Because of
that 7 may be named the cgreep doubling time. Relaxation

time, however, is a more appropriate name referring to
common rheological terminology.

It was shown in (18) that creep as described by Equa-
tion 3.2 is associated with the following relaxation
function, r(t),

r(t) ® —d-c = ----Bo____ (3.3)

when b < 1/3. The relaxation function describes the
stress response when the material is exposed to a unit
strain applied at t = 6. It is noticed that a 50 %
stress reduction is predicted by Equation 3.3 when t
equals the relaxation time, .

16
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In subsequent sections considering viscoelastic crack
mechanics it is convenient to operate with normalized
versions of the creep function, C(t), and the relaxati-
on function, R(t). Normalization is made with respect
to the initial quantities. Thus

C(t) = 1 + (t/7T)¥ (3.4)
R(t) & €1 + (t/7T)=]"3 (b < 1/3) (3.5)
=.1 RELAXATION TIME AND GCREES FOWER

The following estimates from (18) on c¢reep power and
relaxation time may be applied when no experimental in-
formation are present. The estimates are based primar-
ily on the authors inspection of information given in
(17,19,20,21,22,23,24,25).

It was suggested in (18) that a creep power of size
b % 1/4 (3.8)

is in general the best value for creep description of
wood. The creep power can be considered practically in-

dependent of direction considered and temperature and
humidity.

§ LOAD ! LOGio(7,days) |
2 tension, par. § 5 = 1 §
i bending, par. i 4 £ 1 i
i compress. par.i 3 1 i
{ shear, par. : 3 1 i
{ tension, perp.: 2 £ 1 :
Table 3.1. Relaxation time for

wood at equilibrium with normal
climatic conditions; (u ® 15 %, T
¥ 20 <©C). Parallel to grain and
perpendicular to grain is denoted
by par. and perp. respectively.

The relaxation time, however, is very dependent of di-
rection and climatic conditions. The estimates in Table
3.1 apply at climatic equilibrium conditions at a tem-

perature of T = 20 “C and a moisture content (weight)
of u = 15 %.

17
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At climatic equilibrium conditions different from the
reference conditions defined above, T is modified (18)
multiplying the reference 7 with the following factor,

d = 19(15-u)/10 + (20-T)/15 (3.7)

When less attention has been given to ensure equilibri-
um (dry conditions however), the r-values will drop
dramatically below their "equilibrium quantities"- e-
ventually by a factor of 106~®. At thin structural di-
mensions and severe climatic conditions (wet-dry) the
T-values will drop even more.

S =2 LOCAL RELAXATION TIME AT FAILURE

For plain opening and plain sliding modes it is shown
in Appendix A (example 3) at the end of the article
that local creep at a crack tip may be described ap-
proximately by a Clouser creep function with b % 1/4
and relaxation times as given in Table A.1.

; LOAD | LOGio(Tana,d) |
: tens | 2.0 £ 1.0 §
isliding: bend { 1.2 * 1.0 :
compr ; ©.4 * 1.0 i
opening : @+ 1.0 :
Table 3.2. Local relaxation time at crack
tip for plain opening mode and plain sliding

mode.

This description of creep is based on a linear stress-
strain response. It is, however, well-known that the
stress-strain situation at the front of a crack is out
of the linear range previously referred to. This means
that the relaxation times given in Table A.1 are pro-
bably too high. No experimental data, however, are
available considering c¢reep in front of a propagating
crack. Thus, an empirical reduction will be introduced
which reflects the authors experience comparing experi-
mental lifetime data with theoretically predicted data:
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Chapter 33 Rheology of Wood

The special situation applying in the crack front area
is considered approximately introducihg an average
relaxation time which is approximately 1/300 of the
value expected in the linear stress-strain range. Table
A.1 in Appendix A now reduces as shown in Table 3.2.

The overall failure model previously described in Sec-
tion 2 predicts failure of wood to be a consequence
primarily of cracks propagating along the grain in a

The composite relaxation time to be used in the failure
model is considered in the subsequent text as a func-
tion of wood quality and loading mods.

2.1 CLEAR WOODs

Tension parallel to grain:

A finger joint splintering type of failure will de-
velop. Sliding primarily will characterize the local
displacement, meaning

logiw(T,days) # 2.0 % 1 (3.8)

according to Table 3.2.

Failure is initiated by a finger joint sliding just
like in tension. At some point, however, coalesce of
cracks will leave the fingers in an unstable position
such that failure will proceed by wedge finger opening

and overturning of fibers in a band perpsndicular to
grain.

The local displacement mode at a crack tip will then be
a combination of sliding and opening. We suggest a

square root average of the relaxation times given in
Table 3.2. That is

logiw(r,days) # 0.2 % 1 (3.9)

Bending is a combination of the two preceding cases. Ue
may have a failure by compression or by tension. An ap-
propriate average relaxation time is suggested which is
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the square root average of T from Equations 3.8 and
3.9. This means

logiw(T,days) % 1.1 = 1 (3.16)

LOAD

hwanues

LOGia(r,days)

§tension parall.
ibending parall.

1
1 :

2
1

I+ I+

écompres.parall.
itension perp.

hsasnannesnsuasnunune

0% 1

Table 3.3. Clear wood (or local
failure in structural wood).

Failure is a result of cracks propagating in an opening
mode. We have directly from Table 3.2

logia(r,days) % 0 £ 1 (3.11)

The “truncated' results obtained above for clear wood
are summarized in Table 3.3.

.....-.g

LOAD

LETTTYY

Etansion parall.
ibending parall.
icompres.parall.

hoausw
-

Table 3.4. Structural wood with
far reaching failure =zones. At
local failure use Table 3.3.

a2 BTRUCTURAL WOODs

At long range failure patterns in structural wood it is
unlikely that different relaxation times should apply
for tension and compression parallel to grain. The
bending quantity given in the Table 3.2 would here be a
more reasonable estimate applying for any action (gom-

pression, tension, and bending) parallel to grain.
Thus,
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Chapter 31 Rhwology of Wood

logla(T,day55 ¥ 1.2 *1 (3.12)

If knots influence the failure process only locally we
expect a relaxation time similar to the clear wood
quantity.

The "truncated' results obtained for structural wood
are given in Table 3.4.
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Chapter 4%

Fatigue Analysis

The lifetime analysis presented in this section applies
to a viscoelastic material weakened by a single crack.

Generalization to multi-cracked materials is given in
Section 5.

The elastic-viscoelastic analogy (also named the corre-
spondence principle) (26,27) is the analytical basis.
This analogy tells that a linear viscoelastic problem
may be solved considering the solution to an elastic
duplicate of the problem with identical dimensions,
elasticity, external load, and internal stresses. All
we have to do 1is to replace the elastic coefficients
(Young's modulus f.ex.) with the corresponding vi-
scoelastic operators (reciprocal creep function f.ex.).

When a non-decreasing load situation is considered the-
re are no major problems in establishing an elastic
counterpart to a Dugdale failure model of a cracked vi-
scoelastic material. Due mainly to an assumption of i-
dentical coherent stresses at the crack front the two
"'counterparts' are automatically alike at any time.

When crack closure is present the problem of establish-
ing elastic-viscoelastic counterparts is more complica-
ted. Coherent stresses keep constant after crack closu-
re when an elastic c¢rack is considered. They relax in
the case of a viscoelastic crack.

The principles of the present lifetime analysis are
outlined as follows:

The assumption 1is made that a _crack in a viscoelastic
material is locked for some time after load reduction.
Material pulled out into the crack front is stiff e-
nough to oppose closing deformation. This viscoelastic
crack situation can be looked upon by the elastic-vis-
coelastic analogy considering an elastic duplicate with
time dependent (relaxing) stresses of coherence. It is
justified in Appendix B at the end of the article that

it is possible to construct such a fictitious elastic
counterpart.
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Chapter 43 Fatigus Analysis

It is noticed that both counterparts have identical
loads, crack lengths, and internal stresses. The coher-
ent stresses are the time dependent ones just referred
to.

The coherent stresses can only relax to a certain level
from where on they keep constant. This level which is
related to minimum load mainly defines the time at
which the viscoelastic crack starts opening. This phe-
nomenon is illustrated in Appendix B.

An illustration of corresponding elastic and viscoelas-
tic crack front opening histories are shown in Figure
4.1.

JLoading stress

load ratio p = Umin/cmax

o
max }}c
o

min

#Elastic deformation (fictitious)

§
6max - _:[52

min

jViscoelastic deformation

1 1 1 1
0 8T T 2T 3T time

Figure 4.1. Corresponding elastic- and vis-
coelastic deformation histories.

Characteristic features are: a)> the slastic opening
closes (relaxes) when the viscoelastic opening keeps
constant (locked), and b) the viscoelastic opening in-
creases when the elastic opening is constant. The point
of time at which behaviors a) and b) separate is the
time mentioned above where the coherent stressaes bscome
constant.

Any movement, 0§, of the (viscoselastic) crack front is
associated with an energy dissipation of size (0&%o,|.
This is a consequence of assuming that the pulled out
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crack front material is stiff and perfectly plastic
with flow stress, %o, . The crack front becomes unstable

when the integration of |IN&*0,| with respect to time
becomes critical.

In order to establish the viscoelastic history of the
crack front we need 1) solutions to the elastic crack
closure problem, and 2) information on how in fact the

crack opening counterparts considered above are rela-
ted.

1) Solutions to the elastic crack closure problem have
been obtained by the present author in (14) where high
frequency fatigue lifetime of wood has been considered.
Expressions relevant for the present study are summari-
zed in the following Section 4.1.

2) Relations between the crack front counterparts are
established in the subsequent Section 4.2.

As the latter point is considered mainly by introducing
an average creep behavior of wood during the fatigue
process we may in principle use exactly the same method
for lifetime prediction as used when establishing the

DVM-theory applying for non-decreasing load situations
like deadload and rampload (e.g. 3).

This means: The crack moves a distance equal to the im-
mediate crack front width, R, in a period of time, Q,
used to open the immediate crack tip to an extent whers
critical dissipation has been produced. The rate of
crack propagation is then determined by R/Q - and life-
time is predicted by integration to the point where the
rate of propagation becomes infinite.

This point of analysis is considered in Section 4.3.

4«3 ELABTIC COCRACK CLOBURE RELATIONTS

Definitions and equations from (14) important for the
present viscoelastic fatigue analysis are as follows.
No theoretical explanation will be given.

P = Omin/Omax (Load ratio)

SLhvmax = Omax/ 0o {(Max. Load level)

Shmrn = Omin/Oor (Min. Load level) (4.1)
FL = oum/0, (Strength level)

k = 1/1q (Damage ratio)
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ously considered at the crack front). Damage ratio is
length, 1, of running crack relative to the initial
length, lo. Load varies periodically between omax and
Omzn 8S shown in Figure 1.1.

Other expressions used in the analysis are

NSL = SLmax-SLmin = (1-p)SLmax (Load level range)

Ke:r ler/le = SLmax™ (Critical damage ratio)
(4.2)

where the critical damage ratio, k.., is the damage ra-
tio at which damage rate becomes infinitely high.

The crack front width, Ruax, and maximum crack front o-

pening, &wax, illustrated in Figure 1.2 are expressed

s
Rmax = . [SLimaxFL3I®*%1 (4.3)

Smax = -—==9%0 1 = g[SLmanLJ“*I (4.4)

Auxiliary expressions explained in (14) are the effec-
tive load ratio, perr, and the efficiency factor, U,
defined below. The location in the front zone at which
the coherent stress changes dramatically is given by
S«, See Figure 1.3.

perer = 1 = [C1-p)U) 1 SLmaxvi1 /4~ (4.5)

U= 2C1+ p) (4.6)
c -

Sex ¥ 1 - ;(1 = Puzpep ) (4.7)

where C is the so-called damage rate _constant (0 < C <
4C(1-p)UI~™M7=). The damage rate power is M. For wood

Sz 1

QUIN N 4 - 2(q - s ) 5 .
Seaerx 2 Pezpees ) -(4 8)
ns = %(1 = Pmrr )" RKEmax (4.9)

Failure criterion is
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r *%Wm Km”ﬁlm

= * - .- = mme— 3 T B
%.Eﬂ& >I}r E E (41@)
Strength, Oe»,1, (residual strength) related to crack
length:
Oermyr _ 1.
o’t::l”‘ - Ik (4.11)

Theoretically the expressions given above apply only
for a stretched material with widely separated cracks
(i.e. crack center distance is larger than approximate-
ly 3 times the total crack length, 2%1).

Practically, however, they also apply for multi-cracked
materials subjected to compressive loads. Some minor
modifications (on FL, SL, and U), however, have to be
introduced. This feature is considered in Section 5.1.

G - 2 ELABTIC—VISBSCOELASTIOC COUNTERPFARTES

The elastic-viscoelastic counterpart relation will be
considered in two parts separated by &(elastic) = Smiwn
in Figure 4.1: a) The elastic part is a square wave de-
formation with maximum deformation, N8, and @ minimum
deformation (Figure 4.3), and b) the elastic part is a
periodically varying ‘semi constant - semi relaxing"
deformation where the constant is 8win (Figure 4.2).

Part a) is considered 1in Section 4.2.2 introducing an

amplification factor relating elastic and viscoelastic
deformation.

Part b) 1is considered approximately in Section 4.2.1
introducing a so-called time shifted creep function ap-

plying to a '"constant! elastic deformation of size
SMIN'
L IS § TIME SHIFTED CREEPFP FUNTCTION

Two situations are considered:

1) Constant crack closure: The elastic deformation is
periodically constant over a period of time, 8T, where
T is the cyclic time. The viscoelastic deformation is
periodically constant over the time, (1-8)T, where the
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elastic counterpart varies. This situation is illus-
trated in Figure 4.2.

2) Partly crack closure: The two deformation histories
start being related as in 1). At a certain time, howe-
ver, the elastic part reaches a minimum at which it
stays for the rest of the cycle. This minimum of relax-
ation is indicated by the factor H in Figure 4.2. An
increasing viscoelastic deformation is the result of a

constant elastic deformation.

An approximate method of relating the two deformations
such defined is developed in the following by introduc-
ing a so-called time-shifted (or effective) creep func-
tion, Cemw(t) = C(t/h), where C(t) is the normalized
creep function of the viscoelastic material considered
and h is a constant.

The constant, h, will be determined using the present
authors version of the so-called "“E-effective method"
(28) considering the time, T, of the first cycle.

The viscoelastic deformation between t © and t = BT
is y = C(8T). Considering especially t T we may ex-

press y also by means of the "E-effective method" such
that

y = C(T) - g-=-=co=-=c== = C(8T) (4.12)

e have here determined y by subtracting the effect of
the "triangular" elastic deformation growing from © at

t = BT to N at t = T from the affect of a constant de-
formation of size 1.

The effective Young's modulus, Eper, is given by

E 1 1
Bere(E) = 3707230087 5 2 ° T7I7RGEY ~ acey 41
where the relaxation factor, 2z, is expressed by the
normalized relaxation function, R{(t), and the cresp

factor, @(t) = C(t) - 1.

An assumption for the application of the "E-effective
method" is that the elastic deformation involved must
vary congruently with the c¢reep function. This as-
sumption is considered to apply sufficiently well in
the present analysis.
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In general the relaxation factor is time dependent.
Practically, however, it can often be given a constant
value. For example, concrete: z % 3/4, and wood: z % 1.
Thus, for wood which is the main topic of the present

article we have

Emeewr(t) = BE/C(t) (4.14)
such that Equation 4.12 becomes

y = C(T) - nN*C{(1-8BIXT) = C(BT) (4.15)
which gives us

C{T)_-_C(BT)
o = “eiizam (4-16)

Index 1 indicates that only deformation history 1) pre-
viously defined is considered by this expression.

ELASTIC DEFORMATION

TIME-SHIFTED
CREEP FUNCTION
c(t/h)

Y = C(BT)

|
0 8T T 2T time

Figure 4.2. Auxiliary figure for determining
an average creep function corresponding to
the elastic deformation shown in the upper
part of the figure.

When the elastic relaxation becomes so large that it
tends to go below the lower bound, H, deformation his-
tory 2) becomes relevant. This means

N = 1 - H (4.17)

such that in total,
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fla (4.18)

{1 - H + Ny - 4¢1 - H - NyI&) (4.19)

The ghift factor, h, is now determined by

C(T/h) =y + N = C(T) - A*LC(1-8)TI)-11
such that

h = T/C"*{C(T) - N*[C(1-8XT)-112 (4.26)
where C~*{) is the inverse normalized creep function.

When Power Law creep especially is considered Equation
4.20 reduces as shown in the subsequent Equation 4.2%9.

G B2 VISCOELASTIC AMPLITUDE AMPLIFICATION

We consider the viscoelastic counterpart to a periodi-

cally varying square wave elastic deformation history,
see Figure 4.3.

The average deformation is
y = B*C(t) (4.21)

where t is time and C(t) is the normalized creep func-
tion.

The elastic wave amplitude is 1. The corresponding vis-
coelastic amplitude (viscoelastic amplification fac-

tor), is G as shown in Figure 4.3.

The envelopes of the upper and lower amplitudes of the
viscoelastic wave history are parallel to the average

deformation. Thus,
- - dy
G = C(8T) BT(dt)
or introducing Equation 4.21,

G = C(8T) - BWT(g%)nv (4.22)

The derivative refers to some average time in the peri-
od considered.

As G must be symmetric in B8 we also have
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G = C(L1-81T) - (1-B)QT(gg)av (4.23)

Assuming an arbitrary start of the wave loading we may
consider the two derivatives in Equations 4.22 and 4.23
to be equal. Thus, the amplification factor may be ob-
tained eliminating dC/dt between the two equations just
mentioned. We get

G = S1:@2?9%@?2§é_§f9£21:§3$2 (4.24)

When Power Law creep especially is considered we get

the amplification factor given by the subsequent Equa-
tion 4.30.

| ELASTIC DEFORMATION

0 t
BT, (1-B)T ]
=y -

VISCOEL. DEFORMATION

J
o t
Figure 4.3. Viscoelastic amplitude amplifi-
cation.
q .3 DAMAGE RATE

Following the procedure outlined in Section 4 we will
now consider the energy dissipation produced when a po-
sition defined by the immediate crack tip is opened

over a period of time, Q, by crack penetration. The
three contributions explained below are relevant in
this context. Creep contributions are considered

through the Power Law, Equation 3.4. The opening his-
tory shown in Figure 4.4 is ‘'congruent' with the crack
front profile given in Figures 1.1 and 1.3. This is a

consequence of an assumption of a c¢onstant immediate
damage rate.
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Q (1-86)Q
I's = Smaxl1+(--=-)*Jg; - n8£1+(—~-——2—)‘°]cr.1 (4.25)
qghT ghT
Fe = Bﬂ&[1+(glé§929)“301 + (1-8)N8o, (4.26)
1 Q Q
Fe = G*§ﬂ8f2(1-sm)§lvl = G*08(1—Sm)icl (4.27)

Contribution 1.

Energy dissipation due to &min. Calculated as Smax con-
tribution minus NS contribution.

viTt)
|
Suax
ALTERNATING AG
OPENING
! $
Vs i MIN
]
0 5,2 Q ot
Figure 4.4. Opening history of a position

being penetrated by a crack.

The parameter, ¢, is a factor considering that the po-
sition x which is penetrated by the crack does not ex-
perience the maximum crack opening at once {(in which
case q = 1). For a parabolically increasing opening
history in a Power Law viscoelastic material q is de-
veloped in (3) as

g = [{1+b)(2+b)/2]* 7k (4.28)

The parameter, h, considers the crack closure phe-
nomenon by introducing a time shift in the creep func-
tion. For a Power Law material we get from Equations
4.16, 4.19 and 4.20

h = {1 - (1 - Bi=]lrdrk (4.29)

n = %c1 ~ H + Ny - (1 = H = A;)%)

(T/T)e+(1-B)% i
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where H is a factor derived in Appendix B considering
the state of maximum stress relaxation at the crack
front.

Contribution 2:

Energy dissipation due to the average of the alterna-

ting opening (on top of the the Smin)-

Contribution 3.

This contribution considers energy dissipation directly
produced by the opening alternation. The following vis-
coelastic amplification factor, G, on wave amplitude
(relative to elastic value) is obtained by Equation
4.24 introducing Power Law creep,

B¥(1-8)* - g=(1-8)*» T

= 1 4 ,eemecrmmcc e - - - - -y
G=1¢ 172728 <)
-y 4 o+ 2.2.B(T (as B -> ©.5) (4.30)
2 27T

Total dissipation:

The total energy dissipation is now given as follows
when N8 is introduced as given by Equation 4.9.

Q/
““““ = 1+{1 - 1(1'mew)x(1-5w)”(1‘Bh”)]('"z)b
Smmx 0y 2 h

G
+ 5(1‘waw)m(1*5m)(Q/T) (4.31)

or with 1-s. from Equation 4.7

&L ¢ Q/r
—————— = 1+£1 - -—___.(1_ ey 1- = LT
Smax0y 21k Pesrees ) ( Bh )J(qh )

GC 4= aQ/T
v g (1 Peee) ST (4.32)

With &max from Equation 4.4 and introducing the failure

criterion, Il = Nw~ from Equation 4.10 we get
1-KSLmax™® Ct= Q/T
_________ = C1 - ___._..(1_ g s S by - k> —-_—- )k
RSLn ppriete Prrprer ) (1-Bh )](qh )
GC Q/T
+ - - o g [ RSy .
8 (1 Pesp=pe ) T/ (4.33)

by which time to failure, Q, of the position considered
can be determined.

Over the same time the crack front has moved a distance
equal to the immediate crack front width, Ruax, given

32



Chapter 4: Fatigue Analyswsis

by Equation 4.3. Crack velocity is then given by dl/dt
= Rmax/Q which becomes

dk x® FL*

—_— = —— ma- * 2 .

3t 8 o K*SLmax (4.34)
introducing the damage ratio, k = 1/1a.

When Q is eliminated between Equation 4.33 and Equation

4.34 we get the following expression relating damage
rate to damage ratio,

1 ‘kSLmnx'.‘a d

_________ =22 kB o

ESLumx® dt T’

C® (1 -DPpeprpe ) =FH (4 -BhW = bt
(- —mmm- E&EL;T__S-_@__Z](E-EE_kSLMQXm)m
21“"'.....|.J q

RFCXGXFL*= dk
_________ kKSL ReA- a0 Dga Y- .
a(T/7) max™ (1= Pppepe ) (dt T) (4.35)
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Chapter S

Generalizations

Following the assumptions previously made Equation 4.35
is immediately wvalid for stretched materials with
widely separated cracks. From (16,11,14), however, may
be concluded that the practical applicability of the
expression is much broader. The following formulation
on how to generalize the lifetime analysis with respect

to multi-damage, arbitrary load ratio is reproduced
from (14).

Sel MULTI-DAMAGE SYSTEMS

A multi-crack system is considered with parallel, co-
linear arrays of identical cracks of length 21 and equ-

al center distance, 2b. Distance between crack arrays
is larger than 2b.

The expressions previously obtained on the basis of a
single-crack failure model can be generalized for the
multi~-crack situation just defined replacing strength
level and load level according to

FL =5 foFL and SL => f.8L (5.1)

where the interaction factors, f. and fi = fi(k), are
expressed by

1 €3\ oy -
[1 - (=€)ym3~1rz (5.2)

fc-” b

£

[fe®-(fo®-1)k=]rr (5.3)

where the damage ratio as usual is denoted by k. The
interaction factor f, 2 1 denotes how much stronger the

multi-damaged material considered would have been with
non-interacting damages (fo = 1).

The cgritical damage ratio at which damage rate ap-
proaches infinity becomes

1
Kepr = —=m=—- - L1 + 41 + 4 £,5(fu®-1)/SLmax®] (5.4)
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Se = ARBITRARY LOAD RATIO

The theory developed can be generalized to include ne-
gative load ratios by modifying the efficiency factor,
U, from Equation 4.6 such that

1

U= 01+ p+ (Fp= - p)U..] (5.5)

where the minimum efficiency factor, U(p=-1) = U is

considered to be a materials constant.

The factor H & p*-¥ considers maximum relaxation in the
time shift expression 4.2%9 at p 2 0. It is suggested
that negative load ratios can be considered introducing
H = © which means that negative load ratios are ex-
pected to cause permanent crack closure. Thus,

H » [E_:___ _._]:‘.:’:....J (5.6)
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Chapter oS

Application
of Fatigue Theory

kt.?ﬁ"l"

Coar = gi dk (6.1)

1

where Kkoar 1is the damage at which damage rate becomes
catastrophically high. The inverse damage rate, dt/dk,
is given by Equation 4.35.

It is noticed that Equation 6.1 does not include time
to start of damage propagation. This feature, however,
is of no practical importance. The centribution is very
small (14) - and it is safe ignoring it.

Reduced strength is a result of fatigue increasing
crack lengths. At the final failure situation strength
has been reduced to 0Our~(Ngar) = SLmax*0..~. During the
fatigue period the residual strength, our,~, o0f a
multi-damaged material can be predicted by the follow-
ing expression given in (14),

SE;::-,’: = cf‘f__:lzgg‘i’t:lzlf':]a/m = (f.4k)™? (6.2)
with interaction factors, f. and f;, as defined in
Equations 5.2 and 5.3. The special solution, Equation
4.11, applying to a single-damage situation is included
with f, = f, = 1. The time dependent damage ratio, k =

k(t), is known from the numerical integration of Equa-
tion &.1.

The residual critical stress intensity factor, Kee,r~,

varies according to Equation 2.6 with 1, replaced by
the increasing 1. Thus,

= faudl = (1/D)® = ¥fu® - (fuo®-1)%Kk= = f£,~1
(6.3)

SE': L0

Kr.: L

Ker /K- represents strength decrease due to a major
defect introduced after preconditioning. Strength de-
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crease of plain clear wood is still as predicted by
Equation &6.2.

& 2 NUMERICAL BASIS
! TYPE OF WOOD | MODE | FL (FL*) iLOGim(T,days)i
: ! tens(®) | fo¥FL & | 2 % 1 :
bending(©) i 1 £ 1 H
Clear wood compr(©) 1/3 : 0 + 1 §
tens(?0) i G * 1 :
tens(®) FL*/f. % | :
Struct. wood ibending(®) 176 -> 0 i 1 £ 1 :
compr(®) : :
Table 6.1. Estimates of strength level, FL, and relax-
ation time, 1. The interaction factor, f., defined in
Equation 2.3 has an order of magnitude 1 - 2. At in-
creasing localized failure in structural wood the esti-
mates approach the clear wood quantities. - Reference

climate (equil. at moisture content, u ® 15 %, and tem-
perature, T #® 20 <C). At a different equilibrium con-

dition relaxation time is multiplied by the factor, d =
19 CAEIRLd 73 vk (RT3 7AW

A numerical procedure for prediction of }lifetime,
residual strength  and residual critical stress inten-
sity factor 1is presented in Appendix C at the end of
the paper. A summary is given on expressions needed for
the analysis - and a FORTRAN program is generated con-
sidering multi-damaged materials subjected to fatigue
loads with arbitrary mean (incl. negative).

Results of this numerical analysis are given in subse-
quent sections of he article.

The estimates of appropriate strength levels and relax-
ation times are based on Table 6.1 where information
from Sections 2.1 and 3.2. are summarized. The program
is open for any choice of c¢reep power. However, for

wood a value of b = 0.25 is always used. This has been
justified previously.
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Other basic fatigue parameters needed for a fatigue
analysis of wood are the damage rate power, m, and the
damage rate constant, C. Theoretically we may introduce
any values for these parameters. However, to be consis-
tent with the elastic fatigue theory developed in (14)
we maintain from there (m,C) = (9 3).

Normally clear wood problems are considered by the
multi-damage theory. This means that the interaction
factor, f. (through f,;, see Equation 5.3), is continu-
ously integrated in the analysis.

Most often structural wood is sufficiently well consid-
ered by the more simple single-damage theory. Here the
interaction factor, f£., is used only for estimating
strength level. (If, for some reason, a multi-damage
analysis would be appropriate with major defects of
size 2L separated by a distance, 2B, then the interac-
tion factor in the calculational part of the program
given in Appendix C is given the value F, = (1 -
(L/B))™*“#, For estimating strength level FL*/f, in
Table 6.1 is replaced by FL*/(fu*Fg,)).

wood is not always denoted by FL* in the following.

When the meaning is evident from the text we only write
FL.

Useful controls on the results of lifetime calculations
are the following special results:

Deadload lifetime at load = maximum load:

Progressing damage, k, under dead-load at SL Slmax
(and the corresponding residual strength) is of in-
terest when evaluating the lower frequency results of a
fatigue analysisf The basic expression applying for

single-damaged materials is the following developed in
(3)

dk FL= v kSL=
dt -~ Wx7T [(1/(KkSL®=)-1)+-® (6.4)

The constant, W, is given by

W = (8/n®)L(1+b)(2+b) /2137 (6.5)
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Terlt) _ 4,0k (6.6)

lytically. We get the following expression relating
damage ratio and time,

-l -1 -
FL=® t = §;§[_1_§_ - _&SZ_E__)+
T SL=" 4sL® 3SL*
3(1-k™=) 4(1-k—*)
SL"‘ SL:'»! + loglﬁl(k)l (6-7)
Lifetime, tpmep, IS obtained by this expression intro-
ducing the critical damage ratio, K~ = 1/5L¥. We get

Coman 3.2 Y& Y= Y=
FL#® -=---= = === [=-=- - == + -- = - loge = .

o si= F2 3 > Y oge(SL*)1 (6.8)
with ¥ = 1/8L® - 1. Equation 6.8 is shown graphically
in Figure 6.1.

Equation 6.4 can be generalized to include multi-damage
systems applying a procedure suggested in Section 5.1.
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Figure 6.1. Deadload lifetime, tpean, at SL
Z SLmax, with creep power, b = ©.25, and high

frequency fatigue lifetime number of cycles
at m = 4 and 9.
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Progressing damage, k, under elastic fatigue (high fre-
quency loading) and the corresponding residual
strength) is of interest when evaluating the higher
frequency results of a fatigue analysis. The basic ex-
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pression applying for sgingle-damaged materials is the

dk n=C LU*ASL 1™
- = Y PL® ——-oo_Y2ooo ™Mo .
dN 64 1 - KkSLmax™ K (6.9

1
1
1
T
gy
B

where the efficiency factor, U, is given by Equation
5.5.

For a single crack situation Equation 6.9 can be solved
analytically giving the following relation between da-
mage ratio and number of cycles. The result is

C*FL? 13 1—kbﬂﬁfﬁ> 1-k%”ﬂ”ﬂ)

The residual strength is then given by Equation 6.6
above.

Fatigue lifetime number of g¢ygles, Noav, is obtained
introducing the critical damage rate, Ka. = 1/SL¥ 6 into
Equation 6.10. We get

Q.

Equation 6.9 can be generalized to include multi-damage
systems applying a procedure suggested in Section 5.1.

& e = EXrEmIMENTES AND THEORY

As far as high frequency loading concerns experimental
justification of the theory presented has already been
given in (14). The present section therefore concsntra-

tes on fatigue lifetimes at moderate and low load fre-
quencies.

The author only knows of one experimental work, namely
(1), where a gystematic examination has been made to
describe the fatigue phenomenon of wood as related to
load frequency. Small clear spruce specimens were sub-
jected to square wave loading parallel to grain at five
frequencies between 0.1 Hz and 10" Hz. A load ratio of

p = © was applied with a fractional time at maximum
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i}

load of B8 50 %. The results of (1) are shown in Fig-

ure &.2.
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Figure 6.2. Fatigue of spruce compressed
parallel to grain by square wave loading.
Load ratio is p = 0. Experimental data from

(1). Theoretical results (heavy 1lines) ob-
tained as explained in the main text. (The
figure is slightly different from the similar
figure 6.8 1in (14). This is because lifetime
in the latter figure ‘'counts' initiated cy-
cles).

The experimental data in Figure 6.2 are ‘predicted"
very well by the multi-damage theory presented in the
article with (p,B8) = (0,08.5) and FL = 0.15, f, = 1.5,

and 7 = 1 day where f *FL = 0.2 is estimated from Table
6.1.

It should, however, be mentioned that the results are
just as well described applying the single-damage the-
ory with (p,B8) = (0,08.5), FL*¥ = 0.4, and T = 1 day.
This means that we consider clear wood where one of the
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minor cracks has grown to a size (fex. 21 = 4 mm) such
that some average model between clear wood and struc-
tural wood would be appropriate. No information, how-
ever, is available which can explain the 'real' model.
(From Equation 2.8: FL*/f, #% 4(0.15/2) => FL* = 0.4
with f, ®% 1.5). The theoretical results shown in Figure
6.2 are based on the single-damage model.

Realizing that much more experimental data are needed
in the field of fatigue of wood the present author and
Borg Madsen designed a program for tensile fatigue
testing of small clear Douglas-Fir specimens perpendic-
ular to grain (radially). Data from sine wave and
square wave loading at arbitrary frequencies, f £ 1 Hz
should supplement the observations of Bach and in addi-
tion give information on the unknown influence on fa-

tigue of 1load ratio, p = SLmin/ SLmax, and fractional
time, B8, under maximum load.

The test specimens developed were small rectangular
specimens, (R,L,T) = 14%4%1.75 cm™, with a centrally
placed RL tunnel crack of length, 21 = 1 cm. Load is
transferred by wire to eye bolts attached to the center
of 4 mm steel plates glued to the specimen ends.

The test equipment designed for less than 0.1 Hz square
wvave experiments was based on the “multi-member rack"
previously developed by Borg Madsen et al. at the Uni-
versity of British Columbia (e.g. 6): A number of spec-
imens are suspended from mountings attached to the top
of a glulam bsam. Each specimen is loaded from below
through a wire attached at one end to the specimens
ayebolt and at the other snd to a lever arm whose ful-
crum is attached to the beam bottom. Load is controlled

fixing a weight to the appropriate location on the
lever arm.

In order to cope with arbitrary values of p and 8 the
multi-member rack was modified such that an up and down
moving table deactivates and activates respectively ac-
cording to a programmable time schedule the lower of
two lever arm weights suspended in series.

The 1 Hz sine load experiments (with variable p) were
planned to be run on a high precision, electronically
controlled fatigue apparatus (Bob Gray design).
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However, due to unforeseen difficulties in obtaining
financial support the project could not be completed as
planned. The only results obtained (29,36) are data
from pilot tests run to check the test set ups: 1) Sine

load fatigue at p =0, - 2) 0.001 Hz square wave fa-
tigue at (p,B) = (0,0.5), and - 3) deadload (in multi
member rack).
1 Slinax
FL = .25
1 Hz t=14

8 N\\::‘\\\ ‘\775::5\

~J N
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£ o105 \ 001 : ?é\fatlgue
6 N \\w Hz
S~ \‘ﬁ\\ .
4 1078z noo1 | B2
0 1 2 3 4 5 loq1 O(Ncat)
SL
1 rﬂEx
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Figure &6.3. Patigue 1lifetime and deadload

lifetime of Douglas-Fir loaded perpendicular
to grain with a load ratio of p = SLumin/SLmax
= 0. Experimental data from (2%,30,&). Heavy
lines are theoretical results obtained as ex-
plained in the main text.

Due to the lack of rescurces two featurses have to be
considered carefully when evaluating the results ob-
tained: 1) All experiments were related to strength
control data measured on the Bob Gray apparatus men-
tioned above, and 2) most experiments were started sev-
eral months after the control tests such that appropri-
ate references may have shifted somewhat due to cli-
matic changes (and storing conditions). These features
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will be commented on along with the following summary
of the results obtained:

The 1 Hz (sine) tests were made at omax = 1.96, 2.25
and 2.56 MPa. The respective number of cycles to fail-
ure were logim(Negarlits.d. = 4.2720.420193, 3.06x0.76
£201, and 2.22+1.220191 where sample size is given in

The 0.6001 Hz and deadload tests were made at Omax =
1.93 and 2.23 MPa. The respective number of cycles to

failure were logie(Necarlt s.d. = 1.92%1.210201 and ©.468
+0.910301. The deadload 1lifetimes were 10gia(toar,
hoursl)its.d. = 1.4410.930[20] and -0.41%1.73[281].

A strength control test (with the 10 mm crack) was made
(on the Bob Gray apparatus) with the result:; 0o~ =
2.95+s5.d.0.23 MPal311].

Preparation of all specimens, strength control, and
half of the upper load (omax = 2.56 MPa) sine tests
were made under normal room climatic conditions in the
winter time. The major part of the experiments, how-
avar, had to be postponed almost half a year. During
this period of time the reference strength decreased by
¥ 10 %. This is observed comparing the max. load sine
“"winter results'" with the "summer results'. 1/3 of the
latter were b.o.l. (broke on loading) results. None of
the "winter results' were b.o.l. data. The observation
that a strength reduction had occurred is supported by
a ‘''summer" strength control test giving O =
2.72x5.d4.0.23 MPal8]. The material for this control was
originally saved and intended for another purpose
{residual strength during a fatigue process). It was
preconditioned, before introducing the 1 cm crack, with
BO00 cycles to ® BB % of its (uncracked) strength - a
preconditioning which can be anticipated only to reduce
strength insignificantly.

A third indication that strength reduction had occurred
during the spring is found considering the max. load
deadload lifetime data. Here ® 20 % of the sample size
broke on 1loading. This indicate a #® 20 % reduction.
Probably, however, the extra 10 % is due to difference
in test equipment.
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Except for the 2.56 MPa 1 Hz result all data presented
in Figure 6.3 from (30,31) refer to stress levels based
on O, = 2.72 MPa (summer result). For the exception an

average, Ou- 2.84 MPa, of the winter and summer
strength is used.

Also shown in Figure 6.3 is a single 5*%10"% Hz result
(square wave load, B #% 1/3) and a single deadload re-
sult from tests by McDowal (&, exp- 4) on specimens
similar to those previously described. Hour glass
shapes, however, were used with neck width, 2b = 2.5
cm, and crack length, 21 = 0.6 cm. The tests were made
at o = 1.90 MPa with og-~ = 2.4720.20 MPalL17]. Average
fatigue lifetime of sample size 28: Logiu(Ngat+) ¥ 0.5.
Average deadload lifetime of sample size 27:
l1ogiw(tmay,hours) & 1.3.

The theoretical graphs of Figure 6.3 are obtained by
the single-damage theory presented in the article with
(p,8) = (0,0.5), FL¥ = 0.25, and r = 1 day. The latter
quantities are estimated from Table 6.1 considering the
test specimens as made of artificial structural wood:
FL*/f,, = 1/6 with f, = 1.5 and v from clear wood, ten-
sion perp. (The crack sizes used in the experiments are
not different enough practically to justify different
strength levels - and the crack length to specimen
width = 6.25 is not big enough practically to justify a
multi-damage analysis).

[ FATIOUE PREDICTIONS

Three examples will now be given on how we may predict
the influence of varying loads on 1) residual strength
in structural wood, 2) residual critical stress inten-

sity factor for clear wood, and 3) lifetime of struc-
tural wood.

The latter example considers three types of fatigue

loading: Tension with (p,B8) = (8,0.5), Peak tension
with (p,B8) = (0,0), Peak-released deadload tension with
(p,B) = (6,1) and reversed bending with (p,8) = (-1,
©0.5). -

Finally the threshold (or endurance limit) phenomenon
is discussed in a separate section.
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SeZe 1 RESIDUAL STRENGTH

Figure 6.4 shows some results of a residual strength
analysis of structural wood exposed to fatigue tension
with SLmax = 6.5, fractional time wunder loading, 8 =
©.5, and load ratio, p = 0. A single-damage model and
Equation 6.2 1is used for the analysis with a strength
level of FL¥*
days. (FL*/f.

©.25 and a relaxation time of T = 16
1/6 => FL¥*¥ = 0.25 with f, = 1.5).

/o

fum cr

107" Hz
m\

=104qa[p=0 .50-4-

.8 1
=tlt e

Figure 6.4. Residual strength of structural
wood exposed to tension fatigue. Predictions
as described in the main text.

The upper graph in Figure 6.4 applies for a frequency
of 10"*® Hz. The lower curve applies at 1 Hz - and prac-
tically for any frequency higher than that.

A residual strength expression valid for deadloading
has previously been developed by the author in (11,II).
It yields (with creep power, b = 0.25)

Tesr e o7 —~
==-i- ¥ ¥SL® + (1 - SL¥)(1 - [t/tpmapl)i” ™ (6.12)

Tozr

the results of which practically coincide with the 10"%
Hz graph in Figure 6.4.

[ NRESIDUAL CHRIT. STREDSS INTENDITY FATCTOR

Figure 6.5 demonstrates the influence on the critical

stress intensity factor, K.., of preconditioning clear
wood perpendicular to grain with a number of square
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wave load cycles with SLmax = ©0.55 and load ratio, p =
0. Relative time under maximum load is B = 0.5. A multi

damage model and Equation 6.3 is used with FL = 0.15,
fe, = 1.5, and v = 1 day.
Kc::',r/Kcr:
3
’ =] 107 1z
>1Hz\\\\\
.8
.61
-6 FL = .15 SL__ =.55
£ =1.5[ M@
o p=
T =1 d
4
0 .2 .4 .6 .8 1
M/Neae = /et
Figure 6.5. Residual critical stress inten-
sity factor of clear wood exposed to tension
fatigue perpendicular to grain. Predictions

as explained in main text.

It is noticed from Figure 6.5 that strength reduction
due to fatigue first becomes significant when half the
time to failure has past. This justifies the statement
previously made that no significant strength 1loss is
present after 5600 cycles at a load level of 0.55.

[~ LIFETIME ﬂé RELATED TO LOALD FREQUENDTCY

In the following examples 1lifetime is predicted for
structural wood loaded parallel to grain as defined by
various combinations of p and 8.

In general a strength level of FL*¥ = 0.25 (FL*/f. = 1/6

with fo. = 1.5) 1is assumed together with a relaxation
time of r = 10 days.

Tension with (p,.B8) = (0,0.5);

The results of a lifetime study for this case are shown
in Figures 6.6 and 6.7. In the former figure lifetime
is expressed by number of cycles to failure. 1In the
latter figure time to failure is given in real time.
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Figure 6.6. Number of cycles to failure in
structural wood subjected to a periodically
varying tensile 1load with (p,8) = (0,0.5). A
time to failure presentation of data is given
in Figure 6.7. Estimates indicated at SLuax =
0.? are explained in Section 6.3.4. Thin line
indicates a threshold (TH) on load level be-
low which no fatigue failure will ever occur;
see Section 6.3.5.
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Figure 6.7. Time to failure in structural
wood subjected to a periodically varying ten-
sile load with (p,8) = (0,0.5). A number of
cycles presentation of data is given in Fig-
ure 6.6.
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The thin lines theoretical data at SLmax = 0.9 indicate
deadload and elastic fatigue ‘'estimates'" by Equations
6.8 and 6.11 respectively. It is noticed that lifetime
at low frequencies only has increased insignificantly
relative to the one predicted at deadload. At higher
frequencies lifetime is practically equal to the elas-
tic fatigue 1lifetime. The transition area is approxi-
mately 4 decades wide. Somewhat dependent on load level
the center of transition is located at frequencies 107%
- 1 H=z.

Also shown 1in Figure 6.6 is a threshold estimate based
on a hypothesis explained later in Section 6.3.5.

Tension with (p,.B) = (6.1) and (8.0

These tensile loading types are very extreme. The for-
mer corresponds to ''peak-released deadload! (deadload
periodically released very shortly to ). The latter
denotes a periodic 'peak load! with 0 in between. Some
results of the analysis are shown in Figure 6.8.
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Figure 6.8. Number of cycles to failure in
structural wood subjected to a periodically
varying tensile 1load: a) Peak load, (p,8)
(6,0), and b) peak-released deadload, (p,8)
(6,1).

At low frequencies the peak released deadload lifetime
is slightly lower than deadload lifetime. Similar over-
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all trends, however, applies as for the lifetime de-
scription in Figure &.6.

At low frequencies the peak load lifetime is signifi-
cantly longer than the one applying for peak released
deadload. This is a result of a smaller effective creep
inducing load. (It should be mentioned that creep af-
fects are still present at peak load situations. They

are introduced indirectly by stress relaxation at the
crack front).

Reversed bending, (p.B) = (-1,8.5).

As an example this type of loading is obtained exposing
a rectangular beam to a moment which varies periodi-
cally between + and - M. The lifetime results are shown
in Pigurs 6.%9.

Similar lifetime trends are observed as in Figure &.6.
However, elastic fatigue lifetime is smaller, and the
transition center has shifted to lower frequencies

LogygNeae !
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Figure 6.9. Number of cycles to failure in

structural wood subjected to reversed bending
with (p,B) = (-1,0.5).

Se e ON ESTIMATES AND LIFETIME PFRESENTATION

. For 8 _> &% 0.4 a numerical evaluation of the lifetime
theory developed shows that lifetime diagrams for prac-
tice may be constructed very easily using the deadload
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failure solution, tpean, and elastic fatigue failure
solution, Neatr, expressed by Equations 6.8 and 6.11 re-
spectively. The method of construction is outlined be-
low -~ and to some extent illustrated in Figure 6.6 at
SLpax = 0.9.

The two straight lines are drawn representing deadload
failure and elastic fatigue failure. The intersection
point defines the center of an approximately 4 decades
wide transition area where lifetime goes from being in-
fluenced mainly by creep to be influenced primarily by
the elastic fatigue process. Lifetime in the transition
area is described by a straight line truncating symmet-
rically the intersection corner.

Real frequency used as independent variable is somewhat
inconvenient. A more adequate first axis unit would be
a dimensionless frequency, f = f#*71, producing a second
axis unit of dimensionless time, t = t/r. Following the
above considerations on lifetime prediction when 8 > &

0.4 we now get,

NUMBER OF CYCLES ESTIMATE:

Noar = £*¥tppan = (£X1)X (Lpman/T) = F*tpman ; (low £
Nea+ = Noar, e ; (high £)

In a log-log representation we get:

logie(Near) = l0gio(tpman) *+ 1l081a(f) ;(low £)

10810 (Neat) = 10810 Nomr ..

(6-13)
logiw(Near, ) ;¢high £)

Transition area is constructed as previously indicated
in this section.

TIME ESTIMATE:

toar = Noar,m/f = (Noav,mn*7)/(£%7) =D

towar = Near,emc/f ; (high £)
and

toatr = toman = T¥(Loman/T) =D

tooar = tpsen ;(low £)

In a log-log representation we get.:

logia(tuar) = logie(Noar,me.) - logia(f) ;(high £

6&.14)
logra(tpman) ;(low fg

Again the transition area is constructed as previously
indicated.
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It is important to notice that non-dimensional lifetime
representations according to the above considerations

practically make design Ngav-diagrams _independent of
relaxation time, 7.

We have not used non-dimensional data representation in
the examples of Section 6.3.3. Practically we therefore
have to shift the logiw(Necav) graphs presented 1 decade

to higher frequencies when «+ = 1 day 1in stead of 106
days.
EHeIJu. S THRESHOL D

There are many speculations on the existence of a
threshold on 1load alternation below which no fatigue
failure will ever occur in wood. No experimental evi-
dence, however, is present at the time being which sig-
nificantly supports the threshold idea. Thus, the fol-
lowing should be considered as an hypothesis which

gives a mechanistic explanation on the phenomenon if it
exists.

In (14) an expression was developed which predicts a
load range threshold below which no elastic fatigue
failure will ever occur. The expression is based on the
assumption that a crack will stop propagating if the
number of c¢ycles needed for propagating a distance
equal to the immediate crack front zone width, R, ex-
ceeds a certain critical number, N+., by which ‘cyclic
hardening' of the crack front material blunts any at-
tempt of further propagation.

For fatigue in general of viscoelastic materials we now
rephrase this c¢riterion such that a threshold state is
defined if the rate of predicted number of cycles to

failure, Noavr,mw, exceeds a critical value which is
given by its slastic counterpart determined in (14).
For (SLmax, SLmin) = (SL,®) this means that fatigue

failure will not occur if
“““““ = N(.‘Jr-\‘r v F-"'F'-(*SL:&' > N(:.r.\'r . ,}:(_.*SLT;..f‘E (6.158 )

where k.~ is the critical damage ratio given by Equa-
tion 4.2 and Nger,m.. 1S the elastic fatigue number of
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cycles to failure given by Equation 6.11 for the (elas-
tic) threshold load level, SLypw.

For example: For a tensile load variation we read from
(14, Section 6.5) SLyn ® 0.40 which corresponds to

Near,me. ® 107+ see Figure 6.6. Thus, by Equation 6.15
no fatigue failure occurs when

Near,ra*SLE > 10®-4 (6.16)

This criterion is indicated in Figure 6.6 by a thin li-
ne. We notice for example that a SL = 0.3 situation al-
ways provokes failure at frequencies, f < ® 197%-%¥ Hz.
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Cheapter 7

Conclusions
a2nd Final Remarkss

A DVM (Damaged Viscoelastic Materials) theory previ-
ously developed by the author applies well when pre-
dicting deadload 1lifetime of wood. This has been shown
in a number of articles.

A further developed DVM theory has recently (14) been
shown also to explain successfully existing experimen-
tal data on fatigue failure of wood at very high fre-
quencies (elastic fatiguse).

In a way two extremes of the fatigue mechanical behav-
ior of wood are hereby described; - 1) Extremsly low
frequency loading where creep of wood is the dominant
cause of time dependent break down of structure, and -
2) Extremely high frequency loading where creep has no
time to be of significance. The overriding strength re-
ducing effect in this frequency area is due to energy
dissipation produced by frequent tensile-compressive
alternating deformations of material close to damages.

In the present work these descriptions of wood mechani-
cal behavior are '"linked'" such that fatigue lifetime
can be predicted at more realistic load frequencies
where structural break down is a consequence of an in-
tegrated energy dissipation process inveolving both
~creep and crack closure effects. In addition to life-
time the theory also predicts residual quantities of
strength and critical stress intensity factor as a con-
saquence of progressing fatigue damage.

Very few tests are known which consider the influence
of creep on the fatigue lifetime of wood. Thus, at the
time being only a limited amount of experimental veri-
fication can be given of the theory presented. However,
strong supports for the theory are found in the 1 Hz
and 5%10™% Hz test data shown in Figures 6.2 and all
the data 1in Figure 6.3. (The discrepancy between theo-
retical data and the ©.001 Hz experimental results
shown in Figure 6.2 is probably due to a false refer-
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ence strength of the latter data. This has been com-
mented on in Section 6.2).

In general a lifetime and residual strength analysis by
the theory needs to be made on a computer. An excep-
tion, however, applies when load variations are consid-
ered with fractional time under maximum load, B > ® 40
%. For such cases lifetime graphs may be constructed
vary easily as shown in Section &.3.4. At low fregquen-
cies lifetimes are predicted only to differ insignifi-
cantly from deadload lifetimes (at SL = SLmax).

At decreasing fractional time under maximum load, B <
0.4, lifetimes become increasingly larger than the cor-
responding deadload lifetime. At the extreme peakload
situation, (p,B8) = (0,08), a factor of 18 is the order
of magnitude when frequency is f = 1 peak per 10 days.

When lifetime is known residual strength and residual
critical stress intensity factor at low frequency
loading can be estimated by Equation &.12.

7.1 FINAL REMARKS

It has been mentioned that only a few experimental
works are reported in the literature where a systematic
examination has been made of the influence of load fre-
quency on fatigue life of wood. The few references,
however, indicate without any doubt that such an influ-
ence exists and that it is strong. The present work
identifies creep being responsible for this behavior.

It is noticed from the figures of Section 6.3.3 that
low and moderate load frequencies, £ < 1 Hz, are of
special interest in the study of wood fatigue because
they characterize the area of transition from high fre-

quency, elastic fatigue to areas of strongly creep in-
fluenced fatigue failures.

Future experimental work on fatigue of wood must there-
fore include tests similar to those designed by the au-
thor and Borg Madsen (described in Section 6.2) - and
tests with positive-negative load variations should be
added. No sufficiently detailed understanding of the
failure mechanism of wood can be obtained without such
research.
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APPENDIX A

ON ORTHOTROPIC CRACK MECHANICS

DVERALL ByYysSTEM

We consider a crack in wood considered as a plane
isotropic material where the plane of orthotropy is a
cross-section perpendicular to grain. Any direction in
this section 1is referred to by subscript S. The normal
of the plane is parallel to grain and will be referred

to by subscript L.

Common subscripts in the literature on wood technology
are L, R and T meaning longitudinal, radial and tangen-
tial direction respectively referring te the real polar
symmetrically orthotropic structure of wood. The pro-
perties in the RT-plane (cross-section) can, however,
be averaged for most practical purposes. A very appro-
priate average is obtained by Xe = ¥(Xm*Xy) where Xm
and X+ symbolize corresponding elastic coefficients in
the radial and tangential direction respectively. Sub-
script '"S' represents the average quantity in this no-
te.

ELASTICITY

The following orders of magnitudes for the_elastic co-

RN IR ok =S SR

efficients of wood may be deduced from he literature
(e.g. 1):

Em/Ei. ® GLu/E. % 0.06 (softwood); ® 0.08 (hardwood)
Hies ® fees 8 0.4 (softwood); ® 0.5 (hardwood)

where index 1 on Young's modulus, E, refers to exten-

E]

sional stress in the i-direction. Index 1ij on Poison

ratio, u, refers to strain in j-direction for exten-
sional strain in the i-direction (Poison ratios are re-
lated by pus/Es = p4a/Ey). On  shear modulus, G, sub-

script ij refers to shear in the ij-plane.
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A derived elastic coefficient is the shear modulus,

Gmes /E,. = 511 % poe) (3% 0.62) (A.1)

Some examples of parallel to grain Young's moduli, E,_,
are (e.g. 2):

Softwoods: Spruce, Pine and Doug.-Fir have E_. =&
11506, 16060 and 146500 MPa respectively.

Hardwoods: Birch, Ash, Beech have E. & 16500, 146000
and 14000 MPa respectively.

CRACIK 8S8YSTEMS

The three crack systems shown in Figure 1 are consi-
dered: The SL-system, the LS-system, and the SS-system.
First system symbol refers to normal direction of crack
plane. The second symbol indicates direction of crack

extension.

Figure A.1. Plane isotropic material and
crack systems considered. For wood: L is di-
rection along the grain. S is any cross grain
direction. An IJ-crack has an I-directed
crack plane normal and extends in the J-di-
rection.

All three situations can be analyzed by the crack equa-
tions applying to isotropic materials. Only the Young's
modulus has to be replaced by an analogy modulus, Eana,
given as follows. Numbers in parenthesis refer to ave-

61



Appendix A1 On Orthotropic Crack Mechanics

rage elastic coefficients for wood as given in the pre-
ceding section. (The analogy moduli here presented are

from (3) where they were generated on the basis of
(4,5,6)).

SLL-CRACK —~ CRACK EXTENSION ALONG THE OGRAIN

Opening mode (Mode 1. plane stress):

With the following abbreviations

« = (Beoy1/4 SR 2.0) (A.2)
B
- VeBu_ _ Eg
B = Q(Ghm 2 e ) * E. (R 2.0) (A.3)

the analogy modulus for a SL-crack becomes

_____ . 6% .
e S s (% 1.6%XEgp) (A.4a)

Eana

]
2]
2
»*
R
»*
o

R 2E55*[<Eex/6|._m) + 24{Ew/E. 12 7= (A.4b)

where the latter expression applies at G.e << E. (which
iz the case for wood).

Sliding mode (Mode II):

Eama = E. X% é *};-g*‘ ; (R B.4%E,.) (A.Ba)

¥ 2E.*{Ews/E . *[(Es/G.s) + 27Es/E_1"*“® (A.5b)

where the latter expression applies at Gue << E. (which
iz the case for wood).

Tearing mode (mode III).

- - -

Eomnem = 2%4 G esGeses ; (B 1.2%G e ) (A.8)

L8—-CRACK - CRACK EXTENSION FPERF. TO GBRAIN

Strictly speaking this system is rarely relevant for
wood because the orthotropic strength distribution in
this material does not allow cracks crossing grain ex-
cept at impact lcoading. An apparent LS-crack in wood is
mostly a result of fibers (or bundles of fibers) being
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pulled out by local shear failures leaving a rough "LS"
failure surface.

Opening mode (Mode I, plane stress):

- -

Eane = E* é *}?-—-— ; (B B.41%E.) (A.7a)

EQNIC\ A 2EL*IEEB/EL.*E(E:15/GL,93) + 2'{Em/E|_']”1/:e (A.7b)

where the latter expression applies at GLe << E_. (which
is the case for wood).

Siiding mode (Mode II).

—— - -

Eana = Em*d*}q"‘- ; (R 1.6%Ep) (A.8a)

- o -

Eone 3 2Ex*[(Em/Gls) + 2/Eg/E 17172 (A.8b)

where the latter expression applies at G.s << E_ (which
iz the case for wood).

Tearing mode (mode III).:

Eoma = 2%/ G sGues s (R 1.2%G_g) (A.9)

The similarity between the SL-crack system and the LS-
system should be noticed. Only the mode I and mode II
expressions have been interchanged.

Ss-CorACK  — CRACK EXTENDIION SIDEWAYS TO OMAIMN

Opening mode (Mode I, plane stress):

Enmn = Egg; (A-10)
Sliding mode (Mode 11).

Eamem = Em (A.11)

Tearing mode (mode III).:

Eamm = 2GLe (A.12)

CRACK PARAMETERS

Two parameters are of special interest when loocking at
materials failure: The strain energy release rate, T

]
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and the gtress intensity factor, K. The two quantities
are related by

T = Km/EnNm <A.13)

Failure occurs when I' (and K) approach their critical
values,

Fer = Ker®/Eane (A.14)

Every crack system and failure mode is associated with
a characteristic crack parameter.

There is only a very limited amount of comparable (test
methods and climatic conditions) data on crack parame-
ters in the literature of wood science. Some orders of

magnitudes, however, can be estimated on the basis of
(7) for example:

Kx,mr ® 300 - 6600 kPavm
KII.mﬁ & S*Kx,ur

Cracks ‘'crossing grain'' (LS-system):

Ki,:rr ® 10 times the SL- and SS quantities

Data given 1in the literature considering cracks cross-
ing grain (LS-systems) especially are very scattered.
This is probably a result of the phenomenon previously
mentioned that cracks in wood rarely cross grain in a

direct way, meaning that test results are difficult to
interpret.

EXAMPLES

EXAMPLE 1.

A Mode I test on a SL-crack system in Douglas-Fir re-
veals a critical stress intensity factor, Kg.- = 400
kPa¥m. Also given by test is a Young's modulus, Ee =
1000 MPa. What is the corresponding critical strain en-
ergy release rate, le.~?. The answer is obtained by

Equations A.4a and A.14. We get
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r‘(:-‘"" % Kc::l‘"z/(".éE!f_l;) ) (A015)
= 1000 J/m*=

which is the energy applied in the process of a 1 m ex-
tansion of the SL-crack considered.

For comparison: When a !'LS-crack' system is considered

in mode I with K., = 40060 kPavm and E_ = 16500 MPa the
result becomes lur = Ker™/(0.4E.) = 2500 J/m™.

EXAMPLE 2.

The crack opening displacement (COD), &, of a mode I
crack in an isotropic material (with Young's modulus E)
is given by

o
§ = Eo: 1 (A.16)

where ¢ 1is lcad and o¢; is theoretical strength. Crack
(half)length is 1.

Introducing the failure condition, § => 8., strain e-

nergy release rate, I' = §0,, becomes critical at e~ =

S«r0; such that Equation A.16 now predicts strength,
Oer., of the cracked material. We get

ECe.

T = }" =

nf (A.17)

In wood with a SL-crack system COD is given by Equation

A.16 replacing E with Eanm ¥ 1.6%Eg from Equation A.4a.
e get

8 ¥ 0.6 =~~~ 1 (A.18)

where 8x and 0, ,ws denote COD and theoretical strength
respectively in the S-direction. Strength in the same
direction, 0Ou-,wm, is predicted by

Oor,e 8 1.3% ——-i—lg (A.19)

with critical strain energy release rate in the S5-di-
rection, lew,s = Sur ,w¥01 ,e.

EXAMPLE 3:

frerriete oot R T Y

We consider a SL-crack in wood. How does the crack
opening displacement, COD, develop with time when the
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viscoelasticity is characterized by the following creep
functions,

Cx(t) = 1 + (E-)1/4 (A.20)
Tx A

where t is time and 7v; (i = L,S,LS) is relaxation time
as estimated from the following table reproduced from
the main text of the article;

wenss

: LOAD LOGiw(r,days)

tension, par.
compress. par. |
shear, par.

tension, perp.

N WO
+ I+
- -

Opening mode (mode I, plane stress):

The time dependent COD is determined by Equation A.16
replacing 1/E with (1/Eane)*Cana(t) where Cana(t) is
the composite creep function obtained by Equation A.4b

replacing 1/Eone  with (1/Eana)*Cama(t) and any 1/E;x
with (1/E;)*Cy(t).

For Ew/E. % G.s/E. % 0.06 and relaxation times given by
the table given above we get (for both compression and
tension quantities of T

E__y1/4

(ST o )

Camam(t) &8 1 + (; (A.21)

with
Logim(Tanm,days) & 2.5 (A.22)

by which the time dependent COD is determined as indi-
catead above.

Sliding mode (meode II).

A similar procedure applies for the mode II situation.
By means of Equation A.5b we get a creep function simi-
lar to the one described by Egquation A.21. The relax-
ation time, however, is dependent whether the compres-
sion- or the tensile T quantity is used. lWe get
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Logiw(Tanm,days) &% 2.9 (compression) (A.23)
Logiw(Tanam,days) & 4.5 (tension) (A.24)

The (loglaverage may be estimated for bending. This
means

Logia(Tanm,days) & 3.7 (bending) (A.25)

The results obtained above are summarized in Table A.1.
It should be emphasized that the quantities given are
based on linear crack analysis. In practice smaller
values apply at the highly stressed crack tips. An em-
pirical modification considering this feature is pre-
sented in the main text of the paper.

§ LOAD § LOGiaw(Tama,d)
H tens 4.5 £ 1.0
isliding: bend 3.7 £ 1.0
g compr 2.2 * 1.0
: opening 2.5 £ 1.0
Table A.1. Crack opening relaxation times

for SL cracks in clear wood considered as a
perfectly elastic material.
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AFPPENDIX B

ON VISCOELASTIC CRACK CLOSURE

Ssoore

The scope of this appendix is to demonstrate that it is
possible to construct an elastic crack closure situa-
tion which - by the elastic-viscoelastic analogy - pro-
duces a viscoelastic counterpart with a “locked' crack
front. This means that the front of a crack in a vis-
coelastic material is invariable for some time after a
load reduction. In other words, the relaxation of co-
herent stresses is considered at a locked crack front
in a viscoslastic material.

As a special case the presnet analysis includes the
@lastic crack closure phenomenon first considered by
Rice (1). The results obtained do not agree totally
with the results of Rice. This is due mainly to a dif-
ferent assumption of the coherent stress distribution
at the crack front - and slightly to an approximate
crack opening expression introduced 1in the analysis.
Howaver, no differences of principal and practical im-
portance are observed.

The latter remarks are made in order not to compare too
rigorously single results from this appendix with sin-
gle results from the main text of the present article
which, to some extent, is based on the results of Rice.

The present analysis assumes (like the Rice analysis)
that no crack surface contact is present outside the
crack front area.

ANAL YSIS

We consider a crack centrally placed in an infinite 1li-
near-viscoelastic sheet uniformly loaded at infinity
perpendicular to the crack plane. A model of such a
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crack is shown in Figure B.1 together with some symbols
and definitions often referred to in the subsequent
text.

The load, o, varies from a maximum of Omax tO & minimum

p = O/ Opmx (B.1)>

He assume that crack tip coherence is due to pulled out
material exhibiting stiff, perfectly plastic behavior
with yield stresses to,.

The crack front opening (see Figure B.1) is invariable
for some time after lcad reduction. The pulled out ma-
terial locks for further deformation until the coherent
stresses have relaxed beyond consistency with a
“"frozen'" crack front.

The statement of an invariable crack opening can be
looked upon applying the elastic-viscoelastic analogy
which relates corresponding elastic solutions and vis-
coelastic solutions. For the present problem it is ap-
propriate to formulate the analogy by

[t
dv
Vyzeo = |C(t - 8) == d6 (B.2)
e de

where t is a time and C(t) is the normalized creep
function of the viscoelastic material (Young's modulus,
E, times the real creep function, c(t)). Vurmec is vis-
coelastic crack opening considered while v is its coun-
terpart in an exact elastic duplicate of the vis-

coelastic crack problem (Young's modulus, load, time,
length and coherent stresses at the crack front).

As long as we have a frozen crack opening Equation B.2
reduces as follows,

[t
dv
Voreme = JC(t - 8) an de = Constant (B.3)
-0

This relation forms the basis of the present analysis
the primary scope of which is to get an idea of what
coherent stresses are associated with viscoelastic
crack closure - and when does a closed crack start ope-
ning again.
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Three principal steps are involved in the analysis (not
necessarily considered in the following order):

1) An elastic analysis of relations in general between
crack tip deformation and state of coherence.

2) A sorting out of deformations which are consistent
with Equation B.3. The time at which the crack starts

opening again 1is given when consistency cannot be
found.

3) The latter step automatically produces the coherent

stresses (as they are identical with the elastically
determined stresses).

e — —
v §
g(s)
¢
1
S
0 So
O
Figure B.1. Crack front. Relative location
coordinate is s such that s = 1 corresponds

to crack front width, R. Stress of coherence,
g(s). Crack opening, v{(s). Front opening, §.

The following ‘'elastic'" equations relating crack front
shape to external load and internal stress of coheren-
ce, can be established using the crack theory of Baren-
blatt (2) for example:

The width, R, of the crack front is given by
f1

drl] (B.4)
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where K is the stress intensity factor and g(s) is
stress of coherence as a function of the relative loca-
tion coordinate, s, defined in Figure B.1.

The crack opening is given by
V = Vy + V. (B-S)

where v+ and v: expressed below are opening components
produced by external load and internal load, g(s), re-
spectively

_ BRI _gl(1)_ _ 8K |Rs
Vv = SE[7¢r/8) 9T = TE oz (B.&)
©
[1
4R 1+f(T/S)‘
- = e X1 | m—m—a 22 .
Vi »E gir) logm|1_f(7/5) dr (B.7)
10}

No special distribution of g(s) is presumed in Equa-
tions B.4 - B.5. For simplicity, however, the step dis-
tribution shown in Pigure B.1 is assumed in the present
analysis: From the crack tip to s = s, we have g(s)
g+ and from s = S» to the crack front we have g(s)

ow. It is assumed that both lo+! and lowxl are less than
or equal to o, .

-

REFERENCE STATE:s MAXIMUM LOAD

The reference state is defined by ¢ = Omax and o+ = O
= U3 .. The stress intensity factor is expressed by

Krmax = Omaxd (nl) (B.8)

Equations B.4 - B.7 give us the following well-known
expressions for the reference crack front shape,

Re _ % Omex,2 :
1 = 5 ( o1 ) (B.?)
Smonx T OMax™

1 = E "o, (B.10)

The reference crack opening in general can is described
by
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Yoo o r(s) (B.11)

SMQX

where f(s) = 0 at s < 0 and

T AR

fs 2

1 1+
- - - - - . > .
f(s) is (1 s)logm(1 7 ) ,(S 2 0) (B.12a)

1}

for which the following features exist (3,4)

£(s) = 245 - s*£(1/s) (B.12b)
s at s £ 1
¥ L oors - 1/s at s > 1 (B.12¢c)

CLOBURE STATE:s MINIMUM LOAD

The following crack opening expressions are obtained
solving Equations B.4 - B.7 with the simple coherent
stress distribution shown in Figure B.1,

A Y YO isa(p - 2Zyxg(E-) (B.13a)
S x [+ 2} T T
cgf + E-:-ngéglzlxs?
LB | S
v 42 wm/z
5o R (L - 5= + (p - Iy 2vs - Z2ili, (B.13b)
My O3 Oy s
e 1 g o
TC(2vs - =) + (p - S¥)(2fs - 2T-10)
T S O =3

The approximate expressions apply at s £ Sw, Sw < 8 £ 1
and 1 < s respectively.

Equations B.13 apply, of course, only as long as non-
negative values are predicted. Concentrating on the ap-
proximates Expression B.13b this means

Tr < ____Po___ (B.14)

(s 2} 1 - sc,-."!: P

which always applies when ow/0, < p. When o~/0, > p and
gw/01 is related to s, as given by the equality of Ex-
pression B.14 a crack opening of v = 0 is predicted at
s & Sa-.

The following relations between coherent stresses at
the crack tip and crack front,

Ie = pPr(or/01)iss or or _ Pr{1-¥Sw)(or/0ay) (B.15)
[+ 1-¥Se (12} o Ses
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Appendix B: On Viscowlastic Crack Closure

ensure a c¢onstant front zone width equal to the refe-
rence dquantity, R.,, expressed by Equation B.9%.

It is noticed from Equations 12 that v/8mex ~> 2pis as
s -> ® jrrespective of ow~/0; and s.. This means that

B ey

the present analysis theoretically is valid only when p

z 0. (No forces are considered on the crack surface at
s > 1).
The crack front opening, & at s = 1, in particular is
given by

& O O £f(S)

o= o= == 4+ - ==)(2 - ===%== (B.16a)

Ermmx O ‘p 0y ¢ ¥ Seca )

B 2T 4+ (p - TE)(2 - 5,FR) (B.16b)
T O

The opening at s = S. where the stress of coherence

changes discontinuously is given by

( L] ol =
vige) _ % pegy v (p - Z%yval (B.17b)
Srnax 1 O
x 2F Sw® + (p - gf)*(;; (B.17b)
B Ox

Reference crack closure state: o = =1

*
6-/6MAX

1? S,
.8

.6 /’///,
/

.4
.2
-
0 .2 .4 .6 .8 P
Figure B.2. Reference crack closure front o-
pening, &%.

Of special interest is the location, S = sSo*, below
which the c¢rack opening remains a constant during load
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Appendix Ba On Viscowlastic Crack Closurs

reduction with a maximum compressive coherent stress of

T = ~03. We get from Equation B.13b
+
So* & (i_éﬁg)m/m (B.18)
giving
- s ; (O<s<s.)
————n (B.19)
Srenx

?

(1 + py(ads - 1-2By - o= . (gu<s<1)
2s
The crack front opening

_____ N 1 (1 + 2p - pm) (B.20©)

iz shown graphically in Figure B.2.

The coherent stress, or+*, 1is obtained from Equation.
B.15 with s. = so* from Equation B.18. We get

b 3
or7 = 2(1_:_9)m/$ -1 (B.21)
T, 2

POy 2 Gp > —g,.

From the reference closure state the coherent stresses
will start relaxing. This means that o will increase
from o = -03. It is noticed from Equation B.14 that
any S is permissible as long as ow/0;, < p.

The following Equations apply especially for s, = s.*
as expressed by Equation B.18.

(I . o E_%_égffglljxsf ; (B€8%8,)
32__ o {Uat . P (B.22)
M =Us® + (p - 2T)(24s - =-B) ;(s.<s51
03 T3
with
& 1 O
Sl -p) - (1-pry2=; (B.23)
Srmenx 2[P(3 P’ ¢ p)VI

The coherent stress, o+, is given by Equation B.15 with

S = S,

The special choice of s. applied above means that the
zone of compressive coherent stresses is considered
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Appundix Bi1 OUn Viscoslastic Crack Closure

constant. At least for the introductory relaxation
state this statement is plausible.

O 2. P93
At o~ = po; Equation B.13b reduces as follows
V —
_____ k] p*S’"" (8-24)
SMQX
with § = p&dmmx. Equation B.15 predicts the coherent

stresses to be uniformly distributed with

Or O

Gr = oo =P (B.25)

O 2. DPOa;:

As indicated previously some restrictions apply on o
in this area. The locations, s £ s» at which v = 6 is
given by Equation B.14. We get

Se % (1 - __E-_)m/w (B.26)
Uw/U;

which produces

v 0] ; (S5S)
Srmx %L o o p-{ow/01) (B-27
rMAx g - oF a8l 2y <
U;s +(p Ul)(ZIS * s(Ow/0,) ) ’<SQ<S—1)
with
& T O P
2. x =€ 4 1 --E-- (B.28
Sramx 0y (01 p)¢ * leal) )

at a coherent stress, oy, of

IT = Irpg - (4 - --Booymemy (B.29)
Ty T UW/Ul
At s5» greater than expressed by Equation B.26 positive
crack openings are predicted by Equation B.13b for any
5.

For o= > po, it is plausible to think of a relaxation
mechanism which acts mainly by expansion of a zone of
maximum tensile coherent stress, o+~ = 0. The expansion
will start, corresponding to s = 1, and end as given
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Appendix B: On Viscoelastic Crack Closure

by Equation B.26 with ow/0; = 1. For the special case
of o~ = 0, wWwe get from Equations B.13b and B.15

(1 - 1-Z_Byxg=

v R
Sraex v == PP (B.306)
e 5% - (1 - p)X(24s - —g——)
with
S w4 - eq .
Srmnx ! 1 p)(2 - 857 ) (B.31)
o =1 - 1?;' (B.32)
L <3
1 8/8yax oF/cL °T/°r. S
1 |
P=20.5 / §*/§ -1.0 |0.65 83
3 ‘ I ¥AX : : :
i s, = s« A 3
4 - 5
] DUF = g ’] /4 25 8 8
’/
o ]/u s0 | .s0 | -
a ) 1.00 | .44 .80
» A .
/ﬂﬂ ﬁ \//“guofdmx 1.00 | .37 |.63
.2 el .
|
M/ { { s
° 2 4 -6 S, enp-® 1
Figure B.3. Shape of crack front as related
g P

to coherent stress relaxation after crack
closure with p = 6.5.

End state

.
................................... Les

The end state of relaxation is defined by o = ¢, and
S T Sw,mnp B (1 - p)RoE (B.33)
From the preceding section we get

== a { 1- (B.34)
s¥ - (1 - p)(24/s - -;9) ; (Su<s=1)

with
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Sewn a p= (B.35)

SM@X

at a coherent stress of
SIENB 4 4 - (1 - pymsm | (B.36)
b A

It is noticed from comparing Equations B.18 and B.33

that So,enp < So* and Se,enp > So* at p > 1/3 and p <

1/3 respectively. At p = 1/3 we have So,mnp = So*.

DEDUCTIONS

Two states of relaxation are identified in the preced-

ing section. They are demonstrated in Figure B.3 con-
sidering a load ratio of p = 0.5:

State 1: For o~ < poi. the elastic crack front shapes
are approximately congruent - meaning that the whole
crack front in this area can be given a time history
such that a !'frozen' viscoelastic shape can be pre-
dicted by Equation B.3. (A closing viscoelastic ‘'ope-
ning" trend is not possible as this would implicate
negative yield in s < s).

State 2: At o~ > po, the elastic openings for s <
Sw,emnm C8n still be considered practically congruent.
For s > So,e~np, however, they can not. This means that
the latter area in the viscoelastic c¢rack will now
start opening. A tensile flow zone (0;,) will spread
froms =1 towards S = Sw,mnn- At this stage no crack

closure effects are left to reduce crack opening of the
viscoelastic crack.

In other words: A lower bound on relaxation is ap-
proached at the crack front which is comparable with
crack opening under minimum load. We summarize,

0 = Omim (B.37)
Renn = (1-Sa,enp ) ¥R = L1=-(1-p)* ™= ]J%kR,, (B.38)
Senn = PHFEmax (B.39)
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Appeandix B3 On Viscoelastic Crack Closure

AVERASING

Two crack front widths are relevant when considering
crack propagation in materials subjected to square wave
loading: The reference width, R., applying at omax as
expressed by Equation B.? - and the smaller width,

Runp, given by Equation B.38 applying at the end of to-
tal relaxation.

R and Rpmno become relevant at long times at maximum
load and minimum leoad respectively. However, in order
to simplify «calculations the maximum front width, Ro,
will always be the one referred to.

This means that the relaxation end state previously
considered has to be appropriately modified: We intro-
duce a figtitious end opening,

Venn  rror = H¥SmaxXs™ (B.40)

referring to Rw which produce the same rate of crack
propagation as the real end state would predict. The
parameter, H, is determined in the following way:

A viscoelastic material like wood is considered with
Power Law creep, C(t) = 1 + (t/7)*“% where t, C, and

mean time, normalized creep function, and relaxation
time respectively.

From (5) may be derived that a crack (with coherent
stress E ;) extends its length by a distance equal to
the immediate front zone width (R) in a period of time,
Q, determined by

Q = 3%7(8./8 - 1)4 (B.41)
where
8 bl
g—- = K*SL* (B.42)
As usual load level is denoted by SL = 0/0.~ wWhere o is
load and 0.~ is strength. The damage ratio is kK = 1/l

= crack length considered/initial crack length. The so-

called critical crack opening displacement (COD) is de-
noted by S8, .

Considering now the real end state situation

Qumpy = 3T*(-ZS=-- - 1)~ (B.43)
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involving a rate of propagation

dk _ Remp _ 1-Se,ewp Ser

i _ 1Sesenp [ Ser_ _ a
dt Qezpaxs 37 (pﬁgmﬁx 1) (B.44)

In a similar way we get

dk _Re _ 1 Ser

- - = - - - .- -— Py 3 .
dt = Qw 37 (H*Smnx 1 (B.45)

considering the fictitious end state.

Equations B.44, B.45, and B.42 together with B.33 pro-
duce

H= -=-=-- Zroo—--— TR s e m - — -4
1 = PFKSLmax®{1-[1-(1-p)=/=J1rra) (B.46a)

or

A wermmmm e e c e — - Y b ] .
H 1 - p?( 1 —fp)kSLmnxm p (B 46b)

where the latter approximation applies because 0 <
kSLmax® £ 1 and © £ p £ 1.

It should be emphasized that the introduction of a fic-
titious end state is only a "“trick" to facilitate life-
time calculations of square wave loaded materials by
always referring to the maximum crack front width, Rg.
With a constant coherent stress of size o, the fictiti-
ous end state is not a state at equlibrium.

Practically the considerations above are used in the
main text of the article to simplify calculations by
stating the following approximation: A closed viscoela-
stic crack starts opening whgnbthe associated elastic
crack front opening, 8§, has relaxed to HXSmax.

Considering the approximate nature of the problem it is
@easily checked by Equation B.20 that we may as well
state that the opening process just mentioned starts
when the associated elastic crack front opening, &, has
relaxed to H*8* where &* is the reference crack closure
front opening shown in Figure B.2.

It has been indicated in the introductory to this ap-
pendix that the results here obtained are subjected to
some modifications (a.o. considering crack surface con-

tact at s > 1) when used to predict lifetime of real
materials.
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The parameter, H, however, is anticipated to apply

without modification because it represents total relax-
ation.
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APPENDIX C

NUMERICAL LIFETIME ANALYSIS

This section outlines a numerical lifetime analysis ba-

sed on the theory given in the main text of the arti-
cle.

Equations previously developed in the article are 'sor-

ted" and presented in a way which is appropriate for
computer calculation.

A FORTRAN program following the principles of the

"flow' presented below is given in the subsequent sec-
tion.

NUMERICAL METHOD

For the purpose of calculating damage rate we rewrite
Equation 4.35 as follows

Y = AxX* + BxX - D = 0@ (C.1)
where the inverse damage rate is denoted by

X = dt/dk (C.2)

The parameters, A, B and D, have been evaluated obser-

ving the generalization procedure considered in Section
5.

An equation, Y = Y(X) = 0, can be solved using the New-
ton iteration method, '

- - Y Xoup)
X = Xown (3¥73%) % . orm (C.6)

where Xo.n» is an estimate. In the present context,

A%X B 4+ RX -
Xvmw = Xown - “‘QEE“—‘E'KQEB“"—Q (C.7)

from which X = dt/dk is determined by iteration.

Subsequently damage as a function of time, k = k(t), is
given by summation - and residual strength, o..-(t), as
described in Section 5.
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Creep power

Relaxation time

Strength level

Interaction factor

Lower efficient coefficient

Maximum load level

Load ratio

Load frequency

Relative time under maximum

Damage rate power
Damage rate constant

DERIVED CONSTANTS:

load

WHave period.

T = 1/f

Shift factors:

LB R e SRR R S R A

q = [(1+*b)(2+b)/2]2®
h = 01 - A%x(1 - B)»]J-irw
with
n = %u -~ H+ Ny - 4(1 = H - ;@)
n SR Sl -
* (T/T)e+(1-8)F
H & [E-__'.I..SE?)]*'.@
Amplification factor:
B2(1-8)7 - _8%(1-8)" T,,
G=1- 1 -728 <
-— g-:-? T_ [ -
> 1 + 5 (27) (as B -> 6.5)

Efficiency factor:

[1 + p + (FP® - plU..]
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Appundix Ci1 Numerical lifetime Analysis

Critical damage ratio:

Damage increment for summation:

Nk = K /1006 (for example)

FL => f.FL

CALCULATION

t (= © at start)
k (=1 at start)
X = dt/dk (estimate X = 10 f.ex. at start)

f1 = [(Fu®-(fu®-1)kR]~2rm
SLmax =2 £1SLmax
Pererr = 1 = L[(1-pPIUIM/*[SLuax k] M/ a1

C® (1 -Pepp )=+ (1-8h® ) T#FL*=

A

=CAGRFLE
B = E """"" Eg"(1‘mew)“kSngxw

@
D = ~«—=mmaal 2=.

Rrbedindonsirarioe N

if(abs(1-Xown/Xumw) . g6.0.001) goto LABEL 3
if(Xuew-8.0) X = Xuew

if(XNEﬁw-le-e) X = Xowp/2
goto LABEL 2

LABEL 32

N = t/T

Ter (N = cfff_:_SEQ?ZZZETJJ/z
0’._-;:,«~ k

WRITE k, t, N, Oum(N)/0u.

01 = =--mmesmm e D JR(m—==— kSLmax™)t=
q
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Calculate time, t, and damage ratio,k;
Nt = X*nNk
t =t + Nt
k = k + Nk

if(kk.gt.ke) goto LABEL 4
goto LABEL 1

FORTRAN FPROGRAM

The FORTRAN program presented below follows in princip-
les the outlines given in the preceding section.

Qutput data are: Fatigue-life (time and load cycles to
failure), relative residual strength, and relative

critical stress intensity factor as a function of pro-
gressing fatigue.

The program also calculates dead-load lifetime, tawada,
at SL = SLmax (and corresponding residual strength)
which is of interest when evaluating the lower fre-
quency results of the fatigue analysis. The expressions
neaeded for this purpose are given in Section &.1.

rFROGRAM

R R E R R R R R R R R R RS RN R RN AR R R A F R RN IE SRS SRS FRSRSRRRIRERIRES
Ct PROGRAM NAME: VIB-FAT.FOR (Viscoslastic Fatigus) ]
R IR F SRR R IR R R PR R RN R R R R R R R R R R R R E R R AR SRR R PRI R R EENEERRNSERELERE
C¥ LIFETIME OF BUQUARE-WAVE LOADED, MULTI-DAMASED VISCOELABTIC MATERIALS
C® AB A FUNCTION OFs 1) MAX LOAD, 2) MIN/MAX LODAD, ) FREQUENCY, AND 4}
C¥ RELATIVE TIME UNDER MAX LDAD <~ RELATIVE REDUCTIONS OF STRENBTH AND
Cx CRITICAL STRESS INTENSITY FACTOR (LONG CRACKS) ARE INCLUDED AS FUNC~
CX TIONS OF PROBRESSIVE FATIGUE - ALSO INCLUDED I8 DEADLOAD LIFETIME
C% AT LOAD CONSTANTLY AT MAXINUM {(July 13, 1987, L. Fuglsang Nislsen)

(2332222332 22 2R 2 222 22222222322 2223222222222 2322323222 223223323¢3223 3]
c

N N W M Mn

implicit real (a~h;k-z),integeri{i~3)

integer ocut

dimension #£(13) nnimaxi{?)}
€ INPUT DATA ZSXEESRXEERERESERERESEESEISEESRSSETRTRTERTLE
c Meaning of symbols: See Format 200 SXEETEFEIRELE

data h/0.28/,tau/1.000/,§1/0,.18/,f0/1.8500/,umin/0,403/,

$p/0.000/4bwta/0.80/,

Em/9.00/,c/3.00/,

¥inerk/808/ incrout /367

pim3. 14109

sslmax (1)=0,8%

selman(2)=d,4
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salmax(3)n0.7
sulmax (4)=0,8
salmax(S)=0,88
unlimax (6)m0,9
selmax(7)=0.98
ff({l)=3, w10
ff({2)=1,0-0
(3=l . n-8
ff(4)mi, u~4
(S wi,0~2
ffloimi,0-1
f£(71m1,
ff(8)ml, @+)
$#(F)=],0+2
fE(10)m]l 0+4
LEZR R RO LT Y
ff(12)ml.u+8
fH{13)=l.e+10

DERIVED CONSBTANTS KEFRSRSERERENERERSIRERRCLSRRELRRREEERR

flaff=tossfl

TEXEXEERTERRR

q ={{1.+D)XC2,.+b)/2,)85¢1./D)
EXREFERREEXRXRERFESEREIRTRNEX
us0,8%{1.+p+{abasi{pl=~p)Xumin)

(222222 222223228223 22322333

BELECT LOAD, Simax., Calculate critical dasage ratio XS¥SEXEES

do & 1iim1,
simaxmswlimax{iii)

kern2, XfORE2, /nlmaxs¥2, /(1. +mqrt (1. +4. ¥FOSS2, R {FOKE2,~1,)
¥/ almankis,))

R R RS IR R R R RN R R AR R R R R E AR E RS F SR B ERRRRENRREFRESEREX

INCREMENTS SRS RRRRRIRRSSENESSEERSSRTINRRERRRERRRREEERRS

dkmi{kcr=-1.)/float(incrk)
outmincrk/incrout

DEADLOAD LIFETIME AT BL B SLmax SXRESSSRRRIFRARSRERTRERTRERINEREE

cenll, ¥qitau/pi 82, /flaffss2,

t=0,

kml,
flel,/sqri (0882, ~{10882.-1,)¥kEL2,)
simaxeffefitnlimax
skk=kinlmannffis2,
ddtmcc¥dk ¥ (1. /8kk=1,2%8({1./b) /akk
t=t+ddt

kmk+dk

if{k.gm. ker) goto ¥

gote 8

7 tdeadst

C MAIN TEXT SESRXXSEEEESBETRRERRERRSRSEESRESERRARRTRRRTSIRAERES

write($,288) b,tau,fl,fO,slmax,p,beta,m,c,incrk,incrout,tdead

200 FOrmat i’ 1" Sk /I II1110E0F7072000002217

¥ 6n ' FATIGUE OF MULTI-DAMAGED VIBCOELASTIC MATERIALS'/

¥ CEERE S22 2222222338 2222 s R22s et s 2323233323338 7233 3 149
$PERRRR" /Y

] bxy’h = *,fa,2,7 {crusp powerl)’/

3 6Ky'TAU = * ., £4,.1," days (relaxation time}"/

1 SR yTFL = T F4,2,7 {strength level)*/

X Gnytf0 = * ,F4,2,° {interact. factor)'/s

¥ Sxy*BLMAX = *,44,2," {load lwvel)’/

4 bxy'P = ? . £4,2,° (load ratieo)’/s

3 Oy *BETA = * . $4.2," (rel. time under max load)’/

3 Oxy'm m ? 4,2, {damage rate power)’/

X bxy’c = ' 4,2, (damags rate constant)'//

] bug’incrk = 7 ,16,° (sizxe of partitionss (Kecr-~1)/incrk}”/
] &xy'incrout = *,i3,’* (appr. numb. of outputw)’*//

¥ 6%y *DEADLOAD lifetime at 8L & SLmax: Tdead = ’,1pel.3,

t days'/

L ERR 2222222222222 2222 22 2223313323323 32 33328333 LM
P ERERR’ ,/

%1%

C ¥¥¥3 SELECT FREQUENCY S3SEXRRRESEESSESRSNERRRRRRRSEEREARERRREEEREE
C BTART CALCULATE SSSSSSREREREIRRRRRsrs s sRssassaRssRRsSRRRETRLRRS

do & 1im7,7
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fmffiii)
tpmi1./7)/(24,.83500.)

C ¥3: frequancy dewpendent "CONSTANTS", g and h KISEXEERER

gu=betaltbi(l.~beta) X2, ~betaks2,8{l.~beta)¥sb

9eq=1.~2, ¥bata

Qeeu={tp/tau) ¥5b

1£¢009:ne.0.) gu1.+90¥9Q00/909

if(00Q.#Q.0.) gwl.+0.8%((2,-b)¥(tp/tau/2,)E¥Dd)
122232323223 23 23322322223 2333823)

dim({l.~betak¥b)/7({tau/tp) ¥¢b+{1,~buta) X¥b}

hhe{({ptabs(p)}/2,)%%2.8

dulta=0.8%(1,.~hh+di-sqrt((l.~hh~d1)882.))

ha(l,~delta¥{1.~beta)s¥b)RX{~-1./b)

(22222232323 2333 382333323 3333333¢833

write(¥,300) f,tp

300 format(’O’ Bx,’LO0AD CYCLE: f = ’,1pelB.3,’ Hzi{cycles/sesc)’/

¥ bxy’m 1 cycle per ',lpwld.3,’ days’//
3 6% ¢"TIME(day®s) ® ,6%," LOB(N} *,8x,’DAMABE *,
Tox% " STRENGTH® ¢6x,° Ker*/)
C CALCULATE (init, x = dt/dk = 10 is arbitrary guess) EEEEEXERER
t=9,
cyclus=t/tp+li.u-10
logn=alogl@i{cycles)
kmi,

c

f1=1,/8qrt{fOXE2,. ~(fORK2.~1.) ¥kEX2,}
strength=1,/7{f1¥nqrtik))
koritwl./f1
K=10,
i=s0

1 flmi,/sqrt (0882, ~(10%%2,-1.)Fk¥%2,)
slmaxeffnflisimax
skmsimannffEngrt (k)
pafful, ~{ (1. ~pIFUIRR({M/4.) EakEX(m/ 4. ~1.)
aa=cisbE(l.~puff) R¥{2.+b) {1, ~betakfh¥sb)
A8anZ, ¥E(1.+2,8%b)
asaam((piXflmffE¥nk) ¥%2. /(8. Xg¥h¥tau) ) E¥b
an(l,~aa/aaa)fanaa
bhupi XE2. FcRQRfinffRX2,. (1. ~paff) XX4, ¥nkEE2, /(4. Xtp)
du{l.=sk¥82.)/ak$32,

REE x = dt/dk EEEXEXEEES

#oldsx
2 anewsxold-(a¥x0ldX¥b+bbExold=~d) / (b¥akxold¥¥(b-1.)+bb)
if(abas(l.,~x0ld/anew).19.06.081) gato 3
{f{xnww.1w,0,) xold=xold/2,
1finnew.gt.0.) xoldsxnew
goto 2
S if(i.99.9) goto 3
if{ktdk.ge. kcr) goto 8
if{i.nm.out) goto 4
S write(%,100) t,logn,k,strength,kerit

100 format(B(&x,1peld.3))

if{k+dk,gm. kcr) goto 11
imd

4 imie]
xsxXnew

$3% TIME, t, CYCLES®, N, AND DAMASE RATIO, k SXEFEFAREEFRRXRLTERELE

dtmxfdk

tmtddt

cycleast/tp
logn=alogld{cycles)
kmk+dk

£33 REZSIDUAL STRENSTH AND CRITICAL STRESS INTENSITY FACTOR EXXEFRERS

strengthsl./(f1xsqretik))

B3R Ker¥ik)/Ker(1)=1/41 BESERRRTEERAERREERX

keritml,/7¢1
goto 1

11 ndeadstdead/tp

lgndead=alogifi{ndead)
writei{%,700) lgndead

700 format('O’ ,8x,’ DEADLOAD) ("Ndwad"wf¥Tdead), log("Ndwad") = °*,

¥lpel0.3//)
& continue
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stop
snd

EXAMPLE (FIBURE 6.5)

FATISUE OF MULTI-DAMAGED VIBSCOELASTIC MATERIALS
(3322212233222 22 2232222 2232222232323 23232 2322223232232 23]

b= ,28 {cresp pawer)

TAU = 1.0 days (relaxation time)

FL = ,L,138 {strength lavel)

0 = 31.50 {interact. factor)

sLMAX = .88 {load level)

PF= .00 (load ratio)

PETA = ,3¢ (rel. time under max load)

s w 7,00 {damage rates powesr)

c = 3,00 {damage rats constant)

incrk = 8500 (size of partitions: (Ker-1)/Zincrk)

incrout = 30 {appr. numb. of outputs)
DEADLOAD 1ifstime at SL ® BLmax: Tdwad = 2,1B86E+02 days

FEREEEEREERESRERERXERERRERLERRRRRNESRANSTERRIRRITRLESEREE

LOAD CYCLE: § = 1,000E+80 Hri{cycles/wec)
= | cycle per 1,157E~08 days

TINE(days)} LOB(N) DAMABGE S8TRENGTH
+D0OE+0O ~1.000E+01 1.000E+00 1.000E+00
1.655€E~01 4,208E+00 1.807E+00 ?.879E-01
3. 483£-01 4.47BE+0O 1,014E+00 %.752E-01
4., 706E~01 4,627E4+80 1,022E+80 7.624E-01
4. 147E~-01 4.723E+00 1,027E+00 ?.496E-01
7.226E~01 4,778E+00 1,036E+00 %.367E~01
8. 160E-01 4.048E+00 1.043E+00 9.237€-01
B, 964E-01 4.88YE+00 1.031E+00 ?.167E-03
9.68%€~01 4.921E+00 1.088E+60 8.976E-01
1.,02BE+00 4.747E+00 1.063E+00 B8.844E-01
1.07HE+00 4,%40E+00 1,072E£+60 8.711E~81
1.119E+00 4,788E+00 1,080E+60 8.87BE~-01L
1.1985£+00 4.799E+00 1.087E+00 8. 443E-01
1.1885E+00 B5.,010£+80 1.094E+00 8.308E-01
1.210E+ 20 B.017E+20 1.101E+00 8,171E~01
1.231E+00 5,027E+08 1.109E+00 8.033E-01
1.248E+00 3. 033E+00 1.116E+00 7.8%3E~-01
1.262E+00 5.03BE+00 1.123E+00 7.782E-81
1.273E+00 S5.041E+08 1.130E+00 7.5610E~-081
1.282E+20 8.044E£+00 1. 137E+00 7. 466E~0]1
1.28%E+00 S.2347E+00 1.148E8+00 7.320E~01
1.295E+060 5, C4TE+00 1.1B2E+08 7+173E-01
1.297E+00 8.080E+00 1.159E+00 7.023E-901
1.302E+60 5,051E+60 1.366E+00 4.871£-01
1.304E+00 5.0B32E+00 1:.174E+00 4.717E-01
1.3056E+00 8.082E+00 1.,181E+00 6.861E~01
1.387£+060 S.003E+00 1.188E+80 6.401E-01
1.367E+00 5,0853E+00 1.,195E+00 6.239E-01
1.308E+00 5.053E+00 1.203E+60 5.074E-021
1.30RE+00 85,083E+00 1.210E+80 S.708E~81
1.308E+00 5.083E+00 1.217E+00 ‘B.732E-01
1,308E+060 5.083E+60 1,224E+00 S.558E~01
1.308E+00 $.083E+00 1.226E+80 5.510E~012

DEADLOAD: ("Ndead"=fiTdmad), log("Ndwad") = 7,2780E+00

Stop ~ Program terminated.

Ker

1.000E+00
9.915E-01
7.0822E~01
7.728E-01
7.46328-01
?.338E~01
T.4386E-01
?.3385E~01
?.232€-01
?.128E~-01
?.021£-01
8. 713£-01
8,802E~-01
8.489€-901
8.874£-91
8.457€-01
8,337E6-01
8. 218E~-81
8.070E~01
7.763E~02
7.832E-01
7.4%8E-01
7.861E£-01
7.421E-02
7.277€-01
7.129E-31
5. 978E-01
6.821E~01
b.56461E-01
£.478E-01
6.324E-01
6, 147E-01
6.102€-01
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Appendix Cs3 Numerical

SHORT VERSION PROGRAM

lifetime Analysis

C This program is a short version, VIS-FATI.FOR, of a more general fati-
C gue program described bslow,

Cutputs are: Time and load cycles at fai-~
€ lure (and deadload lifetime at constant max load). (July 14, 1987)

X R KRR R R R SRR R KR KRR E R R AR IR R AR AR KRS AR EE K KR XTI KRR KRR

[+3 3

FROBRAM NAME) VIS-FAT.FOR (Viscoslastic Fatigue)

(222232 22 22222t e sttt s TR s s Tisisssy

cx
cx
[
ct
(33

RN R R R R R R KRN R KRR R RN RS R RN R XA R RN KRR XSS REREERES

c

c
c

LIFETIME OF SQUARE-WAVE LUADED, MULTI-DAMABED VISCOELABTIC MATERIALS
AB A FUNCTION OFs 1) MAX LOAD, 2) MIN/MAX LOAD, 3) FREQUENCY, AND 4)
RELATIVE TIME UNDER MAX LOAD -~ STRENBTH REDUCTION IS INCLUDED AS A
FUNCTION OF PROBRESBING FATIBUE -~ ALS8O INCLUDED IS DEADLDAD LIFETIME
AT LOAD CONSTANTLY AT MAXIMUM (july 13, 1987, L. Fuglsang Nislisen)

implicit raal {a-h,k=~z2),integer{i-i
integer out

dimension fFf{13),sslmax {8}, ,tautau(s) ,ff11(3)

INPUT DATA Z¥RRSRXEEXSFRRRRRRSRIS RS RLLX RN SRRTRERS
timaning of mymbols: ses FORMAT 200 EXXREXSXXRISISLINXRE

data b/0.25/,§0/1.000/,umin/0.40/,
p/0.000/,beta’/0,56/,
EMm/9.008/,c/3.00/,
¥incrk/100/,tel/0.081/7

pi=3, 14159

FFfl1(1)=0,25

ffl1(2)m@. 40

Ff11(3)=0.5%0

do & fixx=1,1

flmffll (ixx)

tautau(i)=, 1

tautau(2) =, 3

tautau({3)=1,

tautau(gq) =3,

tautau(Sr=ia,

do b6 ix=3,3

taumtautautix}

»slmax (1)=0,20

malmax{2)=0,306

nslmax (3)=0,40

wnelmax (4) =0, %50

sulmax (S)=d,460

selmax (46)=0,78

slmax (7)=0,80

salmax (B)=0,90

tf({1)=1,.e~10

Ff{2)ml,.0-0

FF{3)=1l.m~4

ffid)ml . 0-2

FF(S)=1,.0-1

fFibIml,

fFi(7)=1.m+}

ff({8)nl.e42

ff(9) =1.e+d

ff(10)mi . w+t

ff{ill)ml,.a+10

C DERIVED CONBTANTE SXEKRRSXXEEXRREEXRIRRXSIIREEREERLERRRY

c

fleffufoxfl

(2222222228

q »({1.4+b)¥(2,4b)/2.38X(1./0)
REXEREESARRFERERAETNRESERRLRERE
u=Q,Bx (1. +p+(absip)—p)tumin)

1223 22322 S22 223833)

€ MAIN TEXT KERERXRXRRKRSE R RERERRRREREEERRRRERERRRRTIRRRXRE

%
¥
k3
¥
X
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Appendix Ci Numerical lifetime Analysis

write(%,200) b,tau,fl,f0,p,beta,m,c,incrk,tol

bxytdincrk = * i6," {= mtepi{k)/(Kcr=1) in analywsis}’/

format (17 ,Su,//
6% ¢ *FATIBUE OF MULTI-DAMABED VISCOELASTIC MATERIALS’/
3 LIRS 22 2 2 R s Ry 2 RT3 33333233 LM
LA 2231 L)
¥ bxy"b = ?,£4,2,’ (cresp power)®/
b s Exy"TAU » ", §7.2,7 days {relaxation time)’/
4 O%y"FL = ", §8.2,6%," (strength level)’/
% 6x,"F0 & ' £4.2,6x," (intaract. factor)'/
¥ GryTP = 7 £8,2," (load ratio)'/
X &x,"BETA = * ,§4,2," {rel. time under max load)’/
X bre'm = ', §85,2," {damage rate power)’/
3 bry’c = "L, §5,2,° (damage rate constant)’//
%
¥

bry"tol = * 5.3, {tolerance on time incresments)’/
L 3 6x,’¥!’Xll!!!llll!!!lt!l!!!llll!lll!!!llttlt!llt!lt!',
(IR 2232 L e
ECT LOAD, SLmax. Calculate critical damage ratio TEXXF¥ERRY
do & 11i{m=1,8

slmax=sslmaxtiii)

kere2, 3fOR22. /3lmax¥e2,. /(1. +8qrt(1.44, CFfOXX2. X (0322, ~1.}
¥/ ulmax¥¥4,.)
R R R R I R R R R R IR KRR R RS A R R RS AR R

INCREMENTS SECXRFSRsRrr SRR R R RS RRsRasErRsERSTARSRRERLLL

DEA

800 format('0’ ,/6x,'BLMAX = *,£4,2,’ (Tdwad at SL & SLMAX: ’

8TA

L2 3

CAL

dk={kcr-1.)/float{incrk)

DLOAD LIFETIME AT SL % SLmax FERRREERSREXRRXXEESXNERRSRTRRELEL
ccwB. ¥qRtau/pifs2. /fleffrx2,

tmd,

kwl,

Fil=l.,/sgqrt(fOXE2, - ({FfORXZ.~1,) RkXX2,)

slmaxwffuflinlmax

shkokEnlmareff 32,

ddtmcc¥dk¥ (1. /ekk~1.)¥2{1./b} /ekk

t=t+ddt

kmk+dk

iftk.ge.ker) goto 9

gotoc 8

tdwadst

write{¥,800) slmax,tdead
L]
$1pwl10.3,’ days)*/
¥ LR s e it e 2323333133333 1333¢833 230

¥ &x," FREGUENCY PERICD Tcat Iog{Ncat}*/
T sbu,T Hz days days’/)
RT CALCULATE SRR XRSIRERe RIS sEXr R R REERERRNXERSENRREXRERTLS

do & i1i=i,11

frffiil)

tp={1.7F)/{23,.¥3600,}

frequency dependsnt "CONSTANTS", g and h REXEEREXEXEX
Qu=bwtaf¥b¥{l.~bata) X2, -betak22,2{1,.~beta) XKb
299=1.~2.%bata

999e=(tp/taul ¥sb

if(9gu.n®.0.) 9=1.499%0900/999

if(999.#9.0.) gm1.+0.5%((2,~b) ¥ (tp/tau’/2.) ¥¥b)

1222 2222 2222323322333 3282333
di={l,-hwta¥¥b)/{({tau/tp)Xtb+(1l.-buta)$xh)
hhe{{p+abs{p})/2,)¥%2.5
delta=0.5%(1.~hh+di~sqri((1.-bh-d1)%%2.))
he(l.,~deltak(l.~beta)Xsb) XXx(-1,/b)

(22222 R 22 R 2223323338224
CULATE (init, x = dt/dk = 18 i{s arbitrary guess) ¥SFRERREEE
t=d,

k=3,

F1=1,/8qrt(fOXK2, ~{FfOXE2,.~1.) 2kES2,)

0



T r%x

C 12

11

700

Appendixrx C: Numerical

w=ig,
fi=l./sqrt(fOX2,~(fOXX2.-1,)%kER2,)
simaxeffafl¥slmax

sk=nimaxwff¥agrt (k)
prffml.=((l.~p}Eu)XR{m/4.) EnkXX{m/4.~1,)
AamcE¥LE (1. ~puff)IE¥{2.+b)¥(1.~betakhXXb)
aaa=2,%¥{1,+2.%b)
daaa={(pi¥fleffink)X%2./(B, ¥qkh¥tau) ) X¥b
an{l.~aa/aaa)faaea

bb=pl $X2. RcXg¥flaffEs2. ¥ (1, ~paff) X¥4, Xuk¥X2, / (64, XLp)
d= (3, ~sk¥¥2.)/akk%2,

X = dt/dk FESEFERRRL

xoldmx

sriwwmxold~{afxold¥¥b+bb¥xold~d) /{bRa¥fxoldX¥{b-1,)+bb)}
if(abm(l,~xold/xnew),.lw.tol) goto 3
ifi{anmw.lw.0.) xoldmxold/2,
ifixnew.9t.:0.) xoldsxnew

goto 2

if(k+dk.ge.ker) goto 11

HBEOWW

Time, t,y cyclus, and damage ratio, k XEXESERRLEIREXRRLEELARRYRRL
dtmx¥dk

t=t+dt

k=k+dk

goto 1

tcat=t

cyclesstcat/tp

logn=alogl®i{cycles!

write(%,700) f,tp,tcat,logn
format(é6x,4¢(1pEL10.3,4x))

continue

ntop

and

EXAMPLE OF SHORT VERSION PROGRAM RUN

lifetimw Analysis

FATIBUE OF MULTI-DAMAGED VISCOELASTIC MATERIALS
L2222 22 2 R R R R i 222223 23232328342

b = ,25 {creeap power)

TAU = 1.00 days (rslaxation time)

FL = .28 {strength level)

o = 1.00 {interact, factor}

P = s 08 {losd ratio)

BETA = .30 {rel. time under max load)

m = 7.00 {damage rate power)

c = 3I.00 {damage rate constant}

incrk = 108 (= stept(k)/(Kecr-1) in analysis)
tol = .010 {(tolerance on time increments)

FEE R R R R R R R R R R R R R RS R XX RRERRERERXEERXRE

SLMAX = .70 (Tdead at SL E SLMAX: 1.428E+01 days)
L2222 22 22222 R R R i i3 22232333223

FREQUENCY PERIOD Tecat log(Ncat)
Hz dayns days
1.000E-10 1. 187E+05 2.788E+01 -3.;23€+63

1.Q000E-DS 1.,157E+01 2. 166E+01 2,722E~01
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1.000E~04
1.000E-02
1.,000E~01
1. 000E+00
1,000E+01
1.900E+02
1. 000E+04
1.000E+0S
1.000E+10

1.157E~01
1,187E-03
1.157E~904
1.187£-08
1.157E-86
1.187£-~07
1.137€-09
1.187E-11
1.187E-18

1.748E+01
7.115E+00
1.820E+00
2, 956E~02
3.811E-02
4.34BE-03
4.9086E~05
5. 0B6E-07
B.162E~11

Appendix Ci

2.179€408
3:7B9E+00
4.1956E+00
4., 407E+00
4,51BE+00
4.377E+00
4.627E+00
4. 643E+00
4.5649E+00C

Numerical lifetime Analysis
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