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1. COULOMB PARAMETER RELATIONS 
 

 
 

Figure 1.1 Mohr’s circle at sliding failure. 
 
To obtain the principal stress form of Coulomb’s yield condition, COB is projected on CD giving 
          ϕϕσσσσ cossin)()( 312

1
312

1 c++−=−                                                                              (1.1) 
(1.1) is rearranged to 
          ϕϕσϕσ cos)sin1()sin1( 32

1
12

1 c=−−+                                                                               (1.2) 
This is multiplied by ϕsin1+  
          )sin1(coscos)sin1( 2

32
12

12
1 ϕϕϕσϕσ +=−+ c                                                                  (1.3) 

and is next divided by ϕ2
2
1 cos  giving 
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Introducing the friction parameter k 
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simplifies (1.4) to (1.6) 
          kck 231 =−σσ                                                                                                                  (1.6) 

     Dividing 1cossin 22 =+ ϕϕ  by ϕ2cos  gives 1tan
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ϕ
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in CP,fig2.1.2 μϕ =tan  is obtained from (1.5)  
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Expanding the μ -expression in (1.7) gives  
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          kk μ21 =−                                                                                                                       (1.7a) 
 
     Dividing (1.2) by )sin1(2

1 ϕ−  gives 
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Comparing this with (1.6) gives two expressions for k 
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     From (1.91) is obtained 
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In the same way is obtained from (1.91) 
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Multiplying (1.9) with (1.12) gives 
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Rearranging (1.12) gives 
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(1.92) and (1.12) gives 
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(1.14-15) gives 
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From the cf -expression CP(2.1.9) is obtained using (1.15) respectively (1.92) 
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With the trigonometrically formulas 
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where yx,  are arbitrary angles a set of half friction angle formulas are easily obtained. (1.18) 
with 2π=x , ϕ=y  in the first formula  and ϕ−=y  in the second formula  gives 
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and then the ratios 
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Inserting (1.19) in (1.91) gives 
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2. COMMENTS TO PROBLEM 18 
Without local strengthening of a lateral loaded plate near a column support, a localized yield line 
pattern at the column is often essential. In the actual case two possibilities are shown on the figure. 

For case b is obtained the upper bound for the yield load 27.13
a
m

p p
Y =+ , i.e. a smaller value than the 

best value from CPans, problem 18. 

 
Figure 1: Yield line patterns with localization (CP, p505, fig 6.5.9p) at the column support. 

 
However, an expansion of the local yield line pattern to a non-local yield line pattern is more 

dangerous here. A smaller upper bound 22.12
a
m

p p
Y =+  is obtained for the yield line pattern 

indicated on figure 2 (positive yield line solid, negative yield line dashed). A lower bound based on 
a moderate number of equilibrium elements with moment degree 2 or higher has been determined to 

27.10
a
m

p p
Y =− . 

 
Figure 2: Yield line pattern for half-plate non-local at the column support in node 1. 

■ 
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3. NUMERICAL DETERMINATION OF YIELD CONDITION FOR A 
REINFORCED DISK MATERIAL 
The determination of the yield condition is as in CP, sec.2.2.2 based on the lower bound theorem. 
The notation from CP is used as far as possible. 
 

 
 

Figure 1: Reinforced disk. 
 
     The stresses on the disk boundary, see Figure 1, are written as ),,( 000

xyyx τσσλ , where λ is the 
load factor. The stress in a rebar in the x-direction is called sxσ  and for a rebar in the y-direction is 
used syσ . 
     The stress equilibrium on the disk boundary gives 

          cx
sx

sxx t
A

σσλσ +=0      cy
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syy t
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σσλσ +=0      cxyxy τλτ =0                                                    (1) 

     The yield conditions for both concrete and rebars must not be violated 
          01 ≤≤− ccf σ      02 ≤≤− ccf σ                                                                                             (2) 
          YsxY ff ≤≤− σ      YsyY ff ≤≤− σ                                                                                         (3) 
     The relation between the stress components and the principal stresses in the concrete is 

          22
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                                                                       (4) 

     Combining (4) and (2) means that the greatest principal stress must be 0≤  and that the smallest 
must be cf−≥ , i.e. 

          0))(()( 22
2
1

2
1 ≤+−++ cxycycxcycx τσσσσ                                                                              (5) 

          ccxycycxcycx f−≥+−−+ 22
2
1

2
1 ))(()( τσσσσ                                                                          (6) 

     Given ),,( 000
xyyx τσσ , a solution ),,,,,( λτσσσσ cxycycxsysx  to (1,3,5,6) is obviously a lower bound 

solution. Maximizing the load parameter must give the yield load Yλ  
          Yλλ =max                                                                                                                               (7) 
     The conditions (1,3,5,6,7) define a problem in non-linear programming. It is non-linear because 
not all conditions are linear ((5,6) are non-linear). If (5,6) are linearized a problem in linear 
programming is obtained.  
     The linearization of (5) is now described. Introducing the auxiliary variables mσ  and dσ  defined 
by 
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            )(2
1

cycxm σσσ +−=      )(2
1

cycxd σσσ −=                                                                            (8) 
simplifies (5) to  

          mcxyd στσ ≤+ 22                                                                                                                      (9) 

A linearization of (9), which is a cone for 0≥mσ , see Figure 2, is easily made. The cone is 
approximated by nc planes as accurately as wanted. Plane j )...2,1( ncj = of these planes contains 
the 3 points )0,0,0(:A , )1),)1sin((),)1(cos((:1 θθ Δ−Δ−− jjj  and )1,sin,(cos: θθ ΔΔ jjj , where 

nc/2πθ =Δ . An outward directed plane normal n is determined by 1−×= jjAjn  and then is 
obtained the plane equation 0),,( =⋅nmcxyd στσ .. 

 
 

Figure 2: Linearization of cone. 
 
Introducing the auxiliary variable aσ  defined by 
            cma f=+σσ                                                                                                                        (10) 
simplifies (6) to  

          acxyd στσ ≤+ 22                                                                                                                    (11) 
i.e. the form (9). (11) is then linearized analogously to (9). 
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4. DISSIPATION IN YIELD LINE OF MODIFIED COULOMB MATERIAL 
The notation from CP,p160-161,165-166  is used as far as possible and will not be redefined. 
 

 
              Figure 1: Yield line.                                Figure 2: Modified Coulomb material. 
 
     A yield line is shown on Figure 1 and we have the relations concerning the displacements in the 
yield line 

          αsinuun =      αcosuut =      
t

n

u
u

=αtan                                                                              (1) 

     The curved part of the modified Coulomb yield condition is considered Figure 2, i.e. 

ϕπ
−<

2
|v| . For a stress point ),( τσ  on this part, the flow rule (normality condition) determines 

the ratio between the displacements in the yield line ),( tn uu  

          
n

t

u
u

=vtan                                                                                                                                 (2) 

Comparing (1) and (2) gives 

          απ
−=

2
v                                                                                                                                 (3) 

i.e. the curved part of the modified Coulomb yield condition is active if 
          ϕπαϕ −<<                                                                                                                           (4) 
     From Figure 2 is seen 

          )vsin,v(cos
2

)0,
2

(),( 3131 σσσσ
τσ

−
+

+
=                                                                            (5) 
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The internal work per length unit of the yield line (and one length unit perpendicular to the Figure 1 
plane) is obviously 
          tn uuW τσ +=                                                                                                                           (6) 
Inserting (5) and (1) in this gives 

          α
σσ

α
σσσσ

cosv)(sin
2

sin)vcos
22

( 313131 uuW
−

+
−

+
+

=  

which is further reduced by (3) 

          uuW
2
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2

3131 σσ
α

σσ −
+

+
=                                                                                              (7) 

     With the 31 ,σσ -circle through the points Dm and )0,(),( tf=τσ , is obtained tf=1σ  and then 

ct fkf =− 3σ  giving ct fkf −=3σ . With these expressions for 31 ,σσ  we get 
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where last equal sign defines m. Moreover we get 
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where last equal sign defines l. 
     Now (7) with (8-9) inserted gives 
          )sin(2

1 lmufW c +−= α                                                                                                          (10) 
(10,8,9) are identical with CP(3.4.86,85,84) used with thickness 1=b . 
     In fact (10) also determines the dissipation outside the curved part of the modified Coulomb 
yield condition. Obviously the dissipation in point Dm can be used. Using (10) for +→ϕα  or 

−−→ ϕπα  gives the limit value 

          ))1(1sin))1(1((2
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and with CPnotes,(1.10-11) 
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Inserting CPnotes,(1.17) in (11) gives 
          ϕcoscuW =                                                                                                                           (12) 
identical with CP(3.4.77) used with thickness 1=b . 
■ 
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5. RIGID, PERFECTLY PLASTIC MATERIAL 
 

 
■ 
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6. ADDITIONS TO CP 
 
p123, line4fb:     If ,0<yσ  reinforcement…    ->    Reinforcement… 
 
p124, line6ft:     …see below    ->    …see below or see (2.2.49) 
 
■ 
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7. EQUILIBRIUM STRESSES IN DISK BY MEANS OF CONSTANT STRESS 
TRIANGLES 
In order to obtain a lower bound solution for a rigid-plastic reinforced disk, an equilibrium stress 
field in the disk is needed. The disk considered here is only loaded by boundary load. How to obtain 
equilibrium stresses is explained by example. The disk shown in Figure 1 is considered. The 
notation defined in CP is used as far as possible. 
 

 
Figure 1: Disk with triangle mesh. 

 
     Utilizing symmetry the half disk is partitioned in three triangles 1,2,3 as shown on Figure 1. In 
each triangle is used a yet unknown constant stress field xyyx τσσ ,, , i.e. the equilibrium conditions 
are satisfied inside each triangle. With these constant triangle stresses, the stresses on the triangle 
boundaries must be constant too, i.e. they give a resultant force vector yx FF ,  in the midpoint of 
each triangle edge. In Figure 2a is shown the forces from the boundary and symmetry conditions. 
     Next the equilibrium conditions are utilized for each triangle (projection x, projection y and 
moment) and between neighboring triangles (projection x, projection y) to determine as far as 
possible the still unknown forces on the triangle edges. In the actual example these are statically 
determined. 
     For triangle 1 is introduced the notation xt σσ =  and the projection equations determine the 
unknown forces on the edge 1-2 as shown on Figure 2b. The moment equation is fulfilled. 
     For triangle 3 is introduced the notation xc σσ −=  and the projection equations determine the 
unknown forces on the edge 3-2 as shown on Figure 2b. The moment equation is fulfilled. 
     Triangle 2 is now loaded by forces from triangle 1 and 3 as shown on Figure 2b. For triangle 2 
the y-projection equation is fulfilled, while the x-projection equation and the moment equation (here 
about the midpoint of edge 2-3) give 
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          tytyh ct 00 )( σσ =−                                                                                                                  (1) 

          thyhtLpL
t 2

)(
42 0−= σ                                                                                                            (2) 

 

 
Figure 2: Forces on triangle edges. 

 
     Most of the stresses in the three triangles are determined by uniform distribution of the forces on 
the axis parallel triangle edges. However, yσ  in triangle 2 cannot be determined this way so a cut is 

made in triangle 2 as shown in Figure 2b and y-projection then gives 
h
y

tLptLptL
y

0

222
+−=σ  in 

triangle 2. In total we have 
          1:  )0,0,(),,( txyyx στσσ =                                                                                                       (3) 

          2:  )
2

,,0(),,( 0

h
pL

h
py

pxyyx +−=τσσ                                                                                       (4) 

          3:  )0,,(),,( pcxyyx −−= στσσ                                                                                                  (5) 
■ 
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8. NUMERICAL DETERMINATION OF YIELD LOAD FOR A REINFORCED 
DISK 
Optimization formulation based on constant stress triangles. Notation as in CP with the extension 
that the rebar yield stress fY may be given different values in the x,y-direction and in tension 
respectively compression. With constant stresses in each triangle Fig. 1, the interior equilibrium is 
satisfied in each triangle for zero body loads. 

 
Fig. 1. 

 
Equilibrium for each intertriangle edge Fig. 1 with load shape IJt  and load factor λ   

 0nIJ nJI IJλ− − + =t t t  (8.1) 

(triangle boundary edge included: triangle J vanish and then reactions (0 if none)nJI− =t ). 
 
Stress vector (tractions) – stress tensor relation in index notation and with summation convention: 
 ( )n

ji jit nσ=  (8.2) 

(8.1) and (8.2) combined with  ji ijσ σ= => 

 
( ) ( )

( ) ( )

I J I J IJ
x x x xy xy y x
I J I J IJ
xy xy x y y y y

n n t

n n t

σ σ τ τ λ

τ τ σ σ λ

− + − =

− + − =
 (8.3) 

In each triangle: 

 sysx
x sx cx y sy cy xy cxy

AA
t t

σ σ σ σ σ σ τ τ= + = + =  (8.4) 

 Y sx Y Y sy Yf f f fσ σ− ≤ ≤ − ≤ ≤  (8.5) 

 
( )
( )

2 21 1
2 2

2 21 1
2 2

( ) ( ) 0

( ) ( )

cx cy cx cy cxy

cx cy cx cy cxy cf

σ σ σ σ τ

σ σ σ σ τ

+ + − + ≤

+ − − + ≥ −

 (8.6) 

Lower bound theorem => 
 max Yλ λ≤  (8.7) 
Utilizing (8.3) for all element edges in the structure to be analyzed, (8.4)-(8.6) for all elements and 
(8.7) gives a nonlinear optimization (programming) problem, which is convex. It can be handled as 
a second order cone optimization problem, which can be solved by Mosek (see www.mosek.com).  
     If (8.6) is linearized a linear optimization problem is obtained and the simplex method can be 
used for its solution. 
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     To get a load factor λ  close to the yield load Yλ , the meshing with constant stress triangles of 
the structure to be analyzed must allow a stress distribution in the meshed structure close to one of 
the stress distributions, which can exist in the original structure at the yield load. 
 
 
9. ALTERNATIVE RECIPE FOR DISK REINFORCEMENT DESIGN 
Compute 
          xyxtxf τσ +=      xyytyf τσ +=      xyc τσ 2=                                                                      (1) 

Ok if 0≥txf  and 0≥tyf . If not compute 

          2
xyyxd τσσ −=                                                                                                                         (2) 

If 0≥d  no reinforcement is needed and cσ  is determined by the smallest principal stress, i.e.  

          0=txf      0=tyf      22
4
1

2
1 )()( xyyxyxc τσσσσσ +−−+=                                            (3) 

Otherwise )0( <d  the negative value of txf  or tyf  is changed to zero and the relevant formula set 
below is used 
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σ
τ

σ
2
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τ
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2

+=                                                                          (4) 
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xtxf

σ

τ
σ

2

+=      0=tyf      
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τ
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2

+=                                                                         (5) 
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10. PROBLEMS 
Problem 16a compared with problem 16 is modified such that the answers to problem 16 are 
relevant also for problem 16a. This principle has been followed for all problems with a number 
followed by ‘a’. 
Problems with numbers above 100 are not found in CPpr and CPans. 
 
                     
Problem 1a 
Modifications compared with CPpr, problem 1: Plane stress or plane strain can be considered 
(depends on the bar thickness). The yield planes are perpendicular to the figure plane. Moreover the 
question has been detailed. 

 
 

Case a. 
Question 1: Determine the internal work in the yield line pattern using the τσ ,  form of the 
Coulomb yield condition. 
Question 2: Determine an upper bound +

Yp  for the yield load Yp of p. 
Question 3: Optimise the upper bound solution in regard to the yield line pattern. Show that the 
obtained value equals the compressive strength of the Coulomb material and specify the value of 
angle β  for the friction parameter value 4=k ( typical value for concrete). 
 
Case b. 
Question 4: Determine the ratio between 1u  and 2u  using the flow rule. 
Question 5: Determine an upper bound for the yield load, optimise it and compare it with the value 
obtained in case a. 
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Problem 3a 

Modifications compared with CPpr, problem 3: The disk thickness is t and 
2
πα = . Moreover the 

question has been modified. 
 

 
Question 1: Determine, by means of the work equation, an upper bound for vf . 
 
Question 2: Minimize vf  and compare the result with (2.2.20) in CP. Has the yield load been 
determined? 
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Problem 6a 
Modifications compared with CPpr, problem 6: The first question has been detailed. 

  
 
Question 0: Determine the stresses in a coordinate system with axes in the reinforcement directions. 
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Problem 10a 
Modifications compared with CPpr, problem 10: Question 0 has been inserted. 
 

 
Question 0:  

a) Based on a constant stress triangle mesh is wanted a set of equilibrium forces on the triangle 
edges (in agreement to CP, p358 uniform normal stress distribution should be assumed on 
the column cross section in a depth below the line load equal to the relevant column side 
length (here 40 cm)). 

b) Determine the necessary reinforcement area in the symmetry plane to carry the tension 
(result as in CPans, pr10, q1). 

c) Determine the compression zone depth in the symmetry plane (result as in CPans, pr10, q1). 
 

 
 
 
 
 
 
 
 
 
 
                     



 20

Problem 16a 
Modifications compared with CPpr, problem 16: The questions have been detailed and the figure 
corrected. 

 
  
Question 1: Determine xIpp −  utilizing CPans, pr13. 
 
Question 2: Determine xIIIpp − . 
 
Question 3: Determine Il  and IIIl  considering a strip in the x -direction. 
 
Question 4: Determine the necessary yield moment in the y-direction in area II. 
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Problem 23a 
Modifications compared with CPpr, problem 23: The figure and the question have been modified. 
 

 

 
 
Question 1 
Determine an upper bound solution for the load carrying capacity of the beam based on the yield 
line pattern shown on the figure with 060=β  and displacements corresponding to the translation 
mode with 0=α . Compare the result with CPans and comment the difference.     
 
Question 2 
Determine an upper bound solution for the load carrying capacity of the beam based on the yield 
line pattern shown on the figure and displacements corresponding to the rotation mode specified by 
the rotation η  about the upper side load point of the left beam part.  
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Problem 101 
 

 
 
 

A vertical rectangular bh 2*  unreinforced concrete disk (= in-plane loaded plate) ABCD - see the 
figure - of thickness t is loaded by a rather concentrated vertical load (load resultant P) uniformly 
distributed over the rectangular area ta *2 . 
The concrete is modelled as a rigid-plastic material based on the modified Coulomb yield condition 
with 0=tf . 
 
Question 1 
Determine an upper bound +

YP  for the yield load YP of P based on the indicated yield line pattern 
with vertical displacement 1u  of the wedge part of the disk and horizontal displacement 12

1
2 uu =  of 

the other movable disk parts. 
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Problem 102 
An orthogonal reinforced concrete disk is considered. The concrete is modelled as a rigid-plastic 
material based on the modified Coulomb yield condition with tension strength 0=tf . A rebar is 
modelled as a uniaxial rigid-plastic material with yield stress Yf  in both tension and compression. 
     The MatLab function YsReDisk determines a point on the yield surface used in the disk, while 
the MatLab script exeYsReDisk applies YsReDisk to determine a section in the yield surface. 
 
Question 1 
Apply YsReDisk to determine the point ),0,0(),,( xyxyyx ττσσ =  on the yield surface used in a disk 
with 2.0=Φ=Φ yx  and test the result comparing with CP. 
  
Question 2 
Apply exeYsReDisk to determine the section 0=yσ  of the yield surface. Consider the cases 
a) 2.0=Φ=Φ yx  
b) 6.0=Φ=Φ yx  
c) 2.06.0 =Φ=Φ yx  
and test the results as far as possible comparing with CP. 
 
                     
Problem 103 

 
 
 

A parallelogram shaped reinforced concrete disk ABCD of thickness t, see the figure, is reinforced 
parallel with the edges. The reinforcement in each direction has the area A per unit length. The yield 
stress of the reinforcement in one direction is fY and in the other direction Yf2

1 . 
 
Question 1 
Determine the directions and the areas per unit length of the equivalent orthogonal reinforcement 
with yield stress fY. 
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Problem 104 

 
On the figure is shown the isotropic reinforced concrete disks d), g), h) of thickness t. As yield 
condition for the disk material is used CP (2.2.37). The load is a pressure load 0>p  per area unit 
in equilibrium with the reactions (the reaction pressure is indicated by q on d) and h)). Self-weight 
is neglected. For each disk is wanted: 
 
Question 1 
Determine an equilibrium stress field based on a constant stress triangle mesh. 
 
Question 2  
For 1.0,2.0, =Φ=== hchaL  determine a lower bound solution for the load carrying capacity 
and determine the deviation from the exact solution. 
 
Question 3 
Determine an upper bound solution for the load carrying capacity assuming a bending type 
mechanism in the symmetry sections and determine the deviation from the exact solution. 
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E06, LONpr1  (40% of 4 hours exam) 

 
 
A concrete disk ABC, see the figure, of thickness t is reinforced homogeneous and orthotropic in 
the yx,  coordinate directions. 
     The concrete and the reinforcement are modelled as rigid, perfectly plastic materials. The 
concrete is described as a modified Coulomb material with tension strength 0=tf . The 
reinforcement strength in compression is neglected. 
     The concrete has the effective compressive design strength MPafcd 25=ν  and the reinforcement 
has the tensile design strength MPaf yd 400= . The minimum reinforcement ratio is set to 

002.0min =r .  
     The load is a pressure load 0>p  per area unit. Self-weight is neglected. 
 
Question 1 
Based on a constant stress triangle mesh with 2 triangles ABD and BCD, determine a set of 
equilibrium stresses in the disk.  
 
Question 2 
For hy 25.00 =  a set of equilibrium stresses in the disk is determined by )0,1,(),,( 3

4 −= pxyyx τσσ  
in ABD and )1,1,1(4),,( pxyyx −=τσσ  in BCD. For mmtmmhMPap 150,1800,3 ===  determine 
the necessary tensile strengths tytx ff ,  and investigate if the compression stress in the concrete is 
safe in each constant stress triangle. 
 
Question 3 
With a straight yield line AE, see the figure, and a displacement 0>u  with an angle 0≥α  with the 
yield line of disk part ABE (no displacement of disk part AEC) is wanted an upper bound solution 
for the load carrying capacity of the disk for 0,4,0,45 00 ==== tytx fMPafαβ . 
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E06, LONpr2  (40% of 4 hours exam) 

 
A concrete disk ABCD, see the figure, of thickness t is reinforced homogeneous and orthotropic in 
the yx,  coordinate directions. Rebars in the x-direction cross the supporting section AD and are 
anchored in the support. 
     The concrete and the reinforcement are modelled as rigid, perfectly plastic materials. The 
concrete is described as a modified Coulomb material with tension strength 0=tf . The 
reinforcement strength in compression is neglected. 
     The concrete has the effective compressive design strength MPafcd 15=ν  and the reinforcement 
has the tensile design strength MPaf yd 300= . The minimum reinforcement ratio is set to 

002.0min =r .  
     The load is a pressure load 0>p  per area unit. Self-weight is neglected. 
 
Question 1 
Based on a constant stress triangle mesh with 3 triangles ABC, ACE and CDE, determine a set of 
equilibrium stresses in the disk. 
 
Question 2 
A set of equilibrium stresses in the disk is determined by )0,1,0(),,( −= pxyyx τσσ  in ABC, 

)2,5,4(),,( 6
1 −−= pxyyx τσσ  in ACE and )1,1,1(),,( 3

4 pxyyx −=τσσ  in CDE. For 
mmtmmaMPap 100,900,5 === , determine the necessary tensile strengths tytx ff ,  and 

investigate if the compression stress in the concrete is safe in each constant stress triangle. 
 
Question 3 
For MPaftx 4=  determine an upper bound solution for the load carrying capacity of the disk based 
on a rotation 0>η  of the disk about point E see the figure. 
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E06, LONpr3  (40% of 4 hours exam) 

 
A concrete disk ABCDEF, see the figure, of thickness t is reinforced homogeneous and orthotropic 
in the yx,  coordinate directions. Rebars in the y-direction cross the supporting section CDEF and 
are anchored in the support. 
     The concrete and the reinforcement are modelled as rigid, perfectly plastic materials. The 
concrete is described as a modified Coulomb material with tension strength 0=tf . The 
reinforcement strength in compression is neglected. 
     The concrete has the effective compressive design strength MPafcd 20=ν  and the reinforcement 
has the tensile design strength MPaf yd 400= . The minimum reinforcement ratio is set to 

002.0min =r .  
     The load consists of a constant shear stress 0>p  per area unit along AB. Self-weight is 
neglected. 
 
Question 1 
Based on a constant stress triangle mesh with 4 triangles AEF, ABE, BDE and BCD with zero 
stresses in triangle BCD, determine a set of equilibrium stresses in the disk. 
 
Question 2 
Symmetrization of the question 1 solution determines a more efficient set of equilibrium stresses in 
the disk. In AEF is obtained ),1,(),,( 2

1
4
1pxyyx =τσσ  and in BCD ),1,(),,( 2

1
4
1 −−= pxyyx τσσ . For 

each of these two triangles and for mmtmmaMPap 100,1000,6 === , determine the necessary 
tensile strengths tytx ff ,  and investigate if the compression stress in the concrete is safe. 
 
Question 3 
With a straight yield line AG, see the figure, and a translation 0>u  with an angle 0≥α  with the 
yield line of disk part ABG is wanted an upper bound solution for the load carrying capacity of the 
disk for 030== βα  and MPaff tytx 6==  in ABCDE.■ 
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11.ANSWERS TO SOME PROBLEMS 

Prob 101. q1: )
2

12( 2
5 batfP cY

−
+=+  

Prob 103. q1: 18.1
4

33,150 ∗≅
+

== AAAξθ , 32.0
4

33
∗≅

−
= AAAη  

E06,LONpr1. q1: ABD: )0,,
/1

(),,(
0

p
hy

p
xyyx −

−
=τσσ , BCD: )1,1,1(),,(

0y
ph

xyyx −=τσσ ; q2: 

(before considering min reinforcement) ABD: )(3,0,4 safeMPafMPaf ctytx === σ , 

BCD: )(24,0,0 safeMPaff ctytx === σ ; q3: MPapY 5.14=+  
E06,LONpr2. q1: ABC: )0,,0(),,( pxyyx −=τσσ , ACE: ),,(),,( 3

1
6
5

3
2 pppxyyx −−=τσσ , 

CDE: ),,(),,( 3
4

3
4

3
4 pppxyyx −−−=τσσ ; q2: (before considering min reinforcement) 

ABC: )(5,0,0 safeMPaff ctytx === σ , ACE: )(83.4,0,4 safeMPafMpaf ctytx === σ , 

CDE: )(3.13,0,0 safeMPaff ctytx === σ ; q3: MPapY 75.7=+  
E06,LONpr3. q1: AEF: ),2,(),,( 2

1 pppxyyx =τσσ , ABE: ),0,(),,( 2
1 ppxyyx =τσσ , 

BDE: )0,2,0(),,( pxyyx −=τσσ ; q2: (before considering min reinforcement) 
AEF: )(6,9,5.4 safeMPaMPafMPaf ctytx === σ , BCD: )(5.7,0,0 safeMPaff ctytx === σ ; q3: 

MPapY 6.14=+  
■ 
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12. EQUIVALENT ORTHOTROPIC REINFORCEMENT IN A SOLID  
In CP sec.2.2.3 is considered the determination of the orthotropic reinforcement in a disk, which - 
concerning the tension yield load - is equivalent to a given arbitrary reinforcement in the disk. Here 
is considered the same problem for a three dimensional solid. The notation from CP is used as far as 
possible. 
 

 
Figure 1: Reinforcement in direction i. 

 
     The solid is reinforced in m arbitrary directions. In direction , 1,2...i i m=  with unit direction 
vector ( )in  see Fig.1, the reinforcement has the cross section area siA  per unit area of the solid and 
the tensile yield stress Yf .  
     We consider now the case where all reinforcement yields in tension. First step is to determine the 
equivalent stress on a section with outward directed unit normal vector n. From reinforcement i is 
obtained the stress vector contribution ( ) ( ) ( )( )n i i i

Y sif A=t n n ni , i.e. for the total reinforcement we get 

          ( ) ( ) ( )

1 1
( )

m m
n n i i i

Y si
i i

f A
= =

= =∑ ∑t t n n ni                                                                                              (1) 

     Next we want to determine those sections if any, where there are only normal stresses and no 
shear stresses on the section. The condition is obviously n λ=t n , where λ  is a yet unknown 
constant. Combining this with (1) gives 

          ( ) ( )

1
( )

m
i i

Y si
i

f A λ
=

=∑ n n n ni                                                                                                           (2) 

which as we shall see below is an eigenvalue problem for determination of ,λn . 
Using the component forms ( , , )x y zn n n=n  and ( ) ( ) ( ) ( )( , , )i i i i

x y zn n n=n  the summation in (2) is turned 
into 

          

( ) ( ) ( ) ( ) ( ) ( )

1 1

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

( ) ( )
m m

i i i i i i
Y si Y si x x y y z z

i i
m m m

i i i i i i
x Y si x y Y si y z Y si z

i i i

f A f A n n n n n n

n f A n n f A n n f A n

= =

= = =

= + +

= + +

∑ ∑

∑ ∑ ∑

n n n n

n n n

i
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and then (2) can be written as 

          

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

( ) ( ) ( ) ( ) ( ) ( )

1 1 1

m m m
i i i i i i

Y si x x Y si y x Y si z x
i i i

xm m m
i i i i i i

Y si x y Y si y y Y si z y
i i i

m m m
i i i i i i

Y si x z Y si y z Y si z z
i i i

f A n n f A n n f A n n
n

f A n n f A n n f A n n

f A n n f A n n f A n n

= = =

= = =

= = =

⎡ ⎤
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎢ ⎥
⎣ ⎦

∑ ∑ ∑

∑ ∑ ∑

∑ ∑ ∑

x

y y

z z

n
n n
n n

λ
⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥=⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦

                                           (3) 

The 3 3×  coefficient matrix in (3) is obviously a symmetric matrix. Then the eigenvalue problem 
(3) has 3 real solutions 1 2 3, ,λ λ λ  with the orthogonal eigenvectors n1,n2,n3. Then in conclusion: the 
equivalent orthotropic reinforcement with yield stress Yf  must go in the directions n1,n2,n3 and 
have strengths defined by 
          1 1 2 2 3 3Y e Y e Y ef A f A f Aλ λ λ= = =                                                                                       (4) 
where 1 2 3, ,e e eA A A  are the cross sectional areas of the equivalent orthotropic reinforcement in 
direction 1,2,3. 
 
Example 
For non-orthogonal reinforcement as shown on Fig.2 with yield stress Yf , determine the equivalent 
orthotropic reinforcement. 

 
Figure 2: Non-orthogonal reinforcement. 

 
Answer: 
The unit direction vectors of the rebars are 
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[ ](1)

(2)

(3)

1 0 0

1 3 0
2 2

3 1 3
4 4 2

=

⎡ ⎤
= ⎢ ⎥
⎣ ⎦
⎡ ⎤

= ⎢ ⎥
⎣ ⎦

n

n

n

 

Then (3) gives 

          

1 3 3 3 31 2 0 2 2
4 16 4 16 8

3 1 30 2 2
4 16 8

32
4

x x

Y y y

z z

n n
f A n n

n n
sym

λ

⎡ ⎤
+ + × + + × ×⎢ ⎥

⎢ ⎥ ⎡ ⎤ ⎡ ⎤
⎢ ⎥ ⎢ ⎥ ⎢ ⎥+ + × × =⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥ ⎢ ⎥ ⎢ ⎥⎣ ⎦ ⎣ ⎦⎢ ⎥

×⎢ ⎥
⎢ ⎥⎣ ⎦

 

The solution of this eigenvalue problem is here obtained by the Matlab computation 
S=[1+1/4+2*3/16  0+sqrt(3)/4+2*sqrt(3)/16  0+0+2*3/8 
    0            0+3/4+2/16                0+0+2*sqrt(3)/8 
    0           0                          0+0+2*3/4]; 
% symmetrize 
S(2,1)=S(1,2);  S(3,1)=S(1,3);  S(3,2)=S(2,3); 
% solve 
[V,D]=eig(S) 
V = 
  5.0000e-001  5.2057e-001  6.9210e-001 
 -8.6603e-001  3.0055e-001  3.9959e-001 
 -2.5640e-016 -7.9917e-001  6.0110e-001 
D = 
  5.0000e-001            0            0 
            0  8.4861e-001            0 
            0            0  2.6514e+000 
Then the equivalent orthotropic reinforcement is determined by 
          1 (1,1)Y e Yf A D f A=  in direction ( 1) (:,1)e V=n  
          2 (2, 2)Y e Yf A D f A=  in direction ( 2) (:, 2)e V=n  
          3 (3,3)Y e Yf A D f A=  in direction ( 3) (:,3)e V=n  
Test: 
For test is utilized the symmetry of the reinforcement as indicated on Fig.2. Then one of the 
equivalent rebar directions must be normal to the symmetry plane i.e. 

0 0( sin 30 ,cos30 ,0) ( 0.500,0.866,0)− −�  corresponding to (:,1)V . The area of the equivalent 
reinforcement in this direction has only contributions from reinforcement 1 and 2 and because their 
angle with this direction is 600, they contribute to the strength with 0 2 1

22 (cos 60 )Y Yf A f A=  
corresponding to (1,1)D . 
Another test is 1 2 3 1 2 3e e e s s sA A A A A A+ + = + + . As both sides gives 4A , this test is satisfied. 
■ 
 
 



 32

13. NUMERICAL DETERMINATION OF YIELD CONDITION FOR A 
REINFORCED SOLID MATERIAL  
The determination of the yield condition is as in CP, sec.2.2.2 based on the lower bound theorem. 
The notation from CP is used as far as possible. The usual coordinate system , ,x y z  on Fig.1 has 
axes in the (equivalent) orthotropic reinforcement directions. 
 

 
Figure 1: Reinforced solid. 

 
     The stresses on the boundary of the solid are written as 0 0 0 0 0 0( , , , , , )x y z yz zx xyλ σ σ σ τ τ τ , where λ is the 
load factor. The stress in a rebar in the x-direction is called sxσ , for a rebar in the y-direction is used 

syσ  and for a rebar in the z-direction szσ . 
     The stress equilibrium on the boundary of the solid gives 
          0

x sx sx cxAλσ σ σ= +      0
y sy sy cyAλσ σ σ= +      0

z sz sz czAλσ σ σ= +                                              (1) 

          0
yz cyzλτ τ=       0

zx czxλτ τ=          cxyxy τλτ =0                                                                               (2) 
where sxA  is the cross section area of the rebars in the x-direction per unit area of the solid. ,sy szA A  
are defined analogously referring to the ,y z -directions. 
     The yield conditions for both concrete and rebars must not be violated. For the rebars we have 
          Yx sx Yxf fσ− ≤ ≤      Yy sy Yyf fσ− ≤ ≤          Yz sz Yzf fσ− ≤ ≤                                                         (3) 
where , ,Yx Yy Yzf f f  are the yield stresses of the rebar material in the , ,x y z -directions. 
 
Modified Coulomb formulation 
For the concrete is here used the modified Coulomb yield condition from CP, i.e. when the principal 
concrete stresses are ordered 1 2 3c c cσ σ σ≥ ≥  we have 
          1 3c c ck fσ σ− ≤      1c Afσ ≤                                                                                                        (4) 
     The relation between the principal concrete stresses and the concrete stress components are 
obtained via the stress invariants defined by 
          1 cx cy czI σ σ σ= + +                                                              

          2 2 2
2 cx cy cy cz cz cx cyz czx cxyI σ σ σ σ σ σ τ τ τ= + + − − −                                                                           (5) 
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          2 2 2
3 2cx cy cz cyz cxz cxy cx cyz cy cxz cz cxyI σ σ σ τ τ τ σ τ σ τ σ τ= + − − −            

Applying (5) in the principal coordinate system for concrete stresses gives 
          1 1 2 3c c cI σ σ σ= + +                                                              
          2 1 2 2 3 3 1c c c c c cI σ σ σ σ σ σ= + +                                                                          
          3 1 2 3c c cI σ σ σ=            
Inserting these expressions in (5) gives the wanted relations 
          1 2 3c c c cx cy czσ σ σ σ σ σ+ + = + +                                                              

          2 2 2
1 2 2 3 3 1c c c c c c cx cy cy cz cz cx cyz czx cxyσ σ σ σ σ σ σ σ σ σ σ σ τ τ τ+ + = + + − − −                                         (6) 

          2 2 2
1 2 3 2c c c cx cy cz cyz cxz cxy cx cyz cy cxz cz cxyσ σ σ σ σ σ τ τ τ σ τ σ τ σ τ= + − − −            

     With (6) the principal concrete stresses 1 2 3, ,c c cσ σ σ  are not ordered as (4) presupposes. Then (6) 
must be combined with the yield condition on the form 
          2 3c c ck fσ σ− ≤      3 1c c ck fσ σ− ≤      1 2c c ck fσ σ− ≤  
          3 2c c ck fσ σ− ≤      1 3c c ck fσ σ− ≤      2 1c c ck fσ σ− ≤                                                               (7) 
          1c Afσ ≤      2c Afσ ≤      3c Afσ ≤  
Of course (7) can be replaced by the more simple formulation 
          1 2c cσ σ≥     2 3c cσ σ≥     1 3c c ck fσ σ− ≤     1c Afσ ≤                                                                 (7a) 
     Given 0 0 0 0 0 0( , , , , , )x y z yz zx xyσ σ σ τ τ τ , a solution ( , , , , , , , , , )sx sy sz cx cy cz cyz czx cxyσ σ σ σ σ σ τ τ τ λ  to (1-3,6-7) is 
obviously a lower bound solution. Maximizing the load parameter must give the yield load Yλ  
          Yλλ =max                                                                                                                               (8) 
     The conditions (1-3,6-8) define a problem in non-linear convex optimization. It is non-linear 
because not all conditions are linear ((62-3) are non-linear). It is convex as a perfect plasticity 
problem. As a non-linear convex optimization problem it may be preferable from a computational 
point of view to use a smooth yield condition. This possibility is considered below. 
 
Smoothed Mohr-Coulomb formulation 
Here is considered the same problem as above, but the modified Coulomb yield condition is 
exchanged with a smoothed Mohr-Coulomb yield condition. This yield condition 1 2 3( , , )f I I I′ ′ ′ , 
which can be closed, is expressed by a set of stress invariants  

          3
1 3 1 2 1( ) (1 ) ( 9) 0A

s

ff k I I I k
f

γ′ ′ ′= + − + − − ≤                                                                                 (9) 

The stress invariants 1 2 3, ,I I I′ ′ ′  are defined from the shifted non-dimensional stresses 

           1cx
x

sf
σσ ′ = − , 1cy

y
sf

σ
σ ′ = − , 1cz

z
sf

σσ ′ = − , cyz
yz

sf
τ

τ ′ = , czx
zx

sf
ττ ′ = , cxy

xy
sf

τ
τ ′ = ,                         (10) 

i.e. 
          1 x y zI σ σ σ′ ′ ′ ′= + +                                                              

          2 2 2
2 x y y z z x yz zx xyI σ σ σ σ σ σ τ τ τ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + + − − −                                                                                 (11) 

          2 2 2
3 2x y z yz xz xy x yz y xz z xyI σ σ σ τ τ τ σ τ σ τ σ τ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′ ′= + − − −            

The yield condition (9) contains four material constants: 91 >k  is the friction parameter, 1γ ≤  the 
closing parameter (not closed for 1γ = ), 0sf >  the shift stress and Af  the separation resistance. A 
further discussion of this yield condition is found in the notes LON: Computational plasticity. 
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     Inserting (10) in (11) and the obtained result in (9) express the yield condition by the stress 
components, i.e. 
          ( , , , , , ) 0cx cy cz cyz czx cxyf σ σ σ τ τ τ ≤                                                                                              (12) 
thus avoiding invariant expressions in the optimization formulation. 
     Given 0 0 0 0 0 0( , , , , , )x y z yz zx xyσ σ σ τ τ τ , a solution ( , , , , , , , , , )sx sy sz cx cy cz cyz czx cxyσ σ σ σ σ σ τ τ τ λ  to (1-3,12) is 
obviously a lower bound solution. Maximizing the load parameter must give the yield load Yλ . The 
conditions (1-3,8,12) defines a problem in non-linear convex optimization. 
 
Numerical solution 
On Figure 2 is shown a section in the x xyσ τ -plane of the yield condition for the reinforced solid. 
Both the modified Coulomb (mC) and the smoothed Mohr-Coulomb (sMC) has been used for the 

solid. The reinforcement is isotropic with reinforcement degrees 0.1x y zΦ = Φ = Φ =  ( sx Y
x

c

A f
f

Φ =  

etc.). The mC-parameters are 4, 0.1A ck f f= = . For sMC with 1γ =  is used the ‘equivalent’ 

parameters 1
113.5, , 0.1
3s c A ck f f f f= = = .  

     With the applied solution function MATLAB’s fmincon, it is difficult to obtain a solution for mC 
and the curve irregularities indicate convergence problems. Contrarily it is easy to get a solution 
with the smooth sMC using a zero solution vector as starting point.  
     Compared with a disk solution minor three-dimensional effects are seen corresponding to 
utilization of the reinforcement in the y,z-directions in tension improving the compression state of 
the solid. 

 
Figure 2: Section in yield surfaces for reinforced solid. 
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Modified Coulomb – positive semidefinite formulation 
The Coulomb yield condition ( 14 ) can be written on positive semidefinite form Krabbenhøft et al,  
Int. J. Solids Struct. 44 (2007) 1533-1549. This is interesting from a computational point of view, 
because efficient numerical solution methods exist for positive semidefinite optimization Sturm, 
Optimization Methods and Software 11-12 (1999) 625-653 with SeDuMi and Löfberg, Proceedings 
of the CACSD Conference, 2004 with YALMIP. 
     Below is made a positive semidefinite formulation of the modified Coulomb yield condition 
( 1 24 − ). This is included in the formulation of the yield condition for a reinforced concrete solid. 
Finally a section in the yield surface is determined numerically by positive semidefinite 
optimization using the lower bound theorem. We are working in the real number domain. 
     A positive semidefinite symmetric matrix A satisfies 
          0T ≥x Ax  for arbitrary vectors x                                                                                           (13) 
This is written as 
          A 0;                                                                                                                                      (14) 
     With this notation the Coulomb condition is written as 

          
( )

c

c
c

k
f
k

α

α

+

− + −

σ I 0

σ I 0

;

;
                                                                                                               (15) 

where cσ  is the stress tensor for the concrete 

          
cx cxy cxz

c cyx cy cyz

czx czy cz

σ τ τ
τ σ τ
τ τ σ

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

σ                                                                                                            (16) 

with principal stresses 1 2 3c c cσ σ σ≥ ≥ , α  an auxiliary variable and I a unit matrix 

          
1 0 0
0 1 0
0 0 1

⎡ ⎤
⎢ ⎥= ⎢ ⎥
⎢ ⎥⎣ ⎦

I                                                                                                                         (17) 

     In order to prove (15) this is obviously equivalent to 

          
3

1

0

( ) 0

c

c
c

k
f
k

σ α

σ α

+ ≥

− + − ≥
                                                                                                                   

Next α  is isolated (Dines method) giving 

          3
1

c c
c

f
k k
σ α σ− ≤ ≤ − +                                                                                                               

i.e. 

          3
1

c c
c

f
k k
σ σ− ≤ − +  

or 
          1 3c c ck fσ σ− ≤  
which is the Coulomb condition ( 14 ). 
     With ( 24 ) written as c Af− +σ I 0; , the modified Coulomb yield condition ( 1 24 − ) on positive 
semidefinite form is 
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( )

c A

c

c
c

f
k

f
k

α

α

− +
+

− + −

σ I 0
σ I 0

σ I 0

;
;

;

                                                                                                               (18) 

     Given 0 0 0 0 0 0( , , , , , )x y z yz zx xyσ σ σ τ τ τ , a solution ( , , , , , , , , , , )sx sy sz cx cy cz cyz czx cxyσ σ σ σ σ σ τ τ τ λ α  to (1-3,18) 
is obviously a lower bound solution. Maximizing the load parameter must give the yield load Yλ  
          Yλλ =max                                                                                                                             (19) 
     The conditions (1-3,18-19) define a problem in positive semidefinite optimization. The 
numerically determined solution on Figure 3 shows a section in the x xyσ τ -plane of the yield 
condition for the reinforced solid for the same data as used for Figure 2 and now without the 
computational problems mentioned in connection with Figure 2 for mC. 

 
Figure 3: Section in yield surface for reinforced solid obtained by positive semidefinite 

optimization. 
 
     The conditions (18) can be simplified somewhat as proposed by Löfberg. First (181,3) with α  
named 1α  are written 

          c Afσ I≺     and    1( )c
c

f
k

α−σ I≺  

and then collected to 

          1 2min , c
c A

ff
k

α α⎧ ⎫− ≡⎨ ⎬
⎩ ⎭

σ I I≺                                                                                                (20) 

where last equal sign defines the scalar variable 2α . Now (20) is rewritten 
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2

2

2 1

c

A

c

f
f
k

α
α

α α

≤

≤ −

σ I≺
                                                                                                                           (21) 

Using (21) the alternative formulation of (18) is obviously 

          

2

1

2

2 1

c

c

A

c

k
f
f
k

α
α

α

α α

− +

+

≤

≤ −

σ I 0
σ I 0

;
;

                                                                                                                         (22) 

i.e. compared with (18) the number of semidefinite conditions has been reduced by 1, while 2 extra 
scalar inequalities have been included. Of course replacing (18) with (22) still gives the yield 
surface section shown on fig. 3. 
■ 
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