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PREFACE .

Joseph Fourier

- Joseph Fourier wrote the comprehensive treatise:

"Théorie du Mouvement de la Chaleur dans les Corps
Solides" [3] only a few years after his return from
Egypt, where he hagd participated in the campaign of
Napoleon Bonaparte in 1799.

The work has been a valuable part of the natural
philosophy ever since and a direct source of inspi-
ration for scientists as J.C. Maxwell and Lord Kelvin.

Especially the following theorem has become of out-
standing importance to fire technology: "Suppose the
different points of a homogeneous solid of any form

‘whatever, to have received initial temperatures which

vary successively by the effect of the mutual action
of the molecules, and suppose the equation
v = f(x,y,2,t) to represent the successive states of
the solid, it may now be shown that v a function of
four variables necessarily satisfies the equation
gzi_zg(gfh.@f_u@iz) "
dt Cbh dx2 dyz dz2 :

This report deals with solutions to the equation.

. Copenhagen, June 1981

Kristian Hertz
M.Sc. Ph.D. Struct. Eng.



SUMMARY

The problem of determining the temperature 4d:
bution in fire exposed concrete construction:
analysed.

Based on the knowledge of the thermal propert
concrete the accuracy of a calculational proc
is estimated leading to the cbnclusion, that
application of simple approximative solution:
well justified. |

Some simple exact solutiodons to Fouriers equai
presented, and a new procedure is developed ¢
bing the tempetature distribution in a recta:
concrete specimen exposed to a realistic fire
standard fire course extended with a decay p¢

In four appendices the method is formulated :
pocket calculator program and a fast EDP subn
and examples of calculated distributions are
with results of more complicated calculation:

measurements from fire tests.
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INTRODUCTION

A precondition for an analytical determination of
the fire resistance of a construction is the abil
of using a calculational approach for estimating -

temperature distribution through the loadbearing j
of it.

‘While the laws of statics remain unchanged the pr«

perties of the materials are sensitive to the tem-
perature development.

The temperature is the key parameter, and its var-
riation as a function of time and place is especis
important for the understanding of the function of
fire exposed concrete structures, because large
thermal differences normally occur, giving rise tc
internal stresses and a lack of simultaneity which
is often ignored without any reason.

In an age of electronic data processing the standa
answer to complicated questions is calculational
power. Nevertheless simple procedures are still ju
fied in order to achieve reasonable solutions quic
and at small efforts.

The need for procedures of this kind for calculati
of temperatures in fire exposed constructions is i
creasing because still more constructions has to b
designed for resistance to fire.

This is the case especially if the thermal propert
which are used in the calculations are so poorly d

termined, that a greater accuracy of the procedure
is meaningless.

|
}



ON THE THERMAL CONDUCTIVITY OF CONCRETE

The sort of aggregate used is highiy decisive for -
the value of the thermal conductivity and its vari-
ation with the temperature.

The water-cement ratio, and dependent on this, the
porosity is alsc of major importance.

It is therefore obvious that if the thermal conduc-
tivity is not measured for the actual concete the
assessment of this value can give rise to conside-
rable deviations when calculating a temperature di-
stribution.

If the value is measured as a function of the tempe-~
rature, the conditions under which such a measure-
ment is performed are much different from the conr-
ditions being found in a construction exposed to fire.
The concrete is in the former case mostly dry and the

duration of the heating is often several days.

Thus, no matter how careful the conductivity is deter-
mined and no matter how precise the tempeature cal-
culation has been executed there will always be an
uncertainty of say 40- tb 50°C on the temperature
distribution in a fire exposed cross section solely
arising from uncertainty on the determination of the

thermal conduccivity.

Some examniples of the variation of the thermal con-
ductivity by the temperature are shown on the fol-

lowing pages.

To be noticed is the variation caused by the diffe-
rences in aggregate and the influence of the heating
rate.
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aggregate weight
w/ic cement weight

~--1 0,38 3
K. —-2 0,55 4,5

WimeC | ——3 0,65 3

RS ~—4 0,7 45
RS -=5 0,7 6

. . ' e r . - . —
0 200 400 -~ 600 800 1000 °C
Thermal conductivity for granite concrete.
Odeen and Nordstrdm [18].
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cylinder com-
_ Aggregate. wlc  pression strength.
2 12,3 Danish land gravel 086 28 MPq,
: 0-8mm.
4,56 do. —u—mo 0,71 49 MPa.
18 beach sand and 0,68 28 MPa.
granite 2-6mm.

0 200 400 600 800 °C

Thermal conductivity during a standard fire.
@stergaard 1972 [21].
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ON THE SPECIFIC CAPACITY OF HEAT

Unlike the thermal conductivity the specific heat
capacity of dry concrete seems to vary only a little
with differences in the composition and with the tem-

perature level.

Many authorsAlike Lie[ 7] and Pettersson and Hdeen
[12] propose to use a fixed value of approximately
l.OkJ/kgOC, and the results of the thorough work

of Udeen and Nordstrdm [18] seems to confirm the
reasonableness of such an assﬁmptidn, as the ac-
tual value raises only 5- to 10:.pet, when the tempera-
ture raises from 200°C to 600°C.

During the'experimental investigations the concrete
has been examined while cooling and not while heating,
which would be more interesting for these applications

Although all processes involved for the dry concrete
can not be provided to be reversible at the same
temperature levels many authors considers the devi-
ations caused by this to be negligible.

On the other hand one must of course correct for
the influence of moisture on the heat demand of
the concrete supposed to be heated, especially the
local increase of the heat capacity at 100~ to
200°C due to evaporation of the free water.

For very precise calculations the moisture can be
handled separately taking into account the proper-
ties of heat and flow.

1 kg water uses 2.6 MJ while heated from 20- to 100°C
and then finally evaporated.
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Enthalpy in principle.

The moisture content of structural concrete is ofter
about 1- to 3 pct. by weight. That is about 1 pct.

for protected structures and 2- to 3 pct. for struc-
tures more likely to be exposed to moisture. (See f¢
example Neville [10] p. 429). A realistic value thus

-is about 1.5 weight-pct. free water.

While heated to ZOOOC this moisture uses about 1l.5x:
~ 40 kJ per kg concrete, and related to the total

'heat demand of the concrete, which is about 200 kJ

per kg concrete, this is approximately 20 pct.

An examination of curves showing the development of
the specific heat capacity for actual examples of dr
concrete indicates that the value is just about 20
less than 1.0 kJ/kgoC within the first 200°c.

This means that the value 1.0 kJ/kgOC seems to de-

E
|
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Specific capacities of heat.
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scribe the heat capacity for the total system almost
exatly at all temperatures when used in relation to
the density of the dry concrete.

Above 200°C the density of the dry concrete decreases
slightly.

Using the results from Zoldners [17] the density has
decreased 5 pct. at 600°C ana thus about the same
amount as'the slight increase in the specific heat
capacity above 200°C. So the product of these two
values must be expected to remaiﬁ almost constant.

This phenomenon facilitates the simple calculations.
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CALCULATED TEMPERATURE DISTRIBUTIONS

otl i
1000]
1 p anb
- i l'g’_j[
~ padigolS
500 ob |

a-q calculated
without rein--
forcement.

1151822
100{cm -

012345678910M1213cm
Temperature distribution in a 13 cm slab
after 1 h standard fire.

A résult of major importance to this subject was
published by Ehm in 1967, where he showed that if
the temperature distribution in a reinforced concret
section is calculated as if the section consists of
| piain concrete, the temperatures at the positions of
the centres of the reinforcement bars will be the.
same és the temperatures of the bars in the corre-

sponding reinforced cross section.

Becker et al. [ 1] showed that this is a reasonable
procedure up to an area of reinforcement of 4% of tr
total cross sectional area.

In most cases the problem therefore is reduced to tt
calculation of the temperature distribution in a pla

concrete section.



17

If the effect of evaporation and moisture flow is
neglected the heat transport is ruled by the diffe~-
rential equation - Fourier's law:

oi_

v

where i_ is the enthalpy (J/m3), t is the time (s},
T is the temperature (for example °C) and K is the
thermal conductivity (W/m°cC). '

The corresponding one~dimensional expression is then
with fixed conductivity K, specific capacity of heat
cp (J/kgoc) and density p (kg/m3):

o’r _ P% ar
322 K 3t

where x is a simple Euclidean co-ordinate.

Dividing the cross-section into slices of thickness
Ax  the corresponding difference expre531on can be
solved stepw1se graphlcally or by EDP.

Results of the latter kind are published by for exam-
ple Odeen [20], Lie [ 7] and Maes et al. | 81].

Also for two-~dimensibnal heat flow difference ex-

pressions are developed and stepwise solutions have
been found.

Such solutions are available in for example Odeen
[19], Weiss [13] and Pettersson and Odeen [12].

Also the finite element method is applicable to the
problem using an appropriate principle of variation.

See for example Zienkiewicsz [16], Becker, Bizri and
Bresler [ 1] and wWickstrdm [14] and [15]
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W2h V1h

11/2h
o Temperature distributions illustrating
[::] 0-300 “c two dimensional heat flow in a prestressed
300-600 °c concrete beam exposed to a standard fire

calculated by stepwise solution of difference
600 - Cc expressions. Weiss [13].
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SOME SIMPLE EXACT SOLUTIONS

Example of an integral surface.

An exact solution to the one~dimensional case obeys
the equation

ar _ , 2’1
ot 5x2

where a is the thermal diffusivity

X
pc
%
In a x-t-T co-ordinate system such a solution will

form a surface.

a:

The inclination of the surface in the t-direction
is at every poiht proportional to the derivative of
the second order of the height T i.e. the approxi-
mate curvature of the x-direction.
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Temperature distribution in the web of a prestressed beam.
after 1 h standard fire. 1) Parabola. 2) EDP calculation
from Weiss [13]. '
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Parabolic solution.

A surface of this kind happens to be an adequate
conceptual tool for handling thermal problems rela-
ted to fire exposed cross-sections.

If the surface fulfils the boundary conditions, which
for example consist of three boundary curves, it
represents the particular integral that forms the
exact sclution to the problem.

If the temperature at the boundaries raises at con-
stant speed 2aC, for example at two surfaces of a
wall exposed from both sides, the parabola of the

second degree is an exact soclution

T=T +Cx + C.x% + 2aC_t
Q o] 1 1

where TO, Co and C'l are arbitrary constants.

For a thin wall and a rapid heating this soclution
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Temperature distribution in a

15 x 30 cm cylinder heated 2°C/min.
Paraboloid.
——————— EDP calculation.

- is often applicable with a sufficient accuracy.

For cylindrical cross-sections the equation of con-

duction in polar co-ordinates becomes

3T . 3%T _ 1 aT

_— e —— = I
r arz a ot

] o

where r is the radius.
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Also in this case the parabola of the second degree
represents an exact solution

T = T_+ Cr’ +dact
Likewise does the parabola of the fourth degree

___ S 2 2 1 4
T = To+Clr +4C1at+C2r t+ngC2r +2C2at

2

An exponential solution also exist to the simple
plane one-dimensional problem

WA
(.Alt— - -—‘_;]:-x)
T=T +Cx + C.e

o o 1

where TO, CO, C, and Al are arbitrary constants.

1
Furthermore the damped oscillation known from electro-

magnetism is an exact solution.

T = TO + Cox + Cle-lv/zaxsin(vt-q;/2ax)

where TO, CO and Cl are arbitrary constants and v

is the angular velocity.

The surface temperature in this case must vary accor-

ding to the expression
T =T + C_sin(vt)
o 1

If the surface temperature at time t = 0 raises to

‘a constant value TO, a good approximate solution
is known as

% 2
Y Cp——
o

3.363\at
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Finally a simple exact solution proposed by Joseph
Fourier himself in [ 3] has to be mentioned.

Although it is not incorporated in the procedure
presented on the following pages, it may be
valuable for rough calculations in fire technology.

In fact it is an exact .solution for a rectangular
prism with a surface temperature varying exponen-
tially in time. '

The exponential decrease in'temperature is interes-
ting because it is easily superimposed to describe
the variation according €o the standard fire curve
‘until the decay period (which unfortunately seldomljy
is described in the national standards).

As an example the present Danish Standard fire curve
is composed by exponential terms.

~1.7t

0.2t -625e

-19t

T -T = 1325-430e" -270e

With the same terminology as used before Fouriers

solution for the surface temperature variation

T = C ™% in the three dimensional case i

_ -mt
T = C.e cos(Clx)cos(Czy)cos(C3z)
where x, y and z are coordinates originating at the

C, and C3 are con-

centre of the prism, and CO, Cl' 2

stants obeying the relation
_ 2 2 2
m = a(C1 + C2 + CB)
and demands concerning the values of the product

of cosine functions at the surfaces of the prism.

Two- and one dimensional: solutions are naturally for
by introducing C3 = 0 and C2 = 0 respectively.
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PRACTICAL APPROACH

The simple exact solutions mentioned‘in the previous
chapter would be of limited interest if it was not
for the fact that the equation of conduction allows
superposition. That is, two exact solutions can be
multiplied by constants and added, and the result
is still an exact solution.

By means of this procedure many realistic boundary
conditions can be fulfiled almost exactly.

In spite of the fact, that an uncertainty of about
50°C has to be accepted exclusively according to the
difficulties in the assessment of the thermal con-
ductivity, the author finds it convenient to use a
simple procedure for the temperature calculation
giving rise to uncertainties of about 30-40°C.

The procedure proposed in this presentation approxi-
mates the surface temperature development of a fire
exposed construction with an arbitrary rectangular
cross-section to an idealized development that is
achieved by superposition of solutions to the equation
of conduction.

The surface temperature development is composed by
three elementary developments representing three
basic solutions. These are a fixed temperature super-
imposed by a harmonic oscillation and after a half
period superimposed by an exponential solution in

the cooling phase.

By means of these three simple elements every fire
development can be simulated with a sufficient accu-
racy.
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In this context the fire developments of interest
are chiefly the standard fire defined by for example
ISO 834, succeeded by realistic cooling sequences,
or actual fire developments specified by the fire
loads and the opening factors according to Magnusson
and Thelandersson [ 9].

The simulated solution to the plane one-dimensional
problem can be written as

T(x,t) =.fl(x,t) +_f2(x,t) + f3(x,t)

whefe
. % 2
fl(x,t) = E‘(lv- ———————-)
3.363\at
for (l S SE— N 0, else £ (x,t) =0
3.363\at 1

aﬁd E' is the constant temperature.

: _ —“;/Zax . _
fz(x,t) = D'e sin (vt “v/Zax)
for (vt—“;/Zax) > 0, else fz(x,t) =0

where D' is the amplitude of the harmonic oscillatic
at the surface, and with the half period called C',
the angular velocity will be v = w/C'.

£,(x,£) = ..9.'.5‘;_‘_’3_'__0 N EAE )-\lL/a‘x))

2(e” =1)
for (L(t-C')~-\{L/ax) > 0, else f3(x,t) = 0
- 2 3D’
where L = ol In B —op7 °

L defines the shape of the temperature curve in the
cooling sequence being assessed by the surface

temperatures:
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0 002 - 006 006 008m

Temperature distributions from two sides.

T(0,C') = E'
2 1
T(O,—C') =§i—
R
T(0,2¢') = BE=D

For constructions simultaneously exposed to fire at
two parallel surfaces, as for example walls and
compression zones in top of beams, a one-dimensional
solution from the one side is superimposed by the

same solution from the other side, and the new tem-
perature distribution is multiplied by the relation
between the surface temperature wanted and the surface
temperature from the added solution.

This simple procedure leads to temperature distribu-
tions which are in close accordance with known measured
or precisely calculated distributions, as shown by the
examples in Appendix A (calculated by Pedersen [11]).
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.
T, X

‘Temperature reduction in a section
exposed on three sides.

Analysing fire exposed concrete constructions it is
often desirable being able to calculate the tempera-

ture in a point of a rectangular cross-section exXpos
on the three sides.

Unlike the procedures dealt with on the previous pag
a well known method is available for the simple cal-

culation (for example Carslaw and Jaeger [ 21).

If the reduction factor of the temperature is called
€py in the depth x of a section exposed at two sides
and ETY in the depth y of a section exposed at one

side, the temperature in the point (x,y) of the sec-

tion exposed at three sides is calculated approximat
as

- & &)

T(XIY) = To(iTX + £ tx>Ty

Ty

where Té is the surface temperature.
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Integral surface for the simple calculation procedure.
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The author has developed a program for the simple
calculation of temperatures in a cross-section expo-
sed by fire at one-, two- or three surfaces by means
of an advanced pocket calculator.

The program is listed in Appendix C, where alsc the
documentation necessary for operating the program
can be found.

Examples of temperature calculations of cross-sectic
exposed on three sides are shown in Appendix B (cal-
culated by Pedersen [11]).

It will be seen, that the simple calculation in this
case leads to temperatures which are somewhat too
high especially in the vicinity of a corner.

The increment of the temperatures in these zones of
the cross-section is advantageous because it is of
-the same amount as the increment caused by the be-
velled edges, that often are found on fire exposed
rectangular construction elements as a result of the
spalling effect.

This effect is caused by the flow of steam from the
cross—section giving rise to an explosive destruc-
tion of the surface especially at convex corners
where the thermal stresses are contributory to the
phenomenon.

Because it happens at an early stage of the fire it
causes certain changes of the isotherms of the cross
section during the largest part of the fire develop-
ment.
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APPLICATIONS FOR THE SIMPLE CALCULATION PROCEDURE

It is obviéus that a quick estimation of the tempe-
rature to a certain time at a point of a cross-section
‘exposed to a certain fire is advantageous in relation
to fire technological research.

The consulting engineer also has.a need of such a
procedure while selecting various sorts. of fire pre-
cautions or designing a concrete construction for
fire resistance.

In this case especially the temperatures of the re-
inforcement bars are of interest, and the problem
is characterized by the fact that they are located
at single'péints'of the cross-section.

Many of the fire technological phenomena of relevance
for the designing process are far from simultaneous.

The time at which the maximum temperature occurs
during a fire is highly dependent on the position
of the point considered in the cross-section.

It is therefore important being able to maximize
the temperature or temperature dependent phenomena
at a reasonable speed and cost.

The procedure proposed is advantageous because it
allows a mathematical treatment of many of these
maximizations, or it simply offers a fast working
subroutine'for the temperature calculation as a part
of a larger calculation.

The procedure is shown in Appendix D where it is -
translated into PL/1 (Programming Language One) for
application in an EDP program.
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Temperature distribution calculated by the program
Incendioret after 1.0 and 1.5 h standard fire.

The points indicated are measured temperatures
(Kordina et al. [6]).
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Temperature distribution calculated by the program
Incendioret after 1.0 and 1.5 h standard fire.

The points indicated are measured temperatures
(Kordina et al. [6]). ‘
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Temperature distribution calculated by the program
Incendioret after 1.0 and 1.5 h standard fire.

The points indicated are measured temperatures
(Kordina et al. [6]).
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Distribution of maximal temperatures calculated
by the program Incendioret at a fire of

(opening factor glre lgad) =

1: (0.06,150) (m*,MJI/m“)

2: (0.04,400) -

The points indicated are temperatures calculated
by EDP (Pettersson and Odeen [12])

(TASEF~2 [15])
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Distribution of maximal temperatures calculated
by the program Incendioret at a fire of

(opening factor,f%re.logd) =

l1: (0.12,150) (m +MJI/m”)

2: (0.04,200) -

3: (0.12,900) L=

The points indicated are temperatures calculated
by EDP (Pettersson and Odeen [(12]1).

(TASEF-2 [15]) '
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Distribution of maximal temperatures calculated
by the program Incendioret at a fire of
(opening factor,f%re logd) =
: (0.02,100) (m?,MJ/m*“)
2: (0.04,200) -
3: (0.08,800) -
The points indicated are temperatures calculated
by EDP (Pettersson and Odeen [12])
(TASEF-2 [151])
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Comparison between temperatures calculated stepwise
by means of difference expressions on EDP (Weiss [13])
- the isotherms - and by the program Incendioret -
the points - in a beam exposed to 1 h standard fire.
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Comparison between maximal temperatures calculated by the program
Incendioret and by EDP (Pettersson and Odeen [12]) in a corner of

a rectangular beam exposed to fires characterized by opening factor
and fire load. (TASEF-2 [15])

(opening factor,fire load) Beam Point Temperature Temperature

with Incendioret EDP
(m? , MI/m%)  (m) - (°c) °c)
(0.04,200) 0.1l6 1l 674 645
2 490 450
3 374 375
4 546 480
5 425 400
(0.04,300) 0.20 1 740 740
2 578 550
3 437 - - 440
7 590 565
8 468 455
(0.06,600) 0.16 1 919 895
2 775 725
3 674 640
4 818 760
5 721 670
6 662 630
(0.08,600) 0.30 1 900 865
' 2 704 625
3 534 465
7 716 630
8 535 445
9 702 615
10 505 415
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Variation of surface temperature for Incendioret.

THE POCKET CALCULATOR PROGRAM INCENDIORET

The pocket calculator program INCENDIORET is listed
on the following pPages. It is written for[the pocket
calculator TI Programmable 59 from Texas Instruments.

The program calculates the temperature in a point of
a semiinfinite specimen, a slab exposed on two sides
(and thus a slab with a perfect insolation on the
one side calculated as a two side exposed slab of
the double thickness) and a rectangular section ex-
posed on the three sides.

The material is described by a fixed thermal diffu-
sivity and the temperature variation on a surface

exposed to the actual fire is described by three con-
- stants C', D' and E'.

The program is not able to calculate temperatures after
the time of the maximum temperature at the point.
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OPERATION OF THE PROGRAM INCENDIORET

First the materiai and the fire is described.

TYPE

The thermal diffusivity (mz/s)
The half period . .(h)
The thermal amplitude (°c)

The constant temperature (°C)

PRESS

Al
Cl
DI
El

Then the temperature can be calculated in any pbint.

TYPE

The depth from the surface of

a semiinfinite specimen (m)
The time in hour from the start
of the fire (h)

This gives the temperature in a semiinfinite

PRESS

A

B

specime

If the specimen is a slab exposed on two sides then

TYPE .
The slab thickness {m)

The display shows the new temperature.

PRESS

Cc

If the temperature in another depth is wanted at

the same time then

TYPE

The new depth (m)
If the section is rectangular then

TYPE

The depth from the
third surface (m)

PRESS

D

PRESS
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INDATA FOR INCENDIORET

STANDARD FIRE

OPENING FACTOR = 0.02 m?

The values of D' and E' describe the temperature
development at a plane surface absorbing radiant
energy from the fire in a hemispherical space such

as the surface of a slab or the bottom of a broad
beam. :

If the angle factor for radiation from the fire to

the surface is less than 1.0, the values of D' and
E' must be adjusted accordingly.

For web surfaces of beams at the ceiling of the en-
closure it is recommended to multiply the values of
D' and E' by the factor 0.9. These adjusted values

are refered to as D! and RE! .
web web

RATING c! D! E? D' E!?
web Tweb

0.5 h 1.0 150 600 135 540
1.0 n 2.0 220 600 195 540

1.5 h 3.0 310 600 280 540
2.0 h 4.0 360 600 325 540
3.0 h . 410 600 370 540
4.0 h 8.0 460 600 410 540

L

FIRE LOAD C'! D! B! D! E'
web “Tweb

75 MI/m® 0.6 100 360 90 330
100 MJ/m? 1.3 185 390 170 350
150 MJ/m? 2.2 250 400 225 360
200 MJ/m?2 3.2 310 400 280 360
250 MJ/m? 3.6 350 400 315 360
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5
OPENING FACTOR = 0.04 m*

FIRE LOAD ct DY EF D! E®
web Tweb

75 MJ/m° 0.4 135 470 120 420
100 MJ/m? 0.7 200 510 180 460
200 MJI/m? 1.2 200 600 180 540
300 MJ/m? 1.8 240 600 215 540
400 MJI/m° 2.8 265 600 240 540
500 MJ/m? 3.4 300 600 270 540

' L
OPENING FACTOR = 0.06 m*

FIRE LOAD Cct D! E!' D! E!
' web web

150 MJ/m? 0.6 150 645 135 580
300 MJ/m? 1.2 195 680 175 610
450 MJ/m? 1.8 265 710 240 640
600 MJ/m? 2.4 270 745 245 670
750 MJ/m? 3.2 290 . 750 260 675

L
OPENING FACTOR = 0.08 m?2

FIRE LOAD c! D! E!? D? E!
web ~web

100 MJ/m? 0.3 145 645 130 580

200 MJ/m? 0.6 170 700 155 630
400 MJI/m? 1.2 200 725 180 650
600 MJ/m? 1.8 265 765 240 690
800 MJ/m’ 2.4 270 800 245 720
1000 MJ/m? 3.0 290 805 260 725

L
OPENING FACTOR = 0,12 m?

FIRE LOAD c p* B DE B
150 MJ/m? 0.3 220 710 200 640
300 MJ/m > 0.5 220 780 200 700
600 MJ/m? 1.0 250 800 225 720
900 MJ/m ? 1.6 250 835 225 750

1200 MJ/m 2 2.2 255 845 230 760

1500 MJ/m° 3.0 290 860 260 775

gy
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The pocket calculator program Incendioret
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PL/1 Subroutine

- TEMP: PROCEDURE(A3:C3,D3,E34X3,T13)3
V = 3.181592654/C3;
ARG2 = E3-2%D3; ,
IF ARG2 < C.02 THEN ARG2 = 0.02
ARG = 3*D3/ARG2
Z3 = 2*LOG(ARG)/C3;
ARGL = SQRT(V/(7290%A3))%X3;
IF ARGl = O THEN £X = 13
ELSE EX = EXP(-A2G1);
ARG = V%TI3<ARG1}:
IF ARG > 0 THEN

FUL = D3*EX*SIN{ARG)

ELSE FU1l = 03

ARG = Z3%(TI2-C3)-SQRT{(Z3/(36C0*A3) )*=X3;

IF ARG > 0 THEN

FU2 = (D3+E3)*(1-EXP{ARG)) /{2#{EXP{Z3%C3)-1));
ELSE Fu2 = 03

ARG = 1- 3/(3-36?*$0RT(A3*4600*TI3))’

IFf ARG > O THEN

FU3 = E3%ARG:¥%2+4FU23
ELSE FU3 = 0;
RETURN(FU1 +FU3 )3

END YEMP;



