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ABSTRACT 
Research within civil engineering structures has changed considerably along with the 
development of computer programs. Consequently, at universities it has caused the 
development of simple hand-calculation methods to cease more or less completely. 
This is not so convenient for the consulting companies, as the computer programs are 
often too heavy to work with in normal design projects. Only for very large and 
important structures can the use of heavy computer programs be justified. Therefore, 
the aim of the present research project is to derive simple hand-calculation methods 
within the chosen topics, and thereby create a coherent basis corresponding to what 
exists for reinforced concrete structures. 
The theory of plasticity for steel structures deviates little from the theory of plasticity 
for concrete structures in the form developed in Denmark. Thus, the present project is 
a natural extension of the now century old development of concrete structures in 
Denmark. 
The thesis is subdivided into four individual parts concerning the chosen topics. The 
four parts are: Plasticity Theory of Fillet Welds, The Plastic Tension Field Method, 
Post-Buckling Strength of Plates in Compression and Patch Loading on Plate 
Girders. 
 
Initially, simple methods for calculation of fillet welds based on the theory of 
plasticity are derived.  
Currently, static calculations of fillet welds are based on a semi-empirical failure 
condition, where the effective weld stresses are determined as the mean values of the 
stresses on the throat section without knowledge of the entire stress field. In the thesis 
it is shown that fortunately, only small corrections are needed according to a 
consistent treatment. 
The plasticity solutions are compared with yield load tests carried out at the 
Engineering Academy of Denmark in the early nineties as well as older failure load 
tests. The new failure conditions are in very good agreement with the yield load tests, 
while in less good agreement with the older failure load tests. 
 
Furthermore, a calculation method for steel plate girders with transverse web 
stiffeners subjected to shear is described. It may be used for predicting the failure 
load, or as a design method, to determine the optimal number of internal web 
stiffeners. 
The new method is called the plastic tension field method. It is based on the theory of 
plasticity and is analogous to the so-called diagonal compression field method 
developed for reinforced concrete beams with transverse stirrups. Many other theories 
have been developed, but the method presented here differs from these by 
incorporating the strength of the transverse stiffeners and by the assumption that the 
tensile bands may pass the transverse stiffeners, something that is often observed in 
tests. Other methods have only dealt with a single web field between two stiffeners. 
The load-carrying capacity may be predicted by applying both the lower-bound 
theorem and the upper-bound theorem. The upper-bound solutions show very good 
correlation with both old and new tests. 
 
Currently, calculations of plates in compression are based on the semi-empirical 
effective width method, which was developed by Winter et al. It is a well known fact 
that plates in compression may carry loads much larger than the load for which elastic 
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buckling will occur. The effective width method takes the post-buckling capacity into 
account. A new effective width method is established, derived on the basis of a 
consistent theory. The new method rests on the theory of plasticity, particularly the 
yield line theory. The emphasis is placed on buckling problems related to plate 
girders. Two general cases are studied: Plates in uniaxial compression supported 
along all edges, e.g. the compressed flange in a box girder, and plates with one free 
edge, e.g. the compressed flange and the internal web stiffeners in an I-shaped girder. 
The resulting equations are compared with the semi-empirical method developed by 
Winter et al. The plastic solutions give approximately the same results as Winter’s 
solutions without any empirical modifications. 
 
Finally, a simplified theory for calculation of steel plate girders subjected to 
concentrated loads, denoted patch loading, is presented. 
The theory is simplified due mainly to the assumption that the whole web panel under 
the patch load will always be active. The post-buckling strength of the web panel is 
determined by the effective width approach. The stresses in these effective widths will 
be uniformly distributed under the flange and utilised in a flange mechanism, which is 
calculated separately. 
The solutions are derived separately for girders with a square web panel and for those 
with a rectangular web panel. 
Both solutions are compared with experimental results, and the theories correlate well 
with the tests, especially for girders with rectangular web panels. 
Additionally, it is shown that the theory is also able to deal with the phenomenon of 
flange induced buckling. 
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RESUMÉ 
Forskningen inden for bærende konstruktioner har ændret sig markant sideløbende 
med udviklingen af computerprogrammer. Denne drejning af forskningen har 
medført, at udviklingen af simple håndregningsmetoder stort set er ophørt på 
universiteterne. Dette er uheldigt for de rådgivende ingeniørfirmaer, da de udviklede 
computerprogrammer ofte er for tunge at arbejde med ved den daglige projektering. 
Kun for meget store og betydningsfulde bærende konstruktioner kan brugen af dem 
forsvares. Det er derfor formålet med dette projekt at forsøge at udvikle simple 
håndregningsmetoder inden for de udvalgte områder og dermed skabe et sammen-
hængende grundlag for praktisk dimensionering, der svarer til, hvad der findes for 
armerede betonkonstruktioner. 
Plasticitetsteori for stålkonstruktioner adskiller sig ikke nævneværdigt fra plasticitets-
teori for betonkonstruktioner således, som den er udviklet i Danmark. Projektet kan 
derfor ses som en naturlig forlængelse af den hundredårige udvikling af teorier for 
betonkonstruktioner i Danmark. 
Afhandlingen er opdelt i fire individuelle dele, omhandlende de valgte emner. De fire 
dele er: Plasticitetsteori for kantsømme, diagonaltrækmetoden, overkritisk bæreevne 
for plader i tryk og koncentreret last på pladedragere. 
 
Indledningsvist er der udviklet simple metoder til beregning af kantsømme baseret på 
plasticitetsteorien. 
I dag baseres statiske beregninger på et delvist empirisk brudkrav, hvor de effektive 
sømspændinger bestemmes som middelværdien af spændingerne i halssnittet uden 
kendskab til hele spændingstilstanden i svejsesømmen. I denne afhandling er det vist, 
at der heldigvis kun er tale om mindre justeringer for at opnå en tilfredsstillende 
behandling. 
De plastiske løsninger er sammenlignet med forsøg vedrørende flydestadiet udført på 
Danmarks Ingeniørakademi i begyndelsen af halvfemserne og med ældre brudforsøg 
med kantsømme. De nye bæreevneudtryk er i rigtig god overensstemmelse med 
forsøg i flydestadiet, hvorimod de er i mindre god overensstemmelse med de ældre 
brudforsøg. 
 
Derudover præsenteres en beregningsmetode for stålpladedragere med krops-
afstivninger påvirket til forskydning. Den kan anvendes til at bestemme bæreevnen 
eller som en dimensioneringsmetode til bestemmelse af det optimale antal krops-
afstivninger. 
Den nye metode kaldes diagonaltrækmetoden. Den er baseret på plasticitetsteorien og 
er analog til den såkaldte diagonaltrykmetode udviklet til forskydningsarmerede 
betonbjælker. Der er udviklet mange andre metoder, men metoden der er præsenteret 
her, afviger fra de øvrige ved at medtage tværafstivningernes styrke, og ved at den 
forudsætter, at trækbåndene kan passere tværafstivningerne, hvilket ofte er observeret 
ved forsøg. Andre metoder har kun omfattet ét enkelt pladefelt mellem to afstivninger. 
Bæreevnen kan bestemmes både ved hjælp af nedreværdisætningen og ved hjælp af 
øvreværdisætningen. Øvreværdiløsningerne viser en særdeles god overensstemmelse 
med både ældre og nye forsøg. 
 
I dag beregnes plader påvirket til tryk med den delvist empiriske metode baseret på de 
såkaldte effektive bredder, som blev udviklet af Winter med flere. Det er velkendt, at 
plader påvirket til tryk kan bære en belastning, der er væsentlig større end belast-
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ningen svarende til den, hvor elastisk foldning opstår. Metoden med effektive bredder 
medtager den overkritiske bæreevne. En ny metode med effektive bredder er udviklet, 
baseret på en konsistent teori. Metoden er baseret på plasticitetsteorien, særligt brud-
linieteorien. Hovedvægten er lagt på foldningsproblemer relateret til pladedragere. To 
generelle tilfælde er undersøgt: Plader påvirket til enakset tryk med understøtninger 
langs alle rande, for eksempel trykflangen i en kassedrager, og plader med én fri rand, 
for eksempel trykflangen eller kropsafstivningerne i en drager med I-formet tværsnit. 
De opstillede formler er sammenlignet med Winter’s formler. De plastiske løsninger 
giver stort set samme resultat som Winter’s løsninger uden nogen empiriske korrek-
tioner. 
 
Endeligt præsenteres en simpel teori for beregning af stålpladedragere med kon-
centreret belastning. 
Teorien er simplificeret, først og fremmest ved, at den forudsætter, at hele pladefeltet 
under den koncentrerede last altid er aktivt. Den overkritiske bæreevne for pladefeltet 
bestemmes ud fra princippet vedrørende effektive bredder. Spændingerne i de 
effektive bredder vil fordele sig jævnt ud under flangen, og de påføres i flange-
mekanismen, som beregnes separat. 
Løsningerne er opstillet selvstændigt for henholdsvis pladedragere med kvadratiske 
pladefelter og med rektangulære pladefelter. 
Begge løsninger er sammenlignet med forsøg, og teorien stemmer fint overens med 
forsøgene, specielt for dragerne med rektangulære pladefelter. 
Yderligere er det vist, at teorien også er i stand til at behandle fænomenet flange-
indskydning. 
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NOTATION 
 
Lower case Latin letters 
a throat thickness; length 
b width; constant stiffener spacing 
be total effective width 
bs width of effective strip 
c length; length of patch load 
d girder depth, i.e. depth of the web plate 
f yield condition 
fy yield stress 
fu ultimate tensile strength 
k elastic buckling coefficient; factor 
l, m, n coordinates of a unit vector 
m bending capacity of a yield line per unit length; fictitious moment 
mb bending moment per unit length in a yield line 
mp plastic yield moment per unit length 
n non-dimensional generalised normal force; number of stiffeners; normal force per unit length 
np load-carrying capacity per unit length in pure compression or tension 
p load per unit area; patch load per unit length; surface vector 
q load per unit length; non-dimensional generalised shear force 
r radial distance 
r0 radius of curvature of tension coupons 
t thickness 
u relative displacement; deflection 
um deflection at maximum load 
v angle 
x, y, z coordinates in a Cartesian x,y,z-system of coordinates 
x length; web plate depth included in the internal beam 
xf web plate depth included in the internal beam from flange yielding 
y0 vertical distance from the bottom face of a girder 
 
Upper case Latin letters 
A area 
C compressive flange force (positive as compression); pole of fan; empirical coefficient 
D diameter 
E Young’s modulus 
G shear modulus 
I moment of inertia 
L weld length; length of shear zone; column length 
L0, Lc original gauges length and parallel length of tension coupons 
M moment 
Mp plastic yield moment; plastic yield moment of internal beam 
N normal force 
Np normal force, load-carrying capacity in pure compression or tension 
P force, load 
Q shear force 
Rx resultant of the σx-stresses 
S0 original cross-section area of tension coupons 
T tensile flange force (positive as tension) 
V volume 
W plastic work 
We, Wi external work and dissipation, respectively 
Wl dissipation per unit length 
X, Y free optimisation parameters 
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Lower case Greek letters 
α angle; angle of circular fan; angle between yield line and relative displacement; parameter 

(shape of curvature function); imperfection factor; length 
β correlation factor; angle of uniaxial web stress; length 
βw correlation factor according to EC3 
δ relative displacement; displacement increment 
ε strain 
εy yield strain 
φ change of angle 
γ angle of weld 
γMw partial coefficient according to EC3 
η non-dimensional parameter measuring flange stiffness 
ϕ stiffener ratio 
κ, κxy curvature and torsional curvature, respectively 
λ non-dimensional parameter; indeterminate factor 
λr non-dimensional slenderness ratio according to EC3 
µ empirical coefficient 
ν Poisson’s ratio; effectiveness factor 
θ angle; angle of uniaxial concrete stress; angle in failure mechanism 
ρ radius of curvature 
σ normal stress 
σi failure load for welded connection 
τ shear stress 
υ angle 
ψ mechanical degree of stiffening; relative deflection increment 
 
Upper case Greek letters 
∆ difference  
Φ EC3 parameter for calculation of columns 
 
Subscripts 
0 indication for parallel direction 
1, 2, 3 principal directions 
90 indication for perpendicular direction 
A, B points 
bf bottom face 
c concrete; compression 
cr elastic critical value 
d design value 
e edge; end panel 
EC3 index for value determined by EC3 
eff effective 
exp experimental value 
f flange 
F circular fan 
FEM index for value determined by FEM model 
h rotated throat section 
H homogeneous region 
i imperfection; initial 
max maximum value 
min minimised value 
r, α coordinates in a polar system of coordinates 
s stiffener 
t tensile 
tf top face 
u ultimate; theoretical value 
v vertical 
w, web web 
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x, y, z coordinates in a Cartesian x,y,z-system of coordinates 
 
Superscripts 
+ upper-bound value 
- lower-bound value 
* virtual load 
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1 INTRODUCTION 
There is a century-long tradition in Denmark of deriving theories for civil engineering 
structures of concrete based on the theory of plasticity.  
The theory of plasticity utilises the load-carrying capacity reserve that occurs when 
yielding of the construction material is utilised, i.e. the material will deform heavily 
without any significant change in the stresses. It is a well-known fact that many steel 
grades have such yielding properties. On the contrary is the theory of elasticity, where 
the stresses and strains are assumed to be proportional. 
In Denmark, not much emphasis has been attached to the development of theories for 
steel structures based on the theory of plasticity. Worldwide however, a great deal of 
emphasis has been attached to applying the theory of plasticity to steel structures and 
other materials with yielding properties. 
 
A failure theory for concrete structures began when Ingerslev (1923) and later 
Johansen (1943), based on German tests, developed yield line theories for plates 
based on the upper-bound theorem, which was proven by Johansen. 
Later, the Russian Gvozdev (1938) derived a complete theory including the lower-
bound theorem. Drucker et al. (1952) from the USA, developed an analogue to 
Gvozdev’s theory. In Denmark however, a lower-bound theory had already been 
developed by Lundgren (1949) for cylindrical shells (the stringer theory). 
From the 1960’s to date, the work regarding failure theories for concrete structures 
has been continued by Nielsen (1998). 
The theories for concrete are at a level where a large number of prevalent structures 
may be designed with the developed hand-calculation methods. 
 
In Denmark, the research of steel structures has mainly been concentrated on studying 
the fatigue properties of ordinary steel and high strength steel, respectively. 
Theory of plasticity for steel structures has been particularly developed in England, 
e.g. (Baker et al. 1956), and in USA in the 1950’s and 1960’s at Lehigh University. 
Through this research, plasticity theories for frame structures were more or less 
clarified. 
As previously mentioned, the theory of plasticity has been applied on concrete 
structures in Denmark. Even though the material steel shows, to a much larger extent, 
perfectly plastic behaviour, not much emphasis have been attached to applying the 
theory of plasticity to steel structures. This might be due to the fact that steel 
structures are often very slender, so that stability failure, e.g. buckling, might occur 
instead of failure by initiation of yielding. 
However, there are a large number of construction elements, especially construction 
joints, where stability problems do not play an important role. Additionally, it is also 
possible to study stability problems by taking into account yielding, as will be shown 
in this thesis. 
 
In Danish consulting companies, the theory of plasticity is applied to a large extent as 
a useful tool in the daily design of civil engineering structures. Hence, the obtained 
results may easily be implemented within the companies. 
The theory of plasticity for steel structures deviates little from the theory of plasticity 
for concrete structures in the form developed in Denmark. Thus, the present project is 
a natural extension of the century-long development of concrete structures in 
Denmark. 
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1.1 State of the Art 
In this research project, four main topics were originally chosen. The four topics are 
denoted welded connections, steel plate girders, stability problems and fracture 
mechanics, and they are briefly described below. 

WELDED CONNECTIONS 
Structural steel joints based on welding became commonplace during and after the 
Second World War. In the inter-war period, empirical formulae for predicting the 
load-carrying capacity of the most common welded connections were already 
developed. In these formulae, the effective weld stress is determined by calculating 
the mean stresses on the throat section, without knowledge of the entire stress field. 
Currently, calculations of fillet welds are still based on the old semi-empirical 
formulae, with only a few modifications. 
 
It seems obvious to attempt to establish simple methods for calculation of fillet welds 
based on the theory of plasticity, where the stress field in the whole weld is included, 
thereby establishing a safe and statically admissible stress distribution. 
Development of calculation methods for welded connections based on the theory of 
plasticity was intitiated by Nielsen and Pilegaard Hansen (1971), and was followed up 
by Jensen (1991). For various reasons the work was never completed. The tasks 
remaining within this topic are to derive simple methods for calculation of fillet welds 
and further experimental verification. 

STEEL PLATE GIRDERS 
As previously mentioned, plasticity theories for beam and frame structures were 
developed in England after the Second World War by Baker et al. (1956) among 
others. The yielding behaviour is taken into consideration by the assumption that the 
load-carrying capacity is reached by the formation of a number of plastic yield hinges, 
i.e. regions where large plastic deformations occur, and thereby also large mutual 
angular rotations. In the 1960’s and 1970’s, investigations were conducted at Lehigh 
University in the USA in order to obtain practical recommendations, based on the 
theory of plasticity, for the structural design, i.e. determination of plate thicknesses, 
etc. They showed that often, large plate thicknesses are required to ensure that plastic 
yield hinges will develop. In practical design, it is often preferred to apply smaller 
plate thicknesses, so failure due to stability might occur instead of failure by initiation 
of yielding, hence the yielding capacity is not fully utilised. 
These circumstances are especially pronounced for steel plate girders, where the 
thickness of the web plate is often taken to be very small, thus according to a linear 
elastic calculation, failure due to buckling of the web plate will occur before the 
yielding capacity is fully utilised. However, it is a well-known fact that until the 
buckling load is reached, a web plate subjected to shear will develop identical 
principal stresses at an angle of 45° and 135° to the flanges, respectively. When the 
web buckles, it practically loses its capacity to sustain the compressive principal 
stresses, hence a new way of carrying the load arises, where the shear forces are 
carried by inclined tensile bands. 
Many other theories, both empirical and theoretical, have been developed based on 
the observed tension field action. These methods have in common the fact that they 
are only dealing with a single web field between two stiffeners. 
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Preliminary investigations of a fully plastic theory for predicting the post-buckling 
strength of plate girders in shear were conducted by Nielsen and Christensen (1982). 

STABILITY PROBLEMS 
When the full yielding capacity is utilised, one must ensure that no localised failure 
due to stability will occur, e.g. buckling of the compression flange or buckling at 
concentrated loads. 
An accurate calculation of such phenomena requires an advanced computer program. 
However, simple semi-empirical formulae for determination of the post-buckling 
strength of plates in compression have been derived long ago by Winter (1947) based 
on the effective width concept suggested by Kármán et al. (1932). Roberts (1983) 
developed practical semi-empirical formulae for predicting the load-carrying capacity 
of steel plate girders subjected to concentrated loads. 
The theory of plasticity in its simplest form does not take into account the effect of 
change of geometry, but it is often possible to do so by estimating the deformations. 
This idea was introduced by Murray (1984) in Australia. 

FRACTURE MECHANICS 
During the industrial evolution, sudden and inexplicable brittle failures often 
occurred. These brittle failures often occurred with cyclic loading, therefore they were 
often denoted as fatigue failures. Empirical investigations began, but with a lack of 
understanding of the complex nature of the fatigue failure, more and more brittle 
failures occurred, for instance when welded connections became common. The many 
brittle failures in the welds of the Liberty Ships during the Second World War are 
well-known, as are the crashes of de Havillands Comet jet airplanes, where the 
window openings were unfavourably designed, causing large stress concentration to 
occur. 
 
An understanding of brittle fracture began with the work of Griffith (1921, 1924) in 
England. He examined failures in glass, and showed that existing initial cracks 
induced large stress concentrations, which led to crack growth with consumption of 
the existing elastic energy without further supply of energy. 
In the USA, Irwin (1948) and Orowan (1948) modified Griffith’s theory to a form 
useful for metallic materials. They showed that the plastic work in the vicinity of the 
crack tip has to be taken into account, which is by far the most important contribution 
for metallic materials. Furthermore, Irwin introduced the notation stress intensity 
factors. 
Finally, Paris et al. (1961) showed that crack growth due to cyclic loading may be 
described by the variation of the stress intensity factors at the crack tip. 
 
The topic of fracture mechanics is not directly related to the main subject of the thesis, 
but the theory of plasticity assumes that the yielding capacity of the material is 
sufficient. If not, the load-carrying capacity might be reached by a brittle failure 
before the plastic load-carrying capacity is fully utilised. Therefore, fracture 
mechanics is indeed relevant. 
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1.2 Aim and Motivation 
The research within civil engineering structures has changed considerably along with 
the development of computer programs. Consequently, this development has resulted 
in academic research being concentrated on deriving theories that, with great 
accuracy, may calculate a complicated stress distribution on the basis of correct 
constitutive equations. This shift in research at universities has caused the 
development of simple hand-calculation methods to cease more or less completely. 
This is not optimal for consulting companies, since the computer programs are often 
too heavy to work with, within normal design projects. Only for very large and 
important structures may the use of heavy computer programs be justified. 
Therefore, the aim of this research project is to derive simple hand-calculation 
methods within the chosen topics, and thereby create a coherent basis corresponding 
to that already existing for concrete structures. 

1.3 Outline of the Thesis 
The four chosen research topics cover a wide field, hence the main content of the 
thesis is subdivided into four individual parts. These parts cover three of the original 
research topics. The first part covers welded connections while the second covers steel 
plate girders. Both the third and the fourth part concern stability problems. The topic 
of fracture mechanics is not included in this thesis. 
The four individual parts are briefly presented below. 
 
PART I deals with simple methods for the calculation of fillet welds based on the 
theory of plasticity. In developing the solutions, the lower-bound theorem is used. The 
welding material and parts of the base material are subdivided into triangular regions 
with homogeneous stress fields; thereby a safe and statically admissible stress 
distribution is established. The plasticity solutions are compared with tests carried out 
at The Engineering Academy of Denmark, Lyngby, in the early 1990’s, and with old 
fillet weld tests. 
  
PART II describes a calculation method for steel plate girders with transverse web 
stiffeners subjected to shear. It may be used for predicting the failure load or, as a 
design method, to determine the optimal number of transverse web stiffeners. 
The new method is called the plastic tension field method. The method is based on the 
theory of plasticity and is analogous to the so-called diagonal compression field 
method developed for reinforced concrete beams with transverse stirrups. 
As further verification of the theory, new experiments with plate girders subjected to 
shear were conducted at The Technical University of Denmark during the present 
study.  
Many other theories have been developed, but the method presented differs from these 
theories by incorporating the strength of the transverse stiffeners and by the 
assumption that the tensile bands may pass the transverse stiffeners, something that is 
often observed in tests. Other methods have only dealt with a single web field 
between two stiffeners. 
 
PART III presents new effective width equations, which are derived on the basis of a 
consistent theory. 
It was realised many years ago that the elastic buckling theory is not able to account 
accurately for the real strength. The main reason is that in a large parameter interval, 
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the ultimate load is reached after yielding of the plate. This fact was pointed out by 
Kármán et al. (1932), who suggested a modification of the elastic solution by an 
empirical coefficient. This idea was taken up by Winter (1947), who developed 
accurate formulae based on the effective width concept, taking the post-buckling 
capacity into account. 
The new method rests on the theory of plasticity, particularly the yield line theory. 
The emphasis is attached to buckling problems related to plate girders. Two general 
cases are studied: Plates in uniaxial compression supported along all edges, e.g. the 
compressed flange in a box girder, and plates with one free edge, e.g. the compressed 
flange and the internal web stiffeners in an I-shaped girder. 
 
PART IV concerns a simplified theory for calculating the load-carrying capacity of 
steel plate girders subjected to concentrated loads based on the theory of plasticity. 
When designing a steel plate girder, it is usually recommended to add transverse web 
stiffeners where concentrated loads act. However, this is not always possible to fulfil 
in practice, as the plate girder may for instance be subjected to wheel loads, loads 
from purlins and roller loads during construction. It is therefore necessary to check the 
unstiffened web under the edge compressive loading to ensure no localised failure 
will occur. This kind of loading on plate girders is commonly known as patch 
loading. 
Finally in this part, the phenomenon flange induced buckling is touched upon.  
 
Each part may, in general, be considered as individual reports. However, PART IV 
contains references to both PART II and PART III, hence it may not stand completely 
alone. 
 
The four individual parts roughly follow a chronological time line, except the new 
plate girder experiments described in PART II, which were conducted at the end of the 
study. 
 
A description of the general notation used is found in the previous chapter. However, 
the notation used for the different topics is also given at the end of each part together 
with a list of references. Each of the four parts contains a concluding section. After 
the individual parts, the general conclusions are drawn together with 
recommendations for future work. Furthermore, a general list of references covering 
the whole thesis is found. 
 
PART I only contains a summary of the obtained results. The research done within the 
topic of welded connections is fully described in a separate report, cf. (Hansen 2004). 
Furthermore, a brief summary is presented in a conference paper cf. (Hansen 2005). 
The design method presented in PART II is also described in a conference paper cf. 
(Hansen and Nielsen 2005). The derivation of the effective width equations, cf. PART 
III, is also presented in a conference paper cf. (Hansen and Nielsen 2006). It has been 
extended and will be submitted as a full journal paper to the International Journal of 
Advanced Steel Construction in the form presented in PART III, with only a few 
alterations in the layout. 
The work presented in PART IV has not been published elsewhere. 
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2 THEORY OF PLASTICITY 
A complete description of the basic principals of the theory of plasticity will not be 
given here. Only the main assumptions, the extremum principles and the relevant 
dissipation formulae are mentioned. A complete description may be found in (Nielsen 
et al. 2000) or in (Nielsen 1998), where the emphasis is on concrete structures. 
The assumed material model is shown in Figure 2.1. The figure shows a stress-strain 
curve in the uniaxial case. The yield stress, for which arbitrary large strains are 
possible, is denoted fy. The yield stresses for tensile and compressive actions are 
assumed equal. For stresses below the yield stress, it is seen that no strains occur. A 
material behaving as shown in the figure, is denoted a rigid-plastic material.  
 

f y

ε

- f y

 
Figure 2.1: Uniaxial stress-strain relation for a rigid-plastic material 

 
The maximum work hypothesis by von Mises states that the stresses corresponding to 
a given strain field assume such values that the plastic work, W, becomes as large as 
possible. The plastic work in a three-dimensional, isotropic continuum is given by 

 1 1 2 2 3 3W = σ ε +σ ε +σ ε  (2.1) 

Here σ1, σ2 and σ3 are the principal stresses, and ε1, ε2 and ε3 are the corresponding 
principal strains. 
For isotopic materials, the yield point is assumed to be determined by a yield 
condition, e.g. 

 ( )1 2 3, , 0f σ σ σ =  (2.2) 

Stresses rendering f < 0 correspond to stresses that may be sustained by the material. 
Stresses giving f > 0 cannot occur. Furthermore, it is assumed that the yield surface is 
convex. 
The relations between the principal stresses and strains may, with the assumptions 
mentioned, be expressed by von Mises’ flow rule: 

 ( )1 2 3
1 2 3

, , , ,f f f⎛ ⎞∂ ∂ ∂
ε ε ε = λ⎜ ⎟∂σ ∂σ ∂σ⎝ ⎠

 (2.3) 

The indeterminate factor, λ, must satisfy the condition λ ≥ 0. 
The strain vector is an outward-directed normal to the yield surface, hence Equation 
(2.3) is also named the normality condition. 
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2.1 Extremum Principles for Rigid-Plastic Materials 
The load-carrying capacity is defined as the load on a body causing deformations 
without further increase of the load. The terms yield load and failure load will also be 
used. 
With the above-mentioned assumptions, it is possible to determine the load-carrying 
capacity by applying the extremum principles for rigid-plastic materials. 
When applying these principles in the simplest form, the effect of change of geometry 
is not taken into account. However, it is not a general assumption in this thesis, since 
the effect of change of geometry is taken into consideration by estimating the 
deformations. 

THE LOWER-BOUND THEOREM 
Nielsen (1998) expresses the lower-bound theorem thus: 
 

“If the load has such a magnitude that it is possible to find a stress 
distribution corresponding to stresses within the yield surface and 
satisfying the equilibrium conditions and the statical boundary conditions 
for the actual load, then this load will not be able to cause collapse of the 
body.” 

 
A stress distribution such as this is denoted a safe and statically admissible stress 
distribution. 
A lower-bound solution is found by considering a statically admissible stress field 
corresponding to the stresses within or on the yield surface. 

THE UPPER-BOUND THEOREM 
About the upper-bound theorem Nielsen (1998) concludes for proportional loading: 
 

“If various geometrically possible strain fields are considered, the work 
equation can be used to find values of the load-carrying capacity that are 
greater than or equal to the true one.” 

 
An upper-bound solution is found by considering a geometrically possible failure 
mechanism and by solving the work equation. In the general form, the work equation 
is normally derived for the undeformed body. However, in this thesis the work 
equation will be derived for the deformed body in some cases. 

THE UNIQUENESS THEOREM 
The uniqueness theorem expresses that a load-carrying capacity corresponding to a 
geometrically possible failure mechanism, to which a safe and statically admissible 
stress distribution may be attributed, is equal to the true collapse load. 
An exact solution requires construction of a statically admissible stress field 
corresponding to stresses within or on the yield surface in the whole body, as well as 
verification that a geometrically possible strain field, satisfying the constitutive 
equations, corresponds to this stress field. 
It should be noted that neither the stress field nor the strain field at collapse is 
uniquely determined. 
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2.2 Dissipation Formulas 
In the theory of plasticity it is necessary to operate with discontinuity planes or lines 
along which jumps in the displacements occur. These discontinuity lines will be 
denoted yield lines. 
By far, the most commonly used yield condition for steel is von Mises’ yield criterion. 
In the condition of plane strain, the only possible deformation condition is pure 
change of angle for a von Mises material. Hence the dissipation in a yield line per unit 
length, Wl, is given by 

 1
3l yW f u t=  (2.4) 

where fy is the yield stress, t the thickness of the considered element, and u is the 
relative displacement of the two rigid bodies on each side of the yield line. 
Steel structures may also be calculated by applying Tresca’ yield criterion. For a 
Tresca material, the dissipation in a yield line per unit length is also given by 
Equation (2.4), except with the factor 1/√3 changed to 1/2, i.e. 

 1
2l yW f u t=  (2.5) 

In the condition of plane stress, which for instance occurs in thin plates, the 
dissipation in a yield line per unit length for a von Mises material is given by 

 2 22 1sin cos
43l yW f u t= α + α  (2.6) 

For a Tresca material, the dissipation in a yield line per unit length is given by 

 ( )1 1 sin
2l yW f u t= + α  (2.7) 

In both Equations (2.6) and (2.7), α is the angle between the relative displacement, u, 
and the yield line. As before, t is the thickness of the considered element. In the 
condition of plane strain, α is equal to zero, thus the failure in plane strain is always a 
pure sliding failure. 
The derivation of the above-mentioned dissipation formulae for steel may be found in 
(Nielsen et al. 2000). 
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PLASTICITY THEORY OF FILLET WELDS 
– Lower-Bound Solutions for Static Loading 

 

1 INTRODUCTION 
Currently, static calculations of fillet welds, according to EC3 (2005) and the Danish 
Code for Steel Structures, DS 412 (1999), are based on a semi-empirical failure 
condition, which resembles von Mises’ yield criterion. The effective weld stress is 
determined by calculating the mean stresses on the throat section, whereby the failure 
condition is used without knowledge of the entire stress field. 
The aim of this part of the thesis is to establish simple methods for calculation of fillet 
welds based on the theory of plasticity, where the stress field in the whole weld is 
included. In developing the solutions, the lower-bound theorem is used. The welding 
material and parts of the base material are subdivided into triangular regions with 
homogeneous stress fields; thereby a safe and statically admissible stress distribution 
is established. 
 
A development of calculation methods for welded connections based on the theory of 
plasticity was initiated by Nielsen and Pilegaard Hansen (1971), and was followed up 
by Jensen (1991). The work that remains within this topic is to derive simple methods 
for calculation of fillet welds and further experimental verification. 
 
Jensen (1991) derived solutions for calculation of fillet welds in the yield stage based 
on the theory of plasticity. He derived the theories by applying the upper and lower 
bound theorems based on Tresca’s yield criterion. The solutions must be found 
numerically. In this thesis von Mises’ yield criterion is applied, as it more readily 
allows the establishment of hand-calculation methods. 
In relation to the development of Jensen’s theoretical solutions, he carried out yield 
load tests at the Engineering Academy of Denmark, Lyngby, in the early nineties. 
These experimental results are used to verify the theory here. 
 
Nielsen and Pilegaard Hansen (1971) were also dealing with simple calculation 
methods based on the theory of plasticity. They determined the stresses in the welds 
by referring to a section appearing after a rotation of the throat section to one of the 
faces of the weld, which was previously common practice. Their method is based on 
the assumption that the welded connection consists of two symmetrical fillet welds. 
Hence, it cannot be used to calculate single fillet welds. Some parts of their work may 
still be applied, as will be seen in this thesis. 
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In Chapter 2, lower-bound solutions for connections with symmetrical fillet welds are 
presented. This topic is more or less covered by the solutions of Nielsen and Pilegaard 
Hansen (1971). Therefore, the chapter primarily contains a summary of their 
solutions. Furthermore, the solutions are verified with experimental results from yield 
load tests found in the literature. 
In Chapter 3, lower-bound solutions for single fillet welds are derived, and the 
solutions are verified with experiments mainly carried out by Jensen (1991). 

1.1 Historical Overview 
Kist (1936) formulated an expression for determination of the failure load for a 
welded connection: 

 2 23 iσ + τ = σ  (1.1) 

Here σ and τ are the mean values of the normal stress and the shear stress on the 
throat section respectively. The expression resembles von Mises’ yield criterion for 
plane stress. It was verified by Kist’s own experiments and by experiments made by 
Jensen (1934). 
Kist assumed that failure occurs in the smallest section of the weld (usually the throat 
section). The stress distribution may be chosen freely if the equilibrium conditions are 
satisfied, since the stress distribution will adjust so that the maximum load-carrying 
capacity is reached (the lower-bound theorem of the theory of plasticity). However, 
there is no guarantee that (both) the equilibrium and boundary conditions will be 
satisfied, when the stress field of the entire weld is not considered. Thus the stresses 
on the throat section do not always give a safe statically admissible stress distribution 
all over the weld. Finally, it is observed that von Mises’ yield criterion is applied as a 
failure criterion. 
 
After the Second World War, van der Eb (1952) conducted new failure tests. These 
tests did not coincide well with the expression of Kist, cf. Equation (1.1). This led to 
the following modifications of the expression: I.S.O’s modified formula 

 2 21.8 iσ + τ = σ  (1.2) 

and the β-formula 

 2 23 iβ σ + τ = σ  (1.3) 

In these formulae, σ and τ are the mean values of the stresses on the throat section, 
which are only subjected to loads perpendicular to the axis of the weld. 
Based on very few failure load tests by Ligtenberg and van Melle (1964), the 
formulae were modified in order to make them valid for three-dimensional cases. 
Despite the weaknesses of the formulae, it was recommended by IIW1 in 1974 that the 
β-formula became the basis of revision of the codes, which was going on in many 
countries, cf. (Jensen 1991). Today, it is also the β-formula that is adopted in EC3 
(2005) as well as the Danish Code for Steel Structures, DS 412 (1999). 
According to EC3, the effective weld stress has to satisfy the failure condition: 
                                                 
1 International Institute of Welding 
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 ( )2 2 2
90 0 903 ud

eff
w

f
σ = σ + τ + τ ≤

β
 (1.4) 

The parameters, σ90, τ90, and τ0, are average, normal and shear stresses along the 
throat section respectively, see Figure 1.1. Index 0 is parallel and index 90 is 
perpendicular to the axis of the weld. fud is the design value (fu/γMw) of the ultimate 
tensile strength of the weaker material. βw is the appropriate, so-called correlation 
factor taking into account the correlation between the base material and the weld 
material. The βw–value is determined empirically to be between 0.8 and 1.0 depending 
on the strength of the material, see (ECCS 1989). 
 
In Figure 1.2, Equation (1.4) is compared with the tests made by Jensen (1934) and 
Kist (1936) respectively. Similarly, the equation is compared with the tests of van der 
Eb (1952) in Figure 1.3. 
 

 
Butt weld                Fillet weld 

Figure 1.1: Stresses on the throat section of a butt weld and a fillet weld according to EC32 
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Figure 1.2: Comparison with experimental 

results by Kist and Jensen 
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Figure 1.3: Comparison with experimental 

results by van der Eb 

                                                 
2 The figure is taken from (Bonnerup and Jensen 2003) 
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The experimental results shown in the figures above are used many times in the 
literature, e.g. (Bonnerup and Jensen 2003) as a verification of the failure condition in 
EC3 (2005). It should be noted here that the stress τ0 is equal to zero in all of the 
experiments, hence a complete experimental verification based on these tests will not 
be sufficient.   
In Appendix A, the original test results from Jensen (1934) and Kist (1936) are shown 
together with sketches of the applied test specimens. In a similar way, the test results 
and sketches of the test specimens from van der Eb (1952) are shown in Appendix B. 
From these appendices it is seen that a large number of the specimens are only 
supplied with one single fillet weld. 
In Figure 1.2 there is a good correlation between EC3 (2005) and the experimental 
results. However, the number of tests is limited, especially for the compressed 
specimens. The number of tests is much greater in Figure 1.3. These tests show a 
remarkable difference between the load-carrying capacity in compression and tension. 
EC3 seems to overestimate the load-carrying capacity for the tensile specimens, and 
the opposite seems to be the case for the compressed specimens  
From the two figures it is also seen that the scatter of the test series is large, especially 
for the tests by van der Eb. This is due to the fact that the material properties are not 
well documented, especially in the heat-affected zone. 
 
What is unsatisfactory regarding the approach in EC3 (2005), at least from an 
academic point of view, is that a yield criterion, here von Mises’ criterion, is used 
without knowledge of the entire stress field. In this thesis it is shown that fortunately, 
only small corrections are needed according to a consistent treatment. 
Only a detailed summary of the achieved results is presented below. The work done 
within this topic is fully described in a separate report in Danish, see (Hansen 2004). 

1.2 Assumptions 
Welds are normally categorised as either butt welds or as fillet welds, cf. Figure 1.1. 
Butt welds may be calculated as the remaining structure, thus it is not necessary to 
consider the welds as long as a sufficient level of quality is ensured. An overview of 
the different welding methods and the amount of required control is given in (Gath 
1997). 
Therefore, this part of the thesis deals only with fillet welds, although the derived 
solutions are also valid for butt welds. Furthermore, welds subjected to fatigue are not 
considered here. 
The cross-section of a fillet weld is assumed to form a right-angled isosceles triangle 
along the full length of the weld. The height of the cross-section is called the throat 
section and the dimensions of the weld are characterised by the throat thickness, a, 
and the length, L. Since L >> a, plane strain is assumed. Furthermore, the special 
boundary conditions in the end zones of the weld are neglected. 
 
The base materials and welding material are assumed homogeneous, isotropic and 
perfectly plastic. Hence it is possible to apply the extremum principles for rigid-
plastic materials, i.e. the lower-bound theorem and the upper-bound theorem. 
Deriving a simple calculation method is most easily done by applying the lower-
bound theorem, hence this is mainly used in the following. In some cases, the upper-
bound theorem is applied in order to compare the results obtained by both theorems. 
As a yield criterion, von Mises’ yield criterion is applied in the form: 
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 ( ) ( ) ( ) ( )2 2 2 2 2 2 26 2x y y z z x xy xz yz yfσ −σ + σ −σ + σ −σ + τ + τ + τ =  (1.5) 

Here σx, σy, σz, τxy, τxz, and τyz are the stress components in a Cartesian x,y,z-system of 
coordinates and fy is the yield stress of the weaker materiel. 
In some cases, Tresca’s yield criterion is applied in the form: 

 1 3 yfσ −σ =  (1.6) 

Here, σ1 is the principal major stress and σ3 is the principal minor stress. 
 
The assumption of plastic materials usage gives the possibility to choose the stress 
distribution in the weld freely. In general, the stresses are calculated as uniformly 
distributed on the throat section with the directions, as in EC3 (2005), shown in 
Figure 1.1. It should be stated that these uniformly distributed stresses on the throat 
section are a part of the full stress field in the weld, not only the mean stresses on the 
throat section as defined in EC3. The stress component, σ0, is, in the following, 
assumed equal to zero. 
In some cases the stresses are determined in the welds by referring to a section 
appearing after a rotation of the throat section to one of the faces of the weld. 
 
In almost all tests found in the literature, only the failure load has been measured. 
Since von Mises’ yield criterion has never been proved valid as a failure criterion, a 
comparison to these tests will not be sufficient. Thus in this situation, tests where the 
yield load is measured are used to verify the theories. Therefore the failure conditions 
shown are expressed as a function of the yield stress, fy, instead of fud/βw as in 
Equation (1.4). 
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2 LOWER-BOUND SOLUTIONS FOR SYMMETRIC FILLET 
WELDS 

With regard to welded connections with two symmetric fillet welds, it was formerly 
common practice to determine the stresses in the welds by referring to a section 
appearing after a rotation of the throat section to one of the faces of the weld as 
described by Nielsen and Pilegaard Hansen (1971). This approach is used in the 
following, thus to some extent the text in Sections 2.1 – 2.3 follows the text in 
(Nielsen and Pilegaard Hansen 1971). 
A common form of connection is a plate welded to another construction element by 
two symmetric fillet welds, see Figure 2.1. The dimensions of the welds are given by 
the throat thickness, a, and the length, L. 
 

NQ1

Q2

a

 
Figure 2.1: Welded connection with two symmetric fillet welds 

 
The connection is subjected to a normal force, N, and two shear forces, Q1 and Q2. 
The three load cases are studied one by one, using the lower-bound theorem. 

2.1 Shear Parallel to the Axis of the Weld 
In this case, the shear force, Q1, is sustained by uniformly distributed shear stresses, τ, 
on each face of the weld, see Figure 2.2. 
 

x

y
τ
τ

 
Figure 2.2: Fillet weld subjected to shear 

 
Thereby, a simple statically admissible stress distribution is established. Referring to a 
Cartesian x,y,z-system of coordinates, cf. Figure 2.2, the homogeneous stresses are 

 xz yzτ = −τ τ = τ  (2.1) 

All other stress components are equal to zero. The stress field satisfies the equilibrium 
conditions since it is homogeneous. The unloaded boundary of the weld has the 
normal 
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  ( ) ( )1, , 1,1,0
2

l m n =  (2.2) 

Applying the boundary conditions, the stress components px, py and pz will be 

 
0 0 1 0

1 0 0 1 0
2 0 0 0

x x xy xz

y xy y yz

z xz yz z

p l
p m
p n

⎡ ⎤σ τ τ −τ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤ ⎡ ⎤
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥= τ σ τ = τ =⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥
⎢ ⎥⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥ ⎢ ⎥τ τ σ −τ τ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦ ⎣ ⎦⎣ ⎦

 (2.3) 

Thus the stresses, cf. Equation (2.1), correspond to an unloaded surface. 
Inserting Equation (2.1) into von Mises’ yield criterion, cf. Equation (1.5), the load-
carrying capacity may be expressed by the shear stress on the rotated throat section, 
see Figure 2.3, as 

 1
12 0.58
3h y yf fτ = τ = ≅  (2.4) 

where fy is the yield stress of the weld material. It is seen that the shear capacity is the 
highest possible for a von Mises material. The stress on the throat section is also given 
by Equation (2.4). 

Rotated
Throat
Section

τ1h

a

 
Figure 2.3: Rotated throat section 

2.2 Uniaxial Tension Perpendicular to the Throat Section 
In this case, a safe statically admissible stress distribution may be established by 
assuming that each weld is subjected to uniaxial tension perpendicular to the throat 
section. Thereby, equilibrium with the normal force, N, is obtained through the black 
area, see Figure 2.4.  
 

σ N

σ

σ

a
σh

σh

 
Figure 2.4: Fillet welds subjected to uniaxial tension perpendicular to the throat sections. The black 

area is under hydrostatic tension 
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Referring to a Cartesian x,y-system of coordinates, cf. Figure 2.2, the homogeneous 
stresses are 

 1 2 1 2 1 2
2 2 2 2 2 2x h y h xy hσ = σ = σ σ = σ = σ τ = − σ = − σ  (2.5) 

The load-carrying capacity, expressed by the normal stress on the rotated throat 
section, is given by 

 2 0.71
2h y yf fσ = ≅  (2.6) 

It is assumed that the inclined stresses through the welds may be carried further by the 
base material. If it is not possible to develop the inclined stresses through the welds, 
the load-carrying capacity must be reduced. 
Figure 2.5 (a) shows a connection where the stress field is more complicated. 
 

2 P

2 P  
 

a. 

σ

σ

σ

σ

A

A

a

aIII

IV

I
II

V
x

2
2

a

2
2

a

 
 

b. 

Figure 2.5: Stress field where inclined stresses through the weld cannot be established 
 
Figure 2.5 (b) shows a statically admissible stress distribution. The uniform stress, σ, 
in the strips of width √2/2 a, correspond to half of the load, 2 P. It is assumed that the 
plate thickness is at least twice the width of the single strip. The stress is transferred to 
the splice piece by a bending moment in section A-A. Region I is subjected to 
hydrostatic tension, region II and V to uniaxial tension, and region IV is subjected to 
uniaxial compression. For the most critical region III, the stresses are 

 1 2 1 2 1 2
2 2 2 2 2 2x h y h xy hσ = − σ = − σ σ = σ = σ τ = − σ = − σ  (2.7) 
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By applying von Mises’ yield criterion, cf. Equation (1.5), it is found that the load-
carrying capacity must be reduced to 

 2 2 2 1 0.58
2 2 3 3h y y yf f fσ = σ = = ≅  (2.8) 

In this case, a simple upper-bound value is easily found. Consider Figure 2.6 showing 
a geometrically possible failure mechanism. A pure sliding failure in the yield lines is 
assumed. 
 

α
δ

α

a

cos
4

a
π⎛ ⎞−α⎜ ⎟

⎝ ⎠

 
Figure 2.6: Geometrically possible failure mechanism 

 
The dissipation per unit length for a von Mises material is given by, cf. (Nielsen et al. 
2000), 

 1
3l yW f u t=  (2.9) 

Here, plane strain is assumed, u is the relative displacement and t is the thickness. For 
a Tresca material, the factor 1/√3 is simply substituted by a factor of 1/2. 
The work equation equals 

 12 2
cos3 cos

4

y
aP f Lδ

δ = ⋅
πα ⎛ ⎞−α⎜ ⎟

⎝ ⎠

 (2.10) 

Minimum of P is found for α = π/8, thus 

 
2

1 1 11.17
3 3cos

8

y yP a L f a L f= ≅
π⎛ ⎞

⎜ ⎟
⎝ ⎠

 (2.11) 



PLASTICITY THEORY OF FILLET WELDS 

 20 

In the rotated throat section this corresponds to 

 11.17 0.68
3h y yf fσ = ≅  (2.12) 

Thus the difference between the lower-bound value, cf. Equation (2.8), and the upper-
bound value, cf. Equation (2.12), is not larger than the difference between using 
Tresca’s or von Mises’ yield criterion. On the safe side, the lower-bound value for σh, 
given by Equation (2.8), is applied in the following. 

2.3 Shear Perpendicular to the Axis of the Weld 
In the same way, a safe statically admissible stress distribution may be established in 
load case, Q2. The only difference is that the uniaxial stresses have opposite signs, see 
Figure 2.7. The black area is now subjected to pure shear, which is the same as pure 
tension and pure compression under 45 degrees, respectively. 
 

τ

σ

σ

a

τ2h

τ2h

Q2

 
Figure 2.7: Fillet welds subjected to uniaxial tension and compression, respectively. The black area is 

under pure shear 
 
In the Cartesian x,y-system of coordinates, cf. Figure 2.2, the homogeneous stresses 
are 

 2 2 2
1 2 1 2 1 2
2 2 2 2 2 2x h y h xy hσ = σ = τ σ = σ = τ τ = − σ = − τ  (2.13) 

The load-carrying capacity, expressed by the shear stress on the rotated throat section, 
is the same as for σh in Equation (2.6), i.e. 

 2
2 0.71

2h y yf fτ = ≅  (2.14) 

As in Section 2.2, it is assumed that the inclined stresses through the welds may be 
carried further by the base material. 
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2.4 Yield Surfaces for Symmetric Fillet Welds 
Superimposing and applying von Mises’ yield criterion, cf. Equation (1.5), the three 
single lower-bound solutions, cf. Equations (2.1), (2.5) and (2.13), lead to a yield 
condition for the load-carrying capacity for symmetric fillet welds, which may be 
written: 

 ( )2 2 2
2 12 3h h h yfσ + τ + τ ≤  (2.15) 

In connections where uniaxial stresses through the welds cannot be established, the 
factor 2 in Equation (2.15) may be substituted with 3, cf. (Nielsen and Pilegaard 
Hansen 1971), which gives 

 ( )2 2 2
2 13 3h h h yfσ + τ + τ ≤  (2.16) 

With this modification, Equation (2.16) gives the same result as Equation (2.8), that is 
σh = fy/√3 for τ1h = τ2h = 0. 
The yield conditions may be expressed in a more convenient way as non-dimensional 
generalised forces. In this way Equation (2.15) is written: 

 ( )2 2
2 1

1 3 1
2 4

n q q+ + ≤  (2.17) 

Here the non-dimensional forces are given by 

 1 2
1 2

y y y

Q QNn q q
a L f a L f a L f

= = =  (2.18) 

With the same modification as in Equation (2.16), the yield condition for symmetric 
fillet welds, where the inclined uniaxial stresses cannot be established, is given by 

 ( )2 2
2 1

3 3 1
4 4

n q q+ + ≤  (2.19) 

If σ90 = τ90 and fy = fud/βw are introduced into the failure condition in EC3 (2005), cf. 
Equation (1.4), this equation may be expressed exactly as in Equation (2.17), since 

 0 1 90 90 2
2 2,

2 2h h hτ = τ σ = τ = σ = τ  (2.20) 

Inserting (2.20) into Equation (1.4) gives 

 ( )22 2 2
2 12 3eff h h h yfσ = σ + τ + τ ≤  (2.21) 

However, according to EC3 (2005), the failure condition is the same for any weld, and 
no reduction of the load-carrying capacity is necessary in any cases. 
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2.5 Comparison with Experimental Results 
Tests in the yield stage, with specimens (see Figure 2.8) where uniaxial stresses 
through the welds cannot be established, have been made at the Engineering Academy 
of Denmark (Jensen 1991). The specimens were cut out of a steel plate, which means 
that the welds were only marked by the geometry. Thereby, the number of unknown 
parameters was reduced. The failure load was also measured in the experiments in 
order to verify whether there was a relation between the final failure and the yield 
zones. This did not turn out to be the case. The failures of some selected specimens 
are shown in Figure 2.9. 
The data for the experiments may be found in Appendix C. 
 

 
Figure 2.8: Test specimens (measures in mm) on yield tests3 

 

 
Figure 2.9: Failure of test specimens4 

 
In these tests the specimens are subjected to a normal force, N, cf. Figure 2.1, which 
means that Q1 and Q2 are equal to zero. In this case, the lower-bound solution gives, 
cf. Equation (2.19), 

 2 1.155
3 y yN a L f a L f− = ≅  (2.22) 

The upper-bound solution, assuming plane strain, gives, cf. Equation (2.12), 

 21.17 1.351
3 y yN a L f a L f+ = ≅  (2.23) 

                                                 
3 The figure is taken from (Jensen 1991) 
4 The figure is taken from (Jensen 1991) 
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In the Hansen (2004) report, assuming plane stress, an upper-bound solution is 
studied. The upper-bound determined is N+ = 1.320 a L fy. If fy is set equal to fud/βw, 
the failure condition in EC3 (2005), cf. Equation (1.4), gives 

 3 2 1.414EC y yN a L f a L f= ≅  (2.24) 

The lower-bound value, the upper-bound value (assuming plane stress), and the value 
from EC3 are shown in Figure 2.10 together with the experimental results. The mean 
value of the tests is N = 1.170 a L fy, which is close to the lower-bound solution. 
The mean value of the ratios, N -/Nexp, is found to be 0.988 with a standard deviation 
of 3.4 %. 
Furthermore it is seen that EC3 overestimates the load-carrying capacity in this case. 
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Figure 2.10: Comparison of theory and test results 

 
Experiments in the yield stage, where uniaxial stresses through the welds may 
develop, are conducted by Butler and Kulak (1971), Swannell (1981), Clark (1972) 
and by Miazga and Kennedy (1989). March (1985) did tests with aluminium welds. 
The theory for q2 = 0, cf. Equation (2.17), is compared with the experimental results 
in Figure 2.11, where n1 is shown as a function of q1. 
 
There is a relatively large scatter in the test results, nevertheless they appear to verify 
the theory. By taking the square root of the left-hand side of Equation (2.17), the 
effective weld stress σexp for each test result is found. The theory gives σeff /fy = 1, then 
the mean value of the ratios, σeff /σexp, is 1.020 and the standard deviation is 12.4 % of 
all the tests in the figure. 
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Figure 2.11: Relationship between n1 and q1, theory and test results 

 
Swannell and Skewes (1978) made a limited number of tests with combined load case 
N and Q1, where uniaxial stresses through the welds could not be established. In these 
tests, N is in compression, which has no influence on the verification of the theory at 
yielding. The theory for q2 = 0, cf. Equation (2.19), is compared with the experimental 
results in Figure 2.12, where n1 is shown as a function of q1. 
The theory seems to underestimate the load-carrying capacity in pure compression, 
and the opposite seems to be the case at pure shear. 
The mean value of the ratios, σeff /σexp, is 1.065 and the standard deviation is 10.0 % 
of the tests in the figure. 
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Figure 2.12: Relationship between n1 (compression) and q1, where the uniaxial stresses cannot be 

established, theory and test results 
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3 LOWER-BOUND SOLUTIONS FOR SINGLE FILLET WELDS 
The lower-bound solutions given in Sections 2.1 and 2.2 are also valid for connections 
with a single fillet weld. However, the solution given in Section 2.3 is only valid for 
connections with two symmetric fillet welds, as both uniaxial tension and 
compression must be established. Therefore new lower-bound solutions are necessary. 

3.1 Shear on the Throat Section Perpendicular to the Axis of the 
Weld 

The solutions needed refer to shear (in the plane of the throat section) that is 
perpendicular to the axis of the weld. Again, this is done by establishing a safe, 
statically admissible stress distribution, see Figure 3.1. In this figure, the welding 
material and parts of the base material are subdivided into four triangular regions with 
homogeneous stress fields. Equilibrium with the shear stress on the throat section is 
obtained by the two boundary stresses. In the lower half (the dashed lines) the signs of 
the stresses are opposite to the stresses in the upper half. 
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Figure 3.1: Statically admissible stress distribution for x = ¼ a 

 
The horizontal part, 2 x, of the base material is included. By choosing x = ¼ a, the 
maximum value of the shear stress on the throat section is found. The vertical 
boundary stress will then be 2 τ90. Region I is subjected to uniaxial compression. In 
the Cartesian x,y-system of coordinates, cf. Figure 3.1, the homogeneous stresses are 

 900 2 0x y xyσ = σ = − τ τ =  (3.1) 

The load-carrying capacity for region I is given by, cf. Equation (1.5), 

 90
1
2 yfτ =  (3.2) 

In region II the stresses are given by 

 90 90
1 0
2x y xyσ = τ σ = τ = −τ  (3.3) 
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The load-carrying capacity for region II is given by, cf. Equation (1.5), 

 90
2 0.56
13 y yf fτ = ≅  (3.4) 

Region III and IV render the same load-carrying capacity as in Equations (3.2) and 
(3.4) respectively. 
From Equation (3.4) it is seen that it is not fully possible to reach the maximum shear 
load-carrying for a von Mises material (~0.58 fy). It is also seen that region I is the 
critical region, hence the load-carrying capacity is given by Equation (3.2). The stress 
fields in the two regions are illustrated in Figure 3.2 by applying Mohr’s circle. 
When Tresca’s yield criterion, cf. Equation (1.6), is applied, region II will be the 
critical one, as τ90 in region I will still be given by Equation (3.2), while for region II 
τ90 = 0.49 fy is found. 
 
It is not convenient to have region I as the critical one, hence the statically admissible 
stress distribution in Figure 3.3, with x = ½ a, is chosen. 
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Figure 3.2: Mohr’s circle applied on the two stress fields 
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Figure 3.3: Statically admissible stress distribution for x = ½ a 
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Only region III and IV influence the load-carrying capacity. In the Cartesian x,y-
system of coordinates, cf. Figure 3.3, the homogeneous stresses in region III are 

 90 900x y xyσ = −τ σ = τ = −τ  (3.5) 

and in region IV 

 900 0x y xyσ = σ = τ τ =  (3.6) 

The load-carrying capacity (region III) is then given by τ90 = 0.50 fy, which is lower 
than the maximum shear capacity of a von Mises material (~0.58 fy). 
For region IV τ90 = fy is found, hence region III is now decisive. The stress fields in all 
four regions are illustrated in Figure 3.4 by applying Mohr’s circle. The circles for 
region III and IV correspond to the circles for regions I and II mirrored at the τ-axis, 
respectively. 
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Figure 3.4: Mohr’s circle applied on the four stress fields 

 

3.2 Yield Surfaces for Single Fillet Welds 
To be able to compare the solutions with the failure conditions used in EC3 (2005), cf. 
Equation (1.4), the notation of the stresses in the above three solutions are harmonised 
with the EC3 notation. It is seen that τ1h = τ0 in Equation (2.4) and σ = σ90 in Equation 
(2.5). Equations (3.5) and (3.6) are already expressed by τ90. It must be clearly stated 
that σ90, τ90 and τ0 are uniformly distributed stresses on the throat section, and are in 
agreement with the stress field as a whole, and not just the average stresses on the 
throat section as in EC3. Superimposing the three lower-bound solutions, after 
transforming them to the same system of coordinates, see Figure 3.5, then leads to a 
yield surface for the load-carrying capacity of single fillet welds, see Figures 3.6 and 
3.7. The superimposed stresses referred to in the Cartesian x,y,z-system of 
coordinates, cf. Figure 3.5, are given in Table 3.1. Region V – VIII is given by the 
solution for τ90, cf. Equations (3.5) and (3.6), so they will not influence the 
superimposed load-carrying capacity. 
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Figure 3.5: Superposition of the three solutions for σ90, τ90 and τ0, respectively 

 
Region σx σy τxy τxz τyz 

I - 1
2 τ90 + 1

2 σ90  - 1
2 τ90 + 1

2 σ90 1
2 τ90 - 1

2 σ90 - 2
2 τ0 2

2 τ0 

II 3
2 τ90 + 1

2 σ90 - 1
2 τ90 + 1

2 σ90 1
2 τ90 - 1

2 σ90 - 2
2 τ0 2

2 τ0 

III 1
2 τ90 + 1

2 σ90 - 3
2 τ90 + 1

2 σ90 - 1
2 τ90 - 1

2 σ90 - 2
2 τ0 2

2 τ0 

IV 1
2 τ90 + 1

2 σ90 1
2 τ90 + 1

2 σ90 - 1
2 τ90 - 1

2 σ90 - 2
2 τ0 2

2 τ0 

Table 3.1: Homogeneous stresses in region I – IV 
 
There are two surfaces as there are two regions that influence the load-carrying 
capacity, cf. Figure 3.3. The yield surfaces are given by: 

 2 2 2 2
90 90 90 90 04 3 yfσ + τ + σ τ + τ ≤  (3.7) 

 ( )2 2 2
90 90 03 yfσ + τ + τ ≤  (3.8) 

The load-carrying capacity is governed by the equation that gives the smaller value on 
the left hand side of the equations. For |σ90| > 0.75 fy, Equation (3.8) is valid, 
otherwise Equation (3.7) is referred to. The absolute value of the product, σ90τ90, 
indicates that the product will always reduce the load-carrying capacity. 
 

0

0.5

1

0

0.5

1

0

0.2

0.4

0.6

0.8

1

1.2

τ
90

 / f
y

τ
0
 / f

y

σ 90
 / 

f y

Figure 3.6: Yield surface given by Equation (3.7) 
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Figure 3.7: Yield surface given by Equation (3.8) 
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3.3 Comparison with Experimental Results 
The yield surfaces are compared with tests made by Jensen (1991) and by Ligtenberg 
and van Melle (1964). In the special case τ0 = 0, see Figure 3.8, the best agreement 
with the theory is achieved for series S02. Here, the specimens are cut out of a steel 
plate; hence the number of unknown parameters is reduced, since the specimens are 
not welded. The larger deviation from theory is achieved for series 323.18. The 
specimens in these tests are loaded to failure; therefore the yield load is inaccurately 
determined. The specimens for series S02 are shown in Figure 3.9, and for series 
323.14 and 323.18 in Figure 3.10. 
The effective weld stress for |σ90| ≤ 0.75 fy is given by, cf. Equation (3.7), 

 2 2
90 90 90 904eff yfσ = σ + τ + σ τ ≤  (3.9) 

For |σ90| > 0.75 fy, the effective weld stress is given by, cf. Equation (3.8), 

 90 90eff yfσ = σ + τ ≤  (3.10) 

The mean value of the ratios, σeff /σexp, is 1.052 and the standard deviation is 10.8 % 
of all the tests in the figure. 
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Figure 3.8: Theory and test for τ0 = 0 

 
Ligtenberg and van Melle (1964) also conducted experiments at the yield stage with 
some relatively strange looking specimens, see Figure 3.11. 
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Figure 3.9: Test specimens for series S02 

(measures in mm)5 

 
 
 

 
 

Figure 3.10: Test specimens for series 323.14 and 
323.18 (measures in mm)6 

 

 
Figure 3.11: Specimens for series by Ligtenberg and van Melle (1964)7 

 
In the special case τ90 = 0, the two yield surfaces give the same result, see Figure 3.12. 
The specimens for series 323.23 are shown in Figure 3.13 and the effective weld 
stress is given by, cf. Equations (3.7) and (3.8), 

 2 2
90 03eff yfσ = σ + τ ≤  (3.11) 

There is very good agreement with the tests. The mean value of the ratios, σeff /σexp, is 
0.973 and the standard deviation is 5.4 % of all the tests in the figure. 
 

                                                 
5 The figure is taken from (Jensen 1991) 
6 The figure is taken from (Jensen 1991) 
7 The figure is taken from (Witteveen and van Douwen 1966) 
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Figure 3.12: Theory and test for τ90 = 0 

 
 

 
Figure 3.13: Test specimens for series 323.23 (measures in mm)8 

 
In the special case σ90 = 0, almost no tests have been found in the literature, see 
Figure 3.14. Here the points represent the mean value for five tests each. The effective 
weld stress is given by, cf. Equation (3.7), 

 2 2
90 04 3eff yfσ = τ + τ ≤  (3.12) 

The data for all experiments by Jensen (1991) may be found in Appendix C. For the 
individual test series shown in Figures 3.8, 3.12 and 3.14, the following mean values 
and standard deviations are obtained: 

• Jensen S02: Mean 1.042, standard deviation 3.6 %. 
• Jensen 323.14: Mean 1.046, standard deviation 13.2 %. 
• Jensen 323.18: Mean 1.068, standard deviation 14.3 %. 
• Jensen 323.23: Mean 0.957, standard deviation 5.3 %. 
• Ligtenberg and van Melle: Mean 1.038, standard deviation 7.6 %. 

                                                 
8 The figure is taken from (Jensen 1991) 
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Figure 3.14: Theory and test for σ90 = 0 

3.4 Reduction of the Load-Carrying Capacity 
As described in Section 2.2, the load-carrying capacity has to be reduced if inclined 
uniaxial stresses through the weld cannot be established. Superimposing the two shear 
solutions and the reduced normal stress solution, cf. Equation (2.7), leads to a reduced 
yield surface for a single fillet weld: 

 2 2 2 2
90 90 90 90 0

3 94 3
2 2 yfσ + τ + σ τ + τ ≤  (3.13) 

Here, only one region, cf. Figure 3.3, influences the load-carrying capacity. Therefore 
the yield surface is given by only one expression. No tests have been found to verify 
the theory, so it is compared to the solution given by Equation (3.7), see Figures 3.15 
and 3.16. It is seen that the load-carrying capacity is reduced by up to 18%. In the 
special case σ90 = 0, the yield surfaces give the same result, as no reduction is needed. 
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In a splice piece joint like that shown in Figure 3.17, the welds may be subjected to 
uniaxial tension through the welds, as the inclined tensile stress may be transferred to 
the splice pieces by compression in the adjacent plates. Hence the load-carrying 
capacity is not reduced in this case. The “clamping” phenomenon is illustrated in 
Figure 3.17. 
If the thickness of the splice pieces is at least twice the throat thickness, the load-
carrying capacity is given by Equation (2.15), as the joint contains two symmetric 
fillet welds. 
However, for a given welded connection, it may be difficult to evaluate whether the 
“clamping” phenomenon is present or not. Hence, there is some associated doubt 
when including this phenomenon in the calculations. 
 

2P

2P

CL

 
Figure 3.17: Splice piece joint 
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4 CONCLUSION 
Yield conditions are determined for symmetric fillet welds and single fillet welds, 
respectively. The yield conditions for joints with two symmetrical fillet welds are 
derived by referring to a section appearing after a rotation of the throat section to one 
of the faces of the weld. The obtained solution gives the same result as the failure 
criterion in EC3 as long as the inclined uniaxial stress through the welds may be 
carried further by the base material. 
If inclined uniaxial stress through the welds cannot be established, the load-carrying 
capacity must be reduced. 
 
The yield condition of a joint with a single fillet weld is determined by the smaller 
value of two yield surfaces. 
 
The derived yield conditions are compared to tests where emphasis is attached to the 
determination of the yield load instead of the failure load. There is very good 
agreement with these tests. The best agreement is obtained with tests where the 
specimens have been cut out of a steel plate; hence the welds are only marked by the 
geometry. In that way the number of unknown parameters is reduced. 
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6 NOTATION 
 
a throat thickness 
b width of test specimen 
fu characteristic value of the ultimate tensile strength 
fud design value of the ultimate tensile strength 
fy yield stress 
l, m, n coordinates of a unit vector 
n non-dimensional generalised normal force 
px, py, pz coordinates of a surface vector 
q1, q2 non-dimensional generalised shear forces 
t thickness 
u relative displacement 
D diameter of test specimen 
L weld length  
N normal force 
N+ normal force, upper-bound value 
N- normal force, lower-bound value 
Nexp normal force, test 
NEC3 normal force, EC3 
P force, load 
Q1 shear force in the 1-direction 
Q2 shear force in the 2-direction 
Wl dissipation per unit length 
x, y, z coordinates in a Cartesian x,y,z-system of coordinates 
x length 
α angle 
β correlation factor 
βw correlation factor according to EC3 
δ relative displacement 
γ angle of weld 
γMw partial coefficient according to EC3 
σ normal stress 
σ0 normal stress on the throat section parallel to the axis of the weld 
σ1, σ3 principal stresses 
σ90 normal stress on the throat section perpendicular to the axis of the weld 
σeff effective weld stress, theory 
σexp effective weld stress, test 
σh normal stress on the rotated throat section 
σi failure load for welded connection 
σx, σy, σz normal stresses referred to a Cartesian x,y,z-system of coordinates  
τ shear stress 
τ0 shear stress on the throat section parallel to the axis of the weld 
τ1h shear stress on the rotated throat section in the 1-direction 
τ2h shear stress on the rotated throat section in the 2-direction 
τ90 shear stress on the throat section perpendicular to the axis of the weld 
τxy, τxz, τyz shear stresses referred to a Cartesian x,y,z-system of coordinates 
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THE PLASTIC TENSION FIELD METHOD  
- Post-Buckling Strength of Plate Girders Subjected to Shear 

 

1 INTRODUCTION 
This part of the thesis describes a calculation method for steel plate girders with 
transverse web stiffeners subjected to shear. It may be used for predicting the failure 
load or, as a design method, to determine the optimal number of internal web 
stiffeners. The load-carrying capacity of a plate girder may be determined by applying 
the lower-bound theorem as well as the upper-bound theorem of the plastic theory. As 
a design method the lower-bound theorem is the easiest of the two to apply. 
The method is called the plastic tension field method. It is based on the theory of 
plasticity and is analogous to the so-called diagonal compression field method 
developed for reinforced concrete beams with transverse stirrups, which was adopted 
in EC2 (2004). 
The work was started by Nielsen and Christensen (1982). They derived lower-bound 
and upper-bound solutions for plate girders subjected to constant shear. This was 
followed up by Tolderlund (2000) who derived an upper-bound solution for simply 
supported plate girders with constant stiffener spacing subjected to a uniformly 
distributed load. In this thesis, Tolderlund’s results are further developed and 
corrected. 
 
In a concrete beam with transverse stirrups, the shear forces are carried by inclined 
compression in the concrete, see (Nielsen 1998). Along the tensile zone and the 
compressive zone of the beam, the transverse components of the inclined compression 
are transferred to the stirrups, which are thus subjected to tension. The principal for 
concrete beams is illustrated in Figure 1.1. 
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Figure 1.1: Diagonal compression stress field in a concrete beam 
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In a steel plate girder with transverse web stiffeners, the forces are carried in an 
analogous way after the web has buckled. Until the buckling load is reached, a web 
plate subjected to shear will develop identical principal stresses at an angle of 45° and 
135° to the flanges, respectively. When the web buckles, it practically loses its 
capacity to sustain the compressive principal stresses, hence a new way of carrying 
the load arises, where the shear forces are carried by inclined tensile bands. 
 
Many other theories have been developed, but the method presented differs from these 
theories by incorporating the strength of the transverse stiffeners and by the 
assumption that the tensile bands may pass the transverse stiffeners, which is often 
observed in tests. Other methods have only dealt with a single web field between two 
stiffeners. 
 
In Chapter 2, a description is given for determining the load-carrying capacity of a 
plate girder subjected to constant shear by applying both the lower bound theorem as 
well as the upper-bound theorem. A new upper-bound solution, for simply supported 
girders subjected to uniform loading, is presented in Section 2.3. 
The work conducted by Nielsen and Christensen (1982) only deals with determination 
of the load-carrying capacity; hence a practical design method is needed. The derived 
design method is presented in Chapter 3. 
Nielsen and Christensen (1982) stated that further experimental verification of the 
plastic tension field theory was required. In Chapter 4, the theory is verified with 
experimental results found in the literature. During the present study, two M.Sc. thesis 
students conducted a test series of eight plate girder specimens as further verification 
of the theory, see (Øskan and Bak 2006). These experiments are presented in Chapter 
5. 

1.1 Other Methods 
Subsequent to buckling, the stress distribution in the web of a plate girder changes and 
considerable post-buckling strength may be realised due to the diagonal tension that 
develops. This is commonly called the tension-field action. Even without transverse 
web stiffeners, a plate girder may develop a shear stress at the ultimate load several 
times the elastic critical shear buckling stress. The stress distribution of the tension 
field that develops in a plate girder with transverse stiffeners was first verified 
experimentally by Basler et al. (1960). 
 

 
Figure 1.2: Pure tension field by Wagner 
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However, Wagner (1929) had already used a complete, uniform tension field to 
determine the post-buckling strength of a panel in pure shear, see Figure 1.2. He 
assumed the flanges to be rigid and the web to be very thin. This method is suitable 
for aircraft structures where extremely thin plates attached to very rigid boundary 
elements are encountered. Hence, it is of little practical use in civil engineering 
structures. 
 
Basler (1961) was the first to derive a successful method for plate girders with slender 
webs and transverse stiffeners of the type used in civil engineering structures. He 
assumed that the flanges of most plate girders are too flexible to provide an anchorage 
for the tension field, so that the tension field shown in Figure 1.3 determines the shear 
strength. He further assumed that the shear stress in buckling τcr would remain active 
all over the web, also after buckling occurs. 
 

+ σt

cr

 
Figure 1.3: Combined critical shear buckling and tensile band by Basler 

 
It was first shown, cf. (Selberg 1963), by Gaylord (1963) and later by Fujii et al. 
(1971) that, by means of a mistake, Basler’s method gives the shear strength for a 
complete tension field instead of the limited band in Figure 1.3. Therefore, the method 
overestimates the shear strength of a girder whose flanges are incapable of providing 
anchorage for the tension field. 
 
Many variations of the post-buckling tension field have been developed since Basler 
published his work. Only the different types of method will be mentioned in the 
following. For a detailed historical view, see (Galambos 1988). 
Rockey and Skaloud (1971) showed that for girders with ordinary dimensions, the 
bending stiffness of the flanges is very significant for the post-buckling strength. 
Fujii et al. (1971) derived a method with beam mechanisms in each flange with 
interior yield hinge at the midpoints, see Figure 1.4. 
 

 
Figure 1.4: Tension field with yield hinge in the flange midpoints by Fujii et al. 
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Ostapenko and Chern (1971) proposed a tension field, where the principal band is 
determined by yielding, taking into account the stress that exists at buckling. A frame 
mechanism was assumed in the flanges, see Figure 1.5. 
 

+

 
Figure 1.5: Tension field action and frame mechanism by Ostapenko and Chern 

 
Komatsu (1971) derived a method where he determined the position of the interior 
yield hinges and found that the inclination of the tensile band varied with the 
dimensions of the flange and web, respectively. 
Calladine (1973) formulated a pure plastic solution, where he showed that the position 
of the yield hinges as well as the inclination of the tensile band varied with the flange 
stiffness, see Figure 1.6. Calladine’s solution is a special case (girders without internal 
stiffeners, i.e. ψ = 0) of the general solution presented in Section 2.2. 
 

f yw

 
Figure 1.6: Pure plastic solution by Calladine 

 
The tension field of Porter et al. (1975) consists of a single tensile band, and is a 
development of that suggested by Rockey and Skaloud (1971). The tensile membrane 
stress, together with the buckling stress, causes yielding, and failure occurs when 
hinges develop in the flanges to produce a combined mechanism, see Figure 1.7. 
 

+ σt

cr

 
Figure 1.7: Combined critical shear buckling and tensile band by Porter et al. 

 



PART II 

 43

In all the methods illustrated in Figures 1.2 – 1.7, only a web panel between two 
stiffeners is considered. 
 
Many other researchers have dealt with the problem, e.g. Sakai et al. (1966), Bergfelt 
(1973), Höglund (1973), Dubas (1974) and Herzog (1974). 
The solution by Porter et al. (1975) is the one adopted in the 1993-edition of Eurocode 
3 (EC3 1993), with some further modification not treated here. 
In the newest edition (2006) of Eurocode 3 (EC3 2006), the method by Porter et al. 
(1975) has been removed and substituted with another method, which is based on the 
rotated stress field developed by Höglund (1973). The rotated stress field is illustrated 
in Figure 1.8. Höglund has modified his own theory several times. The newest version 
of the rotated stress field theory is found in (Höglund 1995), which is adopted in EC3 
(2006) with few empirical modifications. A description of the method in EC3 (2006) 
is given in (Johansson et al. 2001). 
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Figure 1.8: Rotated stress field by Höglund 
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2 LOAD-CARRYING CAPACITY 
The post-buckling strength of a given steel plate girder with transverse stiffeners may 
be determined by the lower-bound theorem as well as the upper-bound theorem of the 
theory of plasticity. 
In both the lower-bound solution and the upper-bound solution presented in the 
following two sections, a horizontal, simply supported steel plate girder with double-
symmetrical I-section and transverse web stiffeners is considered. The plate girder is 
subjected to two symmetrical, concentrated forces, see Figure 2.1. 
In Section 2.3, an upper-bound solution for girders with uniform load is presented. 
The assumptions related to uniform loading are mentioned in Section 2.3. 
 

P P

P PL

 
Figure 2.1: Considered steel plate girder 

 
In the calculations, the following general assumptions are made: The web plate has no 
compressive strength, i.e. the yield criterion is as shown in Figure 2.2 with the solid 
lines. In the figure, σ1 and σ2 are the principal stresses and fyw is the tensile yield 
stress. Even though the web plate has buckled, some diagonal compression stresses 
may be sustained by the web, especially due to stabilising effects of the large tensile 
stresses. This is on the safe side neglected. 
Furthermore, the materials are assumed to be perfectly plastic. 
 

f yw

σ1

2

f yw

 
Figure 2.2: Yield criterion for the web plate 

 
The assumed yield criterion is identical to Tresca’s yield criterion without the 
compressive parts. It might appear more natural to apply a yield criterion such as the 
elliptical von Mises’ yield criterion without the compressive parts, which is indicated 
by the dashed lines in the figure. However, the main reason for choosing the 
simplified yield criterion is to keep the theory as simple as possible. Choosing the 
yield criterion with the dashed line will lead to far more complicated solutions than 
presented in the following. In general, von Mises’ yield criterion is the most accepted 
for steel structures, but it is not guaranteed that it is also valid in cases of materials 
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without compressive strength. As shown in Chapters 4 and 5, the theory based on the 
simplified yield criterion coincides closely with both the old and the new 
experimental results. 
Furthermore, the largest difference between Tresca’s and von Mises’ yield criterion is 
obtained in the case of pure shear. Here, it is the uniaxial tensile strength that is 
utilised, where the two criterions give the same solution, hence it is not at all certain 
that applying the yield criterion, shown with the dashed lines in Figure 2.2, will 
increase the load-carrying capacity. 
 
Moreover, the internal stiffeners are assumed subjected to compression. There are 
stiffeners at the reactions and at the concentrated forces, and the girder has constant 
dimensions, i.e. plate thicknesses and plate widths. The web plate is assumed simply 
supported at the boundaries, i.e. at the flanges and external stiffeners. Furthermore, 
imperfections and changes of geometry until failure are disregarded. 
 
The equations in Sections 2.1 and 2.2 were originally derived by Nielsen and 
Christensen (1982). In order to compare the theory with the experimental result later 
on, the theory is represented in the following, and to some extent it follows the text in 
(Nielsen and Christensen 1982). 

2.1 Lower-Bound Solution 
Consider a horizontal, simply supported steel plate girder with double-symmetrical I-
section and transverse web stiffeners subjected to constant shear, see Figure 2.3. The 
web is assumed to have no compressive strength, and the stiffeners are assumed 
subjected to compression, cf. Figure 2.2. The compression flange is idealised as a 
stringer carrying a force, C (positive as compression), and the tensile flange is 
idealised as a stringer carrying a force, T (positive as tension). Furthermore, the 
flanges are assumed to have no bending stiffness. 
A statically admissible stress field in the web consists of uniaxial tension, σw, at an 
angle, β, to the girder axis. The stress field carries the following stresses referred to a 
Cartesian x,y-system of coordinates, cf. Figure 2.3, 

 2cos cotwx wσ = σ β = τ β  (2.1) 

 2sin tanwy wσ = σ β = τ β  (2.2) 

 cos sinwxy wτ = −τ = σ β β  (2.3) 

Here, index, w, refers to the web and τ is the average shear stress in the section. 
Normal stresses in the web are positive as tension. The sign of shear stresses is as 
usual related to the system of coordinates. The relation between the average shear 
stress and the shear force, P = Q, is: 

 
w

Q
d t

τ =  (2.4) 

where d is the depth (distance between C and T) of the girder and tw is the web 
thickness. The stringer forces, C and T, are assumed to act at the midpoint of the 
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flange, hence d should be replaced by d plus tf, when d denotes the depth of the web 
plate only, as it does in general in this thesis. Throughout Section 2.1 this is neglected. 
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Q cot β
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2 d
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Figure 2.3: Diagonal tension stress field 

 
The internal stiffeners are assumed to be closely spaced along the entire shear span; 
hence the stiffener forces may be replaced by an equivalent stiffener stress, σsy 
(positive as compression), equal to the forces in the stiffeners distributed over the web 
area. Thus for a girder with As being the total cross-sectional area of a single stiffener, 
n the number of internal stiffeners, L the shear zone length, ϕ the stiffener ratio and fys 
the ultimate stress of the stiffeners (either the buckling stress or the yield stress, the 
lower being decisive), the equivalent stiffener stresses are given by 

 ; 0σ = = ϕ σ = τ =s
sy ys ys sx sxy

w

A n f f
L t

 (2.5) 

Determining the buckling stress of the stiffeners is treated in PART III, Section 4.1. 
The boundary conditions along the stringers for the total stress is σy = σwy - σsy = 0. 
Therefore the number of internal stiffeners is determined by 

 tanϕ = τ βysf  (2.6) 

The uniaxial web stress is: 

 ( )tan cot
cos sin

τ
σ = = τ β + β ≤

β βw ywf  (2.7) 

The web stresses have to satisfy the condition σw ≤ fyw (fyw being the yield stress of the 
web). 
The normal stress, σwx, is equivalent to a longitudinal force, Q cotβ, acting in the 
middle of the cross-section. This force must equilibrate the flange forces. The forces 
in the flanges are correspondingly: 

 1 cot
2

MT Q
d

= − β  (2.8) 

 1 cot
2

MC Q
d

= + β  (2.9) 
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Equation (2.9) is only valid if C does not exceed the buckling load of the compression 
flange. Determination of the buckling load of the compression flange is treated in 
PART III, Section 4.1. 
Timoshenko and Gere (1961) derived the same expressions for the flange forces, cf. 
Equations (2.8) and (2.9), using the tension field by Wagner (1929), cf. Figure 1.2. 
 
To express the number and strength of the stiffeners, a non-dimensional parameter, 
the mechanical degree of stiffening, is introduced: 

 ψ = ϕ =ys yss

yw w yw

f fA n
f L t f

 (2.10) 

Again, As is the total cross-sectional area of a single stiffener, L is the shear zone 
length, n the number of internal stiffeners, ϕ the stiffener ratio, fyw the yield stress of 
the web, and fys is the ultimate stress of the stiffeners (either the buckling stress or the 
yield stress, the lower being decisive). 
Then the load-carrying capacity may be expressed by the following non-dimensional 
value, τ/fyw, by a formula identical to the concrete solution, cf. (Nielsen 1998), 

 
( ) 11

2
1 1
2 2

yw

for

f for

⎧ ψ − ψ ψ <⎪τ ⎪= ⎨
⎪ ψ ≥
⎪⎩

 (2.11) 

It is interesting to note that the effectiveness factor, ν, equals unity. This will be 
verified with experimental results in Chapters 4 and 5. 
The solution is derived from Equations (2.6) and (2.7) assuming that the web yields in 
tension and the stiffeners yield in compression at the same time. If the buckling load 
of the stiffeners is valid, then it is furthermore assumed that the stiffeners “yield” at 
the buckling load. 
The ratio, τ/fyw, as a function of ψ is shown in Figure 2.4. It is seen that Equation 
(2.11) forms a circle for 0 ≤ ψ ≤ 0.5 and a straight line for ψ > 0.5, corresponding to 
the constant value τ/fyw = 0.5. 
 
If the yield criterion, signified by the dashed lines in Figure 2.2, had been applied, the 
lower-bound solution would be exactly the same as presented above. 
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Figure 2.4: Lower-bound solution 

 

2.2 Upper-Bound Solution for Concentrated Loading 
In the upper-bound solution, the bending stiffness of the flanges may easily be taken 
into account. 
The failure mechanism shown in Figure 2.5 is assumed, where the girder is subjected 
to constant shear. Until the buckling load is reached, the web plate will develop 
identical principal stresses at an angle of 45° and 135° to the flanges, respectively. 
Thereafter, the load is sustained by membrane forces, which will induce inwards 
bending of the flanges. Further loading will lead to yielding in the web, and yield 
hinges in the flanges will develop. 
 

δ

θ
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P

P  
Figure 2.5: Failure mechanism for concentrated loading 
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There is yielding in the web in a parallelogram-shaped area, “yielding” in the internal 
stiffeners and yield hinges in the flanges. The yield hinges in the flanges at the end of 
the length, L (at the reaction, P, and at the concentrated force, P), are fixed, while the 
position of the internal yield hinges varies with the different parameters. The load-
carrying capacity is calculated by the work equation, where the girder is given a 
displacement, δ, in transverse direction. 
The external work, We, is given by 

 eW P= δ  (2.12) 

The internal work, i.e. the dissipation, consists of three contributions; deformation of 
the web in the parallelogram-shaped area, bending of the flanges and compression of 
the internal stiffeners. In the following, these three contributions are treated 
separately. 
 

CONTRIBUTION FROM THE WEB PLATE 
The two triangular regions, AEC and BDF, see Figure 2.6, are idealised as rigid, since 
the rotation of the hinges in the flanges will not lead to any change of strain. Elastic 
strains will occur in the two regions, but at collapse, the change of elastic strain is 
zero. 
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Figure 2.6: Deformation of the web plate 

 
The parallelogram-shaped region, AEDF, gets plastic deformations. The plane strain 
field, referred to the Cartesian x,y-system of coordinates, cf. Figure 2.6, is given by 

 0xε =  (2.13) 

 tany c
δ

ε = − θ  (2.14) 

 xy c
δ

φ = −  (2.15) 

Here, εx and εy are the longitudinal strains and φxy is the change of angle. The length, 
c, the angle, θ, and the displacement, δ, are illustrated in Figure 2.6. The strains are 
illustrated by applying Mohr’s circle in Figure 2.7. 
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Figure 2.7: Strain field illustrated by Mohr’s circle 
 
The principal strains, ε1 and ε2, are found by 

 ( ) ( )21 2

2

1 1 1
2 4 4x y x y xy

ε ⎫
= ε + ε ± ε − ε + φ⎬ε ⎭

 (2.16) 

The principal major strain renders 

 ( )1
1 1 1 sin
2 cosc

δ
ε = − θ

θ
 (2.17) 

and the principal minor strain is 

 ( )2
1 1 1 sin
2 cosc

δ
ε = − + θ

θ
 (2.18) 

The angle, v, between the x-axis and the major principal axis is determined by, cf. 
Figure 2.7, 

 ( )
1
2

1
2

tan 2 cotxy

x y

v
φ

= − = θ
ε + ε

 (2.19) 

It is seen that the direction of the principal strain is the angular bisector of the 
parallelogram, cf. Figure 2.6, since the angle, v, is given by  

 1
2 2

v π⎛ ⎞= − θ⎜ ⎟
⎝ ⎠

 (2.20) 

In the mechanism, there is yielding in the whole parallelogram shaped area, AEDF, 
with the tensile yield stress parallel to the angular bisector. According to the assumed 
yield criterion, cf. Figure 2.2, compressive stresses in the second principal direction 
are equal to zero. Thus the contribution from the web plate to the dissipation becomes 
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( ), 1

,

1 1 1 sin
2 cos

1 sin
2cos

i web yw yw w
V A

i web yw w

W f dV f t dA
c

W f t d

δ
= ε = − θ

θ

− θ
= δ

θ

∫ ∫
 (2.21) 

Here, ε1 is the principal strain given by Equation (2.17), fyw the yield stress of the web 
material, d the girder depth, tw the web plate thickness and the length, c, the 
displacement, δ, and the angle, θ, are illustrated in Figure 2.6. 

CONTRIBUTION FROM THE FLANGES 
The flanges yield in the four points A, E, D and F, where the plastic yield hinges 
develop, see Figure 2.8. 
 

δ

d

A
F

E
D

θ

bf

tf

 
Figure 2.8: Bending of the flanges 

 
Each flange is assumed to bend around its innermost point. Hence, the yield moment 
of the flange, Mpf, is given by 

 21
2pf f f yfM b t f=  (2.22) 

Here, b is width, t thickness and fy is the yield stress or the buckling stress, the lower 
one being decisive. Index, f, refers to the flange. If the buckling stress is valid for the 
compression flange, the following Equation (2.23) is invalid, hence here and below it 
is assumed that the buckling stress of the compression flange is larger than the yield 
stress of the flange material. 
 
The contribution from the flanges to the dissipation, when the rotation, δ/c, of the 
yield hinges takes place at the deformation, becomes 

 
2

, 4 2 f f
i flange pf yf

b t
W M f

c c
δ

= = δ  (2.23) 

CONTRIBUTION FROM THE INTERNAL STIFFENERS 
As in the lower-bound solution, cf. Section 2.1, the internal stiffeners are assumed 
closely spaced along the entire shear span. Hence, the equivalent stiffener stress, σsy 
(positive as compression), cf. Equation (2.5), is given by 

 s
sy ys

w

A n f
L t

σ =  (2.24) 
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where As is the total cross-sectional area of a single stiffener, L the shear zone length, 
n the number of internal stiffeners, ϕ the stiffener ratio, and fyw the yield stress of the 
web. Again, the ultimate stress of the stiffeners, fys, is either the buckling stress or the 
yield stress. If the buckling stress is valid, the stiffeners are assumed to yield at the 
buckling stress in the following calculations. Determination of the buckling stress of 
the stiffeners is treated in PART III, Section 4.1. 
 

δ

c

d
θ

y

x L

Internal stiffeners

External stiffeners

 
Figure 2.9: Compression of the internal stiffeners 

 
The deformation leads to a strain, εy, corresponding to compression of the internal 
stiffeners in the y-direction, see Figure 2.9, given by Equation (2.14). The external 
stiffeners do not contribute to the dissipation. Thus, contribution from the stiffeners to 
the dissipation is 

 
,

,

tan

tan

i stiffener y sy w sy
V A

s
i stiffener ys

W dV t dA
c

A n dW f
L

δ
= ε σ = θ σ

= θ δ

∫ ∫
 (2.25) 

Here, σsy is the equivalent stiffener stress given by Equation (2.24) and tw is the web 
plate thickness. The length, c, the displacement, δ, and the angle, θ, are illustrated in 
Figure 2.9. 

LOAD-CARRYING CAPACITY 
The total dissipation is then found by adding the three contributions given by 
Equations (2.21), (2.23) and (2.25), respectively. 
Equalising the total dissipation and the external work, cf. Equation (2.12), gives 

 
21 sin 2 tan

2cos
f f s

yw w yf ys

b t A n dP f t d f f
c L

+ − θ
= + + θ

θ
 (2.26) 

The load-carrying capacity may be expressed by the same non-dimensional value, 
τ/fyw, as the lower-bound solution, where τ is given by Equation (2.4), i.e. 

 
21 1 sin 2 tan

2 cos
f f yf yss

yw w yw w yw

b t f fA n
f c d t f L t f
τ − θ

= + + θ
θ

 (2.27) 



PART II 

 53

As a measure for the bending stiffness of the flanges, the non-dimensional parameter, 
η, is introduced as 

 
2

2 24 2pf f f yf

w yw w yw

M b t f
d t f d t f

η = =  (2.28) 

In the above equations, fy is yield stress, t thickness and b width. Index, f, refers to the 
flange, index, w, refers to the web, and index, s, refers to the stiffeners. Notice that fys 
is either the yield stress or the buckling stress of the stiffeners. Furthermore, d is the 
girder depth, As the total cross-sectional area of a single stiffener, L the shear zone 
length, n the number of internal stiffeners and Mpf is the plastic yield moment of the 
flange, cf. Equation (2.22). The length, c, and the angle, θ, are illustrated in Figure 
2.9. 
 
Introducing η and the mechanical degree of stiffening, ψ, cf. Equation (2.10), and 
utilising c = L – d tan θ, the load-carrying capacity may be expressed as 

 ( )21 1 tan tan tan
2 / tanywf L d

τ η
= + θ − θ + + ψ θ

− θ
 (2.29) 

Due to the geometry, 0 ≤ tan θ ≤ L/d is required. 
 
When dealing with upper-bound solutions, the load-carrying capacity should be 
minimised with regard to the free parameter, here θ. Minimising Equation (2.29) 
regarding tan θ leads to 

 
( )22

1 tan 10 0
tan 2 2 / tan1 tanyw

d
d f L d

⎛ ⎞τ θ η
= ⇒ − + + ψ =⎜ ⎟⎜ ⎟θ − θ+ θ⎝ ⎠

 (2.30) 

It has not been possible to find an analytical expression for the load-carrying capacity, 
so it must be found by numerical methods. 

From Equation (2.30), it is seen that tan θ is equal to zero for 

 
21

2
d
L

⎛ ⎞ψ ≥ − ⎜ ⎟
⎝ ⎠

 (2.31) 

Thus 

 
21 1

2 2yw

d dfor
f L L
τ ⎛ ⎞= + η ψ ≥ − ⎜ ⎟

⎝ ⎠
 (2.32) 

Hence, if the value of ψ given by Equation (2.31) is valid, adding more or stronger 
stiffeners would not increase the load-carrying capacity. 
The ratio, τ/fyw, as a function of ψ is shown in Figures 2.10 – 2.12 for different values 
of η and the length-to-depth ratio, L/d. In the figures, the lower-bound solution, cf. 
Equation (2.11), is also shown. 
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Figure 2.10: Upper-bound solution for L/d = 1.0 
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Figure 2.11: Upper-bound solution for L/d = 2.0 
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Figure 2.12: Upper-bound solution for L/d = 4.0 
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From the figures it is seen that for short girders, i.e. low L/d-ratio, the internal 
stiffeners have less influence on the load-carrying capacity, as the flanges will sustain 
the main part of the load, so the load-carrying capacity is heavily dependant on the 
bending stiffness of the flange, i.e. the η-value. For slender flanges, i.e. small η-value, 
the upper-bound solution moves closer to the lower-bound solution. By increasing 
L/d-ratio, the load-carrying capacity is reduced, as the contribution from the flanges 
decreases compared to the contribution from the web and internal stiffeners, 
respectively. Hence, the upper-bound solution also moves closer to the lower-bound 
solution in this case. 
 
In the tests presented in Chapter 5, the ratio L/d = 4.0 is applied. For this ratio, tan θ 
as a function of ψ is shown in Figure 2.13 and as a function of η in Figure 2.14. For 
increasing values of ψ, tan θ decreases to zero for ψ = ½, i.e. the yield hinges move 
towards the external stiffeners, at the reaction and at the concentrated load, whereby 
the yield band will broaden. For increasing values of η, the yield hinges also moves 
towards the external stiffeners. 
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Figure 2.13: tan θ as a function of ψ for L/d = 4.0 

 

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35 0.4 0.45 0.5
0

0.5

1

1.5

2

2.5

3

3.5

4

η

ta
n 

θ

ψ = 0.0
ψ = 0.1
ψ = 0.2
ψ = 0.3
ψ = 0.4

 
Figure 2.14: tan θ as a function of η for L/d = 4.0 
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In the special case η = 0, i.e. girders with very low bending stiffness of the flanges, 
the load-carrying capacity is determined by 

 ( )21 1 tan tan tan
2

τ
= + θ − θ + ψ θ

ywf
 (2.33) 

Again, 0 ≤ tan θ ≤ L/d is required. 
By minimising Equation (2.33) regarding tan θ, and with the requirement, tan θ ≤ L/d, 
it is found that 

 ( )
min

1 2
2 1tan min

L
d

− ψ⎧
⎪ ψ − ψ⎪θ = ⎨
⎪
⎪⎩

 (2.34) 

Inserting Equation (2.34) into Equation (2.33) gives 

 

( )
( )

( )

2

2

2

1 1 11 1
2 21 /

1 1 1 11 0 1
2 2 2 1 /

yw

for
d L

f
L L for
d d d L

⎧ ⎛ ⎞
⎪ ⎜ ⎟ψ − ψ − ≤ ψ ≤
⎪ ⎜ ⎟+τ ⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎪ + + ψ − ≤ ψ < −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ +⎝ ⎠⎩

 (2.35) 

With the assumptions made, the load-carrying capacity given by the upper expression 
is an exact solution, as it corresponds to the lower-bound solution, cf. Equation (2.11). 
The lower expression forms a straight line with the slope, L/d, which is tangent to the 
circle, cf. Figures 2.10 – 2.12. 
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Figure 2.15: Upper-bound solution for ψ = 0 
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In the special case of ψ = 0, i.e. girders without internal web stiffeners, the load-
carrying is determined by 

 ( )21 1 tan tan
2 / tanywf L d

τ η
= + θ − θ +

− θ
 (2.36) 

It has also not been possible to find an analytical solution in this case. The ratio, τ/fyw, 
as a function of η is shown in Figure 2.15 for different values of the ratio, L/d. 
 
So far the derived theory is only valid for plate girders with relatively slender web 
plates, i.e. the critical buckling load of the web plate is less than the yield load of the 
web. 
The elastic critical buckling stress, τcr, of a single web panel is given by, cf. 
(Timoshenko and Gere 1961), 

 
( )

22

212 1
w

cr
tEk
d

π ⎛ ⎞τ = ⎜ ⎟− ν ⎝ ⎠
 (2.37) 

where the buckling coefficient, k, is found from 

 

2

2

5.35 4 1

5.35 4 1

d dfor
b b

k
d dfor
b b

⎧ ⎛ ⎞+ ≥⎪ ⎜ ⎟
⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪ + <⎜ ⎟⎪ ⎝ ⎠⎩

 (2.38) 

Here, d is the depth of the girder, tw the web plate thickness, b the length between two 
adjacent stiffeners, E is Young’s modules, and ν is Poisson’s ratio. Furthermore, it is 
assumed that the web plate is simply supported at the flanges and at the stiffeners. 
For plate girders with τcr ≥ fyw/√3, buckling of the web will not occur according to the 
elastic buckling theory. Hence, no tensile yield band will develop as previous 
assumed, but a mechanism corresponding to yielding over the entire shear zone and 
yield hinges in the corners will develop, see Figure 2.16. 

δ
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P

 
Figure 2.16: Failure mechanism for girders with thick web plates 

 
The load-carrying capacity for this mechanism, when von Mises’ yield criterion is 
applied, is 

 
4

3
yw pf

w

f M
P d t

c
+ = +  (2.39) 
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Here fyw is the yield stress of the web material, tw the web plate thickness, d the girder 
depth, Mpf the plastic yield moment of the flange, cf. Equation (2.22), and c is the 
length between the yield hinges at the supplied loads and at the internal yield hinges. 
 
The load-carrying capacity may be expressed by the non-dimensional value, τ/fyw, 
utilising Equation (2.28) and c = L – d tan θ (L being the length of the shear zone), as 

 1
/ tan3ywf L d

τ η
= +

− θ
 (2.40) 

Minimising with regard to tan θ renders tan θ equal to zero, i.e. the yield hinges in the 
flanges will develop in the corners as shown in Figure 2.16. Thus 

 1
3yw

d
f L
τ

= + η  (2.41) 

where η is given by Equation (2.28). 
The stiffeners are not incorporated in the load-carrying capacity expression. The 
stiffeners should be included in the calculation of the buckling load, considering the 
entire shear zone, but this has not yet been done. 
If Tresca’s yield criterion is applied, the factor 1/√3 should be replaced by 1/2 in 
Equations (2.39) – (2.41). 

2.3 Upper-Bound Solution for Distributed Loading 
In the case of a simply supported girder, the failure mechanism shown in Figure 2.17 
is assumed, where the girder is subjected to a load, q, per unit length acting on the top 
flange. Again, a double-symmetrical I-section with constant dimensions is assumed. 
The stiffeners are assumed subjected to compression and the yield criterion for the 
web plate is given by Figure 2.2. 
There is yielding in the web in two parallelogram-shaped areas, “yielding” in the 
internal stiffeners and yield hinges in the flanges. The yield hinges in the flanges at 
the end of the length, L (at the reaction ½ q L), are fixed, while the position of the 
internal yield hinges varies with the different parameters. The length, x, between the 
two yield hinges, cf. Figure 2.17, is assumed to be the same in both the top and 
bottom flange. 
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Figure 2.17: Failure mechanism for a simply supported girder with distributed loading 
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Figure 2.18: Deformation of the web plate 

 
Only the two parallelogram-shaped areas get plastic deformations in the failure 
mechanism. The remaining web areas (the hatched areas in Figure 2.18) are idealised 
as rigid, since the rotation of the hinges in the flanges will not lead to any chance of 
strain here. Thus the dissipation from one parallelogram shaped web area is the same 
as for concentrated loading, cf. Equation (2.21). The contribution to the dissipation 
from the web of the girder in Figure 2.18 then becomes 

 
( ), 1

,

1 12 2 1 sin
2 cos

1 sin
cos

i web yw yw w
V A

i web yw w

W f dV f t dA
x

W f t d

δ
= ε = − θ

θ

− θ
= δ

θ

∫ ∫
 (2.42) 

Here, ε1 is the principal strain given by Equation (2.17), fyw the yield stress of the web 
material, d the girder depth and tw is the web plate thickness. The length, x, the 
displacement, δ, and the angle, θ, are illustrated in Figure 2.18. 
 
The only difference between this equation and the dissipation in Equation (2.21) is a 
factor of two. Also, the hinge spacing is now called x instead of c. This is done 
because c may be expressed by the angle, θ, cf. Figure 2.6. The hinge spacing, x, is 
independent of the angle, θ, cf. Figure 2.18. 
 
The contribution to the dissipation from the flanges is determined in the same way by 
multiplying with a factor of two and substituting c with x, cf. Equation (2.23), 

 
2

, 8 4 f f
i flange pf yf

b t
W M f

x x
δ

= = δ  (2.43) 

Here b is width, t is thickness and fy is the yield stress or the buckling stress, the lower 
one being decisive. Index, f, refers to the flange. As in Section 2.2, it is here assumed 
that the buckling stress of the compression flange is larger than the yield stress of the 
flange material. 
Only the stiffeners located along the two lengths, x + d tan θ, except the stiffeners at 
the supports, will be compressed. It is here assumed that all the stiffeners are placed 
with a constant spacing, b. Hence the equivalent stiffener stress, σsy (positive as 
compression), cf. Equation (2.24), may be determined by (As being the total cross-
sectional area of a single stiffener and tw the web plate thickness) 
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 s
sy ys

w

A f
b t

σ =  (2.44) 

Again, the ultimate stress of the stiffeners, fys, is either the buckling stress or the yield 
stress. If the buckling stress is valid, the stiffeners are assumed to yield at the buckling 
stress in the following calculations. Determination of the buckling stress of the 
stiffeners is treated in PART III, Section 4.1. 
With the assumption of constant stiffener spacing, it is not necessary to evaluate how 
many stiffeners are located along the two lengths, x + d tan θ. The contribution to the 
dissipation from the stiffeners is then determined by, cf. Equation (2.25), 

 
,

,

2 2 tan

2 tan

i stiffener y sy w sy
V A

s
i stiffener ys

W dV t dA
x

A dW f
b

δ
= ε σ = θ σ

= θ δ

∫ ∫
 (2.45) 

The total dissipation is then found by adding the three contributions given by 
Equations (2.42), (2.43) and (2.45), respectively. This gives 

 
21 sin 4 2 tan

cos
f f s

i yw w yf ys

b t A dW f t d f f
x b

− θ
= δ + δ + θ δ

θ
 (2.46) 

The external work is given by 

 ( )eW q L x= − δ  (2.47) 

where q is the supplied load per unit length and L is the length of the shear zone. The 
length, x, and the displacement, δ, are shown in Figure 2.18.  
It should be stated here that the solution will be different if the girder is subjected to a 
uniformly distributed load along the bottom face, as the external work will not be 
given by Equation (2.47) in this case. 
 
Equalising the total dissipation and the external work gives 

 
( ) ( )

21 sin 4 2 tan
cos

yw w f f s
yf ys

f t d b t A dq f f
L x L x x b L x

+ − θ
= + + θ

θ − − −
 (2.48) 

The load-carrying capacity may be expressed by the non-dimensional value, τ/fyw, 
where τ is given by 

 1
2 w

q L
d t

τ =  (2.49) 

The load-carrying capacity then becomes 

 
( )

21 1 sin 2 tan
2 cos

f f yf yss

yw w yw w yw

b t f fAL L L
f L x d t f L x x bt f L x
τ − θ

= + + θ
θ − − −

 (2.50) 
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Introducing η as a measure for the bending stiffness of the flanges, given by Equation 
(2.28), and the mechanical degree of stiffening, ψ, cf. Equation (2.10), the load-
carrying capacity may be expressed as 

 
21 1 tan tan tan

2 1 / 1 / 1 /yw

d
f x L x x L x L
τ + θ − θ η ψ θ

= + +
− − −

 (2.51) 

Due to the geometry the following condition must be satisfied: 

 10 tan
2

L x
d d

≤ θ ≤ −  (2.52) 

In Equations (2.48) - (2.52), fy is yield stress and t is thickness with index f for flange, 
w for web and s for stiffener. Again, fys is either the yield stress or the buckling stress 
of the stiffeners. Furthermore, bf is the flange width, b the constant stiffener spacing, d 
the girder depth, As the total cross-sectional area of a single stiffener, L the shear zone 
length, and n is the number of internal stiffeners. The length, x, and the angle, θ, are 
illustrated in Figure 2.18. 
 
Tolderlund (2000) derived the same solution as Equation (2.51), but he did not 
include the restriction on tan θ, cf. Equation (2.52), therefore his result is incorrect. 
 
The load-carrying capacity should be minimised with regard to the free parameters. In 
the case of concentrated loading, cf. Section 2.2, only the angle, θ, is a free parameter. 
In this case however, there are two, i.e. θ and x. Minimising Equation (2.51) regarding 
tan θ leads to 

 
( )22 2 1 tan1 1 tan tan tan 10 0

tan 2 1 / 1 /yw

d
d f x L x L

ψ + θ⎛ ⎞τ + θ θ − θ −
= ⇒ + =⎜ ⎟⎜ ⎟θ − −⎝ ⎠

 (2.53) 

In this case it is possible to find an analytical expression for the load-carrying 
capacity, as Equation (2.53) turns out to be independent of x. It is in fact also 
independent of the bending stiffness of the flanges, i.e. η, and the ratio, d/L. The 
angle, θmin, leading to a minimum for τ/fyw is given by 

 ( )
min

1 2 1
22 1tan
10
2

for

for

− ψ⎧ ψ <⎪ ψ − ψ⎪θ = ⎨
⎪ ψ ≥⎪⎩

 (2.54) 

Inserting this value of tan θ for ψ < ½ into Equation (2.51) and minimising regarding 
x, the length, x, is found to be determined by 

 
( )

1 1

1

d d d
L L Lx

L

⎛ ⎞ψ ψ
η η + − ψ − η⎜ ⎟− ψ − ψ⎝ ⎠=

ψ − ψ
 (2.55) 
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The analytical expression for the load-carrying capacity is found by inserting tan θ, cf. 
Equation (2.54), and x/L, cf. Equation (2.55), into Equation (2.51). This corresponds 
to what Tolderlund (2000) did. If the restriction due to geometry, cf. Equation (2.52), 
is included, then tan θ is determined by 

 ( )
min

1 2
2 1tan min

1
2

L x
d d

− ψ⎧
⎪ ψ − ψ⎪θ = ⎨
⎪ −⎪⎩

 (2.56) 

By inserting the lower expression into Equation (2.51) and minimising regarding x 
leads to 

 ( ) ( )

( ) ( ) ( ) ( )
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⎛ ⎞ψ −⎜ ⎟η η ψ ⎝ ⎠+ − − + =
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 (2.57) 

It has not been possible to find an analytical expression for the ratio, x/L, so it must be 
found by numerical methods. 
The ratio, τ/fyw, as a function of ψ is shown in Figures 2.19 – 2.21 for different values 
of η and the length-to-depth ratio, L/d. 
 
It is seen that tan θ is equal to zero for ψ ≥ ½, cf. Equation (2.56). Thus 

 1 1 1
2 1 / 1 / 2yw

d for
f x L x x L
τ η

= + ψ ≥
− −

 (2.58) 

where the ratio, x/L, for ψ = ½ is given by, cf. Equation (2.55), 

 2 2 1 2x d d d
L L L L

⎛ ⎞= η η + − η⎜ ⎟
⎝ ⎠

 (2.59) 

Hence if ψ ≥ ½, adding stronger or more stiffeners would not increase the load-
carrying capacity. 
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Figure 2.19: Upper-bound solution for L/d = 2.0 
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Figure 2.20: Upper-bound solution for L/d = 6.0 
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Figure 2.21: Upper-bound solution for L/d = 10.0 
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From the figures it is seen that the flange stiffness, i.e. the η-value, has a larger 
influence on the load-carrying capacity compared to the solution for constant shear, 
cf. Figures 2.10 – 2.12, as the flanges will sustain the main part of the load. By 
increasing L/d-ratio, the load-carrying capacity is reduced since the contribution from 
the flanges decreases compared to the contribution from the web and internal 
stiffeners, respectively. But for L/d = 10, η = 0.3 and ψ ≥ ½, cf. Figure 2.21, the load-
carrying capacity is still 62 % greater than the load-carrying capacity for η = 0.0. For 
constant shear, the load-carrying capacity for L/d = 4, η = 0.3 and ψ ≥ ½, cf. Figure 
2.12, is only 15 % greater than the load-carrying capacity for η = 0.0. 
 
In the special case η = 0, i.e. girders with very low bending stiffness of the flanges, 
the load-carrying capacity is determined by 

 
21 1 tan tan tan

2 1 / 1 /ywf x L x L
τ + θ − θ ψ θ

= +
− −

 (2.60) 

Again, the following condition must be satisfied: 

 10 tan
2

L x
d d

≤ θ ≤ −  (2.61) 

By minimising Equation (2.60) regarding x, it is found that x is equal to zero when η 
equals zero. By minimising regarding tan θ, and with the requirement in Equation 
(2.61), it is found that 

 ( )
min

1 2
2 1tan min

1
2

L
d

− ψ⎧
⎪ ψ − ψ⎪θ = ⎨
⎪
⎪⎩

 (2.62) 

Inserting Equation (2.62) and x = 0 into Equation (2.60) gives 

 

( )
( )

( )

2

2

2

1 1 11 1
2 21 4 /

1 1 1 1 1 11 0 1
2 4 2 2 2 1 4 /

yw

for
d L

f
L L for
d d d L

⎧ ⎛ ⎞
⎪ ⎜ ⎟ψ − ψ − ≤ ψ ≤
⎪ ⎜ ⎟+τ ⎪ ⎝ ⎠= ⎨

⎛ ⎞⎪ ⎛ ⎞ ⎛ ⎞ ⎜ ⎟⎪ + + ψ − ≤ ψ < −⎜ ⎟ ⎜ ⎟ ⎜ ⎟⎝ ⎠ ⎝ ⎠⎪ +⎝ ⎠⎩

 (2.63) 

The result, x = 0 for η = 0, is indicating that no parallelogram-shaped yield area 
develops in the web. Then the dissipation from the parallelogram-shaped region 
should correspond to the dissipation in a single yield line. In order to verify this fact, 
the mechanism consisting of a single yield line in the web shown in Figure 2.22 is 
calculated.  
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Figure 2.22: Failure mechanism for a simply supported girder with low flange bending stiffness 

 
The mechanism is most simply calculated with the reaction (R = ½ q L) as the active 
load. Then, due to the symmetry, only one half of the girder is considered. The 
external work, We, is then given by 

 1
2eW q L u=  (2.64) 

With the assumed yield criterion for plane stress, cf. Figure 2.2, the dissipation in the 
yield line per unit length, Wl, is given by, cf. (Nielsen et al. 2000), 

 ( )1 1 sin
2l yW f t u= − α  (2.65) 

Here, q is the supplied load per unit length, L the total length of the girder, fy the yield 
stress, t the thickness and α is the angle between the relative displacement, u, and the 
yield line. From Figure 2.22 it is seen that α is equal to θ. Again, the stiffeners are 
assumed placed with a constant spacing, b. The total dissipation, Wi, without any 
contribution from the flanges is given by 

 ( )1 1 sin tan
2 cos

s
i yw w ys

AdW f t u f u d
b

= − θ + θ
θ

 (2.66) 

Equalising the total dissipation and the external work gives 

 1 sin 2 tan
cos

yw w s
ys

f t d A dq f
L b L

+ − θ
= + θ

θ
 (2.67) 

In Equations (2.66) and (2.67), fyw is the web yield, tw the web thickness, and fys is 
either the yield stress or the buckling stress of the stiffeners. Furthermore, b is the 
constant stiffener spacing, d the girder depth, As the total cross-sectional area of a 
single stiffener, L the total girder length, and n is the number of internal stiffeners. 
The relative displacement, u, and the angle, θ, are illustrated in Figure 2.22. 
 
Utilising τ given by Equation (2.49) and ψ, cf. Equation (2.10), the load-carrying 
capacity may be expressed by the non-dimensional value, τ/fyw, as 
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 ( )21 1 tan tan tan
2ywf

τ
= + θ − θ + ψ θ  (2.68) 

This is identical to Equation (2.60) for x equals zero, hence the load-carrying capacity 
for the mechanism with the parallelogram-shaped region for x equals zero gives the 
same result as a mechanism with a single yield line. Also, minimising regarding tan θ 
leads to Equation (2.62). 
 
If the flanges are included in the mechanism, cf. Figure 2.22, the inclined yield line in 
the web plate will be followed by a vertical yield line in each flange, inducing a pure 
shear failure of the flanges. The contribution to the dissipation from one flange will 
be, cf. Equation (2.65), where α is equal to zero, 

 ,
1
2i flange yf f fW f t b u=  (2.69) 

Here, u is the relative displacement, b the width, t the thickness and fy is the yield 
stress or the buckling stress, the lower of the two being decisive. Index, f, refers to the 
flange. 
It is seen that the flange will give a relatively large contribution to the dissipation, 
hence the mechanism, cf. Figure 2.22, is only valid for girders with low bending 
stiffness of the flanges. It should here be stated that extremely wide flanges with 
extremely small thickness may provide a considerable contribution to the dissipation, 
cf. Equation (2.69), even though the bending stiffness of such flanges will be very 
low. 
 
For concrete beams, cf. (Nielsen 1998), the solution will be identical to the solution 
for steel plate girders with η equals zero subjected to concentrated loading, cf. 
Equation (2.33). For distributed loading, the solution will be different for steel plate 
girders and concrete beams, respectively. 
 
In the special case ψ = 0, i.e. girders without internal web stiffeners, the load-carrying 
capacity is determined by 

 
21 1 tan tan

2 1 / 1 /yw

d
f x L x x L
τ + θ − θ η

= +
− −

 (2.70) 

Here, tan θ is given by cf. Equation (2.56), 

 1tan
2

L x
d d

θ = −  (2.71) 

It has not been possible to find an analytical solution in this case either. The ratio, 
τ/fyw, as a function of η is shown in Figure 2.23 for different values of the ratio, L/d. 
From Equation (2.71) it is seen that the two yield hinges in the bottom flange will 
both develop in the midpoint of the bottom flange, cf. Figure 2.17, i.e. only one plastic 
yield hinge will develop. 
For low η-values, x will be close to zero and the length, d tan θ, close to ½ L. For 
increasing η-values, x increases and the length, d tan θ, decreases. 
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Figure 2.23: Upper-bound solution for ψ = 0 
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3 DESIGN METHOD 
As a design method, the lower-bound theorem is the easiest to apply, hence only this 
theorem will be considered in the following. The lower-bound solution is, by nature, 
conservative. Furthermore, the design method is conservative due to the fact that the 
flanges are assumed to have no bending stiffness. 
 
A steel plate girder subjected to constant shear carries the maximum load when σw is 
equal to fyw, cf. Equation (2.7). This determines the minimum value of β, and the 
minimum number of stiffeners is then given by Equation (2.6). As previously 
mentioned, the stress, fys, is either the buckling stress of the stiffeners or the yield 
stress, the lowest being decisive. 
A steel plate girder subjected to uniform loading may be designed in the same way as 
a concrete beam, cf. (Nielsen 1998). The girder is subdivided into parallelogram-
shaped regions with the length, d cotβ, and with homogeneous stress fields. The 
number of stiffeners is given by Equation (2.6). Here the shear stress, τ, varies from 
region to region. The method is conservative, as the web is not fully utilised. A better 
solution may be obtained by applying inhomogeneous circular fans as presented in the 
following. These circular fan stress fields are also valid for concrete beams. The 
solutions for concrete beams are not treated here, but they are fully described by 
Hansen and Nielsen (2005). 

3.1 Circular Fan Solutions 
In a circular fan, the stresses in radial sections are zero and there are no stresses in 
circumferential sections, i.e. σα = τrα = 0 for a polar system of coordinates r, α, see 
Figure 3.1. 
 

Point with maximum stressσwy,tf

wy,bf

C

a

r

x

y 0

α

Point with minimum stress

 
Figure 3.1: Circular fan solution 

 
By means of the equilibrium equations in polar coordinates, it is easily shown that the 
radial stress σr = c/r, where c ≥ 0, is a function of α. The stress, σr, will always be 
tensile. 
Consider first the case of uniform loading along the bottom face, with no loading 
along the top face. Regarding top face load, see Section 3.4. To be able to satisfy the 
boundary conditions, σwy must be constant along horizontal lines. With the x,y-
coordinates shown in Figure 3.1, the transformation formulae are given by 
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 2sinwx rσ = σ α  (3.1) 

 2coswy rσ = σ α  (3.2) 

 cos sinwxy rτ = σ α α  (3.3) 

Note that the angle, α, equals π/2 - β, where β is the angle introduced in Figure 2.3. 
At the bottom face of the circular fan in Figure 3.1, the web stress is equal to the 
stress from the uniform load at the bottom face of the girder plus a possible 
contribution from the transverse stiffeners needed in the region on the right-hand side 
of the circular fan. To satisfy the boundary condition at the top face (σy = 0), the 
stiffeners in the circular fan must, as described in Section 2.1, correspond to  

 , ,ys wy tf sy tffϕ = σ = σ  (3.4) 

Here and in the following, index, tf, refers to top face and index, bf, refers to bottom 
face. Furthermore, index, w, refers to web and index, s, refers to stiffeners. ϕ is the 
stiffener ratio and fys is either the yield stress or the buckling stress of the stiffeners. 
Determination of the buckling stress is treated in PART III, Section 4.1. 
These stiffeners will add an extra tensile stress to the web stress in the region on the 
left-hand side of the circular fan. If a is the vertical distance from the pole, C, of the 
fan to the bottom face, then r = a/cosα along the bottom face and the radial web 
stress, σr, in any point of the circular fan is given by 

 ,
3

1
cos

wy bf
r

a
r

σ
σ =

α
 (3.5) 

Along any other horizontal line the web stress, σwy, may be determined by the 
following formula, where y0 is the vertical distance from the bottom face of the girder 
to the particular horizontal line considered, cf. Figure 3.1, 

 ,
0

wy wy bf
a

a y
σ = σ

−
 (3.6) 

By Equations (3.2) and (3.3), the shear stress, τwxy, along the bottom face is found to 
be 

 , tanwxy wy bfτ = σ α  (3.7) 

Along any other horizontal line τwxy is 

 ,
0

tanwxy wy bf
a

a y
τ = σ α

−
 (3.8) 

Thus τwxy is a linear function of x along a horizontal line. 
In the same way it is found that σwx along any horizontal line is given by 
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 2
,

0

tanwx wy bf
a

a y
σ = σ α

−
 (3.9) 

Unfortunately, the stress field in a circular fan becomes strongly inhomogeneous if the 
angle between the two inclined faces limiting the circular fan becomes large. This is 
evident from Equation (3.5). Since σr → ∞ for r → 0, the pole cannot belong to the 
region considered. The largest value of the web stress (σw = σr) is found when α is as 
large as possible and r as small as possible. Thus the point with maximum stress (as 
well as the point with minimum stress) is as shown in Figure 3.1.  
 
In general, the stresses in a fan may be found by Equations (3.1) - (3.3). Solving one 
of these equations for σr and inserting into one of the other equations, the relationship 
between the three stress components may be expressed as shown in Box 1. 
 

tanx xyσ = τ α  cotxy xτ = σ α  2tanx yσ = σ α  
coty xyσ = τ α  tanxy yτ = σ α  2coty xσ = σ α  

Box 1: Relationship between σx, σy and τxy. 
 
The equations in Box 1 are in fact valid for any uniaxial stress field. To make them 
valid for the circular fan solutions, σy must, as previously mentioned, be constant 
along horizontal lines. 
 
The variation of the flange forces, T and C, follow from the shear stress, τ, along the 
flanges, i.e. 

 w
dT dC t
dx dx

= = τ  (3.10) 

where tw is the web thickness and x is the girder axis. 
If the shear stress is constant, the flange forces will be linear functions. When circular 
fans are applied, the shear stress varies linearly along the stringers in each fan, thus 
the flange forces will be parabolic. It becomes apparent that the traditional equations 
for the flange forces, Equations (2.8) and (2.9), may still be used with the following 
modifications: 

 1 tan
2B left

MT Q
d

= − α  (3.11) 

 1 tan
2A right

MC Q
d

= + α  (3.12) 

Here, Q is the shear force and M is the moment in the section considered (AB). 
Indexes, A and B, refer to the points marked in Figure 3.2. The angles, αleft and αright, 
are the angles of the left- and right-hand side of the fan considered, respectively. 
Notice, that tan α = cot β, cf. Figure 2.1. 
Again, Equation (3.12) is only valid if CA does not exceed the buckling load of the 
compression flange. Determination of the buckling load of the compression flange is 
treated in PART III, Section 4.1. 
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As described in Section 2.1, d in Equation (3.11) and Equation (3.12) should be 
replaced by d plus tf. This is also neglected in this section. 
The flange forces must equilibrate the normal stresses, σwx, in a vertical section. In 
Figure 3.2, a circular fan (A, B, C and D) is shown. The web normal stress, σwx, along 
the vertical line, AB, as a function of the vertical distance, y0, from the bottom face 
may be determined by, cf. Box 1, 

 
( )

3
2

, 3
0

tanwx wy bf left
a

a y
σ = σ α

−
 (3.13) 

The σwx-distribution along the vertical section (AB) is also illustrated in Figure 3.2. 
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Figure 3.2: Normal stress along a vertical section in a circular fan 

 
Due to equilibrium with the flange forces, TB and CA, cf. Equations (3.11) and (3.12), 
the resultant of the σwx-stresses along a vertical section in any circular fan is given by 

 ( )1 tan tan
2x right leftR Q= α + α  (3.14) 

This resultant acts on the point E, cf. Figure 3.2, i.e. the point where the diagonals 
(AB) and (CD) intersect. This may be verified by applying the moment equilibrium 
equation on point E. The lever arm for TB, i.e. length between B and E, is given by 

 
tan

tan tan
tan tan

right
right

left right

BE d d
α

= α υ =
α + α

 (3.15) 

The lever arm for CA, i.e. length between A and E, is given by 

 
tan

tan tan
tan tan

left
left

left right

AE d d
α

= α υ =
α + α

 (3.16) 

The following criterion is then always fulfilled, cf. Equations (3.11) and (3.12). 

 A BC AE T BE M+ =  (3.17) 

Equation (3.14) is also found by the equations in Box 1, when the mean value of τxy 
and σx in section (AB) is considered. 
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It is now evident that the flange forces calculated by the Equations (3.11) and (3.12) 
are valid for the four points A, B, C and D in Figure 3.2 in any circular fan. Along the 
compression flange, a jump in the shear stress, τwxy, in point A (and in point C) will 
occur, hence the compressive flange force curve will have a slope discontinuity at this 
point. This is also the case for the tensile flange force at point B (and D). Between the 
points A and C (and between D and B), the flange forces are parabolic functions. 

3.2 Application of Circular Fan Stress Fields 
As mentioned above, since the stress field in a circular fan becomes strongly 
inhomogeneous if the angle between the two inclined faces limiting the circular fan 
becomes large, more than one circular fan must normally be applied. The optimal 
subdivision may be found by requiring the web stress, σr, in the point with maximum 
stress in each fan to be equal to the yield stress, fyw. 
 

κ1 d κ2 d κ3 d

d M max

σwy,H1

wy,tf,F1

σwy,bf,F1 σwy,bf,F2

p

α1
H1

β1

F1 F2α2 α3

β2 β3

wy,tf,F2

 
Figure 3.3: Steel plate girder subdivided into circular fans 

 
Consider Figure 3.3, which shows a part of a steel plate girder, uniformly loaded (note 
that p is a load per unit area) at the bottom face, from a maximum moment point to a 
support. The girder is modelled by one homogeneous stress region, H1, and two 
circular fans, F1 and F2. Denoting κi = tanαi = cotβi, the parameter, κ1, and thereby 
the length, κ1d, and the angles, α1 and β1, are determined by, cf. Equation (2.7), 

 
2

1
1 21

2

1 1 1 ,
2

⎛ ⎞⎛ ⎞τ⎜ ⎟κ = + − τ ≤⎜ ⎟⎜ ⎟⎜ ⎟τ ⎜ ⎟⎝ ⎠⎝ ⎠

yw
yw

yw

f
f

f
 (3.18) 

The shear stress at the support is inserted into this equation as the τ-value. The web 
stress, σwy,H1, in the y-direction in H1 is then determined by Equation (2.2), i.e. 

 , 1
1

wy H
τ

σ =
κ

 (3.19) 

To satisfy the boundary conditions along the bottom face of region H1, the web stress, 
σwy,H1, must correspond to the load at the bottom face of the girder plus a contribution 
from the stiffeners needed in the circular fan, F1. The stresses for web and stiffeners, 
respectively, in the y-direction at the top face of F1, are then given by 

 ( )
1

, , 1 , , 1 , 1sy tf F wy tf F wy H ys d
p f

κ
σ = σ = σ − = ϕ  (3.20) 

The stresses determine the number of stiffeners (ϕfys) along the length, κ1d. 
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The optimal value of the angle, α2 (and thereby the length, κ2d), may be found by 
setting σr equal to fyw and σwy equal to σwy,tf,F1 in Equation (3.2). This gives 

 , , 1
2 cos wy tf F

wy

Arc
f

σ
α =  (3.21) 

When the angle, α2, is known, the length, κ1d, at the bottom face of F1 is given by 

 2 2 2tan cotd d dκ = α = β  (3.22) 

The two limiting faces of F1 are now known, hence the position of the pole may be 
found by simple geometry considering Figure 3.4: 

 1
1

1

tan x
a

α =           and           1
2

1

tan x
a d

α =
−

 (3.23) 
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Figure 3.4: Geometry of circular fan, F1 

 
Solving one of the equations for x1 and inserting into the other one, gives 

 1 2
1

1 2 1 2

cos sin
cos sin sin cos

a d α α
=

α α − α α
 (3.24) 

The radial distance, r1, from the pole to the point, P1, with maximum stress is given 
by 

 1
1

2cos
a dr −

=
α

 (3.25) 

Due to equilibrium, the web stress, σwy,bf,F1, at the bottom face of F1 must be equal to 

 1
, , 1 , , 1

2
wy bf F wy tf F

κ
σ = σ

κ
 (3.26) 

All necessary information is now available and the equations in Box 1 or Equation 
(3.5) may be used to calculate the stresses at any point of the circular fan, F1. 
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Now consider circular fan, F2, where κ2, α2 and β2 are already known. The length 
along the top face must be equal to the length at the bottom face of fan, F1, which is 
κ2d. Along the top face, the stress in the y-direction is given by, cf. Equation (3.20) 
valid for fan, F1, 

 ( )
2

, , 2 , , 2 , , 1sy tf F wy tf F wy bf F ys d
p f

κ
σ = σ = σ − = ϕ  (3.27) 

The stresses determine the number of stiffeners (ϕfys) along the length, κ2d. 
The optimal value of the angle, α3, is given by Equation (3.21) only with new 
indexes. The same is valid for Equations (3.22) - (3.26), whereby the stresses at any 
point of the circular fan, F2, may be determined. If the optimal value of the angle, α3, 
leads to passing of the end point, then the angle corresponding to the end point is 
applied. 
In the remaining triangular region, all stresses are equal to zero. Hence, no stiffeners 
are supplied in this region, i.e. along the length, κ3d. 
Hereby, a safe, statically admissible stress field is established for the whole girder part 
in Figure 3.3. 

3.3 Practical Design Method 
In practise, where it is simply a case of designing the internal stiffeners and checking 
the web stresses, the calculations may be done in a quick and easy manner when the 
shear stress diagram is given. 
As shown in the previous section, the number of web stiffeners (ϕfys) in a 
homogeneous stress region as well as in a circular fan, is determined by 

 ,ys sy tffϕ = σ  (3.28) 

where σsy,tf is the stress in the y-direction at the top face sustained by the stiffeners. 
The number of internal stiffeners in homogeneous stress regions or in circular fans 
may alternatively be determined by 

 ysf τ
ϕ =

κ
 (3.29) 

where the τ-value to be used is shown in Figure 3.5. The κ-value is determined by the 
angle, β, on the left-hand side of the fan. This means that 

 , ,sy tf wy tf
τ

σ = σ =
κ

 (3.30) 

It may be useful to illustrate further the validity of this equation. Consider Figure 3.5, 
which shows a circular fan such as F1 or F2 in Figure 3.3. In the vertical section 
shown, the shear stresses, τwxy, as a function of the vertical distance, y0, from the 
bottom face may be determined by, cf. the equations in Box 1,  

 
( )

( )22
0

, ,2 2
0

tan tanwxy wy bf left wy tf right

a d ya
aa y

− +
τ = σ α = σ α

−
 (3.31) 
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Thus the shear stresses are parabolic along vertical lines. They are illustrated in the 
figure. The mean value of these τwxy-stresses is equal to the τ-value taken from the 
shear stress diagram for the section considered. By equilibrium it follows that 

 , ,sy tf w w sy tfd t d t τ
σ κ = τ ⇒ σ =

κ
 (3.32) 

remembering that κ = cot β = tan αleft and that d is the girder depth and tw the web 
thickness. 
 
The equations for the fan solutions are summarised below. Consider Figure 3.6, where 
a steel plate girder and the corresponding shear stress diagram are shown. 
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Figure 3.5: Shear stress in a vertical section of a circular fan 
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Figure 3.6: Uniformly loaded girder with the corresponding shear stress diagram 

 
1. Introduce a triangular homogeneous stress region at the support. Determine κ1 

(= tan α1 = cot β1) by Equation (3.18): 

 
2

max 1
1 21

max 2

1 1 1 ,
2

yw
yw

yw

f
f

f

⎛ ⎞⎛ ⎞τ⎜ ⎟κ = + − τ ≤⎜ ⎟⎜ ⎟⎜ ⎟τ ⎜ ⎟⎝ ⎠⎝ ⎠

 (3.33) 

2. The number of internal stiffeners along the length, κ1d, is, cf. Equation (3.29): 

 ( )
1

1

1
ys d

f
κ

τ
ϕ =

κ
 (3.34) 
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3. Since σsy,tf = σwy,tf = τ/κ, κ2 is determined by Equation (3.21): 

 1 1
2

/cos τ κ
α =

yw

Arc
f

 (3.35) 

 2 2tanκ = α  (3.36) 

4. The number of internal stiffeners along the length, κ1d, is then: 

 ( )
2

2

2
ys d

f
κ

τ
ϕ =

κ
 (3.37) 

5. Continue by determining the κi-values and the required number of stiffeners 
along the lengths, κid, until the cross-section with the maximum moment point 
is reached. 

6. In a triangular region at the right end of the girder considered, all stresses are 
equal to zero. No stiffeners are needed. 

7. If the girder is not loaded at the bottom face, extra stiffeners capable of 
transferring the load to the bottom face are supplied. 

 
The use of circular fan solutions is illustrated in the following by calculating a 
specific example. 

EXAMPLE 
A simply supported girder with a double-symmetrical I-shaped cross-section is 
considered.  
The girder has the web dimensions tw = 5 mm, d = 1500 mm and L = 30000 mm. The 
geometry of the girder is shown in Figure 3.7. Due to the symmetry, only one half of 
the girder is considered in the following. 
 

15000

L

q

x

515
00

 
Figure 3.7: Geometry of the considered girder (measures in mm) 

 
The girder is uniformly loaded at the bottom face corresponding to the load intensity 
of q = 40 N/mm. The yield stresses of the web material along with the stiffener 
material are fys = fyw = 240 MPa (for the stiffeners the yield stress is assumed to be 
valid). The task is to design the required number of transverse web stiffeners. 
The shear stress τ is given by 

 ( ) ( ) ( )40 15000
5 1500w

Q x x
x

t d
⋅ −

τ = =
⋅

 (3.38) 
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The shear force at x, Q(x), is in Newton. The depth, d, and the thickness of the web, 
tw, are in millimetres. 
The girder is subdivided into two different circular fans and two triangular 
homogeneous stress regions, leading to three lengths, κid, in the x-direction along the 
bottom face of the girder, see Figure 3.8. The maximum shear stress is 

 ( ) ( )
1

40 15000 0
80

5 1500
x

⋅ −
τ = =

⋅
MPa < ½ fyw = ½ ⋅ 240 = 120 MPa (3.39) 

The calculations follow the procedure given in Section 3.3. 
 

κ1 d κ2 d κ3 d

α1 H1 F1 F2α2 α3 H2

x1x0 x2 xm

CL

 
Figure 3.8: Subdivision of circular fans and triangular homogeneous stress fields 

 
Length κ1d 
For x = x0 = 0 mm: 

 
2

1 1
2

1 240 801 1 2.618
2 80 240

⎛ ⎞⎛ ⎞⎜ ⎟κ = + − =⎜ ⎟⎜ ⎟⋅⎝ ⎠⎝ ⎠

 (3.40) 

 1 1 2.618 1500 3927x d= κ = ⋅ = mm (3.41) 

 ( ) ( )
1

40 15000 3927
59

5 1500
x

−
τ = =

⋅
MPa (3.42) 

 ( )
1

1 2

1

59 9.4 10 9.4%
2.618 240d

ys

x
f

−
κ

τ
ϕ = = = ⋅ =

κ ⋅
 (3.43) 

Length κ2d 
For x = x1 = 3927 mm: 

 ( )1 1
2

/ 59 / 2.618cos cos 72.15
240yw

x
Arc Arc

f
τ κ

α = = =  (3.44) 

 2 2tan tan 72.15 3.105κ = α = =  (3.45) 

 2 3.105 1500 4657dκ = ⋅ = mm (3.46) 

 2 1 2 3927 4657 8584x x d= + κ = + = mm (3.47) 
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 ( ) ( )
2

40 15000 8584
34

5 1500
x

−
τ = =

⋅
MPa (3.48) 

 ( )
2

2 2

2

34 4.6 10 4.6%
3.105 240d

ys

x
f

−
κ

τ
ϕ = = = ⋅ =

κ ⋅
 (3.49) 

Length κ3d 
For x = x2 = 8584 mm: 

 ( )2 2
3

/ 34 / 3.105cos cos 77.67
240yw

x
Arc Arc

f
τ κ

α = = =  (3.50) 

 3 3tan tan 77.67 4.575κ = α = =  (3.51) 

 3 4.575 1500 6863dκ = ⋅ = mm (3.52) 

 3 2 3 8584 6863 15447x x d= + κ = + = mm > xm = 15000 mm (3.53) 

Hence, the value of κ3d = 15000 – 8584 = 6416 mm is applied. Along this length no 
stiffeners are needed. 
 

3927

CL

ϕ = 9.4 %
4657

ϕ = 4.6 %
6416

ϕ = 0.0 %  
Figure 3.9: Transverse web stiffener ratios, ϕ (lengths in mm) 

 
The designed number of transverse web stiffeners for each region is shown in Figure 
3.9. The results obtained are also summarised in Table 3.1 together with the flange 
forces, T and C, calculated in the vertical sections corresponding to x0, x1, x2 and xm by 
applying Equations (3.11) and (3.12). The flange force curves are shown in Figure 
3.10. From the figure it is seen that the flange force curves have a slope discontinuity 
in the points corresponding to x1 and x2, respectively. This is due to the jump in the 
shear stresses in these points, cf. Section 3.1. In between the points marked *, the 
flange force curves are parabolic functions, and they curve opposite to the moment 
curve. 
 

Region τi  
[MPa] 

κ 
[ ] 

ϕ 
[%] 

As n 
[mm2] 

C 
[kN] 

T 
[kN] 

H1 (x0) 80 2.618 9.4 7049 785 -785 
F1 (x1) 59 3.105 4.6 3444 2053 785 
F2 (x2) 34 4.277 0.0 0 3000 2053 
H2 (xm) 0 - 0.0 0 3000 3000 

Table 3.1: Data for girder example 
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The total cross-sectional areas, Asn (As being the cross-sectional area of a single 
stiffener and n the number of stiffeners), of the stiffeners along the lengths, κid, 
corresponding to the calculated ϕ-values are also shown in table. 
Figure 3.11 shows the web normal stresses in the y-direction, σwy, at the top face and 
at the bottom face, respectively. Here the web normal stresses in the x-direction, σwx, 
in the vertical sections corresponding to x0, x1, x2 and xm are also shown. In a similar 
way, Figure 3.12 shows the absolute values of the web shear stresses, τwxy. 
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Figure 3.10: Flange force curves 
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Figure 3.11: Web normal stresses, σwx and σwy (stresses in MPa) 
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Figure 3.12: Absolute values of the web shear stresses, τwxy (stresses in MPa) 
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3.4 Other Loading Cases 
Thus far, the presented design method has only dealt with girders subjected to 
constant shear or to a uniformly distributed load at the bottom face. Girders loaded at 
the top, or at a level between the top and the bottom, may be treated as girders loaded 
at the bottom face, if extra transverse stiffeners capable of transferring the load to the 
bottom are supplied. 
 
The design method described may also be used for girders subjected to uniform 
loading with piecewise constant load intensity along each of the lengths, κid. 
 

1 2 3 

d M max

p 1
p 2 p 3

τ

τ1

τ0

τ2

 
Figure 3.13: Simply supported plate girder with uniform loading, constant in each region 

 
In Figure 3.13, a simply supported girder is modelled using triangular homogeneous 
regions and circular fans. The girder is subjected to a uniform load with three different 
load intensities (p1, p2 and p3). Each of the load intensities is constant along the 
lengths, κid. 
The stresses in the y-direction are: 

 0
, 1

1
wy H

τ
σ =

κ
 (3.54) 

 1
, , 1 , , 1 , 1 1

1
sy tf F wy tf F wy H p τ

σ = σ = σ − =
κ

 (3.55) 

 1
, , 1 , , 1

2
wy bf F wy tf F

κ
σ = σ

κ
 (3.56) 

 2
, , 2 , , 2 , , 1 2

2
sy tf F wy tf F wy bf F p τ

σ = σ = σ − =
κ

 (3.57) 

 2
, , 2 , , 2 3

3
wy bf F wy tf F pκ

σ = σ =
κ

 (3.58) 

Note that p1, p2 and p3 are normal stresses (positive as tension) at the bottom face, not 
loads per unit length. 
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The number of stiffeners may then be calculated in exactly the same way as for 
uniform load using the shear stress diagram, cf. the procedure of Section 3.3. Thus 

 ( )
i

i
ys d

i

f
κ

τ
ϕ =

κ
 (3.59) 

If κi > κi+1, the pole of the fan is placed below the girder, however the solution is still 
valid if σw does not exceed fyw. Systems with poles on either side of the girder will not 
be treated further here. 
Since the design method applying circular fan solutions may be used for uniform 
loading, the intensity of which varies from region to region but which is constant 
within each region, the method can deal approximately with almost any load case by 
superposition. To treat combinations of continuous loading and concentrated loads, 
superposition may also be used. 
The design method may also be applied to steel plate girders with other cross-sections 
e.g. single-symmetrical I-section, box girders, etc.  
Girders with variable depth may be treated in the same way as concrete beams with 
variable depth, see (Nielsen 1998). 

3.5 End Panels 
The end panels differ from the other panels because the tensile band is not 
equilibrated by the stresses in an adjacent panel. The horizontal component of the 
uniaxial tensile band must therefore be anchored in the end panel. Hence, the end 
panel must be designed such that it is able to sustain these forces. One way of doing 
so is illustrated in the following. 
The stresses from the tensile band will act as a uniform load on the end panel, which 
may be considered a vertical beam. Thus the transverse web stiffeners will act as the 
top and bottom flange respectively. Furthermore, the flanges of the girder will act as 
stiffeners in the vertical beam, see Figure 3.14. If necessary, the end panel may be 
supplied with extra horizontal web stiffeners, as shown by the dashed lines in the 
figure. 
The beam is assumed simply supported by the flanges. The shear force from the 
girders will be transferred directly to the support. Hence, the only shear stress that 
must be sustained by the end panel is that due to the uniform load from the tensile 
band. 

R

ts ts

f

tf
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d
qe

 
Figure 3.14: Design of end panel 
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The load per unit length, qe, on the end panel is given by, cf. Equation (2.1), 

 cote wq t= τ β  (3.60) 

where τ is the shear stress in the considered section, β the angle of the uniaxial tensile 
stresses with the girder axis, and tw the web plate thickness, which is assumed to be 
constant throughout the entire girder. 
The shear force and the moment is then determined by (d being the girder depth) 

 1
2e eQ q d=  (3.61) 

 21
8e eM q d=  (3.62) 

With the above notation and Le being the length of the end panel, the shear stress, τe, 
in the end panel is found to be 

 e
e

w e

Q
t L

τ =  (3.63) 

The maximum normal stress in the transverse web stiffener, i.e. the flanges of the 
vertical beam, is given by 

 
( )

e
e

s s e

M
A t L

σ =
+

 (3.64) 

where As is the cross-sectional area of the stiffener and ts is the thickness of the 
stiffener. 
The length of the end panel, Le, must be chosen so the shear stress given by Equation 
(3.63) may be sustained by the end panel, and the normal stress given by Equation 
(3.64) should not exceed the yield stress or the buckling stress of the transverse web 
stiffeners. Determination of the buckling stress of the stiffeners is treated in PART III, 
Section 4.1. 
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4 EXPERIMENTAL RESULTS FROM THE LITERATURE 
Many researchers have conducted tests to investigate the shear capacity of steel plate 
girders. 
The aim of the tests was to verify the different theories, as all the researchers who 
have conducted the tests also have their own theory. Therefore, it is not always the 
same parameters that have been varied, as would be ideal for the present theory. The 
parameter, ψ, in particular (number and strength of the stiffeners) has only been 
varied in a few test series found in the literature. This is due to the fact that all the 
other theories only deal with a single web panel between two stiffeners. Hence in 
many of the tests, no stiffeners were supplied between the reaction and the applied 
load. Unfortunately, the parameter, ψ, would be the most relevant to vary in order to 
verify the present theory, as it is here that the theory differs from the other theories. 
Therefore, new experiments have been made with varying ψ-values, see Chapter 5.  
In some of the tests found in the literature, internal stiffeners are supplied, but since 
they are not included in the other theories, information about the stiffeners is not 
given in sufficient detail. 
In some of the tests, longitudinal stiffeners are supplied. In other cases, different 
stiffener arrangements are used, e.g. small ribs or angle bars. These results cannot be 
directly used to verify the present theory. 
The yield stresses may be defective in some cases, as a value of the yield stress is 
given without any information on how this value was obtained. The main problem is 
the yield stress of the stiffeners, where no value is given in some cases. The only 
information provided is that the stiffeners were cut out of the same plate as the web or 
the flanges. 
Another problem with some of the old tests is that the stiffeners are not welded to the 
bottom flange. This is done in order to make the design of the specimens easier. 
However, this will have no significant influence on the load-carrying capacity, as the 
stiffeners will be pushed towards the bottom flange during the loading. This fact was 
verified experimentally by Basler et al. (1960). 
 
In total, 77 tests found in the literature may be used to verify the present theory. These 
tests were performed in ten different research laboratories. Different test setups and 
load arrangements were used. They are illustrated in Appendix D, where the 
dimensions of each specimen are also given. 
The tests G6T1 –G9T2 were done by Basler et al. (1960), C4 – A4 by Longbottom 
and Heymann (1956), S1 and S2 by Lew et al. (1969), H1-T1 – H2-T2 by Cooper et 
al. (1964), WB-1 – WB-10 by Lyse and Godfrey (1935), G1 – G8 by Nishino and 
Okumura (1968), TG1 – TG5’ by Skaloud (1971) , LST1 by d’Apice et al. (1966), G1 
– G9 by Sakai et al. (1966) and TG1 – TG10 were done by Rockey and Skaloud 
(1971). 
Primarily, the variation of the load-carrying capacity in shear with d/tw, L/d and the 
bending stiffness of the flanges have been investigated in the tests. The parameters 
vary in the interval: 

• d/tw: 50 – 400  (depth-to-thickness ratio) 
• L/d: 1.0 – 4.29  (length-to-depth ratio) 
• ψ: 0.000 – 0.405 (mechanical degree of stiffening) 
• η: 0.005 – 1.084 (bending stiffness and strength of the flanges) 
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All these experimental results are categorised in three groups as follows: 
 

• Thin web plates, i.e. d/tw ≥ 150. The load-carrying capacity is given by the 
post-buckling strength, cf. Equation (2.29), which is minimised regarding θ, 

 ( )21 1 1 tan tan tan
2 / tanywf L d

τ η
= + θ − θ + + ψ θ

− θ
 (4.1) 

• Thick web plates, i.e. d/tw ≤ 70. Buckling of the web does not occur, so the 
load-carrying capacity is given by, cf. Equation (2.41), 

 2 1
3yw

d
f L
τ

= + η  (4.2) 

• Intermediate web plates, i.e. 70 < d/tw < 150. The load-carrying capacity is 
found by interpolation. Thus 

 

 3 2 2 1 / 70
80
w

yw yw yw yw

d t
f f f f

⎛ ⎞τ −τ τ τ
= − −⎜ ⎟⎜ ⎟

⎝ ⎠
 (4.3) 

Table 4.1 shows the predicted load-carrying capacity, τu/fyw, together with the load-
carrying capacity, τexp/fyw, obtained by the experiments. It also shows the parameters 
d/tw, L/d, ψ and η. 
 

 Girder d/tw L/d ψ η τ1/fyw τ2/fyw τ3/fyw τexp/fyw τu/fyw / 
τexp/fyw 

G6T1 259 3.0 0.081 0.031 0.293 - - 0.328 0.893 
G6T2 259 3.0 0.243 0.031 0.442 - - 0.424 1.042 
G6T3 259 3.0 0.405 0.030 0.502 - - 0.500 1.004 
G7T1 255 3.0 0.159 0.030 0.380 - - 0.389 0.977 
G7T2 255 3.0 0.159 0.030 0.380 - - 0.400 0.950 
G8T1 254 3.0 0.000 0.030 0.146 - - 0.226 0.646 
G8T2 254 3.0 0.076 0.030 0.285 - - 0.267 1.067 
G8T3 254 3.0 0.076 0.030 0.285 - - 0.311 0.916 
G9T1 382 3.0 0.000 0.039 0.156 - - 0.165 0.945 

B
as

le
r e

t a
l. 

G9T2 382 3.0 0.098 0.039 0.320 - - 0.257 1.245 
C4 241 1.48 0.075 0.022 0.327 - - 0.328 0.997 
A1 94 1.29 0.000 0.090 0.412 0.647 0.577 0.587 0.982 
A2 94 2.05 0.000 0.090 0.287 0.621 0.521 0.495 1.052 
A3 94 4.29 0.000 0.090 0.146 0.598 0.463 0.303 1.527 

Lo
ng

bo
tto

m
 &

 
H

ey
m

an
n 

A4 85 2.10 0.000 0.147 0.340 0.647 0.590 0.585 1.008 
S1 190 2.5 0.117 0.046 0.355 - - 0.417 0.851 
S2 190 2.5 0.117 0.046 0.355 - - 0.389 0.913 

Lew &  
 
d’Apice 

LST1 256 3.0 0.100 0.084 0.348 - - 0.400 0.870 
H1-T1 127 3.0 0.000 0.035 0.152 0.589 0.278 0.297 0.935 
H1-T2 127 3.0 0.064 0.035 0.271 0.589 0.362 0.362 1.001 
H2-T1 128 3.0 0.128 0.146 0.407 0.626 0.467 0.427 1.094 

C
oo

pe
r e

t 
al

. 

H2-T2 128 3.0 0.321 0.146 0.522 0.626 0.551 0.524 1.051 

Table 4.1: Calculated data for the test specimens found in the literature (continues on next page) 
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 Girder d/tw L/d ψ η τ1/fyw τ2/fyw τ3/fyw τexp/fyw τu/fyw / 
τexp/fyw 

WB-1 56 3.0 0 0.602 - 0.778 - 0.721 1.079 
WB-2 55 3.0 0 0.543 - 0.758 - 0.765 0.991 
WB-3 59 3.0 0 0.401 - 0.711 - 0.700 1.016 
WB-6 70 3.0 0 0.500 - 0.744 - 0.661 1.126 
WB-7 60 3.0 0 0.643 - 0.792 - 0.736 1.076 
WB-8 60 3.0 0 0.700 - 0.811 - 0.861 0.942 
WB-9 50 3.0 0 1.077 - 0.936 - 0.972 0.963 

Ly
se

 &
 G

od
fr

ey
 

WB-10 50 3.0 0 1.084 - 0.939 - 1.000 0.939 
G1 60 2.69 0 0.130 - 0.626 - 0.588 1.064 
G2 60 2.69 0 0.095 - 0.613 - 0.554 1.106 
G3 77 2.64 0 0.070 0.210 0.604 0.569 0.483 1.179 
G4 78 2.64 0 0.058 0.197 0.599 0.559 0.455 1.229 
G5 100 2.62 0 0.046 0.186 0.595 0.442 0.402 1.098 
G6 101 2.62 0 0.034 0.171 0.590 0.428 0.358 1.195 
G7 119 2.64 0 0.031 0.165 0.589 0.329 0.340 0.969 N

is
hi

no
 &

 O
ku

m
ur

a 

G8 121 2.64 0 0.024 0.156 0.586 0.312 0.307 1.016 
TG1 400 1.0 0 0.005 0.264 - - 0.303 0.871 
TG1’ 400 1.0 0 0.005 0.264 - - 0.233 1.133 
TG2 400 1.0 0 0.023 0.337 - - 0.320 1.053 
TG2’ 400 1.0 0 0.023 0.337 - - 0.278 1.212 
TG3 400 1.0 0 0.061 0.430 - - 0.381 1.129 
TG3’ 400 1.0 0 0.061 0.430 - - 0.380 1.132 
TG4 400 1.0 0 0.091 0.488 - - 0.438 1.114 
TG4’ 400 1.0 0 0.091 0.488 - - 0.414 1.179 
TG5 400 1.0 0 0.248 0.720 - - 0.618 1.165 

Sk
al

ou
d 

TG5’ 400 1.0 0 0.248 0.720 - - 0.601 1.198 
G1 55 2.61 0 0.177 - 0.645 - 0.529 1.220 
G2 55 2.61 0 0.222 - 0.662 - 0.542 1.222 
G3 60 2.63 0 0.110 - 0.619 - 0.502 1.233 
G4 70 3.57 0 0.171 - 0.625 - 0.492 1.271 
G5 70 2.68 0 0.171 - 0.641 - 0.543 1.181 
G6 70 1.25 0 0.171 - 0.714 - 0.608 1.175 
G7 70 2.68 0 0.171 - 0.641 - 0.543 1.181 

Sa
ka

i e
t a

l. 

G9 90 2.78 0 0.104 0.232 0.615 0.519 0.466 1.114 
TG1 225 1.0 0 0.005 0.264 - - 0.276 0.957 
TG1’ 225 1.0 0 0.005 0.264 - - 0.293 0.901 
TG2 225 1.0 0 0.008 0.280 - - 0.308 0.909 
TG2’ 225 1.0 0 0.008 0.280 - - 0.287 0.976 
TG3 225 1.0 0 0.032 0.362 - - 0.345 1.049 
TG3’ 225 1.0 0 0.032 0.362 - - 0.330 1.097 
TG4 225 1.0 0 0.055 0.418 - - 0.388 1.077 
TG4’ 225 1.0 0 0.055 0.418 - - 0.370 1.130 
TG13 233 1.0 0 0.135 0.562 - - 0.461 1.219 
TG5 233 1.5 0 0.038 0.283 - - 0.259 1.093 
TG5’ 233 1.5 0 0.038 0.283 - - 0.287 0.986 
TG14 316 2.0 0.230 0.023 0.438 - - 0.389 1.126 
TG15 316 2.0 0.230 0.055 0.460 - - 0.450 1.022 
TG16 316 2.0 0.230 0.110 0.497 - - 0.477 1.042 
TG17 316 2.0 0.230 0.208 0.561 - - 0.597 0.940 
TG18 316 2.0 0.230 0.391 0.671 - - 0.771 0.870 
TG19 316 2.0 0.230 0.495 0.731 - - 0.832 0.879 
TG20 150 2.0 0.110 0.011 0.327 - - 0.360 0.908 
TG9 233 2.0 0 0.040 0.226 - - 0.269 0.840 
TG9’ 233 2.0 0 0.040 0.226 - - 0.263 0.859 

R
oc

ke
y 

&
 S

ka
lo

ud
 

TG10 235 2.0 0 0.105 0.308 - - 0.281 1.096 
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The theory seems to correlate very well with the experimental results, see Figure 4.1. 
The mean value of (τu/fyw)/(τexp/fyw) for all the tests is 1.048 and the standard deviation 
is 13.4 %. For the individual test series the following results are obtained: 

• Basler et al., G6T1 – G9T2: Mean 0.969, standard deviation 15.1 %. 
• Longbottom & Heymann, C4 – A4: Mean 1.113, standard deviation 23.3 %. 
• Lew & d’Apice, S1, S2 & LST1: Mean 0.878, standard deviation 3.1 %. 
• Cooper et al., H1-T1 – H2T2: Mean 1.020, standard deviation 6.8 %. 
• Lyse & Godfrey, WB1 – WB10: Mean 1.016, standard deviation 7.0 %. 
• Nishino & Okumura, G1 – G8: Mean 1.107, standard deviation 9.0 %. 
• Skaloud, TG1 – TG5’: Mean 1.119, standard deviation 9.8 %. 
• Sakai et al., G1 – G9: Mean 1.200, standard deviation 4.8 %. 
• Rockey & Skaloud, TG1 – TG10: Mean 0.999, standard deviation 10.7 %. 

It is seen that the best mean value is obtained for the tests conducted by Rockey and 
Skaloud (1971), which is also the largest of all the series. The tests by Sakai et al. 
(1966) are those deviating most from the theory. All the specimens in this series have 
thick web plates. Nielsen and Christensen (1982) calculated this series by applying 
Tresca’s yield condition, i.e. the factor 1/√3 is substituted by 1/2 in Equation (4.2). 
With Tresca’s yield criterion, a mean value of 1.057 and a standard deviation of 2.7 % 
is obtained for the tests by Sakai et al. (1966). 
In order to illustrate the correlation between the tests and the load-carrying capacity 
curve, all test values, τexp/fyw, for the tests by Basler et al. (1960), where d/tw ≥ 150, η 
≈ 0.03 and L/d = 3.0 are shown as a function of ψ in Figure 4.2. 
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Figure 4.1: Comparison of theory and experimental results 

 
When subdividing the test results into the three groups thin, thick and intermediate 
web plates, respectively, the following mean values and standard deviations are 
obtained: 

• Thin web plates: Mean 1.011, standard deviation 12.7 %. 
• Thick web plates: Mean 1.105, standard deviation 10.8 %. 
• Intermediate web plates: Mean 1.097, standard deviation 14.7 %. 
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Figure 4.2: Theory versus tests L/d = 3.0 and η ≈ 0.03 

 
When designing a shear reinforced concrete beam according to the diagonal 
compression field method, one has to introduce an effectiveness factor, ν, as tests 
have shown that it is not fully possible to utilise the concrete compressive strength. 
For steel plate girders, there is no need to introduce an effectiveness factor, as it is 
possible to fully utilise the tensile yield strength, cf. Figure 4.2. 
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5 NEW PLATE GIRDER EXPERIMENTS 
As previously mentioned, Nielsen and Christensen (1982) stated that further 
experimental verification of the theory is required. In relation to the present study, a 
M.Sc. project was carried out at the Technical University of Denmark, cf. (Øskan and 
Bak 2006). The project was supervised by the author. The objective of their study was 
to determine the post-buckling strength of thin web plate girders in order to verify the 
theory. The experimental program contained tests on eight plate girder specimens. All 
the test specimens were sponsored by DS Stålkonstruktion A/S. 
The experimental program and the results obtained are presented below. 

5.1 The Test Girders 
The experimental program contained tests on eight plate girder specimens, which may 
be classified into the following two groups: 

• Constant shear tests, plate girders G1, G2, G3, G4, G5 and G6. 

• Distributed loading tests, plate girders G7 and G8. 

In the first group, the six specimens were subjected to constant shear in order to verify 
the lower-bound solution, cf. Section 2.1, as well as the upper-bound solution, cf. 
Section 2.2. The same test setup was used as shown in Figure 5.1. This figure also 
gives the shear force diagram, and the corresponding moment diagram. The 
specimens contained three sections, the middle section being denoted the Test Section, 
with a length of 2.0 m, i.e. L = 2.0 m. The two adjacent sections, denoted the End 
Sections with a length of 1.0 m, were made relatively rigid in order to ensure failure in 
the test section. The only difference between the six test specimens was the number of 
transverse web stiffeners in the test section. The girders were supplied with zero to 
five transverse web stiffeners with an increment of one stiffener, i.e. for G1, no 
transverse web stiffeners were supplied; for G2, one stiffener was supplied, and for 
G6, five stiffeners were supplied. In all girders, the transverse web stiffeners in the 
test section were placed with constant spacing. 
The second group contained two specimens designed as cantilever girders and 
subjected to a uniformly distributed load. The specimens contained two different 
sections, the test section with a length of 3.0 m, i.e. L = 3.0 m, and the fixed boundary 
conditions were established by an adjacent section, the end section, with two simple 
supports, see Figure 5.2. This figure also shows the shear force diagram and the 
corresponding moment diagram, which is the same for both girders G7 and G8. As in 
the first group, the only difference between the designs of the two test specimens was 
the number of transverse web stiffeners supplied in the test section. 
Four jacks provided the uniform load. Between the girder and the jacks, wooden 
blocks were applied in order to distribute the load from the jacks. For girder G8, the 
load was subjected to the bottom flange as a uniform compressive load. For girder G7, 
the load was subjected to the top flange as a uniform tensile load. This setup was 
rather complicated, as the same four jacks were used. The jacks acted on specially 
designed frames, which transferred the compression from the jacks to tension on the 
top flange. 
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Figure 5.1: Shear force diagram and moment diagram for constant shear tests (measures in mm) 
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Figure 5.2: Shear force diagram and moment diagram for distributed loading tests (measures in mm) 

 

GIRDER DIMENSIONS 
All the test specimens had a double-symmetrical I-shaped cross-section. The top and 
bottom flanges had constant dimensions throughout their entire length. The flange 
thickness was tf = 10 mm and the flange width was bf = 200 mm for all specimens. 
The girders all had a constant depth of the web plate of d = 500 mm, so the length-to-
depth ratio was L/d = 4.0 for the constant shear tests and L/d = 6.0 for the tests with 
distributed loading. 
The thickness of the web plate for all specimens was tw = 2.0 mm in the test section 
and tw = 10.0 mm in the end sections. This gave a slenderness ratio of d/tw = 250 in 
the test sections. 
In practical design of conventional steel plate girders, a web plate thickness smaller 
than tw = 5.0 mm is seldom used. However, a very small web plate thickness was 
chosen in order to reduce the size of the specimens, especially the length and the 
depth of the girders. With tw equal to, say, 5.0 mm, the depth of the web plate would 
have to exceed a depth of 1000 mm in order to obtain a more conventional 
slenderness ratio.  
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The transverse stiffeners at the supports and at the concentrated load had a thickness 
of ts = 15.0 mm, and ts = 3.0 mm was applied for all the transverse web stiffeners in 
the test sections. 
The different girder cross-sections used are shown in Figure 5.3. Detailed design 
drawings of all the girder specimens may be found in Appendix E. 
With a plate thickness of 2.0 mm, one might expect welding to be a problem. 
However, in no cases did the welds fracture prior to ultimate load. The supplier of the 
girder specimens used TIG1-welding, which turned out to be suitable for the job. 
 

End Section
G1 - G8

Test Section
G1 - G7

Test Section
G8

 
Figure 5.3: Girder cross-sections 

STEEL PROPERTIES 
Tests on tension coupons made from the material under consideration were conducted 
to determine the yield level. The supplier of the girder specimens delivered steel 
plates with a width of 40 mm and a length of 300 mm together with the girder 
specimens. These plates were cut out of the same plates as used for the girder 
specimens. Out of each plate, tension coupons according to EN (2001) were made, see 
Figure 5.4. Four coupons were made with a thickness of 2.0 mm corresponding to the 
material used for the web plates in the test sections, four coupons with a thickness of 
3.0 mm corresponding to the material used for the transverse web stiffeners in the test 
sections, two coupons with a thickness of 10.0 mm corresponding to the material used 
for the flanges and the web plates in the end sections, and two coupons with a 
thickness of 15.0 mm corresponding to the material used for the transverse web 
stiffeners in the end sections. 
The load-displacement curves for each of the tests are shown in Figures 5.5 – 5.8. The 
determined material properties are given in Table 5.1. 
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Figure 5.4: Tension coupons 

                                                 
1 Tungsten Inert Gas welding 
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Figure 5.5: Load-displacement curves for 

2.0 mm coupons 
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Figure 5.6: Load-displacement curves for 

3.0 mm coupons 
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Figure 5.7: Load-displacement curves for 

10.0 mm coupons 
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Figure 5.8: Load-displacement curves for 

15.0 mm coupons 
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Figure 5.9: Additional tension coupons (measures in mm) 
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Figure 5.10: Load-displacement curves for 

additional 2.0 mm coupons, G1 – G4 
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Figure 5.11: Load-displacement curves for 

additional 2.0 mm coupons, G5 – G8 
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The same notation as in (EN 2001) is used. Here, a is the coupon thickness and S0 is 
the original cross-sectional area. For all tension coupons, r0 = 15 mm, cf. Figure 5.4, 
is applied. The meaning of the notation b, L0 and Lc is also shown in Figure 5.4. 
The table also shows the mean values of the yield stress, fy, and the ultimate tensile 
strength, fu. From the figures and the table it is seen that the results from each coupon 
test with the same thickness coincide closely, except for the 2.0 mm thick coupons, 
i.e. coupons C1 – C4. For C1 and C4, the mean value was fy = 237 MPa. For C2 and 
C3 the mean value was fy = 267 MPa. 
 
The results from the tests with coupons of thickness 2.0 mm indicate that the web 
plates of the girder specimens were cut out of two different steel plates. Therefore, 
additional tests on tension coupons were conducted. The coupons were cut out of the 
web plate after testing the girders in a location where the buckling deflections of the 
web plate were limited. Before testing the coupons, the specimens were flattened. The 
dimensions of the additional tension coupons did not fully satisfy the requirements in 
(EN 2001), as the total length was reduced, see Figure 5.9. However, this is 
considered of minor importance. 
The load-displacement curves are shown in Figures 5.10 and 5.11. The determined 
material properties are given in Table 5.2. 
 
The yield stresses determined by the additional coupon tests are found to be larger 
than the yield stresses given in Table 5.1. This is probably due to strain hardening 
during the testing of the girders. The main purpose of the additional coupon tests was 
to evaluate whether it was possible to identify from which of the two steel plates the 
web plate of each girders specimens were made of. Unfortunately, this may not be 
clearly seen from the additional coupon tests. Therefore in the following, the yield 
stresses of the web material determined by the additional tension coupons are applied 
cf. Table 5.2. For the other materials, the values given in Table 5.1 are used. 
 

Coupon No. of 
tests 

a 
[mm] 

b 
[mm] 

S0 
[mm2] 

L0 
[mm] 

Lc 
[mm] 

fy  
[MPa] 

fu  
[MPa] 

C1 – C4 4 2 20 40 34 74 252 378 
C5 – C8 4 3 20 60 42 58 255 388 
C9 – C10 2 10 20 200 76 104 293 422 
C11 – C12 2 15 20 300 94 130 323 450 

Table 5.1 Data for tests on tension coupons 
 

Coupon G1 G2 G3 G4 G5 G6 G7 G8 
fy  [MPa] 280 238 247 250 239 256 249 282 
fu  [MPa] 393 373 375 369 373 373 393 395 

Table 5.2: Data for additional tests on 2.0 mm tension coupons 
 

CRITICAL WEB BUCKLING STRESSES 
An additional reference value, with which an experimental ultimate load may be 
compared, is the conventionally computed elastic critical buckling stress or load of the 
web. 
The general equation for the ideal critical buckling stress of an isolated web panel is 
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Here, d is the depth of the girder, b is the length between two adjacent stiffeners, tw 
the web plate thickness, E is Young’s modulus (E = 210,000 MPa), and ν is Poisson’s 
ratio (ν = 0.3). Furthermore, it is assumed that the web plate is simply supported at the 
flanges and at the stiffeners. The buckling coefficient, k, is then given by, cf. 
(Timoshenko and Gere 1961), 
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 (5.2) 

The elastic critical buckling load, Pcr, for girders G1 – G6 is evaluated from τcr = Qcr 
/(d tw), where Qcr = ½ Pcr as seen from Figure 5.1. The critical buckling stress for 
girders G7 and G8 is calculated for the second web panel, counted from the supported 
end, as it is the critical one. 
In Table 5.3, the critical stresses and loads for all girder specimens are summarised. 
 

Girder b/d  
[ ] 

d/tw 
[ ] 

k 
[ ] 

τcr  
[MPa] 

Pcr 
[kN] 

G1 4.00 250 4.33 13.1 26.2 
G2 2.00 250 5.34 16.2 32.4 
G3 1.33 250 7.00 21.3 42.6 
G4 1.00 250 9.35 28.4 56.8 
G5 0.80 250 11.60 35.2 70.4 
G6 0.66 250 14.35 43.6 87.2 
G7 1.09 250 9.49 25.8 1) 11.7 
G8 1.09 250 9.49 25.8 1) 11.7 
1) qcr in kN/m. 

Table 5.3: Elastic critical stresses and loads 
 

DEFLECTIONS 
In order to test the elastic behaviour of the girders, their predicted deflections are 
evaluated below. The maximum deflections are given at the two loading points for 
girders G1 – G6, and at the free end for girders G7 and G8. 
The method of virtual work is used to obtain all the deflections. In this method, a 
fictitious unit load is applied to the girder at the point where the deflection is desired, 
and the resulting moment, M*, and shear, Q*, diagrams from the fictitious load are 
drawn. Then, the deflection is calculated as the sum of the bending and shear 
contributions as follows: 

 
* *

w

M M QQu dx dx
E I G A

= +∫ ∫  (5.3) 
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In this equation, M and Q are the moment and shear force due to the actual load, I the 
moment of inertia, Aw the cross-sectional area of the web plate, E Young’s modulus 
and G is the shear modulus (G = 81,000 MPa for ν = 0.3 and E = 210,000 MPa). 
A summary of the girder deflections, calculated from Equation (5.3), is given in Table 
5.4, where the bending and shear components of the total deflection are also listed. As 
a matter of interest, the percentage of the shear contribution to the total deflection is 
included. The deflections for girders G1 – G6 are evaluated for a load corresponding 
to Pexp, see the following Section 5.2. The deflections for girders G7 and G8 are 
evaluated for a load per unit length corresponding to qexp, see Section 5.3 below. 
 

Deflection due to Girder Load 
[kN] Bending [mm] Shear [mm] Total [mm] 

Shear/Total 
[%] 

G1 132.2 0.95 1.14 2.09 54.6 
G2 158.9 1.14 1.37 2.51 54.6 
G3 180.7 1.30 1.56 2.86 54.6 
G4 211.0 1.52 1.82 3.34 54.6 
G5 226.0 1.62 1.95 3.58 54.6 
G6 243.1 1.75 2.10 3.85 54.6 
G7 1) 48.6 16.92 3.06 19.98 15.3 
G8 1) 47.8 16.64 3.01 19.65 15.3 

1) load in kN/m. 

Table 5.4: Calculated girder deflections 
 

5.2 Tests on Plate Girders Subjected to Constant Shear 
The six constant shear tests were done with a test setup as illustrated in Figure 5.12. 
As seen from the figure, a system of UNP-profiles was used in order to ensure that no 
failure due to lateral stability occurred. 
As previously mentioned, all girder specimens were identical except for the number of 
transverse stiffeners in the web. The number of stiffeners varied from zero to five. It 
should here be noted that one stiffener refers to a pair of stiffeners on each side of the 
web plate. 

 
Figure 5.12: Illustration of test setup for constant shear tests 
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ULTIMATE LOADS AND DEFLECTIONS 
All the experiments were made with a load-controlled system, and the uploading was 
done manually. Thus, it was impossible to have the same uploading speed for all the 
tests. Therefore, the testing history of each girder is presented in a load-deflection 
curve. If a displacement-controlled system had been applied, it would have been 
possible to have the same uploading speed for all tests, and the testing histories might 
be compared in a load-time curve. However the laboratory facilities, especially the 
test setup and the applied jacks, made it impossible to use a displacement-controlled 
system. Furthermore, it could not be guaranteed that the load on each of the two jacks 
were exactly the same when applying a load-controlled system. This would have been 
possible if a displacement-controlled system had been used. 
 
The deflections of each girder specimen were measured by two displacement 
transducers denoted D1 and D2, respectively. The deflections were measured in the 
two sections where the loads acted, see Figure 5.13. 
 
The load-deflection curves for each girder specimen, with the deflections measured by 
displacement transducers D1 and D2, are shown in Figure 5.14 and Figure 5.15, 
respectively. No curves are shown for girder G2, as the handle on the hydraulic 
station locked and the jacks continued loading, so the maximum load was reached 
before the measurements were started. Hence, the only useful result from this test is 
the maximum load read from the hydraulic station. 
 

P

P
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Figure 5.13: Location of displacement transducers D1 and D2 
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Figure 5.14: Load-deflection curves, deflection measured by displacement transducer D1 
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Figure 5.15: Load-deflection curves, deflection measured by displacement transducer D2 

 
The theoretical and experimental values are shown in Table 5.5. The elastic critical 
buckling load, Pcr, is given in Table 5.3. The lower-bound value, Pu

-, is given by, cf. 
Equation (2.11), 
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1 1
2 2
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 (5.4) 

The upper-bound value, Pu
+, is determined by, cf. Equation (2.29), 

 ( )21 1 tan tan tan
2 / tanywf L d

τ η
= + θ − θ + +ψ θ

− θ
 (5.5) 

The values of Pu are found by the following relationship involving the shear stress, τ, 
according to Equations (5.4) and (5.5), respectively: 

 2u wP d t= τ  (5.6) 

In Equations (5.4) – (5.6), the mechanical degree of stiffening is found by, cf. 
Equation (2.10),  

 yss

w yw

fA n
Lt f

ψ =  (5.7) 

The non-dimensional parameter, η, is determined by, cf. Equation (2.28), 

 
2

22 f f yf

w yw

b t f
d t f

η =  (5.8) 

Here, fyw is the yield stress of the web material, fyf the yield stress of the flange 
material, L the length of the test section, d the depth of the web plate, tw the web plate 
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thickness, tf the flange thickness, As the cross-sectional area of a single stiffener, n the 
number of stiffeners and bf is the width of the flanges. 
For the stiffeners, the buckling stress is valid, as the effective width, be, of the 
stiffeners is found by Equation (4.6) in PART III to be be = 0.70 b, where b is the total 
width of a single stiffener. Thus in Equation (5.7), fys is the buckling stress of the 
stiffeners. 
In Equation (5.5), the angle θ, cf. Figure 2.5, is the free parameter for which the load 
should be minimised with regard to. 
The parameters L, d, tw, As, fys, bf, tf and fyf are constant for all girder specimens. Thus, 
only the parameters θ, n and fyw, and thereby ψ and η, vary from girder to girder. 
 
In Table 5.5, two experimental loads, Pexp and Pmax, are shown. Pmax is the maximum 
load for each curve, cf. Figures 5.14 and 5.15. Pexp is the load measured where the 
slope discontinuity of the curves occur. The slope discontinuity identifies the load for 
which the assumed failure mechanism develops. For most of the tests it is seen that 
the load increases considerably after the value of Pexp is reached. However for girder 
G1, the load decreases after Pexp is reached, i.e. Pmax is equal to Pexp. As previously 
mentioned only the value of Pmax was measured for girder G2. From Figures 5.14 and 
5.15, it is seen that the difference between the value of Pmax and Pexp increases with an 
increasing number of transverse web stiffeners. Hence, it might be expected that Pexp 
is equal to Pmax, or at least not much smaller than Pmax for girder G2. Therefore, Pexp is 
taken as equal to Pmax for girder G2 in Table 5.5. 
 
From the table it appears that the experimentally determined post-buckling strength is 
found to be up to five times larger than the calculated elastic critical web buckling 
load. 
 

Theoretical Experimental Girder Pcr [kN] Pu
- [kN] Pu

+ [kN] Pexp [kN] Pmax [kN] 
Pu

+/ Pexp 
[ ] 

Pu
+/ Pmax 
[ ] 

G1 26.2 - 85.2 132.2 132.2 0.645 0.645 
G2 32.4 128.1 146.7 158.9 158.9 0.923 0.923 
G3 42.6 177.3 192.7 180.7 206.3 1.066 0.934 
G4 56.8 208.9 222.8 211.0 249.2 1.056 0.894 
G5 70.4 221.9 234.9 226.0 274.2 1.039 0.857 
G6 87.2 246.7 259.3 243.1 301.4 1.066 0.860 

Table 5.5: Summary of theoretical and experimental loads 
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Figure 5.16: τ/fyw as a function of ψ, theory 

versus tests (Pmax) 
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Figure 5.17: τ/fyw as a function of ψ, theory 

versus tests (Pexp) 
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The theoretical curves, i.e. τ/fyw as a function of ψ, cf. Equations (5.4) and (5.5), are 
shown in both Figure 5.16 and Figure 5.17. In Figure 5.16, the test values of the ratio, 
τ/fyw, are calculated using Pmax. Similarly, the test values of Pexp are applied in Figure 
5.17. In order to illustrate the theory with smooth curves, the mean value of the yield 
stresses of the web material, fyw, is applied when drawing the curves. In both figures, 
the experimental values of the non-dimensional ratio, τ/fyw, are calculated by applied 
the correct values of fyw. 
 
From Figure 5.16 it appears that all test results are above the upper-bound curve. In 
particular, the results from girders G1, G5 and G6 are found to be considerably larger 
than the corresponding upper-bound values. However, Figure 5.17 shows that by 
applying the values of Pexp instead of Pmax, the results from girders G3 – G5 are found 
to be between the curves corresponding to the upper-bound solution and the lower-
bound solution, respectively. Moreover, the result from girder G6 is found to be 
slightly below the lower-bound solution. This indicates that the theory is not able to 
determine the additional load-carrying capacity, i.e. the difference between Pmax and 
Pexp. In fact this seems natural, as the additional load-carrying capacity mainly stems 
from the effect of change of geometry and possible strain hardening of the materials. 
In the theory, the work equation is derived on the basis of the undeformed girder, and 
it does not take the effect of stain hardening into account. 
It may be noticed that applying the values of Pexp instead Pmax, agrees with what 
Basler et al. (1960) did when they compared their tests to their theory. 
 
In both Figure 5.16 and Figure 5.17, girder G1 (the specimen without interior 
stiffeners) shows a much larger post-buckling strength than predicted by the theory. 
One might imagine that this is because the flanges will carry part of the tensile band 
loads when the web plate is heavily deformed. However, this does not seem to be the 
case when considering the load-deflection curves in Figures 5.14 and 5.15, where 
there is no increase of the load for increasing deflections after the slope discontinuity. 
Sooner the reason must be that the stiffeners under the loads are not taken into 
account in the theory. However, taking these stiffeners into account would affect all 
the other tests as well, but girder G1 is clearly the one deforming most from its 
original shape, see the photos in Appendix F. The more deformed the test girder is, 
the more active the stiffeners at the loads might become; hence this will become more 
pronounced for girder G1. In the tests by Basler et al. (1960), the same tendency was 
observed. As seen from Figure 4.1, the girders without interior stiffeners showed a 
considerably larger load-carrying capacity than that predicted by the theory. However, 
this is not valid for all tests without internal web stiffeners, presented in Chapter 4. 
Applying plastic yield hinges in the stiffeners at the loads may be able to take this 
effect into account. However, the calculations would require another failure 
mechanism and this has not yet been done. 
 
The theoretical upper-bound values of τu/fyw, cf. Equations (5.5) and (5.6), are shown 
together with the experimental values of τmax/fyw in Figure 5.18 and with the 
experimental values of τexp/fyw in Figure 5.19. The ratios, Pu

+/Pexp and Pu
+/Pmax, for 

each test are given in Table 5.5. For the ratio, Pu
+/Pmax, a mean value of 0.852 and a 

standard deviation of 10.7 % are obtained. For the ratio, Pu
+/Pexp, a mean value of 

0.966 and a standard deviation of 16.7 % are obtained. The large standard deviation is 
due to girder G1. If the result from girder G1 is not included, a mean value of 1.030 
and a standard deviation of 6.1 % are obtained. 
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As concluded from the older tests in Chapter 4, it is found that there is no need for 
introducing an effectiveness factor as when calculating a concrete beam with 
transverse stirrups. 
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Figure 5.18: Comparison of theory and 

experimental results (Pmax) 
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Figure 5.19: Comparison of theory and 

experimental results (Pexp) 
 
In order to illustrate the theory further, the results obtained by the upper-bound 
solution are presented for each girder in Figures 5.20 – 5.25. The figures show the 
extension of the parallelogram shaped yield zone (the hatched areas) and the predicted 
location of the plastic yield hinges. The location of the plastic yield hinges is given by 
the length, c = d tan θmin, where d is the depth of the web plate and θmin is the angle 
leading to the minimum value for Pu

+. Furthermore, the figures give the number of 
stiffeners, n, the non-dimensional parameters, ψ and η, and the yield stress of the web 
material, fyw. The angle, v, indicates the major principal strain direction, which is in 
the angular bisector direction of the acute parallelogram angle, cf. Section 2.2. 
 
In Appendix F, a series of photos for each girder taken before, under and after testing 
are shown. If the photos are held up against the Figures 5.20 – 5.25, it appears that the 
location of the plastic yield hinges is found to be more or less as predicted. An exact 
measurement of the location of the plastic yield hinges has not been done. The 
measurements, based on the photos, are indicated with the hollow circles in the 
figures. 
According to the theory, the plastic yield hinges will develop in the panel between the 
applied load and the adjacent transverse web stiffener, except for girder G1, which is 
of course without stiffeners. This fact correlates with the observations from the 
photos. 
By examining girders G4, G5 and G6 more closely, it appears that the plastic yield 
hinge in girder G5 develops in the middle of the web panel, adjacent to the load. For 
girder G6, the yield hinge is found closer to the load, while for girder G4, the yield 
hinge is found closer to the first intermediate web stiffener from the load. From the 
photos in Appendix F, the same tendency is observed.  
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Figure 5.20: Data for girder G1 
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Figure 5.21: Data for girder G2 
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Figure 5.22: Data for girder G3 
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Figure 5.23: Data for girder G4 
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Figure 5.24: Data for girder G5 
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Figure 5.25: Data for girder G6 

 
The results from the FEM model were only available in August 2006, cf. (Øskan and 
Bak 2006). Due to time limitations, it has not yet been possible to evaluate the results. 
Therefore the results of the FEM analysis are not included in this thesis. However, the 
obtained load-carrying capacities are shown in Table 5.6. 
The properties of the materials were determined by implementing the real load-
displacement curves from the tension coupon tests. It means that the FEM model took 
the non-linear behaviour of the materials into account as well as the effect of large 
deformations. Therefore the obtained load-carrying capacities are compared with the 
experimental values of Pmax. 
 
The imperfections of the web plates in the test sections were measured before testing 
the girder specimens, but these imperfections were not incorporated directly in the 
FEM model. However, in order to be able to initiate the buckling process of the web 
plate, imperfections had to be included. The imperfections were implemented in the 
model by adding a lateral surface load on the web plate. This surface load acted on the 
web plate throughout the entire calculation; hence the results from the FEM model are 
not fully correct. If only the surface load had acted on the web plate in the beginning 
of the calculation, the results would have been more reliable. It would be preferable to 
implement the measured imperfections into the model, but this is a rather cumbersome 
procedure. Although the imperfections were not correctly implemented in the FEM 
model, this may only have a slight influence on the obtained results. 
From Table 5.6 it appears that the FEM results seem to coincide very closely with the 
measured experimental maximum loads. A mean value of 1.010 and a standard 
deviation of 4.2 % are obtained for the ratio, PFEM/Pmax. 
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Girder G1 G2 G3 G4 G5 G6 
PFEM [kN] 143.1 162.1 201.2 254.6 264.5 300.2 
Pmax  [kN] 132.2 158.9 206.3 249.2 274.2 301.4 
PFEM /Pmax  [ ] 1.082 1.020 0.975 1.022 0.965 0.996 

Table 5.6: Comparison between FEM model and experimental results 
 

Girder G1 G2 G3 G4 G5 G6 
PEC3 [kN] 75.4 112.3 154.2 189.5 210.1 243.2 
Pexp  [kN] 132.2 158.9 180.7 211.0 226.0 243.1 
PEC3 /Pexp  [ ] 0.570 0.707 0.853 0.898 0.930 1.000 

Table 5.7: Comparison between EC3 and experimental results 
 
In Table 5.7, the calculated post-buckling strength according to EC3 (1993) is shown 
together with the experimental values of Pexp. EC3 (1993) suggests to use a procedure 
containing twelve equations in order to determine the post-buckling strength of a plate 
girder in shear. It is not an easy task to follow the physics behind the equations in 
such a long procedure. However, a helpful description is found in (Dubas and Gehri 
1986). 
From Table 5.7 it appears that EC3 (1993) seems to underestimate the post-buckling 
strength of the girders. A mean value of 0.826 and a standard deviation of 15.9 % is 
obtained for the ratio, PEC3/Pexp. 
The large standard deviation is also in this case due to girder G1. If the result from 
girder G1 is not included, a mean value of 0.878 and a standard deviation of 11.0 % 
are obtained. As previously mentioned, the upper-bound solution without girder G1 
gives a mean value of 1.030 and a standard deviation of 6.1 %. 

STRAIN MEASUREMENTS ON THE WEB 
To be able to measure the strains in the web, a photometric measuring equipment 
called Aramis was. Aramis is a 3D deformation measuring system. It analyses and 
calculates deformations of the object. Aramis recognises the surface structure, and 
through pictures from two digital cameras, it gives coordinates to the pixels of the 
pictures. The pictures, before testing, correspond to the undeformed object. After and 
under deformation of the object, more pictures are taken, and Aramis uses these 
pictures to calculate the deflections and strains of the object. 
Before testing, the web plates of the girder specimens were painted with non-gloss 
white paint in the test section. Black dots were then added, corresponding to the size 
of the pixels in the pictures. Aramis uses these black dots to recognise the pixels and 
calculate the deflections. 
The Aramis equipment was unable to measure the flanges and the transverse 
stiffeners. Furthermore, the flanges and the stiffeners threw shadows on the web plate, 
which confused the pictures. In the end, measurements were available from 90 % of 
the web plate in the test section. 
In order to check the results from Aramis, strain rosettes were applied to the web 
plate. Unfortunately, only a small number of strain rosettes were available. Therefore, 
only girders G1, G2 and G4 were supplied with strain rosettes. Strain rosettes were 
applied to the middle of each web panel, i.e. a panel between two stiffeners. In each 
web panel the strain rosettes were applied to both sides of the web plate in order to be 
able to compensate for the effect of bending of the plate. 
As previously mentioned, the results from girder G2 are of no use. Thus, only results 
from two girder specimens are available. 
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Figure 5.26: Major principal strain plot for girder G6 

 

 
Figure 5.27: Minor principal strain plot for girder G6 

 
The main reason for measuring the strains in the web plate was to verify whether the 
tensile bands pass the stiffeners or not. Having only strain rosettes on one girder with 
internal stiffeners made the analysis of the strains measured by the strain rosettes 
insufficient. 
Unfortunately, the Aramis equipment turned out to be unsuitable for verification as 
well. By using Aramis one might get plots of the major principal strains as well as the 
minor principal strains. In Figure 5.26, a plot of the major principal strains is shown 
for girder G6 at a load of P = 243.1 kN corresponding to the value of Pexp. The 
corresponding minor principal strains are shown in Figure 5.27. 
Since Aramis measurements are only taken on one surface of the web, it is not 
possible to neglect the strains due to the buckling of the web plate. Thus large 
compressive strains occur at the points where the web plate buckles away from the 
cameras, see Figure 5.27. Furthermore, it is only possible to measure the magnitude of 
the strains in each point. It is not possible automatically to deduce the directions of the 
principal strains. It would have been convenient if the principal strains could have 
been shown in a vector plot, but with Aramis this is not possible. 
 
Øskan and Bak (2006) performed an analysis of the obtained deformation plots of the 
web plates in order to verify whether or not the tensile bands may pass the transverse 
stiffeners. They measured the angle of the developed tensile bands to the girder axis 
and compared the results with the theoretically determined angles. They found a very 
good agreement between the measured angles and the calculated ones. Moreover, they 
concluded that the tensile band might pass the transverse web stiffeners, if any. A 
summary of their obtained results is presented in Appendix G. 
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Figure 5.28: Photo of G5 after testing 

 
A larger analysis of the problem whether the tensile bands may pass the transverse 
stiffeners or not is actually unnecessary, as it is easily verified from the photo shown 
in Figure 5.28 that the bands may do so. The figure shows a photo of girder G5 after 
testing. 

STRAIN MEASUREMENTS ON THE FLANGES AND STIFFENERS 
The Aramis equipment could not be used to measure the deformations of the flanges 
or the transverse web stiffeners. Thus, traditional strain gauges were applied to the 
flanges and the stiffeners. 
On each girder specimen, one pair of strain gauges was placed on both the top and 
bottom flange. The gauges were placed 20 mm from the web plate on one side of the 
web plate. One gauge was placed on the top face of each flange and one gauge was 
placed at the same location on the bottom face of each flange. 
Each transverse web stiffener was supplied with a pair of strain gauges on one side of 
the web plate. In the vertical direction, the gauges were placed in the middle of the 
stiffeners. In the horizontal direction, the gauges were placed in the middle of the 
calculated effective width of the stiffeners, i.e. 24 mm from the web plate. 
The exact locations of all the strain gauges are given in Appendix H. 
 
In the following, the gauges are termed H1, H2, V1, etc. where H is horizontal, i.e. 
gauges placed on the flanges, and V is vertical, i.e. gauges placed on the transverse 
web stiffeners. Furthermore, for all tests, H1 and H2 are the gauges on the top flange, 
and H3 and H4 are the gauges on the bottom flange. 
 
Figures 5.29 – 5.33 show the load-strain curves for each girder specimen. For each 
plate, the strains are shown as the mean value of the measured strains from each pair 
of gauges. This is done in order to compensate for the strains due to bending of the 
individual plates, thus the strains shown in the figures only correspond to the 
membrane strains. 
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Figure 5.29: Load-strain curves from strain gauges on girder G1 
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b. 

Figure 5.30: Load-strain curves from strain gauges on girder G3 
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b. 

Figure 5.31: Load-strain curves from strain gauges on girder G4 
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b. 

Figure 5.32: Load-strain curves from strain gauges on girder G5 
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b. 

Figure 5.33: Load-strain curves from strain gauges on girder G6 
 
Øskan and Bak (2006) also made an analysis of the measured strains in the flanges 
and the transverse web stiffeners. They calculated the stresses corresponding to the 
measured strains and compared the results with the stresses predicted by the lower-
bound solution, cf. Section 2.1. They found a relatively good agreement with the 
compressive stresses in the flange and the transverse web stiffeners, but not so good 
agreement with the tensile stresses in the flanges. The reason is that this method of 
determining the stresses is dubious, as the strains are only measured at one point of 
each plate. For instance, there is no certainty that the stresses in each plate are 
uniformly distributed. Therefore, when only calculating the stiffener stresses from the 
strains measured in the middle of the theoretical effective width, one will only get an 
approximate mean value of the stiffener stresses. Thus, only the load-strain curves 
shown above are included in this thesis. 
The most interesting observation from the load-strain curves is that the measured 
stiffener strains seem to be approximately constant for each girder test. This is valid 
for all girders except for girder G6, where two of the stiffeners have strains 
considerably larger than the other stiffeners. Furthermore, only in these two stiffeners 
do the measured strains exceed the yield strain. However, this does not ensure that 
yielding did not occur in any of the other transverse stiffeners. 
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5.3 Tests on Plate Girders Subjected to Distributed Loading 
The two distributed loading tests were conducted with a test setup as illustrated in 
Figure 5.34. As seen from the figure, the same system of UNP-profiles as for the 
constant shear tests was used in order to ensure that no failure due to lateral stability 
occurred. 
Four jacks established the uniform load. Between the girder and the jacks, wooden 
blocks were supplied in order to distribute the load from the jacks. These wooden 
blocks are not shown in the figure.  
For girder G8, the load was applied to the bottom flange as a uniform compressive 
load as shown in Figure 5.34.  
For girder G7, the load was applied to the top flange as a uniform tensile load. The 
setup was used as shown in the figure with the same four jacks as applied for girder 
G8. The jacks acted on specially designed frames that transferred the compression 
from the jacks to tension on the top flange. These frames used for the testing of girder 
G7 are not shown in the figure, but they may be seen in the series of photos presented 
in Appendix F. 
 

 
Figure 5.34: Illustration of test setup for distributed loading tests 

 
The two girder specimens were identical except for the cross-sectional area and the 
number of transverse stiffeners in the web. Øskan and Bak (2006) designed the 
specimens according to the design method presented in Section 3.3. According to this 
method, extra stiffeners must be added if the girder is subjected to a compression load 
on a flange. The extra stiffeners must be able to transfer the compression load to 
tension along the other flange. Therefore, the design of the stiffeners on girders G7 
and G8 are not identical. Girder G7 was supplied with three transverse web stiffeners 
with a width of 70 mm. Girder G8 was supplied with the same three stiffeners plus an 
extra one closest to the free end of the girder. All the internal stiffeners in the test 
section of girder G8 had a width of 84 mm. Again, it should here be noted that one 
stiffener refers to a pair of stiffeners placed on each side of the web plate. 



THE PLASTIC TENSION FIELD METHOD 

 108 

ULTIMATE LOADS 
In both of the two girder specimens, displacement transducers were placed on the free 
end of the girders. Unfortunately, due to the large deflections that occurred, the results 
from these displacement transducers are of no use. Therefore, the testing history is 
presented in a load-time curve, see Figure 5.35. 
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Figure 5.35: Load-time curves for distributed loading tests 

 
In Table 5.8, the two experimental loads per unit length, qexp and qmax, are shown. 
Here, qmax is the maximum load and qexp is the load measured where the slope 
discontinuity of the curves occur. It is not so clear from the load-time curve when the 
linear-elastic behaviour stops, but the values of qexp are taken at the points shown by 
the two dotted horizontal lines in the figure. 
In Table 5.8, the two theoretical loads per unit length, qu

- and qu
+, are also shown. No 

general lower-bound solution for cantilever girders subjected to a uniformly 
distributed load have been derived, so qu

- is the design load which the girder 
specimens are designed for by applying a lower-bound solution, cf. Section 3.3. 
However in the design of the girders, a value of fy = 235 MPa was applied to all 
materials, so the values of qu

- in the table are inaccurate. 
The values of qu

+ are the determined upper-bound values. The upper-bound solution 
for a simply supported girder subjected to a uniformly distributed load may easily be 
applied for a cantilever girder, cf. Section 2.3. The derived equation will be identical 
if the value 2 L (L being the length of the test section of the cantilever girders) is 
inserted for the value of L in the equations in Section 2.3. 
However, this upper-bound solution cannot be used directly to determine the post-
buckling strength of girders G7 and G8, as it assumes that constant stiffener spacing is 
applied, which is not the case. Furthermore, the upper-bound solution is only valid in 
case of compressive loading, which is not true for girder G7. Hence, new upper-bound 
solutions are derived. 
For girder G8, the only change is the contribution to the dissipation from the internal 
stiffeners, which will be given by 
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The contribution to the dissipation from the flanges and from the web plate will be the 
same as for a simply support girder divided by two, cf. Equations (2.42) and (2.43). 
The total dissipation then becomes 

 
21 1 sin 2 tan

2 cos tan
f f s

i yw w yf ys

b t A n dW f t d f f
x x d

− θ
= δ+ δ + θ δ

θ + θ
 (5.10) 

Here, fy is yield stress and t is thickness with index f for flange and w for web and fys is 
either the yield stress or the buckling stress of the stiffeners. bf is the flange width, d 
the girder depth and As is the total cross-sectional area of a single stiffener. The 
length, x, displacement, δ, and the angle, θ, are illustrated in Figure 2.18. Moreover, n 
is the number of internal stiffeners in the parallelogram-shaped yield zone. 
 
The external work for girder G8 will also be the same as for a simply supported girder 
divided by two, cf. Equation (2.47). The external work becomes 

 1
2eW q L x⎛ ⎞= − δ⎜ ⎟

⎝ ⎠
 (5.11) 

where q is the load per unit length and L is the length of the shear zone. The length, x, 
and the displacement, δ, are shown in Figure 2.18.  
However, L here is the full length of the test section (L = 3.0 m), so the factor of two 
only appears if L is substituted by ½ L above. 
The total dissipation for girder G7 will be the same as for girder G8, cf. Equation 
(5.10), but the external work will be different because of the tensile loading on the 
opposite flange. The load acting along the length, d tan θ, closest to the fixed end, will 
not contribute to the external work, which equals 

 1 tan
2eW q L x d⎛ ⎞= − − θ δ⎜ ⎟

⎝ ⎠
 (5.12) 

It has not been possible to find analytical expressions in either of the two cases, and 
furthermore, the calculation procedure is cumbersome because, besides the 
minimising procedure, iteration must also be used. Therefore, only the dissipation and 
the external work are shown here. 
Iteration is necessary as one must estimate how many transverse web stiffeners are 
located in the parallelogram-shaped yield zone, cf. Figure 2.17. Thereafter, the 
geometry of the yield zone is found by minimising the expression for q, and it is 
necessary to control whether the estimated number of stiffeners is actually located in 
the yield zone or not. In the latter case, a new estimate must be made and a 
recalculation is necessary.  
For both girders G7 and G8, only one internal stiffener is found to be located in the 
yield zone, and the yield zone reaches the second internal stiffener measured from the 
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fixed support. Figure 5.36 shows the test section on girders G7 and G8, are their 
predicted yield zones, where x = 546 mm and θ = 26.6° for girder G7. For girder G8, 
x = 496 mm and θ = 31.0°. 
The predicted location of the yield zones approximately corresponds to the 
observations in the photos, cf. Appendix F. However, the location of the plastic yield 
hinges in the flanges did not develop exactly as predicted. In Figure 5.36, the solid 
circles are the ones calculated for girder G8, and the load is the bottom flange load 
(solid). The hollow circles are the ones calculated for girder G7, and the load is the 
top flange load (dashed). The location of the plastic yield hinges are not measured in 
the experiments. 
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n = 1 θmin =   26.6
As = 420 mm v =   31.9
f ys = 154 MPa x =    546 mm
f yw = 249 MPa qu =   47.9 kN/m
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Girder G8
n = 1 θmin =   31.0
As = 504 mm v =   29.8
f ys = 179 MPa x =    496 mm
f yw = 282 MPa qu =   50.0 kN/m

2

2 v

+ +  
Figure 5.36: Data for girders G7 and G8 

 
Theoretical Experimental Girder qu

- [kN/m] qu
+ [kN/m] qexp [kN/m] qmax [kN/m] 

qu
+/ qexp 
[ ] 

qu
+/ qmax 
[ ] 

G7 41.5 47.9 48.6 54.9 0.986 0.872 
G8 47.0 50.0 47.8 50.2 1.046 0.996 

Table 5.8: Summary of theoretical and experimental loads 
 
Although the girders had the same overall dimensions, there were several differences 
between the two specimens. Firstly, the different loading systems give two slightly 
different theoretical solutions. Secondly, the width of the internal stiffeners were not 
the same, i.e. ts = 70 mm for G7 and ts = 84 mm for G8. Therefore, the values of As 
and fys are not the same, so the buckling stresses of the internal stiffeners are different. 
Also, the yield stresses of the web material were far from equal, i.e. fyw = 249 MPa for 
G7 and fyw = 282 MPa for G8 
In the experiments, girder G7 carried a slightly larger load than girder G8. The 
predicted load-carrying capacities reveal the opposite. The lower-bound value is 
below the experimentally determined load for both girders. The upper-bound value is 
below the experimental loads for girder G7 and between the experimental loads for 
Girder G8. 
 
The experimental results are fairly unreliable, firstly because, during the uploading, 
both girders began to deflect in lateral direction. As already mentioned, UNP-profiles 
were applied on both sides of the girders in order to ensure that no failure due to 
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lateral stability occurred. These UNP-profiles may have influenced the load-carrying 
capacity due to friction. Secondly, the applied loading system of four jacks turned out 
to be unsuitable for representing a uniformly distributed load. At the start of the 
uploading phase it appeared to function correctly, however before reaching the 
maximum load, the jack nearest the fixed end loosened in both tests, so it was not 
subjecting any load to the girders at all. 
However, the correlation between theory and tests seems to be reasonable. 

STRAIN MEASUREMENTS ON THE WEB 
No strain rosettes were added to the web plate of the two girders. The photometric 
equipment, Aramis, was used to measure the deformations as described in Section 5.2. 
Due to the larger length of the test section (L = 3.0 m), Aramis only covered 
approximately 70 % of the web plate on girder G8. On girder G7, only 30 % of the 
web plate in the test section was covered, because of the special steel frames. 
With the same explanation as in Section 5.2, the strains calculated by Aramis were of 
no real use. 
The aim of the two tests was to see whether a buckling pattern occurred with varying 
direction throughout the girders. The deformation plot from Aramis for girder G8 in 
Figure 5.37 shows that buckles with different angles with the girder axis indeed did 
form more or less as expected. The figure shows a plot of the deformations just before 
the maximum load is reached. 
 

 
Figure 5.37: Deformation plot for girder G8 

STRAIN MEASUREMENTS ON THE FLANGES AND STIFFENERS 
On the two girder specimens, two pairs of strain gauges were applied to the top flange 
as well as on the bottom flange. The gauges were placed 20 mm from the web plate 
on one side of the web plate, as in the constant shear tests. 
Each transverse web stiffener was equipped with a pair of strain gauges on one side of 
the web plate. In the vertical direction, the gauges were placed in the middle of the 
stiffeners. In the horizontal direction, the gauges were placed in the middle of the 
calculated effective width of the stiffeners. The exact locations of all the strain gauges 
are given in Appendix H. 
 
The same notation as for the constant shear tests is used, i.e. H1, H2, V1, etc. where H 
refers to gauges on the flanges, and V to gauges on the transverse web stiffeners.  
Figure 5.38 shows the load-strain curves for girder G7, and Figure 5.39 shows the 
load-strain curves for girder G8. Again, for each plate the strains are shown as the 
mean value of the measured strains from each pair of gauges, in order to compensate 
for the strains due to bending of the individual plates. 
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Figure 5.38: Load-strain curves from strain gauges on girder G7 
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b. 

Figure 5.39: Load-strain curves from strain gauges on girder G8 
 
Øskan and Bak (2006) made an analysis of the measured strains in the flanges and the 
transverse web stiffeners. They calculated the stresses corresponding to the measured 
strains and compared the results with the stresses predicted by the lower-bound 
solution, cf. Section 2.1. They found a relatively good agreement with the stresses in 
the flange and the transverse web stiffeners, determined by the strain gauges closest to 
the supported end of the girder, but they found less good agreement with 
measurements from the gauges on the flanges and stiffeners closest to the free end of 
the girders. 
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6 CONCLUSION 
A calculation method, i.e. the plastic tension field method, for steel plate girders with 
transverse web stiffeners subjected to shear, is presented. The method, which is based 
on the theory of plasticity, differs from other theories by incorporating the strength of 
the transverse stiffeners and by the assumption that the tensile bands may pass the 
transverse stiffeners. 
 
Both the lower-bound theorem and the upper-bound theorem of the theory of 
plasticity are used. 
The theoretical solutions are compared to tests found in the literature as well as new 
tests conducted at the Technical University of Denmark in 2006. There is in general a 
very good agreement between theory and the tests. However, the theory seems to 
underestimate the post-buckling strength for girders without intermediate web 
stiffeners. This might be due to the fact that the theory does not take the strength of 
the stiffeners at the loads into account. 
 
A design method for steel plate girders with transverse web stiffeners is also 
presented. By introducing circular fan solutions, almost any load case may be treated. 
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8 NOTATION 
 
a length; thickness of tension coupons 
b constant stiffener spacing; width of tension coupons 
bf flange width 
c length 
d girder depth, i.e. depth of the web plate 
fu ultimate tensile strength 
fy yield stress 
fyf, fyw flange yield stress and web yield stress, respectively 
fys stiffener yield stress or buckling stress, the lower one being decisive 
k elastic buckling coefficient 
n number of stiffeners 
p1, p2, p3 loads per unit area 
p load per unit area 
q load per unit length 
qe load per unit length on end panel 
qmax experimentally determined maximum load per unit length 
qu theoretical post-buckling load per unit length 
qu

+ theoretical post-buckling load per unit length, upper-bound value 
qu

- theoretical post-buckling load per unit length, lower-bound value 
r radial distance 
r0 radius of curvature on tension coupons 
t thickness 
tf, ts, tw thickness of flange, stiffener and web, respectively 
u relative displacement; deflection 
v angle 
x, y coordinates in a Cartesian x,y-system of coordinates 
x length 
y0 vertical distance from the bottom face of a girder 
A area 
As, Aw cross-sectional area of a single stiffener and of the web plate, respectively 
C compressive flange force (positive as compression); pole of fan 
E Young’s modulus 
G shear modulus 
I moment of inertia 
L length of shear zone 
L0, Lc original gauge length and parallel length of tension coupons 
Le length of end panel 
M moment 
M* moment from virtual load 
Me maximum moment on end panel 
Mmax maximum moment 
Mpf plastic yield moment of flange 
P force, load 
Pcr critical web buckling load 
Pexp experimentally determined post-buckling load 
PEC3, PFEM post-buckling load according to EC3 and FEM model, respectively 
Pmax experimentally determined maximum load 
Pu theoretical post-buckling load 
Pu

+ theoretical post-buckling load, upper-bound value 
Pu

- theoretical post-buckling load, lower-bound value 
Q shear force 
Q* shear force from virtual load 
Qe shear force on end panel 
Rx resultant of the σx-stresses 
S0 original cross-section area of tension coupons 
T tensile flange force (positive as tension) 
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V volume 
We, Wi external work and dissipation, respectively 
Wl dissipation per unit length 
α angle of circular fan; angle between yield line and relative displacement 
β angle of uniaxial web stress 
δ displacement increment 
ε1, ε2 principal strains 
εx, εy strains referred to a Cartesian x,y-system of coordinates 
εy yield strain 
φ, φxy change of angle 
η non-dimensional parameter measuring flange stiffness 
ϕ stiffener ratio 
ν Poisson’s ratio; effectiveness factor 
θ angle of uniaxial concrete stress; angle in failure mechanism 
θmin minimised angle in failure mechanism 
σ1, σ2 principal stresses 
σc uniaxial concrete stress 
σe normal stress on end panel 
σr, σα normal stress in radial and circumferential direction, respectively 
σsx,σsy equivalent stiffener stresses 
σt tensile band stress 
σw uniaxial web stress 
σwx, σwy web normal stresses in a Cartesian x,y-system of coordinates 
σx normal stress in the x-direction 
σy normal stress in the y-direction 
τ shear stress 
τmax maximum shear stress 
τcr elastic critical shear buckling stress 
τexp shear stress measured by experiments 
τu theoretically determined shear stress 
τrα shear stress in polar coordinates 
τsxy stiffener shear stress 
τwxy web shear stress 
τu ultimate shear load-carrying capacity 
τxy shear stress in the xy-plane 
υ angle 
ψ mechanical degree of stiffening 
 
Subscripts 
bf bottom face 
tf top face 
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POST-BUCKLING STRENGTH OF PLATES 
IN COMPRESSION 

- Derivation of Effective Width Equations 

 

1 INTRODUCTION 
In PART II it is stated several times that when designing a steel plate girder subjected 
to shear according to the plastic tension field method, the ultimate stress of the 
transverse web stiffeners, fys, or of the compression flange, fyf, is either the yield stress 
or the buckling stress. The lower one is decisive. Therefore the aim of this part of the 
thesis is to illustrate how one may determine the post-bucking strength of both the 
transverse web stiffeners and the compression flange. 
 
It was deduced many years ago that the elastic buckling theory is not able to 
accurately account for the real strength of plates (Schuman and Back 1930). The main 
reason for this is that, in a large parameter interval, the ultimate load is reached after 
yielding of the plate. This fact was also pointed out by Kármán et al. (1932), who 
suggested modifying the elastic solution by an empirical coefficient. This idea was 
taken up by Winter (1947), who developed accurate formulae for the two important 
cases considered in the following. Winter’s method is an effective width method, on 
which calculations of plates in compression are still based. 
Any design method thus has to take into account that plates in compression may carry 
loads much larger than the load for which elastic buckling will occur. The effective 
width method takes the post-buckling capacity into account. The aim is here to 
establish a new effective width method, which is derived on the basis of a consistent 
theory. The new method rests on the theory of plasticity, particularly the yield line 
theory. Emphasis is on buckling problems related to plate girders. Two general cases 
are studied: Plates in uniaxial compression supported along all edges, cf. the 
compressed flange in a box girder, and plates with one free edge, cf. the compressed 
flange and the transverse web stiffeners in an I-shaped girder. 
The results presented coincide closely with Winter’s formulae and with tests. 
 
The basics of the theory are described in Chapter 2. How to take geometrical second 
order effects into account is illustrated by a simple column example. 
Solutions for plates in uniaxial compression supported along all edges are presented in 
Chapter 3, while solutions for plates with one free edge are treated in Chapter 4. Both 
chapters contain a comparison between the theory and the experimental results, on 
which Winter’s formulae were based. 
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The effect of imperfections is touched upon in Chapter 5 and other possible 
applications of the theory are mentioned in Chapter 6. 

1.1 Historical Overview 
Bryan (1891) was the first to develop a solution for the elastic critical stress of a 
rectangular plate simply supported along all edges and subjected to a uniform 
longitudinal compressive stress. Later a large number of solutions using Bryan’s 
equation have been derived, see for instance (Timoshenko and Gere 1961). 
In general the elastic critical stress may be expressed as 

 
( )

22

212 1cr
E tk

b
π ⎛ ⎞σ = ⎜ ⎟− ν ⎝ ⎠

 (1.1) 

in which E is Young’s modulus, ν Poisson’s ratio, t/b the thickness-to-width ratio and 
k is a buckling coefficient, which is a function of plate geometry and boundary 
conditions. Useful information on k-factors may be found in a number of references, 
e.g. (Timoshenko and Gere 1961). 
Tests by Schuman and Back (1930) on plates supported by V-grooves along the 
unloaded edges demonstrated that, for plates of the same thickness, an enhancement 
of the plate width beyond a certain value did not increase the ultimate load. Wider 
plates acted as though narrow side portions or “effective load-carrying areas” took 
most of the load. Furthermore, the ultimate load was found to be up to thirty times 
larger than the elastic critical buckling load determined by Bryan, cf. Equation (1.1). 
It is now well known that the post-buckling resistance of plates is due to redistribution 
of axial compressive stresses, and to a lesser extent, to tensile membrane effects and  
to shear that accompany the out-of-plane bending of the plate in both longitudinal and 
transverse directions. The longitudinal stresses tend to concentrate in the vicinity of 
the longitudinally supported edges, which are the stiffer parts of the buckled plate. As 
a result, yielding begins along these edges, which limits the load-carrying capacity. 
Several researchers were prompted by the tests of Schuman and Back (1930) to 
develop expressions for the ultimate strength of such plates. The first to use the 
effective width concept in handling this problem was Kármán et al. (1932). They 
derived the following approximate formula for the effective width, be, of plates 
supported along all edges, based on the assumption that two strips with total width, be, 
along the sides, each on the verge of buckling, carry the entire load: 

 
( )23 1

e
e

Eb tπ
=

σ− ν
 (1.2) 

Here σe is the edge stress along be and the remaining notation is as in Equation (1.1). 
 
As a result of many tests and studies of post-buckling strength, Winter (1947) 
suggested the following formula for the effective width: 

 1.9 1.0 0.574e
e e

E t Eb t
b

⎛ ⎞
= −⎜ ⎟⎜ ⎟σ σ⎝ ⎠

 (1.3) 
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This equation has been modified several times over the past. In the latest version, 
adopted in EC3 (2006), the formula is written as 

 1.0 0.22e cr cr

e e

b
b

⎛ ⎞σ σ
= −⎜ ⎟⎜ ⎟σ σ⎝ ⎠

 (1.4) 

In the calculation of the ultimate compression load, the edge stress, σe, is taken to be 
equal to the yield stress of the plate material. The elastic critical stress, σcr, is 
determined by Equation (1.1). Equation (1.4) corresponds to Equation (1.3) if the 
factor 0.574 is substituted with a factor of 0.415. 
For plates supported along only one longitudinal edge, the effective width has been 
experimentally determined by Winter (1947). The original formula was 

 1.25 1.0 0.333e
e e

E t Eb t
b

⎛ ⎞
= −⎜ ⎟⎜ ⎟σ σ⎝ ⎠

 (1.5) 

This equation has also been modified several times. In the latest version, adopted in 
EC3 (2006), it is written as 

 1.0 0.188e cr cr

e e

b
b

⎛ ⎞σ σ
= −⎜ ⎟⎜ ⎟σ σ⎝ ⎠

 (1.6) 

In the 1993-edition of EC3 (1993), Equation (1.4) is valid in the case of plates 
supported along all edges and plates with one free edge. Hence, the difference 
between the two cases is only the value of the buckling coefficient, k. It is practical 
and convenient to have only one expression. The reason for changing the factor 0.22 
to 0.188, for plates with one free edge, is not yet known to the author. But the 
adjustment seems to be rather insignificant. 
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2 POST-BUCKLING THEORY FOR PLATES IN COMPRESSION 
The basic idea is to use plastic theory in the form of limit analysis on the deflected 
shape of the plate. The deflected shape has to be estimated which is done by using 
simple formulae from beam and plate theory. The plastic analysis is carried out using 
yield line theory. 

2.1 Yield Line Theory 
Yield line theory is an upper-bound method. The mechanisms considered are a system 
of bending yield hinges along lines, the yield lines. The load-carrying capacity is 
determined by the work equation, equalising external work and dissipation in the yield 
lines. 
It is assumed that the plane stress field existing before buckling is known so that the 
principal normal forces may be found whereby the corresponding yield moments may 
be determined. In an unloaded direction, the bending capacity, m, reaches the full 
yield moment per unit length in bending, mp: 

 21
4p ym m t f= =  (2.1) 

where t is the thickness of the plate and fy the yield stress. In the direction of a 
principal compression or tension (normal force n per unit length), the bending 
capacity, m, is reduced due to the normal force as for beams subjected to combined 
bending and normal force, i.e. 

 
2

1p
p

nm m
n

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (2.2) 

where mp is given by Equation (2.1) and np = t fy is the load-carrying capacity in pure 
compression or tension. By determining the yield moments in the two principal 
directions in this way, the simplification suggested by Johansen (1943) may be used 
to calculate the bending moment in a yield line, mb, as 

 2 2sin cosb px pym m m= β + β  (2.3) 

where β is the angle between the yield line and the x-axis. The x- and y-axes are 
directed along the principal directions, and mpx and mpy are the corresponding yield 
moments per unit length. The plastic yield moments, mpx and mpy, are determined by 
either Equation (2.1) or (2.2). Equation (2.3) is correct for reinforced concrete slabs in 
general, which was shown by Nielsen (1998). It is also correct if the yield condition in 
principal moment space is square or rectangular. For steel plates, such assumptions 
are dubious, when the slab is acted upon by torsion. Nevertheless, Equation (2.3) is 
used in the following with surprisingly good results. 
A number of different researchers have developed formulae for the plastic moment 
capacity of inclined yield lines, the first being Murray (1984). Hiriyur and Schafer 
(2004) and Zhao (2003) have shown that the solutions obtained by the different 
proposals vary widely, and Zhao (2003) concludes that nothing better than the method 
suggested by Murray (1984) has been found. 
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2.2 Effect of Deflections 
From the general theory of beam-columns, it is known that the equilibrium equations 
may be derived for the undeformed structure if a fictitious load is included. The 
fictitious load is a moment per unit length of the beam, equal to 

 dum N
dx

=  (2.4) 

where N is normal force and u the deflection, transverse to the beam axis, x. The 
statical equivalence of m may be expressed in several ways, but for a given part of a 
beam subjected to a constant normal force, N, it may conveniently be expressed in the 
following simple way: The total moment, M, on a beam (A-B), when N is constant, is 

 ( )
B B B

B AA A A

du duM m dx N dx N dx N u u
dx dx

N u

= = = = −

= ∆

∫ ∫ ∫  (2.5) 

which may be split into two forces, N ∆u/L, in the two end points. The two forces are 
transverse to the beam as shown in Figure 2.1. 
 

x
N

L

A

B N

uB

uA

uB - uA = ∆u

 
Figure 2.1: Part of a beam subjected to a constant normal force, N, and statically equivalent transverse 

forces in the end points 
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Figure 2.2: Plate subdivided into strips with infinitesimal widths 
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The value of these forces is independent of the deflected shape between the end 
points, A and B. Only the difference in the deflection at the end points is important. 
The work in a virtual displacement, where the beam considered moves as a rigid 
body, may then be determined as the work done by the two forces, N ∆u/L. 
In the simple cases considered, the above result may be used by considering the plate 
as being subdivided into strips with constant normal force. In Figure 2.2, a simply 
supported square plate subjected to uniaxial compression is shown.  
The strip, marked by the dashed lines, has a normal force, n, per unit length. The 
transverse forces are a uniform load, nψ, along the lines (A and B) acting upwards in 
(A) (i.e. perpendicular to the x,y-plane), and a uniform load acting downwards in (B). 
For a displacement increment, δ, along the line (B), the external work for the strip is 
given by 

 edW n dy= ψ δ  (2.6) 

where the relative deflection increment, ψ = uB/L. The dissipation contribution from 
the strip is determined by 

 idW m dy
L
δ

=  (2.7) 

where m is calculated by Equation (2.2). 

2.3 Column Example 
The procedure is illustrated by a simply supported column, see Figure 2.3. The 
deflected shape of the column is characterised by the deflection in the midpoint at 
maximum load, um. The column is centrally loaded by a compressive normal force, N, 
and thereby each half is subjected to the forces, Nψ. In the figure they are only shown 
in the midpoint. 
The column is given a lateral displacement increment, δ, at the midpoint, as shown in 
Figure 2.4, where a plastic yield hinge is formed. 
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ψ ψ
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Figure 2.3: Deflected shape of a simply supported column 
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Figure 2.4: Failure mechanism for a lateral displacement increment, δ 
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The external work of the mechanism renders 

 2 4 m
e

uW N N
L

= ψ δ = δ  (2.8) 

and the dissipation is 

 4= δp
i

M
W

L
 (2.9) 

Here, Mp is the plastic yield moment, which must be reduced due to the normal force. 
The work equation equals: 

 =m pN u M  (2.10) 

A constant, solid and rectangular cross-section of the column is assumed in order to 
compare the result with the solutions derived later for plates. Hence, the following 
solution also corresponds to a rectangular plate with two free unloaded edges. The 
sides of the rectangular cross-section are denoted b and t, respectively, where b ≥ t is 
assumed. The plastic yield moment, reduced due to the normal force, is then 

 
2

21 1
4

⎛ ⎞⎛ ⎞
⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

p y
p

NM bt f
N

 (2.11) 

N is the normal force, fy the yield stress and Np = b t fy is the load-carrying capacity in 
pure compression or tension. 
The next step is to find a good estimate for the deflected shape of the column. The 
maximum deflection for a beam may in general be determined as 

 21
mu L= κ

α
 (2.12) 

where κ is the curvature in a selected point, L the length and α is a parameter 
depending on the shape of the curvature function. In the following, α = 8, 
corresponding to a constant curvature function, is used. 
In a beam or column with yielding, the deflection corresponding to maximum load 
tends to be reached when the yield strain, εy, is obtained in one or both faces. Here it 
is assumed that the deflection at maximum load may be found by assuming that the 
yield strain, εy = fy/E (fy is yield stress and E Young’s modulus), is reached in both 
faces. Thus the curvature is determined by 2 εy /t. The formula is modified as follows: 

 
2ε µ

κ = y

t
 (2.13) 

where the parameter, µ, is an empirical coefficient accounting for the effect of 
imperfections and residual stresses. Hence for the column in Figure 2.3, the deflection 
equals: 
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ε µ
= = µy y

m

f Lu L
t E t

 (2.14) 

Inserting Equations (2.11) and (2.14) into Equation (2.10), the load-carrying capacity 
expressed by the non-dimensional value, N / (b t fy), is found to be 

 2 2 41 1 1
2 4

= − µ λ + µ λ +
y

N
bt f

 (2.15) 

where the parameter, λ, has been introduced: 

 λ = yfL
t E

 (2.16) 

Now this result is compared with the EC3 (2005) formulae. Here a non-dimensional 
slenderness ratio, λr, is introduced as 

 λ = y
r

cr

A f
N

 (2.17) 

Here, A is the cross-sectional area and Ncr is the elastic critical buckling force (the 
Euler-load), see the following Equation (2.21). For a solid, rectangular cross-section 
where λ is given by Equation (2.16), λr may be expressed as,  

 12 12
λ = = λ

π π
y

r

f L
E t

 (2.18) 

The load-carrying capacity according to EC3 (2005) is given by 

 
2 2

1cr

y r

N
bt f

=
Φ + Φ − λ

 (2.19) 

where 

 ( )( )20.5 1 0.2Φ = + α λ − + λr r  (2.20) 

The so-called geometric equivalent imperfection factor α in this equation is obtained 
from Table 2.1. Notice that α here is not the same as the α introduced in Equation 
(2.12). 
 

Buckling curve a0 a b c d 
Imperfection factor α 0.13 0.21 0.34 0.49 0.76 

Table 2.1: Imperfection factors for buckling curves according to EC3 
 
The buckling curves according to EC3 (2005), cf. Equation (2.19), and the curve 
given by Equation (2.15) for µ = 1.4 are shown in Figure 2.5. It turns out that by 
choosing a value of µ between 1.2 and 1.6, all buckling curves in EC3 (2005) may be 
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well represented. For µ = 1.4, the result coincides very closely with the buckling 
curve b.  The figure also shows the Euler curve, which for a solid rectangular cross-
section is given by 

 
2

2
2

1
12

cr

y r

N
bt f

−π
= = λ

λ
 (2.21) 
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Figure 2.5: N / (b t fy) as a function λ, plastic theory and EC3 

 
If the column in Figure 2.3 is also subjected to a lateral load, q, per unit length along 
the entire length, L, then this load is easily included in the calculations. The work 
done by the lateral load is simply added to the external work, thus the work equation 
becomes, cf. Equation (2.10), 

 21
8m pN u q L M+ =  (2.22) 

Here, um is the estimated deflection at maximum load, N the normal force and Mp is 
the plastic yield moment which must be reduced due to the normal force. 
In a similar way, any load case may be treated. Also other boundary conditions may 
be considered; however this requires new estimates of the deflected shape. 
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3 PLATES SUPPORTED ALONG ALL EDGES 
The design method (the lower-bound solution) presented in PART II is also valid in the 
case of, for instance, a box-girder. The compression flange in a box-girder may be 
considered as a plate simply supported along the edges. The ultimate stress of the 
flange, fyf, is either the yield stress or the buckling stress, as stated in PART II. 
Determination of the post-buckling strength of plates supported along all edges is 
presented below. 

3.1 Square Plates 
Initially, the square plate in Figure 3.1 is considered. It is simply supported along all 
four edges and subjected to a uniform load per unit length, n, along two opposite 
edges. 
The first step is to find a good estimate for the deflected shape of the plate. As stated 
in Section 2.3, the maximum deflection for a beam may in general be determined as 

 21
mu L= κ

α
 (3.1) 

where κ is the curvature, L the length and α is a parameter depending on the shape of 
the curvature function. Again α = 8 is used, corresponding to a constant curvature 
function. 
In a plate with yielding, the deflection corresponding to maximum load tends to be 
reached when the yield strain, εy, is obtained in one or both faces. As in the case of a 
column, cf. Section 2.3, the deflection at maximum load may be found by assuming 
the yield strain, εy = fy/E, is reached in both faces of the plate. Here, fy is the yield 
stress and E is the Young’s modulus. Here µ = 1 is applied, cf. Equation (2.13), thus 
the curvature is determined by (t being the plate thickness) 
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Figure 3.1: Failure mechanism for a simply supported square plate 
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For a square plate, L is taken equal to the side length, b. Hence, for the plate in Figure 
3.1, the deflection at maximum load, um, is 

 
2

221 1
8 4

y y
m

f bu b
t E t
ε

= =  (3.3) 

The next step is to find the optimal failure mechanism (yield line pattern). In Figure 
3.1, two different yield line patterns are shown, one with the free parameter, X, and 
one with the free parameter, Y (shown with dashed lines), respectively. 
For the mechanism with the free parameter, X, the external work for a displacement 
increment, δ, equals 
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XW nu
b

δ
= + − δ
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 (3.4) 

and the dissipation is 

 
2

4 1 2i p p
p

n bW m m
n X

⎛ ⎞⎛ ⎞
⎜ ⎟= δ − + δ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (3.5) 

Here, the plastic yield moment, mp, per unit length is given by Equation (2.1) and np = 
t fy is the load-carrying capacity in pure compression or tension. 
Equalising the external work and the dissipation and inserting Equations (2.1) and 
(3.3), the load-carrying capacity, expressed by the non-dimensional parameter, n/(t fy), 
may be written as 

 
2

2 41 1 11 1 2
2 4 2y

n X X b
t f b b X

⎛ ⎞ ⎛ ⎞ ⎛ ⎞= − λ − + λ − + +⎜ ⎟ ⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠ ⎝ ⎠

 (3.6) 

where the parameter, λ, 

 yfb
t E

λ =  (3.7) 

has been introduced. 
 
Equation (3.6) is the post-buckling load in this case. The value of n/(t fy) as a function 
of λ is shown for different values of X in Figure 3.2. 
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Figure 3.2: n/(t fy) as a function of λ for different values of X 

 
It is seen that n/(t fy) > 1 for small values of λ, which is not possible in reality, hence a 
cut-off at n/(t fy) = 1 must be introduced. With this cut-off, it appears that almost the 
same load-carrying capacity is obtained for X = 1/2 b, X = 2/5 b and X = 1/3 b.  
The mechanism with the free parameter, Y, cf. Figure 3.1, leads to Y = 0 when 
optimised. However, it must be remembered that the deflected shape is used both as 
an estimate of the deflection at maximum load and as the basis for a choice of the 
deflection increment at the yield load. Thus the optimised value for Y = 0 must be 
disregarded and the mechanism corresponding to X = ½ b (Y = ½ b) is chosen for the 
following calculations. 
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Figure 3.3: n/(t fy) as a function of λ for X = ½ b 

 
In Figure 3.3, the ratio, n/(t fy), as a function of λ for X = 1/2 b is shown together with 
the elastic solution, which may be written as, cf. Equation (1.1), 
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−π
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 (3.8) 
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where k is the buckling coefficient and ν is Poisson’s ratio. Here k = 4 and ν = 0.30 
are used. The parameter, λ, is given by Equation (3.7). 
The two curves coincide very closely, but this indicates that no extra post-buckling 
reserve is found from this approach. According to what has previously been 
mentioned the result is incorrect. This is, of course, due to the fact that a redistribution 
of the stresses occurs when the buckling mechanism develops. This is illustrated in 
Figure 3.4. 
 

 
Figure 3.4: Stress distribution in a plate after buckling 

 
As previously mentioned, Kármán et al. (1932) suggested that instead of using the 
true varying stress distribution, the calculation might be simplified by using an 
effective area subjected to a uniform stress equal to the yield stress, i.e. σ = fy, in 
Figure 3.4. The same simplification will be used here. Hence the plate is subjected to 
a load per unit length equal to the yield stress multiplied by the thickness of the plate, 
i.e. n = np = t fy, which is applied along two strips with the width equal to the 
unknown length, bs, see Figure 3.5. 
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Figure 3.5: Simply supported square plate subjected to uniaxial compression along strips of width bs 

 
The external work, We, and the dissipation, Wi, are for δ = 1, respectively: 
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 (3.10) 
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Again, um is the deflection at maximum load, mp is the plastic yield moment per unit 
length given by Equation (2.1) and np = t fy is the load-carrying capacity in pure 
compression or tension. 
The contribution from the part of the yield lines running in the widths, bs, is equal to 
zero, as np = t fy. Inserting Equations (2.1) and (3.3), and using Wi = We, bs is found to 
be determined by 

 
2

2 2 0y
s s

f tb b t
E b

+ − =  (3.11) 

Denoting the total effective width be = 2 bs, it equals 

 2 4 24eb
b

− − −= −λ + λ + λ  (3.12) 

where λ is given by Equation (3.7). 
Equation (3.13) indicated that the average stress relative to the yield stress, fy, along 
the whole width, b, from the yield force, be t fy, along be is be t fy /(b t fy) = be / b. For a 
solution with uniform load, n, along the width, b, the average stress relative to the 
yield stress is n/(t fy). 

 e

y

b n
b t f

=  (3.13) 

In Figure 3.6, be/b, cf. Equation (3.12), is shown as a function of λ. 
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Figure 3.6: be/b as a function of λ 

 
The elastic buckling load characterised by n/(t fy), cf. Equation (3.8), is also shown. It 
appears that the plate may carry compressive forces considerably above the elastic 
buckling load. The first to demonstrate this through tests appear to be Schuman and 
Back (1930). 
The third curve plotted in the figure is the semi-empirical expression derived by 
Winter (1947). With the introduced parameter, λ, given by Equation (3.7), it may be 
written as, cf. Equation (1.4), 
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 (3.14) 

Finally, a cut-off at be/b = n/(t fy) = 1 is introduced.  
Winter’s formula is a modification of the original formula introduced by Kármán et 
al. (1932). Kármán et al. stated that the effective width might be determined by 

 1e

y

b t EC C
b b f

−= = λ  (3.15) 

where C is an empirical constant. Based on the tests made by Schuman and Back 
(1930), C = 1.9 was found. Equation (3.15) is also shown in the figure. Regarding 
Equation (3.15), Winter (1947) argued that C should depend on the parameter λ-1. 
Based on his own tests and those made by Sechler (Winter 1947), he found the best fit 
to be 

 11.9 1.09 1.9 1.09
y

t EC
b f

−= − = − λ  (3.16) 

As previously mentioned, this formula has consequently been modified several times. 
Equation (3.14) is the newest modification and it is adopted in EC3 (2006). Equation 
(3.14) corresponds, for k = 4 and ν = 0.30, to 

 11.9 0.42C −= − λ  (3.17) 

Figure 3.6 shows that the present theoretical result closely follows Winter’s semi-
empirical solution. 
 
In order to investigate the sensitiveness of the solution, Equation (3.12), to the 
estimated deflection at maximum load, it is compared with the solution using α = 10 
in Figure 3.7. 
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Figure 3.7: be/b as a function of λ for α = 8, α = 10 and by using von Mises’ yield criterion, 

respectively 
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Choosing α = 10 in Equation (3.1) approximately corresponds to a sinusoidal 
curvature function (α = π2 ≈ 10). For α = 10, the effective width is determined by 

 2 4 25 25 5
4 16

eb
b

− − −= − λ + λ + λ  (3.18) 

where λ is still given by Equation (3.7). 
Equation (3.18) gives a post-buckling strength up to 11 % larger than that obtained by 
Equation (3.12) for the λ-interval shown in Figure 3.7. Hence, the theory seems to be 
relatively insensitive to the estimated deflection at maximum load. 
When von Mises’ yield criterion is applied, mp in Equation (3.10) is simply 
substituted with 2 mp /√3 if uniaxial strain is supposed. In that case also np should be 
increased and be/b then will measure n relative to the increased value of np. Thus it 
turns out that nothing is changed, since be/b is given by, cf. Equation (3.12), 

 2 4 24eb
b

− − −= −λ + λ + λ  (3.19) 

In practise one should calculate on the safe side using the uniaxial yield stress and not 
any increased value, which means that the former solution is applied. 

3.2 Rectangular Plates 
It is a well-known fact that a long rectangular elastic plate subjected to compression in 
the longitudinal direction buckles into a shape of half waves with a length equal to the 
plate width, see Figure 3.8. This result is applied for estimating the post-buckling 
strength. Thus a long plate may be subdivided into a number of square plates where 
the previous yield line patterns may be applied, cf. Section 3.1. The vertical lines 
between the square regions will act as simple supports, since if one square region 
forms a wave downwards, then the adjacent regions will form a wave upwards. 
Therefore, the post-buckling strength or the effective width for a long rectangular 
plate is in general given by Equation (3.12). 
 

 
Figure 3.8: Deflection shape and failure mechanism for long simply supported rectangular plates 

 
Now consider a rectangular plate with a length somewhat larger than the width. In 
Figure 3.9, the width is named b and the length named a. The plate is subjected to 
uniaxial compression, np = t fy, acting on the two strips, bs.  
The failure mechanism has the free parameter, X. The maximum deflection, um, is 
assumed to be given by Equation (3.3). The external work is then for δ = 1 given by 
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and the dissipation 
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Figure 3.9: Failure mechanism for a short rectangular plate 

 
Hence, bs may be determined by 
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The effective width, be (be = 2 bs), is then found to be 

 2 4 2
2

14
2

eb X a
b b

− − −⎛ ⎞= −λ + λ + + λ⎜ ⎟
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 (3.23) 

where λ is given by Equation (3.7). Furthermore, in the above equations, t is the 
thickness, E is Young’s modulus, fy the yield stress, mp is the plastic yield moment per 
unit length given by Equation (2.1), and np = t fy is the load-carrying capacity in pure 
compression or tension.  
Assuming X = ½ b, the effective width is determined by 

 2 4 22 1eb a
b b

− − −⎛ ⎞= −λ + λ + + λ⎜ ⎟
⎝ ⎠

 (3.24) 

When a is larger than, or equal to, b, it appears that Equation (3.24) gives the smallest 
post-buckling strength if a is equal to b. Hence in practice, the yield line pattern for a 
square plate may be considered as the optimal solution, rather than the pattern shown 
in Figure 3.9. 
Special attention is required for plates where a is smaller than b, but they will not be 
treated here, although the theory may also easily be applied to this case. Solutions for 
plates where a is smaller than b are treated in PART IV, Section 4.1. 
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3.3 Comparison with Experimental Results 
Schuman and Back (1930) conducted experiments on individual rectangular flat plates 
of four different metals, i.e. Duralumin, Stainless Iron, Monel Metal and Nickel. 
Equation (3.12) is compared to these tests in Figure 3.10. The figure also shows the 
elastic solution, cf. Equation (3.8), Winter’s solution cf. Equation (3.14) and the 
solution by Kármán et al. cf. Equation (3.15). From the figure it appears that all 
formulae, except the elastic solution, overestimate the post-buckling strength, in some 
cases considerably. However, it is generally accepted that these experiments are 
unreliable because of the dubious V-groove supports. Hence, these experiments are 
not treated further here. 
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Figure 3.10: be/b as a function of λ, theories compared with tests by Schuman and Back 

 
In Figure 3.11, the theories are compared with more reliable experiments. 
The U-beams and I-beams tests made by Winter (1947) both consisted of specimens 
made by bolting or welding U-sections together. Winter also used the tests made by 
Sechler (Winter 1947) to verify his method. The specimens in these tests were single 
plates, unconnected to any adjacent elements. These tests have been shown in Figure 
3.11. Furthermore, newer tests by Moxham (1971) are included in the figure. He 
conducted three test series, denoted Welded, Unwelded and Short in the following. 
Also, in these tests, all specimens were separate plates. He developed a new test rig, 
where he could establish the simple support conditions in a reliable way. In the 
Welded series, the longitudinal edges were heat treated in order to induce residual 
stresses. The Short series was conducted on specimens where the loaded edges were 
slightly longer than the unloaded edges (length-to-width ratio: 0.875). The theoretical 
effective width of the short specimens is calculated by Equations (4.9) and (4.10) in 
PART IV. The specimens in the Welded and Unwelded series all had a length-to-width 
ratio of 4.0. 
The data for all experiments may be found in Appendix I. 
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Figure 3.11: be/b as a function of λ, theories and tests 
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Figure 3.12: Theory versus tests 

 
The agreement with all the tests seems to be very good. In Figure 3.12, the correlation 
between the present theory and tests is shown in a more illustrative way. For all tests, 
a mean value of 1.088 and a standard deviation of 16.9 % are obtained. For the 
separate test series, the following results are obtained: 

• Sechler: Mean 1.202, standard deviation 17.9 %. 
• Winter, U-beams: Mean 1.098, standard deviation 18.9 %. 
• Winter, I-beams: Mean 1.019, standard deviation 4.6 %. 
• Moxham, Welded: Mean 1.097, standard deviation 12.2 %. 
• Moxham, Unwelded: Mean 0.931, standard deviation 5.8 %. 
• Moxham, Short: Mean 0.946, standard deviation 6.4 %. 

It may be seen that the tests by Sechler deviate somewhat from the theory, especially 
for be/b close to unity. One explanation for this might be initial imperfections, see 
Chapter 5. Moreover, he may have applied the same doubtful V-groove supports as 
Schuman and Back (1930). Without Sechler’s tests, a mean value of 1.045 and a 
standard deviation of 14.4 % are obtained. 
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4 PLATES WITH ONE FREE EDGE 
The compressive flange and the transverse web stiffeners in an I-shaped steel plate 
girder may be considered to be long, rectangular plates simply supported along three 
of the edges, and free along one longitudinal edge. Determining the post-buckling 
strength of such plates is presented below. 

4.1 Rectangular Plates 
The considered plate with length a, width b and thickness t is subjected to uniaxial 
compression, np = t fy, along an effective width, be, near the supported longitudinal 
edge. 
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Figure 4.1: Failure mechanism for a rectangular plate with one free edge 

 
The best failure mechanism, with free parameter, X, is shown in Figure 4.1. It is easily 
verifiable that plates with length, a, in the interval, 2 X ≤ a ≤ ∞, will have the same 
post-buckling strength. Plates with a < 2 X require another failure mechanism, which 
will be treated in Section 4.3. 
The two regions with area, X b, will approximately be subjected to pure torsion. Thus 
the principal directions are under 45° with the edges, and the principal curvatures are 
equal, but with opposite sign. In the principal directions, the curvatures are estimated 
to be, in absolute value, the same as in Equation (3.2). Then the torsional curvature, 
κxy, will also be κxy = 2 εy / t (εy = fy/E is the yield strain and t the thickness), which 
means that the deflection, um, at the end point of the yield line in the free edge will be 
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For the mechanism shown in Figure 4.1, the external work is for δ = 1 given by 
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and the dissipation is 
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where mp is given by Equation (2.1). Hence the effective width, be, may be 
determined by 
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 (4.4) 

The non-dimensional value, be/b, is then given by 
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Figure 4.2: be/b as a function of λ for different values of X 

 
Equation (4.5) is shown for different values of X in Figure 4.2. A cut-off at be/b = 1 
must again be introduced. With this cut-off, it is seen that almost the same load-
carrying capacity is obtained for X = b, X = 4/5 b and X = 3/4 b; hence X = b is used in 
the following calculations. 
 
The effective width for X equal to b is found to be 

 2 4 21 1 1
8 64 2

eb
b

− − −= − λ + λ + λ  (4.6) 

which is shown in Figure 4.3. The figure also shows the elastic buckling curve given 
by Equation (3.8) with k = 0.43, cf. (Timoshenko and Gere 1961). Again, Poisson’s 
ratio ν = 0.30 is assumed. The third curve shown is Winter’s formula in the form 
given in EC3 (2006), which may be written as, cf. Equation (1.6), 
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Here, k = 0.43 and ν = 0.30 are again used. It is found that the theory gives a slightly 
larger post-buckling strength than Winter’s solution. 
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Figure 4.3: be/b as a function of λ 

 

4.2 Comparison with Experimental Results 
Figure 4.4 shows four test series compared with Equation (4.6). The figure also shows 
the elastic solution cf. Equation (3.8) and Winter’s solution cf. Equation (4.7). 
In the test series Plates (Bambach and Rasmussen 2004), the specimens were single 
plates, unconnected to any adjacent elements. These authors applied the test rig 
suggested by Moxham (1971) which enabled them to establish simple support 
conditions in a reliable way.  
The series Stub-column, Beams (Kalyanaraman et al. 1977) and I-beams (Winter 
1947) all consisted of specimens made by bolting or welding U-sections together. The 
data for all experiments may be found in Appendix J. 
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Figure 4.4: be/b as a function of λ, theories and tests 
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Figure 4.5: Theory versus tests 

 
In Figure 4.5, the correlation between theory and test is shown. For all tests, a mean 
value of 0.877 and a standard deviation of 15.7 % are obtained. For the separate test 
series, the following results are obtained: 

• Bambach & Rasmussen, Plates: Mean 0.981, standard deviation 8.5 %. 
• Kalyanaraman et al., Stub-column: Mean 0.717, standard deviation 6.2 %. 
• Kalyanaraman et al., Beams: Mean 0.790, standard deviation 12.1 %. 
• Winter, I-beams: Mean 0.925, standard deviation 16.7 %. 

The theory seems to underestimate the post-buckling strength for the tests Stub-
column and Beams. Kalyanaraman et al. (1977) stated that the mean value of the 
elastic buckling coefficient was measured to be around k = 0.85. This number shows 
that the longitudinal edge cannot have been simply supported, since for a plate with a 
simply supported longitudinal edge k = 0.43. For a fixed edge k = 1.28 according to 
the elastic theory, cf. (Timoshenko & Gere 1961). The test series I-beams is defected 
by a large scatter. Winter (1947) gives several explanations for the large scatter. On 
the other hand, the test series Plates, with the most reliably established boundary 
conditions, shows a very good agreement with the theory. 

4.3 Square Plates 
Square plates in uniaxial compression with one free edge require another failure 
mechanism than the one shown in Figure 4.1 valid for rectangular plates. 
The optimal mechanism for a square plate is drawn in Figure 4.6. It has the free 
parameter, X, which is set at X = ½ b. The plate is again subjected to uniaxial 
compression, np = t fy, along an effective width, be, close to the support. 
In this case, two work equations must be derived; one corresponding to be < X and one 
corresponding to be > X, respectively. 
The deflection at maximum load, um, is taken as the deflection of a beam in the 
direction of the uniaxial compression with the curvature given by Equation (3.2). 
Thus 
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Figure 4.6: Failure mechanism for a square plate with one free edge 

 
The work equations show that the effective width is determined by: 
 
For be/b ≤ X/b = ½: 
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For be/b ≥ X/b = ½: 
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In the above equations, λ is given by Equation (3.7), b is the total width, t the 
thickness, E Young’s modulus and fy is the yield stress.  
 
Equations (4.10) and (4.12) are shown in Figure 4.7 together with the elastic buckling 
solution, Equation (3.8), and Winter’s solution, Equation (4.7). 
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Figure 4.7: be/b as a function of λ 

 
Here, the buckling coefficient k = 1.43 is applied, cf. (Timoshenko and Gere 1961), 
and Poisson’s ratio is taken to be ν = 0.30. Again, the theoretical solution gives almost 
the same result as Winter’s semi-empirical solution. Unfortunately, no tests have been 
found in the literature to verify the theory. This however is not particularly important, 
since square plates with one free edge are seldom used in practice. 
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5 IMPERFECTIONS 
Approximately imperfections may be taken into account by adding an initial 
deflection to the deflection used in the above calculations. Thus it is tacitly assumed 
that the imperfection has the same form as the deflected shape used before. 
When considering rectangular plates supported along all edges, the deflection at 
maximum load is determined by, cf. Equation (3.3), 
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where ui is the initial deflection, fy the yield stress, E Young’s modulus, b the total 
width and t is the thickness. Solving the work equation as shown in Section 3.1, 
leaves the result  

 

2 4 2 2

2

4 4 1

4 1

i

e

i

u
tb

ub
t

− − − −

−

⎛ ⎞−λ + λ + λ λ +⎜ ⎟
⎝ ⎠=

λ +
 (5.2) 

For an imperfection proportional to the thickness, the term, ui/t, will be a constant. 
Another way of taking imperfections and other unknown parameters into account is 
simply to introduce an empirical coefficient, µ, in the deflection formula. The 
deflection at maximum load may then be written 
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The effective width is found to be 
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 (5.4) 

Imperfections may explain the large deviations in the tests by Sechler (Winter 1947), 
both from Winter’s formula and the present theoretical estimate. 
In Figure 3.12, it was shown that the tests by Sechler coincided closely with the 
theoretical estimate for small values of be/b, i.e. large values of λ, while for low 
values of λ, the deviation was large. For the tests by Sechler shown in Figure 3.12, the 
mean value is 1.202. By requiring the mean value 1.0 and by applying Equation (5.3) 
to find the imperfection coefficient, µ = 1.52 is found. The correlation between the 
tests and the theory, cf. Equation (5.4), with µ = 1.52 is shown in Figure 5.1. In this 
way, a smaller deviation is achieved for low values of λ, but the scatter is still large. 
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Figure 5.1: Theory versus tests for µ = 1.52 

 
Unfortunately, the report by Sechler (1933) referred to by Winter has not yet been 
available to the author. From Winter’s reference it is only possible to deduce the value 
of λ, while the thickness of the specimens remains unknown. By applying Equation 
(5.2) and require the mean value 1.0, ui/t = 1.94 is found. The correlation between the 
tests and the theory with ui/t = 1.94, cf. Equation (5.2), is shown in Figure 5.2. 
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Figure 5.2: Theory versus tests for ui/t = 1.94 

 
It appears that the effect is small for large values of λ, and large for low values of λ, 
which is precisely the requirement for removing the discrepancy. However, the effect 
on the result for low values of λ seems to be too great. Thus by applying Equation 
(3.12), the theory overestimates the load-carrying capacity for low values of λ, while 
the opposite is achieved by applying Equation (5.2). Hence it is not possible to verify 
Equation (5.2) by these tests. 
Apart from initial imperfections, there may of course be other explanations for the 
large deviations found in the Sechler tests. In tests, it is very difficult to correctly 
establish the ideal support conditions. The supports require the four edges of the 
initial mid-plane of the plate to remain in the same plane at all times. A solution was 
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suggested by Schuman and Back (1930) for the case of single plate specimens. In 
their tests, the specimens were supported by V-grooves, which cause any initial 
curvature of the edges to increase, which may again cause failure at a lower load than 
otherwise expected. The effect will be relatively larger for the thicker specimens. 
Therefore problems related to V-grooves might also explain the deviations in the 
Sechler tests. However, this is quite hypothetical, since at the moment it is not known 
if this kind of support was even used in the tests. 
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6 OTHER APPLICATIONS OF THE THEORY 
The simple theory developed above may be extended to apply to a large number of 
practically important cases that are not treated here. 
Firstly, an external lateral load may be taken into account by simply adding the work 
done by the lateral load to the external work, calculated as above. Further, biaxial 
compressive loads may be treated in the same manner without difficulties. Stiffeners 
and the compression flange in plate girders may be calculated by formulae given 
above. Fixed supports may be treated by adding the contribution from the negative 
yield line at the fixed supports to the dissipation. However, the deflection at maximum 
load must also be changed, so that it corresponds to the fixed boundary conditions. 
Finally, it is probably also possible to calculate in-plane bending loads. However, new 
mechanisms have to be invented in this case. 
 
To further illustrate the case of fixed boundary conditions and lateral load, the square 
plate in Figure 3.5 may be considered again. If the two unloaded edges are assumed 
clamped, and the loaded edges still simply supported, the dissipation changes to, cf. 
Equation (3.10), 
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The external work is still given by Equation (3.9), i.e. 
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where the deflection at maximum load, um, must be estimated so it corresponds to the 
fixed boundary conditions. 
 
Besides the uniaxial compression, if the plate is also subjected to a load, p, per unit 
area over the entire area of the plate, then the contribution to the external work from 
the lateral load is 

 21
3eW pb=  (6.3) 

which is added to the contribution in Equation (6.2). 
 
Equations (6.1) – (6.3) are all shown for a displacement increment, δ, equal to unity. 
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7 CONCLUSION 
It is shown that extremely simple estimates of the post-buckling strength of plates 
with in-plane loading may be obtained by using plastic solutions for the deflected 
shape. This shape must be known before the calculation can be carried out. It seems 
that useful estimates of the deflected shape may be found using simple formulae from 
beam theory and plate theory. 
Initially, the calculation procedure is illustrated by simple solutions for columns. It 
seems that the theory is able to treat columns as well. However, the emphasis in this 
part is attached to plates, so columns are left for future work. 
Solutions for plates are derived for the two practically important cases: Plates 
supported along all edges and plates with one free edge. In both cases, the theory is 
applied on both square and rectangular plates. 
Furthermore, it is shown how imperfections may be taken into account. Finally, it is 
shortly explained how the theory may be extended to a large number of other 
practically important cases. 
 
The results have been compared with the well-known formulae of Winter and with 
tests. The agreement in both cases is very good. 
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9 NOTATION 
 
a plate length 
b plate width 
be total effective width 
bs width of effective strip 
fy yield stress 
k elastic buckling coefficient 
m bending capacity of a yield line per unit length; fictitious moment 
mb bending moment per unit length in a yield line 
mp plastic yield moments per unit length 
n normal force per unit length 
np load-carrying capacity per unit length in pure compression or tension 
mpx, mpy plastic yield moment in the x-direction and the y-direction, respectively 
p lateral load per unit area 
t thickness 
u, uA, uB deflection; deflection at point A and B, respectively 
ui deflection from imperfections 
um deflection at maximum load 
x, y coordinates in a Cartesian x,y -system of coordinates 
A cross-sectional area 
C empirical coefficient 
E Young’s modulus 
L length  
M total moment 
Mp plastic yield moment 
N normal force 
Ncr critical buckling load 
Np load-carrying capacity in pure compression or tension 
We, Wi external work and dissipation, respectively 
X, Y free optimisation parameters 
α parameter (shape of curvature function); imperfection factor 
δ displacement increment 
εy yield strain 
κ, κxy curvature and torsional curvature, respectively 
λ non-dimensional parameter 
λr non-dimensional slenderness ratio according to EC3 
µ empirical coefficient 
ν Poisson’s ratio 
σ normal stress 
σe edge stress 
ψ relative deflection increment 
∆ difference  
Φ EC3 parameter for calculation of columns 
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PATCH LOADING ON PLATE GIRDERS 
-  A Simplified Theoretical Approach 

 

1 INTRODUCTION 
When designing a plate girder according to the plastic tension field method, cf. PART 
II, it is assumed that transverse web stiffeners are added where concentrated loads act. 
However, this is not always possible to fulfil in practice, as the plate girder may, for 
instance, be subjected to wheel loads, loads from purlins and roller loads during 
construction. It is therefore necessary to check the unstiffened web, under the edge 
compressive loading, to ensure no localised failure will occur. In this part, a 
simplified method based on the theory of plasticity is presented. 
The type of loading under consideration is illustrated in Figure 1.1, where a part of a 
plate girder is subjected to a uniform load along the length, c, on top of the flange. 
The loaded length, c, may vary between being very small or extended along the entire 
length of the web panel, b. This kind of loading on plate girders is popularly known as 
patch loading. 
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bf
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tf
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Figure 1.1: Plate girder subjected to patch loading 

 
Patch loading on plate girders has been investigated by many researchers over the past 
fifty years. Theoretical investigators have concentrated on two main aspects of the 
problem. First, rigorous analytical and numerical solutions have been obtained for the 
elastic critical loads of web panels, with assumed idealised boundary conditions, e.g 
(Zetlin 1955). These kinds of solutions show little or no correlation with experimental 
failure loads. This is due to the post-buckle reserve of strength possessed by restrained 
thin panels and interaction between the web and the flanges cf. (Roberts 1983). 
However, elastic critical loads may still have significance in design for the 
serviceability limit-state. 
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Second, simple empirical and semi-empirical methods for predicting the failure load 
have been proposed by several authors, differing only slightly in form. Some of these 
semi-empirical formulae are summarised in the following section. 
 
Due to the complex material and geometrically non-linear nature of the problem, it 
has never been possible to derive a fully consistent theory. The present method is 
derived on the basis of the theory of plasticity without any empirical modification, but 
some assumptions that are difficult to justify are made in order to keep the theory as 
simple as possible, and to allow application of the theory in practical design projects. 
The general assumptions are described in Chapter 2. In Chapters 3 and 4, the theory is 
derived in cases where the patch load is the only load applied on the girder. 
If the compression flange in a plate girder is subjected to a large normal force, and if 
the stiffness of the web plate is small, the normal force may lead to vertical buckling 
of the compression flange in the plane of the web. This phenomenon is popularly 
termed flange induced buckling, and is touched upon in Chapter 5.  
In Chapter 6 it is shown how one would take the uniaxial tension stresses in the web 
into account. These stresses occur in the web when the girder is designed according to 
the plastic tension field method.  

1.1 Other Methods 
At the beginning of the last century, Sommerfield (1906), Timoshenko (1910) and 
Timoshenko and Gere (1961) were the first to obtain approximate solutions for the 
elastic critical load of a plate subjected to equal and opposite concentrated forces 
applied in the midpoint of the two sides. Khan and Walker (1972) obtained solutions 
for the same problem, but with the load distributed along a finite length, c. Zetlin 
(1955) provided a more detailed study of the problem using energy methods. White 
and Cottingham (1962) obtained solutions for clamped boundaries. The elastic 
solutions will not be treated here. A detailed summary of the elastic solutions is found 
in (Roberts 1983). 
 
Granholm (1976) carried out a number of tests, and based on these tests he proposed 
that the ultimate load-carrying capacity may be predicted using the following simple 
formula: 

 29000u wP t=  (1.1) 

where the web thickness, tw, is in millimetres and Pu is in Newton.  
 
Bergfelt (1979) investigated a simple model based on the analogy of a beam on an 
elastic foundation, the flange being the beam and the web being the elastic foundation. 
The difficulty with this approach was in determining the equivalent spring stiffness of 
the web. Bergfelt also recognised the unsatisfactory nature of Equation (1.1) being 
dimensionally dependent, and proposed the alternative empirical formula 

 2 24.5 10u wP E t−= ⋅  (1.2) 

where E is Young’s modulus in mega Pascal.  
 



PART IV 

 157

Several researchers have conducted tests to investigate the complex problem, e.g. 
Bergfelt and Hovik (1968, 1970); Bergfelt (1979); Skaloud and Novak (1975); 
Drdacky and Novotny (1977); Roberts and Rockey (1979) and Roberts (1983). The 
majority of the available test data has been summarised by Roberts and Rockey 
(1979). The above-mentioned tests are also used to verify the present theory, see 
Sections 3.3 and 4.3 respectively. 
Each of the test series was followed by a new empirical formula, proposed by the 
respective author. Some of the authors have proposed several formulae. Only the 
proposal by Roberts and Rockey (1979) will be dealt with further here. They 
developed a semi-empirical method based partly on the upper-bound theorem of the 
theory of plasticity. The failure mechanism is shown in Figure 1.2. Here four plastic 
hinges form in the loaded flange accompanied by yield lines in the web. An estimate 
of the deflection of the flange just prior to collapse was made using elastic theory. By 
deriving the work equation, the length, β, was found by optimisation. The length, α, 
must be determined empirically, and in the latest version of the method, cf. (Roberts 
1983), it was simply taken that α = 25 tw, tw still being the web thickness. 
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Figure 1.2: Failure mechanism according to Roberts and Rockey 

 
Finally, the following two formulae were proposed: 

 
1.5

2 30.5 1f w
u w yw

w f

t tcP t E f
t d t

⎛ ⎞⎛ ⎞⎜ ⎟= + ⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 (1.3) 

 22= +u f f yf yw w yw wP b t f f t f t c  (1.4) 

Here, t is the thickness, b the width, fy the yield stress with indexes f for flange and w 
for web. E is Young’s modulus, d the girder depth and c is the length of the patch 
load. 
Equation (1.3) is derived from the failure mechanism in Figure 1.2. This kind of 
failure is popularly termed web crippling, and the formula is adopted in EC3 (1993). 
The formula has been changed completely in the newest edition of EC3 (2006). The 
new formula leads to a very cumbersome calculation procedure. A description of the 
new EC3 rules may be found in (Johansson et al. 2001). 
Equation (1.4) is based on failure by initiation of yielding in the web. 
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2 ASSUMPTIONS 
The semi-empirical formula proposed by Robert and Rockey (1979), cf. Equation 
(1.3), is not satisfactory from the author’s point of view. Firstly, the failure 
mechanism, cf. Figure 1.2, is not fully geometrically possible. The mechanism may be 
made geometrically possible if extra yield lines are added, cf. the dashed lines shown 
in the figure. Second, the work equation is derived in an uncertain way, especially 
with regards to the determination of the out-of-plane deflection of the web. However, 
the most important factor is that the method assumes that all failures induced by patch 
loading tend to be very localised, only involving a very small part of the web plate. 
This is certainly not always observed in tests. In several of the experiments found in 
the literature, the whole web plate seems to buckle, and the web crippling 
phenomenon tends to occur after the maximum load is reached. This is illustrated in 
Figure 2.1, where the contour lines of the web plate for specimen A21, Bergfelt’s tests 
(Bergfelt 1979), are shown before maximum load (64 kN), at maximum load (84 kN), 
and after maximum load (82 kN). The figure also shows the lateral web deflection in 
the section under the loading point. 
 

 

Figure 2.1: Contour lines and lateral deflection of the web plate for specimen A211 
 
In Figure 2.1, it is seen that the whole web plate is active. At maximum load, the 
deflection of the midpoint of the plate reaches -19 mm, and near the patch load +4 
mm. After the maximum load is reached, the deflection near the patch load becomes 
twice as large, but the deflection in the middle of the web plate stays the same. 
 
In the present theory, it is therefore assumed that the whole web panel is active. When 
the buckling mechanism develops, a redistribution of the stresses occurs. It is assumed 
that the true stress field is simplified using an effective area subjected to the yield 

                                                 
1 The figure is taken from (Bergfelt 1979). 
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stress of the web material. This is the same approach as applied in PART III. Thus the 
stresses in the web concentrate in strips near the transverse web stiffeners. The post-
buckling strength is calculated using the same assumptions as described in Chapter 2 
in PART III. 
Near the flange, the stresses in the web are assumed to by uniformly distributed. In 
order to transform the concentrated stresses in the strips to uniform stresses near the 
flange, an internal beam is imagined. This internal beam consists of the flange and the 
top part of the web plate. 
The web plate, the internal beam and the flange are considered separately. The post-
buckling strength of the web is given by the stresses in the strips. Thereafter, the 
stresses are uniformly distributed under the flange and utilised in the flange 
mechanism as an upwards, uniform reaction. 
As a conservative assumption, all boundaries are considered to be simply supported, 
i.e. the boundaries at the connections between web and stiffeners and between web 
and flange, respectively. 
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3 PLATE GIRDERS WITH SQUARE WEB PANELS 
First, the simplest case is treated, where the loaded web panel of the girder is square, 
see Figure 3.1. 
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Figure 3.1: Plate girder with a square web panel 

3.1 The Web Mechanism 
The post-buckling strength of the web is determined by calculating the effective 
width, be, done by applying the failure mechanism shown in Figure 3.2. The two strips 
with width, bs, are subjected to a uniform load equal to the yield stress of the web, fyw, 
multiplied by the thickness, tw. Note that be = 2 bs. 
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Figure 3.2: Simply supported square plate subjected to uniaxial compression along strips of width bs 

 
The solution for a square plate simply supported along all edges is, cf. Equation (3.12) 
in PART III, 

 2 4 24− − −= −λ + λ + λeb
b

 (3.1) 

Here be/b ≤ 1 is required, and λ is given by 

 λ = yw

w

fb
t E

 (3.2) 
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The force sustained by the web equals be fyw tw, and is utilised in the flange mechanism 
as an upwards, uniform load, n, see Section 3.2. Hence the internal beam, consisting 
of the compression flange and a part of the web plate, x, see Figure 3.3, must be able 
to transfer the uniform load, n, to the two reactions, ½ be fyw tw. It is assumed that the 
internal beam is simply supported. In reality the supports will act as fixed supports in 
the presence of adjacent web panels. Here, simple supports are applied in general as a 
conservative assumption. 
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Figure 3.3: Internal beam simply supported by two strips 

 
In order to keep the theory as simple as possible, the compressive stresses in the beam 
are assumed concentrated in the compression flange, and the tensile stresses are 
assumed uniformly distributed along the part, x, of the web plate. The plastic yield 
moment of the internal beam, Mp, then equals: 

 21
2p w ywM x t f=  (3.3) 

Equilibrium implies that, cf. Figure 3.3, 

 2 21 11
8 2

⎛ ⎞− =⎜ ⎟
⎝ ⎠

e
w yw

bnb x t f
b

 (3.4) 

Solving for x renders: 

 21
2

= −e ex b b b  (3.5) 

If the strength of the flange is small, there might be stresses in the flange larger than 
the yield stress of the flange, fyf. Hence a part of the compression must be carried by 
the web or x, and thereby, be must be reduced. In the latter case: 

 = f f yf
f

w yw

b t f
x

t f
 (3.6) 

Here, t is thickness, b the width, fy the yield stress with indexes f for flange and w for 
web 
 
Requiring x equal to xf, and solving for be, leads to 
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 2 21 1 16
2 2

= − −e fb b b x  (3.7) 

If the flange is thin, buckling of the flange might also be a problem, hence the width, 
bf, in Equation (3.6) must be replaced by the effective width of the flange determined 
by Equation (4.6) in PART III. 
If the plastic yield moment of the internal beam is calculated by including a part of the 
web in the compression zone, the value of x will only differ slightly from the value 
determined by applying Equation (3.3). 

3.2 The Flange Mechanism 
In the failure mechanism for the flange of the girder, it is assumed that four plastic 
hinges will form. The patch load, p, acts on the flange along the length, c. At the two 
ends of this length, inner plastic hinges will develop. At a distance, β, away from the 
load, outer plastic hinges will develop in both ends, see Figure 3.4. 
 

n

p

cβ β

δ

Inner Plastic Hinge

 
Figure 3.4: Flange mechanism with four plastic yield hinges 

 
Equating the external work and the dissipation for a displacement increment δ = 1, the 
work equation is 

 ( ) 4 pfM
c p n c− + β =

β
 (3.8) 

where n is the upwards, uniform load corresponding to the post-buckling strength of 
the web, and Mpf is the plastic yield moment of the flange given by 

 21
4pf f f yfM t b f=  (3.9) 

where tf, bf and fyf are the thickness, width and yield stress of the flange, respectively. 
The ultimate load-carrying capacity, Pu, is then determined as 

 ( )2 f
u f yf

b
P c p t f n c= = + + β

β
 (3.10) 

If the uniformly distributed load, n, is constant and independent of the length, β, 
minimising Pu with regard to β gives 

 
2

f f yfb t f
n

β =  (3.11) 
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Inserting Equation (3.11) into Equation (3.10), and utilising n = tw fyw, the same result 
as that of Roberts, based on failure by initiation of yielding in the web, is found, cf. 
Equation (1.4). 
However, when the post-buckling strength of the web plate is determined by Equation 
(3.1), n will depend on β, i.e.  

 
2

w yw et f b
n

c
=

+ β
 (3.12) 

Inserting this into Equation (3.10) leads to 

 2

2
f

u f yf w yw e
b cP t f t f b

c
+ β

= +
β + β

 (3.13) 

Minimising Pu with regard to β shows that a minimum for Pu is found for β → ∞, 
hence the two outer plastic hinges will always form at the nearest web stiffeners, i.e. 

 ( )1
2

β = −b c  (3.14) 

By inserting β according to Equation (3.14) into Equation (3.13), the load-carrying 
capacity is found to be 

 ( )2 12
2

= + +
−
f e

u f yf w yw
b bP t f t f b c

b c b
 (3.15) 

To sum up the notations, b is the web panel width (distance between two adjacent 
stiffeners), c the patch load length, be the calculated effective width of the web plate, 
by Equation (3.1) or Equation (3.7), tf and tw the flange and web thickness, 
respectively, bf the flange width, and finally fyf and fyw are the yield stress of the flange 
and web material, respectively. 
 
For a mechanism where only one inner plastic hinge develops in the midpoint of the 
length, c, the load-carrying capacity is given by 

 ( )2
2

12
2

+
= + +e

u f yf f w yw
bb cP t f b t f b c
bb

 (3.16) 

Whether one or two inner hinges will form in the flange depend mainly on the 
stiffness of the flange and a possible loading plate. For large stiffnesses, one inner 
hinge will form, otherwise two inner hinges will form. 
In all the tests presented in Sections 3.3 and 4.3, the length, c, along which the load is 
transferred, is relatively small, thus there is only a minor influence on the load-
carrying capacity regardless of whether one or two inner hinges form. 
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3.3 Comparison with Experimental Results 
The experimental results used to verify the theories for plate girders with square web 
panels are all carried out on short specimens of the form shown in Figure 3.5. In all 
tests, b is equal to d. 
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Figure 3.5: Typical short span girder 

 
 
 

 Girder No. of 
test 

b 
[mm] 

d 
[mm] 

tw 
[mm] 

bf 
[mm] 

tf 
[mm] 

c 
[mm] 

fyw 
[N/mm2] 

fyf 
[N/mm2] 

TG1 3 1000 1000 2.50 160 5.50 100 298 342 
TG2 2 1000 1000 2.50 200 10.09 100 299 253 
TG3 1 1000 1000 2.50 200 16.24 100 251 266 
TG4 1 1000 1000 2.50 200 20.17 100 254 231 Sk

al
ou

d 
&

 
N

ov
ak

 

TG5 2 1000 1000 2.50 250 30.50 100 289 261 
TTG1 1 300 300 3.97 49.4 10.00 30 285 269 
TTG2 1 300 300 4.00 50.5 9.90 30 270 258 
TTG3 1 300 300 4.01 49.4 15.90 30 281 265 
TTG4 1 450 450 3.97 49.3 10.00 45 257 267 
TTG6 1 450 450 3.96 49.6 15.80 45 249 265 
TTG7 1 600 600 3.57 50.5 10.00 60 257 274 
TTG8 1 600 600 3.63 49.5 10.10 60 282 279 
TTG9 1 600 600 3.67 49.0 16.00 60 306 282 
TTG1’ 1 300 300 3.97 49.4 10.00 45 285 269 
TTG2’ 1 300 300 4.00 50.5 9.90 60 270 258 
TTG3’ 1 300 300 4.01 49.4 15.90 30 281 265 
TTG4’ 1 450 450 3.97 49.3 10.00 60 257 267 
TTG6’ 1 450 450 3.96 49.6 15.80 45 249 265 
TTG7’ 1 600 600 3.57 50.5 10.00 30 257 274 
TTG8’ 1 600 600 3.63 49.5 10.10 45 282 279 

D
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 &
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TTG9’ 1 600 600 3.67 49.0 16.00 60 306 282 
R1 1 800 800 2.05 300 15.50 40 266 295 
R3 1 800 800 2.00 120 5.07 40 266 285 
B8 1 800 800 2.07 120 5.03 40 285 290 
B41 1 400 400 2.07 120 5.03 40 285 290 B

er
gf

el
t 

B83 1 800 800 2.90 250 12.35 40 328 298 
E10-1/1 1 500 500 9,95 150 10.05 1) 21.1 222 240 Roberts 
E10-2/1 1 500 500 9,95 150 10.05 100 247 250 

1) c = 2 tf is applied. 

Table 3.1: Dimensions and material properties for the test specimens with square web panels 
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In Table 3.1, the dimensions and the yield stresses of the flange and web material 
respectively, are summarised. TG1 – TG5 are conducted by Skaloud and Novak 
(1975), TTG1 – TTG9’ by Drdacky and Novotny (1977), and R1 – B83 are conducted 
by Bergfelt (1979). When no specific values for the yield stresses of the material used 
in the girders have been quoted by the researchers, they have been inferred from 
similar specimens for which yield stresses have been quoted, cf. (Roberts and Rockey 
1979), where these tests also are summarised.  
The specimens in these experiments have relatively thin web plates, i.e. tw = 2.00 – 
4.01 mm. Specimens E10-1/1 and E10-2/1 were tested by Roberts (1983), and both 
had a web plate thickness of tw = 9.95 mm. For E10-1/1, the patch load length c = 0 is 
stated, but in the calculations, c = 2 tf is used, where tf is the flange thickness, 
assuming that the knife-edge load on the top of the flange will spread out under an 
angle of 45° through the flange. 
Table 3.2 shows the predicted load-carrying capacity, Pu, determined by Equation 
(3.15), together with the load-carrying capacity, Pexp, obtained by the experiments. λ 
and be/b are determined by Equations (3.2) and (3.1) respectively. The value of x is 
given by the smaller value found from Equations (3.5) and (3.6). The effective width, 
be, is determined by either Equation (3.1) multiplied by the total width, b, or by 
Equation (3.7), depending on whether the value x or xf are valid. The upwards, 
uniform load, n, applied on the flange, is given by Equation (3.12), where c + 2 β = b. 
 

 Girder λ 
[ ] 

be/b 
[ ] 

x 
[mm] 

x/d 
[ ] 

be 
[mm] 

n 
[N/mm] 

Pu 
[kN] 

Pexp 
[kN] 

Pu/Pexp 
[ ] 

TG1 15.07 0.128 167 0.17 128 95.7 56.29 51.50 1.093 
TG2 15.09 0.128 167 0.17 128 95.8 64.15 63.76 1.006 
TG3 13.83 0.140 173 0.17 139 87.5 79.32 68.67 1.155 
TG4 13.91 0.139 173 0.17 139 88.1 90.21 88.29 1.022 Sk

al
ou

d 
&

 
N

ov
ak

 

TG5 14.84 0.130 168 0.17 130 94.2 186.67 179.00 1.043 
TTG1 2.78 0.601 73 0.24 180 679.9 122.02 130.00 0.939 
TTG2 2.69 0.618 73 0.24 185 667.6 119.62 147.50 0.811 
TTG3 2.74 0.609 73 0.24 183 686.7 137.82 169.50 0.813 
TTG4 3.97 0.445 112 0.25 200 453.8 118.81 120.00 0.990 
TTG6 3.91 0.450 112 0.25 202 443.7 126.02 150.00 0.840 
TTG7 5.88 0.313 139 0.23 187 286.7 99.73 140.00 0.712 
TTG8 6.06 0.304 2) 136 0.23 175 297.8 103.51 148.00 0.699 
TTG9 6.24 0.296 137 0.23 177 332.2 122.73 150.00 0.818 
TTG1’ 2.78 0.601 73 0.24 180 679.9 127.70 150.00 0.851 
TTG2’ 2.69 0.618 73 0.24 185 667.6 130.81 146.00 0.896 
TTG3’ 2.74 0.609 73 0.24 183 686.7 137.82 150.00 0.919 
TTG4’ 3.97 0.445 112 0.25 200 453.8 122.47 136.00 0.900 
TTG6’ 3.91 0.450 112 0.25 202 443.7 126.02 160.00 0.788 
TTG7’ 5.88 0.313 139 0.23 187 286.7 95.16 119.00 0.800 
TTG8’ 6.06 0.304 2) 136 0.23 175 297.8 101.13 138.00 0.733 
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TTG9’ 6.24 0.296 137 0.23 177 332.2 122.73 146.00 0.841 
R1 13.89 0.139 138 0.17 111 75.7 87.77 84.50 1.039 
R3 14.24 0.136 137 0.17 109 72.2 32.62 38.00 0.858 
B8 14.24 0.136 137 0.17 109 80.0 35.92 48.00 0.748 
B41 7.12 0.262 88 0.22 105 154.5 38.88 53.00 0.734 B

er
gf

el
t 

B83 10.90 0.176 152 0.19 140 166.7 99.91 121.00 0.826 
E10-1/1 1.63 0.906 73 0.15 453 2000.2 535.31 716.00 0.748 Roberts 
E10-2/1 1.72 0.872 84 0.17 436 2142.2 661.61 787.00 0.841 

2) Yielding in the flange occurs, so xf is applied. 

Table 3.2: Calculated data for the test specimens with square web panels 
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The theory seems to correlate well with the experimental results, but it slightly 
underestimates the load-carrying capacity, except in the tests by Skaloud and Novak, 
see Figures 3.6 and 3.7. The mean value of Pu/Pexp for all the tests is 0.874 and the 
standard deviation is 12.2 %. For the separate test series, the following results are 
obtained: 

• Skaloud & Novak, TG1 – TG5: Mean 1.064, standard deviation 6.1 %. 
• Drdacky & Novotny, TTG1 – TTG9’: Mean 0.834, standard deviation 8.1 %. 
• Bergfelt, R1 – B83: Mean 0.841, standard deviation 12.2 %. 
• Roberts, E10-1/1 & -2/1: Mean 0.794, standard deviation 6.6 %. 

The experiments conducted by Roberts (1983) had the aim of verifying his method for 
girders with a thick web plate, where yielding of the web is governing instead of 
buckling. From Table 3.2 it is seen that this is actually incorrect, as the value be/b 
does not exceed unity for both specimens, so buckling of the web will occur before 
yielding according to the present theory. 
From Table 3.2 it is also seen that the ratio, x/d, at maximum reaches 1/4, hence it is 
only a relatively small part of the web plate that is included in the internal beam. 
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Figure 3.6: Comparison of theory and experimental results 
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Figure 3.7: Comparison of theory and experimental results 
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4 PLATE GIRDERS WITH RECTANGULAR WEB PANELS 
In a rectangular web panel, the distance between the stiffeners, b, is either smaller or 
larger than the depth of the girder, d. 
The post-buckling strength of a web plate with b < d may be calculated as described 
in Section 3.2 in PART III, where a square yield line pattern with the side lengths equal 
to b is applied, see Figure 4.1. The effective width, be, is then given by Equation (3.1) 
and the load-carrying capacity, Pu, may be determined by Equation (3.15). 
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Figure 4.1: Failure mechanism for a web plate with b < d 

 

4.1 The Web Mechanism for Rectangular Panels 
The post-buckling strength of a web plate with b > d may be determined by 
considering the yield line pattern shown in Figure 4.2. The plate is subjected to a load 
per unit length equal to the yield stress of the web, fyw, multiplied by the thickness, tw, 
along two strips of width bs. The failure mechanism has the free parameter, X. The 
work equation must be derived separately for the two cases, bs < X and bs > X, 
respectively. 
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Figure 4.2: Failure mechanism for a web plate with b > d and bs < X 

 
In the case bs < X, the external work for δ = 1 is given by 

 24= m
e w yw s

uW t f b
d X

 (4.1) 
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and the dissipation  

 14 2
2

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

s
i p

bb dW m
d d X

 (4.2) 

where mp is the plastic yield moment per unit length given by 

 21
4

=p w ywm t f  (4.3) 

In the above equations, tw is the web thickness, fyw the yield stress of the web, d the 
girder depth, and b is the width of the web panel, i.e. distance between two adjacent 
stiffeners. The deflection corresponding to maximum load, um, is determined by 
assuming the yield strain (εy = fyw/E) to be reached in both faces of the web plate. 
Then 

  
2

221 1
8 4

ε
= =y yw

m
w w

f du d
t E t

 (4.4) 

Equalising the external work and the dissipation, the width of each strip, bs, for bs < X 
is found to be determined by 
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2 2
2 2
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⎝ ⎠
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f t X b Xb b t
E d d

 (4.5) 

In the case bs > X, the external work for δ = 1 is given by 

 ( )4 2= −m
e w yw s

uW t f b X
d

 (4.6) 

and the dissipation, which is identical to Equation (4.2), is 

 14 2
2

⎛ ⎞= − +⎜ ⎟
⎝ ⎠

s
i p

bb dW m
d d X

 (4.7) 

Equalising the external work and the dissipation, the width of each strip, bs, for bs > X 
is found to be determined by 
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 (4.8) 

In Section 3.1 in PART III, it was shown that inclined yield lines under an angle of 45° 
are normally a good choice, noting that minimising bs with regard to X will not lead to 
any useful result. Hence, an angle of 45° is also chosen here, i.e. X = ½ d. 
Denoting the effective width be = 2 bs, the effective width for bs < X (⇒ be < d) is 
given by 
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 (4.9) 

and for bs > X (⇒ be > d) 
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In both Equations (4.9) and (4.10), be/b ≤ 1 is required. Furthermore, the non-
dimensional parameter, λ, 

 λ = yw

w

fd
t E

 (4.11) 

has been introduced. 
 
The parameter, be/b, through Equations (4.9) and (4.10) as a function of λ is shown 
for different values of b/d in Figure 4.3. In Figure 4.4, the ratio, be/d, as a function of 
λ is shown for different values of b/d. For the two cases treated above, the ratio, be/d, 
may be written as: 
For be/d ≤ 1: 

 2 4 22 1− − − ⎛ ⎞= −λ + λ + λ +⎜ ⎟
⎝ ⎠

eb b
d d

 (4.12) 

For be/d ≥ 1: 
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 (4.13) 

By inserting be/d = 1 in either Equation (4.12) or (4.13), it is found that the two 
curves, for any value of b/d, in both Figure 4.3 and Figure 4.4, intersect for 

 2λ =
b
d

 (4.14) 

Since, be ≤ b is required, a cut-off at be/b =1, as shown in Figure 4.3, must be done for 
all curves. In Figure 4.4, it is shown that each curve has a cut-off for be/d equal to the 
value of b/d corresponding to the actual curve. By inserting be = b into, for instance, 
Equation (4.13), it is verified that the cut-off, in both Figure 4.3 and Figure 4.4, takes 
place for 
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Figure 4.3: be/b as a function of λ for different values of b/d 
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Figure 4.4: be/d as a function of λ for different values of b/d 

 

4.2 Load-Carrying Capacity 
The flange mechanism for a plate girder with a rectangular web panel is identical to 
that presented for a plate girder with a square web panel, cf. Section 3.2. Hence the 
load-carrying capacity as a function of β of a plate girder with a rectangular web panel 
is given by, cf. Equation (3.13), 

 2

2
f

u f yf w yw e
b cP t f t f b

c
+ β

= +
β + β

 (4.16) 

The only difference is that be here is either determined by Equation (4.9) or Equation 
(4.10). As previously, minimising Pu with regard to β will show that the minimum is 
found when β is as large as possible, i.e. the outer hinges will develop in the flange at 
the nearest stiffeners, independent of the length-to-depth ratio, b/d. Hence the load-
carrying capacity is given by, cf. Equation (3.15), 
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 ( )2 12
2

= + +
−
f e

u f yf w yw
b bP t f t f b c

b c b
 (4.17) 

Here, b is the web panel width (distance between two adjacent stiffeners), c the patch 
load length, be the calculated effective width of the web plate, and bf is the flange 
width. Furthermore, t is thickness and fy is the yield stress with indexes f for flange 
and w for web. 
 
The internal beam, cf. Figure 3.3, must also in this case be able to sustain the uniform 
load, n. The part of the web plate, x, in the internal beam, is determined either by 
Equation (3.5) or Equation (3.6). 
 
If the ratio, b/d, is large, then the value of β also becomes large. This is not always 
observed in tests. Some tests have shown that the flange mechanism is very local, 
especially for specimens with low flange stiffness. Regardless, the theory correlates 
well with the test results presented in Section 4.3. This might be due to the fact that 
the minimum for Pu is flat, which is illustrated in Figure 4.5. Here, Pu as a function of 
β, cf. Equation (4.16), is shown for the long girder B14 from the tests by Bergfelt and 
Hovik (1968, 1970), which are described in the following section. For this specimen, 
c = 180 mm and b/d = 2400/400. The permissible maximum value of β for this 
specimen is then β = 1110 mm, cf. Equation (3.14). For this β-value, the minimum for 
Pu is found to be Pu = 62.7 kN. If for instance β = 500 mm is applied, then Pu will 
only become 10 % larger. 
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Figure 4.5: Pu as a function of β for specimen B14 

 
Also, if the ratio, b/d, is large, it is not so obvious that the web stresses will be 
concentrated near the transverse stiffeners, if these are placed far away from the load. 
For the web mechanism in Figure 4.6, where the web is subjected to a load, n, per unit 
length along the entire width, n will be given by 

 
2

2 41 1 1 11 1 1
2 2 4 2

⎛ ⎞ ⎛ ⎞= − λ − + λ − + +⎜ ⎟ ⎜ ⎟
⎝ ⎠ ⎝ ⎠w yw

n d d d
t f b b b

 (4.18) 
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Here the value of X for the web mechanism, X = ½ d, is applied, and λ is given by 
Equation (4.11). The left-hand side of Equation (4.18) as a function of λ is shown for 
different values of b/d in Figure 4.7. It is seen that when b/d is increased, the curve 
moves towards the curve corresponding to b/d = ∞. 
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Figure 4.6: Failure mechanism for a web plate with b > d, subjected to a load, n, per unit length along 

the entire width, b 
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Figure 4.7: n/(tw fyw) as a function of λ for different values of b/d 

 
Applying this value of n on the flange mechanism, cf. Equation (3.10), with β taken 
from Equation (3.14), the theory gives far too low values of Pu compared to the values 
from the tests. For b/d → ∞, Equation (4.18) renders the same result as the column 
solution, cf. Equation (2.15) in PART III for µ = 1.0. The column solution is almost 
identical to the elastic solution. According to Roberts (1983), elastic solutions give far 
too low results compared to patch loading tests in general. 
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4.3 Comparison with Experimental Results 
No experimental results have been found in the literature for plate girders with b < d. 
The experimental results used to verify the theory for plate girder with b > d are all, 
except the tests B1-B10, carried out on short specimens of the form shown in Figure 
3.5, but with b > d. 
Tests B1-B10 were done on girders of length 9800 mm, with a constant bottom flange 
and with a top flange varying, as shown in Figure 4.8, which also shows the patch 
loading. 
 

2400

 6 x 150

9800

Flange dimensions tf  x bf

All measurements in mm

 8 x 200 12 x 250 15 x 300  8 x 200 12 x 250 15 x 300

 
Figure 4.8: Details of test specimens B1-B10 

 
In Table 4.1, the dimensions and the yield stresses of the flange and web material 
respectively, are summarised. The tests TG6 – TG15 were done by Skaloud and 
Novak (1975), B1 – B20 by Bergfelt and Hovik (1968, 1970), A11 – B43 by Bergfelt 
(1979), and B2-3 – B2-20 were done by Roberts (1983). 
The specimens in these experiments all have relatively thin web plates, i.e. tw = 2.00 – 
3.40 mm. The ratio, b/d, varies from 1.2 – 8.0. For the tests conducted by Bergfelt and 
Hovik (1968, 1970), the patch length c = 0 for the odd specimen numbers, i.e. B1, B3, 
etc. Again, c = 2 tf, where tf is the flange thickness, is used in the calculations 
assuming that the knife-edge load on the top of the flange spreads out under an angle 
of 45° through the flange. 
 
Table 4.2 shows the predicted load-carrying capacity, Pu, determined by Equation 
(4.17), together with the load-carrying capacity, Pexp, obtained by the experiments. 
The ratio, be/b, is determined by Equation (4.9) or (4.10), where λ is given by 
Equation (4.11). The value of x is the smaller value from Equations (3.5) and (3.6).  
The effective width, be, is determined by either Equation (4.9), (4.10) or (3.7), 
depending on which of the values x or xf are valid. The upwards, uniform load, n, 
applied on the flange, is given by Equation (3.12). 
 
The theory seems to correlate very well with the experimental results, see Figures 4.9 
and 4.10. The mean value of Pu/Pexp for all tests is 0.992 and the standard deviation is 
11.7 %. For the individual test series, the following results are obtained: 

• Skaloud & Novak, TG6 – TG15: Mean 0.925, standard deviation 10.8 %. 
• Bergfelt & Hovik, B1 – B20: Mean 1.001, standard deviation 10.2 %. 
• Bergfelt, A11 – B43: Mean 0.987, standard deviation 12.0 %. 
• Roberts & Rockey, B2-3 – B2-20: Mean 1.120, standard deviation 12.0 %. 

From Table 4.2 it appears that the ratio, x/d ≈ 1.00, is reached for the very long 
specimens, i.e. b/d ≥ 8.0. Hence, the full depth of the web plate is utilised in the 
internal beam. Since the internal beam is calculated as simply supported, even ratios 
up to x/d ≈ 1.40 might be acceptable when the internal beam is calculated as simply 
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supported instead of having fixed supports. When x/d is large, the internal beam stress 
field should, strictly speaking, be taken into account when performing the yield line 
analysis of the web. This has not yet been done. A tensile stress field in the web is 
beneficial regarding the effects of change of geometry (N ψ-terms), but along the be-
strips the yield condition is violated (vertical compression in the be-strips with 
superimposed horizontal tension). 
 

 Girder No. of 
test 

b 
[mm] 

d 
[mm] 

tw 
[mm] 

bf 
[mm] 

tf 
[mm] 

c 
[mm] 

fyw 
[N/mm2] 

fyf 
[N/mm2] 

TG6 2 2000 1000 3.00 160 6.29 100 290 294 
TG7 1 2000 1000 3.00 200 10.00 100 297 253 
TG8 1 2000 1000 3.00 200 16.55 100 308 266 
TG9 1 2000 1000 3.00 200 19.78 100 300 231 
TG10 2 2000 1000 3.00 250 30.00 100 299 261 
TG11 2 2000 1000 3.00 160 6.29 200 290 294 
TG12 1 2000 1000 3.00 200 10.00 200 297 253 
TG13 1 2000 1000 3.00 200 16.55 200 308 266 
TG14 1 2000 1000 3.00 200 19.78 200 300 231 

Sk
al

ou
d 

&
 N

ov
ak

 

TG15 2 2000 1000 3.00 250 30.00 200 299 261 
B2 1 2400 700 3.26 150 6.10 100 326 347 
B4 1 2400 700 3.26 200 8.50 100 326 235 
B6 2 2400 700 3.26 250 10.10 100 326 243 
B8 1 2400 700 3.26 250 11.90 100 326 232 
B10 2 2400 700 3.26 300 15.30 100 326 305 
B12 1 2400 300 2.00 100 6.00 180 294 294 
B14 1 2400 400 2.00 100 8.00 180 294 294 
B16 1 2400 500 2.00 100 10.00 180 294 294 
B18 1 2900 600 2.00 100 12.00 180 294 294 
B20 1 3500 700 2.00 100 15.00 180 294 294 
B1 2 2400 700 3.26 150 6.10 1) 12.2 326 347 
B3 2 2400 700 3.26 200 8.50 1) 17.0 326 235 
B5 2 2400 700 3.26 250 10.10 1) 20.2 326 243 
B7 2 2400 700 3.26 250 11.90 1) 23.8 326 232 
B9 3 2400 700 3.26 300 15.30 1) 30.6 326 305 
B11 1 2400 300 2.00 100 6.00 1) 12.0 294 294 
B13 1 2400 400 2.00 100 8.00 1) 16.0 294 294 
B15 1 2400 500 2.00 100 10.00 1) 20.0 294 294 
B17 1 2900 600 2.00 100 12.00 1) 24.0 294 294 

B
er
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el

t &
 H
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ik

 

B19 1 3500 700 2.00 100 15.00 1) 30.0 294 294 
A11 1 2500 800 2.12 300 15.40 40 300 295 
A21 1 2500 800 3.03 250 12.05 40 245 265 
A31 1 2200 680 2.08 120 5.05 40 354 290 
B4 1 800 400 2.07 120 5.03 40 285 290 
B3 1 800 300 2.07 120 5.03 40 285 290 

B
er

gf
el

t 

B43 1 800 400 2.90 250 12.35 40 328 298 
B2-3 1 600 500 2.12 150 3.05 50 224 221 
B2-7 1 600 500 2.12 150 6.75 50 224 279 
B2-12 1 600 500 2.12 150 11.75 50 224 305 R

ob
er

ts
 

B2-20 1 600 500 2.12 150 20.06 50 224 305 
1) c = 2 tf is applied. 

Table 4.1: Dimensions and material properties for test specimens with rectangular web panels 
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The solution by Roberts (1983) is based on the same experiments as presented in 
Sections 3.3 and 4.3. He determined Equations (1.3) and (1.4) empirically so that they 
provide a lower-bound for the available tests. Hence by comparing Roberts’ solution 
to the experiments as in Figures 3.6 and 4.9, all tests will be below the line 
corresponding to Pu/Pexp equal to one. Furthermore, the mean value of Pu/Pexp for all 
tests is 0.699 and the standard deviation is 15.8 %. 
 

 Girder λ 
[ ] 

be/b 
[ ] 

x 
[mm] 

x/d 
[ ] 

be 
[mm] 

n 
[N/mm] 

Pu 
[kN] 

Pexp 
[kN] 

Pu/Pexp 
[ ] 

TG6 12.39 0.096 294 0.29 191 83.2 89.35 81.90 1.091 
TG7 12.54 0.095 293 0.29 189 84.3 93.80 98.10 0.956 
TG8 12.77 0.093 290 0.29 186 85.9 105.49 117.72 0.896 
TG9 12.60 0.094 292 0.29 188 84.7 107.96 125.57 0.860 
TG10 12.54 0.094 292 0.29 189 84.6 150.60 147.15 1.023 
TG11 12.39 0.096 294 0.29 191 83.2 93.62 93.19 1.005 
TG12 12.54 0.095 293 0.29 189 84.3 98.31 117.72 0.835 
TG13 12.77 0.093 290 0.29 186 85.9 110.64 132.43 0.835 
TG14 12.60 0.094 292 0.29 188 84.7 113.26 152.05 0.745 
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d 
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TG15 12.54 0.094 292 0.29 189 84.6 158.26 157.94 1.002 
B2 8.46 0.099 2) 299 0.43 159 70.6 89.88 105.95 0.848 
B4 8.46 0.099 358 0.51 237 104.8 133.95 121.64 1.101 
B6 8.45 0.099 358 0.51 237 104.6 136.17 132.93 1.024 
B8 8.46 0.099 358 0.51 237 104.8 138.14 139.30 0.992 
B10 8.46 0.099 358 0.51 237 104.8 149.62 156.47 0.956 
B12 5.61 0.091 2) 300 1.00 161 39.4 51.76 65.73 0.788 
B14 7.48 0.080 326 0.82 193 47.3 62.69 59.84 1.048 
B16 9.35 0.074 313 0.63 176 43.2 58.41 55.92 1.045 
B18 11.23 0.061 348 0.58 178 36.1 58.65 61.80 0.949 
B20 13.10 0.052 388 0.55 181 30.4 59.98 56.90 1.054 
B1 8.46 0.099 2) 299 0.43 159 70.6 96.72  95.16 0.911 
B3 8.46 0.099 358 0.51 237 104.8 129.50 105.46 1.228 
B5 8.45 0.099 358 0.51 237 104.6 132.02 120.66 1.094 
B7 8.46 0.099 358 0.51 237 104.8 133.92 126.06 1.062 
B9 8.46 0.099 358 0.51 237 104.8 145.44 151.36 0.961 
B11 5.61 0.091 2) 300 1.00 161 39.4 48.39 57.88 0.836 
B13 7.48 0.080 326 0.82 193 47.3 58.69 54.44 1.078 
B15 9.35 0.074 313 0.63 176 43.2 54.77 54.94 0.997 
B17 11.23 0.061 348 0.58 178 36.1 55.67 54.44 1.023 
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B19 13.10 0.052 388 0.55 181 30.4 57.52 55.92 1.029 
A11 14.26 0.063 303 0.38 157 40.0 67.86 64.00 1.060 
A21 9.02 0.098 372 0.46 245 72.8 100.27 84.00 1.194 
A31 13.42 0.065 2) 239 0.35 109 38.7 44.21 47.10 0.885 
B4 7.12 0.163 148 0.37 130 95.8 42.57 48.00 0.887 
B3 5.34 0.178 153 0.51 142 104.7 46.30 49.00 0.945 

B
er

gf
el
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B43 5.45 0.209 162 0.41 167 198.3 113.19 119.00 0.951 
B2-3 7.70 0.213 123 0.25 128 101.3 34.04 34.08 0.999 
B2-7 7.70 0.213 123 0.25 128 101.3 39.89 37.92 1.051 
B2-12 7.70 0.213 123 0.25 128 101.3 55.89 44.16 1.266 R

ob
er

ts
 

B2-20 7.70 0.213 123 0.25 128 101.3 99.87 84.48 1.182 
2) Yielding in the flange occurs, so xf is applied. 

Table 4.2: Calculated data for the test specimens with rectangular web panels 
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Figure 4.9: Comparison of theory and experimental results 

 

0 1 2 3 4 5 6 7 8 9 10
0

1

2

3

4

5

6

7

8

9

10

P
exp

 / (c t
w

 f
yw

 )

P
u / 

(c
 t w

 f yw
 )

Skaloud & Novak
Bergfelt & Hovik
Bergfelt
Robert

 
Figure 4.10: Comparison of theory and experimental results 
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5 FLANGE INDUCED BUCKLING 
If the flange of a plate girder is subjected to a large normal force, and if the stiffness 
of the web plate is small, the normal force in the flange may lead to buckling of the 
compression flange. This phenomenon is called flange induced buckling. 
According to EC3 (2006), flange induced buckling is prevented if the following 
criterion is met: 

 w

w yf fc

Ad Ek
t f A

≤  (5.1) 

where d is the girder depth, tw the web thickness, E Young’s modulus, fyf the yield 
stress of the flange, Aw the cross-sectional area of the web, and Afc is the effective 
cross-sectional area of the compression flange. 
The value of the factor, k, should be taken as follows: 

• plastic rotation utilised  k = 0.30 
• plastic moment resistance utilised k = 0.40 
• elastic moment resistance utilised k = 0.55 

Equation (5.1) was originally derived by Basler and Thürlimann (1961). They 
assumed that the curvature of the flange causes the web to be acted upon by transverse 
uniform normal stresses, σ, 

 fc f

w

A
t
σ

σ =
ρ

 (5.2) 

where σf is the stress in the flange and ρ is the radius of curvature assumed to be 

 1 1
2 1.5 3

ρ = =
ε y yf

d E d
f

 (5.3) 

Here, εy = fyf/E is the yield strain. The other notations are as in Equation (5.1). 
The factor 1.5 is supposed to take into account the influence of residual stresses. The 
possibility of web buckling due to σ is then checked by using a transverse strip acting 
as a Euler column, with the effective length equal to the web depth, i.e. 

 
( )

22

212 1
π ⎛ ⎞σ = ⎜ ⎟

⎝ ⎠− ν
w

cr
tE
d

 (5.4) 

When considering flange failure, σ is taken to be equal to σcr, thus Equation (5.1) is 
found to be valid with k = 0.55 if Poisson’s ratio ν = 0.30 is applied. 
 
So far in the present theory, the effect of normal forces in the compression flange has 
been disregarded. In fact, flange induced buckling does not seem to have any 
significant influence on the load-carrying capacity of the test girders in Sections 3.3 
and 4.3. This might be due to the fact that the normal forces in the compression flange 
have been relatively small. 
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In the present theory, the compression flange is considered to be part of the internal 
beam, cf. Section 3.1. Hence the compressive stresses in the flange are equilibrated by 
the tensile stresses in the part of the web plate, x, included in the internal beam. 
Therefore there will be no resulting compression force to induce vertical buckling of 
the flange in the present theory. Regardless, the normal force in the flange may easily 
be taken into consideration, which is illustrated in the following. 
 
Consider the failure mechanism for the flange in Figure 5.1, where the flange is 
subjected to a constant normal force, N. Change of geometry is taken into account by 
adding the two transverse forces, N ψ. 
 

N ψ

um

N N
N ψ

N ψ

β

δ

Outer Plastic Hinge

Inner Plastic HingeN N
N ψ

β

ψ = um/β

 
Figure 5.1: Flange mechanism for flange induced buckling 

 
The external work for δ =1 is 

 2 2 m
e

uW N N= ψ =
β

 (5.5) 

and the dissipation  

 
2

4 1pf
i

p

M NW
N

⎛ ⎞⎛ ⎞⎜ ⎟= − ⎜ ⎟⎜ ⎟⎜ ⎟β ⎝ ⎠⎝ ⎠

 (5.6) 

where β is the length given in Figure 5.1, um the deflection at maximum load, and the 
plastic yield moment, Mpf, is given by Equation (3.9). Np is the load-carrying capacity 
in pure compression or tension, equal to 

 p f f yfN b t f=  (5.7) 

where b is the width, t the thickness, fy the yield stress, and index f refers to the flange. 
Note that if N = Np, the dissipation renders Wi = 0. 
 
If the girder is also subjected to a patch load, the contribution from Equation (5.5) is 
added to the work equation on the left-hand side of Equation (3.8), and the dissipation 
on the right-hand side is given by Equation (5.6). Thus, with c being the patch load 
length and n the upwards, uniform reaction on the flange, 
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 (5.8) 

When estimating the deflection at maximum load, um, compatibility with the web 
must be taken into account. The maximum transverse deflection of the web, um,web, is 
given by Equation (4.4). Thus the following approximate formula, where d is the 
girder depth, 

 
2

,2 m web
m

u
u

d
=  (5.9) 

may be used to estimate the um-value to be inserted in Equation (5.8). 
 
It may be shown that the effect of compression normal forces in the flanges are small 
as long as one is dealing with first order deflections. Thus the flanges may be 
calculated as supported rigidly by the web. Of course transverse deflections of the 
flanges must be taken into account when analysing flange buckling in the regions 
between web supports and stiffener supports. 
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6 THE EFFECT OF UNIAXIAL TENSION STRESSES IN THE WEB 
When a plate girder is designed according to the plastic tension field method, cf. PART 
II, uniaxial tension stresses equal to the yield stress of the web material exist in the 
web plate. These tension stresses must be taken into consideration when the plate 
girder is subjected to a patch load. The methodology for doing this is illustrated in the 
following. First the simplest case is illustrated, where the web panel is square and the 
uniaxial tension stresses act under an angle of 45°. 

6.1 Square Web Panels with Uniaxial Tension at 45° 
In this case the same failure mechanism as described in Section 3.1 is applied. The 
only difference is that the plate, besides the uniaxial compression stresses in the two 
strips of width bs, is also subjected to uniaxial tension in the whole plate from the 
diagonal tension field, see Figure 6.1. The plate is also subjected to horizontal 
uniaxial tension along the part of the web plate, x or xf , included in the internal beam 
calculation. In Table 3.2 it is shown that the ratio, x/d, is always relatively small, i.e. 
x/d ≤ 1/4 (d being the girder depth) for plate girders with a square web panel. 
Therefore, these tension stresses are neglected in the following calculations, since 
they only have a minor influence on the load-carrying capacity.  
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Figure 6.1: Failure mechanism for a square web plate with uniaxial tension stresses at 45° 

 
In the two strips, the stress condition is then a combination of uniaxial compression 
and uniaxial tension in different directions. When calculating the dissipation in the 
yield lines in the strips, the plastic yield moment of the yield lines should be reduced 
according to the resulting stresses in the strips. Referring to the Cartesian x,y-system 
of coordinates in Figure 6.1, the stresses from the uniaxial compression may be 
expressed as 

 1 1 1
2 2 2x yw y yw xy ywf f fσ = − σ = − τ =  (6.1) 

where fyw is the yield stress of the web material. 
The stresses from the uniaxial tension may be expressed as 
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 0 0x yw y xyfσ = σ = τ =  (6.2) 

By superimposing the stresses, the resulting stresses are found to be 

 1 1 1
2 2 2x yw y yw xy ywf f fσ = σ = − τ =  (6.3) 

In Figure 6.2, the three stress conditions are illustrated by applying Mohr’s circle. It is 
seen that the resulting stresses will give shear stresses that are too high, i.e. τmax larger 
than 1/√3 fyw (assuming von Mises’ yield criterion). Hence, as a simple and 
conservative assumption, the yield lines in the strips are considered to be fully 
utilised, i.e. mp = 0. 
 

- f yw

τ

σ
0 f yw

0.71 f yw

(6.1)

(6.3)

(6.2)

 
Figure 6.2: Mohr’s circle for the stress conditions in the strips of width bs 

 
The yield lines perpendicular to the uniaxial tension stresses will also be fully utilised, 
hence only the yield line between the two strips parallel to the uniaxial tension 
stresses will contribute to the dissipation. 
The external work for δ = 1 is given by 
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and the dissipation is 

 4 1 2 s
i p

bW m
b

⎛ ⎞= −⎜ ⎟
⎝ ⎠

 (6.5) 

Here, tw is the web thickness, fyw the yield stress of the web material, um the deflection 
at maximum load, b the width of the web panel and bs is the width of the effective 
strips. 
 
It is seen that We = 0 for bs = ½ b and that We will always be negative for bs < ½ b. 
Hence, the work done by the uniaxial tension stresses will always neutralise the work 
done by the uniaxial compression stresses. It is also seen that Wi = 0 for bs = ½ b and 
that Wi will always be negative for bs < ½ b. By equalising the external work and the 
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dissipation, it is found that be = 2 bs = b, hence buckling of the web plate due to the 
patch loading will not occur. 
 
The restraining effect from the web plate, utilised in the flange mechanism, will then 
be equal to tw fyw. When the plastic tension field method is applied to design the 
girder, the vertical component of the uniaxial tension stresses must be transferred to 
the nearest stiffeners by the flange. This vertical component is carried by the flange, 
which for β = 45° means that in the flange mechanism, a downwards uniform load 
equal to ½ tw fyw has to be carried, cf. Equations (2.2) and (2.7) in PART II. The 
resulting upwards, uniform load, n, applied on the flange is then given by, cf. 
Equation (3.12), 

 1
2 2

w ywt f b
n

c
=

+ β
 (6.6) 

By inserting Equation (6.6) into Equation (3.10), it is again found that by minimising 
Pu with regard to β, β is given by Equation (3.14). The load-carrying capacity may 
then written as 

 ( )2 12
4

f
u f yf w yw

b
P t f t f b c

b c
= + +

−
 (6.7) 

Here, b is the web panel width (distance between two adjacent stiffeners), c the patch 
load length and bf is the flange width. Furthermore, t is thickness and fy is the yield 
stress with indexes f for flange and w for web. 

6.2 Rectangular Web Panels with Uniaxial Tension at 45° 
From Table 4.2, it appears that the ratio, x/d, may become large especially if the 
length-to-depth ratio, b/d, is large, but when applying the plastic tension field method 
to design a plate girder, the web plate will always be close to fully utilised, so the 
stiffeners will always be relatively closely spaced. Hence, ratios b/d > 2.0 will not be 
common. Therefore, the tension stresses in the part of the web plate, x or xf, of the 
internal beam, cf. Section 3.1, are also neglected in this case.  
 
The load-carrying capacity of plate girders with b < d is also given by Equation (6.7), 
following the same reasoning as illustrated in Figure 4.1. The failure mechanism for 
plate girders with b > d is similar to that described in Section 4.1. Again, the only 
difference is that the web plate, besides the uniaxial compression stresses in the two 
strips of width bs, is also subjected to uniaxial tension stresses in the whole plate, see 
Figure 6.3. 
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Figure 6.3: Failure mechanism for a rectangular web plate with uniaxial tension stresses at 45° 

 
As in Section 6.1, the plastic yield moments of the yield lines in the strips are 
assumed equal to zero. In the horizontal yield line, the plastic yield moment is 
reduced to ½ mp, due to the uniaxial tension stresses under an angle of 45°, cf. 
Equation (2.3) in PART III. 
The work equation must be derived separately for the two cases, bs < X and bs > X, 
respectively. As in Section 4.1, it is assumed that X = ½ d (d being the girder depth). 
In the case bs < ½ d, the external work when δ = 1 is 
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and the dissipation  
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For bs < ½ d it is seen that We is always negative, so this case is never valid. In the 
case bs > ½ d, the external work for δ = 1 is given by 
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and the dissipation 
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Equalising the external work and the dissipation, the width of each strip, bs, is found 
to be determined by 
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Denoting as before the effective width be = 2 bs, the width is given by 
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2 1 1

3 1
e
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 (6.13) 

In Equation (6.13), be/b ≤ 1 is required, and the non-dimensional parameter, λ, is 
given by Equation (4.11). 
The left-hand side, be/b, of Equation (6.13) as a function of λ is shown for different 
values of b/d in Figure 6.4. In Figure 6.5, the ratio, be/d, as a function of λ is shown 
for different values of b/d. The ratio, be/d, may be written as: 
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b b
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 (6.14) 

In Figure 6.4 it is seen that the curves move towards a constant value for λ → ∞, 
which from Equation (6.13) is found to be 

 2 1
3 3

eb d
b b

= +  (6.15) 

The curves in Figure 6.5 move towards a constant value for λ → ∞, which by 
Equation (6.14) is found to be 

 1 2
3 3

eb b
d d
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Figure 6.4: be/b as a function of λ for different values of b/d 

 



PART IV 

 185

0 2 4 6 8 10 12 14 16
0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5

λ

b e / 
d

b/d = 1
b/d = 2
b/d = 3
b/d = 4
b/d = 10

 
Figure 6.5: be/d as a function of λ for different values of b/d 

 
The vertical component of the uniaxial tension stresses has to be carried by the flange, 
hence in the flange mechanism, a downwards, uniform load equal to ½ tw fyw, cf. 
Equations (2.2) and (2.7) in PART II, is taken into account. For the value of β 
determined by Equation (3.14), the resulting upwards, uniform load, n, applied on the 
flange is then given by, cf. Equation (3.12), 

 1
2

e
w yw

bn t f
b

⎛ ⎞= −⎜ ⎟
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 (6.17) 

By inserting Equation (6.17) into Equation (3.10), the load-carrying capacity is found 
to be 

 ( )2 1 12
2 2

f e
u f yf w yw

b bP t f t f b c
b c b
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 (6.18) 

To sum up the notations, b is the web panel width (distance between two adjacent 
stiffeners), c the patch load length, be the calculated effective width of the web plate, 
by Equation (6.13), and bf is the flange width. Furthermore, t is thickness and fy is the 
yield stress with indexes f for flange and w for web. 

6.3 Web Panels with Uniaxial Tension in an Arbitrary Direction 
Steel plate girders subjected to patch loading and with uniaxial tensile stresses in the 
web panel under an angle different from 45° may be treated as described in Sections 
6.1 and 6.2. However in general, the solutions are cumbersome and they will not be 
shown in detail here. Only a brief description follows. 
The same failure mechanisms are assumed, cf. Figures 6.1 and 6.3. The plastic yield 
moment of the yield lines in the two effective strips are considered to be fully utilised, 
i.e. mp = 0. The bending moments in the other yield lines must be reduced according 
to the direction of the uniaxial tension stresses, cf. Equation (2.3) in PART III. 
Thereafter, the relative deflection increment, ψ, must be determined in order to take 
the effect from change of geometry into consideration. Then the calculations may 
follow the procedure as described in Sections 6.1 and 6.3. 
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7 CONCLUSION 
A simplified theory for calculating the load-carrying capacity of steel plate girders 
subjected to patch loading has been developed. The theory is simplified due mainly to 
the assumption that the whole web panel under the patch load will always be active. 
The post-buckling strength of the web panel is determined by the effective width 
approach. The stresses in these effective widths will be uniformly distributed under 
the flange and utilised in a flange mechanism, which is calculated separately. 
The solutions are derived separately for girders with a square web panel and for those 
with a rectangular web panel. 
Both solutions are compared with experimental results, and the theories correlate well 
with these tests, especially the girders with rectangular web panels. 
 
Furthermore, is it shown how to calculate the load-carrying capacity of girders 
subjected to patch loading and designed according to the plastic tension field method, 
where uniaxial stresses equal to the yield stress occur. 
 
Finally, the topic of flange induced buckling is touched upon, and it is shown that the 
theory is also able to deal with this phenomenon.  
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9 NOTATION 
 
b width of web panel 
be total effective width 
bf flange width 
bs width of effective strip 
c length of patch load 
d girder depth, i.e. depth of the web plate 
fy yield stress 
fyf, fyw flange yield stress and web yield stress, respectively 
k factor 
mp plastic yield moment per unit length 
n load per unit length; upwards, uniform reaction on flange mechanism 
p patch load per unit length 
tf flange thickness 
tw web thickness 
um deflection at maximum load 
um,web deflection at maximum load for web plate 
x, y coordinates in a Cartesian x,y-system of coordinates 
x web plate depth included in the internal beam 
xf web plate depth included in the internal beam from flange yielding 
Aw cross-sectional area of the web 
Afc effective cross-sectional area of the compression flange 
E Young’s modulus 
Mp plastic yield moment of internal beam  
Mpf plastic yield moment of flange 
N normal force 
Np normal force, load-carrying capacity in pure compression or tension 
Pexp force, experimental load-carrying capacity 
Pu force, ultimate load-carrying capacity 
We external work 
Wi dissipation 
X free optimisation parameter 
α length 
β length 
δ displacement increment 
δv vertical displacement increment 
εy yield strain 
λ non-dimensional parameter 
ν Poisson’s ratio 
θ angle 
ρ radius of curvature 
σcr elastic critical buckling stress 
σf flange normal stress 
σx, σy normal stress in the x-direction and y-direction, respectively 
τmax maximum shear stress 
τxy shear stress in the xy-plane 
ψ relative deflection increment 
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CONCLUSION 
Simple hand-calculation methods, which may be used to treat important practical 
design problems, are developed. The derived solutions concern statically loaded fillet 
welds, plate girders in shear, thin plates in compression and patch loading on plate 
girders, respectively. 
 
Initially, yield conditions are determined for symmetric fillet welds and single fillet 
welds, respectively. If inclined uniaxial stress through the welds cannot be 
established, the load-carrying capacity must be reduced. 
The yield conditions are compared to tests where emphasis is attached to the 
determination of the yield load instead of the failure load. There is a very good 
agreement with the tests. The best agreement is obtained with tests where the 
specimens have been cut out of a steel plate; hence the welds are only marked by the 
geometry. In this way, the number of unknown parameters is reduced. 
 
Furthermore, a calculation method, i.e. the plastic tension field method for steel plate 
girders with transverse web stiffeners subjected to shear, is presented. The method 
differs from other theories by incorporating the strength of the transverse stiffeners 
and by the assumption that the tensile bands may pass the transverse stiffeners. 
The load-carrying capacity of a given steel plate girder may be predicted by applying 
both the lower-bound and the upper-bound theorem. As a design method, the lower-
bound theorem is the easiest to apply. By introducing circular fan solutions, almost 
any load case may be treated. 
The theory is compared to both old and new plate girder experiments. The theory 
coincides closely with these tests, except for girder specimens without intermediate 
web stiffeners. 
 
Additionally, it is shown that extremely simple estimates of the post-buckling strength 
of plates with in-plane loading may be obtained by using plastic solutions for the 
deflected shape. This shape must be known before the calculation can be carried out. 
It seems that useful estimates of the deflected shape may be found using simple 
formulae from beam and plate theory. 
The results are compared with the well-known Winter’s formulae and with tests. The 
agreement is very good in both cases. 
 
Finally, a simplified theory for calculating the load-carrying capacity of steel plate 
girders subjected to patch loading is developed. The theory is simplified due mainly to 
the assumption that the whole web panel under the patch load will always be active. 
The post-buckling strength of the web panel is determined by the effective width 
approach. The stresses in these effective widths will be uniformly distributed under 
the flange and utilised in a flange mechanism, which is calculated separately. 
The solutions are derived separately for girders with a square web panel and for those 
with a rectangular web panel. 
Both solutions are compared with experimental results, and the theories correlate well 
with these tests, especially for girders with rectangular web panels. 
It is also shown how one may calculate the load-carrying capacity of girders subjected 
to patch loading and designed according to the plastic tension field method, where 
uniaxial stresses equal to the yield stress occur. 
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The topic of flange induced buckling is also touched upon, and it is shown that the 
theory is also able to deal with this phenomenon.  

RECOMMENDATIONS FOR FUTURE WORK 
The load-carrying capacity of fillet welds under static loading is probably to a 
sufficient degree covered by the derived equations. However, it would be relevant to 
check the assumption of rigid-plastic materials. This might be possible by applying 
fracture mechanics to investigate the yield capacity of some common welded 
connections. 
 
The described experiments relating to plate girders in shear have shown that the post-
buckling strength of girders without intermediate web stiffeners is considerably larger 
than predicted by the theory. Hence, further investigations of this phenomenon are 
recommended, for instance through more experiments where the design of the web 
stiffeners, under the subjected loads, is varied. Alternatively, one might vary the 
stiffness of the end panels. Furthermore, the upper-bound solution may need to be 
modified, for instance by considering a failure mechanism with plastic yield hinges in 
the stiffeners under the subjected loads. 
Deriving the solutions by applying a yield condition such as von Mises’, without 
compressive strength, possibly may give a slightly larger load-carrying capacity. It 
would be of interest to see how much a more complicated yield condition would 
increase the load-carrying capacity. 
Furthermore, the upper-bound solution for thick web plates should be extended, 
taking into account intermediate web stiffeners. 
The design method applying circular fans is currently only able to treat plate girders 
with constant depth. It would be of interest to extend the method to treat plate girders 
with variable depth. 
 
The post-buckling theory for thin plates in compression should be investigated 
further, as it may be able to deal with several other important cases, e.g. fixed 
boundaries, biaxial loading, lateral loading, etc. 
 
Considering the theory of plate girders subjected to patch loading, it would be useful 
to carry out further tests, where the loaded flange is also subjected to a large 
compressive normal force, in order to investigate the flange induced buckling 
phenomenon more closely. 
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APPENDIX A 
 
Test specimens and experimental results by Jensen (1934) and Kist (1936). 
 

 
 

The figure is taken from (Witteveen and van Douwen 1966). 
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APPENDIX B 
 
Test specimens and experimental results by van der Eb (1952). 
 

 
 

The figure is taken from (Witteveen and van Douwen 1966). 
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APPENDIX C 
 
Tests with load case N. 
 
Experiments by Jensen (1991). 
 

 
 

Dimension Ny [kN] 
No. a 

[mm] 
L (t) 
[mm] 

b 
[mm] 

fy 
[MPa] Test Lower Upper 

Ny / 
aLfy 

fu 
[MPa] 

Nu 
[kN] 

Nu / 
aLfy 

1 36.8 9.5 46.3 275.0 113.1 111.0 126.9 1.176 414.0 183.1 1.265 
2 36.5 9.4 45.9 273.0 113.1 108.2 123.6 1.207 412.0 175.1 1.239 
3 36.6 9.4 46.1 277.0 115.9 110.0 125.8 1.216 422.0 179.8 1.238 
4 36.7 9.4 46.3 274.0 112.1 109.1 124.8 1.186 413.0 181.1 1.271 
5 36.7 16.3 55.7 247.5 169.1 171.0 195.4 1.142 414.0 374.8 1.513 
6 37.1 16.4 56.4 246.0 169.1 172.8 197.5 1.130 411.5 378.0 1.510 
7 36.2 16.3 56.0 256.0 175.8 174.4 199.4 1.164 411.5 369.0 1.520 
8 36.4 15.3 56.1 248.0 156.8 159.5 182.3 1.135 413.0 368.5 1.602 
9 36.7 16.2 66.1 244.0 168.2 167.5 191.5 1.159 417.7 403.0 1.623 

10 36.6 16.3 66.2 250.0 166.3 172.2 196.8 1.115 415.0 - - 
11 36.4 16.3 65.9 247.0 167.2 169.2 193.4 1.141 410.0 - - 
12 36.2 16.3 66.3 241.5 177.7 164.5 188.1 1.247 417.7 402.5 1.633 
13 36.1 12.3 76.9 284.0 157.7 145.6 166.4 1.251 417.7 264.5 1.426 
14 36.7 12.4 76.1 286.5 152.0 150.6 172.1 1.166 439.5 405.0 2.025 
15 36.4 12.4 76.3 288.5 146.3 150.4 171.9 1.124 417.7 - - 
16 36.8 12.3 76.5 285.0 150.1 149.0 170.3 1.164 436.5 405.0 2.050 
Average: 1.170  1.532 
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Test series S02. 
 
Experiments by Jensen (1991). 
 

 
 

No. γ1  
[°] 

Py 
[kN] 

Pu 
[kN] 

Throat 
area 

[mm2] 

fy 
[MPa] 

Pu / 
Py 

Py / 
aLfy 

σeff  / 
fy 

01 90 80 131.0 336 251.5 1.64 0.94 1.056 
02 80 70 131.5 336 251.5 1.88 0.82 1.042 
03 70 60 126.5 336 251.5 2.11 0.70 1.089 
04 60 55 119.5 339 251.5 2.17 0.65 1.049 
05 50 48 110.0 343 251.5 2.29 0.56 1.087 
06 40 45 101.5 338 251.5 2.11 0.53 1.047 
07 20 40 92.0 336 251.5 2.30 0.47 1.060 
08 0 40 91.5 339 251.5 2.29 0.48 1.066 
09 10 38 85.0 350 225.0 2.24 0.48 1.026 
10 30 40 96.0 347 225.0 2.40 0.51 1.017 
12 65 54 112.0 350 225.0 2.07 0.69 1.053 
13 75 65 128.0 350 225.0 1.97 0.83 0.989 
14 85 75 135.0 347 225.0 1.80 0.96 0.961 
Average: 1.042 
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Test series 323.14 and 323.18. 
 
Experiments by Jensen (1991). 
 

 
323.14 

Throat 
No. aw / 

an 
γ1  
[°] 

fy 
[MPa] 

L 
[mm] a 

[mm] 
a(1+δ) 
[mm] δ 

Py 
[kN] 

Theory 
σeff  / fy 

2 an 45 427 14.4 15.1 16.7 0.11 47.5 1.253 
3 - 0 - 14.7 15.4 16.7 0.08 44.0 1.186 
4 - 90 - 14.2 13.5 14.5 0.07 71.5 1.225 
5 - 60 - 14.6 14.2 15.9 0.12 61.3 1.095 
6 - 75 - 14.3 13.7 14.8 0.08 68.0 1.103 
7 - 30 - 14.4 14.5 15.6 0.08 51.0 0.984 
1 aw 60 394 14.5 15.4 17.4 0.13 68.5 0.982 
2 - 45 - 14.6 15.1 17.3 0.15 59.5 0.969 
3 - 30 - 14.9 14.1 16.1 0.14 55.0 0.894 
4 - 90 - 15.0 15.2 17.2 0.13 93.0 1.092 
5 - 15 - 14.7 14.6 16.6 0.14 55.5 0.863 
6 - 0 - 14.5 15.8 17.4 0.10 54.5 0.911 

Average: 1.046 
 aw: as welded 
 an: annealed 
 

323.18 
Throat 

No. aw / 
an 

γ1  
[°] 

fy 
[MPa] 

L 
[mm] a 

[mm] 
a(1+δ) 
[mm] δ 

Py 
[kN] 

Theory 
σeff  / fy  

1 aw 0 394 14.9 16.5 18.7 0.13 54.3 1.008 
2 - 30 - 14.9 16.5 17.2 0.04 59.0 0.890 
3 - 45 - 14.9 16.5 17.8 0.08 67.0 0.901 
4 - 60 - 14.8 16.4 18.2 0.11 76.7 0.937 
8 - 75 - 15.0 15.7 17.3 0.10 84.2 0.990 
6 - 90 - 14.8 15.5 17.3 0.12 92.2 1.098 

11 an 0 427 14.9 14.0 16.3 0.16 44.7 1.156 
12 - 30 - 15.3 14.8 16.5 0.11 52.6 1.063 
13 - 45 - 14.8 13.6 15.0 0.10 55.5 0.983 
17 - 60 - 15.0 15.2 16.6 0.09 54.5 1.318 
18 - 75 - 14.9 15.0 15.8 0.05 68.0 1.223 
19 - 90 - 15.2 15.2 15.7 0.03 81.0 1.254 
Average: 1.068 

 aw: as welded 
 an: annealed 
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Test series 323.23. 
 
Experiments by Jensen (1991). 
 

 
 

Group a 
[mm] 

γ  
[°] 

fy 
[MPa] 

L 
[mm] 

Py 
[kN] 

Theory 
σeff  / fy 

16.7 0 427 98.8 738 0.955 
17.9 15 - 103.5 778 0.955 
16.7 30 - 115.5 728 0.924 

A 

16.8 45 - 141.4 677 1.059 
15.2 0 427 99.5 735 0.879 
16.2 15 - 102.5 671 0.992 
14.8 30 - 114.3 628 0.939 

B 

16.0 45  137.3 695 0.954 
Average: 0.957 
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APPENDIX D 
 
Experiments by Basler et al. (1961). 
 
 

P

P

Shear

Moment
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a
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a a
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Experiments by Lyse and Godfrey (1935). 
 
 

P

Shear

Moment

WB 1 - 3

a
P

P

P
a

 
 
 
 

Shear

Moment

WB 6 - 10

a
P

2P

P
a
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Experiments by Nishino and Okumura (1968). 
 
 

Shear

Moment

G 1 - 8

a
P

P

P
a

P
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Experiments by Longbottom and Heyman (1956). 
 
 
 

Shear

Moment

A 1 - 3

a
P
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Experiments by Cooper et al. (1964). 

 
 
 

2P

Shear

Moment

H1 - 2

a a
P P

 
 
 
 

Experiments by Lew et al. (1969). 
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Shear
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Experiments by Skaloud (1971), Sakai et al. (1966), d’Apice et al. (1966) and Rockey 
and Skaloud (1971). 
 
 
TG1 – 5  Skaloud (1971) 
G1 – 7, 9  Sakai (1966) 
LST1  d’Apice et al. (1966) 
TG1 – 5, 9, 10, 13 Rockey and Skaloud (1971) 
 
 

2P

Shear

Moment

P
a a

P

 
 
 

TG14 – 20  Rockey and Skaloud (1971) 
 

Shear

Moment

a
P

2P

P
a
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 Girder L 
[in] 

d 
[in] 

tw 
[in] 

fyw 
[ksi] 

bf  
[in] 

tf 
[in] 

fyf  
[ksi] 

As 
[in2] 

fys 
[ksi] 

Pepx 
[kips] 

G6T1 150 50 0.193 36.7 12.13 0.778 37.9 1.0 43 116 
G6T2 150 50 0.193 36.7 12.13 0.778 37.9 1.0 43 150 
G6T3 150 50 0.193 36.7 12.13 0.778 37.9 1.0 43 177 
G7T1 150 50 0.196 36.7 12.19 0.768 37.6 1.0 43 140 
G7T2 150 50 0.196 36.7 12.19 0.768 37.6 1.0 43 145 
G8T1 150 50 0.197 38.2 12.00 0.750 41.3 1.0 43 85 
G8T2 150 50 0.197 38.2 12.00 0.750 41.3 1.0 43 100 
G8T3 150 50 0.197 38.2 12.00 0.750 41.3 1.0 43 117 
G9T1 150 50 0.131 44.5 12.00 0.750 41.8 1.0 43 48 

B
as

le
r  

et
 a

l. 

G9T2 150 50 0.131 44.5 12.00 0.750 41.8 1.0 43 75 
WB-1 41.9 13.97 0.25 43.3 6.5 1.5 43.5 - - 109 
WB-2 42.0 14.00 0.25 47.8 6.5 1.5 43.5 - - 128 
WB-3 48.0 16.00 0.25 49.6 6.5 1.5 43.5 - - 139 
WB-6 52.6 17.55 0.25 33.1 6.5 1.5 43.5 - - 96 
WB-7 46.0 15.33 0.25 33.7 6.5 1.5 43.5 - - 95 
WB-8 47.0 15.65 0.25 29.7 6.5 1.5 43.5 - - 100 
WB-9 37.5 12.49 0.25 30.3 6.5 1.5 43.5 - - 92 

Ly
se

 &
 G

od
fr

ey
 

WB-10 37.4 12.45 0.25 30.3 6.5 1.5 43.5 - - 94 
C4 20.00 13.50 0.056 16.7 1.625 0.25 18.6 0.042 16.7 4.15 
A1 6.78 5.25 0.056 16.7 1.000 0.25 18.6 - - 2.88 
A2 10.75 5.25 0.056 16.7 1.000 0.25 18.6 - - 2.43 
A3 22.50 5.25 0.056 16.7 1.000 0.25 18.6 - - 1.49 

Lo
ng

bo
tto

m
 &

 
H

ey
m

an
n 

A4 10.00 4.75 0.056 16.7 1.325 0.25 18.6 - - 2.60 
S1 36 36 0.189 40.8 8.02 0.522 105 0.563 36 115.8 Lew 

et al. S2 36 36 0.189 40.8 7.99 0.528 105 0.563 36 108.1 
H1-T1 150 50 0.393 108.1 18.06 0.980 106.4 1.875 108.1 630.0 
H1-T2 150 50 0.393 108.1 18.06 0.980 106.4 1.875 108.1 769.0 
H2-T1 150 50 0.390 110.2 18.06 2.012 107.2 1.875 110.2 917.0 

C
oo

pe
r e

t 
al

. 

H2-T2 150 50 0.390 110.2 18.06 2.012 107.2 1.875 110.2 112.5 

 

 
 Girder L 

[mm] 
d 

[mm] 
tw 

[mm] 
fyw 

[MPa] 
bf 

[mm] 
tf 

[mm] 
fyf  

[MPa] 
As 

[mm2] 
fys 

[MPa] 
Pepx 
[kN] 

G1 1450 543 9.1 380 301 22.4 440 - - 1105 
G2 1450 543 9.1 380 220 22.4 440 - - 1040 
G3 1900 722 9.4 380 302 22.2 440 - - 1245 
G4 1900 720 9.2 380 243 22.1 440 - - 1145 
G5 2360 899 9.0 380 291 22.3 440 - - 1235 
G6 2360 900 8.9 380 212 22.3 440 - - 1090 
G7 2850 1080 9.1 380 282 22.4 440 - - 1270 N

is
hi

no
 &

 O
ku

m
ur

a 

G8 2850 1080 8.9 380 221 22.2 440 - - 1120 
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 Girder L 

[cm] 
d 

[cm] 
tw 

[cm] 
fyw 

[t/cm2] 
bf 

[cm] 
tf 

[cm] 
fyf  

[t/cm2] 
As 

[cm 2] 
fys 

[t/cm2] 
Pepx 
[ton] 

TG1 100 100 0.25 2.037 16.0 0.517 2.86 - - 15.45 
TG1’ 100 100 0.25 2.037 16.0 0.517 2.86 - - 11.85 
TG2 100 100 0.25 2.037 20.0 1.010 2.86 - - 16.30 
TG2’ 100 100 0.25 2.037 20.0 1.010 2.86 - - 14.15 
TG3 100 100 0.25 2.037 20.0 1.646 2.86 - - 19.40 
TG3’ 100 100 0.25 2.037 20.0 1.646 2.86 - - 19.35 
TG4 100 100 0.25 2.037 20.0 2.016 2.86 - - 22.30 
TG4’ 100 100 0.25 2.037 20.0 2.016 2.86 - - 21.10 
TG5 100 100 0.25 2.037 25.0 2.971 2.86 - - 31.45 

Sk
al

ou
d 

TG5’ 100 100 0.25 2.037 25.0 2.971 2.86 - - 30.60 
 
 

 Girder L 
[mm] 

d 
[mm] 

tw 
[mm] 

fyw 
[kg/mm2] 

bf 
[mm] 

tf 
[mm] 

fyf  
[kg/mm2] 

As 
[mm2] 

fys 
[kg/mm2] 

Pepx 
[ton] 

G1 1150 440 8 44 160 30 42 - - 82 
G2 1150 440 8 44 200 30 42 - - 84 
G3 1407 560 8 44 160 30 42 - - 99 
G4 2000 560 8 44 250 30 42 - - 97 
G5 1500 560 8 44 250 30 42 - - 107 
G6 687 560 8 44 250 30 42 - - 120 
G7 1500 560 8 44 250 30 42 - - 107 

Sa
ka

i e
t a

l. 

G9 2000 720 8 44 250 30 42 - - 118 
 

 
 Girder L 

[in] 
d 

[in] 
tw 

[in] 
fyw 

[t/in2] 
bf  

[in] 
tf 

[in] 
fyf  

[t/in2] 
As 

[in2] 
fys 

[t/in2] 
Pepx 
[ton] 

d’Apice LST1 150 50 0.195 46.8 14.10 1.498 30.4 2.25 30.5 [kips] 
182 

TG1 24 24 0.107 15.95 4.0 0.188 15.95 - - 11.30 
TG1’ 24 24 0.107 15.95 4.0 0.188 15.95 - - 12.00 
TG2 24 24 0.107 15.95 4.0 0.250 15.95 - - 12.60 
TG2’ 24 24 0.107 15.95 4.0 0.250 15.95 - - 11.75 
TG3 24 24 0.108 15.95 4.0 0.500 15.95 - - 14.25 
TG3’ 24 24 0.108 15.95 4.0 0.500 15.95 - - 13.50 
TG4 24 24 0.107 15.95 4.0 0.650 15.95 - - 15.90 
TG4’ 24 24 0.107 15.95 4.0 0.650 15.95 - - 15.15 
TG13 24 24 0.103 18.30 4.0 1.000 18.30 - - 20.85 
TG5 36 24 0.103 18.30 8.0 0.375 18.30 - - 11.70 
TG5’ 36 24 0.103 18.30 8.0 0.375 18.30 - - 13.00 
TG14 24 12 0.038 14.36 3.0 0.123 14.36 0.075 20.0 2.55 
TG15 24 12 0.038 14.36 3.0 0.197 14.36 0.075 20.0 2.95 
TG16 24 12 0.038 14.36 4.0 0.254 14.36 0.075 20.0 3.12 
TG17 24 12 0.038 14.36 4.0 0.367 20.18 0.075 20.0 3.90 
TG18 24 12 0.038 14.36 4.0 0.510 19.70 0.075 20.0 5.00 
TG19 24 12 0.038 14.36 4.0 0.611 17.35 0.075 20.0 5.45 
TG20 24 12 0.080 14.81 4.0 0.128 19.90 0.075 20.0 5.10 
TG9 48 24 0.104 18.3 8.0 0.388 18.30 - - 12.30 
TG9’ 48 24 0.104 18.3 8.0 0.388 18.30 - - 12.03 

R
oc

ke
y 

&
 S

ka
lo

ud
 

TG10 48 24 0.104 18.3 8.0 0.625 18.30 - - 12.85 
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APPENDIX E 
 
Girder Specimen G1 
 

 
 
 
 
Girder Specimen G2 
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Girder Specimen G3 
 

 
 
 
 
Girder Specimen G4 
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Girder Specimen G5 
 

 
 
 
 
Girder Specimen G6 
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Girder Specimen G7 
 

 
 
 
 
 
Girder Specimen G8 
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Cross-Sections 
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APPENDIX F 
 
Photos of Girder G1 
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Photos of Girder G2 
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Photos of Girder G3 
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Photos of Girder G4 
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Photos of Girder G5 
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Photos of Girder G6 
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Photos of Girder G7 
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Photos of Girder G8 
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APPENDIX G 
 
Deformation plots from Aramis – Girder G3 
 

 
Load: 138.2 kN 

 
 

 
Load: 172.7 kN 

 

 
Load: 189.9 kN 

 

 
Load: 206.3 kN 
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Deformation plots from Aramis – Girder G4 
 

 
Load: 191.1 kN 

 

 
Load: 215.3 kN 

 

 
Load: 233.3 kN 

 

 
Load: 249.2 kN 
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Deformation plots from Aramis – Girder G5 
 

 
Load: 205.5 kN 

 

 
Load: 227.5 kN 

 

 
Load: 257.9 kN 

 

 
Load: 274.2 kN 
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Deformation plots from Aramis – Girder G6 
 

 

 
Load: 237.6 kN 

 

 
Load: 248.6 kN 

 
 

 
Load: 267.3 kN 

 

 
Load: 301.4 kN 
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APPENDIX H 
 
Location of Strain Gauges on Girder Specimens 
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APPENDIX I 
 
Plates in Compression Supported Along All Edges. 
 
Experiments by Sechler1 (1933). 
 
Test series Sechler. 
 
 

be / b No. λ C Test Theory 
Theory 
/ Test 

1 50.00 2.01 0.040 0.040 0.984 
2 37.45 1.77 0.047 0.053 1.113 
3 21.41 1.92 0.090 0.091 1.018 
4 23.09 1.60 0.069 0.085 1.223 
5 17.64 1.35 0.077 0.110 1.437 
6 16.67 1.67 0.100 0.117 1.165 
7 15.80 1.71 0.108 0.123 1.135 
8 12.00 1.75 0.146 0.160 1.098 
9 10.72 1.60 0.149 0.178 1.193 

10 10.72 1.61 0.151 0.178 1.183 
11 10.00 1.83 0.183 0.190 1.041 
12 9.37 2.04 0.218 0.202 0.929 
13 8.11 2.20 0.271 0.232 0.855 
14 8.83 1.34 0.153 0.214 1.403 
15 7.89 1.43 0.181 0.238 1.316 
16 7.50 1.51 0.201 0.249 1.242 
17 5.77 1.55 0.268 0.318 1.186 
18 5.36 1.57 0.294 0.340 1.158 
19 4.69 1.85 0.395 0.384 0.970 
20 4.76 1.32 0.277 0.378 1.364 
21 3.80 1.33 0.351 0.462 1.316 
22 3.00 1.67 0.556 0.565 1.017 
23 2.86 1.36 0.476 0.588 1.236 
24 2.63 1.79 0.679 0.629 0.927 
25 2.34 1.05 0.449 0.691 1.536 
26 2.31 1.11 0.480 0.699 1.458 
27 1.94 1.04 0.537 0.800 1.489 
28 1.88 1.27 0.676 0.820 1.213 
29 1.88 1.32 0.704 0.820 1.164 
30 1.85 1.31 0.706 0.827 1.172 
31 1.54 1.00 0.650 0.944 1.453 
32 1.40 0.99 0.704 1.000 1.421 
33 1.40 1.12 0.799 1.000 1.252 

Average: 1.202 
 

                                                 
1 The results are taken from (Winter 1947) 
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Experiments by Winter (1947). 
 
Test series U-beams. 
 
 

be / b No. λ C Test Theory 
Theory 
/ Test 

1 6.00 2.32 0.387 0.307 0.793 
2 5.08 2.05 0.404 0.357 0.883 
3 4.69 1.25 0.267 0.384 1.435 
4 4.48 1.47 0.328 0.400 1.220 
5 4.55 1.65 0.364 0.394 1.084 
6 4.69 1.71 0.364 0.384 1.054 
7 4.00 1.83 0.457 0.441 0.967 
8 3.41 1.53 0.450 0.507 1.127 
9 3.41 1.33 0.391 0.507 1.296 

10 3.23 1.49 0.463 0.531 1.148 
11 2.73 1.77 0.650 0.611 0.940 
12 2.24 1.69 0.756 0.726 0.946 
13 3.85 1.36 0.354 0.457 1.292 
14 3.85 1.76 0.458 0.457 0.998 
15 3.16 1.31 0.414 0.541 1.307 
16 3.13 1.25 0.401 0.546 1.361 
17 3.00 1.20 0.400 0.565 1.412 
18 2.67 1.19 0.444 0.621 1.399 
19 3.06 1.97 0.645 0.555 0.861 
20 2.27 1.95 0.857 0.707 0.826 
21 2.07 1.51 0.728 0.761 1.045 
22 2.04 1.60 0.784 0.769 0.981 
23 1.99 1.57 0.792 0.785 0.991 
24 1.95 1.52 0.780 0.796 1.021 
25 1.84 1.47 0.797 0.831 1.043 
26 1.51 1.29 0.858 0.958 1.116 

Average: 1.098 
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Experiments by Winter (1947). 
 
Test series I-beams. 
 

be / b No. b / t 
[ ] 

fy 
[psi] 

λ 
[ ] 

be 
[in] Test Theory 

Theory 
/ Test 

I-1 14.3 35700 0.49 14.1 t 0.986 1.000 1.014 
I-2 16.3 33100 0.54 16.5 t 1.012 1.000 0.988 
I-3 16.4 33100 0.54 16.6 t 1.012 1.000 0.988 
I-4 19.2 35100 0.65 19.2 t 1.000 1.000 1.000 
I-5 22.9 33100 0.75 21.8 t 0.952 1.000 1.050 
I-6 23.6 36200 0.81 23.4 t 0.992 1.000 1.009 
I-7 24.0 35100 0.81 22.6 t 0.942 1.000 1.062 
I-8 28.9 30200 0.91 27.4 t 0.948 1.000 1.055 
I-9 32.0 36200 1.10 31.7 t 0.991 1.000 1.009 

I-10 38.3 30200 1.21 37.2 t 0.971 1.000 1.030 
I-11 42.6 37300 1.49 39.6 t 0.930 0.965 1.038 
I-12 45.0 30300 1.42 40.8 t 0.907 0.998 1.100 
I-13 56.0 37300 1.96 48.8 t 0.871 0.793 0.910 

Average: 1.019 
 
Experiments by Moxham (1971). 
 
Test series Welded. 
 

P / (b t fy) Ref. b / t 
[ ] 

t 
[in] 

a / b 
[ ] 

fy 
[tsi] 

λ 
[ ] 

P 
[ton] Test Theory 

Theory 
/ Test 

11a 55.5 0.126 4.0 15.1 1.86 11.4 0.857 0.823 0.961 
11b 55.5 0.126 4.0 15.1 1.86 11.3 0.849 0.823 0.969 
11a 55.5 0.126 4.0 15.1 1.86 11.7 0.879 0.823 0.936 
11b 55.5 0.126 4.0 15.1 1.86 11.3 0.849 0.823 0.969 
11a 55.5 0.126 4.0 15.1 1.86 12.5 0.940 0.823 0.879 
11b 55.5 0.126 4.0 15.1 1.86 12.4 0.932 0.823 0.883 
12a 63.5 0.126 4.0 15.1 2.13 9.3 0.611 0.744 1.217 
12b 63.5 0.126 4.0 15.1 2.13 9.8 0.644 0.744 1.155 
12a 63.5 0.126 4.0 15.1 2.13 10.7 0.703 0.744 1.058 
12b 63.5 0.126 4.0 15.1 2.13 11.1 0.729 0.744 1.020 
13a 71.4 0.126 4.0 15.1 2.40 9.5 0.555 0.678 1.222 
13b 71.4 0.126 4.0 15.1 2.40 9.3 0.543 0.678 1.248 
13a 71.4 0.126 4.0 15.1 2.40 9.9 0.578 0.678 1.173 
13b 71.4 0.126 4.0 15.1 2.40 10.4 0.608 0.678 1.116 
14a 79.5 0.126 4.0 15.1 2.67 9.7 0.509 0.622 1.222 
14b 79.5 0.126 4.0 15.1 2.67 9.5 0.498 0.622 1.248 
14a 79.5 0.126 4.0 15.1 2.67 10.0 0.525 0.622 1.186 
14b 79.5 0.126 4.0 15.1 2.67 9.5 0.498 0.622 1.248 
14a 79.5 0.126 4.0 15.1 2.67 9.9 0.519 0.622 1.198 
14b 79.5 0.126 4.0 15.1 2.67 9.6 0.504 0.622 1.235 
14a 79.5 0.126 4.0 15.1 2.67 10.5 0.551 0.622 1.129 
14b 79.5 0.126 4.0 15.1 2.67 10.5 0.551 0.622 1.129 
14a 79.5 0.126 4.0 15.1 2.67 11.7 0.614 0.622 1.013 
14b 79.5 0.126 4.0 15.1 2.67 10.5 0.551 0.622 1.129 
14a 79.5 0.126 4.0 15.1 2.67 12.1 0.635 0.622 0.980 
14b 79.5 0.126 4.0 15.1 2.67 12.0 0.630 0.622 0.988 

Average: 1.097 
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Experiments by Moxham (1971). 
 
Test series Unwelded. 
 

P / (b t fy) Ref. b / t 
[ ] 

t 
[in] 

a / b 
[ ] 

fy 
[tsi] 

λ 
[ ] 

P 
[ton] Test Theory 

Theory 
/ Test 

7a 36.5 0.126 4.0 15.1 1.23 8.9 1.017 1.000 0.983 
7b 36.5 0.126 4.0 15.1 1.23 9.0 1.029 1.000 0.972 
8a 40.5 0.126 4.0 15.1 1.36 9.3 0.958 1.000 1.044 
8b 40.5 0.126 4.0 15.1 1.36 9.9 1.020 1.000 0.981 
9a 43.6 0.126 4.0 15.1 1.46 10.6 1.014 0.977 0.964 
9b 43.6 0.126 4.0 15.1 1.46 10.6 1.014 0.977 0.964 
10a 47.5 0.126 4.0 15.1 1.60 11.8 1.036 0.921 0.889 
10b 47.5 0.126 4.0 15.1 1.60 11.6 1.019 0.921 0.904 
11a 55.5 0.126 4.0 15.1 1.86 13.1 0.985 0.823 0.836 
11b 55.5 0.126 4.0 15.1 1.86 13.1 0.985 0.823 0.836 
12a 63.5 0.126 4.0 15.1 2.13 12.9 0.847 0.744 0.878 
12b 63.5 0.126 4.0 15.1 2.13 12.8 0.841 0.744 0.884 
13a 71.4 0.126 4.0 15.1 2.40 12.7 0.742 0.678 0.914 
13b 71.4 0.126 4.0 15.1 2.40 12.6 0.736 0.678 0.921 
14a 79.5 0.126 4.0 15.1 2.67 12.5 0.656 0.622 0.948 
14b 79.5 0.126 4.0 15.1 2.67 12.1 0.635 0.622 0.980 

Average: 0.931 
 
 
Test series Short. 
 

P / (b t fy) Ref. b / t 
[ ] 

t 
[in] 

a / b 
[ ] 

fy 
[tsi] 

λ 
[ ] 

P 
[ton] Test Theory 

Theory 
/ Test 

- 55.5 0.126 0.875 15.1 1.85 10.9 0.827 0.757 0.916 
- 55.5 0.126 0.875 15.1 1.85 11.6 0.880 0.757 0.861 
- 64.0 0.126 0.875 15.1 2.15 10.7 0.697 0.675 0.967 
- 64.0 0.126 0.875 15.1 2.15 11.5 0.750 0.675 0.900 
- 80.0 0.126 0.875 15.1 2.69 10.6 0.553 0.564 1.020 
- 80.0 0.126 0.875 15.1 2.69 10.7 0.558 0.564 1.011 

Average: 0.946 
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APPENDIX J 
 
Plates in Compression with One Free Edge. 
 
Experiments by Bambach and Rasmussen (2004). 
 
Test series Plates. 
 

P / (b t fy) No. b 
[mm] 

t 
[mm] 

E 
[MPa] 

fy 
[MPa] 

λ 
[ ] 

P 
[kN] Test Theory 

Theory 
/ Test 

60 (1) 61.2 4.77 202000 272.2 0.471 78.8 0.992 1.000 1.008 
60 (2) 60.6 4.77 202000 272.2 0.466 82.4 1.047 1.000 0.955 
60 (w1) 61.0 4.77 202000 272.2 0.469 80.2 1.013 1.000 0.988 
60 (w2) 60.5 4.77 202000 272.2 0.466 73.2 0.932 1.000 1.073 
80 (1) 80.0 4.75 199000 317.2 0.672 95.1 0.789 0.811 1.028 
80 (2) 79.9 4.75 199000 317.2 0.672 103.0 0.856 0.812 0.949 
80 (w1) 79.9 4.75 199000 317.2 0.672 97.3 0.808 0.812 1.004 
80 (w2) 79.7 4.75 199000 317.2 0.670 103.5 0.862 0.813 0.943 
100 (1) 100.4 4.77 202000 272.2 0.773 114.2 0.876 0.729 0.833 
100 (2) 100.3 4.77 202000 272.2 0.772 94.3 0.724 0.730 1.008 
100 (w1) 100.4 4.77 202000 272.2 0.773 97.5 0.748 0.729 0.975 
100 (w2) 100.3 4.77 202000 272.2 0.772 88.5 0.680 0.730 1.074 
125 (1) 125.6 4.77 202000 272.2 0.967 94.8 0.581 0.610 1.049 
125 (2) 125.8 4.77 202000 272.2 0.968 94.3 0.577 0.609 1.055 
125 (w1) 125.5 4.77 202000 272.2 0.966 85.5 0.525 0.610 1.163 
125 (w2) 125.3 4.77 202000 272.2 0.964 100.7 0.619 0.611 0.987 
175 (1) 175.2 4.77 202000 272.2 1.348 123.3 0.542 0.460 0.849 
175 (2) 175.0 4.77 202000 272.2 1.347 127.0 0.559 0.461 0.824 
175 (w1) 175.4 4.77 202000 272.2 1.350 113.4 0.498 0.460 0.923 
175 (w2) 175.2 4.77 202000 272.2 1.348 111.3 0.489 0.460 0.941 
Average: 0.981 

 
Experiments by Kalyanaraman et al. (1977). 
 
Test series Stub-column. 
 

be / b No. b / t 
[in] 

k 
[ ] 

E 
[ksi] 

fy 
[ksi] 

λ 
[ ] 

σcr 
[ksi] Test Theory 

Theory 
/ Test 

SC-I 1 57.63 1.040 29503 31.59 1.886 8.35 0.555 0.341 0.614 
SC-I 2 57.71 0.964 29510 30.73 1.862 7.72 0.565 0.345 0.611 
SC-II 1 51.52 0.949 29523 25.68 1.519 9.54 0.613 0.414 0.676 
SC-II 2 50.08 0.912 29484 30.26 1.604 9.69 0.574 0.395 0.688 
SC-III 1 42.93 0.948 29511 31.29 1.398 13.72 0.610 0.446 0.731 
SC-III 2 42.95 0.955 29515 31.11 1.394 13.81 0.622 0.447 0.718 
SC-IV 1 35.25 0.985 29506 31.29 1.148 21.14 0.743 0.528 0.711 
SC-IV 2 34.98 0.986 29493 30.50 1.125 21.48 0.725 0.538 0.741 
SC-V 1 29.74 0.876 29492 33.18 0.998 26.40 0.787 0.594 0.755 
SC-V 2 29.76 0.848 29490 31.05 0.966 25.52 0.721 0.610 0.847 
UD-1 16.20 0.700 29502 41.90 0.611 71.12 1.100 0.870 0.791 
UD-2 20.55 0.787 29501 41.90 0.774 49.69 0.973 0.728 0.748 
UD-3 24.86 0.825 29507 41.90 0.937 35.60 0.890 0.626 0.703 
UD-4 29.17 0.858 29516 41.90 1.099 29.90 0.782 0.548 0.701 
Average: 0.717 
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Experiments by Kalyanaraman et al. (1977). 
 
Test series Beams. 
 

be / b No. b / t 
[in] 

k 
[ ] 

E 
[ksi] 

fy 
[ksi] 

λ 
[ ] 

σcr 
[ksi] Test Theory 

Theory 
/ Test 

B-1 60.5 0.961 29457 51.0 2.517 6.99 0.419 0.262 0.625 
B-2 53.1 0.920 29908 53.8 2.252 8.82 0.466 0.290 0.623 
B-3 44.5 0.832 29556 53.8 1.899 11.21 0.500 0.339 0.679 
B-4 36.9 0.791 29559 51.0 1.533 15.52 0.514 0.411 0.800 
B-5 29.8 0.798 28984 51.3 1.254 23.54 0.555 0.490 0.883 
B-6 23.7 0.584 29477 51.3 0.989 27.70 0.595 0.599 1.006 
UP-9 26.0 0.747 29567 42.0 0.980 29.53 0.739 0.603 0.816 
UP-10 32.1 0.666 29546 36.0 1.120 17.26 0.622 0.539 0.867 
UP-11 38.0 0.804 29430 36.0 1.329 14.81 0.609 0.466 0.765 
UP-12 42.8 0.560 29352 36.0 1.499 8.11 0.500 0.419 0.839 
Average: 0.790 

 
 
Experiments by Winter (1947). 
 
Test series I-beams. 
 

be / b No. b / t 
[ ] 

fy 
[psi] 

σ 
[psi] 

λ 
[ ] Test Theory 

Theory 
/ Test 

I-S-2 9.3 35400 34600 0.317 0.977 1.000 1.023 
I-S-3 10.1 49400 35800 0.407 0.725 1.000 1.380 
I-B-3 10.1 37300 30200 0.353 0.810 1.000 1.235 
I-B-4 17.5 36800 40300 0.608 1.095 0.873 0.797 
I-S-6 18.5 35400 31800 0.631 0.898 0.850 0.946 
I-S-7 19.0 34500 26100 0.639 0.757 0.842 1.112 
I-S-8 19.1 49400 38800 0.769 0.785 0.732 0.932 
I-B-5 20.3 37300 29400 0.710 0.788 0.778 0.987 
I-B-6 20.8 34000 29200 0.695 0.859 0.791 0.921 
I-B-7 21.6 32600 28800 0.707 0.883 0.781 0.884 
I-S-9 21.6 34000 25500 0.722 0.750 0.769 1.025 
I-B-8 25.2 38700 30000 0.898 0.775 0.647 0.835 
I-S-10 27.1 34500 22900 0.912 0.664 0.639 0.963 
I-S-11 27.8 34000 23900 0.929 0.703 0.630 0.896 
I-S-12 27.8 34500 29200 0.936 0.846 0.626 0.740 
I-S-13 28.3 49400 29200 1.140 0.591 0.532 0.899 
I-B-9 28.9 29200 26200 0.895 0.897 0.649 0.724 
I-B-10 29.9 32600 24600 0.978 0.755 0.604 0.800 
I-B-11 30.6 34900 25700 1.036 0.736 0.576 0.782 
I-B-12 31.2 37300 28300 1.092 0.759 0.551 0.727 
I-B-14 33.1 34000 23000 1.106 0.676 0.545 0.806 
Average: 0.925 
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