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FREFACE AND ARSTERATT

It is well-known that drying, i.e. moisture loss,
builds up tensile shrinkage stresses in wood which may
be high enough to violate the natural strength of the
materials structure. This means that cracks develop
which reduce considerably the final strength of dry
wood .

It is also known that fast drying is more severe in
this respect than slow drying. This observation is the
basis of any empirical rule which have been suggested
in drying technology to optimize economy (time) and
quality of wood.

Obviously these two observations on the drying behavior
of wood are consistent with the concept of wood being a
viscoelastic material weakened by inherent defect nu-
clei (e.g. Dbad fiber bondings, pit concentrations and
rays) which will develop into cracks when exposed to
some critical stress.

Assuming linear viscoelasticity the present report con-
tributes to the theoretical research on drying techno-
logy by presenting relationships between moisture loss
and internal stresses in wood.

In a subsequent publication these results will be cor-
related to crack mechanics such that drying can be re-
lated directly to the final strength of wood.

The work reported has been carried out late 1985 at the
Building Materials Laboratory, Technical University of
Denmark, as part of a research project on '"The mechani-
cal Durability of Wood' fonded by the Danish Technical
Research Council (StvF-146-3785.B-172).
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b INTRODUCTION

It is well-known that drying, i.e. moisture loss,
builds up tensile shrinkage stresses in wood which may
be high enough to violate the natural strength of the
materials structure. This means that c¢racks develop
which reduce considerably the final strength of dry
wood.

It is also known that fast drying is more severe in
this respect than slow drying. This observation is the
basis of any empirical rule which have been suggested
in drying technology to optimize economy (time) and
quality of wood.

Obviously these two observations on the drying behavior
of wood are consistent with the concept of wood being a
viscoelastic material weakened by inherent defect nu-
clei (e.g. bad fiber bondings, pit concentrations and
rays?) which will develop into cracks when exposad to
some critical stress.

The present report contributes to the thecoretical re-
search on drying technology by an analysis explaining
the relationship between moisture loss and the internal
stress state of wood. Such an analysis is  the first
step towards a theoretical prediction of strength as
related to drying procedures. A next step which will be
considered in a subsequent publication is to integrate
crack mechanics.

The stress analysis presented is made on a drying pole.
In principle, however, the same method can be applied
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to any wood member. Two principal assumptions are made

on structure and stress-strain response:

1) The traditional concept of wood structure is main-
tained: Wood 1is a cylindrically homogeneous and cylin-
drically orthotropic material. The axis of symmetry is
the trunk pith (in this report the pole axis). The
three principal axes referred to with respect to homo-
geneity and orthotropy are defined by the R(adial),
T(angential) and L(ongitudinal) directions of wood.

[ AV]
L

The mechanical behavior of wood can be described
linear-viscoelastically according to the Power Law de-
cription (e.g. 1).

4]

2. MOXISTURE CONTENT

The moisture content of the pole is assumed to be ax-
ial-symmetrically distributed as defined by the parabo-
lic profile shown in Figure 2.1.
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w0 w |\
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Figuré 2.1. Distribution and time dependency

of pole moisture content, u. Location coordi-
nate is denoted by r. The pole radius is R.

The'tiMG-dependency of the moisture content is defined
by the moisture history at the center, uc = uc(t) and
at the outside of the pole, um = ug(t).

For simplicity we consider the pole to have a location

independent moisture content both at t = 0 and at t©t ->
o, The initial quantity, ux, is less than or equal to
the moisture content, u~ = 25 - 30 %, at fiber satu-

ration. The final value, u.. (also < ur), is the target
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moisture content. Both moisture histories are assumed
to decrease exponentially such that
-t /U -~
Uz = Uy - DX(1 - e “)

-t /dg (2.1
e )

Ug = U - D*(1 -
where the parameters, ¢c and oy, define the drying rate
at the center and at the outside respectively of the
pecle. The total moisture loss, D
by,

, 88 t -> @ is given

D = ur - U (2.2)

The moisture differences, Di and Dz, illustrated in
Figure 2.1 are of special interest for the stress ana-
lysis made in the following sections. We get from Equa-
tion 2.1

-t/
Dy = uz - ug = Dx(1 - e =) "
~t/d -t /d (2.3

Dz = Ug - uo = Dx(e “- e )
The moisture loss, M, at an arbitrary location, r, in
the pole is given by

M = M(r) = D, + Dm(§>“ (2.4)
where n, according to Figure 2.1, refers to the n-de-

gree parabolic moisture distribution in the pole.

= . SHRINKAGE

It is assumed that shrinkage strain, €sn, of wood and
moisture content, u, are related linearely according to

de+r,sm/du = S, d(—:..-q,e;H/du = S de. ,sm/du = s (3.1)

where the subscripts, T, R and L, refer to directions
previously defined. Notice that strain increases with
increasing moisture content. In the following analysis
we will relate shrinkage strain to moisture loss, N,

meaning that de, ,gw/dM = -s;, (i = R,T,L).

The shrinkage coefficients have the following orders of
magnitude when moisture content is given in %,

St ¥ 4¥107F/% ; Sm B 2%X107F/% . S X 107%/% (3.2)

’
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The shrinkage ratio, S, used in the stress analysis is
defined by

S = Sm/sS+ % 0.5 -~ (3.3

3 . ELASTIC STRESS ANALYSIS

In the linear range a stress analysis with respect to
shrinkage is similar to a thermal stress analysis. This
is because both moisture and temperature have similar
strain responses. In the case of temperature we only
have to replace (u,s) with (T,d) where T is temperaturs
and o 1is the coefficient of thermal expansion. At the
same time, of course, subscript, sh, changes to T.

The analysis presented below follows the stress analy-
sis of a homogensous and linear elastic pole exposed to
an axial symmetric temperature field presented by Timo-
shenko and Goodier (2). Essential modifications, how-
ever, have been introduced which consider anisotropy
with respect to both elasticity and materials response
to shrinkage. The analysis is at first based on the as-
sumption of plane stress, meaning that o. = ©. Subse-
quently, however, modifications are given which genera-
lize the solutions obtained to be valid also when plane
strain (fixed end and free end) situations are consi-
dered.

The practical results of the analysis applying to real
wood poles are summarized in Section 4.3.

Conditions of equilibrium require in general
ot b = 0 (4.1)

where o; is stress in the i-direction.

Conditions of compatibility require in general

(4.2)
Upgz
€v = =-
r

where um is the radial deformation and €; is strain in
the i-direction.
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<4 . 1 FLANE STRESS (CIRCULAR DISKD

The plane stress constitutive equation of a cylindri-
cally orthotropic material requires h

Oy O

(S + M = - - —_ 4_
b d Sp( Eﬂ “TNET ( 3)
o Oy
£ + N = == - == .

where M is moisture loss according to Equation 2.4. E;
is Young's modulus in the i-direction, while piy is
Poisson's ratio referring to strain, -ps;4/E;, in the j-
direction for extension, 1/E:, in the i-direction. The
following relation applies between Young's moduli and
Poisson's ratios for orthotropic materials

Bas _ Pas

E. = E. (4.5

When Equations 4.3 and 4.4 are solved with respect to
stresses we get

Om = ;:i;tem + MSr *+ pm(er+Ms+)] (4.6)
or = ;:i;ﬂer + Ms+ + pr(exr+Msw) ] (4.7)

where the following abbreviations have been introduced,
Kr = Heer
jJ,,..—‘. = }LTR (4 .8 )

B o= fpevpre = s

Another abbreviation used in the following text is the
so-called stiffness ratio, N, defined by

N = -- =EF} (% @.5)

> E'T' = NE= and P = N}.l"r (4.9)

where the alternative definition is obtained by Equati-
ons 4.5 and 4.8. The order of magnitude given for N is
adequate for many types of wood.

Equations 2.4, 4.1, 4.6 and 4.7 combine as follows

d'.-."‘
STUm , 1 dus _ \Um _ pery (4.10)
dr= r dr r=

where F(r) is given by
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S
Fer) = ST0(NAv-B=O*Dy + (NAT~(1+n)AN)(g)n*DzJ (4.11)

N is the stiffness ratio from Equation 4.9 and .
Aw = S*PN ; Ay = 1+SpT (4.12)

where the shrinkage ratic, 5
3.3.

, is defined by Equation

A solution of ux to the homogeneous differential equa-
tion, Equation 4.10 with F(r) = 0, is given by

U, 1 = r(N (4-13)

Another solution to Equation 4.12 is obtained by um,:
using a method given in (3, p.398). We get

[

1 1 -¥N
Up,m = Um,1 -~~~ = dr = - === 4.14)
FY L | } LU, 1= r 57N r (
The complete solution, um,~, to the homogeneous Equa-
tion 4.1 (F(ry = 0) is now the linear combination of
U, 1 and Upe , 2,
¥N 1 -4N
U, v = Car + Caz=s .
"y 1 2INJ:' (4.15)

where C; and Cx are constants.

A particular solution, um,x, to the non-homogeneous
Equation 4.10 is, according to (3, p-3%8), given by

U,z =

r
; BF(8)lum,=(r)ux,1(8) - um,1(rdu=,=(6)1d6

e (4.16)

e get (with re = 0)

Ur,: _ NAT-An NA+-(1+n)Ax r.n
g O i *D; + -———-=-==--==C =) %D 4.
rs+ 1-N * (13n)=-N (R’ D= (4.7
The complete solution to the non-homogeneous differen-
tial equation 4.18 is now ux = Um,mn * Um,x giving
Ues NAT_AW NAT-(1+H)AR r.n f&—1
—e- = ——e=-C *¥D; + -——-——-=--=-2-C =) "%¥D.. + .
rev e e (1iny=-n (R? TP= T CF (4-18)
where C» = © has been introduced in order to get ux(0)
= 0.
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The constant, C = C;, appearing in Equation 4.18 has to
be determined from the boundary condition, ow(R) = 0.

The radial stress, owm, is determined by Equation 4.6

with strains, em and €+, derived from Equation 4.2 to-
gether with Equation 4.18.

We get
€ NA-+-Ar NA-- - JN-
Sl 20T0map, v (e PRTiIDBa Tyny L RN
ST 1-N (1+n)=-N R (4.19)
and
€r _ NAr-Aw NA+-(1+n)As,r.n ~ YN-1
-- = ----== *Dy + ——--—=-=-=2-% =) *Do .20
s+ T Tien Pt TaipyaEly (R TP v CUNE (4-20)
which produce C as cutlined above: o=x(R) = @& ->
- _1-¥N_1-S 1+n-S
C = {(1-pis+IN* [-~-=%D; + —==---=-- *Dox .
p)s+4N*R 1T Pr Y (iinyEontD=1 (4.21)

where the shrinkage ratio, S, has been introduced from
Equatien 3.32. The Peisson's ratio, p, 1is defined by
Equation 4.8.

When C from Equation 4.21 is introduced into Equation
4.18 we finally get the solution for the radial
deformation of a pole exposed to an axial symmetric
moisture distribution. The corresponding radial and
tangential stresses are given by Equations 4.6, 4.7,
4.19, 4.20 and 4.21. We get

Final plane stress results:

Ur 1 = r N-1
=% = S IN-pe-(1- - (1- - 3 x
— ToN Pe=(1-p=)S (1-S)(4N pm)(R) I1%D,
1 r.n
+ (1+n)2—NE{<N (1+n)p=)-(1+n pﬂ)s}(R)
- (1+n—S)(Iﬁ—pm)(g){N'1]xD: (4.22)
Or 1-S r +N-1
-2l L aaX - = *®
ZoED = ion DR 1%D,
1+n-S r.n ,r 4N-1 *
———————— g - = *xD-. .

~!
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T 1-S = r 4N-1
-=2=- = -== [1-4N(= *D
s+E+ 1-N (R) 1 *
1+n-3S r.n - r 4N-1 i
_iZD7o__ yhi_ L *D)e .
(17n3=-N L(1+n) (=) IN(R) J1*D= (4.24)

It is noticed that Poisson ratios appear only in the
deformation expression.

Another note should be made: As the stiffness ratio, N,
is less than or equal to 1 Equations 4.23 and 4.24 pre-
dict infinite strass values at the center (r = 0) of
the pole. This feature, however, is of minor practical
significance. We only have to think of a very small
area at the center where wood is in a state of flow.
This corresponds to introducing a small, finite valus
of r, in Equation 4.16.

Pole surface:

The situation at the pole surface (r = R) is of special
interast. We get o = 6 and

U (R) - Di D=

————— = -(S5+ -==- ——=— .

Rer (S fN)[1+JN + 1+n+(N] {(4.25)

g+ (R) 1-S 1+n-S

..... = -=-=-X%XD, + -—=-==Z-%D.. .

Ers+ R B P i (4-26)
At uniform moisture distribution (Di = ©) the average
shrinkage coefficient, sasv = um(R)/(-RD;), of the pole

cross-section is immediately derived from Equation
4.25. He get

Sav = —m-I_Szil (4.27)

4 .12 FPLANE ISOTROFPYSs

Often wood can be approximated elastically as being a
plane iscotropic material. This means that the TR-plane
is considered isotropic with the elastic coefficients

Eva and pesa. Practically we may use the following ave-
rages,
qu) = Ié;é;

IPN*#TR

fl

Hepa

Notice that fwa = p as defined in Equation 4.8.
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The plane isotropic suolutions for deformation and
stresses are obtained by Equations 4.22 -4.24 introdu-
cing N =1 and coefficients of elasticity as given by
Equation 4.28. i

The transformation is made utilizing that

(g)(N-1 -> 1 + (fﬁ-1)logg(g) when N -> 1 (4.29)
We get
Uge 1-S r
-=- = - -=-=[1 - (1- . -)1x
el > ( uqo)logE(R)l D.
- —-1—-—E(1— Y(1+n-35)
n{2+n) Hoo
r.n
—€<1—(1+n)nw@)—(1+n-uwg)5)(§) J*%D (4.36)
T -5 1+n-S r.n
----- = —---loge(=-)*D; - ----—--{1-(=) }*D
Ewasr 2 n{(2+n) R (4.31)
T S r
————— = ===(1 =) )%
Eomen > ( +loga(R)) Da
1+n-S r.n
- 1IUZ=e_ - = # D .
n(2+n){1 (1+n)(R) }*D (4.32)
S .2 PLANE STRAIN CSCIRCULAR POLE)>

Plane strain modifications of the deformation and
stress solutions obtained in the prsceding section will
now be given on the basis of wood modelled as a plane
isotropic material.

The general constitutive conditions relevant for the
problem considered are expressed by

1
e t+ MSFQ = ___(U'n - Hoaldy - j.l‘tgo';__) (4-33)
Ega
1
€y + Ms+ = _""(O"r - HoeolOm — }.L‘(pO’;_) (4.34)
Eva
1
€. + Ms. = E'CUL_ - jJ.l(zx(U'm + g1 (4.35)
where the Poisson's ratio pu'm defines strain, -p'a/Esas,

in the ©O-direction (L) for extension in the 90-direc-
tion (R = T). According to Equation 4.5 we have
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t
[

= B (4.38)

Poo
Em Evc)
where the Poisson's ratio, pe defines strain, -pa/Ea,

in the 90-direction for extension in the ©-direction.

Fixed ends:

When plane strain is considered with fixed ends of the
pole we have €. = @ which introduced into Equation 4.33
gives us

OL,rixEp = H'e@l(or + o01) + Eols. (4.37)
1-(p'ed= 2+ (H'a)™
Er+M(Sn*pas.) = --=-- 2l (o BZ2IZE 2T 0 (4.38)
Ecyo 1"(}J-ID)"-
N 1-(p'a)= et (' m)F
Er+tM(St+ms, ) = - -=--- ‘:“'“(O’—r— 8‘—?-—-8-‘;‘0’;@) (4.39)
Ewyc: 1‘(}.1 @ )=
The subscript, “"fixed"'", on o indicates that another

plane strain axial stress will be introduced in a fol-
lowing section where €_ is not ©.

The plane stress expressions corresponding to Equations
4.37 - 4.39 are oL = © and

1
Ew + MSm = ==~ (0m - Peaor) (4.40)
Esa
1
€v + NSy = =-=(0+ - Poalm) (4.41)
E"PG
When Equations 4.38 - 4.41 are comparred we notice that

plane strain solutions simply can be obtained from the
plane stress counterparts just by replacing the coeffi-
cients of elasticity and shrinkage according to

=y —__Bwe____
Epa => 1 2 (e (4.42)
oy Moo r (ple)=
Hoa =D 1 - (p'ed= (4.43)
Sm =D Sm + HBoS and S+ =D S+ + HoS (4.44)

When this has been made we determine the axial stress,
o.. from Equation 4.37.

For wood we have approximately

Ho = Hpm = 6.5 and Esn = Ex/15 (4.45)

meaning that

10
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Ho = 6.03 (4.46)

wnich is too small to have any practical influence on
the substitutions given by Egquations 4.42 and 4.43.
Adding the information from Equation 3.2 that the lon-
gitudinal shrinkage coefficient, s., is much smaller
than sk and s+ applying to the T- and R-directions it
is evident that the deformation, uUw, and stresses, oOm

and o+, do not change practically going from plane

stress to fixed end plane strain.

Free ends:

The axial stress, o_,r:ixen, expressed by Equation 4.37

requires at the pole ends a reaction force, P, of size
P = oL ,rxxendA (4.47)
iA
in order to keep €. = © all over the pole. A = nR¥ is
the area of the pole cross-section.
Poles normally have free ends with o. = 0. We can ob-

tain the effect of free ends neutralizing the reac-
tions. At a distance approximately three times the pole
diameter from the ends this means that the free end
stress, 0. ,rrww, Can be calculated by

T ,trwae = O ,rixen t O ,com (4.48)

where the correction stress, o.,cox, is given by

[

P
OL,com = - A = - - 0., 1 xe=ndA (4.49)
JA

The radial and tangential stresses, o= and o+, do not

change going from the fixed end to the free end situa-
tion.

We get from Equations 4.4%9, 4.31, 4.32 and 4.37

2
Ou,com = — —---<% Mrdr = - Eas._(Dy + --- Dz) (4.50)
R= 2+n

where it has been used that the integral of (ogm + o+)
between ©® and R is @.

11
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Now combining Equations 4.48, 4.37 and 4.50 we get the
free end axial stress expressed by

r n 2 -
- ===1%D.s (4.51)

T, trww = P ' a(ox+tor) + EmSg[(ﬁ) 5T n

where om and oy are the plane strain stresses. Practi-
cally, however, we may apply the plane stress solutions
as given by Equations 4.31 and 4.32. This has been jus-
tified in the preceding section.

The axial strain, is given by €. = 0_,com/Ea; that is
‘ 2
€L = = = 5. (D3 + =--Dz) (4.52)
2+n

The radial deformation of the pole surface is deter-
mined by

U (R) = Um,rixen(R) - HaRe. (4.53)

where Um,rixen(R) 1is the fixed end plane strain defor-
mation which 1is derived from Equation 4.25 introducing
N = 1 and the shrinkage coefficients transformed ac-
cording to Equation 4.44. With &, from Equation 4.52 we
can now rewrite Equation 4.53 as follows,

U (R) 1 2

pug i R + - - .

RS 2(1 S)Y(D; + 5s Dz) (4.54)
which is identical to the plane stress solution

(Equation 4.25 with N = 1).

At uniform moisture distribution (Dz = 0) the average
shrinkage coefficient, Sav = Um(R)/(-RD;)}
cross-section is given by

, of the pole

1
Sav = é(S—r + Spm) (4.55)

G . = CONGCLUSIONS

From the results obtained in Section 4.2 we may suggest
the following results to apply when normal wood poles
are considered.

Radial and tangential stresses can be predicted by the

plane stress scolutions given by Equations 4.23 and
4.24.

12
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The axial stress can be predicted by Equation 4.51 with
stresses from Equations 4.23 and 4.24 - and Es = E. and
p'e = 1/30 as given by Equation 4.46.

-

Longitudinal strain 1is predicted by Equation 4.52 and
surface deformation by the plane stress solution in
Equation 4.25.
OR,i o7,i .
—=t=— and —5=- (1 =1,2)
SED; ¢ S0y 2)
.8&

N=E1I‘/ ER=O .5
S=sp/sp=0.5
n=3

0 .2 ///. r
0 /// =
I N
//
///
-4 7~ 7
/
-6 !
Figuré 4.1. Radial and tangential elastic

stresses in a drying wood pole. The stresses
are separated in two parts. One influenced by
moisture loss, D., and one influenced by moi-
sture loss, D-». The final stress is the sum
of these components.

The results are summarized as follows:

Radial stress:

T ez 1-S r +N-1
. - N 3*D
sS+E+ 1-N ! (R) *
1+n-S r.n r ¥ N-1
________ Ty L *Dew .
(1 037N C(R) (R) J*Dx= (4.56)

13
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Tangential stress:

o+ 1-S = r J4N-1

-=1. - =--F 4= = *

= E- 1IN C IN(R) 1*D,

1+n-S r.n - r SN-1
________ - - = *D-w
(1TnIEIN [(1+n)(R) (N(R) 1#*#Dx
Axial stress:
1 rn 2
O = 56 (Ox+0o+) + ELSL[(&) - é:a]*Dz

Radial strain (average) and surface deformation;

' . DL = - 2 L. L TEL
€Em,av = R = (SR+STfN)C1+JN + 1+n+IN]

Axial strain:

2
€. = = —-s5.(D; + S:BDE)

<

(4.57)

" (4.58)

(4.60)

Some examples of stress prediction by expressions 4.56,
4.57 and 4.58 are presented graphically in Figures 4.1,

4.2 and 4.3.

9,2 91,1
STED2 spETD
.4 T .04
N=Ep/Eg=0.5

Ep/Ep= 20 : ///
o} S=sp/s1=0.5 o2
:sL/sT=O.025 .
n=3

|
b i

(=]
Y
o
%
]
Wi

-4 : -.04

-.6 ' : -.06
Figure 4.2. Axial elastic stress of a drying
wood pole. The stress is separated 1in two

parts. One influenced by moisture loss, Di,
and one influenced by moisture loss, D=. The

final stress is the sum of these components.

14
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S . VISCOELASTIC STRESS ANALYSIS

The elastic stress analysis made in the preceding sec-
tion does not reflect the true behavior of wood because
this material 1is a viscoelastic material with time de-
pendent mechanical properties. However, the solutions
obtained are very useful when predicting the real be-
havior of wood. This section will demonstrate how.

"As an illustrative example we will consider only the
tangential stress at the surface of a pole. The elastic
solution is given by Equation 4.57 with r = R. We get

o7 . =L 1-S 1+n-S
=128 - —_T_%p;, + ----=- *Dx (5.1)
svEr 1+4N = 1+n+JN

where subscript, el, means elastic solution. When we

introduce the moisture history described by Equation
2.3 we get

Ors.mn _ 1:§_(1 t/dc)
s+E+D 1+4N
1+n-S -t/ -t /o
+ 1+n+IN(e e ) (5.2)

Assuming a third degree parabolic moisture distribution
(n = 3) and parameter ratios, S = 6.5 and N = 0.5, ac-
cording to Equations 3.3 and 4.9 we may reduce further
the or,e=.. expression. WHe get

T, e "t/d(:._

————— = 0.29 + 0.45e ot/ %o

6.74 (5.3)

which is the elastic point of departure in our example

on, how to to determine the real stress state in a wood
pole.

We will rewrite Equation 5.3 introducing the so-called
load level, SL+,e=., and the critical moisture loss,

DCR .

The load level is defined by

Or, e
SLr,e. = —t*T= (5.4)
Or,om
where o+,cw 1is the tangential strength of wood. The

critical moisture 1loss is the instantaneously acting
moisture loss which will produce a tangential stress
equal to the tangential strength. This specific quan-
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tity is obtained by Equation 5.3 introducing do = ©@ and
t = 0. We get

Dow = g-c2==-- ~ (5.5)

Now Equation 5.3 can be written

D _t/d. _t/d"\
SLr,e. = =--%[0.3%9 + 0.61e “- e =3
Dem

(5.6)

As previously mentioned we consider wood to be a linear
viscoelastic material behaving approximately according
to the Power Law creep function,

cilt) = 2-01 + (5->°%%1 . (i = R, T.L) (5.7)

Ei Ti
where the powsr, .25, has been suggested in (1) to be
in general the best value. The “doubling time', T, is
the time, t = T, at which deformation is twice its ini-

tial value.

The doubling time is shown in (1) to be very dependent
of both direction and climate. A value of T % T+ ¥ 50
days was suggested when perpendicular to grain creep is
considered at a moisture content of u = 15 % and a tem-
perature of T = 20 *C. (This is about 106 - 1060 times
less than what applies to parallel to grain creep). At
constant climate, 1 decreases at increasing moisture
content and/or increasing temperature. However, clima-
tic variations, up or down, will always decrease the
doubling time.

The following factor, a, on 7T (suggested in (1)) may be

used when estimating the influence on creep of equili-
brium climatic conditions different from (u,T) = (15%,
20 =C)

(15-u)/10 + (20-T>/15

a & 10 (u(%) =< ue) (5.8

b

Another result obtained in (1) is that the following
relaxation function, r(t), applies for wood,

-25_-1
]

-1 t
Ta(t) & Ca(t) = Edl1 + (Z-) (i=R,T,L)
4

(5.2)

-
’
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(The simple result, r(t) &% t/c(t), applies practically
for any Power Law material as long as the power is less
than 1/3).

~

Knowing the viscoelastic properties of wood we can now
determine the actual drying stresses in a pole applying
the elastic-viscoelastic analogy (e.g 4,5) to the ela-
stic stress solutions. The actual tangential stress,
o+, for example, is obtained from Equation 5.3 simply
by replacing the elastic modu&&s, E+, with the so-cal-
led relaxation-integral-operator such that

1 . -
or = = rr(t-8)-->1-=de (5.10)

It should be noticed that we have here wutilized the
suggestion made above that T ® 7+ which implies creep

to be isotropic in the RT plane (E+cy+(t) = Ercw(t) or
r+(t)/E+r = r(t)/Ex). A consequence of this concept is
that the stiffness ratio, N = E+/Ex, appearing in the

elastic stress expressions can be considered as a real
constant without any time influence on the viscoelastic
solution.

Equation 5.10 may be rewritten in terms of load levels.
e only have to divide on both sides with the strength,
Tr,.om, given by Equation 5.4. We get

t
1 r dSLr, e
SL = =- - ———=Zz= .
T ETJrT(t 8> 36 de (5.11)
-

where SL+ is the viscoelastic load level. In our examp-
le we introduce SLr,=. and r+ as given by Equations 5.6
and 5.% respectively. We get

t

D [ t
SLr = =-- L[1+(=
DCR d

C}

-6,-25,-1.1_ _-8/do_ .61 _-8/da, o

(5.12)
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When this expression is evaluated numerically it is no-
ticed that a sufficiently good and simple approximation
of the load level considered is given by

) SLr, e
SLr &% SL+,mi*r+(t)/Ex ® 13(t/7)-=5

- e
~ Do 1 3+ (¢77)o =5 (5.13)

where again SL+,e. is the elastic load level as ex-
pressad by Equation 5.6. Theoretical arguments given in
(6) support the validity of the approximation given by
Equation 5.13 as long as the exponential functions in
Equation 5.12 can be considered practically congruent
with the time dependent part of the relaxation func-
tion.

Some examples of the viscoelastic stress analysis are
demonstrated graphically in Figure 5.1. The results
shown are based on the approximate description in Equa-
tion 5.13.

SLiOcr/D
I

' T = 30 days
gc = 50 days
=0 days —_—
.6

[ T T

lﬁ\
\/

10 20 30 40 50
t,days
Figure 5.1. Tangential surface stress of a

drying wood pole as related to rate of surfa-
ce drying.
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&S - FINAL REMARKS

A value of SLyr 2 1 1is of course not possible. This
would predict a stress greater than or equal ~to the
tangential strength. Thus, one might think that the re-
sults presented in this article can be used to predict
maximum rate of drying which will not destroy the wood
structure. For example by applying the approximate de-
scription 5.13 with SL+ = 1
bound for moisture loss,

, to determine an upper

—————— = Y LRSS S § 2 AL F i 5.14
MIN.C o e“t/do] ( )

where Min. means minimum with respect to time.

This conclusion, however, is not correct. An upper
bound on moisture loss is given by Equation 5.14 (or a
more accurate exprassion based on Equation 5.12). It
is, however, not the best bound. Due to the viscoela-
. 8tic behavior of wood, defects will start propagating -
and become critical some time before SL+ = 1 has been
reached.

Much research has still to be made in order to deter-
mine the true upper bound for drying rates which will
not decrease dramatically the strength of wood.

However, some important results can be deduced from the
analysis made in this paper: The results presented are
valid as 1long as the wood structure is stable. This
means that no defects are expanding, weakening the ma-

terials stiffness. Thus, knowing from crack mechanics
when defects start propagating, the results can be used
predicting '"safe'" rates of drying where the original

wood structure and strength is maintained.

These concluding remarks indicate the topic of a subse-
quent article on the drying effects on the strength be-
havior of wood.
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