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A new composite theory and its potential 
with respect to materials design 

Lauge Fuglsang Nielsen∗)
 

Abstract: An operational summary of a new composite theory previously developed 
by the author is presented in this paper. ‘Global’ property solutions are presented 
which are valid for any composite geometry. Properties looked at are mechanical, 
such as stiffness, eigenstrain/stress (e.g. shrinkage and thermal expansion), and phy-
sical, such as various conductivities with respect to heat, electricity, and diffusion. 
‘Local’ property solutions applying for specific composites are obtained from the 
global solutions introducing geometry specific, so-called shape functions. 
The geometrical concept applied includes simple geometrical models (such as sphe-
res, discs, and fibers) on which well-known composite theories from the literature 
are based. Examples are presented, demonstrating a very satisfying agreement be-
tween material properties determined experimentally and such properties predicted 
by the theory considered. 
In a special section of this paper the theory is examined with respect to its potential 
with respect to materials design. Examples are presented, demonstrating how the pre-
diction method can be inversed to determine types of composite geometry from pre-
scribed composite properties, such as Young’s moduli and conductivities. 
A software (‘COMPREDES’) is prepared with application programs covering both 
the prediction aspects and the design aspects of the method presented. On request 
this software is available for the reader who has a special interest in the subjects con-
sidered. 
Keywords: Composite materials, composite geometry, property prediction, design of 
geometry for prescribed properties. 

1. INTRODUCTION 
The present paper is based on a composite theory for isotropic composite materials 
presented by the author in (1,2) by which ‘global’ solutions to composite problems 
can be determined for any composite, irrespective of geometry. ‘Local’ solutions ap-
plying for composites with specific geometries are subsequently obtained from the 
global solutions introducing so-called shape functions. 

Examples are presented in (1,2), demonstrating a very satisfying agreement between 
material properties determined experimentally and such properties predicted by the 
theory developed. 

The geometrical concept applied includes simple geometrical models (such as sphe-
res, discs, and fibers) on which well-known composite theories from the literature 
are based. This means that composite properties predicted by the author’s theory are 
consistent with such predicted by authors such as Hashin/Shtrikman (3,4), Hill (5), 
Maxwell (6), Böttcher/Landauer (7,8), and Budiansky (9). Furthermore, the theory 
is consistent with theories for special particulate composites (with ellipsoidal inclu-
sions) such as developed by Christoffersen, Levin, and Stang (10,11,12). 

The ‘global’ feature of the theory means that it has a potential with respect to mate-
rials design. In order to study this potential more closely, an operational summary 
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of the author’s composite theory is presented in the first part of this article. Some 
studies on materials design are then presented in the second part. 

Remark: It is not the purpose of the present paper to consider viscoelastic composi-
tes. Readers especially interested in such materials are referred to (1,2) where the 
results presented in this paper are generalized to include viscoelastic composites.  

1.1 General conditions 
The composites considered are isotropic mixtures of two components: phase P and 
phase S. The amount of phase P in phase S is quantified by the so-called volume con-
centration defined by c = VP/(VP+VS) where volumes are denoted by V. In general, 
flexible phase geometries are considered which can adjust them selves to form a 
tight composite. The adjustment can be thought of as the result of a melting- or 
compaction process. 

It is assumed that both phases exhibit linearity between response and gradient of po-
tentials, which they are subjected to. For example: Mechanical stress versus deformati-
on (Hooke's law), heat flow versus temperature, flow of electricity versus electric po-
tential, and diffusion of a substance versus concentration of substance. 

The composite properties specifically considered are stiffness, eigenstrain, and various 
conductivities as related to volume concentration, composite geometry, and phase pro-
perties such as Young's moduli EP and ES (with stiffness ratio n = EP/ES), eigenstrains 
λP and λS, and conductivities QP and QS (with conductivity ratio nQ = QP/QS). Further 
notations used in the text are explained in the list of notations at the end of the paper.  

In general the following assumptions are introduced: 

-   For simplicity (but also to reflect most composite problems encountered in practice) 
stiffness and stress results presented exhibit elastic phase behavior with Poisson’s rati-
os ν = 0.2 (in practice ν ≈ 0.2). This means that, whenever stiffness and stress expres-
sions are presented, they can be considered as generalized quantities, applying for any 
loading mode: shear, volumetric, as well as uni-axial. For example, E/ES can also be 
used to predict the composite shear modulus, G/GS, and the composite bulk modulus, 
K/KS, normalized with respect to the phase S properties. In a similar way the phase 
stresses1), σP/σ and σS/σ, also apply independently of loading mode as long as both 
phase stress modes (σP,σS) and composite (external) stress modes (σ) are the same. 

-   Not to exaggerate our present knowledge of composite geometries it has, delibe-
rately, been chosen to keep geometry described by simple mathematical expres-
sions. 

Formally, the original theory in (1,2) is simplified very much by these assumptions: 
Only the volumetric analysis, for example, has to be considered - and the tensor no-
tation can be dropped. 

Remark: Composites, which do not comply immediately with these general condi-
tions, can often be considered by easy modifications (1,2) of the theory presented. 
Examples are: particulate composites with non-flexible particles (causing self-in-
flicted voids), incomplete phase contact, and incomplete impregnation. 

                                                 
1.   As in (1,2), phase stress and phase strain are defined in this paper by their respective volume ave-
rages in phase considered. 
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1.2 Global composite properties 

Figure 1. The overall influence of phase P geometry on the geo-functions, θ, for stiffness
and, θQ, for conductivity. Phase P being spheres in a continuous phase S (CSAP) is defined
by θ ≡ 1 and θQ ≡ 2 respectively. Phase S being spheres in a continuous phase P (CSAS) is
defined by θ ≡ n and θQ ≡ 2nQ respectively. Composites with geometries between these ex-
tremes have θ  and θQ in shaded areas. 

As previously mentioned, the theory in (1,2) predicts global solutions for composite 
problems. Examples are presented in Equations 1 - 4 with symbols explained in the list 
of notations at the end of this paper. The influence of geometry on these solutions is 
‘hidden’ in so-called geo-functions, θ and θQ, presented in Section 3.2 of this paper. 
The overall influence of geometry on these functions is illustrated in Figure 1. 

 

Eigenstrain (linear)
1/e - 1

λ =  + ∆λ   ;    (∆λ =  - )λ λ λS P S
1/n - 1

Eigenstress (hydrostatic) (3)
5 c(1/n - 1) - (1/e - 1) c

ρ  = - E ∆λ    ;   ρ  = - ρP PS S23 1 - cc(1/n - 1)

S tre s s d u e to e x te rn a l lo a d (σ )

n (1 +  θ ) n  +  θσσ SP  =     ;    =  (2 )
σ n  +  θ [1 +  c (n  - 1 )] σ n  +  θ [1 +  c (n  - 1 )]

)

( )

(

=

=
S

P
Q

S

E

Q
n

Q

e  =   =  n
E n  +  θ  -  c ( n  - 1 )S

C o n d u c t i v i t y : ( 1 )
 +  [ 1 +  c (  -  1 ) ]n θ nQ Q Q Qq  =   =  

 +   -  c (  -  1 )Q n θ nQ Q QS

PE
S t i f f n e s s :

n  +  θ [ 1 +  c ( n  - 1 ) ]E

Remark: Equations 2 and 3 are presented, mainly because of their significance with 
respect to composite design in general. They are not further considered in this paper 
because they are of no immediate interest for the main topics studied. 

1.2.1 Bounds on stiffness and conductivity 
The above stiffness- and conductivity predictions are bounded as follows between the 
exact solutions for the CSA composites illustrated in Figures 2 and 3: 
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≤

≤

S t i f f n e s s - b o u n d s
n  +  1  +  c ( n  -  1 ) E 2  +  c ( n  -  1 )

   e  =     <   n
n  +  1  -  c ( n  -  1 ) 2 n  -  c ( n  -  1 )E S

v a l i d  f o r  n  >  1 ;   r e v e r s e  s i g n s  w h e n  n  <  1
( 4 )

C o n d u c t i v i t y - b o u n d s
 +  2 [ 1  +  c  (  -  1 ) ]n nQ Q   q  

 +  2  -  c (  -  1 )n nQ Q

3  +  2 c  (  -  1 )Q n Q=   <  n Q 3  -  c (  -  1 )Q n nQ QS
v a l i d  f o r   >  1   ;   r e v e r s e  s i g n s  w h e n   <  1n nQ Q

 
The stiffness bounds are obtained from Equation 1 introducing θ ≡ 1 and θ ≡ n re-
spectively. The conductivity bounds are obtained introducing θQ ≡ 2 and θQ ≡ 2nQ 
respectively. The bounds such determined are the same as can be obtained from the 
studies made by Hashin and Shtrikman in (3) on composite stiffness and in (4) on 
composite conductivity. The left side conductivity expression in Equation 4 equals 
the well-known Maxwell relation (6) for electrical and magnetic permeability of 
particulate composites with spherical particles. The Hashin/Shtrikman’s bounds are 
subsequently referred to by H/S. 

Remarks: We notice in this context that the composite theory developed in (1,2) is 
based on the concept that any isotropic composite geometry is a station on a geo-
path moving from the CSAP geometry shown in Figure 2 to the CSAS geometry 
shown in Figure 3. (CSA is an abbreviation for the composite model, Composite 
Spheres Assemblage, introduced by Hashin in (13)). It is emphasized that the phase 
numbering P, S, throughout the paper, keeps consistent with this geometrical con-
cept. 

Figure 3. Composite Spheres Assemblage
with phase S particles, CSAS. 

Figure 2. Composite Spheres Assemblage
with phase P particles, CSAP. 

2. COMPOSITE GEOMETRY 
2.1 An overview 
Geometries in a composite changes as the result of volume transformations associated 
with increasing phase P concentration. We will think of changes as they are stylized in 
Figure 4: At increasing concentration, from c = 0, discrete phase P elements agglome-
rate and change their shapes approaching a state at the so-called critical concentration, 
cS, where they start forming continuous geometries. Phase P grows fully continuous 
between cS and the second critical concentration, cP > cS, such that the composite geo-
metry from the latter concentration has become a mixture of discrete, de-agglomera-
ting, phase S particles in a continuous phase P. 
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In a complementary way the geometry history of phase S follows the history of phase 
P and vice versa. So-called shape functions (µP,µS) quantify the geometrical changes 
between c = 0 and c = 1. Shape factors (µP

o,µS
o) and (µP

1,µS
1) denote shape function 

values at c = 0 and at c = 1 respectively. 

At fixed concentrations the following terminology is attached to the various stages of 
geometry changes just explained: DC means a discrete phase P in a continuous phase 
S. MM means a mixed phase P geometry in a mixed phase S geometry, while CD 
means a continuous phase P mixed with a discrete phase S. 

 

Figure 4. Geometrical significance of shape
functions: (µP,µS) = (+,-) means a discrete
phase P in a continuous phase S. (µP,µS) =
(+,+) means that both phases P and S
appear with a mixed geometry. (µP,µS) =
(-,+) means a continuous phase P mixed
with discrete phase S elements. Black and
gray signatures denote phase P and phase S
respectively. (µP

o,µS
o,µP

1,µS
1) are so-called

shape factors, (cP, cS) are so-called critical
concentrations. 
The so-called geo-path factor, a, is explained
in the subsequent Section 2.2.2. 

Remarks: We notice that MM-geometries (if phase P are pores) in general are part-
ly impregnable. This means that percolation2) in phase P exists in composites with c 
> cS. Percolation is complete for c ≥ cP. Porous materials have lost any coherence in 
this concentration area with no stiffness and strength left. Obviously, the phenome-
non of percolation develops between the two critical concentrations. In Table 1 gray 
shadings indicate phase P percolation. We assume that percolation varies linearly 
from being 0 at c # cS to being 100% at c > cP. 

The MM geometry includes a so-called CC geometry consisting of a continuous 
phase P mixed with a continuous phase S. In this case, of course, percolation in 
phase P is 100% already at c ≥ cS. 

2.2 Classification of composites 
Formally the geometries explained above can be shifted along the concentration 
axis, c. A composite may develop from having a DC geometry at c = 0 to having a 
MM geometry at c = 1. Such composite geometries, with cP > 1 and 0 < cS < 1, are 
named DC-MM geometries. Other composites may keep their DC type of geometry 
all the way up to c = 1 in which case the composite geometry is denoted as a DC-
DC geometry, with both critical concentrations > 1. The specific geometry outlined 
in Figure 4 changes from DC to CD geometry which makes it a DC-CD geometry 
with both critical concentrations in c = 0 - 1. 

                                                 
2.   Percolation is connectivity of a phase across a microstructure. There is no percolation in a discre-
te phase – and full percolation in a continuous phase. 
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The various types of composite geometries, or simply composites, defined in this 
way are listed in Table 1 with linear shape functions introduced as explained in the 
subsequent Section 2.2.1. For practice we introduce the following short sub-division 
of composites: 

Particulate composites are defined by the former three rows in Table 1. They ha-
ve particles in a continuous matrix geometry (DC) at small concentrations. 
Lamella composites are defined by the latter two rows. They have mixed phase P 
geometry in a mixed phase S geometry (MM) at low concentrations. 

 

PARTICULATE COMPOSITE EXAMPLES 

DC c 1S >  

Particulate composite (concrete, 
mortar). Extremely high quality 
of grading (approaching CSAP 
composites). 
Pore system: Not impregnable. 
Finite stiffness at any porosity 

MM 
o
S1 cS o
P

µ
> > −

µ
 

 

Particulate composite (concrete, 
mortar) with particle interferen-
ce at c = cS. Increasing quality 
of grading is quantified by lar-
ger concentration cS at first 
interference. 
Pore system: Only impregnable 
for porosities c > cS. Finite stiff-
ness at any porosity. 

DC 

CD 

o o
S ScSo o1P S

µ µ
− > > −

µ − µ

 

Mixed powders (ceramics). 

Pore system: Only impregnable 
for porosities c > cS. No stif-
fness for porosities c > cP. 

LAMELLA COMPOSITE  EXAMPLES 

MM 
o
ScS o
P

µ
< −

µ
 

Mixed lamella/foils ("3D-ply-
wood"). 
Pore system: Fully open at any 
porosity. Finite stiffness at any 
porosity. 

MM 

CD 
o o
S ScSo o1P S

µ µ
− < < −

µ − µ
 

Mixed lamella/foils ("3D-ply-
wood"). 
Pore system: Fully open at any 
porosity. No stiffness for poro-
sities c > cP. 
Table 1. Classification of composites: µP
o and µS

o are shape factors. cS and cP are first and se-
cond critical concentration respectively. Shaded areas denote percolation in phase P 
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Remarks: We notice that critical concentrations can be fictitious (outside c = 0 - 1). 
In such cases they do not, of course, have the immediate physical meanings previ-
ously indicated. Formally, however, we do keep these meanings in order to describe 
in an easy way, how composite geometry changes with phase concentrations – and 
how ‘fast’ phase elements interact with each other (interaction increases with slopes 
of shape functions). 

2.2.1 Description of composite geometry 
As recommended in Section 1.1, simple mathematical expressions are preferred for 
the description of composite geometry. As such we chose from (1,2) the simple rela-
tion in Equation 5 which considers shape functions to vary linearly with phase P con-
centrations with cS, µP

o, and µS
o as independent variables3). 

( ) ( ) / (= −
≤ ≤ ≤ ≤

c co o o o = µ 1 - ;   = µ 1 - with c c shape functions) (5)µ µ P SP SP PS Sc cP S
Truncate to hold - 1 µ 1 and - 1 µ 1P S

µ µ

Implicitly this expression means that types of composite geometries are considered 
to be phase-symmetric with respect to cSYM = (cP + cS)/2. Meaning that the phase 
P/S shape function at c = cSYM - ∆c is similar to the phase S/P shape function at c = 
cSYM + ∆c. (The statement of phase-symmetry applies only ‘inside’ the truncated 
parts of the shape functions). 

2.2.2 Geo-path graph 
The geo-path graph expressed by Equation 6 and shown in Figure 5 is a convenient 
way of describing the type of geometries traversed when the volume concentration 
of phase P proceeds from c = 0 (start of path, µP

o,µS
o) to c = 1 (end of path, µP

1,µS
1). 

The so-called geo-path factor is denoted by a. 
o o
P Sµ + µ = a geo-path (a = µ is geo-path factor) (6)+ µ

 

                                                

P S

Figure 5. Geo-pat = 
a. Numbers in sect

h graph: µP + µS

ion DC indicate as-
pect ratios A = length/diameter o

 
3.   More ’general’ shape functions are presented in (1) with more than three independt variables.  
For practice, however, no significant advantages are obtained by introducing such functions. 

f 
phase P-partic
numbers in sec

les. C ngly, 
tio e a-

orrespondi
n CD indicat

spect ratios of S-particles. 
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The numbers in Figure 5 refer to shape factors for composites ma

, ≤ ≤
≥

The geo-path- factor 0 a 1, increases with length of phase componentsoParticulate composites have shape factors µ a (7)PoLaminar composites have shape factors µ < aP

de with uni-sha-

he requirement of shape 
d in Equation 5 ensures that the basic geometrical con-
 kept: Every phase geometry considered is a station on 

rameters will be discussed more closely - for example with 
respect to the possibility of determining them for practice. 

2.3.1 Geo-path factor 

ped particles with aspect ratios (see figure legend) as indicated. Shaded areas refer 
to shape factors for multi-shaped mixtures defined in the figure. In details shape 
factors are considered in the subsequent Section 2.3. 

We notice that geo-paths orientated according to Figure 5 means that the shape 
function µP decreases with c while µS increases with c. T
function truncation introduce
cept previously introduced is
a path going from a CSAP geometry to a CSAS geometry. 

2.3 Geo-parameters 
In this section the geo-pa

The geo-path factor is considered in this paper as the prime parameter for characte-
rizing a composite geometry. A number of valuable information, summarized in 
Equation 7, are attached to this factor, see also Figure 5. 

 
SHAPE FACTORS AND GEO-PATH FACTOR 

o o o oo
o P SP S

1 < m >
 = < m  ;  =  < m > ; a

1 < >m∞
∞

−
> − =µ +µµ µ

−
 

Discrete shape distribution 
1 i = ( j o, )

> < m mj j,ii=1
is volume fraction of joining aspect ratio Ai i

∞
∞α =∑

α
 

Continuous shape distribution 

0j j

1 1
d (A) ; ( j o, )

m m

∞
= Φ =

< > ∫  ∞

o

3A
(A  1)≤2 3AA  + A + 1 = ;  = (any A)m m2 2A   A + 1 A  + A  13 (A > 1)24A   5A + 4

∞−

−

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

 
 +
Table 2. Determination of shape factors (µP
o,µS

o) when P-particles have discrete or continuous
shape distributions, Φ. The auxiliary quantities ‘m’ are so-called shape parameters explained 
in (1).
2.3.2 Shape factors for particulate composites 

 In 
practice it refers to aggregates ‘smoothened’ out to have ellipsoidal shapes. 

Shape factors for particulate composites can be determined from Table 2 based on 
theories developed in (1). The aspect ratio is defined by A = length/diameter of par-
ticles: Spheres (compacts) have A = 1, long particles have A > 1, and flat particles 
have A < 1. Theoretically the term aspect ratio refers to an ellipsoidal particle.
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Remarks: Explicitly, only shape factors in the DC-section of Figure 5 are conside-
red in Table 2. According to (1), however, shape factors in the CD-section can easi-
ly be calculated as shown in Equation 8. 

o oDetermine (µ ,µ ) from Table 2 with S-particles shape distribution (8)P S
1 1 o oThen (µ ,µ ) = (µ ,µ )P PS S

We re-call that the terms, uni- and multi-shaped particles used in this paper mean 
mixtures of particles with equal shapes (aspect ratios) and mixtures of particles with 
various shapes respectively. They do not refer to size of particles. 

Uni-shape mixture 

≤ ≤
⎛

⎛⎜
⎜⎜
⎝⎜

⎝

3A o      A  1         A  1µ2 Po o + A + 1A =  ;  = -  mixture of uni-shaped particles (9)µ µ2P S o - A + 1A 4  - 3   A > 1µ3   A > 1 P24  - 5A + 4A
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Figure 6. Shape factors for particulate compo-
site with uni-shaped ellipsoidal particles.

Figure 7. Shape factors for particulate
composite with mixed ellipsoidal particles.

For uni-shape particles the shape factors determined by Table 2 reduce as presented 

Mixtures of particles with various as

in Equation 9, illustrated in Figure 6. 

pect ratios will have shape factors in shaded 

hape mixture is the so-called ‘double-shape mixture’ consi-

o be the 

areas of Figure 7, which depend on particle shape distributions as indicated in Table 
2. Two important examples are considered in this paper. The simple double-shape 
distribution presented in the subsequent section – and the more general multi-shape 
distribution presented in Appendix A. 

Double-shape mixture 
The most simple multi-s
sting of one group of uni-shaped particles mixed with another group of uni-shaped 
particles. This mixture can be considered directly by Table 2, section ‘discrete shape 
distribution’. The results of a double-shape mixture analysis can be organized as de-
monstrated in Figure 8 with the geo-path factor, a, as independent variable. 

As previously mentioned, the geo-path factor is considered in this article t
prime parameter for geometry description. It is therefore very convenient to keep 



this parameter as an independent variable in any shape factor analysis – also in the 
general analysis for multi-shape mixtures presented in Appendix A. 
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Figure 8. Double-shape mixture of A1 = 0.2 
and A2 = 15. A shape factor of µP

o = 0.57 is 
observed at a geo-path factor of a = 0.4 to-
gether with a volume fraction α2 = 42% of 
aspect ratios A2.

 
2.3.3 Shape factors for laminar composites 
To day, shape factors for lamella composites can only be determined by numerical 
means such as by FEM methods or by experiments: Construct a model of the com-
posite to consider. Determine stiffness at various concentrations, c. Then use the de-
sign procedure subsequently presented in this article to determine the shape functi-
ons (including shape factors) associated. The shape factors for the CROSS-material 
considered in Section 5.1 has been determined in this way. 

2.3.4 Critical concentrations versus interaction 
Interaction 
In composite theory the term "no interaction between phase elements" means that a 
stress-strain analysis of a phase element can be made disregarding the presence of 
"neighboring" elements. Geometries involving no interaction between phase elements 
are described by constant shape functions. The presence of interaction (variable shape 
functions) cannot be clearly demonstrated as it is mixed up with the effect of geometri-
cal changes. 

In the present study the term "interaction" is used quite practically: The influence of 
geometry in general is considered as the joint influence of load induced interaction 
and geometrically induced interaction. ‘Complete’ interaction is obtained at real cri-
tical concentrations (in c = 0-1) where geometries change from particulate to mixed. 
Geometrically induced interaction is anticipated to be overriding when critical con-
centrations are real, while load induced interaction is anticipated to be overriding 
when critical concentrations are non-real (outside c = 0-1). 

Critical concentration 
Critical concentrations depend very much on the processing technique used to pro-
duce composites. As we do not, to day, know very much about the influence of pro-
cessing on phase geometry we have to trust estimates based on experience, experi-
ments, and general observations such as: At concentration cS, porous materials (P-
pores) become very stiff when impregnated with a very stiff material. Percolation 
starts at cS. The critical concentration cS can also be thought of as the concentration 
at first serious interference of phase P (starting to create a continuous skeleton). In a 
particulate composite, cS is the solid concentration of a tightly packed pile of phase 



P particles. Obviously, critical concentrations in particulate composites are closely 
related to particles size distributions. 

At the second critical concentration, cP > cS, the composite phase S elements beco-
me completely wrapped in a matrix of phase P. Porous materials loose their stiffness 
and strength at cP because phase P has become a continuous, enveloping, void sy-
stem. 

2.3.5 Underlying geometry 
Some analytical stiffness/conductivity solutions presented in the literature are not 
clearly defined with respect to composite geometry. A method is developed in (1) to 
reveal the underlying geometry directly for such solutions. The method is summari-
zed and demonstrated in Appendix B from which the geo-parameters presented in 
Table 3 are reproduced. 

Author Phase P geometry a µP
o cS

Budiansky (9) Spheres 0 1 0.5 

Stang (12) Very long fibers 0.94 0.74 -∞

Table 3. Underlying geometry for a particulate composite (Budiansky) and a laminar com-
posite (Stang).
3. PREPARATION OF COMPOSITE ANALYSIS 
3.1 Type of analysis 
Based on the geometrical information gathered in Chapter 2 two types of composite 
analysis can now be performed:  

1) A prediction analysis where composite properties are predicted from known 
composite geometry. 

2) A design analysis where composite geometries are searched which ‘produce’ 
given composite properties. 

For both these analysis shape functions (µP,µS) and geometry functions (θ,θQ) are 
required as expressed by the subsequent Equations 10 and 11. 

3.2 Shape- and geometry functions 
As previously indicated, shape functions quantify the specific types of geometries 
considered (e.g. DC-CD, DC-MM, and others). Shape functions are expressed by 
Equation 10, which is identical to Equation 5 – with independent variables, howe-
ver, changed to a, µP

o, and cS, introduced from Table 4. The geometry functions, θ 
and θQ, developed in (1,2) are subsequently obtained introducing these shape functi-
ons into Equation 11. 

( ) ( )
≤ ≤≤ ≤

c co o = µ 1 -  ;   = µ 1 - shape functionsµ µP SP Sc cP S
Truncate to hold - 1 µ 1 and - 1 µ 1 (10)P S

c o o o= c /(1 - a/µ ) ; µ = a - µP S P PS

Remarks: We notice that geometry in conductivity analysis is considered by the sa-
me shape-functions (µ) as in stiffness analysis. Theoretically, this procedure is not 
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quite correct. Basically an analogy tells that theoretical expressions developed to 
predict the bulk stiffness of a composite can also be used to predict conductivity of 
that composite, only by introducing both Poisson’s ratios to be 0. The existence of 
such an analogy is clearly observed from the work of Böttcher (7) on composite die-
lectric constants, and from comparing the works on dielectric properties by Hashin 
(14) and Hashin and Shtrikman (4) on CSA materials with the same authors analy-
sis (13,3) on stiffness of such materials. Numerically, application of the analogy just 
considered will influence slightly the determination of shape functions to be used in 
conductivity analysis. However, as stated in (1), it works as a fine approximation 
for practice to keep these functions, as they are determined for stiffness analysis. 

⎡ ⎤
⎢ ⎥⎣ ⎦

G eo - function for  stiffness analysis :
1 E2 Pθ  =  + n  + (  + n  + 4n(1 -  - )   ;  n = µ µ µ µ ) µ µP S P S P S2 E S

G eo - function for  conductivity  analysis : (11)

2 =  +  + (  +  + 4 (1 -  - )   ;  µ µ µ µ ) µ µθ n n nQ Q Q QQ P S P S P S
Q P = n
Q S

Geo-path factor a Type of composite 
(at c = 0) 

Shape factors 
(consult Chapter 2.3) 

0 ≤ a ≤ 1 
Increasing with longer components

Particulate (DC): µP
o > a 

Lamella (MM):    µP
o < a µP

o µS
o = a - µP

o

Composite Crit. concentration 

DC-DC c 1S >  

DC-MM o o1 c /S S P> > −µ µ  

DC-CD o o o o/ c /(1SS P S S−µ µ > > −µ − µ )  

MM-MM o oc /S S P< −µ µ  

MM-CD o o o o/ c /(1−µ µ < < −µ − µ )  

cS cP = 
cS

o1 a / P− µ
 

SS P S S

Table 4. Algorithm for determining the geo-parameters needed for establishing the shape
functions by Equation 10. Dark shadings indicate parameters, a,µP

o,cS, to introduce direct-
ly. Light shadings indicate derived parameters. Blank cells are comments and explanations.
4. MATERIALS DESIGN 
The fact that composite properties depend very much on composite geometry has been 
justified/demonstrated in a number of examples, presented in (1). It seems then justifi-
ed to state, that the quality of the present theory to work with global descriptions of 
composite geometries qualifies it to be used in design of composite materials, mea-
ning that the theory has the potential of predicting composite geometries which will 
‘produce’ prescribed composite properties.  

We will explore this statement, performing an inverse analysis of the composite ex-
pressions previously presented. Keeping our source materials, Phase P and Phase S, 
such analysis can be made with the following results applying for the simple geo-
path description, µP + µS = a, previously introduced.  
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4.1 Geometry versus composite property 
With a prescribed Young’s modulus of E, or conductivity Q, at volume concentrati-
on c, the shape function values are determined by Equations 12 derived from Equa-
tions 1 and 11. 

With two prescribed Young’s moduli (E1,E2), or two conductivities (Q1,Q2), at con-
centrations (c1,c2), two accurate shape function values can be determined by Equati-
on 12. Auxiliary expressions for this procedure are presented in Appendix C at the 
end of this paper. Then, full shape functions (µP,µS) can be extrapolated using that 
shape functions vary linearly with volume concentrations, see Figure 4. The better 
extrapolated shape function values are always those between the accurate ones de-
duced directly with Equation 12 (Appendix C). 

⇒

⇒

Stiffness
[n - c(n - 1)]e - n n(1 - a) + θ (a - θ )

θ  = µ  =   and µ  = a - µS P1 + c(n - 1) - e θ (1 - n)
Conductiv ity (12)

[n  - c(n  - 1)]q - n 4n (1 - a) + θ (2a - θ )Q Q Q Q Q Qθ  = µ  =   anQ S1 + c(n  - 1) - q 2θ (1 - n )Q Q Q
d   µ = a - µP S

S

 
Extrapolated shape functions may become greater than 1 or less than –1 at low and 
high volume concentrations. This means that CSA geometries are approached at 
these concentrations. In such cases, the shape functions must be truncated to hold -1 
≤ µ ≤ 1 before using them for prediction purposes. This feature has previously been 
discussed in Section 2.2 – and will be demonstrated in a subsequent section (5.2.5). 

We notice that several geometries can be predicted by Equation 12: Geometries 
with longer basic components are predicted with increasing geo-path factors in 0 ≤ 
a ≤ 1. 

Important note: It is emphasized that prescribed quantities, of coarse, must not vio-
late the property bounds presented in Equation 4. 

4.2 Processing model 
As previously indicated, the composite geometry starts at concentration c = 0 with 
shape factors µP

o and µS
o. It ends at c = 1 with shape factors, µP

1 and µS
1, which are 

easily calculated by Equation 13. 
1 o o 1 oµ = µ +(a - µ )/c ; µ = (a - µ )(1 - 1/c ) (13)P P P PS S S

 
When c proceeds from 0 to 1 the geometry changes between these extremes as outli-
ned in Figures 4 and 5. As a hypothesis we may think of the composite geometry (µP, 
µS) developing (being processed) as a composite made by compaction of a ‘pile’ of 
phase P elements with shape factors (µP

o, µS
o), mixed with a ‘pile’ of phase S 

elements with shape factors (µP
1, µS

1), such that 

o o 1 1(µ , µ ) = (1 - c)*(µ , µ )+ c*(µ , µ ) (14)P P PS S S
 
As usual the volume concentration of phase P is denoted by c. We notice that critical 
concentrations, cP where µP = 0, and cS where µS = 0, are self-defined by Equation 14. 
The proper basic shapes of phase elements (prior to compaction) are determined by 
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an inverse shape factor analysis (such as aspect ratios as a function of shape fac-
tors). 

Remarks: We re-call that (µP
o, µS

o) quantifies the geometry of a dilute suspension of 
phase P. With no interaction between phase P-elements the composite geometry (µP, 
µS) stays at (µP

o, µS
o). With interaction between phase P-elements, (µP, µS) varies with 

concentration, c. 

The processing model explained is consistent with a geometrical model implicitly used 
by Budiansky (9) in his classical analysis of composites made of phase P spheres mix-
ed with phase S spheres. The composite geometry in the Budiansky analysis is presen-
ted in Figure B1 (Appendix B). 

4.2.1 Present work 
It is obvious from Section 2.3 that processing models can only be suggested for DC-
CD composites4). An accurate inverse shape factor analysis cannot, presently, be per-
formed in the MM section of Figure 5. Only tentative/inaccurate answers can be given 
to the question: Which mixed geometry is associated with known shape factors in the 
MM section? More research is needed in this area (see Section 2.3.3). 

Because of this lack of generality only theoretical composite geometries are presen-
ted in the ‘illustrative’ examples shown in the following Section 5. Exceptions are 
DC-CD composites where the conductivity of binary metallic mixtures, chloride 
diffusitivity of HCP, and stiffness of powder composites, respectively are conside-
red. 

5. PREDICTION AND DESIGN – illustrative examples 
5.1 Basic geometries 
The dotted data in Figure 12 are from high precision FEM-experiments reported by 
the author in (1,15) on stiffness of the two composite models outlined in Figures 9 
and 10. 

Figure 10. Stacked CROSS-elements.
(Type MM-MM (CC-CC)). As illustrated:
c = 0.5. 

Figure 9. Stacked TROC-elements. TRun-
cated OCtahedrons. (Type DC-DC)

                                                 
4.   Exceptions are elementary DC-DC and CC-CC composites such as the TROC- and  CROSS-
composites considered in Section 5.1. 
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Plain particulate composites with compact particles are modelled as tight isotropic 
mixtures of TROC-elements (TRuncated OCtahedrons). The composite element is 
reinforced by a centrally placed particle (phase P) the shape and orientation of 
which are similar to the composite element itself. 

Plain laminar composites are modelled as tight isotropic mixtures of CROSS-ele-
ments. A framework of phase P is embedded in a complementary framework of 
phase S. 

Figure 11. Shape functions (µP
o, µS

o, cS) = (1, -1, 3.33) for TROC-composite, and
(µP

o, µS
o , cS) = (0.75, 0.15, -0.25) for CROSS-composite. 

SHAPE FUNCTIONS for CROSS 
composite

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Vol conc - c
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muS

SHAPE FUNCTIONS for TROC 
composite
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Figure 12. Young’s modulus predicted for TROC-composite (left), and for CROSS-
composite (right). Dotted data are from FEM analysis.

 
Analysis 
The theoretical data in Figure 12 are predicted by Equations 1, 10, and 11 with geo-
metry introduced from Figure 11 (reproduced from (1)). In the present notation the 
geometrical description in Figure 11 can be expressed as (a, µP

o, cS) = (0, 1, 3.33) 
for the TROC-composite, and (a, µP

o, cS) = (0.9, 0.75, -0.25) for the CROSS-com-
posite. It is observed that the CROSS-composite is a real phase symmetric composi-
te with cSYM = 0.5. 

Discussion 
An excellent agreement is observed from Figure 12 between stiffness predicted by 
the present theory and stiffness ‘experimentally’ determined. It is noticed that the 
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geo-parameters applied are consistent with the parameters presented in Table 5, 
which is based on Table 4. 

We notice that the CROSS-composite has a shape factor of µP
o = 0.75, which is the 

same as for materials reinforced with very long fibers, see Figure 6. We also notice 
that the TROC-composite is very close to having a CSAP geometry (µP = -µS = 1). 

Table 5. Geo-parameters for TROC and CROSS as estimated from Table 4. 

Composite particle length a µP
o cS

TROC (DC-DC) short (A ≈ 1, sphere) low 1 >1 
CROSS (MM-MM) long (A ≈ ∞, fiber) high 0.75 <-µS

o/µP
o = 1-a/µP

o

5.2 Miscellaneous 
In this section we will evaluate both the prediction- and design methods presented. 
We do that by considering experimental data sets known from the literature. From 
each data set we choose (or interpolate) two sets of concentration versus property 
data to represent ‘prescribed’ data. Then we use Section 4.1 to design which com-
posite geometry can ‘produce’ these data. 

For these geometries we then predict composite properties by the global solutions 
presented in Section 1.2 with shape- and geo-functions introduced as explained in 
Section 3.2. The quality of predicted data to coincide with the rest of the experimen-
tal data considered is a reasonable success criterion for a good description of the 
composite geometry of the test material – and for the reliability of the total compo-
site theory presented in this paper. 

Remark: For reasons previously indicated in Section 4.2.1 processing models will 
only be considered in Sections 5.2.2, 5.2.4, and 5.3.1 where the conductivity of bi-
nary metallic mixtures, chloride diffusitivity of HCP, and stiffness of powder com-
posites respectively are the subjects of analysis. 

5.2.1 Stiffness and conductivity of porous material 
For porous materials the prediction expressions are especially simple. Introducing 
the stiffness ratio, n = 0 and conductivity ratio, nQ = 0, all over, we get, 

 
;

⎧⎧
⎪⎪= =⎨ ⎨

⎪ ⎪
⎩ ⎩

≥S S

o oE Q
E Q

1 - c1 - c for c < co Po 1+ c/[2µ (1 - c/c )]e = q = (15)1+ c/[µ (1 - c/c )] P PP P 0 for c c0 P  

Figure 13. Stiffness of HCP as related to 
total porosity and capillary porosity. 
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Figure 14. Thermal conductivity of Fire-
brick as related to porosity. 
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It is noticed that only the geo-parameters µP
o and cP are needed to predict stiff-

ness/conductivity of porous materials. 

Remark: In this paper the term ’porous material’ also applies to composite materi-
als where phase P has no conductivity, meaning that the conductivity ratio is nQ = 0. 

The experimental data in Figure 13 on stiffness of hardened cement paste (HCP) are 
reported by Helmuth and Turk in (16, cement 15366). The experimental data in Fi-
gure 14 on thermal conductivity of firebrick are reported by Corson in (17). 

Analysis 
Equation 15 predicts the theoretical data in Figures 13 and 14 with the following 
material- and geo-parameters deduced in (1). 

   Solid is gel including gel pores: ES = 32000 MPa, µP
o = 0.40, cP = 1. 

   Solid is plain (bulk) gel solid:    ES = 80000 MPa, µP
o = 0.33, cP = 1. 

   Solid is fired clay:           QS = 0.825 kcal/mhoC, µP
o = 1.0, cP = 0.82 

Discussion 
The geo-parameters just presented are not sufficient to perform a general property 
analysis of the materials considered, such as the influence of impregnation on these 
materials. Table 4 can be used to determine the parameters needed. The results are 
presented in Table 6 with estimated geo-path factors. 

  

Material a µP
o cS

HCP: Cap-pores 0.3 0.4 0.25 
HCP: Tot-pores 0.3 0.33 0.09 

Firebrick 0.4 1 0.49 

Table 6. Complete geometry of HCP and firebrick. 

5.2.2 Electrical conductivity of Binary Metallic mixture 
The experimental data shown in Figure 17 are from tests (18) on the electrical con-
ductivity of Cu2Sb-Sb systems with a conductivity ratio of nQ = QP/QS = 0.27. (Sb 
and Cu2Sb denote phase P and phase S respectively). 
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Figure 15. Predicted shape functions for
composite considered: (a, µP

o, cS) = (0,
0.21 ,0.27)⇒ µS

o = -0.21 and (µP
1, µS

1)
= ( -0.568, 0,568)

Figure 16. Predicted geo-path of com-
posite considered.
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Analysis 
Prescribed data sets are chosen to be (Q1,/Q2)/QS = (0.797,0.468) at (c1,c2) = (0.20, 
0.62). Associated composite geometrical characteristics predicted are presented in 
Figures 15 and 16. For this geometry the solid line in Figure 17 presents the con-
ductivities theoretically predicted for any Sb-concentration. 

Discussion – processing model 
An excellent agreement is observed between experimental and predicted data. From 
comparing Figure 16 with Figure 5 can be estimated that the composite considered 
is a DC-CD composite with the following processing model: Sb-elements of disk 
shapes, A ≈ 0.08, are mixed with Cu2Sb-elements of disk shapes A ≈ 0.25. 

EL-CONDUCTIVITY OF Cu2Sb-Sb

0

0.2

0.4

0.6

0.8

1

0 0.2 0.4 0.6 0.8 1
Sb vol-concentration - c

q 
= 

Q
/Q

S

DESIGN
HS
EXP-STEPH

Figure 17. Electrical conductivity of bina-
ry metallic mixture (Cu2Sb-Sb). 

 
5.2.3 Stiffness of empty and impregnated HCP 
The experimental data shown in Figures 20 and 21 are from tests reported in (19,20) 
on the stiffness of hardened cement paste – before (empty HCP) and after impregnati-
on with Sulphur respectively. 
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Figure 19. Predicted geo-path for the
HCP considered.

Figure 18. Predicted shape factors for the
HCP considered: (a, µP

o, cS) = (0.4, 0.431, 
0.082) ⇒ µS
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(0.053, 0.347)
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Analysis 
The geometry of HCP is determined from the former data (empty HCP): The compo-
nents are phases (P,S) = (capillary pores, cement gel) with ES = 36000 MPa and EP = 0 
MPa deduced in (1). Prescribed stiffness, (E1, E2) = (17200, 8210) MPa at (c1,c2) = 
(0.22,0.42) are chosen from the stiffness experiments on empty HCP. 

The composite geometry with these prescribed stiffness quantities are predicted to 
be as presented in Figures 18 and 19. For this geometry the solid line in Figure 20 
presents stiffness of HCP as predicted theoretically for any capillary porosity. With 
the same geometry, the stiffness of impregnated HCP is predicted as shown in Figu-
re 21. (Modified with respect to an impregnation degree of 82% the Sulphur stiffness 
is EP = 11000 MPa). 

Figure 21. Stiffness after impregnation
of the HCP considered in Figures18-20.
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Figure 20. Stiffness of HCP with geometry 
defined in Figures 18 and 19.

 
Discussion 
The HCP considered is predicted to be a DC-MM composite with a theoretical geo-
metry as described in Figures 18 and 19. 

We re-call that a number of composite geometries can be predicted varying the path 
factor. Apparently the factor chosen (a = 0.4) does reflect very well the fabrication 
technique used in (19,20). Capillary pores grow continuous at c = cS ≈ 8% - and 
stiffness is finite for any porosity, meaning cP > 1. 

An important basis of the theory presented in this paper (geo-parameters are global, 
irrespective of phase properties) is justified very much by the excellent simultane-
ous agreement between experimental and theoretical data demonstrated in Figures 
20 and 21 for both empty and impregnated pore systems. 

5.2.4 Chloride diffusivity of HCP 
The experimental data shown in Figure 23 are from tests reported in (21,22) on the 
chloride diffusivity of saturated cement paste with Silica fume (Si). The source materi-
als, are Phase P (saturated capillary pores) and Phase S (gel substance with Si) have (QP, 
QS)/QP = (1, 0.00008) with QP = 2*10-9 m2/sec. 
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Analysis 
Prescribed data sets are (Q1, Q2)/QP = (0.0013, 0.1072) at (c1, c2) = (0.215, 0.397). These 
conductivities have been chosen from the chloride diffusion experiments mentioned 
above (6% Si). 

The associated composite geometrical characteristics predicted are presented in Fi-
gure 22. For this geometry the solid lines in Figure 23 present the conductivities 
predicted theoretically for any capillary porosity. 

 

 

Figure 22. Predicted geometry for the saturated cement paste considered: (a, µP
o, cS)  =

(0.4, 0.574, 0.242) ⇒  µS
o = -0.174 and  (µP

1, µS
1) = (-0.145, 0.545). 
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Figure 23. Conductivity of saturated cement paste with geometry defined in Figure 22.  

Discussion – processing model 
The HCP considered is predicted as a DC-CD composite with theoretical geometry 
described in Figure 22. According to Section 4.2 we may think of the geometry as 
produced by a compaction of a mixture made of phase P elements and phase S ele-
ments composed as presented in Table 7. 

The results of the inverse aspect ratio analysis with arc-tan distributions are presen-
ted in Figures 24 and 25. 
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Table 7. Shape distributions (before compaction) of phase P and phase S elements which 
produce (a, µP

o) = (0.4, 0.574) and (a, µS
1) = (0.4, 0.545) respectively. 

Double shape distribution Mixture of aspect ratios 
Phase P 58% A = 0.2 42% A = 15 
Phase S 73% A = 0.2 27% A = 30 

Arc-tan shape distribution Average aspect ratio Standard deviation 
Phase P AAV = 1.6 s = 2.9 
Phase S AAV = 1.75 s = 3.0 

Remarks: We re-call that a number of composite geometries can be predicted vary-
ing the path factor. Considering the excellent agreement between experimentally 
obtained and predicted conductivities, is seems appropriate to conclude that the 
path-factor chosen (a = 0.4) does reflect reasonably well the fabrication technique 
used in (21,22). An extra observation supports this statement: The geometries of the 
two HCPs in Figures 18 and 23 seem closely related. 

 

Figure 24. (a,µP
o) = (0.4, 0.574) are ob-

tained for this distribution of P-particles
(voids). Notice that 80% of P-particles have
0.3 < A < 8. 

Figure 25.(a,µS
1) = (0.4, 0.545) are obtained

for this distribution of S-particles (solids). No-
tice that 80% of S-particles have 0.3 < A < 10.

5.2.5 Alternative geometry 
We re-call that a number of composite geometries can be predicted varying the geo-
path factor. We also recall that extrapolated shape functions may become greater 
than 1 or less than –1 at low and high volume concentrations. This means that CSA 
geometries are approached at these concentrations. In such cases, the shape functi-
ons must be truncated to hold -1 ≤ µ ≤ 1 before using them for prediction purposes. 
We will demonstrate these two features in this section. 

We look at the problem already considered in Section 5.2.4: Chloride diffusivity of 
HCP – and we change the basic components to be long pores with a geo-path factor 
of a = 1. A design analysis then shows that the prescribed conductivities (Q1, Q2)/QP 
= (0.0013, 0.1072) at (c1, c2) = (0.215, 0.397) can be obtained in a composite with 
the geometry outlined in Figure 26, which defines a DC-MM composite with a trun-
cation introduced on the µP shape function. The predicted conductivities based on 
this geometry are shown in Figure 27. At low porosities, predicted conductivity is 
influenced by the shape function truncation such that the lower bound (CSA-geo-
metry) solutions are predicted. 
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Figure 26. Predicted geometry for saturated cement paste considered: a = 1 ⇒ (µP
o, 

cS)  = (1.13, 0.21). Where shape function is µP > 1 it is truncated to become µP = 1. 
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Figure 27. Conductivity of the saturated HCP considered with geometry defined in Figure
26. 
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Remark: From the legend of Figure 26 is observed that µP
o > 1 is the immediate re-

sult of a design analysis with Equation 12 (Appendix C). This result, however, is 
used only as an auxiliary parameter to ‘construct’ the proper, truncated, shape func-
tion presented in the figure. 

Discussion 
There are two reasons to consider the composite geometry determined in Section 
5.2.4 (a = 0.4) to be the better one for obtaining the prescribed conductivities previ-
ously mentioned: 1) The agreement between predicted properties and measured pro-
perties is better – and 2) The geometry described in Figure 22 is more close than the 
one described in Figure 26 to be as expected for HCP materials (see Table 6 and Fi-
gure 18). 

5.3 Application of underlying geometries 
5.3.1 Stiffness of a compacted powder composite 
Analysis 
The stiffness of a composite made of compacted spherical powders of phase P and 
phase S spheres is given by the well-known Budiansky’s expression, Equation B3, 
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in Appendix B. It can also be determined by the present theory introducing the sha-
pe functions with geo-parameters from Table 3. Some results are shown in Figure 
28. 

Discussion – processing model 
The results predicted by the present method and predicted by the Budiansky Equati-
on are identical. As indicated, the processing model of the material considered is a 
compacted mixture of phase P spheres and phase S spheres. 
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Figure 28. Stiffness of a composite made of compacted phase P and phase S spheres.
Predicted by the method presented in this paper with geometry from Table 3. 

5.3.2 Conductivity of composite with very long fibers 
Analysis 
The conductivity of the material considered by Stang (12) in his stiffness analysis of 
composites with very long fibers is predicted with geo-parameters from Table 3. 
The result is shown in Figure 29. Phase conductivities are (QP,QS)/QP = (1, 
0.00008) with QP = 2*10-9 m2/sec as in Section 5.2.4. 
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Figure 29. Conductivity of composite with extremely long fibers. Phase conductivities
are (QP, QS)/QP = (1, 0.00008) with QP = 2*10-9 m2/sec. 

Discussion 
The significant influence of composite geometry on conductivity can be seen from 
comparing the conductivities predicted in Figure 23 for a DC-CD composite and in 
Figure 29 for a MM-MM (CC-CC) composite. The most striking difference in com-
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posite geometries between these two composites is the absence of interaction be-
tween fibers in the latter composite; see Section 2.3.4 and Appendix B.  

6. CONCLUSION AND FINAL REMARKS 
A theory has been presented in this paper, by which properties can be predicted for 
composites with arbitrary phase geometries. 

The theory is inversed to predict which type of phase geometries will create prescri-
bed material properties. 

Both versions of the theory are applied successfully on examples of practical rele-
vance, such as: Electrical conductivity of binary metallic mixture, Stiffness of emp-
ty and impregnated HCP (hardened cement paste), and Chloride diffusivity of HCP. 

Future research: Much research has still to be made in the area of composite geo-
metry. Especially, in the field of ‘translating’ theoretical geo-descriptions to de-
scriptions which can be realized in practice. Some suggestions, which still have to 
be further justified, are made in Section 4.2 and exemplified in Sections 5.2.2, 5.3.1, 
and 5.2.4. 

In order to improve/modify the methods presented in this paper, a combined re-
search effort must be made involving both theoretical, including FEM, and techno-
logical/experimental means. Research is also needed with respect to shape distribu-
tions versus size distributions of phase elements. 

7. NOTATIONS 
We notice that the notation used in this paper is similar to the one used in (1). The list 
does not consider less general symbols, which are explained locally. Notations used by 

the author prior to his work in (1) are somewhat different. 
  Abbreviations and subscripts 
   V  Volume 
   P  Phase P 
   S  Phase S 
  No subscript  Composite materials 
   H/S  Hashin/Shtrikman's property bounds 
  EST  Estimate 
   Geo-parameters 
           c = VP/(VP+VS) Volume concentration of phase P 
  µo,µ1  Shape factors 
  µP,µS  Shape functions 
    a  Geo-path factor 
  cP,cS  Critical concentrations 
   θ  Geo-function for stiffness 
   θQ  Geo-function for conductivity 
  Stiffness and other properties 
   E  Stiffness (Young's modulus) 
        e = E/ES  Relative stiffness of composite 
       n = EP/ES  Stiffness ratio 
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   Q  Conductivity (e.g. thermal, electrical, diffusivity) 
       q = Q/QS  Relative conductivity of composite 
    nQ = QP/QS  Conductivity ratio 
   Stress and strain 
   σ  External mechanical stress 
   σP  Phase P stress caused by external mechanical stress 
   σS  Phase S stress caused by external mechanical stress 
   λ  Linear eigenstrain (e.g. shrinkage, thermal expansion) 
    ∆λ = λP-λS  Linear differential eigenstrain 
   ρ  Hydrostatic stress caused by eigenstrain 

Appendix A: Shape factor for multi-shape mixture 
More general multi-shape mixtures are made with continuously shape-distributed 
particles. A convenient distribution (so-called arc-tangent distribution) is presented 
in Equation A1 and Figure A1. Narrower shape distributions (smaller s) produce 
shape factors approaching those presented in Figure 6 (main text) for uni-shape 

⎛ ⎞
⎜ ⎟
⎝ ⎠

AV
AV

/s
2 AΦ = arctan (A is average aspect ratio, s is standard deviation) (A1)
π A

π

mixtures. 

 

 

 

 

Figure A1. General arc-tan shape distri-
bution of particles with an average aspect
ratio AAV and a standard deviation s. As il-
lustrated, s = 3.

Figure A2. Average aspect ratios and shape factors associated with an arc-tan shape 
distribution with a given standard deviation - here s = 4.0. An average aspect ratio of 
AAW = 3.8 and a shape factor of µP

o = 0.43 are observed at a geo-path factor of a = 0.4.
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For a given standard distribution, s, the results of a multi-shape analysis can be or-
ganized as demonstrated in Figure A2 from which the shape factor, µP

o, and the fi-
nal shape distribution with average aspect ratio, A
on of the geo-path factor, a. 

2 2(  - ) + (1 - ) - (1 - )n n θ θ θ n θ θ n θ1 2 2 1 2 2 1 1 ⎫⎪⎪1 2 = µ P (  - ) + (1 - ) - (1 - )n n θ θ θ n θ θ n θ1 2 2 1 1 2 2 2 1 1 stiffness
(1 - ) - (  - )µ µn θ θ1 1 1P P = µ S (1 - )n θ1 1

[n  - c(n  - 1)] - neESTk k kwith θ  = k 1 + c(n  - k

⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭

(EST EST k

(B1)

 with e = e (c,n ) ; k = 1,2)
1) - e EST

2 2
Q2 Q1 Q1 Q2 Q2 Q2 Q1 Q1Q1 Q2

Q1 Q2 Q2 Q1 Q1 Q2 Q2 Q2 Q1 Q1

Q1 Q1 Q1

Q1 Q1

Qk

(θ  - θ ) + θ n (2 - θ ) - θ n (2 - θ )4n n
 = µ P 4n n (θ  - θ ) + 2θ n (2 - θ ) - 2θ n (2 - θ )

conductivity
4n (1 - ) - θ (θ  - )µ 2µP P = µ S 2n (2 - θ )

with θ

⎫⎪⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎪⎭
Qk Qk EST Qk

EST EST Qk
Qk EST

(B2)

[n  - c(n  - 1)]q - n
 = with q = q (c,n ) (k = 1,2)

1 + c(n  - 1) - q

AW, can be determined as a functi-

 u lyi

ns are denoted by eEST = eEST(c,n) for stiffness and by qEST = 

The method works with the complete analytical solutions at two different stiff-
ness/conductivity ratios, (n1, n2) and (nQ1, nQ2) respectively. 

Budiansky (9) derived the following stiffness expression based on a mixture of 
spherical phase P and phase S particles. 

Appendix B: Underlying geometry 
A method is developed in (1) to reveal the nder ng geometry for analytical solu-
tions. The method is summarized in Equations B1 and B2 below. 

The analytical solutio
qEST(c,nQ) for conductivity. Stiffness ratio and conductivity ratio are denoted by n 
and nQ respectively. 
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Figure B1
1 – 2c. Ca

. Underlying DC-CD geometry for the Budiansky’s solution: µP = -µS =
n also be expressed as (a, µP

o, cS) = (0, 1, 0.5).

MM 

DC 

CD
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⎡ ⎤
⎢ ⎥⎣ ⎦EST

S

1 2 2= (1 - n)(1 - 2c)+ (1 - n) (1 - 2c) + 4n Budiansky's stiffness (B3)2
Ee =
E 

The underlaying geometry becomes as presented in Figure B1 predicted by Equati-
on B1 

Stang 
Stang (12) developed stiffness expressions for fiber reinforced materials. We will 
look at his result for materials with extremely long fibers. As his expression is ra-
ther voluminous we just represent it by some examples in Figure B2. The underlay-
ing geometry becomes as presented in Figures B3 predicted by Equation B1 (and 
the original, complete analysis by Stang). 

Remarks: We notice that the composite geometry for the Stang’s solution is a real 
MM-MM (CC-CC) geometry with no critical concentrations. Apparently there is no 
interaction between fibers – shape functions are constants, see Section 2.3.4. As ex-
pected, the shape factor µP

o = 0.74 is very close to the factor (0.75) determined in 
Figure 6 for very long fibers and (0.75) for the CROSS-material considered in Sec-
tion 5.1. 
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Figure B2. Stang’s stiffness solutions for n = 100 and n = 0.01 respectively. 

SHAPE FUNCTIONS

-1.0

-0.5

0.0

0.5

1.0

0.0 0.2 0.4 0.6 0.8 1.0
Vol conc - c

muP
muS

GEO-PATH

-1.0

-0.5

0.0

0.5

1.0

-1.0 -0.5 0.0 0.5 1.0
muP

m
uS

path start
path end

Figure B3. Underlying MM-MM (CC-CC) geometry for the Stang’s stiffness solution
for particulate composites with extremely long fibers: (µP,µS) ≡ (0.74, 0.20), can also
be expressed as (a, µP

o, cS) = (0.94, 0.74, -∞). 
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Appendix C: Numerical determination of shape functions 
The general expressions for deducing composite geometries from prescribed com-
posite properties, stiffness and conductivity, is presented in Equation 12, Section 
4.1. The following expressions reveal geometry from two data sets, (c1, e1), (c2, e2), 
for stiffness and two data sets, (c1, q1), (c2, q2), for conductivity respectively. 

;

[n - c (n - 1)]e - nk kθ = (k = 1,2)k 1+ c (n - 1) - ek k
n(1 - a)+ θ (a - θ )k kµ = ; µ = a - µ (k = 1,2) (C1)Sk Pk Skθ (1 - n)k

c µ - c µc µ - c µ c µ - c µ2 S1 1 S2o o o2 P1 1 P2 2 P1 1 P2µ = ; µ = a - µ c = ; c =P P PS Sc - c µ - µ µ - µ2 1 S1 S2 P1 P2

 

 

;

[n - c (n - 1)]q - nQ Q Qk kθ = (k = 1,2)Qk 1+ c (n - 1) - qQk k
4n (1 - a)+ θ (2a - θ )Q Qk Qk

µ = ; µ = a - µ (k = 1,2) (C2)Sk Pk Sk2θ (1 - n )QQk
c µ - c µc µ - c µ c µ - c µ2 S1 1 S2o o o2 P1 1 P2 2 P1 1 P2µ = ; µ = a - µ c = ; c =P P PS Sc - c µ - µ µ - µ2 1 S1 S2 P1 P2
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