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1. COULOMB PARAMETER RELATIONS
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Figure 1.1 Mohr’s circle at sliding failure.

To obtain the principal stress form of Coulomb’s yield condition, COB is projected on CD giving

(o, —0,)=—1(0, +0;)sinp+Ccosg (1.1)
(1.1) is rearranged to
1o,(l+sinp)—1o,(1-sing) =ccosg (1.2)
This is multiplied by 1+ sin ¢
Lo, (1+sing)* —L o, cos® ¢ = ccos p(1 +sin @) (1.3)
and is next divided by Lcos’® ¢ giving
. 2 .
o (1+51£1(0) _0_3:2C1+sm(p (1.4)
cos” ¢ cos @
Introducing the friction parameter K
. 2
k = m (1.5)
cos” @
simplifies (1.4) to (1.6)
ko, — oy =2¢ck (1.6)

Dividing sin” ¢ +cos” ¢ =1 by cos” ¢ gives — = tan” @ + 1. With this and x -expression
cos” @

in CP,fig2.1.2 tan @ = u is obtained from (1.5)
. 2
=0FSO) _ L ) = (tang 1+ tan ) = (u AL+ 42)° (1.7)
cos” ¢ cosQ
Expanding the u -expression in (1.7) gives




k—1=2uvk

Dividing (1.2) by $(1—sing) gives

l+sing cos @

1 . o,=2C ;
l-sing I-sing
Comparing this with (1.6) gives two expressions for k
K = l+singp  cosg .,

l-singp 1-sing
From (1.9') is obtained
1+sin¢_1_ I+sing@—(1—sing)

k-1= -
I-sing l-sing
1.e.
K1 2 Sil:l 1)
l-sing
In the same way is obtained from (1.9")
k+1= %
l-sing
and
l-sing = 2
k+1
Multiplying (1.9) with (1.12) gives
l+sing = 2k
k+1
Rearranging (1.12) gives
sing = k=t
k+1

(1.9%) and (1.12) gives

COS¢)=\/E(1—Sin¢)) :ﬂ

k+1
(1.14-15) gives
2vk

From the f_-expression CP(2.1.9) is obtained using (1.15) respectively (1 9%

f. = 2cvk = c(k+1)cosp=c 200_8(0

l—sing
With the trigonometrically formulas
A .
SIHX_Slny=tal’l%(Xiy) sinXxtsiny
cosX+cosy cosX—cosy

where X,y are arbitrary angles a set of half friction angle formulas are easily obtained. (1.18)
withX = 7/2,y = ¢ in the first formula and y =—¢ in the second formula gives

Itsing =tan(450+£) I¥sing _
2

0+cosg 0—cosg

ot (X Y)

—cot(45° + %)

(1.7a)

(1.8)

(1.9)

(1.10)

(1.11)

(1.12)

(1.13)

(1.14)

(1.15)

(1.16)

(1.17)

(1.18)



and then the ratios

L+sing _ n24s5° +2) 17809 _ an2(45° - 2) (1.19)
I-sing 2 l+sing 2
Inserting (1.19) in (1.9") gives
k = tan?(45° + 2) 1 an2as0 -2 (1.20)
2 k 2
ie.
1 Q k
cos’(45° +2 =— cos’(45' - o) =—— 1.21
( 2) k+1 ( 2) k+1 (121
. k . ) 1
sin”(45° +£ =— sin*(45° - £) = —— 1.22
( 2) k+1 ( 2) k+1 (122
[



2. COMMENTS TO PROBLEM 18

Without local strengthening of a lateral loaded plate near a column support, a localized yield line
pattern at the column is often essential. In the actual case two possibilities are shown on the figure.

m
For case b is obtained the upper bound for the yield load py = 13.7—;3 , 1.e. a smaller value than the
a

best value from CPans, problem 18.
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Figure 1: Yield line patterns with localization (CP, p505, fig 6.5.9p) at the column support.
However, an expansion of the local yield line pattern to a non-local yield line pattern is more

m
dangerous here. A smaller upper bound py = 12.2—;J is obtained for the yield line pattern
a

indicated on figure 2 (positive yield line solid, negative yield line dashed). A lower bound based on
a moderate number of equilibrium elements with moment degree 2 or higher has been determined to

py = 107?
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Figure 2: Yield line pattern for half-plate non-local at the column support in node 1.



3. NUMERICAL DETERMINATION OF YIELD CONDITION FOR A
REINFORCED DISK MATERIAL

The determination of the yield condition is as in CP, sec.2.2.2 based on the lower bound theorem.
The notation from CP is used as far as possible.
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Figure 1: Reinforced disk.

The stresses on the disk boundary, see Figure 1, are written as A(c,0y,7y ), where Ais the

load factor. The stress in a rebar in the x-direction is called o and for a rebar in the y-direction is

used o, .
The stress equilibrium on the disk boundary gives
A A
0 0 Yy 0
A x — O« tSX ox ﬂ’o-y = O-syT+ch ﬂ’z-xy = z-cxy (1)
The yield conditions for both concrete and rebars must not be violated
-f.<0,<0 —-f <0,<0 (2)
-fy <o, <f, -fi<o,<H, 3)
The relation between the stress components and the principal stresses in the concrete is
O¢
c } =1 (oy+0y) = \/(% (O —0)) + 7oy 4)
c2

Combining (4) and (2) means that the greatest principal stress must be < 0 and that the smallest
must be > —f_,

L0y +0y)+ J( (Co —0)) +72 <0 (5)
E(O-cx + O-cy) - \/(_ (O-cx — Oy )) + z-cxy 2 - fc (6)
. 0 . .
Given (o,,0 y, Xy) a solution (0,0,,0,0,7¢y,4) t0(1,3,5,6) is obviously a lower bound

solution. Maximizing the load parameter must give the yield load 4,
max A = A, (7)
The conditions (1,3,5,6,7) define a problem in non-linear programming. It is non-linear because
not all conditions are linear ((5,6) are non-linear). If (5,6) are linearized a problem in linear
programming is obtained.
The linearization of (5) is now described. Introducing the auxiliary variables o, and o, defined

by



On = _%(ch + o-cy) Oy = %(ch - ch) (8)

simplifies (5) to

[ 2 2
Oy +Tgy SO, )

A linearization of (9), which is a cone for o, 20, see Figure 2, is easily made. The cone is
approximated by nc planes as accurately as wanted. Plane j (] =1,2...nc) of these planes contains
the 3 points A:(0,0,0), j—1:(cos((j—1)A),sin((j—1)AH),l) and j:(cos JAH,sin JAO,1), where
A@ =2r/nc. An outward directed plane normal n is determined by n = Kj x j J—1 and then is
obtained the plane equation (o,7,,0,) - n=0..

19

Figure 2: Linearization of cone.

Introducing the auxiliary variable o, defined by

c,+o0, =T, (10)
simplifies (6) to

Joui+1l, SO, (11)

i.e. the form (9). (11) is then linearized analogously to (9).



4. DISSIPATION IN YIELD LINE OF MODIFIED COULOMB MATERIAL
The notation from CP,p160-161,165-166 is used as far as possible and will not be redefined.
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Figure 1: Yield line. Figure 2: Modified Coulomb material.

A yield line is shown on Figure 1 and we have the relations concerning the displacements in the
yield line
. un
U, =usina U, =uUcosa tana:u— (1)
t
The curved part of the modified Coulomb yield condition is considered Figure 2, i.e.

| v|< ——¢. For a stress point (o,7) on this part, the flow rule (normality condition) determines

the ratio between the displacements in the yield line (u,,u,)

tanv = de (2)
u n
Comparing (1) and (2) gives
V4
vV=——-a« 3
5 3)
i.e. the curved part of the modified Coulomb yield condition is active if
p<a<m—g@ 4

From Figure 2 is seen

wxr4“;“%m+“

; E (cosv,sinv) (5)



The internal work per length unit of the yield line (and one length unit perpendicular to the Figure 1
plane) is obviously

W =ou, + 1, (6)
Inserting (5) and (1) in this gives
o,+o, 0,-0
+
2
which is further reduced by (3)

. o, -0, .
W =( > cosv)u sma+f(smv)u cosa

+
W:%ugnm“lz%u 7)

With the o,,0,-circle through the points Dy, and (o,7) = (f,,0), is obtained o, = f, and then
kf, —o, = f, giving o, = kf, — f_. With these expressions for o,,0, we get
f
T i (f k- f)=—1 foll=tkeD)=-4fm ®)
where last equal sign defines m. Moreover we get

T (f, K+ 1) =4 0 K- = £ ©

where last equal sign defines |.
Now (7) with (8-9) inserted gives
W =1fu(-msina +1) (10)
(10,8,9) are identical with CP(3.4.86,85,84) used with thickness b =1.
In fact (10) also determines the dissipation outside the curved part of the modified Coulomb
yield condition. Obviously the dissipation in point Dy, can be used. Using (10) for ¢ — ¢, or

a — 7 —@_ gives the limit value

w=1 fcu(—(l—%(k +1))sin¢+1—%(k ~1))

and with CPnotes,(1.10-11)

W =%fcu(1—sin(p+L( ———sing — 2511‘1(/) ) =+ f.ul—sing) (11)
f, 1-sing 1—sing
Inserting CPnotes,(1.17) in (11) gives
W =cucos¢ (12)
identical with CP(3.4.77) used with thickness b =1.
[



5. RIGID, PERFECTLY PLASTIC MATERIAL
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First, we show that if the load has such a magnitude that it is
possible to find a stress distribution corresponding to stresses within
the yield surface and satisfying the equilibrium conditions and the
statical boundary conditions for the actual load, then this load will
not be able to cause collapse of the body. A stress distribution such
as this is denoted a safe and statically admissible stress distribution.
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6. ADDITIONS TO CP

pl123, linedfb: If o, <0, reinforcement... -> Reinforcement...

pl24, line6ft:  ...see below -> ...see below or see (2.2.49)

11



7. EQUILIBRIUM STRESSES IN DISK BY MEANS OF CONSTANT STRESS
TRIANGLES

In order to obtain a lower bound solution for a rigid-plastic reinforced disk, an equilibrium stress
field in the disk is needed. The disk considered here is only loaded by boundary load. How to obtain

equilibrium stresses is explained by example. The disk shown in Figure 1 is considered. The
notation defined in CP is used as far as possible.
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Figure 1: Disk with triangle mesh.

Utilizing symmetry the half disk is partitioned in three triangles 1,2,3 as shown on Figure 1. In
each triangle is used a yet unknown constant stress field o,,0,,7,,, i.e. the equilibrium conditions

are satisfied inside each triangle. With these constant triangle stresses, the stresses on the triangle

boundaries must be constant too, i.e. they give a resultant force vector F,,F, in the midpoint of

each triangle edge. In Figure 2a is shown the forces from the boundary and symmetry conditions.
Next the equilibrium conditions are utilized for each triangle (projection x, projection y and
moment) and between neighboring triangles (projection x, projection y) to determine as far as
possible the still unknown forces on the triangle edges. In the actual example these are statically
determined.
For triangle 1 is introduced the notation o, = o, and the projection equations determine the

unknown forces on the edge 1-2 as shown on Figure 2b. The moment equation is fulfilled.
For triangle 3 is introduced the notationo, = —o, and the projection equations determine the
unknown forces on the edge 3-2 as shown on Figure 2b. The moment equation is fulfilled.
Triangle 2 is now loaded by forces from triangle 1 and 3 as shown on Figure 2b. For triangle 2

the y-projection equation is fulfilled, while the x-projection equation and the moment equation (here
about the midpoint of edge 2-3) give

12
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Figure 2: Forces on triangle edges.

Most of the stresses in the three triangles are determined by uniform distribution of the forces on
the axis parallel triangle edges. However, o in triangle 2 cannot be determined this way so a cut is

made in triangle 2 as shown in Figure 2b and y-projection then gives o, %t =— p%t + p%t% in
triangle 2. In total we have
l: (o,,0,,7,)=(0,,0,0) 3)
Py, pL
2: (o Oy, Tyw) = 05_ + [ 4
(0,0y:7y) = (0,=p+ =50 4)
3: (O-X’O-y’z-)(y) = (_O-C ’_ p’O) (5)

13



8. NUMERICAL DETERMINATION OF YIELD LOAD FOR A REINFORCED
DISK

Optimization formulation based on constant stress triangles. Notation as in CP with the extension
that the rebar yield stress fy may be given different values in the X,y-direction and in tension
respectively compression. With constant stresses in each triangle Fig. 1, the interior equilibrium is
satisfied in each triangle for zero body loads.

Equilibrium for each intertriangle edge Fig. 1 with load shape t" and load factor A

™ ¢ N =0 (8.1)

nJl

(triangle boundary edge included: triangle J vanish and then —t"~" = reactions (0 if none) ).

Stress vector (tractions) — stress tensor relation in index notation and with summation convention:
n
tl( ) =O'jinj (8.2)
(8.1) and (8.2) combined with o = oj;=>

| J | J 1J
(ox —oy Ny +(Txy _Txy)ny = Aty

| J | J 1J (83)
(Tyy —Txy)Ny +(oy —oy)ny = Aty
In each triangle:
Ox = Osx TX+ Ocx Oy =0y Ty TOcy  Txy = Texy (8.4)
—fY SO—SXS fY —fY SO'SyS fY (85)
1 1 2
E(O'cx + O'cy)"' (E(O'cx —O'cy)) Tloxy S 0
8.6
1 1 2 2 (50
E(O'cx +0¢y)— (E(O_cx _Ucy)) tToxy 2 fe
Lower bound theorem =>
max A < Ay (8.7)

Utilizing (8.3) for all element edges in the structure to be analyzed, (8.4)-(8.6) for all elements and
(8.7) gives a nonlinear optimization (programming) problem, which is convex. It can be handled as
a second order cone optimization problem, which can be solved by Mosek (see www.mosek.com).

If (8.6) is linearized a linear optimization problem is obtained and the simplex method can be
used for its solution.

14



To get a load factor A close to the yield load Ay , the meshing with constant stress triangles of

the structure to be analyzed must allow a stress distribution in the meshed structure close to one of
the stress distributions, which can exist in the original structure at the yield load.

9. ALTERNATIVE RECIPE FOR DISK REINFORCEMENT DESIGN

Compute

fy =0, +|7y fy =0, +ry| o.=2r, (1)
Okif f, >0 and f, >0. If not compute
2
d=o.0, -7, (2)
If d > 0 no reinforcement is needed and o, is determined by the smallest principal stress, i.e.
ftx =0 fty =0 O, :| %(O-x-l_o-y)_\/%(o-x_o-y)z'i_rfy | (3)

Otherwise (d <0) the negative value of f, or f is changed to zero and the relevant formula set

below is used
2 2

T T
f, =0 fty o, + 2 o, = |0'X| + 2L 4)
|O-x| |O-X|
2 2
T T
f,=0,+ ul fty =0 o, :‘Gy‘+—xy (5)
‘Jy‘ ‘O-V‘

15



10. PROBLEMS

Problem 16a compared with problem 16 is modified such that the answers to problem 16 are
relevant also for problem 16a. This principle has been followed for all problems with a number
followed by ‘a’.

Problems with numbers above 100 are not found in CPpr and CPans.

Problem 1a

Modifications compared with CPpr, problem 1: Plane stress or plane strain can be considered
(depends on the bar thickness). The yield planes are perpendicular to the figure plane. Moreover the
question has been detailed.

aj

uz=u, cotlp-iy)
S0°-p

part IT fixed

1
Tiiitte

Given is a prismatic straight cut off bar of a Coulomb material with the cohesion ¢ and the
angle of friction @ subjected to a uniformly distributed pressure p at the ends.

Consider two geometrically possible yield patterns, having the yield planes as shown in the
figure (cf. Limit Analysis and Concrete Plasticity § 3.6.1.)

Case a.
Question 1: Determine the internal work in the yield line pattern using the o,z form of the

Coulomb yield condition.
Question 2: Determine an upper bound p; for the yield load p, of p.

Question 3: Optimise the upper bound solution in regard to the yield line pattern. Show that the
obtained value equals the compressive strength of the Coulomb material and specify the value of
angle [ for the friction parameter value k =4 ( typical value for concrete).

Case b.
Question 4: Determine the ratio between U, and U, using the flow rule.

Question 5: Determine an upper bound for the yield load, optimise it and compare it with the value
obtained in case a.

16



Problem 3a
Modifications compared with CPpr, problem 3: The disk thickness is t and o = % Moreover the

question has been modified.

Ay
- f, part I fixed
r— -
E
1+—1
h f\1 = fy -—x
U
rd
11+
X
L ty |
b Ead

Givep is a rectangular concrete disk (bh) subjected to pure shear corresponding to the shear
stress f,. The disk is reinforced in two directions x and y at right angles to each other,
corresponding to the reinforcement degrees ®, and ®, respectively. It is assumed that @, +
@, < 1. The shear stress f, acts at sections perpendicular to the direction of the reinfurée-
ment. A geometrically possible yield pattern with a yield line as shown in the figure is
considered.

The concrete is a modified Coulomb material, having a tensile strength equal to zero.

Question 1: Determine, by means of the work equation, an upper bound for f,.

Question 2: Minimize f  and compare the result with (2.2.20) in CP. Has the yield load been

determined?

17



Problem 6a
Modifications compared with CPpr, problem 6: The first question has been detailed.

e
o=4LMPa

A \-Ereightless, rectangular concrete disk, having a thickness of t = 150 mm, is reinforced in
2 fihrcctions at right angles to each other. Along 2 opposite sides the disk is subjected to
uniaxial tension, corresponding to a stress of & = 4 MPa. One direction of the reinforcement
forms an angle of 20° with the direction of the applied tensile stress, see the figure. The

reinforcing bars are ribbed bars having a design yield stress of f,, =400 MPa. The diameter
of the reinforcement is 8 mm. '

Question 0: Determine the stresses in a coordinate system with axes in the reinforcement directions.

Question 1: Determine the distance between the reinforcing bars, when they are placed in
2 layers.

!

!!uestinnlz: Determine the necessary compressive design strength of the concrete f,, when
the effectiveness factor is v = 0.6.

Question 3: Show by a simplified sketch, the detailing of the reinforcement along the edges.

18



Problem 10a
Modifications compared with CPpr, problem 10: Question 0 has been inserted.

)20 i 20

1320 KN

| Il

Fy

- R - measurements incm

A column has a rectangular cross-section of 200 x 400 mm?. A line load with a resultant
of 320 kN acts at the top of the column in the direction of the column. The line load is
uniformly distributed over the width of the column. The bearing surface is 100 mm wide.
It is reinforced by 2-legs stirrups of mild steel with a design yield stress of f, = 171.5 MPa
or by Tentor steel with f,, = 400 MPa for diameters < 8 mm and f,4=371.4 MPa for larger

diameters. The effective compressive design strength of the concrete is vi, = 16.7 MPa.

Question 0:

a) Based on a constant stress triangle mesh is wanted a set of equilibrium forces on the triangle
edges (in agreement to CP, p358 uniform normal stress distribution should be assumed on
the column cross section in a depth below the line load equal to the relevant column side
length (here 40 cm)).

b) Determine the necessary reinforcement area in the symmetry plane to carry the tension

(result as in CPans, prl0, ql).
c) Determine the compression zone depth in the symmetry plane (result as in CPans, pr10, ql).

Question 1: Determine the reinforcement at the top of the column, transverse to the
Hirsetion-olletorie=d fline loaol plane,

Question 2: What additional reinforcement must be provided at the top of the column, if
the line load has a transverse component of 64 kN.

19



Problem 16a ' ‘
Modifications compared with CPpr, problem 16: The questions have been detailed and the figure
corrected.

Ay
Ry iy
7 ‘ 7
1, o m oy
| |
- | P-Pxi11
L.OD p leI | /%’ X
\pxll ! ‘%me
,_[I_,g,p=8kW}l¢;_434: <
"'—C m@;&vfnwrwﬁm‘w[) >
. 6.00 y
i A

measurementsinm

A horizontal, rectangular slab ABCD has the spans shown in the figure. The slab is fixed
along the sides AC and CD, and simply supported along the sides AB and BD. Along the

fixed sides, the yield moment is set to 0.5 times the positive yield moment (yielding of
bottom reinforcement).

The load on the slab is p = 8 kN/m?. The slab is reinforced in both the x- and y-directions.
A minimum of reinforcement, calculated to correspond to a yield moment of 8 kNm/m, is

provided at the lower face in the x- direction. In the same way, a minimum reinforcement
is provided at the lower face in the y- direction, in the areas I and IIL

The slab is calculated by means of the strip method, being divided into 3 areas, I, IT and III,
as shown in the figure. The extent of the areas I and III is chosen, so that the minimum

reinforcement is utilized fully, which occurs when the load is distributed as shown in the
figure.

Question 1: Determine p — p,, utilizing CPans, prl3.
Question 2: Determine p— P, .

Question 3: Determine |, and |,,, considering a strip in the X -direction.

Question 4: Determine the necessary yield moment in the y-direction in area II.

20



Problem 23a
Modifications compared with CPpr, problem 23: The figure and the question have been modified.

Two legs stirrups

T6ct100
/ ;nn E

8| d A8 i
T
- _"""'"'-7</ _ 2 strands 1/2"
- "r? |
2716 i
P 900 L

A

300

measurements in mm

The distance between the tensile and compressive stringers in a horizontal stringer beam is
h =300 mm. The beam is simply supported and 2 point loads P are applied symmetrically.
The shear span is 900 mm. The width of the web of the beam is 180 mm. The longitudinal
reinforcement consists of 2 T16 mm (Tentor steel) with a yield stress of 560 MPa,
uncurtailed throughout the lower face of the beam, and 2 no. 1/2" strands (total area 250
mm?) with a yield stress of 1800 MPa, bent upwards at the place of the point loads and
passed rectilinearly to the end of the beam in such a way that the strands are located at a
distance of 100 mm from the compressive stringer at the support. In addition, the beam is
reinforced by vertical 2-legs stirrups T6 mm ct 100 mm. The stirrups have a yield stress of
520 MPa. The concrete is considered to be a modified Coulomb material having a

compressive strength of f, = 37.5 MPa and the tensile strength equal to zero. The
effectiveness factor v = 0.8,

In answering the following question, characteristic values must be applied, i.e. no partial
safety factors are introduced for loads and strengths.

Question 1
Determine an upper bound solution for the load carrying capacity of the beam based on the yield

line pattern shown on the figure with 8 = 60° and displacements corresponding to the translation
mode with & = 0. Compare the result with CPans and comment the difference.

Question 2

Determine an upper bound solution for the load carrying capacity of the beam based on the yield
line pattern shown on the figure and displacements corresponding to the rotation mode specified by
the rotation 7 about the upper side load point of the left beam part.
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Problem 101

A vertical rectangular h*2b unreinforced concrete disk (= in-plane loaded plate) ABCD - see the
figure - of thickness t is loaded by a rather concentrated vertical load (load resultant P) uniformly
distributed over the rectangular area 2a *t.

The concrete is modelled as a rigid-plastic material based on the modified Coulomb yield condition

with f, =0.

Question 1
Determine an upper bound P,” for the yield load P, of P based on the indicated yield line pattern

with vertical displacement u, of the wedge part of the disk and horizontal displacement u, =S u, of
the other movable disk parts.

22



Problem 102
An orthogonal reinforced concrete disk is considered. The concrete is modelled as a rigid-plastic
material based on the modified Coulomb yield condition with tension strength f, =0. A rebar is

modelled as a uniaxial rigid-plastic material with yield stress f, in both tension and compression.

The MatLab function YsSReDisk determines a point on the yield surface used in the disk, while
the MatLab script exeYsReDisk applies YsReDisk to determine a section in the yield surface.

Question 1
Apply YsReDisk to determine the point (o,,0,,7,,) =(0,0,7,,) on the yield surface used in a disk

with ®, =®  =0.2 and test the result comparing with CP.

Question 2
Apply exeYsReDisk to determine the section o, =0 of the yield surface. Consider the cases

a) ®, =0, =0.2
b) ®, =D, =06
), =06 ®, =02

and test the results as far as possible comparing with CP.

Problem 103

A parallelogram shaped reinforced concrete disk ABCD of thickness t, see the figure, is reinforced
parallel with the edges. The reinforcement in each direction has the area A per unit length. The yield
stress of the reinforcement in one direction is fy and in the other direction 4 f, .

Question 1
Determine the directions and the areas per unit length of the equivalent orthogonal reinforcement
with yield stress fy.

23



Problem 104
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On the figure is shown the isotropic reinforced concrete disks d), g), h) of thickness t. As yield
condition for the disk material is used CP (2.2.37). The load is a pressure load p >0 per area unit

in equilibrium with the reactions (the reaction pressure is indicated by g on d) and h)). Self-weight
is neglected. For each disk is wanted:

Question 1
Determine an equilibrium stress field based on a constant stress triangle mesh.

Question 2
For L=a=h,c=0.2h, ® =0.1 determine a lower bound solution for the load carrying capacity

and determine the deviation from the exact solution.
Question 3

Determine an upper bound solution for the load carrying capacity assuming a bending type
mechanism in the symmetry sections and determine the deviation from the exact solution.
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E06, LONpr1 (40% of 4 hours exam)
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A concrete disk ABC, see the figure, of thickness t is reinforced homogeneous and orthotropic in
the X,y coordinate directions.

The concrete and the reinforcement are modelled as rigid, perfectly plastic materials. The
concrete is described as a modified Coulomb material with tension strength f, =0. The
reinforcement strength in compression is neglected.

The concrete has the effective compressive design strength 1f ; = 25MPa and the reinforcement

has the tensile design strength f ; = 400MPa. The minimum reinforcement ratio is set to

I, =0.002.

min

The load is a pressure load p > 0 per area unit. Self-weight is neglected.

Question 1
Based on a constant stress triangle mesh with 2 triangles ABD and BCD, determine a set of

equilibrium stresses in the disk.

Question 2
Fory, = 0.25h a set of equilibrium stresses in the disk is determined by (o,,0,,7,) = p(5,-1,0)

in ABD and (o,,0,,7,,) =—-4p(L,11) in BCD. For p =3MPa, h =1800mm, t =150mm determine
the necessary tensile strengths f, , f, and investigate if the compression stress in the concrete is

safe in each constant stress triangle.

Question 3
With a straight yield line AE, see the figure, and a displacement u > 0 with an angle & > 0 with the
yield line of disk part ABE (no displacement of disk part AEC) is wanted an upper bound solution

for the load carrying capacity of the disk for =45, & =0°, f, = 4MPa, fy, =0.
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E06, LONpr2 (40% of 4 hours exam)

A concrete disk ABCD, see the figure, of thickness t is reinforced homogeneous and orthotropic in
the X,y coordinate directions. Rebars in the X-direction cross the supporting section AD and are

anchored in the support.
The concrete and the reinforcement are modelled as rigid, perfectly plastic materials. The
concrete is described as a modified Coulomb material with tension strength f, =0. The

reinforcement strength in compression is neglected.
The concrete has the effective compressive design strength f ; = 15MPa and the reinforcement
has the tensile design strength f ; =300MPa. The minimum reinforcement ratio is set to

r.., =0.002.

min

The load is a pressure load p > 0 per area unit. Self-weight is neglected.

Question 1
Based on a constant stress triangle mesh with 3 triangles ABC, ACE and CDE, determine a set of
equilibrium stresses in the disk.

Question 2
A set of equilibrium stresses in the disk is determined by (o,,0,,7,,) = p(0,-1,0) in ABC,
(0,,0,,74) =5 P(4,-5,-2) in ACE and (o,,0,,7,) =% p(LLD) in CDE. For

p =5MPa, a =900mm, t =100mm, determine the necessary tensile strengths f

wo> Ty and

investigate if the compression stress in the concrete is safe in each constant stress triangle.

Question 3
For f, =4MPa determine an upper bound solution for the load carrying capacity of the disk based

on a rotation 77 > 0 of the disk about point E see the figure.
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E06, LONpr3 (40% of 4 hours exam)
A

2a

A concrete disk ABCDEF, see the figure, of thickness t is reinforced homogeneous and orthotropic
in the X,y coordinate directions. Rebars in the y-direction cross the supporting section CDEF and

are anchored in the support.

The concrete and the reinforcement are modelled as rigid, perfectly plastic materials. The
concrete is described as a modified Coulomb material with tension strength f, =0. The
reinforcement strength in compression is neglected.

The concrete has the effective compressive design strength 1f ; = 20MPa and the reinforcement

has the tensile design strength f ; =400MPa. The minimum reinforcement ratio is set to
r., =0.002.

min

The load consists of a constant shear stress p > 0 per area unit along AB. Self-weight is
neglected.

Question 1
Based on a constant stress triangle mesh with 4 triangles AEF, ABE, BDE and BCD with zero
stresses in triangle BCD, determine a set of equilibrium stresses in the disk.

Question 2

Symmetrization of the question 1 solution determines a more efficient set of equilibrium stresses in
the disk. In AEF is obtained (o,,0,,7,,) = p(3,l,5) and in BCD (o,,0,,7,,) = p(-5,~1,3) . For
each of these two triangles and for p = 6MPa, a =1000mm, t = 100mm, determine the necessary
tensile strengths f,,, f, and investigate if the compression stress in the concrete is safe.

Question 3

With a straight yield line AG, see the figure, and a translation u > 0 with an angle & > 0 with the
yield line of disk part ABG is wanted an upper bound solution for the load carrying capacity of the
disk for a = #=30" and f, = f, =6MPa in ABCDE.=
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11.ANSWERS TO SOME PROBLEMS

Prob 101. q1: P, = ft(Sa+ *52_1 b)

Prob 103. q1:6 =15, A, = A3+4ﬁ = A*1.18,A = A#; A%0.32

E06,LONprl. ql: ABD: (UX,Uy,TXy) = (1 P T ,—p,0), BCD: (ax,ay,rxy) = —p—h(l,l,l); q2:
—Yo Yo

(before considering min reinforcement) ABD: f, = 4MPa, f, = 0,0, = 3MPa(safe),

BCD: f, =0, f, =0,0, = 24MPa(safe) ; q3: py =14.5MPa

E06,LONpr2. q1: ABC:(o,,0,,7,,) =(0,-p,0), ACE: (0,,0,,7,) =3 P,—¢ P,—5 P),
CDE:(o,,0,,7,,) = (=3 P,—5 P,—% P); q2: (before considering min reinforcement)

ABC: f, =0, f, =0,0, = 5MPa(safe), ACE: f, =4Mpa, f, =0,0, = 4.83MPa(safe),

CDE: f, =0, f, =0,0, =13.3MPa(safe); q3: p; =7.75MPa

E06,LONpr3. ql: AEF: (o,,0,,7,,) = (5 P,2p, p), ABE: (0,,0,,7,,) = (5,0, p),
BDE:(o,,0,,7,,) =(0,-2p,0); q2: (before considering min reinforcement)

AEF: f, =4.5MPa, f,, =9MPa, o, = 6MPa(safe), BCD: f, =0, f, =0,0, = 7.5MPa(safe); q3:

py =14.6MPa
|
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12. EQUIVALENT ORTHOTROPIC REINFORCEMENT IN A SOLID

In CP sec.2.2.3 is considered the determination of the orthotropic reinforcement in a disk, which -
concerning the tension yield load - is equivalent to a given arbitrary reinforcement in the disk. Here
is considered the same problem for a three dimensional solid. The notation from CP is used as far as
possible.

i h{i.
i 4"
.
z A.: v
—> N
@)

coitest r€éar aiea 45'_; presr

7y

Figure 1: Reinforcement in direction I.

The solid is reinforced in m arbitrary directions. In direction i, i=1,2...m with unit direction
vector n see Fig.1, the reinforcement has the cross section area A, per unit area of the solid and
the tensile yield stress f, .

We consider now the case where all reinforcement yields in tension. First step is to determine the
equivalent stress on a section with outward directed unit normal vector n. From reinforcement i is

obtained the stress vector contribution t"” = f, A, (nen)n™, i.e. for the total reinforcement we get

=200 =3 f,A,(en)n" M

Next we want to determine those sections if any, where there are only normal stresses and no

shear stresses on the section. The condition is obviously t" = An, where A is a yet unknown
constant. Combining this with (1) gives

Z fy A (nen”)n” = An (2)
i=1
which as we shall see below is an eigenvalue problem for determination of n, 4.

- _ O — (n® n® nO o -
Using the component forms n=(n,,n ,n,) and n*’ = (n,”,n”,n;") the summation in (2) is turned

into
m . . m . . . .
Z f, A,(men”)n® = z f, A (n,n{” +n,n +n,n)n®
i=1 i=1

m . - m - . m . -
=n > f,AN'nY 4+ > £, AN +n, > f, Ainn®
i=l i=1 i=1
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and then (2) can be written as

m - - m - . m - .
2 AN D R AN 3 f A n
i=1 i=1 i=1

N (i) (D) N (i) (D) N (i) (D) nX nX
1 I 1 I I I
z fY &inx ny Z fY &iny ny z fY Asinz ny ny =4 ny (3)
i=1 i=1 i=1
n n

m - . m - . m . .
2 AR D f AN 3 f A n!
i=1 i=1 i=1

The 3x3 coefficient matrix in (3) is obviously a symmetric matrix. Then the eigenvalue problem
(3) has 3 real solutions A4, 4,, 4, with the orthogonal eigenvectors n;,n,n3. Then in conclusion: the

equivalent orthotropic reinforcement with yield stress f, must go in the directions nj,n,,n3 and
have strengths defined by

LA =4 A, =4 fA =4 4)
where A, ,A,, A, are the cross sectional areas of the equivalent orthotropic reinforcement in
direction 1,2,3.

Example
For non-orthogonal reinforcement as shown on Fig.2 with yield stress f,, determine the equivalent

orthotropic reinforcement.

Figure 2: Non-orthogonal reinforcement.

Answer:
The unit direction vectors of the rebars are

30



n" =1 0 0]
N RV
2 2
RO R A
4 4 2
Then (3) gives
1+l+2><i 0+—3+2x£ 2><E
4 16 4 16 N N
f, A 0+§+2xj; 2><l/E n,|=4fn,
4 16 8
3 r]Z r]Z
sym 2x—

The solution of this eigenvalue problem is here obtained by the Matlab computation
S=[1+1/4+2*3/16 0+sqrt(3)/4+2*sqrt(3)/16 0+0+2*3/8

0 0+3/4+2/16 0+0+2*sqrt(3)/8

0 0 0+0+2*3/4] ;
% symmetrize
S(2,1)=5(1,2);
% solve
[V.D]=eig(S)
V =

S(@3,1)=8(1,3); S(3,2)=5(2,3);

5.0000e-001 5.2057e-001

-8.6603e-001 3.0055e-001

-2.5640e-016 -7.9917e-001
D =

5.0000e-001 0

0 8.4861e-001

0 0

6.9210e-001
3.9959e-001
6.0110e-001

0]
0
2.6514e+000

Then the equivalent orthotropic reinforcement is determined by
f,A, =D(@,1)f, A in direction n*” =V (:,1)
f, A, =D(2,2)f, A in direction n*” =V (;,2)
f, A, =D(3,3)f, A in direction n®¥ =V (;,3)

Test:

For test is utilized the symmetry of the reinforcement as indicated on Fig.2. Then one of the

equivalent rebar directions must be normal to the symmetry plane i.e.

(-sin30°,c0s30°,0) = (-0.500,0.866,0) corresponding to V(:,1). The area of the equivalent
reinforcement in this direction has only contributions from reinforcement 1 and 2 and because their
angle with this direction is 60°, they contribute to the strength with 2 f, A(cos60”)’ =L f A

corresponding to D(1,1).

Another testis A, + A, + A, =A,+A,+A,;. As both sides gives 4A, this test is satisfied.
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13. NUMERICAL DETERMINATION OF YIELD CONDITION FOR A
REINFORCED SOLID MATERIAL

The determination of the yield condition is as in CP, sec.2.2.2 based on the lower bound theorem.
The notation from CP is used as far as possible. The usual coordinate system X,Y,z on Fig.1 has

axes in the (equivalent) orthotropic reinforcement directions.

Figure 1: Reinforced solid.

0
yz?

for a rebar in the y-direction is used

The stresses on the boundary of the solid are written as A(o,,0,,0,,7,,,7,.,7, ), where Ais the

load factor. The stress in a rebar in the x-direction is called o

SX 2

o, and for a rebar in the z-direction o, .

The stress equilibrium on the boundary of the solid gives
ﬁ“o-f() :O-sxp¥x+o-cx AO';) :O-syAsy+o-cy Z’O-? :O-sz&z +Ucz (1)

0 _ 0 0o _
A Tyz - Tcyz A Ty = 2-czx A Txy - Tcxy (2)

where A, is the cross section area of the rebars in the x-direction per unit area of the solid. A, A,

are defined analogously referring to the Yy, z -directions.

The yield conditions for both concrete and rebars must not be violated. For the rebars we have

-f, <o, <f, - fYy <o, < fYy —-f, <o, <1, 3)

where f,, f,, f,, are the yield stresses of the rebar material in the X, y, z -directions.

Modified Coulomb formulation
For the concrete is here used the modified Coulomb yield condition from CP, i.e. when the principal

concrete stresses are orderedo,, > o,, > o,; we have

kacl — O = fc O .S fA (4)

The relation between the principal concrete stresses and the concrete stress components are
obtained via the stress invariants defined by
I, =0, +0,+0,

o, —To, —To —T.

|, =040 +04,0, + 0,00 —Top — Ton — Taxy ®)

ox ¢y ey ez cz
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|3 =0 O-cy O, + 2z-cyz Toxe z-c><y — Oy Tczyz — Oy Tczxz — 0 z-czxy
Applying (5) in the principal coordinate system for concrete stresses gives
|, =0, +0,+0;
|, = 0,0, +0,0,+0,0
|, =0,0,0;
Inserting these expressions in (5) gives the wanted relations
O + O¢ + O3 =0 + O-cy + O

— 2 2 2
0.0, +0,0,5 10,0 = O-cxacy + cho-cz 0,0~ z-cyz T~ z-cxy (6)

_ _ 2 2 2
o-cl O-c2 O-c3 - O-cx O-cy O-cz + 2 Tcyz z-cxz Tcxy ch Tcyz O-cy Tcxz O-cz z.cxy

With (6) the principal concrete stresses o

+1»0¢y>0,; are not ordered as (4) presupposes. Then (6)

must be combined with the yield condition on the form

kacz —O¢ < fc ko—c3 — O < fc kacl —O¢ < fc
kacS —O0¢ < fc ko—cl — O3 < fc kacz — O < fc (7)
o,<f, o,<f, o,<f,

Of course (7) can be replaced by the more simple formulation
0,20, Oy, 20g ko—cl —0, < fc o, < fA (73)

0 0

0 ¢ 12,70, asolution (o

. 0 0 .
Given (0,,0,,0,,7,,T,,Ty 010050050 Toyrs Tepgs Towy s 4) 10 (1-3,6-7) 18

sx> P sy» Y520 P x> Yeyr Yz feyzo “exo “oxy
obviously a lower bound solution. Maximizing the load parameter must give the yield load 4,
max A = A, (8)
The conditions (1-3,6-8) define a problem in non-linear convex optimization. It is non-linear
because not all conditions are linear ((6*7) are non-linear). It is convex as a perfect plasticity

problem. As a non-linear convex optimization problem it may be preferable from a computational
point of view to use a smooth yield condition. This possibility is considered below.

Smoothed Mohr-Coulomb formulation
Here is considered the same problem as above, but the modified Coulomb yield condition is

exchanged with a smoothed Mohr-Coulomb yield condition. This yield condition f(l/,1.,1;),
which can be closed, is expressed by a set of stress invariants
f
_ ' VA U A3
f=kl;+(-I) I2+(l—f—) (k,—9)<0 )
S
The stress invariants I, 1), 1; are defined from the shifted non-dimensional stresses
oJ o) o T T T
r cX r_ cy r_ cz r _ Cyz 1 __ Yo ro_TCXy
O-X_ f _1, O-y— f _1, O-Z_ f _1; TyZ_ f ’TZX_f_, Txy_f_7 (10)
S S S S S S
ie.
" ’ '
l|=0,+t0,+0,
' ! r__r 2 2 12
I2 _O-xo-y—'—o-yo-z +O_zo-x_Tyz T T Ty (11)
[ A A | ro_r ot r__12 r__12 112
|; =0,0,0,+2r,7,7,, —0,7,, —0,T, —0,T,

The yield condition (9) contains four material constants: K, > 9 is the friction parameter, <1 the
closing parameter (not closed for y =1), f, >0 the shift stress and f, the separation resistance. A
further discussion of this yield condition is found in the notes LON: Computational plasticity.
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Inserting (10) in (11) and the obtained result in (9) express the yield condition by the stress
components, i.e.

f (o-cx’o-cy’O-cz7Tcyz9Tczx7Tcxy) < O (12)

thus avoiding invariant expressions in the optimization formulation.

0 0

. 0 0 0 0 .
Given (O'X,O'y,az,ryz,rzx,rxy),asolutlon (o,,0.,,0.,,0.,0..,0.,T

SX2 sy T szo P ex2 ey ez cyz’Tczx=Tcxyal) to (1'3912) is
obviously a lower bound solution. Maximizing the load parameter must give the yield load 4, . The

conditions (1-3,8,12) defines a problem in non-linear convex optimization.

Numerical solution
On Figure 2 is shown a section in the o,7,, -plane of the yield condition for the reinforced solid.

Both the modified Coulomb (mC) and the smoothed Mohr-Coulomb (sMC) has been used for the
_AR

solid. The reinforcement is isotropic with reinforcement degrees ®, =® =@, =0.1 (O, =
c

etc.). The mC-parameters are k=4, f, =0.1f,. For sMC with y=1 is used the ‘equivalent’
parameters k, =13.5, f, :% f,, f,=0.11,.

With the applied solution function MATLARB’s fmincon, it is difficult to obtain a solution for mC
and the curve irregularities indicate convergence problems. Contrarily it is easy to get a solution
with the smooth sMC using a zero solution vector as starting point.

Compared with a disk solution minor three-dimensional effects are seen corresponding to

utilization of the reinforcement in the y,z-directions in tension improving the compression state of
the solid.

)

1
U I| 1 ] 1 1 1 1 1 | ‘I Q
-1.8 -1.4 -1.2 -1 -0.8 -06 -0.4 -0.2 0 0.2 0.4

Figure 2: Section in yield surfaces for reinforced solid.
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Modified Coulomb — positive semidefinite formulation

The Coulomb yield condition (4') can be written on positive semidefinite form Krabbenheft et al,
Int. J. Solids Struct. 44 (2007) 1533-1549. This is interesting from a computational point of view,
because efficient numerical solution methods exist for positive semidefinite optimization Sturm,
Optimization Methods and Software 11-12 (1999) 625-653 with SeDuMi and Lofberg, Proceedings
of the CACSD Conference, 2004 with YALMIP.

Below is made a positive semidefinite formulation of the modified Coulomb yield condition
(4'7). This is included in the formulation of the yield condition for a reinforced concrete solid.
Finally a section in the yield surface is determined numerically by positive semidefinite
optimization using the lower bound theorem. We are working in the real number domain.

A positive semidefinite symmetric matrix A satisfies

x' Ax >0 for arbitrary vectors x (13)
This is written as
A>0 (14)
With this notation the Coulomb condition is written as
6. +kal >0
f (15
—cc+(?"—a)150 )
where ¢, is the stress tensor for the concrete
O z-cxy T
o.= 2-cyx O-cy z-cyz (16)
TCZX TCZy GCZ
with principal stresses o, = 0,, =2 0,;, a an auxiliary variable and I a unit matrix
1 00
I=|0 1 O (17)
0 01
In order to prove (15) this is obviously equivalent to
o, +ka=0

f
-0, +(?°—a) >0
Next « is isolated (Dines method) giving
Cu g g 4t
© ok

1.€.

or
ko—cl —0, < fc
which is the Coulomb condition (4').
With (47 ) written as —6_ + f,I = 0, the modified Coulomb yield condition (4'*) on positive

semidefinite form is
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-+ f,I>0
6. +kal >0 (18)

—0, +(%—05)IEO

070 12,70, asolution (O.,0.,,0.,,0., 0w sCusTays Tays Tays A, ) to (1-3,18)

. 0 0
Given (O-X’O-yaaza vz Taxo Txy sx2Psy2 Q575 Qoo OoysOczoboyzs bomxo Loy

is obviously a lower bound solution. Maximizing the load parameter must give the yield load 4,
max A = A, (19)

The conditions (1-3,18-19) define a problem in positive semidefinite optimization. The
numerically determined solution on Figure 3 shows a section in the o,7, -plane of the yield

condition for the reinforced solid for the same data as used for Figure 2 and now without the
computational problems mentioned in connection with Figure 2 for mC.

0.35

0.3
0.25
0.2
0.15
01

0.05

.
7=
2 1]

Figure 3: Section in yield surface for reinforced solid obtained by positive semidefinite
optimization.

0 I I 1 1 1 I 1 L
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4

The conditions (18) can be simplified somewhat as proposed by Lofberg. First (18'7) with &
named ¢, are written

. <f,l and o < (%—al)l
and then collected to
ccjmin{fA,%—al}IEazl (20)

where last equal sign defines the scalar variable «,. Now (20) is rewritten
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. <al

o, <1, @
fC
a, < ? -a,
Using (21) the alternative formulation of (18) is obviously
—o,+a,1 >0
6. +kal>0
a <t (22)
fC
a, < ? -

i.e. compared with (18) the number of semidefinite conditions has been reduced by 1, while 2 extra
scalar inequalities have been included. Of course replacing (18) with (22) still gives the yield
surface section shown on fig. 3.

[
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