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A Bingham material mixed with stiff particles 
some theoretical aspects 

 

Lauge Fuglsang Nielsen 
Department of Civil Engineering 
Technical University of Denmark 

DK-2800 Lyngby, Denmark 
e-mail: lfn@byg.dtu.dk 

 
Abstract: A method is developed by which the well-known Bingham description of flow in homo-
geneous liquids with yield strength is generalized to apply also for composite Bingham materials. 
In the present context such materials are defined as Bingham materials mixed with very stiff par-
ticles of known shape distributions. Various types of shape distributions are considered. In this 
context, the significance/importance of shape detections in practice is emphasized.. 
In building materials technology such an analysis is of relevance for the description of fresh self-
compacting concretes (SCC). In a special section of the paper some potentials of the theory deve-
loped are demonstrated on some aspects of materials design of SCC. 
Key words: Bingham, Composite Bingham, Shape distribution, Self-compacting concrete (SCC). 

1. INTRODUCTION 
The paper presents a method by which the well-known Bingham description of flow in homoge-
neous liquids with yield stress can be generalised to apply also for composite Bingham materi-
als. In the present context such materials are defined as traditional Bingham materials, mixed 
with very stiff particles of known shape distributions. In practice the composite aspects of a ge-
neralised Bingham description is a major advantage. Only a few parameters are needed to de-
scribe the Bingham behaviour at any composition of the composite considered. Bingham me-
thods normally used need experimental calibration for any new composition. 

The analysis performed in this paper is an improved version of an analysis previously made by 
the author in (1,2). A software, SCC-07, handling most mathemetical operations performed in 
the paper is available on special request to the author.  

Figure 1. Behavior of a Bingham material. τ is
shear stress. τo  is yield stress, and η is viscosi-
ty. γ is angel of deformation.

2. BINGHAM MATERIAL 
Equation 1, illustrated in Figure 1, describes the constitutive equation for a Bingham material 
(3,4). It performs as a liquid with viscosity, η, as soon as the shear stress subjected ,τ, exceeds a 

yield stress of τo. Before that it behaves as a rigid solid, which we may think of as an ideal stiff 

elastic-plastic material with a yield stress, τo. The angle of deformation is denoted with γ. The 

rate of angle deformation is dγ/dt. 
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Experimentally the Bingham parameters can be determined in a number of ways (5). One of the 
most common methods is to deduce them1) from relations, obtained by the so-called coaxial cy-
linder rheometer, between torsional moment and rate of  revolution. 

odγ τ - τ =    Bingham material (1)
dt η

3. COMPOSITE BINGHAM  MATERIAL 
Figure 2 defines a composite Bingham material. It is a mixture of very stiff and strong, non-
flexible particles (P) in a Bingham matrix (S). The volume concentration of particles is defined 
by Equation 2 where V denotes volume. In general subscripts P and S refer to particle phase and 
matrix phase S respectively. A complete list of symbols is presented at the end of this paper. 

P

P S

Vc =    Volume concentration of  particles (2)
 + V V

⎧ ⎛ ⎞
⎪ ⎜ ⎟ ⎧ ⎛ ⎞⎪ ⎜ ⎟ ⎪ ⎜ ⎟⎪ ⎪⎝ ⎠ ⎜ ⎟⎨ ⎨ ⎝ ⎠

⎛ ⎞⎪ ⎪
⎜ ⎟⎪ ⎪⎩⎜ ⎟⎪ ⎝ ⎠⎩

≤
≤

cS

co 1 - for c cµ S cP ooc µp 1 - for c cµ S PS c = ; µ = ; c = -µ SP S P oµcSo S0 for c>c1 - for c>cµ SSP cp

(3)

                                                     

 

Figure 2. Composite Bingham
material. The non-flexible partic-
les need not be of spherical sha-
pes.

Remark: The term ‘non-flexible’ particles means invariable particle shapes. This is contrary to 
a general composite geometry, see Figure 3, where phase geometries adapt to each other at any 
concentration without leaving voids. In the present study, only concentrations c  cS are consi-

dered relevant2). 

Phase geometry and shape functions 
According to a phase-geometrical concept for composites introduced in (6) the phase geometry 
of composite materials can be described by the shape functions (µP,µS) outlined in Figure 3, with 

reference to the geometrical parameters, shape factors (µP
o
, µS

o) and critical concentrations (cP, 
cS). 

The shape functions for a particulate composite with non-flexible particles (such as Bingham 
composites) can be written as follows (6). 

 

 

 

 
1)     A computer program for such deductions can be found in software ‘Selfcompact’ to be downloaded 
from http://www.mat-mek.dk/ (L. Fuglsang Nielsen). 
2)    For curiosity, extended studies involving c > cS (where voids turn up) can be made by a method pre-
sented in (6). 
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Figure 3. A) Composite geometry in general with flexible phase geometries  – and B) Particu-
late composite with non-flexible particles.

 

Critical concentrations 
We notice from Figure 3 that the critical concentration cS is that concentration where well gra-
ded phase P particles first interfere and start forming a continuous phase. cS can also be thought 
of as the concentration of the solid phase in a well-packed pile of particles. Subsequently cS is 
also named interference concentration.The critical concentration cP is a dependent quantity to be 
derived from the other geo-parameters as shown in Equation 3. 

SHAPE FACTORS
o o o

oP S
1 < m >

 = < m  ;  =  < m >
1 < >m∞

∞

−
> −µ µ

−
 

Discrete shape distribution 
1 i = ( j o, )

> < m mj j,ii=1
is volume fraction of joining aspect ratio Ai i

∞
∞α =∑

α
 

Continuous shape distribution 

0j j

1 1 d (A) ; ( j o, )
m m

∞
= Φ =

< > ∫ ∞  

o

3A (A  1)2 3AA  + A + 1 = ;  = (any A)m m2 2A   A + 1 A  + A + 13 (A > 1)24A   5A + 4

∞

⎛⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎜⎝

≤

−

−

 

Table 1. Determination of shape factors when particles have discrete or continuous shape
distributions, Φ. The aspect ratio is defined by A = length/diameter of particles: Spheres
(compacts) have A = 1, long particles have A > 1, and flat particles have A < 1. The auxiliary
quantities ‘m’ are so-called shape parameters explained in (6). 

 

5



Shape factors 
Shape factors can be determined from Table 1 based on theories developed in (6). The aspect ra-
tio is defined by A = length/diameter of particles: Spheres (compacts) have A = 1, long particles 
have A > 1, and flat particles have A < 1. Theoretically the term aspect ratio refers to an ellipsoi-
dal particle. Practically it refers to aggregates ‘smoothend’ out to have ellipsoidal shapes. 

It is emphasized that the terms, uni- and multi-shaped particles, subsequently used mean mixtu-
res of particles with equal shapes (aspect ratios) and mixtures of particles with various shapes 
respectively. They do not refer to size of particles. 

Uni-shape mixture 
For uni-shaped particles the shape factors determined by Table 1 reduces as presented in Equati-
on 4, graphically represented in Figure 4.  

≤ ≤
⎛

⎛⎜
⎜⎜ ⎜⎜ ⎝⎜

⎝

3A o      A  1         A  1µ2 Po o + A + 1A =  ;  = -  µ µ2P S o - A + 1A 4  - 3   A > 1µ3   A > 1 P24  - 5A + 4A

mixture of uni-shaped particles (4)

 

Figure 4. Shape factors for uni-shaped particles. 
(Equation 4).

Multi-shape mixture 
The most simple multi-shaped mixture is the so-called 
‘double-shape mixture’ consisting of one group of uni-
shaped particles mixed with another group of uni-sha-
ped particles. This mixture can be considered directly 
by Table 1, section ‘discrete shape distribution’. 

An example: We have two sets of aggregates – one set 
with aspect ratios A1, and the other set with aspect rati-
os A2. How do the shape factors change with aggregate 
compositions.The answer is presented in Figure 5 for a 
mixture with A1 = 0.1 and A2 = 10. The volume fraction 
of aggregates with aspect ratio A2 is presented in the 

Figure 5. Shape factors for a double-shape mixture
made with aggregate ratios A1 and A2. Upper heavy
line is volume fraction of particles with A2. Associa-
ted shape factors are given by the lower heavy line.
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upper part of Figure 5. An example is: (µP
o
,µS

o) = (0.4, -0.22) for a 50-50% mixture of the 
aggregates applied 

The more general mixtures are made with continuously shape-distributed particles. A conveni-
ent distribution is presented in Equation 5 with applications demonstrated in Figures 6 and 7, 
where Table 1 has been used to predict shape factors. 

 

 
⎛ ⎞
⎜ ⎟
⎝ ⎠

π

AV
AV

/s
Arc-tangent shape distribution

2 AΦ = arctan (A is average, s is standard deviation) (5)
π A

 

Figure 6. Left: Arc-tangent shape distribution with standard deviation s = 3.4 for an aggre-
gate mixture with average aspect ratio, AAV. Notice that 80% of particles have 0.13 < A/AAV <
7.7. Right: Shape factors for such mixtures with various AAV.

Figure 7. Left: Arc-tangent shape distribution with standard deviation s = 1.0 for an ag-
gregate mixture with average aspect ratio, AAV. Notice that 80% of particles have 0.56 <
A/AAV < 1.78. Right: Shape factors for such mixtures with various AAV. 

It is emphasized that shape distributions with a standard deviation of s are considered in general 
(for any shape average) by Equation 5. An example from Figure 6, right figure: With AAV = 1 
the shape factors for a mixture are (µP

o
,µS

o) ≈ (0.4, -0.21), which, incidentally, are similar to the 

values predicted by Figure 5. With AAV = 3 shape factors are (µP
o

, µS
o) ≈ (0.67, -0.07). 

The significance of standard diviations on shape distributions is demonstrated comparing Figure 
6 and 7. It is noticed, as expected, that narrower shape distributions (smaller s) produce shape 
factors approaching those predicted in Figure 4 for uni-shaped mixtures. 

Remark: Another appropriate continuous shape distribution, the so-called log-linear distributi-
on, is demonstrated in Appendix B.  
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4. COMPOSITE PROPERTIES 
With known interference concentration (cS) and shape factors (µP

o
, µS

o) predicted by Table 1, 
shape functions for a composite Bingham can now be calculated by Equation 3. 

Viscosity 
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Figure 8. Spherical particles (A = 1) in a vi-
scous matrix. 

COMPOSITE VISCOSITY
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aggregate concentration - c
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Figure 9. Viscosity of concrete as related to
fraction of coarse aggregates. Further de-
tails are explained in the main text 

⎧ ⎫1+ 2.5c Einstein (accurate dilute)

ments on mixtures made of fluids with finite particle concentrations. Two empirical descriptions 
(Eilers and Brinkman) for such data are presented in Equation 6 reproduced from (8,9). In Fi-
gure 8 these results are compared graphically with the results obtained by the present theory. (A 
= 1 ⇒ (µ

⎪ ⎪
⎪ ⎪⎛ ⎞
⎨ ⎬⎜ ⎟
⎝ ⎠⎪ ⎪
⎪ ⎪⎩ ⎭

2η 1.25c= 1+ Eilers (empirical) spherical particles (6)
η 1 - 1.28cS 3/2(1 - c) Brinkman (empirical)

A at the end of this paper. 

icted for dilute solutions by Equation 5 agrees with Equation 6, first 

grees with data obtained from experi-

 

 

 

he experimental results shown in Figure 9 are from tests presented in (1,10). Concretes with 
various amounts of coarse aggregates were tested at an age of 15 minutes in a coaxial cylinder 

Then composite viscosity can be determined as shown in Equation 5 reproduced from Appendix 

 
The relative viscosity pred

∞ ⎛
∞ ⎜

⎜⎜∞⎝

∞ ∞ϑ ϑ

Arbitrary concentration
 +  - 1µ µ3 P S1 + cθη g   c < c=  with   θ = 2 µg Sη 1 - c               c > cS S

(5)
Dilute composite (very small concentration)

o oµ  + µ  - 1η 3 P S= 1 + c(1+ )  with    =g g oη 2 µS S

expression, developed by Einstein (7) in his study of the viscosity of dilute sugar solutions. 
(Spheres have A = 1 ⇒ (µP

o, µS
o) = (1, -1) ⇒ ϑg

∞ = 1.5).  

The more general prediction of viscosity by Equation 5 a

P
o, µS

o) = (1, -1) - and cS = 0.78 estimated from the Eilers expression for η/ηS = ∞). 

 

 

 
 

T



∞θ (7)

P S

e estimated to be (µ o, µ o) = (0.40, -0.22) from assuming a 50-50% 

1, which is very un-likely to fully characterize the geo-

quation A4 in Appendix A at the end of this paper a yield stress solution is, 

It is hereby assumed that the Bingham material behaves as an elastic matrix with extremely stiff 
particles until a matrix shear stress of τ o is obtained. In other words: The composite starts flow-

etry just as it is when the Bingham material is flow-
ation 5. For a number of reasons we cannot be sure that this assumption 

 modifying the 

also be stated. The present 

oτ = 1+ c go

rheometer (ConTec BML viscometer). Identical mortars were used in all concretes. Two coarse 
aggregate types were used: 1) Glass spheres and 2) a mix of 30% sea dredged and 70% crushed 
aggregates (typical Danish coarse aggregate). Both types of aggregates have an interference 
concentration of cS ≈ 0.65. 

As before, spheres have an aspect ratio of A = 1 ⇒ (µ o, µ o) = (1,-1). The average shape factors 
for the mixed aggregates ar P S
mixture of aggregates with aspect ratios of A1 = 0.1 and A2 = 10, see Figure 5. A mortar viscosi-
ty of  ηS = 2.5 Pa*s has been estimated. 

Remark: A complete investigation of aspect ratios was not made in (1). The few measure-
ments/estimates made tell that any A > 
metry of natural aggregates. In the author’s opinion some ‘symmetry’ around A ≈ 1 must appear 
in shape-distributions for such particles. The very simple assumption (50-50%) made above re-
flects this idea – it does not, however, pretend to tell the truth. An arc-tangent distribution pre-
dicts similar shape factors when the average aspect ratio is AAV = 1, see Figure 6. 

Yield stress 
According to E

τS

S

ing when phase S starts flowing. 

Pree-flow geometry 
Equation 7 presumes a particle phase geom
ing according to Equ
holds. More or less the ‘pre-flow’ geometry is influenced by effects which hold the materials 
structure in a stable state (here as an elastic solid). Special bounds (such as mechanical/physi-
cal/chemical) may have developed between matrix and particles, which have to be broken down 
before flow appears. Such effects add to the composite geometrical complexity. 

Increasing geometrical complexity of a composite is associated with lower (numerically) shape 
functions (6). We assume that the ‘pre-flow’ geometry can be determined by
‘flow’ geometry (Equation 3) as suggested in Equation 8, first expression. Then the yield stress 
becomes as expressed by the second expression, 

⎛ ⎞⎛ ⎞
⎜ ⎟

MM
µµ So oP⎜ ⎟ ≈

⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠
⎛

∞ ∞ ⎜
⎜
⎜∞⎝

µ = µ ; µ = µ with interaction power M 3.5P So oP Sµ µP S
 +  - 1µ µ3 P So  c < τ c S (8)= 1+ cθ with θ = g g 2 µo Sτ               c > cS S

Remarks: It is emphasized that the interaction power M depends on both phases P and S – in a 
way which cannot, solely, be explained by normal shape functions. With identical phase S ma-
trixes, the interaction power, M, probably will have to be calibtrated to aggregate types (glass, 
granite, limestone, etc.). The interaction power indicated in Equation 8 has been determined by 
calibration to the concrete test results previously referred to (1,10). 

It should be mentioned that the assumption of elasticity in the pre-flow state of a Bingham ma-
terial can be disputed. An assumption of ideal stiff plasticity can 
choice has been made in order to get a relativly simple metod for determining the yield stress of 
Bingham composites. 
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The test results in Figure 10 are from the concrete tests (1,10) previously described. A mortar 
yield stress of τS

o = 1.0 Pa has been estimated. The predicted yield stresses in Figure 10 have 

monstrate some potentials of the theory developed. Self-compacting 
at: Which mortar properties must be required in order to develope con-

ry can be characterized by an interaction power of 

oncrete must behave as a Bingham material with 
 indicated in Figure 11. This suggestion is due to 

 
W r to 

assumed that the concrete considered has a vo-

been obtained by Equation 8 with an interaction power of M = 3.5, applying for both types of 
aggregates considered (glass and mixed). 

COMPOSITE YIELD STRESS
150

Figure 10. Yield strength of concrete as rela-
ted to fraction of coarse aggregates. Further

4. APPLICATION 
In this section we will de
concretes will be looked 
cretes with prescribed Bingham parameters. 

It is emphasized that the analysis made is based on material parameters deduced in this paper. 
For example, that the pre-flow phase geomet
M = 3.5. 

Fresh concrete (SCC) versus mortar 
In order to work properly, a self-compacting c
properties quantified inside the ‘border lines’
recommendations presented in (11). 

0

50

100

0 0.2 0.4 0.6 0.8 1

aggregate concentration - c

YI
EL

D
 S

TR
ES

S 
- P

a-

cS
spheres
mixed

Figure 11. Concretes qualified to be self-
compacting concretes. A coarse aggregate

details are described in the main text. 

e will use the theory developed in this pape
oncrete to follow these recommendations: It is 

suggest which mortar properties will cause a 
c

concentration of  c = 0.45 is assumed.

η−τ RELATIONSHIP FOR CONCRETE (c = 0.45)
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Figure 12. Bingham parameters for mortars
which can be used for the SCC defined in
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Figure 11.
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lume concentration, c = 0.45, of coarse aggregates similar to the mixed aggregates previously 
considered ((µP

o, µS
o) = (0.40, -0.22), cS = 0.65). 

It is now predicted that mortars to use for the concretes defined in Figure 11 must exhibit Bing-
ham parameters as shown in Figure 12. 

Remark: A similar procedure can be applied to solve the problem, mortar versus paste, mea-
ning: which paste properties are required in order to develope mortars with prescribed Bingham 

 REMARKS 
escription of the rheology of homogeneous fluids with yield 
n this paper also to include the rheological description of compo-

utions. Various appropriate types of such distri-

s of a composite Bingham material. A materials dependent interaction 

ted has 

h soft particles 

s an alternative to other methods developed by other au-

 Abbreviations and subscripts 
V Volume 

ial 
rs 

n of phase P 
h/diameter of ellipsoidal particle 

ons 

parameters. 

5. FINAL
The well-known Bingham d
strength has been generalized i
site Bingham materials. For practice the advantage of such generalization is obvious: The Bing-
ham behavior of composite Bingham materials can be described at any composition from knowing 
the Bingham properties of the matrix. The traditional composite Bingham descriptions need ex-
perimental calibration at any new composition. 

The geometry of the aggregate phase is considered in the theory by so-called shape functions 
with shape factors determined from shape distrib
butions are considered.  

An hypothesis has been made that particel surfaces act differently (more efficiently) in the ‘pre-
flow’ and the ‘flow’ state
power, M, (to be experimentally determined) has been introduced to consider this effect. 

Future research: Two fields of future research are revealed: 1) The significance of the interacti-
on power, M, has been explained in Section ‘pre-flow geometry’. The hypothesis sugges
to be stronger justified. 2) The significance/importance of shape distributions has been identifi-
ed. Methods for practice have to be developed for measuring such distributions. 

A curiosum: The analysis made in this note on composite Bingham materials with stiff particles 
can easily be generalized to apply also for composite Bingham materials wit
(voids). Only a few obvious modifications have to be introduced (2). This feature might be use-
ful when tailoring the viscosity of composite Bingham materials, for example by modifying the 
matrix properties by air entrainment. 

Application to fresh self-compacing concrete of the theory presented seems worth-while. As 
such the theory may be considered a
thors in the field of SCC - such as in (12,13,14,15,16,17,18). 

6. NOTATIONS 
   
   
   P Phase P 
   S Phase S 
   g Shear 
            No subscript Composite mater
    Geo-paramete
       c = VP/(VP+VS) Volume concentratio
   A Aspect ratio, lengt
            AAV Average aspect ratio 
   φ Distribution of aspect ratios 
   s Standard deviation 
   µo Shape factor 
   µ Shape function 
         cP, cS Critical concentrati
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            θ,ϑ Geo-function 
   M Interaction power 
    Stiffness and other properties (shear) 

 

scous analogy we can determine solutions to a liquid problem from 
tions by replacing shear moduli with viscosities, deformations with 

wo liquids, phase S with 

aterials, phase P with shear modulus 
oes the composite behave? 

osite solutions for shear 

y 
) with shape functions (µ) introduced from Equation 3, Section 3. 

  
Extrem

 

   G Stiffness (Shear modulus) 
  ng = GP/GS Stiffness ratio 
   η Viscosity 
   τo Yield stress 
    Stress (shear)  
   τ Shear stress 

APPENDIX A:  Analogy 
Elastic-viscous analogy 
According to the elastic-vi
the elastic counterpart solu
deformation velocities, and considering stresses as shear stresses (τ). 

In the present context we will look at the Bingham liquid problem: T
viscosity ηS, and phase P with viscosity ηP, are mixed: How does the composite behave? 

Elastic composite: shear modulus and phase stresses 
The elastic counterpart problem to solve is: Two elastic m
GP, and phase S with shear modulus GS, are mixed. How d

The appropriate elastic solution is the one where Poisson’s ratios νP = νS = 0.5 apply, meaning 
that the phases are incompressible (such as in liquids). The comp mo-
dulus and phase stresses are the following developed in (6). 

)

⎪
⎪τ ⎪
⎬
⎪
⎪τ ⎪
⎪
⎭

G  + θ  - c(  - 1)n ng ggS
 + θ elastic composite in generalng gS  = (Phase S stress) wτ  + θ [1 + c(  - 1)]n ng gg

 (1+ θng gP  = (Phase P stress)
τ  + θ [1 + c(  - 1)]n ng gg

P Sg
(A1)ith siffness ratio n = G /G

⎫
⎪

 + θ [1 + c(  - 1)]n ng ggG  =  (Shear modulus)

For particulate composites with non-flexible particles the composite geometry is considered b
the following geo-function (θg

⎡ ⎤
⎢ ⎥⎣ ⎦

3 2θ  =  +  + (  +  + 4 (1 - - )  geo- function (A2)µ µ µ µ ) µ µn n ng g gg P S P S P S4

ely stiff particles 

When phase P is extremely stiff (ng ⇒∞) Equations A1 and A2 reduce as follows 

∞ ∞ ⎫
⎪∞ ∞

⎪⎜∞
⎪⎜⎜∞ ≥ ⎪⎝ ⎭

τ 1 + θg1 P = ; =

(A3)
with very stiff particles  for c < cSwith    θ = 2 µg S

    for c cS

⎪⎪
⎬⎛

G 1 - c τ τ1 + cθ 1 + cθg gS Elastic composite           
 +  - 1µ µ3 P S

τ1 + θ cgG S =    ;
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C

⎛ ⎞ ⎧≡ ⎨⎜ ⎟
⎩⎝ ⎠

10 AV 10 AV

10 AV

Log-linear shape distribution

mixtures, and mixtures with so-called arc-tangent shape distributions. In this appendix an alter-
native to the latter distribution is presented in Equation B1, namely the log-linear shape distribu-
tion demonstrated in Figure B1. 

 
log (A/A )1 0 when log (A/A ) < -sΦ = 1+ (B1)1 when log (A/A ) > s2 s

omposite Bingham material: viscosity and stress 
iscous solution to Equation A3 is the fol-

 
e

r uni-shaped mixtures, double-shaped 

 

. LITERATURE 
                                                     

Following the elastic-viscous analogy the counterpart v
lowing Equation A4, expressing the viscosity of, and the phase S stress in the composite liquid 
considered. 

R mark: We notice that the phase S stress solution applies for both an elastic and a liquid com-
posite. For the composite Bingham material, defined in Sections 2 and 3, this means that this 
solution applies also in the ‘pre-flow’ state (see Section ‘yield stress’). 

APPENDIX B: Log-linear shape distribution 
Shape factors are determined in Section 3 (Table 1) fo

∞ ⎫
⎪
⎪
⎬
⎪

∞ ⎪
⎭

1 + θ cη g
 =  Viscosity

η 1 - cS Liquid with very stiff particles (A4)τ 1S  = Phase S stress
τ 1 + cθg

Figure B1. Left: Log-linear shape distribution with standard deviation s = 1.6 for an aggregate
mixture with average aspect ratio, AAV. Notice that 80% of particles have 0.052 < A/AAV < 19.1.
Right: Shape factors for such mixtures with various AAV. 
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