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NOTATION

The following list gives the symbols most frequently used in
this thesis and the sense in which they most often appear.

a Length
b Length
c ’ Length
Cohesion

c' Cohesion, reduced in relation;to c
£ Ratio of reinforcement % .

' Loaded area under concentrated load
h . -Length
k ' %{E%%%v in Coulomb's failure hypothesis

Constant < 1

0

Length
P Load per unit of length, of per unit of area
t Length‘ .
A Area of concrete
A, Internal work
Aia Contribution of reinforcement to internal work
, Aib Contribution of.concrete to internal work

Ay External work
B Crosé—se¢tion from the "keys" in the keyed shear joint
F Cross section of reinforcement

' "Active" area under concentrated load
I First strain invariént = 8'1 t e, + €g°
N Load
P Load
Pyr Failure load

- Q Load



s =

>

" Poisson's ratio

Deformation vector

Intérnal work per unit of volume

Internal work per unit of length of line of discontinuity
Angle between V and linebof discontinuity

Angle speéifying slope of line of discontinuity

Height of deformation zone

Longitudinal §train

Principal strains

Positivé principal strain

Strain vector

Positive constant

- Coefficient of fr{;tion

Efficiency factor
Normal stress
Principal stresses

Uniaxial compression strength. For concrete, put equal
to the cylinder strength

Failure stress under concentrated load
Siresé vector

pniaxial tensile strength

Separation strength

Yield stress for reinforcement

Under concentrated load; also the ultimate strength when
the entire area F is'loaded'

N :

— -

. AL

Cube strength Of ‘concrete

Ultimate load determined by an uppé% bound solution
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Tensile strength reduced in relation to O¢

N

VA :

Ultimate load determined by a lower bound solution

Shear stress

g
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vA ) '

Angle of friction

Angle of friction reduced in relation to ¢
Angular élteratiqﬁ in the xy-plane

Angle .

Airy's stress function

Top angle in logarithmic spiral .-
’ Fo

Degree of reinforcement XEE
Fo ¢
F
VAG ‘ oy
Equivalent degree of reinforcement @ - =
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Fig. 1.1 Example of the fact that tests can show . what

failure mechanism can be expected.




1.

INTRODUCTION

During tests on moment-transmitting stirrup
connections between reinforced concrete
beams I became interested in limit state
analysis for concrete, particularly in rela-
tion to conneétions between prefabricated
concrete components. '

Limit state analysis for concrete is difficult
for a number of reasops,’including the fact
that concrete cannot be characterized as either
distinctly elastic or distinctly plastic.
Nevertheless, for tﬁe purposes of this thesis,

concrete is regarded as a rigid, plastic

material, which has as its yield criterion
Coulomb's modified failure hypothesis.

Provided due attention is paid to the deform-
ability of concrete, we find that we can get
a-very long way with ultimate load calculations
by means of the theory of plasticity. On the
other hand, it is owing to the deformability of
concrete that results obtained by means of

the theory of plasticity must only be used
with extreme care until they have been verified

by tesﬁs.

Here, the theory of plasticity is used almost
exclusively for finding upper bounds for
ultimate loads. This is done by calculating on
the basis of failure mechanisms which there

are often only a few reasonable ways of select-
ing. If we know from tests how a body fails,
we thereby often have a good estimate of a
failure mechanism. An excellent example of
this is failure of a concrete prism under
concentrated loading, see fig. 1l.1l.

We can obtain valuable results simply by con-

'sidering a failure mechanism. - An example is
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-

Fig. 1.2 Distribution of transverse stress beneath the load

in accordance with the theory of elasticity.



again provided by the concentrated load. As
described in chapter 7, we see clearly that
transverse reinforcement is just as effective
against failure when placed where elastic
analysis gives transverse tension as where it
gives transveise compression, see fig. 1.2,

As mentiohed above,- Coulomb's modified failure
hypothesis is used as yield criterion for
concrete. Both this and Coulomb's ordinary
failure hypothesis are discussed in chapter 2.
The modified failure criterion is compared with
failure tests on concrete, and the stress-
strain curves for concrete in uniaxial com-
pression and uniaxial tension are discussed.
The chapter contains nothing new ané is only
included to show that the modified failure

hypothesis can be used for concrete.

In chapter—3 expressions are derived for the
interhal work per unit of volume for materiais
that obey Coulomb's failure hypothesis and
Coulomb's modified failure hypothesis. In
this chapter special attention is paid to dis-
continuity lines in displacements arising in
plane stress fields and plane strain fields.

The chapter gives a general account of the
theory of plasticity for Coulomb-materials

“and bontains various original work. The ex-
pressions formulated here provide the background
for the plastic analysis later in the thesis.

Chapter 4 is a short chapter which is pre-
sumably only of theoretical interest. It

shows how the theory of plasticity can be used
to find the load-carrying capacity of a con-
struction joint in plain concrete. This

"~ chapter only contains really new considerations
.regarding‘construcéion joints in which pure
sliding failure does not occur.



In chapter 5 complete formulae are established
for the shear strength of reinforced concfete

in which the reinforcement is normal to

the shear section. 1In this chapter a quantity
is introduced that takes account of the deform-
ability. This was first done by Nielsen [69.1]
in plastic shear analysis of reinforced concrete

beams.

The actual éontent of the chapter is largely

" original, whereas the principle applied in the
establishment of the formulae follows that used
by Nielsen and Brastrup [75.1] in upper-bound
calculations of the shear strength of rein-
forced concrete-beams.

Concentrated loads on plain concrete prisms are
dealt with in chapter 6, which contains a
plastic, an elastic and an empirical treatment

of the problem.

The plastic failure analyses almost all lead

to formulae that are only variants of one found
earlier by Chen and Drucker [69.2]. This
section thus has little new to offer readers.

The ultimate carrying capacity of the concrete under
concentfated loading can unfortunately not be

determined by means of the formulae derived.

Ultimate load calculations by means of the
theory. of elasticity also prove to be impossible.
The elastic calculations show, incidentally,
that the tensile strength of concrete is less
important than hitherto assumed,because failure
starts with sliding failure.

We thus épparently still have to rely on empi-
rical formulae for determining the ultimate
load. .A formula previously published is, in-
cluded in the empirical chapter, and here, too,
the height of small prisms is discussed. |



The corresponding problem, with reinforcement
in the concrete prism, is dealt with in chépter
7. Here, on the basis of the theory of plasti-
city, an approximate expression is formulated
for the ultimate 16ad. However, the formula
must be used with caution since it has not yet

been adequately verified.



2. FAILURE HYPOTHESIS AND STRESS-STRAIN DIAGRAMS FOR CONCRETE

2.1 Coulomb's Failure Hypothesis

(2-1)

Coulomb's failure hypothesis (also known as
the friction hypdthesis) was presented in 1773
by C. A. Coulomb [{1773.1], who had remarked
that failure in stone prisms subjected to uni-
axial compression took place along certain
faces, as also occurred in the case of failure
in earth behind retaining walls when these
yielded to the pressure on them. These faces
are called sliding surfaces, and this type

of failure is known as sliding failure.
Coulomb assuméd that both internal cohesion,
which is constant, and internal friction, which
is proportionalto the normal pressure on the
éliding surface, had to be overcome in the
sliding surface.

This assumption can be formulated as follows:

Tl = ¢ - nyo = ¢ - o tany
where
T = the shear stress along the sliding
surface
c = tohesion
B = the coefficient of friction

0 = the normal stress perpendicular to the

sliding surface (positive as tension)
¢ = the angle of friction
However, Coulomb's failure hypothesis was

first formulated mathematically by O. Mohr in
connection with his general failure hypéthesis

. from 1882 [{1882.1].



-T=c-0tany

Y

T=c-0tany T

Fig. 2.1 Coulomb's failure hypothesis with Mchr's circles

at one point..




(2-2)

(2-3)

(2-4)

- (2=5)

According to Mohr's failure hypothesis the
stresses in a sliding surface are assumed to
satisfy the condition:

f(0,T) =0

where f£{0,1) is a characteristic function for
the material. Coulomb's failure hypothesis

is thus a special case of Mohr's hypothesis.

Figure 2.1 shows Coulomb's failure hypothesis
depicted in a c,r—coordinéte system. The figure
includes Mohr's circles for the stresses at

a point at which the failure hypothesis is
satisfied.

By means of the figure we see that (2-1) can

be written in principal stress form:

-%01(1+sin@) —-%03(1—sin¢)—ccosw = 0
which is valid for 04 >0, > 0g. - If the
mutual magnitudes of the principal stresses are
altered, (2-3) must be altered correspondingly.
In principal stress form, the failure hypothe-
sis therefore consists of six equations, which
have the same form as (2-3). 1In a 64,0,,05 -
coordinate system, the failure hypothesis con-
stitutes an irregular, hexagonal pyramid, with
its axis in the (1,1,1) direction. The apex
of the pyramid is 0, ='02 =045 = c cot .

(2-3) can be written in the simpler form:

ko1 -0y = 2cvk 4
where the constant k is given by

= (-S0SP 2 _ 2T . @) - 1tsing
k (1—sin@) tan (4 + 2) 1-sing

The uniaxial compression strength O is ‘intro-

duced as the stress field that is given by

'(01,02,03) = (OJQ,—GC), and tHat precisely re-

sults in failure. We find from (2-4) and
(2-5) that the following applies:



T
¥ e ot
Fig. 2.2 Coulomb's failure hypothesis with Mohr's circles

for uniaxial compression failure and uniaxial ten-
sion failure.



(2-6) g = 2Ccosy
c 1~sing

and that (2-4) can now be written as:

(2-7) ' ko, - o, = 6

In the same way as. the uniaxial compression
strength, the uniaxial tensile strength o, can
be introduced as the stress field that is
given by (01,02,03) = (ct,0,0) and that re-
sults in failure. From (2-7) we find

(2-8) ko, =0
The failure hypothesis can then be written as

. g
_l—__3-=1
o

¢

(2-9)

Q

Coulomb's failure hypothesis is governed en-
tirely by two parameters, e.g. ¢ and ¢ in

(2-1) or O and Op in (2-9).

In figure 2.2, the failure hypothesis is de-
picted together with Mohr's circles for the
stress fields applying in the cases of uniaxial
compression failure and uniaxial tensile fai-
lure.

2.2 Coulomb's Modified Failure Hypothesis

The sliding hypothesis assumed by Coulomb can
be supplemented by yet another hypothesis, viz,
the separation failure hypothesis. 1In separa-
tion failure, the failure surfaceé move away
from each other perpendicular to the failure
section. Separation failure occurs when the
biggest tensile stress equals the sepafation
. resistance Opr i.e.

(2—10) G, = O
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Fig. 2.3 Coulomb's modified failure hypothesis.



This failure hypothesis, which results from
a combination of (2-7) and (2-10) is called
Coulomb's modified failure hypothesis. 1In
fig. 2.3 the failure hypothesis is depicted
in a 0,T-coordinate system. It consists

of an arc that passes through (o,T) = (GA,O)
and that is tangential to the straight lines,
and a line segment that lies to the left of
the tangent points.

In a 64,0,,03-coordinate system, Coulomb's
modified failure hypothesis constitutes an
irregular pyramid with its axis in the
direction (1,1,1) and cut off by three

planes parallel with the coordinate planes.

It should be noted that the uniaxial ten-
sile strength<%:can be less than or equal to
Oa and that Coulomb's modified failure hypc-
thesis requires three parameters to be de-
terminate, e.g. k, O and Tp

2.3 Failure Criterion for Concrete

Failure and yield criteria mean the criteria
that must be satisfied for failure or yielding
to commence.

We formulate failure and yield criteria in
order to determine their parameters by means
of simple test methods, after which we can
evaluate the risk of failure or yielding in

structures with complicated stress fields.

Here, we will examine the suitability of
Coulomb's modified failure hypothesis with

O = Op as failure criterion for concrete by
comparing it with the results of some simple
‘test methods. First, however, it is neces-
sary to make a few, familiar reservations as
regards the test methods, since, although



simple, these are not always entirely re-
liable.

The strength parameters resulting from the
test methods depend on several factors, in-
cluding the shape, size and age of the test
specimen,and the method of‘curing applied.
The strength parameters measured also depend
on the test circumstances, for example, the
relative humidity and ﬁhe rate of loading.

The choice of test method is also important.
For instance, it is a well known fact that the
tensile strength measured for concrete de-
pends on whether it is found by split tests,
bending tests or uniaxial tensile tests.
Lastly, there is also the question of whether
the test specimen is sufficiently representative.
of the concrete in the finished structure.

All in all, it can'be said that the results
obtained in simple tests deviate somewhat

from the properties of the concrete in the
finished structure. The failure hypothesis
used for concrete must bear a reasonable re-
lationship to these.

A stress-wise simple test is the triaxial com-
pression test, in which a cylindrical test
speciﬁen is subjected to hydrostatic pressure,
superposed by tension or compression in the
axial direction of the cylinder. Tests carried
out by Richart et al. [28.1] are depicted in
fig. 2.4, which also shows tests carried out
‘'by the same authors on spirally reinforced
cylinders [29. 1]. 1In the diagrams the cylinder
compression strength is put equal to O and
01£> G, > O3- For' the purposes of comparison,
(2-7) is included, with k = 4, and it will be
‘seen that there is good accordance.
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Richart et al. themselves propose k = 4.1.
Johansen [58.1] proposes k = 4.0, while ’
Nielsen [55.1] suggests k = 5, also on the
basis of tests, in which, like those referred
to here, two of the principal stresses are
identical.

Endebrock and Traina [72. 1] have carried out
triaxial tests on test cubes in which all

three principal stresses can be varied inde-
pendently. The shape of the test specimens

is unfortunate because the uniaxial compression
strength is determined as the cube strength.

If k = 4 is assumed, the angle of friction

becomes ¢ = 37°. 1In the case of uniaxial com-
pression, the failure criterion is satisfied
in sections forming the angle % - % with the

loading direction, see figure 2.5. Failure
can thus only develop freely when h > 24,

h and 4 being explained in figure 2.5. The
cube compression strength is therefore greater

than the cylinder strength, normally about
25%.

Figure 2.6 depicts Endebrock and Traina's

test ﬁogether with (2-7), where k = 4, althohgh
the cube strength is put equal to O and

94 >'02 > Oy Accordance here is not guite as
~good as in fig. 2.4, but must be termed ac-
ceptaEle. |

According to Coulomb's failure hypothesis the
middle principal stress has no effect on the
carrying capacity. However, tests show that

it does.have an effect, as witnessed, for
‘instance, by biaxial compression tests. Fig.
2.7 shows the théoretical course of the, failure
criterion as found in biaxial compression tests
"by Liu et al. [72.2],, Endebrock and Traina |
[72.1] and Kupfer [73.1]. Coulomb's failure -
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‘Fig. 2.7 Biaxial compression test.and Coulomb's failure

hypothesis in case of plane stress field and com-
pression. V

[72.1]
[731]
Coulomb

fiéff==——‘::";/:\ ‘

Fig. 2.8 Biaxial tensile tests and tensile/compressive tests,

" together with Coulomb's failure hypothesis.
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hypothesis for compression and plane stress
field is included for the purposes of com-
parison. The significance of the middle

principal stress appears clearly from the

-1.2

]

figure. The tests thus show that 03/Cﬁ

to -1.4 for ca/oc = -0.6, whereas Coulomb’s

failure hypothesis says 03/0 = ~1.0.
c

There are fewer tests for determination of

the failure criterion for concrete in the case
of tensile stresses than in the case of com-
pression stresses. Figure 2.8 shows the
theoretical appearance as found in [72.1] and
[73.1] in biaxial tests. Coulomb's modified
failure hypothesis is included for the purpcses
of comparison, and it will be seen that the
failure hypothesis is a little on the unreliable

side when tensile stresses occur.

It can thus be ascertained that Coulomb's
modified failure hypothesis does not completely
describe the failure criterion for concrete.
However, the hypothesis must anyway be des-
cribed as usable because the deviations are
often moderate, which, as previously mentioned
must be regarded in relation to the great
dependence of the strength properties on the

test circumstances.

When the results derived in the following frem
the failure hypothesis are compared with tests,
© will normally be put at 370, corresponding
tc k = 4.0. For the uniaxial compression
strength G the cylinder compression strensih
will be uséd because tests show that the uliti-
mate compression strength only falls slightly
with increasing h for h < 24, cf. fig. 2.5.

The uniaxial *“=nsile strength;itis rarely

measured, and it is therefore difficult to

th

specify a suitable value since poth bendinc

tensile tests and the ccmmonly used split
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tensile tests result in excessive values,

see, for example, Wright [52.2] and Jensen and
Nielsen [75.2]. In finished structures this

is further complicated by the fact that the
tensile strength can be zero locally on ac-
count of cracks. O, is often assumed to be
zero, but in the case, for instance, of con-
centrated loads, this gives misleading results,
see chapter 6. In the few cases in which Oy
is used, an explanation of the value adopted

will be given.

2.4 Stress~Strain Curves for Concrete

The stress-strain diagram for concrete subject-
ed to uniaxial tensile stresses and uniaxial
combression stresses is the graphical represen-
tation of the relationshigpbetween the uniaxial
stress and the strain in the same direction as

the stress.

Just as in the case of the failure criterion,
many factors influence the stress-strain dia-
gram. Despite this, however, we can ascertain
a number of general characteristics for the

stress-strain diagrams.

In uniaxial tension, concrete is almost linear-
elastic right up to failure. 1In compression,
the stress-strain diagram is curved (hollow
downwards), and maximum compression stress

is reached at a strain of about -0.2%. After
the maximum, the stress-strain curve falls

and failure occurs at a strain of -0.3% to
-0.5%. For concrete with.a high compression
strength the stress-strain diagram normally has
a smaller curvature, and the ultimate strain
is also smaller. Thus, a very strong concrete
has almost a brittle compression failure.
Typical stress-strain diagrams are shown in
fig. 2.9.'
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Fig. 2.9 Typical compressive and tensile stress-strain
curves. '
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Fig. 2.10 Compressive and tensile stress-strain diagrams for

three types of concrete. From [66.1].
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However, we also encounter stress-—strain
diagrams that deviate considerably from
those described here. 1In flexural tests,
Nylander and Sahlin [55.2] have measured
ultimate strains of -4.0% to -5.0%. Other
extreme stress-strain diagrams are shown in
fig. 2.10, in accordance with Hughes and
Chapmann [66.1].

It will thus be seen that an idealization of
concrete to a rigid, perfectly plastic material
is a very drastic step to take. However,

such idealization may be warranted if, together
with the failure criterion adopted, it leads

to simple and viable methods of calculatioan.

In the following chapters it will be shown

that the idealization is acceptable in many
cases.
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3. THEORY OF PLASTICITY FOR COULOMB-MATERIALS

3.1 Assumptions

(3-1)

This chapter contains a short study of the
theory for rigid-plastic materials. In thae
following sections expressions will be derived
for the internal work per unit volume for
rigid-plastic materials whose yield criteron
obeys Coulomb's failure hypothesis or Coulomb's
modified failure hypothesis. Such materials
will be designated Coulomb-materials or modi-
fied Coulomb-materials. Section 3.6 contains

a brief discussion of the possibilities for
plastic calculations of concrete and reinforced

concrete.

The yield criterion for a material shall here
be taken to mean the stress combination that
results in yielding of the material. Ex-
pressed in terms of the principal stresses,

the yield criterion can be written as follows:

The signs in f(01,02,03) are chosen such that
we get £ « O for stress fields in which yield-
ing cannot occur; When, as here, we work with
the rigid-plastic material model, this means
that there is no deformation for £ < 0. £ =0
means that plastic deformation can just take
place. f > O corresponds to stress fields
which the material cannot sustain.

In a 3-dimensional representation, with 0400,
and 04 as coordinate axes, (3-1) produces a
surface, the so-called yield surface. The

corresponding curve for a plane stress field

~is called the yield surface.



(3-2)

15

The relationship between the strains that
can occur at a given stress field that satis-
fies (3-1) is determined by the yield law

e = 2 of

i 0.
i 9 i

(i = 112113)

If we regard (3-2) as a vector in the 041057
03—coordinate system, it is a normal vector

to the yield surface. If the plastic work
0;,°¢; > 0 is required, we get A > 0. (3-2)

is thus an outwards-directed normal to the
yield surface (3—1f, and the yield law is
therefore often called the normality criterion.
Note that the direction of the deformations,

but not their size, is determined.

The normality criterion is an assumption made
in the theory of plasticity. It has been sub-
stantiated in various ways by v. Mises [28.2],
Gvozdev [38.1] and Drucker [51.1]. The sub-
stantiation requires the yield surface to be
convex, which is satisfied for Coulomb-

materials and modified Coulomb-materials.

Here, the yield criteron and yield law are
expressed by principal stresses and strains.
However, they can be expressed in more
general terms by means of generalized stresses
and strains, as done by Gvozdev [38.1] and
Prager [ 52.2].

If the yield surface is a differentiable
surface, the normality criteron uniquely deter-
mines the direction of the strain vector to

a given stress field on the yield surface.

If the yield surface consists of piecewise
differentiable surfaces, the strain vector

for stress fields lying on the curve of inter-
section of two surfaces must be located in

the angle between the normals to the adjacent
surfaces.
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We will now define some concepts that will
prove useful in the following.

A statically permissible stress field is a
stress field which satisfies the equilibrium
conditions and the statical boundary con-

ditions.

A safe stress field is a stress field in which
f < O throughout.

A gebmetrically admissible failure figure is
a deformation field that satisfies the com-
patibility conditions and the geometrical

boundary conditions.

The carrying capacity of a body consisting of
a rigid-plastic material is the load at which
plastic deformations become possible. The

carrying capacity is also called the yield load.

We will now look at the extremum principles,
which constitute an important tool in the
determination of the carryinag capacity of bodies
consisting of perfectly plastic materials (in-
cluding rigid-plastic materials). The extre-
mum principles have been demonstrated by
Gvozdev [38.1], Hill [51.2] and Drucker et al.
[52.3].

The extremum principles can, for example, be

formulated as follows:

.

The load found from the equation of work for
an arbitrary, geometrically admissible failure
figure is greater than or equal to the ?ield
.load of the body.
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The Lower-Bound Theorem:

The load belonging to a safe and statically
permissible stress field is smaller than or
equal to the yield load of the body.

If there are both a geometrically admissible fail—
ure figure and a safe and statically permissible
stress field corresponding to a load, then the
load is equal to thg yield load of the body.

A load that is greater than or equal to the
yield load of é body is called an upper bound
for the yield load. Correspondingly, a lower
bound is a load that is smaller than or equal
to the yield load.

In this thesis, use will principally be made

of the method that leads to upper bounds -

the upper-bound method; For this, as mentioned
in the upper-bound theorem, we use the eguation
of work, and in the following, expressions will
be derived for the internal work for Coulomb-
materials and modified Coulomb-materials that
are subjected to deformations. The equation

of work is not identical with the principle of
virtual work because the stresses belonging
to a chosen deformation need not satisfy the

equilibrium conditions.

3.2 Internal Work for Coulomb-materials

In accordance with (2-3) the yield criterion

for a Coulomb—material can be written as
(3“3) . f(01,02,03)

%01(1+sinw)-%o3(1-sin¢)—ccosm = 0



(3-4)

(3-5)

(3-6)

(3-7)

(3-8)

(3-9)
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when 01 > 02 > 03.

We see that (3-3) has the same form as (3-1),
whereby the related strains can be found
directly from the normality criterion (3-2).

Here, we get

_ 1 L. _
81 = A1 5(1+51nm), 82 = 0,

_ 1 a s
€4 = A1 5(1 51n¢)

The internal work.for a material that is

deformed with the strains (€1,€2,83) is

A= (048, + cye, + 04e,)AV = Jwav

v \Y4

where W is the internal work per unit volume

(the dissipation).

With (3-4) we get here
W = AT(%01(1+sin@i—%o3(1—sinw))

which, by means of (3-3), can be written as
W = ), Ccose

By means of the positive strain in (3-4),

(3-7) can be written as

_ cosy

W 2c 1+sin® 1
_ T_9Q
T 2c tan (4Y 2)€1

For the first strain invariant Ie we get

I =¢, + 82.+ €5 =}X1 sing
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From (3-9) we can thus conclude:

Coulomb-materials yield during
volumetric enlargement

By means of (3-9) we can also write (3-7)
as

{3-10) W = c cote Ie

The above has been derived for ¢, > 0, > 03
i.e. for one of the six sides of the pyramid
constituted by the yield surface in a 044051
03-coordinate system. Analogous formulae to
(3-8) - (3-10) can be established for the
other sides when we substitute e, in (3-8)

1
by the corresponding positive strain.

At the secant between two sides of the yield
surface the strain vector will be an arbitrary
positive linear combination of the strain
vectors belonging to the the two sides. Let
us now consider the secant between (3-4) and

(3-11) %02(1+sinm)—%c3(1-sinm)—{:cosm = 0
the related strains are found to be

(3-12) €, = A l(1+sin¢), €, = A l(1+simp)

1 12 2 2 2

- Yiaoas
€, = —(A1+>\2) 2(1 siny)

3
Analogodusly with (3-7), we find

(3-13) W= X, Ccos¢ + X, CCOS®

By means of the positive strains in (3-12),
(3-13) can be written as



cOosyY

(3"14) W = 2c m

(e1+€2)

The first strain invariant I8 is found from
(3-12), and inserting this in (3-13) we see
that (3-10) is also valid ‘here.

Similar calculations can also be performed

in the case of the other secants. When the
vertex of the yield surface (gy = 05, = 053 =
c coty), is neglected, the dissipation can

be written as

- = _COosY +
(3-15) W 2c T3s1in0 T €
(3-16) " W = c coty IE

+ s 4z . s .
Here, ¢ means the positive principal strains.

At the vertex of the yield surface (3-16)

is wvalid, but not (3-15), as can be seen
directly by considering the strain vector

€4 = €5 = €3 > 0 belonging to the vertex.

In this case, the sum of the positive strains
is equal to the first strain variant, and
(3-15) thereby gives a different result than
(3-16). (3-15) is given by Chen [69.31 ,
who does not, however, draw attention to the
fact that it is not valid at the vertex.

In general, therefore, the dissipation for a

Coulomb-material can be written as (3-16).

Example 3.1_ Uniaxial Extension

A cubical body consisting of a Coulomb-
material is subjected to a load ¢ actin§ on
- one side of it. The body is restrained so






(a)

(b)

(c)

(d)
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that it can only deform in the same direction

as that in which the imposed stress acts, see.
fig. 3.1.

In order to find an upper bound ¢ > Opr for
the carrying capacity, we imagine the free side
moved a distance Al in the positive direction
of the stress. Taking the edge length of the
body as equal to 1, we find the principal
strains to be

Al _

We thus have uniaxial extension.

We now use the equation of work, where the
external work Ay is put equal to the internal
work Al Using (3-16) and the fact that the
volume of the body is 13, we find

: _ Al 3

Ohr 1 A}. = ccotcp(-—l-+ 0+ 0)1
The yield stress is thus found to be

Oyr =¢cotq>
This value is an upper bound for the ultimate
load; however, we can easily find a lower
bound by letting the body be subjected to
hydrostatic tension. The hydrostatic tension
that exactly satisfies the yield criterion is

o, =0, = 03 = ccoty

The upper and lower bounds are thus identical,
and the ultimate load is thereby determined

by (c).



22

The stress field hydrostatic tension therefore
belongs to the deformation field uniaxial
extension, whereas the reverse can naturally
not be concluded.

3.3 Plane Deformation Field in Coulomb-Material

It will be seen from (3-4) that one of the
principal strains is zero on one of the sides
of the yield surface for a Coulomb-material.

In the following we will consider the case
in which €3 = 0, and where the yield criterion
is '

(3-17) : %01(1+sinw) - 202(1—sinm) - ccosp = 0

Calculations of the following type can
naturally be performed for all six sides of
the yield surface.

For the strains for (3-17), we have the

following:
o, ] . = 2 X aas
(3-18) e, = A3 (1+sing) , ¢, A 5 (1-sing)
(3-19) €4~ €5, = A

For the strains in an x,y-coordinate system

perpendicular to the 3rd main axis, we have

€
1
3-20 _ 2 2
(3-20) 3legre, /(e e’ + o
92.
(3-21) ?max - (81-82)

By inserting (3419) in (3-7) and making use
of (3-20) and (3-21), we can also write the

dissipation in a plane deformation field as



(3-22)
(3-23)

(3-24)

(3-25)

(3-26)

(3427)
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W

(81-€2)CCOS¢

W

1

C COs
(pmax ¢

2

W = ccoscpM(ex'-s:y)2 + mxy

The above formulae are given by Chen [69.3].
Like (3-15), they are not valid for

04 = 0, = 04 = ccoty . Use should therefore
be made of the general expression (3-16) for

plane deformation fields.

We will now consider a plane, homogeneous
deformation field occurring in a narrow zone
of height § between two rigid parts, marked
I and II in figure 3.2.

Part II moves V in relation to part I, as
shown in figure 3.2. In the deformation zone
we find the strains

€= % sinae , €. =0, o = % cosa

The principal strains are

—

~
28

(sina = 1)

From (3-26) we obtain

©1 _ sino+1
€ sino-1

2

If the vertex of the yield surface is neglect-

~ed, (3-18) must at the same time be satisfied,

which leads to a =,



II

|
|
|
|
|
!
|
|
— L
2y
\

Fig. 3.2 Deformation zone between two rigid parts.
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Putting the thickness at unity in the
deformation zone in figure 3.2, we can write
the internal work per unit length by means
of (3-26) and o = 9. For W we use (3-16).

(3-28) W, = Vccosyp

1

(3-28) is independent of the height §, and
this has led to introduction of the convenient
discontinuity lines, where 6§ » 0, but V is re-
tained and (3-28) is still an expression of
the‘rnternalwork per unit of length.The dis-
continuity lines can be regarded as idealized
states in line with the well-known yield lines
in slab theory.‘

Discontinuities with a > ¢ also exist, cor-
responding to the stress field at the vertex
of the yield surface. For such lines, use
must be'made of

(3-29) Wl = V ccoty sing

instead of (3-28).

The criteriona > ¢ in plane deformation
fields means that:

In plane deformation fields in a Coulomb-
material, displacement along a disconti-
nuity line is always accompanied by a move-
ment, perpendicular to the line.

Example 3.2 Line Failure along a ILogarithmic Spiral.

- A geometrically admissible failure pattern
in plane deformation fields in a Coulomb-




Fig.

3.3

Failure along logarithmic spiral.



‘(a)

(b)

(c)

(4)
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material is failure along a discontinuity
line, which has the shape of a logarithmic
spiral, see fig. 3.3. The failure is chosen
such that the body turns as a riyid bcdy
around the pole of the spiral, and the angle
between the movement at a point and the

logarithmic spiral is ¢ .

The logarithmic spiral is given by
r=r ewtanw
e}

Every point along the spiral has a movement

-V that is proportional to the length of r

at the location in question and that stands

at richt-angles to r, i.e.

vV = voe‘i’tan“’

We will now formulate an expression for the
internal work along a spiral discontinuity
line, using the notation from fig. 3.3.

We consider a small angle 4Gy .

The corresponding length of the spiral is

For dy we find the internal work from (c)
and (3-28)

dW = Vecrdy
Using (a) and (b) and integrating from,O to

® we find the internal work for failure

along a spiral with vertical-angle 6 :



Fig. 3.4 Slope with failure along spiral.
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26tanw_1]

(e) 1 W= %c Voro coty [e

The thickness is here put at 1.

It should be noted that a logarithmic spiral
(including a straight line) satisfies the
réquirement regarding a constant angle ¢
between the movement and the dicon%inuity line.
This is a requirement that applies everywhere

on the yield surface except at the vertex.

The type of failure considered is the same
as that known as line failure in geotechnical
calculations.

If, on the other hand, we have zone failure
in a logarithmic spiral, i.e. a type of failure
in which the whole of the spiral fails, the

following expression is valid for the internal
work:

(£) W=c v I, coty [eZStancp_”

Here, too, (b) is walid for V.

The expression has been found by Chen [69.3]
and others.

Example 3.3 CarrYing Capacity of Slope (Stability)

Let us consider a load p located on a surface,
near a sloping edge. An upper bound for p can
be found by assuming a failure pattern as
shown in fig. 3.4. The failure pattern is a
logarifhmic spiral that turns like a rigid
body about the pole 0. O is specified by

‘the parameters g and r_. V, at A forms the

o
angle ¢ with the tangent of the spiral at A.



Fig. 3.5 Failure mechanism in élope.



)W)
~d

The equation of work can be written wilh the
notation from fig. 3.4. It should be noted,
however, that 9 depends on B, r, and the
geometry of the loaded body.

The average vertical displacement of p is

_ b
(a) Vp = Vo cosa (1 5;35355)

The external work is

_b
r_Co
2 ocosa

(b) Ay = pbV  cosa (1 - )

The internal work is found from (e) in example
3.2.

29tanm_1]

{c) A, = ke Vo To coty [e

From Ay = A; we find the following upper

bound for p:

2
o 28tany
osa-b* le -

) . r
(d) p=ccotcp2robc

11

This solution is identical with that founa
in geotechnical stability calculations in
respect of a weightless body, as described,
for example, by Harremoés et al. {70.1] and
Lundgren and Brinch Hansen [58.2].

Example 3.4 Carrying Capacity of a Slope

We will now consider a slope that is loaded
as shown in fig. 3.5. As failure pattern we
take two equilateral triangles that move as
rigid bodies. Between them we place a
logarithmic spiral, which must have zone
failure.

Along the line AB there is the movement V.,

which forms the angle ¢ with the discontinuity



(a)

(b)

(c)

(4)

(e)

(£)

(g)
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line. Along BC V increases at the same time

as it turns, and along CD it has the value
vV =y eotane
o
The external work is found to be

A
Yy

L -4+ 9
P 2r cos(z + 3)V_cos(90-(7 + 3)+0)

I

Pr, Vo (1-siny)

There are three contributions to the internal
work. The contributions from the discontinu-
ity lines AB and CD are found from (3-28),
and the corntribution from the zone failure in
is found from (f) in example 3.2.

The following applies

eetanw
(o]

and hence,

gtany

gtany
Voea

e
i

cr V cosg + cr_e cOoSs®
o © (o}

20tany
+ croVocotcp[e 1]

Using Ay = Ai’ we find

P = T:é%HG[COS@"COt®+(Cosm—cotm)ezetanmj
After some rewriting and introduction of
6 =8-3 , we find

p =<:cotw[tah2(% + %)e(ZB—ﬂ)taan1T

In the case where B = 7, (f) becomes

' Ttang
P =<:cotm{tan2(% + %)e -11]
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which is identical with the solution found by
Prandtl in 1920 [20.1]. The above example
is reproduced from Chen [69.3].

3.4 Plane Deformation Field in Modified Coulomb~Material

(3-30)

(3-31)

(3-32)

(3-33)

(3-34)

separation failure occurs at a =

In a plane deformation field in a modified
Coulomb-material, where €3 = 0 and 04 2

033152, the yield criterion is composed of the

following two criteria:

%01(1+sinw)—%02(1—sinm)—ccosw = 0

Heré, (3-30) corresponds to sliding failure,
and the corresponding ¢issipation is found
from (3-16). For discontinuity lines, (3-28)
applies. (3-31) corresponds to separation
failure, and the corresponding strains are
found by means of (3-2) to be

€, = A e, = 0

For separation failure the dissipation is

In the case of the deformation zone in fig.
3.2, we see from (3-26) that, as anticipated,
= . The
internal work per unit length is found from

(3-33) and (3-26) to be independent of &, and
is

Nof =

When both (3-30) and (3-31) are satisfied

simultaneously, the corresponding strains are



(3-35)

(3-36)

(3-37)

(3-38)
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found from (3-18) and (3-32):
€4 = EX(1+sing)+A°" €y = %) (1-siny)
The dissipation is

e, + 0, ¢

W= 0,2 282

1
By inserting (3-35) in (3-36) we find, as
both (3-10) and (3-31) are satisfied:

W= Accogw + A'GA

We again consider the deformation zone in
fig. 3.2, where (3-26) and (3-35) must be
satisfied.

If A' = 0 we get pure sliding failure, and
(3-28) is valid. If A = 0 , we get separation
failure, and (3-34) is valid. If both A' %0
and X * 0, we get % >0 > @. A and A'can be
found from (3-26) and (3-35), and inserting
these quantities in (3-37), we find that the
work per unit length is independent of S .

We obtain

1-sina sino-sing
Wl ' v(1-sinq) ¢ cose 1-sina A) ! Ze

It will be seen that (3-28) also applies in
cases in which a = ¢ and o = %. The formula
thus gives the internal work »er unit of length
of a discontinuity line in a modified Coulomb-

material.



Fig.

3.

Oc

Failure criterion with strain vectors.



(3-39)
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By means of (2-6) we can rewrite (3-38) to
include the uniaxial compression strength .
We thereby find

’ _ 1-sina- sing-sin
w V5o, + 1-sin@¢0A)' *29

In the above we use the separation strength
Op - If the uniaxial tensile failure takes
the form of separation failure, Op = Opr
in this case, ct can be inserted in (3-38)
and (3-39).

and

Example 3.5 Drucker, Prager and Chen's Solution

(a)

Drucker and Prager [52.4] have found (3-28)
and (3-38) for 0A==0 by considering the vield
criteron for a Coulomb-material and a modi-
fied Coulomb-material in a o,Tt-coordinate
system. Chen and Drucker [69.2] have found

(3-28) in the same way.

The normality criterion, together with (3-25),
shows that V must form an angle a > ¢ with
the discontinuity line, see fig. 3.6. The
internal work per unit length of a discon-
tinuity line is found as 6 multiplied by

the vector product of the stress vector and

the strain vector.
_ v
Wl—-(SSb'g

The restults from a plane deformation field in
discontinuity lines are thus not new, but have
not previously been derived on the basis of

the yield criterion in principal stress form.
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'Fig. 3.7 Failure criterion for Coulomb-material with o
and for modified Coulomb material with 03 = 0 and
o, < 0_.
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3.5 Plane Stress Field

Now let us consider the deformation zone in
fig. 3.2 again. We assume that both the
pPlane stress field and the deformation field
in the deformation zone aré homogeneous. The
problem can now be treated as a plane problem
since_we only consider what is going on in
the plane of the paper.

For a Coulomb-material or modified Coulomb-

material, where o, > o the yield criterion

’
in a plane stressAfielg, where 0y = 0, is
shown in fig. 3.7. A strain coordinate system
is inserted, corrésponding to the stress co-
ordinate system, and it is now easy to deter-
mine where a strain field which we wish to
introduce belongs because the strain vector

must be normal to the yield curve.

The strains in the deformation zone under
consideration are again given by (3-26), and
we see that €, > 0 and €, <0, i.e. we find
‘ourselves in the area 1-2-3 in fig. 3.7.
However, at point 1, the strain vector can
“only be parallel with the 51—axis. The fol-
lowing formulae can be established for the

dissipation in the area in question:

At point 3:
(3-40) W= -0 €, < - & ¢
c ®2 2= 7k %
At point 2:
- -1
(3-41) W.= o€, €y 2 - ¢ €4
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Along 2-3:

~|-
™

(3-42) W=o0_6e4=-0_¢€, €y = -
Along 1-2 and at 1:
(3-43) W=o0

We introduce (3-26) for the strains, and the
last relationship in (2-5) for k. It will’
then be seen that (3-42) is satisfied when

a = Q.

From formulae (3-40) - (3-43) we find the
work per unit length Wi = WS in the deforma-
‘tion zone to be

(3-44) W1 = %00\7(1-sina), a <o
(3-45) Wy =‘%oc\7%£§%%% (1+sind), o.> O

Here, (3-44) gives the internal work per

unit length at 3 and along 2-3, and (3-45)
gives the internal work per unit length at 2,
along 1-2 and along 2-3. The expressions are
independent of § ; therefore, as in the case
of plane deformation fields, we can introduce
discontinuity lines in plane stress fields,
where §-0.

For a modified Coulomb-material, where o, = ¢

t
the yield criterion for a plane stress field

AI

is shown in fig. 3.8. 1-2-3 are once more
possible locations for the strain vector from

the deformation zone in fig. 3.2.
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(3-46)

(3-47)

(3-48)

(3-49)

34

The coordinates to 2 are

(01,02) = (ot,kot-oc)

At this point, the dissipation is

w-

W= o0_¢

- > -
£ €q F (kog=0) €5 €2 2

As previously, (3-40), (3-42) and (3-43)
apply along the remainder of the yield curve,

although only the last relation in (3-42) is
valid.

We can now find the internal work per unit
length of a discontinuity line for the
modified Coulomb-material in the same way as

in the case of the Coulomb-material.

We obtain:

= L ] - <
Wl 200\7(1 sina) o <

sina-sing

= 1 - i
LY 200\7(1 sina) + T=sine £

v o

| v
S

(3-48) gives the internal work per unit
length at 3 and along 2-3, and (3-49) gives
the internal work per unit length at 2, along
1-2 and along 2-3.

In fig. 3.9 the yield criterion is shown for

" a plane stress field and oy = 0. Only

(3-50)

negative strains contribute to the dissipa-

tion, and this contribution can be written

W= o (legl+le,l=(eqFe,y))
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The internal work per unit length of a dis-
continuity line can be found from (3-50) and
(3-26) to be
-5 = % -g i

(3-51) Wl 20c'V (1=-sina)
The same result would naturally also be found
from (3-48) and (3-49) for o, = 0. (3-50)
and (3-51) have been derived by Nielsen [69.4]
in connection with his work on reinforced

concrete diaphragms.

It should be noted that (3-49) is identical
with (3-39) fof Op = Op e and further, that
(3-44) and (3-45) are identical with (3-28)
for a = ¢. Thus, in some areas of the yield
curve for a plané stress field, the correspond-
ing strain field will also be plane. For the
yield criterion in fig. 3.7 this naturally
applies when o = ¢. Fo; the yield criteria

in fig. 3.8 and 3.% it applies when a > ©.

On the other hand, it cannot be concluded
that there is a plane stress field when there
is a piane deformation field where (3-28) or
(3.39) apply.

The above is conditional on the middle princi-
pal stress having no influence in the case of
the yield criteria used here.

Example 3.6 Approximation at Discontinuity Lines

We will again consider the deformation zone
in fig. 3.2, and assume that there is a plane
stress field. 1In this example, we will gee
what happens in the deformation zone when we
leave the plane theory. '



Fig.

3
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Compressed diaphragm with failure mechanism.
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The body with the deformation zone now ex-
tends at right-angles to the plane of the
paper, and in the homogeneous deformation
zone there will be a strain 83, which is not
zero, except in the special case inwhich we have

both plane stress and plane deformation field.

Therefore, if we have a plane stress field
corresponding to point 3 in fig. 3.7, 3.8 or
3.9, there must be inhomcgeneous transitional
zones between the homogeneous deformation
field and the rigid parts I and II in fig.
3.2. The contribution from these transitional
zones to the internal work is thus neglected

when we use the formulae in section 3.5.

Example 3.7 The Compression Test

(a)

(b)

(c)

A diaphragm subjecﬁed to uniaxial compression p
is considered. The yield criterion is that
shown in fig. 3.9. Failure is assumed to
take place along a discontinuity line with
the slope B, see fig. 3.10. The movement V

forms the angle o with the discontinuity line.

The external work Ay is found to be

Ay = pbVcos (30 - (B-a))

The internal work from the discontinuity line
is found from (3-51):

Ai = 200\7(1-51na) GoSB

From A = A, we obtain
Y 1 ,

1-sina
c cosB sin(B-a)

P = %0
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{(c}) is an upper bound for the carrying capa-
city, and by minimizing with regard tc o and
B8 , we find the minimum for

(a)

™
il
ESE]
+
N e

As expected, the minimum is found to be

3.6 Plastic Praperties of Concrete

Here, we will very briefly look into the
question of how well concrete satisfies the
conditions for being calculated in accordance
with the rules established in this chapter for

the modified Coulomb-material, with e = 0

In section 2.3, tesﬁ results for concrete were
compared with Coulomb's modified failure hy-
pothesis, and were found tc be in reasonable
agreement with this. The hypothesis can thus
be used as yield criterion because the simple
ultimate strength tests fit the hypothesis.

On the other hand, fig. 2.8 seems to indicate
that the yield criterion for concrete is not
always convex when there are tensile stresses.
However, one should be cautious about drawing
this conclusion because existing test results
are ambiguous on this point, and it is diffi-

cult to carry out the tests satisfactorily.

The simple compression and tensile stress-
-Strain curves for concrete were dealt with in
section 2.4, where we saw that idealization of
concrete to a rigid~plastic material was' a

drastic idealization.
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In reality, elastic strains will alsoc occur;
however, in the rigid-plastic model, we only
consider the ultimate state in which yield
stress is reached at so many points and in
such big zones that a geometrically admissible

yield pattern can be developed.

In order to be able to use this approach, the
elastic strains must be small in relation to
the plastic strains. 1In section 2.4 we saw-
that this is not the case for concrete, either
in uniaxial compression or in uniaxial stress.
We also saw that, for compression, the stress
falls after achieving its maximum value and
that, for tension, there is seldom any capacity
for continued deformation after the maximum

stress has been reached.

The contribution to‘the internal work from
zones with separation failure will thus usually
be negligible. The contribution from sliding
failure will often be less than determined by
the formulae in this chapter because the whole
of the yield surface will not be fully active.
To take this into account we can introduce an
efficiency factor v < 1, by which a yield sur-
face must be multiplied to arrive at an

equivalent fully utilized yield surface.

This can also be done by multiplying s by v,
whereby we get an equivalent yield stress over
the entire area. This has been done by Nielsen
[69.1] in connection with the formulation of

.a lower~£ound solution for the carrying capacit

0of beams in shear.

Finally, attention must here be drawn to the
fact that the normality criterion requires a
volumetric enlargement during yielding. Some

volumetric enlargement has been found in tests,



but'none of the available results either

confirms or disproves the normality criterion.

The results found in plastic calculations
must therefore be used with care because it
has not yet been determined whether the
assumptions for the plastic calculations
actually exist. However, to the extent that
tests support the calculations, the results

can naturally always be used.
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In this chapter we shall consider a construc-
tion joint placed so that it forms an angle B
with a normal to the loading direction, see
fig. 4.1. The plane of the construction joint
is perpendicular to the plane of the paper.

A construction joint normally means a weakening
of the carrying capacity of the body along the
construction joint itself. Assuming that
Coulomb's failure hypothesis can also be used
as yield criterion for the construction joint,
we can take this weakness into account by
intioducing new values for c and ¢ to apply

in the construction joint. If the construc-
tion joint is made with a certain degree of
roughness, ¢ will often be the same as in
monolithic concrete, as will be demonstrated
in examples in this and the following chapter.
In such cases we can introduce c' < c in the

construction joint, but retain the size of the

4. UNREINFORCED CONSTRUCTION JOINT
4.1 Introduction

angle of friction.
4.2 Sliding Failure

We will now look at a failure mechanism in
which sliding failure occurs along the con-
struction joint, whereby we get & plane de-
formation field and the discontinuity line
coincides with il construction joint. We

shall therefore use the strength parameters

‘of the construction joint for the calculatiocns.

The deformation vector V forms the angle@' with

the discontinuity line. ¢' is the angle of

friction applying to the construction joint.
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{(4-1)

(4-2)

(4-3)

(4-4)

As mentioned, this angle need not be equal
to the angle of friction ¢ for the monolithic
concrete.

With the notation from fig. 4.2, we find the
external work to be

Ay = Opr bt Vcos(90-8+p*)

The internal work is found from (3-28):

b
cosR

t

Ai = Vc' cosp’

From these expressions we find an upper bound

for the carrying capacity:

_ cos®’

Opr = cosB sin(B-¢*) c’

The minimum carrying capacity is found when the
1 ]
construction joint has the slope B = LA s

4 2
and is
G _ 2c'cosey*
br,min 1-sine’

Comparison with (2-6) shows that Obr,min is

the compression strength for a concrete with the

strength properties of the construction joint.

If the slope of the construction joint is in-
creased or reduced in relation to g = %—+ %% .
the strength will increase. However, it can
never be greater than . for the monolithic
concrete. If B is of such a size that we
get O%r > %% from (4-3), failure will simply
occur outside the construction joint. 1In the

case of such failure, the carrying capacity

will be obr = ac.



Flg 4.3 Stresses along construction joint.



(4-5)

(4-6)
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Incidenfally, this carrying capacity is found
whether we assume a plane stress field or a
plane deformation field in the case of failure
of the monolithic concrete. For a plane

stress field this is shown in example 3.7,

and for the plane deformation field, it appears
from (4-3) and (4-4), in which c¢' and ¢' must
be substituted by c and ¢ in the case of
monolithic concrete. (4-3) is then the general

upper-bound expression, which has minimum

(4-4) for6=§+‘—§-.

This accordance between the carrying capacity
in a plahe deformation field and that in a
plane stress field results from the fact that
the middle principal stress does not form
part of the yield cfiterion - a factor that
is discussed in detail in section 3.5.

The upper bound found for the carrying capacity
(3-14) is an exact solution, as will be seen

from the following lower-bound considerations.

' In the construction joint the yield criterion

is
lt] = ¢' - o tany'

An external load o results in a shear force
and a normal force in the construction joint.
Asssuming that these are uniformly distributed
along the construction joint, we obtain the
following relationship between the external
load 0"and the stresses . (0,T) in the con-

struction joint with the slope B (see fig.
4.3): '

g = =o' cos?B
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(4-7) T = ¢' sinB cosp

A lower bound for the ultimate load cér is

found by putting o' = oér in (4-6) and (4-7)

and inserting these in (4-5).

(4-8) Uér sinB cosB = c'-ogr cos?B tany'

This can be rewritten

_ c'cosy!

(4-9) e = 538 etn (B-97)

The upper bound (4-3) and the lower bound
(4-9) are thus identical, and the solution

found is therefore the exact solution.

The dependence of the carrying capacity on
the slope g of the construction joint is

depicted in fig. 4.4. ’The horizontal parts
of the graph correspond to failure outside
the construction joiht, and the curved part

corresponds to sliding failure in the joint.-

4.3 Sliding and Separation Failure

Let us now look at the case in which the
yield criterion for the construction joint
obeys Coulomb's modified failure hypothesis.

The yield pattern at failure in the construc-
tion joint-is as shown in -fig. 4.5, and the
internal work is found by means of (3-38),

although with use of ¢' and ¢'.

The contributions to the equation of work are



(4-10)

(4f11)

(4-12)

{4-13)

(4-14)

(4-15)
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Ay = obrticos(90—8+a)
- 1-sina ' '

Ai V(W c'cosp' +
sina-sing’ 3 b 't

1-sing’ t’ cosB

From this an upper bound for the carrying
capacity is found to be

.(1rsina)cfcosm'+0L(sinarsinm')

“br T cosB sin(B-a) (1-siny’)

In this, ¢! denotes the tensile strength

t
perpendicular to the construction joint. This

tensile strength will normally be smaller than
the tensile strength of the monolithic concrete.
To facilitate the calculations we express the
tensile strength as part of the compression
strength for a concrete with the properties

of the construction joint, i.e. as a part of
(4-4) :

2c'cosy’
1 = —_—
0t k 1-sing’

where the constant kX < 1. For monolithic
concrete, this is often about ;%u (4-12)

then becomes

g _ c'cosy’
br (1-siny')cosB sin(B-a)

2k(sina-sinw'))
1-siny’
In this expression, o is a variable, and the

" (1-sina +

minimum is found at

_y — (1-sing)(1-sina)+2k (sina-sin®)
tan(f-a) = {(1-siny)cosa-2k cosa
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The equations apply when o > @' . In rormal
sliding failure o = @' and (4-3) is still
valid.

We will first conside' the case in which the
the tensile strength perpendicular to the
construction joint is zero, i.e. k = O.

(4-14) and (4-15) then become

4-16 _ c'cos' (1-sina)
(4=16) Gbr (1-sin@') cosB sin(B-a)
(4-17) tan(g-o) = 1-sind

cosao,

i

From (4-17) we find the minimum when a = 28 -

o] =1
*

_ 2c'coso’
(4-18) %r T i-sine’

As mentioned, (4-18) applies when a >0', i.e.
when the construction joint has a slope of
g > % + %} . For a construction joint with
a smaller slope (4-2) applies, although such
that Opp < OC,, where O is the compression

strength of the monolithic concrete.

The carrying capacity found is shown in fig.
4.6.

Next, we will loock at the case in which oé > 0,
i.e. k> 0. In this case, (4-14) ard (4-15)

apply for o > @' and (4-3) applies for a = @°

At the limit of the validity of the formulae

the slopef% of the construction joint is given
by

(1-sing') ?
(4-19) tan(By-¢') = (T-sing') cosp'-2k cosy’




Example 4.1

(4-20)

Test by
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This can be rewritten

¥ - . '
tan(B1-@v} - tan(% - %?) 1-sing

1-sine' -2k

As we have k > O, the factor on tan(% - %})
will exceed unity, and (4-20) thereby shows
that the slope of the construction joint at
the transition from (4-3) to (4-14) and
(4-15) is

™ @'

I S

An increase in the tensile strength of the
construction joint ( ~ increase in k) thus
increases the realm of validity of (4-3). The
principle of the dependence of the carrying

capacity is shown in fig. 4.7.

Johansen

Johansen's test [30.1] from 1930 is one of
the oldest (if not the oldest) of the tests

on construction joints.

In the tests the bottom part of the test
specimen is cast with its slanting surface
against a steel plate treated with paraffin.
After 7 or 14 days, the slanting surface is
moistened and the top part of the test specimen

is cast in place.

The test results are depicted in a 1,0 -
coordinate system, where 7,0 are the stresses
at failure in the construction joint, cf. (4-6)
and (4-7). This representation has the ad-

vantage that the sliding failure criterion for
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and tang = 0.75.
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the construction joint (4-5) is depi~ =d as
a straight line, and the values for .- and ¢°'
are easy to read off. On the other hand,
the importance of the slope of the construc-
tion joint is not so clear, and it is diffi-
cult to see any influence from a low tensile

strength.

From the figure and the information contained
in [30.1] , we find, by means of (4-6) and
(4-7) the relationship between the ultimate
load S and the angle of slope B of the con-

struction joint. These are shown in fig. 4.8

together with (4-3), in which c¢' = 3MN/m2 and
tan @' = 0.75 (o' = 37°). (Johansen himself
gave c¢' = BMN/m2 and ' = 0.8).

The test results shown are the average of four,
apart from g = 45.6%,where one of the test
results was excluded because it was distinctly

lower than the others.

The results accord well with (4-3), which was
only to be expected as (4-3) is identical with
the well-known (4-5). This was demonstrated
in the lower-bound considerations at the end

of section 4.1.

The monolithic concrete had the strength
o, = 30 MN/mZ, corresponding to ¢ = 7.5 MN/m2
when ¢ = 37°. The construction joint has

thus resulted in a 60% reduction in c.

An assessment of the formulae established in
section 4.2 has not been possible owing to

lack of test results.
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5. SHEAR

5.1 Introduction

(5-1)
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In this chapter we will consider some
problems relating to the carrying capacity

of reinforced concrete. Like the concrete,
the reinforcement is considered to be rigid-
plastic with the yield stress O It is
similarly assumed that the reinforcement can
only resist forces in the longitudinal direc-
tion.

Figure 5.1 shows the principle of the shear
problem we wish to consider. A body is loaded
by two forces acting in opposite directions,
and failure occurs by one part of the body
moving downwards and away from the other part.
This movement takes place along a discon-
tinuity line between the external loads.
Reinforcement with a total area F is placed

perpendicular to the discontinuity line.

The height of the shear failure is denoted
by h, see fig. 5.1, and the width perpendi-
cular +to the plane of the paper is denoted
by b. As the cross-section of the concrete
is much bigger than F, the cross-section
becomes b - h. The degree of reinforcement
is introduced as the ratio between the ten-
sile yield strength of the reinforcement and
the compression strength of the concrete
perpendicular to the line between the two

external loads, i.e.

- The external load P is assumed to be uniform-

ly distributed over the cross-section, so

that the shear stress 1 is given by
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Fig. 5.2 Failure pattern.



(5-2)
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L

T %n

The subsequent calculations will be carried
out as upper-bound calculations. In the
formulation of the equation of work there
will now be two contributions to the internal
work, one from the reinforcement and the other
from the concrete. 1Initially, we will con-
sider the concrete as a material with a yield
criterion that obeys Coulomb's modified fai-
lure hypothesis. In section 5.5 we will
introduce a factor by means of which we seek
to take into account the fact that the con-
crete cannot be made fully effective.

Here, we will only consider the case with
reinforcement perpendicular to the discon-

tinuity line. Inclined reinforcement can na-

turally be dealt with in the same way.

5.2 Plane Defo;mation Field

(5-3)

(5-4)

The failure pattern in fig. 5.2 can be used,
and as we have a plane deformation field,

we know that the angle a between V and the
discontinuity line is greater than or equal

to the angle of friction ¢ . The calculations
are split into two parts, depending on whether
a=¢@ Oor o > ¢ .

a =P

The contributions to the equation of work
are

A =
y Pbr V cosyp

From the concrete we find from (3-39)

_ 1=-siny
Aib - h‘z———- O’thb



- (5-5)

(5-6)

(5-7)

(5-8)

(5-9)

(5-10)
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As the reinforcement can only resist forces

acting in the 1ongi£udinal direction, we have

Aia = F O‘F V sing

From Ay = Aia + Aib we find, by introducing

(5-1) and (5-2),

: Tbr 1-sin
= L o tany
Uc 2 cosy

T

In a @, _(.?5 -coordinate system, (5-6) is a
c .

straight line.

a2 9
Analogously with (5-3) and (5-5) we find

A = P

y br V cosa

A

ia F Op V sina
The contribution from the concrete is again
found from (3-39).

1-sina sina-sing
. = —_5 + ———
A1b ( 2 0c 1=-siny

ct)_Vhb
The complete équation of work gives, analo-
gously with (5-6):

. : o
"br._ 1-sina sina-sin® "t | 5 tana

O ~ 2 cosa (1-sing) cosa o

This is an upper bound, in which a 1is vari-

able. The value of o , which gives the mini-

mum, is found after some calculation to be



(5-11)
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e
(® + 3_) (1-siny)
sino = 1 - 2 c
Aot
1-siny - 2 e siny
c

The minimum for (5-10) is then found to be

(5-12)

(5-13)

(5-14)

(5-15)

(5—16).

¢
1-sin@ - 2 — siny
Thr % %c %t
——— = - - +
cc (@ + o ) 1=-sin® (@ cc

T
In a @, (fr'coordinate system, (5-12) is

a circle wf%h its centre at

The

The

a >

T
(‘Dr"""" =

radius of the cirlce is

condition for validity of (5-12) is that

p, i.e.

sina > sing

From (5-15) and (5-11) we find that (5-12)

is valid when

-si o
® < l—%§29 - (1+singy) EE

C
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Fig. 5.3 Carrying capacity in plane strain field.
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The transition from thevétraight line (5-6)

to the circle'(5-12) is located at the point
at which the line is tangential to the circle.
This point is

T . o
(5-17) (@, _EE) = (JZEEEQ - (1+siny) _t ,
o 2 o
c c
1+sing ,1-sing %t
cosg@ (— - sing oc))

(5-6) and (5-12) are depicted in fig. 5.3, in
~which some characteristic points are given.

For ® < 0 the curve is drawn with a dotted line
since it has no physical meaning (see, how-
ever, section 5.4). Besides this, note the
close analogy of the curve with Coulomb's
modified failure hypothesis, fig. 2.3.

5.3 Plane Stress Field .

We will now consider a problem that is en-
 tirely analogous with the foregoing, apart
from the assumption of a plane stress field.
The contribution from the concrete to the
internal work is found from (3-48) and (3-49),
the failure criterion being that shown in fig.
3.8. The calculations are split up into
4 cases, depending on the angle o in fig.
5.2

In this case there is no contribution from
the reinforcement to the internal work be-
cause the movement takes place perpendi-
cular to the reinforcement. The contribu-
‘tion from the concrete is found from (3-48),
whereby we get



(5-18)

(5-19)

(5-20)

(5-21)
(5‘225

(5-23)

(5-24)

(5-25)
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AY = Pbrv
Ai = Aib = %UCVhb

The result thus becomes

it should be noted that (5-20) is independent

of the degree of reinforcement ® .

The three contributions to the equation of
work are:

Ay = PbrX7cosa
Aib = %GCV {1-sina)-hb
A. = Fo_,Vsino

ia F

An upper bound for the carrying capacity is
thus found to be

Tpr 1-sina :
= + & tana
oc 2 cosa

The minimum for (5-24) is found for

sina = 1-20
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T

In a o, 7?£ —coordinate system, (5-26) is
c

a circle with its centre at

‘ Tor _ 1
(5-27) (@, —3:;) = (0, "2')

The radius of the circle is

- =1
(5-28) r =

(5-26) is valid for 0 < o < ¢, i.e.

{5-29) 0 < sina < siny

From (5-29) and (5-25)wes find the sphere of
validity for (5-26) to be

: 1-sing 1
(5-30) —5 - <0<

T,

In the ¢h7?£-coordinate system, (5-20) is
c )

tangential to (5-26) at the point

(5-31) (0,25 = (4

Apart from alteration of o to ¢ , the con-
tribution "to the equation of work is equal

to (5-21), (5-22) and (5-23), and instead of
(5-24), we find

T ) .

br 1-siny .
B - +
(5-32) cc ALY ® tangy

(5—32) is ide%gical to (5-6) and is a straight.

. . . r
line in a o, j%Lbcoordinate system. (5-32)
c .
is tangential to the circle (5-26) at one end

of the sphere of validity of the circle, ‘i.e.
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Fig. 5.4 Carrying capacity in plane stress field.
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Fig. 5.5 Failure mechanism for shear with normal force.



(5-33)

(5-34)

(5-35)

(5-36)
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’[ .
1=-sin® cos®Y
((D, _.12_]?. = ( 7 7 2 )

—————

The contribution from the éoncrete to the
equation of work is found from (3-49) as

_ ,1=sina sina-sing 5.) Vhb
By = (== 9% * Ti-sine t

The other contributions to the equation of
work are identical to (5-21) and (5-23).

An upper'bound'for the carrying capacity can
then be found to be

T . . . o
br _ 1-sina sing-sinp "t
O 2 caso {1-siny)cosa O

+ & tana

The equation is identical to (5-10); there-
fore, we know the minimum

9%
&br _ o EE)(1—51mp-—2 3; sing _(¢_+SE”
oc cc 1-sing O

(5-36) is a circle that is valid when (5-16)
is satisfied. The circle is tangential to

(5-32) at a point given by (5-17).

For o > ¢ the formulae for the carrying ca-
pacity in plane stress field are identical

to those in plane deformation fields.

This is yet another example of the fact that
a plane stress field is accompanied in a num-
ber of cases by a plane deformation field.

As mentioned in section 3.5, this is because

the middle principal stress is of no signifi-
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cance in Coulomb's failure hypothesis and
modified failure hypthesis.

The formulae for the carrying capacity in a
plane stress field are shown in fig. 5.4.
A- few characteristic values are indicated
(see also fig. 5.3).

5.4' Influence of Normal Force

(5-37)

{5-38)

(5-39)

An external normal force, as shown in fig.

5.5, can easily be taken into account.

With a given value of the normal force N, the
external work in the yield pattern shown gives

= + i
Ay Pbr V cosa N Vsino

The internal work from the concrete is simply
denoted by Ay, and is dependent:- on o but

is otherwise identical to the expressions
used in sections 5.2 and 5.3. As usual, the
contribution from the reinforcement is found
to be

= . ina
Aia F‘oyffs

The equation of work thereby gives

sing = A.. + V si
Pberosa + NVsina Alb Fo sina

F

We now introduce the stresscﬁqas the uniformly

distributed normal stress'originating from N,
i.e.

N bh

o N_
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(5-39) can then be written as

T A, 1)
br _ 1 ib - _N
(5-41) s " cesave T (®-3 ) tana
c c c

This expression is completely analogous with
the corresponding expressions in sections
5.2 and 5.3. The only difference is that ® is

iy
now replaced by @& -~ Eﬁ .. If we introduce
c
o
(5-42) ot = @ - N
0C

all fhe formulae calculated earlier can be -

used by inserting ®* instead of & .

As expected, the formulae show that an external
compressive force increases the carrying ca-
pacity. The increase is équivalent toan increase
in the reinforcement corresponding to a yield
strength that is equivalent to the external
compressive force.

In the same way, a tensile force corresponds to
removal of reinforcement.

In fig. 5.3 and 5.4, a normal force manifests

T
itself in shearing of the 7?5 axis.
c

5.5 Shear in Concrete

- The foregoing calculations have been performed
for a rigid-plastic modified Coulomb material.
The ultimate strain is limited and the elastic
strains are of the same order of magnitude as
the plastic strains. Furthermore, the com-

pressive stress-strain curve of the concrete
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falls at higher strains than that corres-

ponding to g = ¢ =0 _.

These factors mean that we cannot expect a
failure section to result in as big a contri-
bution from the concrete to the resistance
capacity as indicated by the formulae in

section 3.

For a given structure we can now introduce
a factor (efficiency factor) Vv < 1, which must
be mulfiplied by the area b h in order to
obtain an equivalent area which we can reckon
will give a full contribution to the internal
work. That means that all the foregoing for-

mulae will be valid if we replace 7 ® and

br'

oy by

_ br
br vbh

Fo
5-44 ' - F
( ) ® \)blloc

(5-43)

=
l

il

- ' _ N
(5-45) °% = 3bh

The relationship between these quantities
and the corresponding unmarked guantities is
found to be

_ Co_ 1
(5-46) vr T 9 "br
(5-47) o' =1o
5
o= 1
(5-48) °N = v %N

As it is the unmarked quantities that are

most convenient to work with, the formulae
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are written by means of these. The procedure

is to replace all Tor’ P and(Hqin the cal-

r

culated formulae by Tér’ ®'and o&, after

which (5-46) to (5-48) are used to get the

nd g_.
pr’ ¢ 30¢ 9y
A systematic survey of the formulae is given

formulae expressed by means of 1

in section 5.6.

With the introduction of the efficiency fac-
tor v we may be said to have moved somewhat
away from the upper-bound method. However,
the upper-bound method alone cannot be used
for determination of carrying capacity. It
must either be combined with lower-bound
solutions, or we must verify the applicability

of the upper-bound solutions by tests.

An evaluation of the formulae in section 5.6
by means of test results must, in the first
instance, take the form of a comparison of

the nature of the relétionship between the
carrying capacity and the degree of reinforce-
ment. If the relationship can be compared

Fo fig. 5.3 or fig. 5.4, we must then in-
vestigate which values of y we can reckon on

in different cases.

What is most important for this thesis is

to show that the theory developed can be used
in a large number of cases. The examples
here in chapter 5 therefore primarily demon-
strate that the carrying capacity in the
cases in questibn can be compared to fig.

5.3 and fig. 5.4. A detailed study of Vv has
not been carried out, but a number of con-
clusions that can be reached on the basis of
the existing tests are included in the indi-

vidual cases.
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5.6 List of Formulae

The formulae calculated in sections 5.3 and
5.4, with the modifications required in the

case of concrete, are then as follows:

¢
1-sinyw-2 — siny®
Tb]: 0t OC Ot)
(5-49) —= =1/(®+v =) (v T=sine - (®+v —5;- )
: c c _ v »
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Table 5.1 Formulae for carrying capacity in plane strain field.
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Table 5.2 Formulae for carrying capacity in plane stress field.
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for
' 1-sing Tt 1-sing
(5-55) v(——jj—w - (1+siny) 3_) <D <V 5
c
Tbr
(5-56) =,/ ®(v-®)
c
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' 1-sing 1
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C
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- 1

Tables 5.1 and 5.2 show the formulae for the
carrying capacity with characteristic values
for ¢ and o+ Tt will be noted that (5-52)
approaches (5-56) for decreasing values of
Gt’ and that they are identical for Ot = 0,

It will also be noted that test results with
1 - sing
2
enable us to decide whether we should assume

a plane stress field or a plane deformation
field. '

degrees of'reinforcement ® < v do not

In the case of normal forces, the formulae
derived can be used provided ® is substituted

by ®* , which is found from (5-42).
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Example 5.1 Shear in Monolithic Concrete

Hofbeck, Ibrahim and Mattock [69.5] have

performed tests with monolithic test specimens

of the appearance shown in fig. 5.6.

The dependence of the carrying capacity on
the degree of reinforcement in shown in fig.
5.7. This figure also shows the curves found
for the carrying capacity in a plane stress
field, where ¢ is put at 37° and v = 2/3.

The value used for ¢ is the one normally used
for concrete. v is chosen so that accordance
between tests and the formulae is good. (5-52)
is not plotted because an estimated tensile

strength of of the compression strength

1
10
gives only a small difference between (5-52)

and (5-54) for 0 < ® < 0.04v , see fig. 5.4.

Apart from ® = O, the -agreement between the
formulae for the carrying capacity and the

test results is exceptionally good.

That the carrying capacity for @ = O is
lower than predicted by the theory may be due
to one or more of the following factors: the
negligible yield strength in tension enters
the picture; the tensile strength is lower
than assuméd; it may be a statically normal

deviation.

- - —— —— _—- ———t— ——— - — —

six tests with spec1mens subjected to tensile
loading but otherwise in accordaﬁce with the
principle in fig. 5.6. However, the shape of
the test specimens was slighfly different, so
~we cannot expect the same efficiency factor
as in Hofbeck et al.
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The results of the tests are plotted in fig.
5.8, together with the curves for the carry-
ing capacity for a plane stress field. Again,
o = 37° and (5-52) is omitted. v is put at
0.38.

There are only a few results and there is
some dispersion on them. It will be seen that
accordance with the theory is acceptable,

although not as good as in fig. 5.7.

Rajendran and Morley [74.1] have also assessed
Hofbeck et. al.'s tests [69.5] by means of
the theory of plasticity.

By putting the tensile strength at zero and
using a plane stress field, they have found
(5-26) as a lower bound for the carryihg ca-
pacity. Incidentally, they mention - without
showing it - that there is a failure pattern
that results in the same carrying capacity

as the lower bound, such that (5-26) is a

correct solution when o, = O.

In order to get Ehe test results to fit the
‘theory, Rajendran and Morley also use a lower
ultimate strength of concrete than the mea-
sured value. This corresponds entirely to
the efficiency factor introduced here.

Rajendran and Morley only work with plane
stress fields. This has led them to the con-
clusion that the theory of plasticity cannot
explain the difference between the carrying
capacity of the test specimens described here
and corresponding specimens that have cracked
along the shear plane. As we shall see in

- example 5.2, the difference can be explained
by using the formulae for a plane deformation
field.
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Fig. 5.10 Results with cracked test specimens from [69.5].
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Shear in Reinforced Construction Joint

We consider fig. 5.6 again and assume that
the shear section is weakened in relation to
the monolithic concrete. The weakening may,
for example} take the form of a construction .

joint.

The weakening introduced manifests itself by
a smaller cohesion c¢ in the construction
joint than in the monolithic concrete. Ex-
ample 4.1 shows that ¢ , on the other hand,
can often be expected to be the same in the
construction joint as in the monolithic con-

crete.

For the construction joint this means that

the efficiency factor v is apparently‘smaller
than for the corresponding case in monolithic
concrete. Furthermore, failure in tﬁe éon—
struction joint will occur as a plane deforma-
tion field when the degree of reinforcement

is suitable low. With high degrees of re-
inforcement, the failure will be as in mono-
lithic concrete and thus also with an effici-
éncy factor corresponding to this. This
change from failure in the construction joint
to failure in the monolithic body is entirely
analogous to the corresponding change in the
unreinforced construction joint in chapter 4.
The principle of the relationship between the
carrying capacity and the degree of reinforce-

ment is shown in fig.'5.9.

Hofbeck, Ibrahim_and_Mattock [69.5lhave per-

formed tests corresponding to the monolithic

tests shown in fig. 5.6. 1In the shear section

they have merely introduced a weakness, viz,

a split crack, established in accordance with

same principle as applies in the split test
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for determination of the split tensile strength

of concrete.

The test results are plotted in fig. 5.10.
The formulae for the carrying capacity for

a plane deformation field are plotted, with ‘
® = 37° and ot = 0. (The tensile strength
of the concrete is zero perpendicular to

the shear section). v is put at 0.45, cor-
responding to about 70% of the efficiency
factor in the monolithic case. The curves
for the carrying capacity for a plane stress
field, i.e. the carrying capacity for mono-
lithic test specimens, is also shown. This

curve is equivalent to that shown in fig. 5.7.

The carrying capacity is determined from the
set of curves that gives the lowest carrying
capacity. For & < 0.28, failure occurs with
a plane deformation field, and v = 0.45,

and for @ >about 0.28; failure occurs as in
the monolithic case, i.e. with plane stress
field and v = 2/3,.

It will be seen that the test results accord
well with the theory.

Mattock and Hawkins [72.3] have also per-
formed tests with cracked test specimens,
which, apart from this, correspond to their
tests with monolithic test speéimens and ten-

sion, which are dealt with in example 5.1.

The results are shown'in fig. 5.11, together
with the curves for the carrying capacity,

which are analogous to those shown in fig. 5.10.
The curve for plane deformation field is
‘plotted with v = 0.27, i.e. here, too, an ef-
ficiency factor of 70% of that from the mono-

lithic case.
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Here, too, it will be seen that the test
results accord well with the theory.

real construction joints. The test specimen
was, in principle, as shown in fig. 6.5. One
half, i.e. up to the shear section, was cast
first. After cﬁring, the rough shear section
was scrubbed with cement mortar  and the second

half was cast.

The test data are extremely sparse, the
results being given in a figure with thé
shear strength Ty @S a function of the area
of reinforcement F in relation to the area of
the concrete b-h. 1In addition, it is stated

that thé first half of the test specimen was

cast with concrete with o, = 7500 psi
(~52 MN/m ), and the second half with con-
Crete with either On = 7500 psi or 0, = 3000 psi

(~21 MN/m?).

If we estimate a yield stress for the rein-
forcement, the test results can be plotted in
our usual coordinate system. The yield stress
is estimated at op = 53000 psi (370 MN/mmz),
and the results are depicted in fig. 5.12, the
mean strengthck:= 5300 psi (37 MN/mz) being
used for the test specimens of concrete with
different strengths. It should be noted that
the results from the two series are largely
identical in this plot.

As the test specimens in tlie two series were
identical apart from the concrete strength, we |
can assume same Vv in the two series. We can-

not find v from the test results because the
'yield stress for the reinforcement is estimated.
On the other hand, we can see from fig. 5.12

that the strength in a construction joint
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Fig. 5.13 Tests with construction joints¥rom [74.2].



between concrete with two different strengths
can be determined by means of the average

strength of the two types of concrete.

Caution must be exercised when using this
conclusion because it must be remembered that
construction joints can be made so strong
that failure will occur in the weakest con-

crete as monolithic failure.

tests with three types of construction joints
in connection with an examination project

at the Structural Research Laboratory of the
Technical University of Denmark. One half

of the test specimen was cast with the shear
section upwards. The shear section was

treated in one of the following three ways:

1) Floated with steel rail and then steel-
trowelled.

2) Floated with steel rail.

3) Floated with steel rail and then brushed

with a steel brush after about 2 hours.

-

After two days, the opposite part of the test

specimen was cast.

The results from the tests with the construc-
tion joints treated in accordance with method
3 are depicted in fig. 5.13. The results
accord well with the assumption of a plane
‘deformation field, as can be seen from the
plotted line, which is (5-15) with v = 0.58
and © = 379,

. The construction joints treated according to
method 1 and methed 2 proved to give a lower
carrying capacity than those treated according

to method 3. This is actually not particu-
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larly surprising. What is more surprising

is the fact that method 1 and method 2 are
equally good, as can be seen from fig. 5.14.
It will also be seen from the figure that

the assumption of a plane deformation field
is good, except that the angle of friction

is now reduced to about 26.5° and v is simi-

larly reduced.

As trowelling presumably gives the smoothest
type of construction joint that can occur, the
tests therefore indicate that the angle of

friction in a construction joint can always
be assumed to be bigger than 26°.

Example 5.3 Shear Strength of Keyed Shear Joints

(a)

In prefabricated, large panel buildings,struc-
tural wall components are often connected by
means of a keyed, reinforced shear joint. The

principle is shown in fig. 5.15.

The wall components are placed side by side,
after which the vertical reinforcement is in-
se€rted between the stirrups. Finally, the
joint is cast with joint mortar. The keyed
shear joint is a special case of a construction
joint, where, however, only the keyed area

is active at failure, see fig. 5.16.

Putting the tensile strength normal to the
joint at zero, we can easily see (see [75.3])
that the formulae for plane deformation field
lead to:

b
.__Ez‘/@(\).}:)’.-(b)
o A
C
Tbr _ B l-sing , .,
o] A 2cosyp ang
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The boundary between the vzlidity of the
two formulae is given by

In the formulae the usual designations are
used, and g is the key-ratio. Here, A is
the entire cross-section of the joint mortar
and B is the cross-section of the keys in the
joint mortar, i.e. the part in which failure
has occurred in fig. 5.16. The efficiency
factor v is still a measure of how large

a part of the yield surface B can he assumed

to contribute fully.

The shear strength of keyed shear joints has
been investigated by tests for many years.

One group of researchers [74.3] has studied
a large number of test results and, on this

basis, has arrived at an empirical formula

=25 = 0,09 32 + 0 for 0,01 < ® < 0,08

It will be seen that, apart from the limits,
(d) is identical with (b) when ¢ = 45° and
v = 0.43. The range of validity of (d4) is

confined. to the area covered by the tests.

However, the theory shows that we do not have
a straight line in the entire area, but that,
for small @TJ we have a circle that passes

through (o, T?E) = (0, 0) . The test results

o]
relating to this circle have presumably been

-one of the reasons for choosing a slightly

low factor in front of g in (d). A more

realistic value for v would be 0.55 instead

of 0.43. The formulae for the carrying capacity
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Fig. 5.17 shows some test results with

g = 0.22 by Pommeret [71.1]1, here taken from
[74.3] . The figure also shows (e) and (f),
and it will be seen that there is excellent

agreement.

Example 5.4. The Shear-Friction Theory

The shear-friction theory is often used in

USA for calculating certain shear problemns,
€.9. the shear strength of construction joints.
As the formulae resulting from the shear-
friction theory greatly resemble the formulae
derived here for plane deformation fields, the

theory will be discussed and commented on here.

Birkeland and Birkeland [66.2] advanced.the
éhear-friction theory in 1966, on the assump-
tion that a construction joint was serrated
and that the serrations had the angle vy ,
see fig. 5.18a. As will be seen from fig.
5.18b, shear of the upper part in relation
to the lower part requires lateral expansion.
This gives rise to deformations and thus to
stresses in the transverse reinforcement.

Failure occurs when the reinforcement yields.
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By assuming that the compression between the

"serrations"stands at right-angles to these,

we find, with the notation from fig. 5.18c¢c,
Q = Ptanp = F o, tany

Here, F is the area of the transverse rein-

forcement.

We can introduce the shear stress by dividing

by the concrete area A

Tbr =

o L

O tany = £ Op tany

where the designation f is introduced for the

. . F
ratio of reinforcement 7-

For tany Birkeland and Birkeland gave 0.8 to
1.0 for an ordinary construction joint and

for concrete against steel, 1.4 for a rough
construction joint and 1.7 for monolithic
concrete. As upper bound fOIbe they re-
commended 300 psiA(5.5 MN/m2), the test results

being limited to 1t1__ < 800 psi.

br

Mast [68.1] also gives tan ¢y = 1.4 for a
rough construction joint, but gives 0.7 for
smooth construction joints and 0.7-1.0 for

concrete against steel.

Comparison of (b) with various shear tests,
€.g. some of those mentioned in example 5.1,
has since resulted in both Birkeland [71.2]
and Mattock and Hawkins [72.3] putting t =

br
0.20, as upper bound for validity of (b).

'The derived formula (b) is equivalent to

(5-51), apart from the fact that contribution

from the concrete is omitted in (b). In a
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T
o , br

S —-coordinate system this means that
c
(b) passes through (0,0). It is immediately

clear from fig. 5.19 why the big values have
been obtained for tany and the upper bound

for the validity of (b), regardless of whether
comparison has been made with tests in which
there is a plane deformation field or tests

in which there is a plane stress field.

The tensilelstrength of concrete has always
presented serious problems, and the approxi-
mation is therefore often made of neglecting
it. Therefore, in tests to determine the
carrying capacity (e.g. [69.5] and [72.3],
see example 5.1), it was found preferable

to split the test specimens first, so that
the tensile strength perpendicular to the
shear section in fig. 5.6 was zero. Without
reinforcement, the shear strehgth must there-
fore be zero, and a formula for the carrying
capagity must therefore pass through

(@, 7%?) = (0, 0). This requirement is satis-
fied by (b).

ﬁowever, splitting means that we force the
test specimen, in the case of low degrees

of reinforcement, to fail in a plane deforma-
tion field instead of in a plane stress field,
as described in example 5.1. 2u effort is
then made to describe the ultimate strength
in a plane deformation fie%d by means of a
straight line through (o, 7%5) = (0, 0) ,
which leads to the big slopes, since there is

no contributjion from the concrete.

In order to get the straight line to fit the
test results better, Mattock and Hawkins
[72.3] proposed an alternative calculation

of the cracked test specimens
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(e)
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Tbr

1l

200 + O,8fof (psi)

(Typ = 1,38 + 0,8f0 (MN/m?) )

£)

At the same time as the straight line was

thus lifted and given smaller slope (from

tan v = 1.4 to tan Y = 0.8), the upper
limit of validity was altered from Tor = O,ZGC
to T

br = 0,300.

Mattock [74.4] has since further raised the

line by proposing
Tpe = 400 + 0,8foF (psi)
(Typ = 2,76 + 0,8f op) (MN/m?))

still with the upper bound at T = 0,30,

br
but now also ch < 200 psi (1.38 MN/mz).

It should be noted that (c) and (d) are ad-
vanced independent of the concrete strength
and that the movement of the straight line is

experimentally warranted.

An explanation of the movement of the straight
line was first given by Hermansen and Cowen

[74.5], who propecsed, in general,

Ty = C F 0,8f0F
The quantity c appearing here is called the
apparent cohesion, and (e) is called the

modified shear-friction theory. The contri-
bution from the concrete is thus ¢, and Her-

mansen and Cowan &lso propose that it can be

-put at 4 MN/m2 for uncracked test spe«cimens

of the type shown in fig. 5.6 and for shear

failure in brackets, regardless of the concrete

strength.
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If we insert (2-6) in (5-51), we can write

this in the form

T =vc + tan@foF

and (e) is thus largely identical with (5-51),

The difference between (e) and (d) is insig-
nificant apart from the fact that (d) is
proposed for calculation of cracked cross-
sections, while (e) is. proposed for uncracked
Cross-sections. As will be seen from examples
5.1 and 5.2, a straight line is correct within
a very big range for cracked cross-sections,
but is only correct in a small range for

uncracked cross-sections.
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In connection with the transmission of

loads to a part of a structure, we often

find that these have to transmitted through °

a limited area, whereby we get the phenomenon:’

concentrated loads. An example is shown in

Here we will restrict ourselves to the case
in which a plane concrete prism is supported
on one surface and subjected to aconcentrated .
load acting on the opposite surface, see

fig. 6.2. The aim here is to find a pro-
cedure for calculating the ultimate load for
such concrete bodies. The problem will be
dealt with by considering the concrete partly
as a linear elastic material ahd partly as

a rigid-plastic material, and as the results
arrived at on these bases cannot be used for
determination of the carrying capacity, some

empirical formulae will be proposed.

6. CONCENTRATED LOADS ON PLAIN CONCRETE
6.1 Introduction

fig. 6.1.
6.2 Linear-Elastic Solutions

The theory of elasticity can be used for
determining the carrying capacity of a body
of a matetial that is linear-elastic all the
way up to failure. If this is not the case,
the theory of elasticity will still give safe

values for the carrying capacity.

It is well known that tensile stresses oc
perpendiculaf to the direction of the con-
centrated load some way below this load.

If these tensile stresses can cause failure,
i.e. if (2-10) is satisfied, it will be
natural to try to use the theory of elasticity

for determination of the carrying capacity



because concrete often exhibits almost
linear-elastic behaviour up to uniaxial ten-

sile failure, cf. section 2.4.

In a plane stress field we can introduce
Airy's stress function ¢ (x,y), where x
and y are the position coordinates in a

right-angled coordinate system.

Neglecting the mass forces, we introduce this

stress function such that

_ 3% _ 3% _ 8%
(6-1) °% T 3y? v T 3x? Txy T 3xoy

A unique solution to a problem with a plane
stress field is found by satisfying the bi-

harmonic equation

: 4 N "
(6-2) S0 2¥ 430 _
9x 3x23y? dy

and the boundary conditions relating to the

problem.

Plane deformation fields can be solved in
the same way by determining the stress

perpendicular to the plane deformation field
from

(6=-3). oz = v(ox + cy)

where Vv is Poisson's ratio.

The biharmonic equation (6-2) with related
boundary conditions can only be solved exactly
~in a few cases, see, for example, Timoshenko
and Goodier [70.2]. We must therefore often
make do with approximate methods, e.g. series

development,
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Fig. 6.4 Test by Rathkjen [73.2].
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For a semi-infinite diaphragm loaded on three
free sides, Iyengar [60.2], [62.1] and
[62.2] has indicated a solution by means of
Fourier-series. The expressions are extreme-
ly complicated and will normally require

computer treatment in order to be used.

For some loading cases Iyengar has prepared
tables [60.2] and plotted curves [60.27,
[62.1] and [62.2].

The loading case which research workers have
found of particular interest is the case of

a centrally acting load as shown in fig. 6.3.
The figure also shows the theoretical course
of the stressoy,along the x-axis. For this
stress Guyon [53.1] has given an approximate
formula which is frequently used and which
results in almost the same values as Iyengar's
solution.

An evaluation of the carrying capacity can now
be carried out in accordance with the theory
of elasticity by putting o max egual to the
tensile strength O of the concrete. Here,
we will consider a test series of Rathkjen
[73.21,in which 30 cm cubes were loaded on
one side over their entire width through a
steel rail with a width of 1 cm. The cube

was supported over the entire opposite side.
In the test series, the concrete strength
was varied, together with the distance of

the steel block from the edge of the cube,
see fig. 6.4.

For such a load, the transverse stress o
along the vertical line centrally under the

load has the same form as shown in fig. 6.3b.
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Fig. 6.5 Notations used in table 6.1.
a 3 a1 a -1 1
b 30 20 70 5 3
Iyengar . 0,015 0,022 0,042 0,072 0,100
STRUDL 0,014 | 0,019 0,037 0,068 0,093
o
Table 6.1 Value of —13935, determined by the element method
for & = X, cf. fig. 6.5.
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Determination of this by means of Iyengar's
formulae is not directly possible because

the length of the test specimen is limited.
The stresses needed in order to investigate
whether the theory of elasticity can be used
for determination of the carrying capacity
are therefore determined by means of calcula-

ations in accordance with the element method.

The element calculations are carried out

by means of the computer programme ICES
STRUDL-ITI, which has been developed at the
Massachusetts Institute of Technology [71.31].
The calculations are carried out as a plane
stress field with a rectangular element
called type "PSR" in ICES STRUDL-II. In the
calculations the body was dividZd into 575
elements with maximur density at the con-

centrated load.

O .
Table 6.1 shows —ZL§§§ as obtained in the
element calculations. The notation used is

shown in fig. 6.5.

The geometrical éonditions chosen are equiva-
lent to those used by Rathkijen in his tests.

In these tests, the failure load Pbr for the

concentrated load is determined.

We now define the failure stress Of as

where £ is the surface of the concentrated

load. 2a and 1 are its extent, in this case,
1 x 30 cm.



= 1 L 1 1 L
o 30 20 70 5 3
0,043 0,055 0,088 0,096
0,045 0,040 0,063 0,059 0,081
o, 0,025 0,031 0,042 0,048 0,058
o
0,030 0,028 0,035 0,047 0,060
0,027 0,029 0,045 0,059 0,069
Middle 0,034 0,032 0,048 0,060 0,073
Tabel 6.2: Test results from [73.2]. Oy is put at the
measured split tensile strength.
a 1 1 1 1 1
b 30 20 10 5 3
0,031 0,038 0,060 0,065
0,031 . 0,028 0,043 0,046 0,056
¢
—— 0,024 0,027 0,033 0,043 0,055
Of
0,022 0,024 0,032 0,040 0,050
0,031 0,029 0,039 0,056 0,074
Middle 0,028 0,027 0,037 0,049 0,060
Tabel 6.3: Test results from [73.2]. Oy is determinéd by

means of (6-5).
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In order to investigate whether the above
can be used for determination of the carrying
capacity we must thus compare

o o

Y maxX o ogep E
o] o
£
where Oy is the tensile strength of the con-
crete used.

o

t
Table 6.2 shows the results obtained for 5

£
from the tests, where o, is put equal to the

t
measured split tensile strength. The same is
done in table 6.3, except thatot'is found by

the commonly used empirical formula

(6-5) o, = 1,5 VE; [kp/cm?]
A comparison of the average values in takles
6.2 and 6.3 with the values in table 6.1
shows that the procedure cannot be used for
determination of the carrying capacity. We
also see that, for small loading widths, i.e.
small values of a/b, the procedure gives far
too optimisticestimates of the carrying ca-
pacity.

This is apparently at variance with the fact
that the theory of elasticity gives safe values
for the carrying capacity. Arnd an investigation
of the stress field under the local loading
surface in the area in which the transverse
stresses are compressive stresses shcws, in
fact, that the criterion for sliding failure
(2-7) is satisfied at considerably smaller

loads than the criterion for separation failure.
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Test results from [73.2] and result from element

analysis.
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The element calculations are carried out

on the assumption of a plane stress field.
The other extreme case 'is plane strain field,
which, with good approximation, we have under
the loading surface. 1In this case, the

last principal stress is found analogously

with (6-3), viz, from
Oy = v(01 + oc)

As we thus find that 04 lies between the two
other stresses, it is of no significance to
the failure load whether we assume plane
stress or plain strain.

o] ;
Fig. 6.6 shows Eﬁ' as a function of g from

Rathkjen's testsf: The sliding failure load
found by means of the element method is also
included. This load is found for the same

g values as those with which tests have been
carried out. Straight lines are drawn between
the values. The figure alsc shows the
"separation failure load", i.e. the load at
which Oy,max is ecual to the tensile strength.
In order to be able to include this relation-
ship, the tensile strength is estimated as

f% of the compressive strength 0o

It will be seen from the figure thaot, for

the values investigated, the criterion for
sliding failure is always satisfied for lcwer
loads than the criterion for separation
failure. Under concentrated loading, failure

thus often commences as sliding failure.

It will also be seen that the theory of
elasticity gives safe values for the carrying

Capacity when it is used as here.

All in all, it must, however, be ascertainred
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Fig. 6.8 Movements in the failure mechanism, fig. 6.7.
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that the theory of elasticity does not
provide the means of determining the carry-

ing capacity very accurately.

Similar considerations have been made by
Jensen and Nielsen [75.2] in the split test.
Here; too, it is found that failure often
commences with sliding failure near the
loading strips, so that the split test can-
not be said to be a particularly suitable
tool for determining the tensile strength of

concrete.

In this section we will investigate the pos-
sibility of calculating the carrying capacity
when concrete is considered as a rigid- plas-
tic material. As in the foregoing chapters,
we will concentrate on upper-bound solutions,
ﬁsing failure patterns that largely corres-

pond to observed failure patterns.

In contrast to the elastic solutions, we will
here consider both plane and 3-dimensional

failure problems.

Plane Failure Mechanisms

Let us first consider a plane failure .
mechanisms, as shown in fig. 6.7, which
corresponds to the type of failure frequent-

ly observed and known as split failure.

The wedge formed directly under the concen-
trated load moves downwards, and the remaininc
two parts of the prism move out sideways.

We thereby get sliding failure along the sides
of the wedge and separation failure along the

vertical line.



(6-7)

(6-8)

(6-9)

(6-10)

If we assume that the vertical ancle of

the wedge is 2 8, and that the relative move-
ment V along the sides of the wedge forms the
angle ¢ (= the angle of friction) with this,
we get the relationship between the movements
shown in fig. 6.8. 1In the figure, Vl is the
vertical movement of the wedge and 2V2 is the
total horizontal movement in the vertical line
of discontinuity. This relationship between

the movements is found directly from the

figure:
V,l = Vcos (B + ¢)
V2 = Vsin (B + )

Let us first consider the case in which the
tensile strength of the concrete is O, i.e.
there is no contribution to the internal work

along the vertical line.

The external work is

= ' +
AY O¢ 2aV.cos (B + o)
The internal work is found by means of (3-39).

and as o = @ , we find:

1-sing 2a

Ai - 2 9c Sinp

From this we find the upper bound:

o = 1-sing .
f 2cos (R+y) sinB cC

We find that (6-10) has minimum for

i
B = v % . and that minimum is . = o _. .
f c
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Fig. 6.9 Permissible stress distribution.
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This carrying capacity is, moreover, an
exact solution, since a permissible stress
distribution that gives the same carrying
capacity can easily be constructed, see
fig. 6.9.

To find a carrying capacity that is greater’
than the uniaxial compression strength, it is
thus necessary to include the tensile strengtt
- In this case, the external work is still de-
termined from (6~8). The internal work is
found from (3-39), in that we have g = ®
along the sides of the wedge and o =4 along

2
the vertical line of discontinuity.

(6-11) A; = Ot(H-acotB)2\7sin(B+@)

+ 1-sinp , _2a
2 Cc sinf

From (6-8) and (6~11) we find

H .
%(1—sinm)oc + sin(8+w)(g 51n8—cosB)ot

(6-12) Of T sinB cos (B+v)
(6-12) can be shown to have minimum for
. g cos®
(6-13) cotB = tany + o—51 /1 + 3 .
P ES (1'i;nw)—sinw

t

after which (6~12) can be written as

(6-14) op = ot(g tan (28+@) - 1)
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Fig. 6.10 Failure mechanism.
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Formulae (6-12) to (6-14) have been found
by Chen and Drucker [69.2] , who also men-
tion that, as done here, V must form the

angle ¢ with the diagonal line of discon-

tinuity to get minimum.

The above formulae are independent of the

distance from the load to the edge of the

" prism. However, if this distance 1is suf-

ficiently small, another failure mechanism
applies, see fig. 6.10. This spalling, too,

is known from tests.

With the notation from fig. 6.10, we find

A

o

v £ 2a V cos (B+0)

_ 1=-siny b+a
BA; = =% O Sing

which gives the upper bound:

_ (1-sing) (b+a)
O¢g = T sinBcos (B+p)la ¢

The minimum is found for B = % - % to be
s = PFa .
£ _2a C

It will be seen that, logically enough,
(6-18) gives a force corresponding'to a load
on 0, over the whole of the area that is
broken off.

In fig. 6.11 (6-14) and (6-18) are compared
with Rathkjen's test. For the purposes of
(6-14), the tensile strength is put at f%
of the compression strength, 0, and

¢ is put at 37°.
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Fig. 6.11 Test results compared with plastic calculations.
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It will be seen from the figure that the
carrying capacity cannot be be directly
determined on the basis of the theory of
plasticity. For the failure pattern in

fig. 6.7 it can easily be seen that the
carrying capacity cannot be calculated in thi:
way because the vertical failure surface is
assumed to be fully active, even though
separation failure is usually only slightly
plastic. )

We can now consider introducing_efficiency
factors 9 ; as was done in chapter 5. How-
ever, it can be seen that this gives a

factor that is dependent on the distance from
b. In the failure pattern in fig. 6.10,

v must, for example be unity when b = a,
after which it decreases with increasing g.
For the failure pattern in fig. 6.7 we can
presumably make do with an efficiency factor
for the separation failure. This, too,
proves to be possibly dependent on §° In-
fluence from the height H must also be‘expec—

ted, especially in the case of small heights.

Thus, if we want to use the plastic calcula-
tion outlined for aefermining the carry~-

ing capacity, we must reckon on having to

use different efficiency factors depending

on different parameters. However, for the
simple, plane problem under consideration,
the possibility cannot be excluded that the

procedure may be usable.

6.3.2 3-Dimensional Failure Mechanisms

We will now consider a prismatic concrete
body with a square top. The prism is cen-
trally loaded over a square area with the

load 0, see fig. 6.12.
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The failure mechanism we will use is a pyra-
mid, which is pressed down in the splitting
prism, see fig. 6.12. There is thus sliding
failure along the four sides of the pyramid,
while the other failure surfaces arise from
separation failure. The relationship between
the movements can be seen from fig. 6.13.

It is here assumed that V forms the angle

with the sides of the pyramid.

We get:
V, = Vcos (B+o)
v, = V sin .(B-HD)
V3 = VZ Vsin (8+9)

The area with sliding failure is found to be

a2

1 4 sinf

g
I

The area with separation failure is

F, = 4 [V2 bH - %; a? cotB]

The external work is

- 2
Ay g 4a® Vcos (B+y)

and the internal work,

= k_g_ig.(‘g 3
Ai ( 5 O F1+0tF2\/7 sin (B+w))V

i
(6-21), we find the upper bound

From Ay = A., and by insertion of (6-20) and
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'%(1—sin@)oc + Sin(8+m)(%§? sinB-—cosB)ot
(6-24) o0g = SinB cos (B+Y)

This equation is completely analogous with

(6=12), such that the minimum is found for

%g? cosyY

(6-25) cotB = tang + coso 5 1 oino
— (—=—) -sing@
Oy 2

The minimum is thus

__ 2HD _
(6-26) of = Gt(:;r tan (28+@)-1)

Like the corresponding plane solution, this
solution has been found by Chen and Drucker
[69.2].

The same type of failure mechanism can be
used in the case of other, non-symmetrically
placed loads, as shown in fig. 6.14. With

the notation used in fig. 6.14, the factor %?%

in (6-25) and (6-26) must be altered to
H(c+b)
a2 )

Fig. 6.15 shows a failure pattern in which a
skew pyramid spalls off through sliding
failure, while the rest of the body splits

through separation failure.

For this failure pattern it can be shown that,
with the notation from fig. 6.15, the equa-
tions corresponding to (6-24), (6-25) and
(6-26) are
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%(1 ~sing)o +31n(8+m)(%§? 81n6—cosB)0t

sinR cos (B+Y)

2Hc
1 S cosy
cotB = tanp +

cos®Y
(1 51n®) -sine

¢

b? 2Hc

Of = 452 O (—ﬁr tan(28+¢)-1)

(6-30)

It will be seen that, as is reasonable, the
ultimate load Pbr = o 4a2 is independent

of the size of the loaded area, provided

this area lies on the skew pyramid.that spall
off.

Yet another geometrically admissible failure
pattern must be mentioned, and that is a cor-
ner that has broken off through sliding fail-
ure, fig. 6.16, analogously with the plane
case in fig. 6.10. As in the case of fig.
6.10, the ultimate load corresponds to a load
of 0, over the area that is broken off. The

ultimate loaa is thus

A comparison of the formulae with tests,

€.g. by Au and Baird [60.2], shows, as in the
plane case, that the theory gives too high

a carrying capacity because all failure sur-

faces are assumed to be fully active.

Efficiency factors might, perhaps, be intro-
duced, but it must be borne in mind that it
is hardly possible to take care of all load-
ing cases with the failure mechanisms cal-

culated.



Fig. 6.17 Design F under eccentric loading.
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here, so it may be necessary to find other
failure mechanisms and, possibly, to supple-

ment these with empirical formulae.

6.4 Empirical Solutions

(6-31)

(6-32)

Empirical formulae forAthe determination of
carrying capacity go as far back as 1876,
when the great German scientist Bauschinger
[1876.1] performed tests on sandstone prisms.
On the basis of tests on centrally loaded
prisms, Bauschinger proposed the formulae

0. = O 3/E

£ FV £

Here, Op is the failure stress when the entire
area F of the prism is loaded. O is the
ultimate load distributed over the loaded
area f. In the case of cubes, GF is thus

equal to the cube strength.

For non-central loads, Bauschinger states
that the formula can be used if an area

corresponding to central loading is included,

» see fig. 6.17.

For concrete the formula has been confirmed
by Graf [21.1] , and it has been used in the
Danish code of practice for structural con-
crete since 1930. 1In the guide to the
currentiqode,cC is used instead of o_, and

F

Op < 20C is prescribed.

Tests show that for high values of % (6-31)
gives too small values ofof , a fact that

made Wastlund 34.1 recommend

- ]/F E
O = 0,765 onl ¥ for i 5

Many different formulae have been proposed

for determination of Oc - A study of some
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of these is to be found in Jensen [73.3] ,

where the author himself proposes the formula:

0]
£ ]/F
8—-2 0,2 + 0,8 b3 :

This formula is-arrivedfat by means of a

< 180

Q
hl

regressive analysis of many tests with widely
varying shape and placing of the area f. 1In
all cases, the test specimens were cubes or
had a height of 1% times the side length and
a square base. In the case of non-central
loading, F is also determined here as shown
in fig. 6.17. '

In (6=33) we have é single formula that is
intended to cover the influence of many fac-
tors on the carrying capacity. In fig. 6.18
the formula is compared with 64 tests carried
out by Hawkins [68.2]. These tests were not
included in the formulation of (6-33). It
will be seen that the formula gives reasonable
results, but it»will also be seen that there

is a big scatter on the test results.

This is mainly due to two factors, which are
not taken into account by (6-33). Ogs is
that the'formula predicts the same 'Eg in
the two cages shown in fig. 6.19. Tests
show that EE is bigger in the loading case
in fig. 6.19p. The second factor is that
o increases more for weak concrete than for

c
strong concrete.

Despite these drawbacks, it must, however,
be said that (6-33) gives a usable forecast

for the carrying capacity. If (6-33) is
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Fig. 6.21 Locations of loads. Type designations from
table 6.4.
Lit. - Type % -%% Results
[53.2] B 29,2 1, % + *
[60.2] A 2 - 16 1, % +
: A 1 7 44,4 2 - % +
[65.4] C T - 25 2 - 0,6 +
[73.3] A 4, 8,15, 161 1,5 - 0,35 *

o

: : E£ decrease with decreasing H/2b

C
+

Table 6.4

o

g
C

increase with decreasing H/2b

. -Main results of tests on influence of

height.
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used, account must be taken of the fact

that an increase in the carrying capacity in
excess of O is conditional upon the existence
of a tensile strength in the concrete beneath
the load. Furthermore, as mentioned earlier,
it must beggorne in mind that, in very strong
concrete, 5 does not increase as much as
predicted b§ (6-33), whereas, in weak concrete
a bigger increment is obtained. The formula
is directly applicable for the concrete

strengths normally used (OC ~ 15-40 MN/m2).

The bound, of:EZOC, which is recommended in th
guide to DS 411, the Danish Code of Practice
for the Structural Use of Concrete, 1973, is,
however, very conservative. As a cautious
upper bound, o_. < SOC is proposed, corres-

f =

ponding to % = 36 in (6-33).

6.4.1 The Influence of the Height

In both (6-33) and in the other empirical
formulae mentioned, the height of the loaded
body is not taken into accdunt. (6-33) is
primarily formulated for cubic test specimens

and it can also be used for taller specimens.

For a test cube loaded completely on two

= 0 _.
£ C
However, such a test corresponds to finding

opposite sides (% = 1), (6-33) gives ¢

the cube strength, which is about 1.25 O
That (6-33), however, gives Og =0, is due

to the fact that the curve in the regressive
analysis is forced through this point, see
[73.3]. Among other things, this means that
Og=0, is achieved when the load lies at an

edge, as shown in fig. 6.20.
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In the case of very big heights the problem
may arise of not being able to achieve

= 1, see example 6.1.

h|

Of = Oc for

For heights smaller than that corresponding
to cubic test specimens, test results are
available that show both that<;fincreases

and that o decreases with decreasing height.
Fig. 6.21 and table 6.4 show the main results
of 4 test series. A study of the 4 refer-
ences in table 6.4 does not provide a means
of judging between the credibility of the

various test series.

It must thus be ascertained that there is
great uncertainty regarding the significance
of small heights of the loaded body. If
rules were laid down that took account of
the height and that were not at variance

with the test results in [53.2] and [73.4],
such rules should giﬁe reliable values for
the carrying capacity in the case of small

heights.

In the guide to the Danish Code of Practice
for the Structural Use of Concrete, (6-31)

is proposed, where o_, is put at On- A pro-

cedure is also propozed for determination
of F. This procedure is synonymous with
finding the centrally loaded area obtained
by dispersing the load at a slope of 1:2.
Some examples are shown in fig. 6.22. 1In
table 6.4, account isnot takenof the height
in the determination of F in the column %.
In fig. 6.23, the rule is used together with
(6-33) and compared with the tests from
[53.2]. The tests were of type B, cf. fig.

6.21, and 2b = 6 in. The results lie above
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Conclusion

the values obtained from the formulae, but
for decreasing g%, the strength decreases in
a way that fits the rules contained in the
Code.

In fig. 6.24 a corresponding comparison is
carried out with 4 series from [73.4]. The
tests were all of type A, cf. fig. 6.21, and
2b =200 mm. In series 1, £ = 10 x 10 cm,

in series 2 and 4, £ = 7 x 7 cm, and in
series 3, f =5 x 5 cm. It will be seen
that, combined with the Code's rules for
determination of F, (6-33) gives excellent

values.

From the above study it can be concluded that
the theory of elasticity cannot be used for
determination of the carrying capacity in
the case of concentrated loading. The theory
for rigid- plastic materials can, perhaps,

be used in some cases, but in this event it
will be necessary to introduce an efficiency

factor v <1, in the same way as in chapter 5.

Today, we have no choice but to use empirical
formulae for determination of carrying
capacity. In this connection, a particularly
useful formula is (6-33). The area F used
in the formula is determined as the centrally
loaded area,, which can be found by dispers-
ing the load by means of lines with a slope
of 1:2 drawn down from the edges of f to the
sides or bottom of the loaded body.
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Example 6.1 Floor-wWall Connection

Fig. 6.25 shows a floor-wall connection in

a prefabricated concrete building. At the
bottom there is a wall component, which sup-
ports two floor components, between which _
joint concrete is cast. Another wall com-
ponent is placed on top, and the joint betweer
this and the subjacent components and floor-

floor joint is grouted with mortar.

We cannot normally reckon on the joint con-
crete ensuiing contact between the floor com-
ponents and the subjacent wall component.

The floor components are therefore not
supported at all points, so the transmission
of vertical compressive stresses should be
assumed to take place only through the joint
concrete. This results in a concentrated

1load on the bottom wall component.

The floor components may be cut straight at
the ends, e.g. the so-called Spirol-slab,
where the width a is well defined, or they

may be the well-known components with keyed
ends, where the width a varies along the
floor-wall connection. In the following,
we will let a denote the average width of the

joint concrete.

Tests have shown that a carrying capacity with
O = O cannot be achieved with a = t. The
uniaxial compression strength appears to lie

at about 75 per cent of the cylinder strength.

In order to calculate the carrying capacity
of a floor-wall connection by means of (6-33),
we must thus use 0.75 O, instead of .- In

addition we have:
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where 1 is the length of a floor-wall con-

nection.

. Inserting these expressions in (6-33) and

. rewriting the formula, we find the carrying

¢capacity to be:

P
br  _ a a
£To. 0,15 T + 0"6]/'t,

Several tests have been performed to deter-
mine the carrying capacity of a floor-wall
connection. Buhelt et al. [76-.1]have
plotted the results, and these are reproducec
in fig. 6.26, where (c) is also included.

o, is the cylinder compression strength
measured for the concrete in the wall com-
ponent. It wili be seen that there is good

agreement between (c) and the tests.

% = 1.0 is achieved by ensuring support for

the floor components in the casting of the
joint concrete. In a single case, however,

a continuous floor component is used.

Tt will thus be seen that (c) is a usable
formula for determination of the carrying
capacity of the floor-wall connection. It
should be noted, incidentally,that theaverag:
width a used in the case of keyed components

is only used to facilitate the formulation o



Fig. 6.27 Tension in stirrup. connection.
g o
T T

Fig. 6.28 Forces in stirrup.
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(c) and the plotting of fig. 6.26. remains

¥
f
the same, whether use is made of the average

width a or the correct shape of the area f.

Example 6.2 Stirrup Connection

(a)

(b)

We will now consider the reinforced concrete
body shown in fig. 6.27, which is subjected
to tensile forces via the reinforcing stirrups
At the middle of the body, the tensile
stresses must be transmitted from one set of
stirrups, through the concrete, to the other

set of stirrups.

The specimen can fail in two ways, either
through failure of the reinforcement or
through failure (split failure) of the con-
crete between the two sets of stirrups. Here,
we will investigate whether (6-33) canbe

used to predict the load at which split fail-
ure of the concrete bétween the stirrups will
occur. The calculations will be compared witl

tests by Leonhardt et al. [73.5].

We will limit the investigation to the case
in which there is a circular opening between
the stirrups. Fig. 6.28 shows a stirrup with
the tensile fcrces T indicated by arrows.

The concrete is assumed to act with a con-
stant pressure ¢ against the stirrups. The

relationship between ¢ and T is found to be

s = 2T
D
In order to avoid split failure in the con-

crete, the following must apply:
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a Middle section | b

Fig. 6.29 ' Determination of F. Case 1.
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where<;fis the yield stress under the con-

centrated loading in question.

The tests with which we will compare the
calculations here all resulted in split
failure. We must.thus find o from (a) for
the force at which failure occurred, and
compare this with o which is determined from

(6-33).

f,

In (6-33) we know that
£f =dD

which corresponds to a projection of gon the

diameter of the opening between the stirrups.

The determination of F i1s slightly more dAiffi-
cult, but we will apply the rule on dispersinc
lines with the slope 1:2, after which we can

divide the treatment up into three cases:

1. F is limited by the opposite stirrup.

This means that the area found by dispersing
the load with lines with the slope 1:2 meets
the area obtained from the opposite stirrup,

as shown in fig. 6.29.

Fig. 6.29a shows a section at the middle of
the stirrup connection with the dispersing
lines 1:2. The overlap between the two

areas is characterized by the length B, which

is found as follows:

1

B = (D + d)

8]

Such lines must be drawn from the edge of the
reinforcement, all the way round. F is there-

by the area obtained by introducing dispersin

lines from a semi-circle (fig. 6.29b) with



a Middle section

b

Fig. 6.30 Determination of F. - Case 2.

» o} ‘ " 1%f, test

N D a f,theory Of,test S L

mm mm N/mm? N/mm? f,theory

A3 120 12 54,4 46,6 0,86
Ad 120 12 ‘54,14 49,4 0,91
B1 121 12 53,1 54,0 1,02
B2 90 12 51,9 63,2 1,22

Table 6.5 Comparison of (f) with tests from [73.5].
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diameter D + d. Fig. 6.29c shows F, which
has the same area as the semi-circle in
fig. 6.29b.

F = (D. + 4) 2

I
8

For the concentrated load we now obtain:

Q

_f
5
c

i

= 0,2 + 0,4(D + 4) 53D

In table 6.5, (f) is compared with 4 tests
from [73.5], where the two sets of stirrups
are placed in such a way that F can be de-
termined in the manner prescribed here.

In the tests the cube strength of the con-
Crete was measured. The cylinder strength
is put at 80 per cent of the cube strength.
The test numbers used refer to the numbers
in [73.5]. |

It will be seen that there is reasonably

good agreement .

2. F is limited by the free side.

This case occurs when the stirrups are place«
so close to the surface that the dispersing
line intersects the free side, as shown in
fig. 6.30a. The figure is a section through
the middle of the stirrup connection, and
the piece obtained is characterized by the
the length

B = 2a

where a is the distance to the centre of the

outermost stirrup.
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a Middle section : b

Fig. 6.31 Determination of F. Case 3.
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If we move away from the middle of the

stirrup connection, the distance between the
stirrups becomes less than D, and at some
point the dispersing lines will no longer
intersect the free side before they meet the
corresponding lines from the opposite stirrup,
see fig. 6.30b. 1In this way, F becomes the
area of a semi-circle with diameter D + d, but

minus a segment with the camber %(d + d) - B.

bnly one of the tests in [73.5] corresponded
to this case. The test in question was C3,
= 41.9 N/mm® and

f,test >
48.7 N/mm“; in other words,. there

and it gave ¢

Of,theory -
is also reasonable agreement here.

3. F is limited by opposite stirrups and

a nearby set of stirrups.

We will now consider the case in which two
sets of stirrups are placed so close together
that F is limited by the dispersing lines from
one stirrup meeting the dispersing lines from
an adjacent stirrup before they meet those
from the opposite stirrup. Fig. 6.3la shows

a section for such a case.

Here,we have two concentrated loads acting
together. Determination of £ and F is there-
fore not so simple as in the foregoing cases.
One approach might, for example, be to put £
at 2dD and let F be the whole of the common
area formed by the dispersing lines with

a slope of 1:2 from all 4 stirrups.

The contribution to F can be divided into

two parts. The contribution on the left of
‘the line AA and on the rigcht of the line BB,
see fig. 6.31, together constitute a contri-

bution analogous to that in case 1.



Nr D d © Of,theory Uf,test SELEEEE——
mm m mm N/mm? N/mm? Of,theory
C1 170 12 43 612 466 0,76
Ccz2 120 12 37 526 357 0,68
Al 121 12 36 524 430 0,82
A2 12i 12 39 530 482 0,91
Comparison of theory Qith tests from [73. Sj.

Tabel 6.6:

Case 3.
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This consequently gives the area of a semi-

circle with diameter D + 4.

The contribution between the lines AA and BB

is analogous to case B, in that we get

The contribution is thus a semi-circle with
diameter D + d minus the area of a segment

with the camber %3(D + d) - (e + 4).

In table 6.6, the theoretical results are com
pared with the test results from [73.5], and
it will be seen that slightly too high values

are generally found with the method used here

The calculations carried out here indicate
that the tensile strength of the stirrup con-
nections. can, in some cases, be determined on
the basis of (6-33) and the rule on dispersin
lines with a slope of 1:2. However, it must
be emphasized that the test material is
limited and that the method requires further

substantiation.
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Fig. 7.2 Failure mechanism.
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CONCENTRATED LOADS ON REINFORCED CONCRETE PRISMS

7.1

Introduction

7.2

In this chapter we will consider a problem
that is related to the one dealt with in
chapter 6. 1In the present case, however, wé
are only dealing with a linear load, i.e. a
plane problem. We consider a concrete prism
with reinforcement perpendicular to the
direction of the locad, and it is the effect
of this reinforcement that we are interested

in.

The considerations made and calculations
performed will be compared with tests car-
ried out at the Building Research Institute
[75.4]. The tests were carried out on

20 x 20 x 40 cm prisms with varyinag concrete
strength. The reinforcement consiéted of
stirrups designed as shown in fig. 7.1. The
number of stirrups used and the depth of
cover were varied. Stirrups of both deformed

steel and round bars were used.

In the tests, = 5.0.

thi o

Favourable Location of Reinforcement

(7-1)

(7-2)

We consider the same failure mechanism as in
the case of plain prisms, fig. 7.2. The rela-
tionship between the movements in the failure
mechanism is shown in'fig. 7.2 and is found,
as in section 6.3.1, to be:

vV, = Vcos (B+®)

V., = Vsin (R+®)
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Fig. 7.3 Ultimate carrying capacity. Transverse

reinforcement 3R10. Tests from [75.4].
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The transverse reinforcement is placed

perpendicular to V If it is placed so far

1 .
down that it lies in the zone with separation
failure, its contribution to the eguation of

work will be

= = i -+
Win Fog 2\72 Fog 2 Vsin(B+y)
where ¥ is the cross—-sectional area of the

reinforcement, and o, is its yield stress.

F

We make the usual assumption that the rein-
forcement can only resist forces in its
longitudinal direction. However, this means
that reinforcement that is place

against the load that it passes between the
two faces of sliding failure will also make

a contribution to the internal work, given by

(7-3) . The fact is that the movemert in the

longitudinal direction of the reinforcement
is the horizontal projection of V, which is
equal to V2.
The depth at which the reinforcement is
placed thus hasAno effect on the ultimate
carrying capacity. This conclusion must
naturally be subject to certain reservations
since the transverse reinforcement deep down
is inactive. What we are talking.about here
is reinforcement close to the local load.
The interesting point, however, is that
reinforcement placed in the zone in which,
according to the theory of elasticity, there
is transverse compression, see fig. 6.3, is
just as effective as reinforcement placed in

the zone with transverse tension.

Some test results are shown in fig. 7.3 to
illustrate this. In the tests the transverse

reinforcement consisted of 3 nos. RI1O. The
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Fig. 7.4 Ultimate carrying capacity. Transverse
reinforcement 4R10. Tests from [75.4].
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Fig. 7.5 Cracking load. Tests from [75.4].
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concrete used for the tests came from the
same batch, with o, = 31.8 MN/mZ. The cover
was measured from centre of the reinforce-

ment to the surface of the prism.

It will be seen that the ultimate carrying
capacity is largely the same for the three

thickness of cover.

An elastic calculation in accordance with
Iyengar's method shows that maximum tension
occurs at a depth of 70 mm in the prism, and
that the transition between tension and com-
pression occurs at a depth of 28 mm. Tests
with the transverse reinforcement placed
right in the compression zone according to the
theory of elasticity are thus lacking.
However, the tests show that reinfofcement
placed where, according to the theory of
elasticity, there are no transversé stresses
(28 mm 30 mm), is just as effective as
reinforcement placed in the zone with big

transverse tensile stresses.

Tests with 4 nos. R10 with the distance from
the surface of the prism to the centre of the
reinforcement at 30 and 60 mm show the same
picture, as will be seen from fig. 7.4. In
the tests with the distance 30 mm, 0, =

28.3 MN/m2, while in the others, O, = 31.9
MN/mZ.

In the tests in [75.41,the cracking lcad was
also observed. The first crack that could
be observed was always a part of the separa-

‘tion crack directly under the load.

After occurrence of the non-plastic separa-
tion failure, the load can still be increased
on account of the plastic sliding failure ang

the reinforcement.




7.3

Determination of

The effect of the location of the reinforce-
ment on the cracking load is shown in fig.
7.5. According to the theory of elasticity
maximum tension occurs at a depth of 70 mm,
but the tests do not indicate that rein-
forcement placed elsewhere in the tensile
zone has less effect on the cracking load.
Even reinforcement placed where the theory

of elasticity predicts no transverse stresses

gives the same cracking load.

On the basis of the above it can thus be
concluded that the depth of the cover over
the transverse reinforcement has no effect
on the carrying capacity or the cracking
load. However, this conclusion is based on
tests that do not include tests with trans-
verse reinforcement very close to the local
load, i.e. within the zone in which the
theory of elasticity predicts transverse com-
pression. Reinforcement placed there will
presumably be just as effective as regards
the ultimate carrying capacity, whereas the
possibility of the cracking load being lower

cannot be excluded.

Carrying Capacity

We will here calculate the carrying capacity
on the basis of the failure mechanism in

fig. 7.2, and we will assume that the vertical
separation failure does not contribute to the
carrying capacity. This assumption is syno-
nymous with an assumption that separation
failure occurs before total failure. This
failure, on the other hand, is assumed to ke

rigid-plastic.
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(7-5)

(7-6)

(7-7)

(7-8)

(7-9)
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The equation of work is written up, and
the contribution from the reinforcement,
regardless of where this is placed, is given
by (7-3). The contribution from the sliding

failure in the concrete is

_ 1-siny 2al
WIC 2 Gc sinf

where a is half the loading width and 1 is
the loading length normal to the

plane of the paper. The external work is

WE = Za},qf cos (B+@)V

WE = WIR + WIC gives the upper bound

2 F Op sin(g+y)sing + (1-siny)a 1 O

f 2a 1 cos(B+w)sinp

We can now introduce a degree of reinforce-

ment as
o - F
2alo

C

after which (7-6) can be written as

Sg _ 40 sin(3+¢)sin34-(1-sin®)
O 2 cos (B+y) sinp

The minimum for (7-8) is found for

-sing +v/1 + géggggg
I =-s1nQe
49

tanR =

T-sing * ©O8¢
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(7-11)
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If we put @::0, (7-8) naturally gives the
same result as (6-10), where the tensile
strength is put at zero in an unreinforced

prism.

The first derivation of (7-8) and (7-9) is .

given in [75.4].
If we put ¢ = 37° and rewrite (7-8), we

find the carrying capacity to be

0,4 + 20(0,8 ~ cos{(28+Y))
- sin(2B8+yp) - 0,6

Q,Q
th

Q

where we have

-0,6 +y1 + 8@
100 + 0,8

tanp =

If the degree of reinforcement ® is very
small, the reinforcement will be torn apart
the moment the cracking load is reached.
We thus have an under-reinforced cross
section, using designations analogous to
those of DS411. The carrying capacity of

this cross section can be determined from the

formula for the unreinforced concrete prism

(6-33). 'This formula is thus a lower bound
for the validity of (7-10).

In an over-reinforced cross section, local
crushing of the concrete under the load will

occur, and (7-10) cannot be used.

Fig. 7.6 depicts (7-10), together with the
test results from [75.41. The results shown
are the average of 3 tests and, in a few
cases, the average of 2 tests. The horizon-

tal, broken line represents the carrying
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Fig. 7.6 Comparsion of (7-10) with tests from [75.4].
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capacity of an unreinforced prism deter-

mined by means of (6-33), with % = 5,

The'test material is otherwise veryv limited,
sobvery few conclusions can be drawn on the
basis of the figure. However, the results
seem to show that the carrying capacity is
constant at small ® , and that this value
- is only slightly bigger than the carrying

capacity of the unreinforced prism.

With higher values of ®, the carrying capacity
increases with increasing ® . 1In all cases,
(7-10) gives a lower carrying capacity than
the tests.

With the exception of @ = 0.202, all the
tests on reinforced prisms showed distinctly
plastic properties, with big deformations
prior to failure. For ® = 0.202, the crack-
ing load and the failure load coincided,

and failure occurred suddenly and without
warning in the same way as for an unrein-

forced concrete prism.

In addition to the results shown in the
figure, three further tests were performed

in which failure took the form of pull-out
4failure._ Whereas the tests shown in fig.
7.6 were made on prisms reinforced with round
bars (R7 and R10), two of the tests for pull-
out failure were carried out on prisms re-
inforced with deformed bars. The third was
with R1O,but with so many bars (6 nos. ~ @

= 0.54) that the pull-out strength was in-

adequate.
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Conclusion

(7-12)
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We can see from the foregoing that trans-
verse reinforcement under a local load in-
creases the carrying capacity. From fig.

7.6 we also see that the increment is modest.

Transverse reinforcement offers the further
advantage that, with a suitable volume of
reinforcement, warning of failure is given
and that the failure is distinctly plastic.
However, a small degree of reinforcement does
not alter the form of failure in relation

to the sudden and unheralded failure of an

unreinforced test specimen.

Just as long as the transverse reinforcement
is placed in the proximity of the concentrated
load, the ultimate carrying capacity and, to
some extent, the cracking load will be in-
dependent of the distance of the reinforce-

ment from the load.

A limited test material indicates that a safe
value for the carrying capacity can be found

as the maximum of (6-33) and (7-10). In this

connection, it can be seen from fig. 7.6

that (7-10) can be linearized since we canh

‘neglect the curve for small @& . The carry-

ing capacity is then determined as

F
0,2 + 0,8]/?

2,60 + 1,2

Q
Hh

= max

ol

An upper bound for the validity of (7-12)
and (7-10) is not known. However,it should

be noted that, in addition to the difficul-
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ties of finding an upper bound in the case
of over-reinforced cross sections, problems
may arise with the anchorage of the trans-

verse reinforcement.
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