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Abstract: An operational summary of a composite theory previously developed by the author 
is presented in this paper. ‘Global’ property solutions are presented which are valid for any 
composite geometry. Properties looked at are mechanical, such as stiffness, eigenstrain/stress 
(e.g. shrinkage and thermal expansion), and physical, such as various conductivities with re-
spect to heat, electricity, and diffusion. 
‘Local’ property solutions applying for specific composites are obtained from the global solu-
tions introducing geometry specific, so-called shape functions. Examples are presented, de-
monstrating a very satisfying agreement between material properties determined experimental-
ly and such properties predicted by the theory considered. 
Further support for the author’s theory can be found in his original work: The geometrical con-
cept applied includes simple geometrical models (such as spheres, layers, and fibers) on which 
well-known composite theories from the literature are based. This means that composite pro-
perties predicted by the author’s theory coincide with such predicted by authors such as Has-
hin, Budiansky, Böttcher, and Maxwell. 
In a special section of the paper the theory is examined with respect to its potential with re-
spect to materials design. Examples are presented, demonstrating how the prediction method 
can be inversed to determine types of composite geometry from prescribed composite pro-
perties, such as Young’s moduli and conductivities. 
A software (‘COMPREDES’) is prepared with application programs covering both the pre-
diction aspects and the design aspects of the method presented. On request this software is 
available for the reader who has a special interest in the subjects considered. 
Some ideas for further research in the prediction and design areas considered are suggested 
at the end of the paper. 
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A composite theory and its potential 
with respect to materials design 

Lauge Fuglsang Nielsen∗)
 

 

1. INTRODUCTION 
The present paper is based on a composite theory for isotropic composite materials 
presented by the author in (1,2) by whom ‘global’ solutions to composite problems 
can be determined for any composite, irrespective of geometry. ‘Local’ solutions ap-
plying for composites with specific geometries are subsequently obtained from the glo-
bal solutions introducing so-called shape functions. 

In the author’s original work (1,2) is shown that the theory is consistent with any 
well-known composite theory presented in the literature, such as in Hashin, Budian-
sky, Böttcher, and Maxwell (3,4,5,6). 

The ‘global’ feature of the theory means that it has a potential with respect to materi-
als design. In order to study this potential more closely, an operational summary of 
the author’s composite theory (1) is presented in the first part of this paper. Some 
preliminary studies on materials design are then made in the second part of the paper. 

Some ideas for further research in the areas considered on prediction and design are 
suggested at the end of the paper 

Remark: It is not the purpose of the present paper to consider viscoelastic composi-
tes. Readers especially interested in such materials are referred to (1,2) where the re-
sults presented in this paper are generalized to include viscoelastic composites.  

1.1 General conditions 
The composites considered are isotropic mixtures of two components: phase P and 
phase S. The amount of phase P in phase S is quantified by the so-called volume con-
centration defined by c = VP/(VP+VS) where volumes are denoted by V. It is assumed 
that both phases exhibit linearity between response and gradient of potentials, which 
they are subjected to. For example: Mechanical stress versus deformation (Hooke's 
law), heat flow versus temperature, flow of electricity versus electric potential, and 
diffusion of a substance versus concentration of substance. 

In general, flexible phase geometries are considered which can adjust them selves to 
form a tight composite. The adjustment can be natural (as in concretes), or organic 
(as in bone structures), or it can be the result of a melting processing, or compaction 
(as in sintered powder composites). 

The composite properties specifically considered are stiffness, eigenstrain, and various 
conductivities as related to volume concentration, composite geometry, and phase pro-
perties such as Young's moduli EP and ES (with stiffness ratio n = EP/ES), eigenstrains λP 
and λS, and conductivities QP and QS (with conductivity ratio nQ = QP/QS). Further 
notations used in the text are explained in the list of notations at the end of the paper.  

In general the following assumptions are introduced: 
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- For simplicity (but also to reflect most composite problems encountered in practi-
ce) stiffness and stress results presented assume an elastic phase behavior with Pois-
son’s ratios ν = 0.2 (in practice ν ≈ 0.2). This means that, whenever stiffness and stress 
expressions are presented, they can be considered as generalized quantities, applying for 
any loading mode: shear, volumetric, as well as uni-axial. For example, E/ES can also be 
used to predict the composite shear modulus, G/GS, and the composite bulk modulus, 
K/KS, normalized with respect to the phase S properties. In a similar way the phase 
stresses1), σP/σ and σS/σ, also apply independently of loading mode as long as both 
phase stress modes (σP,σS) and composite (external) stress modes (σ) are the same. 

- Not to exaggerate our present knowledge of composite geometries it has, delibera-
tely, been chosen to keep geometry described by simple mathematical expressions. 

Formally, the original theory in (1,2) is simplified very much by these assumptions: On-
ly the volumetric analysis, for example, has to be considered - and the tensor notation 
can be dropped.  

1.2 Global composite properties 
As previously mentioned, the theory in (1,2) predicts global solutions for composite pro-
blems. Examples are presented in Equations 1 - 5 with symbols explained in the list of 
notations at the end of this paper. The influence of geometry on these solutions is ‘hid-
den’ in the so-called geo-functions, θ, illustrated in Figure 1. 

Figure 1. The overall influence of 
phase P geometry on the geo-function 
θ for stiffness. Phase P being spheres 
in a continuous phase S (CSAP) is 
defined by θ ≡ 1. Phase S being sphe-
res in a continuous phase P (CSAS) is 
defined by θ ≡ n. Composites with ge-
ometries between these extremes have 
θ in shaded area. 
For the geo-function θQ for conducti-
vity: Replace the n-axis with an nQ

axis and θ with θQ. The shaded area 
is bounded by θQ ≡ 2 (for CSAP) and 
θQ ≡ 2nQ (for CSAS). 

S t i f f n e s s :
E n  +  θ [ 1  +  c ( n  -  1 ) ]

e  =   =  ( 1 )
E n  +  θ  -  c ( n  -  1 )S

S tre s s d u e to e x te rn a l lo a d (σ )

n (1 +  θ ) n  +  θσ σP S =     ;    =  (2 )
σ n  +  θ [1 +  c (n  - 1 )] σ n  +  θ [1 +  c (n  - 1 )]

E ig e n s t r a in ( l i n e a r )
1 / e  -  1

λ  =   +  ∆ λ    ;     (∆ λ  =   -  ) ( 3 )λ λ λS P S
1 / n  -  1

                                                 
1) As in (1,2), phase stress and phase strain are defined in this paper by their respective volume 
averages in phase considered. 
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E ig e n s tre s s (h y d ro s ta t ic )
5 c (1 /n  -  1 ) -  (1 /e  - 1 ) c

ρ  =  - E ∆ λ    ;   ρ  =  - ρ (4 )P PS S23 1 -  cc (1 /n - 1 )

 

C o n d u c t i v i t y :
 +  [ 1  +  c (  -  1 ) ]Q θn nQ QQq  =   =  ( 5 )

 +   -  c (  -  1 )Q θn nQ QQS

1.2.1 Bounds on stiffness and conductivity 
The above stiffness- and conductivity predictions are bounded as follows between the 
exact solutions for the CSA composites illustrated in Figures 2 and 3. 

The former bounds are obtained from Equation 1 introducing θ ≡ 1 and θ ≡ n respec-
tively. The latter bounds are obtained from Equation 5 introducing θQ ≡ 2 and θQ ≡ 
2nQ respectively. The bounds such determined are the same as can be obtained from 
the studies made by Hashin and Shtrikman in (7) on composite stiffness and in (8) on 
composite conductivity. The bounds are subsequently referred to by H/S. 

≤

≤

v a l i d  f o r  n  >  1 ;   r e v e r s e  s i g n s  w h e n  n  <  1
( 6 )

C o n d u c t i v i t y - b o u n d s
 +  2 [ 1  +  c  (  -  1 ) ]n nQ Q   q  

 +  2  -  c (  -  1 )n nQ Q

S t i f f n e s s - b o u n d s
n  +  1  +  c ( n  -  1 ) E 2  +  c ( n  -  1 )

   e  =     <   n
n  +  1  -  c ( n  -  1 ) 2 n  -  c ( n  -  1 )E S

3  +  2 c  (  -  1 )Q n Q=   <  n Q 3  -  c (  -  1 )Q n nQ QS
v a l i d  f o r   >  1   ;   r e v e r s e  s i g n s  w h e n   <  1n nQ Q

Figure 2. Composite Spheres Assemblage
with phase P particles, CSAP. 

Figure 3. Composite Spheres Assemblage
with phase S particles, CSAS. 

2. SPECIFIC COMPOSITES 
2.1 Geometry – an overview 
Geometries in a composite changes as the result of volume transformations associated 
with increasing phase P concentration. We will think of changes as they are stylized in 
Figure 4: At increasing concentration, from c = 0, discrete phase P elements agglome-
rate and change their shapes approaching a state at the so-called critical concentration, c 
= cS, where they start forming continuous geometries. Phase P grows fully continuous 
between c = cS and the second critical concentration, c = cP > cS, such that the composi-
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te geometry from the latter concentration has become a mixture of discrete, de-agglo-
merating, phase S particles in a continuous phase P. 

In other words: At concentration cS, porous materials (P-pores) become very stiff when 
impregnated with a very stiff material. At the other critical concentration, c = cP > cS, the 
composite phase S elements become completely wrapped in a matrix of phase P. Porous 
materials loose their stiffness and strength at cP because phase P has become a continu-
ous, enveloping, void system. 

In a complementary way the geometry history of phase S follows the history of phase P 
and vice versa. So-called shape functions (µP,µS) quantify the geometrical changes be-
tween c = 0 and c = 1. Shape factors (µP

o,µS
o) and (µP

1,µS
1) denote shape function valu-

es at c = 0 and at c = 1 respectively. 

At fixed concentrations the following terminology is attached to the various stages of 
geometry changes just explained: DC means a discrete phase P in a continuous phase S. 
MM means a mixed phase P geometry in a mixed phase S geometry, while CD means a 
continuous phase P mixed with a discrete phase S. 

Figure 4. Geometrical significance of shape
functions: (µP,µS) = (+,-) means a discrete
phase P in a continuous phase S. (µP,µS) =
(+,+) means that both phases P and S appear
with a mixed geometry. (µP,µS) = (-,+) means
a continuous phase P mixed with discrete
phase S elements. Black and gray signatures
denote phase P and phase S respectively. (µP

o,
µS

o,µP
1,µS

1) are so-called shape factors, (cP,
cS) are so-called critical concentrations. 
The so-called geo-path factor, a, is explained
in subsequent Section 2.1.2. 

Formally the geometries explained above can be shifted along the concentration axis, 
c. A composite may develop from having a DC geometry at c = 0 to having a MM 
geometry at c = 1. Such composite geometries, with cP > 1 and 0 < cS < 1, are named 
DC-MM geometries. Other composites may keep their DC type of geometry all the 
way up to c = 1 in which case the composite geometry is denoted as a DC-DC geo-
metry, with both critical concentrations > 1. The specific geometry outlined in Figure 
1 changes from DC to CD geometry which makes it a DC-CD geometry with both 
critical concentrations in c = 0-1. 

A composite may develop from having a MM geometry at c = 0 to having a CD 
geometry at c = 1. Such composite geometries, with 0 < cP < 1 and cS < 0, are named 
MM-CD geometries. Other composites may keep their MM type of geometry all the 
way up to c = 1 in which case the composite geometry is denoted a MM-MM geometry, 
with cP > 1 and cS < 0. 

Ideal geometries at c = 0 and at c = 1 of a DC-CD composite are illustrated in Figu-
res 2 and 3 respectively. We notice in this context that the composite theory deve-
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loped in (1,2) is based on the concept that any isotropic composite geometry is a 
station on a geo-path moving from the CSAP geometry shown in Figure 2 to the CSAS 
geometry shown in Figure 3. (CSA is an abbreviation for the composite model, Com-
posite Spheres Assemblage, introduced by Hashin in (3)). 

Remarks: We notice that critical concentrations can be fictitious (outside c = 0 - 1). 
In such cases they do not, of course, have the immediate physical meanings previous-
ly explained. Formally, however, we do keep this ‘explanation’ in order to describe 
in an easy way, how the rate of changing the composite geometry is influenced by 
the processing technique used. 

2.1.1 Classification of composites 
For this paper the description of composite geometries are summarized in Table 1. For 
practice we introduce the following short sub-division of composites: 

Particulate composites are defined by the former three rows in Table 1. They have par-
ticles in a continuous matrix geometry (DC) at small concentrations. 

Lamella composites are defined by the latter two rows. They have mixed phase P geo-
metry in a mixed phase S geometry (MM) at low concentrations. 

Percolation 
We notice that MM-geometries (if porous) are partly impregnable. This means that 
phase P percolation exists in composites with c > cS. Percolation is complete for c ≥ 
cP. Porous materials have lost any coherence in this concentration area with no stiff-
ness and strength left. (Percolation is connectivity of a phase across a microstructure. 
There is no percolation in a discrete phase – and full percolation in a continuous pha-
se). 

Figure 5. Associated shape functions and graphs of percolation and continuous vol-frac-
tions in phase P and phase S. 

Percolation and continuous vol-fraction
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Obviously, the phenomenon of percolation develops between the two critical concen-
trations. In Table 2 gray shadings indicate phase P percolation. We assume that per-
colation varies linearly from being 0 at c # cS to being 100% at c > cP. Numerically, 
percolation is defined as γ = fraction of a phase being continuous. It can be expressed 
by Equation 7, where the so-called geo-path factor, a, is explained in the subsequent 
Section 2.1.2. A graphical representation of Equation 7 is presented in Figure 5. 

 7



⎧⎧
⎪⎪ ⎪

⎨ ⎨
⎪ ⎪

⎪⎩ ⎩
CON CON

0 (c<c ) 0 (c>c )S P
a-µa-µ SPPercolation : γ = (c <c<c ) γ = (c <c<c )S P S PP Sa a

1 (c>c ) 1 (c<c )P S
Continuous volume fractions : c = c * γ c = (1 - c) * γP P S S

(7)

PARTICULATE COMPOSITE  o o1 0P S> µ > −µ > EXAMPLES 

DC c 1S >  

Particulate composite (concrete, 
mortar). Extremely high quality 
of grading (approaching CSAP 
composites). 
Pore system: Not impregnable. 
Finite stiffness at any porosity 

MM 
o
S1 cS o
P

µ
> > −

µ
 

 

Particulate composite (concrete, 
mortar) with particle interferen-
ce at c = cS. Increasing quality 
of grading is quantified by lar-
ger concentration cS at first 
interference. 
Pore system: Only impregnable 
for porosities c > cS. Finite stiff-
ness at any porosity. 

DC 

CD 

o o
S ScSo o1P S

µ µ
− > > −
µ − µ

 

Mixed powders (ceramics). 
Pore system: Only impregnable 
for porosities c > cS. No stif-
fness for porosities c > cP. 

LAMELLA COMPOSITE 1 0  o o
P S> µ > µ > EXAMPLES 

MM 
o
ScS o
P

µ
< −

µ
 

Mixed lamella/foils ("3D-ply-
wood"). 
Pore system: Fully open at any 
porosity. Finite stiffness at any 
porosity. 

MM 

CD 
o o
S ScSo o1P S

µ µ
− < < −
µ − µ

 

Mixed lamella/foils ("3D-ply-
wood"). 
Pore system: Fully open at any 
porosity. No stiffness for poro-
sities c > cP. 

Table 1. Classification of composite materials. µP
o,µS

o are shape factors. cS is the first criti-
cal concentration. The second critical concentration, cP, is deduced by cP = -cS*:P

o/:P
o. Sha-

ded areas denote percolation in phase P. 
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2.1.2 Shape functions 
Shape functions quantify the specific types of geometries considered (e.g. DC-CD, 
DC-MM, and others). After some re-writing of an expression presented in (1) the two 
shape functions can be expressed approximately by Equation 82) where the three in-
put parameters are explained in Equation 9 – and further considered in subsequent 
sections. Notice that the two shape functions are related by the so-called geo-path 
factor a = µP + µS. 

( ) ( )
,≤ ≤P S

oG iven : a , µ , and cSP co o SC a lcu la te: µ = a - µ and c = (8 )PPS o1 - a /µP c co oThen shape functions are : µ  = µ 1 -   ;   = µ 1 - µ SP SP c cP SThen trunca te shape functions to ho ld - 1 µ µ 1

≤ ≤
o > a for particulate compositesPo < a for lamella compositesP

0 a 1 is geo-path factor (increasing with length of phase components)
µ

is shape factor (estimate from Figure 6) (9)
µ
c is first critical concentration (estimate from Table 1S )

Remark: Expression 8 is a simplification of more complete shape functions descri-
bed in (1) where the critical concentration cP and the shape factor µS

o are independent 
geometrical quantities – and where the shape functions are related in a more general 
way then expressed by a simple geo-path factor. However, the simple shape function 
description has been justified in (1) to act as a good approximation in a number of 
composite analyses. 

Table 2. Shape factors for various phase geometries at c = 0. 

Particulate composite (DC-DC, DC-MM, DC-CD) 
Uni-shape particles 

 
23A   A + 1Ao o =      for  A  1 ; 3   for  A > 1 P P2 2 + A + 1 4   5A + 4A A

=
−≤µ µ
−

 

Multi-shape particles 3)

;

is '

∞
∑

⎛ ⎞⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎟⎜⎝ ⎠

-1
o αi   α is volume fraction of AµP i ioµi=1 P,i

o shape factor individually determined for A from section 'uni-shape particlesµP,i i

 

Lamella composites (MM-MM, MM-CD)
oµ a(1- ) withP

0.75-1
basic shapes agglomerating, a geo path factor 0.5 fibres

0
Percolation, 0 - 1

long fibres
discs

discs  

⎧
⎪
⎨
⎪⎩

≈ γ

= − ≈ +

γ ≈

 

 

                                                 
2)   The truncation procedure in Equation 8 causes CSA geometries close to c = 0 and c = 1 to be de-
scribed correctly by, formally, introducing  µP

o > 1. 
3)  This is an approximation of a more accurate (and complicated) expression presented in (1). 
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Shape factors 

Shape factors can be estimated from Table 2 and/or Figure 6 developed on the basis 
of an analysis of dilute particulate composites and a FEM analysis of MM-MM com-
posites in (1). 

For a particulate composite with particles of the same shapes, shape factors can be 
determined from the former section (‘uni-shape particles’) of Table 2. The so-called 
aspect ratio, A = length/diameter of particles. Spherical particles have A = 1. Long par-
ticles have A > 1. Flat (short) particles have A < 1. 

For particulate composites with a distribution of particle shapes (‘multi-shape partic-
les’), shape factors can be calculated by the second section of Table 2. For lamella 
composites shape factors are calculated from the latter section. 

Remark: To be consistent with our intentions stated in Section 1.1 to keep geometri-
cal descriptions simple, we will, subsequently, use Table 2 mainly to frame correct 
orders of magnitudes for shape factors. In general, shape factors will be estimated di-
rectly from Figure 6 respecting the magnitudes (a) of geo-path factors as they are 
presented in Equation 9. 

Geo-path and quantification of processing 
The geo-path graph shown in Figure 6 is a convenient way of describing the type of 
geometries traversed when the volume concentration of phase P proceeds from c = 0 
(start of path) to c = 1 (end of path). The geo-path is easily constructed from the sha-
pe functions. The details of Figure 6 are determined from information presented in 
(1). 

Figure 6. Geo-path graph: µP + µS = a 
Numbers in section DC indicate aspect ratios A = length/diameter of phase P-particles. Cor-
respondingly, numbers in section CD indicate aspect ratios of S-particles. 
Particulate composites: 
Vertical lines: Frayed discs: Mixture of discs and fibers (‘jelly fish’) 
Horizontal lines: Rugged fibers: Mixture of fibers and spheres (‘shark eggs’) 
Lamella composites: 
Light gray: Agglomerating frayed discs with degree of agglomeration = percolation. 
Dark gray: Agglomerating rugged fibers with degree of agglomeration = percolation. 
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We notice that geo-paths orientated according to Figure 6 means that the shape func-
tion µP decreases with c while µS increases with c. Such behavior agrees with the ba-
sic concept of geometry changes previously introduced: Every phase geometry consi-
dered is a station on a continuously change of going from a CSAP geometry to a 
CSAS geometry. 

The geo-path factor, a, is a significant parameter in the shape function description. With 
some confidence we suggest, as a hypothesis, that the geo-path factor can be used to 
quantify different processing techniques.

Critical concentration 
Critical concentrations depend very much on the processing technique used to produce 
composites. As we do not, to day, know very much about the influence of processing on 
phase geometry we have to trust estimates based on experience, experiments, and gene-
ral observations as the ones previously mentioned: At concentration cS, porous materials 
(P-pores) become very stiff when impregnated with a very stiff material. cS can also be 
thought of as the concentration at first interference of phase P (starting to create a conti-
nuous skeleton). At the other critical concentration, c = cP > cS, the composite phase S 
elements become completely wrapped in a matrix of phase P. Porous materials loose 
their stiffness and strength at cP because phase P has become a continuous, enveloping, 
void system. 

3. PREDICTION OF COMPOSITE PROPERTIES 
As previously mentioned, the global composite property solutions presented in Secti-
on 1.2 can be converted to solutions for composites with specific phase geometries 
only by introducing the associated shape functions, µ into the geo-function, θ. The 
conversion is made as explained in Equation 10. 

 

⎡ ⎤
⎢ ⎥⎣ ⎦

G eo - function for  stiffness analysis :
1 E2 Pθ  =  + n  + (  + n  + 4n(1 -  - )   ;  n = µ µ µ µ ) µ µP S P S P S2 E S

G eo - function for  conductivity  analysis : (10)

2 =  +  + (  +  + 4 (1 -  - )   ;  θ µ µ µ µ ) µ µn n nQ Q Q QP S P S P SQ
Q P = n
Q S

4. MATERIALS DESIGN 
The statement that composite properties depend very much on composite geometry has 
been justified/demonstrated in a number of examples, presented in (1). A very satisfying 
agreement between theoretical predictions and experimentally obtained data are obser-
ved. Some examples considered are: Particles mixed into a continuous matrix, com-
paction of powders, production of porous materials, impregnation of porous materi-
als, particulate composites with self-inflicted pores (light clinker concrete), and 
three-dimensional ‘Plywood’ composites, thermal eigenstrain, self-compacting con-
crete, and viscoelastic composites. 

It then seems justified to state that the quality of the present theory to work with glo-
bal descriptions (θ) of composite geometries qualifies it to be used in design of com-
posite materials, meaning that the theory has the potential of predicting composite 
geometries which will ‘produce’ prescribed composite properties.  
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We will explore this statement performing an inverse analysis of the composite ex-
pressions previously presented. Keeping our source materials, Phase P and Phase S, 
such analysis can be made with the following results applying for the simple geo-
path description, µP + µS = a, previously introduced.  

4.1 Geometry versus composite property 
With a prescribed Young’s modulus of E, or conductivity Q, at volume concentration 
c the shape function values are determined by Equations 11 derived from Equations 
1, 5, and 10. 

With two prescribed Young’s moduli, or two conductivities two accurate shape func-
tion values can be determined. Then, full shape functions (µP,µS) can be extrapolated 
using that shape functions vary linearly with volume concentrations, see Figure 1. 

⇒

⇒

Stiffness
[n - c(n - 1)]e - n n(1 - a) + θ (a - θ )

θ  = µ  =   and µ  = a - µS P1 + c(n - 1) - e θ (1 - n)
Conductiv ity (11)

[n  - c(n  - 1)]q  - n 4n (1 - a) + θ (2a - θ )Q Q Q Q Q Qθ  = µ  =   anQ S1 + c(n  - 1) - q 2θ (1 - n )Q Q Q
d   µ = a - µP S

S

Remark: The better extrapolated shape function values are always those between the 
accurate ones deduced directly with Equation 11. Extrapolated shape functions (as 
just described), may become greater than 1 or less than –1 at low and high volume 
concentrations. This means that CSA geometries are approached at these concentrati-
ons. In such cases, the shape functions must be truncated to hold -1 ≤ µ ≤ 1 before u-
sing them for prediction purposes (see Equation 8). This feature is demonstrated in 
the following example in Section 5.1.2, which also indicates that a number of possib-
le composite geometries are revealed by varying the geo-path factor (processing).  

Important note: It is emphasized that prescribed quantities, of coarse, must not vio-
late the property bounds presented in Equation 6. 

5. EXAMPLES 
5.1 Composite with prescribed chloride diffusivity 
We know from experiments the conductivity of a two-phase composite at two volume 
concentrations. We would like to know the conductivity of the composite at any con-
centration. (The specific conductivity considered is chloride diffusivity of saturated 
cement paste). 

In order to solve this problem we must apply both 1) the design procedure (Section 4) 
and 2) the prediction procedure (Section 3) explained in this paper. 

Source materials: Phase S and Phase P have (QP,QS)/QP = (1,0.00008) with QP = 2*10-9 
m2/sec. 

Prescribed composite conductivities: (Q1,Q2)/QP = (0.0013,0.1072) at (c1,c2) = (0.215, 
0.397). These conductivities have been chosen from chloride diffusion experiments on 
saturated cement paste reported in (9,10) (6% Si). 

This choice has been made in order to justify the analysis by comparing the results ob-
tained with a number of other experimental data presented in (9,10). 
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5.1.1 Results 
A fine result of a design analysis is obtained with a = 0.4 for which the composite ge-
ometry shown in Figure 7 is revealed with (µP

o,cS)  = (0.576,0.243)  ⇒ (µS
o,cP) = (-

0.176,0.798). 

These parameters correspond to a DC-CD composite based on pores of medium 
length (a mixture of A ≈ 0.2 and A ≈ 10, see Figure 6). 

Predicted conductivity (by Equation 5) of a composite with this geometry is shown in 
Figure 8. Also shown in this figure are further experimental data from (9,10). The ex-
cellent agreement between predicted and all experimental data proves very much the 
reliability of both the design analysis and the prediction analysis presented in this ex-
ample. 
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Figure 7. Geometry of a composite with prescribed chloride diffusitivity (Q1,Q2)/QP =
(0.0013,0.1072) respectively at (c1,c2) = (0.215,0.397). A geo-path factor of a = 0.40 is used. 
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Figure 8. Conductivity in composite designed from prescribed chloride diffusitivity of
composite with geometry defined in Figure 7 (a = 0.4). 
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5.1.2 Alternative geometries 
We will now look at the same design example as just considered. The only difference 
is that the design analysis is now made with another geo-path factor, namely a = 0 
and a = 1. The purpose of this analysis is 1) to illustrate the statement previously 
made, that various composite geometries may approximately ‘produce’ similar com-
posite properties – and 2) to illustrate the consequence of deduced shape functions to 
violate ⏐µ⏐ ≤ 1. 

Geo-path factor a = 0 (disc pores) 
The composite geometry deduced is presented in Figure 9. The conductivities predic-
ted by Equation 5 and this geometry are shown in Figure 10. It is noticed that the 
prescribed conductivities, of course, are described accurately. The overall prediction 
of conductivities, however, is almost as good as presented in Figure 8 with a = 0.4. 
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Figure 9. Geometry of a composite with prescribed chloride diffusitivity (Q1,Q2)/QP =
(0.0013,0.1072) respectively at (c1,c2) = (0.215,0.397). A geo-path factor of a = 0 is used.

 

Figure 10. Conductivity in composite designed from prescribed chloride diffusitivity of
composite defined in Figure 9 (a = 0). 
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Geo-path factor a = 1 (long pores) 

The composite geometry deduced is presented in Figure 11 with a truncation introdu-
ced on the phase P shape function (see Section 4.1). The conductivities predicted by 
Equation 5 and this geometry are shown in Figure 12. It is noticed that the prescribed 
conductivities, of course, are described accurately. At low porosities, predicted con-
ductivity is influenced by the shape function truncation introduced such that lower 
bound (CSA-geometry) solutions are predicted. 
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Figure 11. Geometry of a composite with prescribed chloride diffusitivity (Q1,Q2)/QP =
(0.0013,0.1072) respectively at (c1,c2) = (0.215,0.397). A geo-path factor of a = 1 is used.
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Figure 12. Conductivity in composite designed from prescribed chloride diffusitivity of
composite with geometry defined in Figure 11 (a = 1).

5.2 Porous material with prescribed stiffness 
We know from experiments the stiffness at two porosities of a porous material (HCP). 
We would like to know the composite geometry such that stiffness can be determined at 
any porosity. 

In order to solve this problem we must apply both 1) the design procedure (Section 
4) and 2) the prediction procedure (Section 3) explained in this paper. 
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Sources: The components are phases (P,S) = (capillary pores, cement gel). The follo-
wing phase properties are deduced from information reported in (11,12): The stiffness 
of bulk cement gel and pores are ES = 36000 MPa and EP = 0 MPa respectively. 

Prescribed composite stiffness: (E1,E2) = (17200,8210) MPa at (c1,c2) = (0.22,0.42). The-
se data have been chosen from stiffness experiments on the cement paste reported in 
(11,12). This choice has been made in order to justify the analysis by comparing the re-
sults obtained with a number of other experimental data presented (11,12).  

5.2.1 Results 
A fine result of a design analysis is obtained with a = 0.4 for which the composite ge-
ometry shown in Figure 13 is revealed with (µP

o,cS)  = (0.431,0.082)  ⇒ (µS
o,cP) = (-

0.03,1.14). These parameters correspond to a DC-MM composite based on pores of 
medium length (a mixture of A ≈ 0.1 and A ≈ 25, see Figure 6). 

Predicted stiffness of a composite with this geometry is shown in Figure 14. Also 
shown in this figure are further experimental data from (11,12). The excellent agree-
ment between predicted and all experimental data proves very much the reliability of 
both the design and the prediction analysis presented in this example. 

Figure 13. Geometry of empty cement paste considered. 
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5.3 Stiffness of impregnated porous material 
The cement paste just considered is impregnated with Sulphur the stiffness of which 
is EP = 11000 MPa (modified with respect to an impregnation degree of 82%). Which 
stiffness can be expected for this material? 

The shape functions (Figure 13) previously determined for the empty cement paste 
quantify the composite geometry. Thus, the problem to solve is a plain prediction 
problem. Equation 1 can immediately be used to determine the stiffness in question. 
The result is shown in Figure 15 together with experimental data presented in (12). 

The excellent agreement observed verifies that shape functions are independent of pha-
se properties. 
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Figure 15. Stiffness of Sulphur impreg-
nated cement paste (the same as consi-
dered in previous example). 
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Remark: It is interesting to notice that the geometry, Figure 7, of the cement paste 
considered in Section 5.1.1 is very familiar with the one, Figure 13, deduced for the 
cement paste in the present example. Apparently the cement pastes used in all (9,10, 
11,12) have geometries, which are similar, and produced with the same technology (a 
= 0.4). 

6. CONCLUSIONS AND FINAL REMARKS 
A theory has been presented in this paper, by which properties can be predicted for 
composites with various phase geometries. 

The theory is inversed to predict which type of phase geometries will create prescri-
bed material properties. 

Both versions of the theory are applied successfully on examples of practical rele-
vance, such as: 1) Chloride diffusivity of HCP and 2) Stiffness prediction of empty 
and impregnated HCP (hardened cement paste). 

Remark: Deliberately, the theory presented is based on simple descriptions of geo-
metry variations, including a simple quantification of fabrication techniques. There 
are two reasons for that: We should not exaggerate our present knowledge, 1) on gene-
ral descriptions of composite geometries – and 2) on quantification of specific technolo-
gies, which, in practice, can produce prescribed geometries. 
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In order to improve/modify the methods presented in this paper the two topics, 1) and 
2), have to be considered in a joint research effort involving both theoretical (inclu-
ding FEM such as in (1)) and technological means. 

 

Notations 
We notice that the notation used in this paper is similar to the one used in (1). The list 
does not consider less general symbols, which are explained locally. Notations used by 

the author prior to his work in (1) are somewhat different. 
  Abbreviations and subscripts 
   V  Volume 
   P  Phase P 
   S  Phase S 
  No subscript  Composite materials 
   H/S  Hashin/Shtrikman's property bounds 
   Geo-parameters 
        c = VP/(VP+VS) Volume concentration of phase P 
  µo,µ1  Shape factors 
   µP  Shape function 
    µS  Shape function 
   a  Geo-path factor 
  cP,cS  Critical concentrations 
   γ  Percolation 
   θ  Geo-function for stiffness 
   θQ  Geo-function for conductivity 
  Stiffness and other properties 
   E  Stiffness (Young's modulus) 
        e = E/ES  Relative stiffness of composite 
       n = EP/ES  Stiffness ratio 
   Q  Conductivity (e.g. thermal, electrical, diffusivity) 
       q = Q/QS  Relative conductivity of composite 
    nQ = QP/QS  Conductivity ratio 
   Stress and strain 
   σ  External mechanical stress 
   σP  Phase P stress caused by external mechanical stress 
   σS  Phase S stress caused by external mechanical stress 
   λ  Linear eigenstrain (e.g. shrinkage, thermal expansion) 
    ∆λ = λP-λS  Linear differential eigenstrain 
  ρ       Hydrostatic stress caused by eigenstrain 
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