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Abstract  
A number of viscoelastic materials exhibit so-called Power-Law creep. Various analytical me-
thods exist by which this expression can be used in accurate analysis of materials behavior. In 
modern structural analysis by FEM techniques, however, application of the Power-Law creep 
expression is somewhat inefficient. It cannot, in a simple way, be formulated in an incremen-
tal way such that the ‘next step’ in an analysis can be predicted by the immediate stress-strain 
situation. Very much time is used for large integrations. 

The Power-Law creep expression is presented in this paper together with an easy method to 
replace it with an approximate creep model (adapted Burgers model), which is applicable in 
incremental analysis of structures. The method applies for any so-called creep power 0 < b < 
1, (numerically 0.000000001 ≤ b ≤ 0.999999999). 

The errors turning up in stress-strain analysis when going from a Power-Law model to an a-
dapted Burgers model is discussed at the end of the paper: Used properly the conversion of 
rheological models will not cause significant errors in an overall analysis. 

Deliberately the method presented avoids establishing a Burgers model directly from experi-
mental creep data because such a procedure will provoke errors, which are irreversible. This 
feature is also discussed at the end of the paper. 

It is assumed that the reader is familiar with elementary rheology as presented in (e.g. 1,2): 
Definition of creep- and relaxation functions, rheological spectra, and elastic-viscoelastic ana-
logies, for example. Notations used are listed at the end of the paper. 

1. Power-law creep 
The Power-Law creep model presented in Table 1 is the result of a complete analysis made in 
(3) of an expression, c(t) = (1 + atb)/E suggested by Clouser (4) with constants a and b, which 
is very often used successfully in the literature (e.g. 5) to fit experimental data from creep 
tests on a variety of building materials such as wood, polymers, and ceramic materials. Physi-
cally Clouser’s expression is very unfortunate (one material constant "a" has the dimension of 
time raised to minus the other material constant "b"). 

Re-formulated, however, as it is in Table 1 the expression becomes viscoelastically sound, 
characterizing the materials rheology by independent material properties, namely the dimen-
sionless creep power, b, and the curing dependent relaxation time τP. Also shown in Table1 is 
the Power-Law relaxation function, developed in (3). Examples of both creep and relaxation 
functions for Power-Law creeping materials are shown in Figures 1 and 2. 

The Power-Law model is a very efficient tool in viscoelastic stress-strain analysis (2). A num-
ber of material problems for a number of different materials can be solved in one approach, by 
developing standard solutions ('master solutions') from which solutions for specific materials 
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at various ambient curing conditions can be picked, introducing specific material parameters, 
τP and b. For wood, for example, we may estimate creep parameters as suggested in Equation 
1 reproduced from (3,6,7) for constant levels of moisture content and temperature. 

Table 1. Power-Law creep- and relaxation functions. Reproduced from (3). The gamma function is 
denoted by Г(1+b) = faculty b!. EP and τP is Young’s modulus and relaxation time respectively. b is 
creep power. 

Power-Law model 
Creep function Relaxation function 

b

P P

1 tc(t) 1 + 
E

⎛ ⎞⎛ ⎞ ⎟⎜ ⎟ ⎟⎜⎜ ⎟ ⎟= ⎜⎜ ⎟ ⎟⎜⎜ ⎟⎜ ⎟τ⎝ ⎠⎜ ⎟⎝ ⎠
 

bk( Z(t)) tr(t) E   with Z (1 b)P (1 + kb)k=0 P
1 Z 1r(t) E (b 1/ 2) or r(t) (b 1/ 3)P 2 c(t)b Z1 2Z
sin(b ) (1 b)

⎛ ⎞∞ − ⎟⎜ ⎟⎜= =Γ +∑ ⎟⎜ ⎟⎜ ⎟Γ τ⎝ ⎠
+

≈ <
π

+ +
π Γ +

≈ <

{
(15 u)/10+(20-T)/15

P 15
o

4 5

15

0.2 - 0.25 grainCreep power b  0.25 0.3 grain
Relaxation time τ = τ *10
where u(%) is moisture content (kg / kg dry) and T( C) is temperature and (1)

10 10 days grainτ is relax t30 300 days grain

-

≠≈ − ⊥

⎧ − ≠≈ −⎨ − ⊥⎩
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 Figure 2. Power-Law relaxation: EP = 16000
MPa, τP = 100 days, b = 0.25. 

Figure 1. Power-Law creep: EP = 16000 MPa,
τP = 100 days, b = 0.25. 

 
 
Curiosum: Two special features apply to a Power-Law creep function: 1) It starts up at t = 0 

2. Burgers creep function 
 materials, which do not follow a Power-Law creep de-

with a vertical tangent – and 2) it ends at t ¸ 4 with a horizontal tangent although its value ap-
proaches infinity. Correspondingly the relaxation function also starts up with a vertical tan-
gent, and approaches 0 as t ¸4. 

The viscoelastic behavior of building
scription, can often be modeled by the so-called Burgers model illustrated in Figure 3. Creep- 
and relaxation functions for this model are presented in Table 2 reproduced from (2). More 
explicitly, the creep function is expressed by Equation 2, illustrated in Figure 4. 
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Table 2. Burgers creep- and relaxation function. Reproduced from (2). 

Burgers model 
Creep function Relaxation function 

K

1 t tc(t) 1 +  + 1  exp
E

⎞⎡ ⎤⎛ ⎞⎛ ⎟⎟⎜⎢ ⎥⎜ ⎟⎟= α − −⎜ ⎟⎜ ⎟⎢ ⎥⎜ ⎜ ⎟⎟⎜⎝ ⎟τ ⎝ ⎠τ ⎠⎣ ⎦
 

B1 B1
B1 B2 K

B2 B2
K

E tr(t) (   1)expm m  m m
t (   1)expm m

⎡ ⎛ ⎞⎟⎜⎢ ⎟= − −⎜ ⎟⎢ ⎜ ⎟⎜− ⎝ ⎠τ⎣
⎤⎛ ⎞⎟⎜ ⎥⎟− − −⎜ ⎟⎥⎜ ⎟⎜⎝ ⎠τ ⎦

 

 

B2

2
B1K K K K

K
K K

mE 1 =    ;    = ;   = ;  = 1 +  +   1 +  +   4
E 2mE E

⎛ ⎞⎟⎜ ⎛ ⎞η τ τ τη ⎟⎜ ⎟⎜ ⎟τ α α ± α −⎜ ⎟τ ⎜ ⎟⎟⎜ ⎜ ⎟⎝ ⎠τ τ τ⎜ ⎟⎟⎜⎝ ⎠

Figure 3. Burgers model. 

t * E1 t 1 Kc(t) 1 exp Burgers creep function (2)
E EK K

= + + − −
η η

⎛ ⎞⎛ ⎞
⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

BURGERS CREEP

0

0.00005

0.0001

0.00015

0.0002

0 100 200 300
TIME - days

CR
EE

P-
 M

pa
-1

 

Ho
ok

e 
    

  N
ew

to
n 

    
 K

el
vin

Figure 4. Burgers creep function: E =
16000 MPa, η = 6.4*106 MPa*day, EK =
16000 MPa, ηK = 4.8*105 MPa*day. 

 

3. General creep description 
A description of creep functions for viscoelastic material in general, such as e.g. Power-Law   
and Burgers materials, is based on the Kelvin chain mechanical model shown in Figure 5. The 
creep expressions associated are presented in Equation 3, where L(θ) is a so-called retardation 
spectrum quantifying the rheological parameters for an infinite number of so-called Kelvin 
elements with relaxation times (θ) as defined in Figure 5. 
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Figure 5. Generalized mechanical mo-
del for a viscoelastic material.η and θ =
η/E denote viscosities and relaxation ti-
mes respectively. 

 

 

 

 
N

n=1

0

F
(t) (3)

1 t 1 t +  + 1 - exp - inite number (N) of Kelvin elements
E η θEn n

L(θ)1 t t +  + 1 - exp - dθ Infinite number of Kelvin elements
E η θ θ

c
∞

⎛ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜∑ ⎜ ⎟⎟⎜ ⎜ ⎜ ⎟⎟⎜⎜⎜ ⎝ ⎠⎝ ⎠⎜⎜= ⎜⎜ ⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜⎜ ⎟⎟⎜∫ ⎜⎜ ⎟⎟⎜ ⎜ ⎟⎜⎜ ⎝ ⎠⎝ ⎠⎝

The retardation spectrum presented in Equation 4 has been developed by the author in (3) for 
a Power-Law material. An example of determining creep functions from retardation spectra is 
presented just below. 

 

P

b

P P

For Power Law Creep : Young 's mod ulus E E , viscosity and

with Z( ) (1 b) Re tardation spectrum (4)
Z( )sin(b )L( )

E

− = η=∞

⎛ ⎞θ ⎟⎜ ⎟θ =Γ + ⎜ ⎟⎜ ⎟⎜τ⎝ ⎠

θ π
θ =

π

Example: For relaxation times θ ≤ 106 days the viscoelasticity of a material is given by the 
retardation spectrum, L (θ), presented in Equation 4 with EP = 16000 MPa, b = 0.25, and τP = 
100 days. For θ > 106 days, however, L(θ) ≡ 0 applies. 

The question is, which creep function is associated with this retardation spectrum. We only 
consider materials with a locked free viscosity, meaning η = ∞ (in Figure 5 and Equation 3). 

Figure 7. Creep function associated with the
retardation spectrum illustrated in Figure 6. 

 Figure 6. Retardation spectrum as defined in the
main text.  

Equation 3 gives the answer, namely the creep function presented in Figure 7. A Power-Law 
creep function (with the above indicated EP,b,τP) is also shown in this figure. It is obvious that 
the creep function determined from the retardation spectrum relates closely to this Power-Law 
creep function. (With no truncation at θ = 106 days of the spectrum in Equation 4, the two so-
lutions will coincide completely). 

 

6



Remark: Obviously, the viscosity of Power-Law materials can be described by an infinite 
number of Kelvin elements in Figure 5. For a Burgers material only one such element is re-
quired. 

4. Stress-strain analysis  
An analysis of viscoelastic materials is very often made by the classical stress-strain relation 
shown in Equation 5. For any stress change, integration is required all the way from t = 0 to 
time of change. 

 

t

0
1 1 2 2 3 3

dc(t ) d (continuous stress variation)(t) (5)d
c(t t ) c(t t ) c(t t ) ...... (step varying stress)

σ⎧⎪ − ρ ρ∫ε = ⎨ ρ
⎪∆σ − + ∆σ − + ∆σ − + −⎩

Incremental analysis 
In structural analysis with FEM such a procedure is very time consuming. The so-called in-
cremental formulation of the stress-strain relation outlined in Equation 6 is to prefer because 
the ‘next step’ of analysis can be predicted by the immediate stress-strain situation without in-
volving numerous integrations back from t = 0. This process is replaced by the more conveni-
ent procedure of continuously following the strain (εK) in the Kelvin elements. 

*
NH K

H

N

*K K K

K

dd dd Incremental formulation of stress strain relation
dt dt dt dt
with
d 1 d (Hooke)
dt E dt

d (Newton) (6)
dt

d E (Kelvin) ( for each Kelvin in a chain)
dt

εε εε
= + + −

ε σ
=

ε σ
=
η

ε σ− ε
=

η

It is easily checked that identical solutions are obtained using Equations 5 and 6. Simple ex-
amples will illustrate this feature: A Burgers material is subjected to a constant load (1 MPa) 
up to 150 days where it is completely unloaded. The strains produced analytically and incre-
mentally respectively are shown in Figures 6. For the same Burgers material the relaxation 
functions shown in Figure 7 are determined by Table 2 and Equation 7 respectively. The latter 
expression is developed by the author in (8) on the basis of Equation 6. 
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 Figure 6. Creep function for Burgers material, calculated analytically and incrementally. E = 10000
MPa, η = 3e6  MPa*day, EK = 20000 MPa, ηK = 6e5  MPa*day 
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Burgers relax function - incremental
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Figure 7. Relaxation function for Burgers material, calculated analytically and incrementally. E =
10000 MPa, η = 3e6 MPa*day, EK = 20000 MPa, ηK = 6e5  MPa*day

 

 
Remark: It is emphasized that re-writing the Power-Law in an incremental formulation is not 
impossible. It is, however, a very complex task involving an infinite number of Kelvin ele-
ments to be handled as indicated in Equation 6 with complex combinations of retardation 
spectra. The gain in calculation time relative to classical analytical procedures, represented by 
Equation 5, is easily lost in this process. 

However, as subsequently explained, a method can be established by which we may simulate 
Power-Law creep approximately by Burgers creep – meaning that a simple incremental analy-
sis can be used with only one Kelvin element. 

5. Simulation of Power-Law model by Burgers model 
In this section we will simplify matters 1) by utilizing the observation made in Section 1 that 
Power-Law creep starts up at t = 0 with a vertical tangent, and 2) by reducing the number of 
Kelvin elements to only one. In this way we get a Burgers model – with an extra, ‘invisible’, 
Kelvin element, which develops extremely fast. A reduced stiffness, E, (‘static stiffness’) is a 
consequence of such a simplification. 

 

 

 

 

 

 

 

 

 

 

Figure 8. Principles of modifying the
Burgers model to approximate a Po-
wer-Law model. Details are pre-
sented in Table 4 and in Appendix A
at the end of this paper. t S
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Adapted Burgers model 
A Burgers model is adapted to approximate the Power-Law creep expression as follows (see 
also Figure 8 and Appendix A at the end of the paper): 
- The vertical Power-Law tangent at t = 0, previously referred to, is considered by a redu-

ced (static) Young’s modulus E. Originally the idea of ‘hiding’ a rapid Kelvin element 
in a reduced Young’s modulus was suggested in the authors work (9) on creep of con-
crete. 

- The Power-Law slope at tSLOPE determines the viscosity η. 
- The Kelvin Young’s modulus EK is determined as indicated in Figure 8. 
- The Kelvin viscosity ηK is determined from assuming Power-Law creep and Burgers 

creep to coincide at tCOIN. 
The results of this adaption procedure are compiled in Table 4. The ‘Period of analysis’ (T) 
and the ‘Calibration parameters’ (tSLOPE, tCOIN, and ∆) introduced in the third row of the table 
are results of a number of evaluation tests as explained in Section 6. 

Table 4. Determination of rheological parameters for the adapted Burgers model. 

POWER-LAW 
Creep parameters E , b, τP P  

Period of analysis T 

Calibration parameters ≈≈ ≈ 2t 0.75 * T , t /10, ∆ T * (1 - b ) /100SLOPE COIN T  
BURGERS 

 

E (Young’s modulus) 
P

b

P

E

∆1 +
τ

⎛ ⎞
⎜ ⎟
⎝ ⎠

 

η (Viscosity) SLOPE SLOPE
-b

E t tP
b τP

⎛ ⎞
⎜ ⎟⎜ ⎟
⎝ ⎠

 

EK  (Kelvin Young’s modulus) SLOPE

1
b

t1 11 + (1- b) -
E τ EP P

⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

 

ηK  (Kelvin viscosity) 

COIN

COIN COIN

- t * EK
b

t t1 1log 1- E 1 + - -e K E τ E ηP P

⎛ ⎞⎛ ⎞⎛ ⎞⎛ ⎞⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎜ ⎟⎝ ⎠⎜ ⎟⎝ ⎠⎝ ⎠⎝ ⎠

 

Remarks: It is noticed from Table 4 that the calibration parameter ∆ determines the effective 
Young’s modulus (or reduced stiffness) previously mentioned, which simultaneously consi-
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ders real stiffness of the Power-Law material together with the stiffness of an extremely fast- 
working Kelvin element. 

The ‘period of analysis’ (T) is the period of time where an adapted Burgers model can replace 
a Power-Law model in stress-strain analysis. Some errors (after stress jumps) will turn up in 
this time period. They will, however, be controllable – and very often of no significance in an 
overall analysis of structures. Examples of this statement are shown in the following section. 

6. Applications 
Four examples are considered in this section. They are thought to simulate 1) a structural ana-
lysis, 2) a materials analysis, and 3) + 4) a composite analysis respectively. Further, an ex-
ample 5) demonstrates the power of the method presented in this paper also to apply when a 
creep power of b = 1 is used, meaning that the Power-Law material considered has degenera-
ted to a so-called Maxwell material. 

The evaluations made go directly between results obtained by an exact Power-Law analysis 
(Equation 5 with Table 1) and results obtained by an exact Burgers analysis (Equation 5 with 
Table 2). This evaluation applies equally well, comparing a Power-Law analysis with an in-
cremental Burgers analysis. It was shown in Section 4 that an incremental analysis and a clas-
sical analysis (by Equation 5) of a Burgers material give identical results. 

Example 1:  Strain caused by step varying load 
The specific problem considered in this example is the determination of the strain history in a 
Power-Law material subjected to a step-varying load – and to evaluate errors turning up as the 
result of using an adapted Burgers stress-strain relation as the basis of analysis. 

The Power-Law material considered in this example is described in Table 5 together with pa-
rameters determined by Table 4 for the adapted Burgers material. The respective creep- and 
relaxation functions are presented in Figure 9 as predicted by Tables 1 and 2. 

The load history previously outlined is illustrated in Figure 10 together with the strain history 
associated, calculated as previously indicated in Equation 5. 

Table 5. Example 1: Power-Law creep parameters and associated parameters for the adapted Bur-
gers. 

Power-Law material considered 
EP = 16000 MPa, τP = 10000 days, b = 0.2. (≠ to grain) 

Duration of analysis: T = 10000 days (30 years) 
Adapted Burgers model 

E = 11470 MPa, η = 6.36 e8 MPa*day, EK = 44393 MPa, and ηK = 5.04 e7 MPa*day 

Discussion: From Figure 10 is observed that there can hardly be observed any difference be-
tween results of the two prediction methods applied. This statement is, of course, made from a 
practical point of view, which considers the overall analysis (here 30 years). Apparently the 
inherent ‘errors’ of the adapted Burgers method fade out as time proceeds to long times (with-
in the time, T, decided for the duration of analysis) – meaning that these ‘errors’, revealing 
themselves most obviously in plain creep- and relaxation predictions (see Figure 9), will not 
influence significantly a stress-strain analysis in practice. The topic of errors is further discus-
sed in Section 7. 

It is emphasized that the consequences of the errors just discussed are of exactly the same 
kind as those introduced from uncertainties involved in the experimental determination of 
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creep functions – especially the determination of Young’s moduli. Dynamic or static values? 
How does these quantities depend on rate of testing? Discussions on this feature have been 
presented in (3). 

Creep function
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 Figure 9. A 30 years analysis of the creep- and relaxation functions for the Power-Law material and
the adapted Burgers material considered in Table 5. 
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 Figure 10. Example 1: A 30 years stress-strain analysis of the Power-Law material considered. Cal-
culations made by both Power-Law and the adapted Burgers model.

Figure 11. Auxiliary figu-
re for the analysis of
stress in wood during dry-
ing. 

 

Example 2:  Stress in wood caused by drying 
In this example we will check the ability of an adapted Burgers model to work as the basis in 
an analysis of stress caused by drying of a wood specimen of fixed length. 
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The ‘true’ viscoelastic behavior of the wood considered is assumed to follow the Power-Law 
model described in the Table 6 which also show the adapted Burgers parameters as they apply 
for a duration of analysis, T = 1200 days. 

The basic procedures to follow in the present stress-strain analysis are presented in Figure 11. 
The moisture (drying) history considered is presented in Figure 12. A shrinkage coefficient of 
s = 0.2 is assumed in both Power-Law and Burgers analysis. In details the analysis is straight 
forward as explained in previous parts of the paper. No further comments will be given. The 
results obtained, and graphically presented in Figure 13, speak for themselves.  

Table 6. Example 2: Power-Law creep parameters and associated parameters for the adapted Burgers 
model. 

Power-Law material considered (Wood) 
EP = 800 MPa, τP = 50 days, b = 0.25, (shrinkage: s = 0.2 per kg/kg dry) Perp. to grain 
Duration of analysis: T = 1200 days 

Adapted Burgers model 
E = 473 MPa, η = 1.4 e6 MPa*day, EK = 935 MPa, and ηK = 1.3 e5 MPa*day 

 

 

Figure 12. Example 2: Drying from u(0) = 0.25
to u(∞) = 0.15 with a relax-time of drying,  α =
50 days. 

Figure 13. Example 2: Stress due to drying as
described in Figures 11 and 12. Predictions are
based on the Power-Law model, and on the
adapted Burgers model respectively. For the
latter model a duration of analysis, T = 1200
days is assumed. 

 

 

 

Figure 14. Example 2: Shrinkage stress de-
veloped in the wood specimen considered if
rate of drying is increased corresponding to
α = 5 days. 
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Remarks:  The viscoelastic stress results presented are obtained from the elastic solution (in 
Figure 11) using the so-called elastic-viscoelastic analogy explained in (e.g. 2); see also Ap-
pendix B at the end of this paper. 

For the sake of curiosity, a stress analysis has also been made for a more rapid drying (α = 5 
days) as was assumed in Figures 12 and 13. The result is shown in Figure 14. It is obvious 
that accelerating a drying process increases the risk of damaging the wood being processed. 

Example 3:  Prestressed wood (Composite) 
In this example we will check the ability of an adapted Burgers model to work in an analysis 
of a wood composite: More specifically we consider a wood specimen, see Figure 15, subjec-
ted to prestress. 

The ‘true’ viscoelastic behavior of the wood considered is assumed to follow the Power-Law 
model specified in Table 7 which also show the adapted Burgers parameters as they apply for 
a duration of analysis of T = 1000 days. Prestress details are also presented in Table 7. 

The basic procedure to follow in the stress-strain analysis is outlined in Table 8. The viscoela-
stic stress result presented is obtained from the elastic solution using the so-called EEFF-me-
thod (effective Young’s modulus method) explained in (2) and in Appendix B at the end of 
this paper. This method applies very accurately for creep powers b < 1/3 (2). Some results ob-
tained by Table 8 are presented in Figures 16 and 17. As usual the Burgers solutions are obtai-
ned by switch of creep functions. 

 Figure 15. Example 3: Auxiliary figure for the prestress analysis of wood. 

Table 7. Example3: Power-Law creep parameters and associated parameters for the adapted Burgers 
material. Prestress details are also presented 

Power-Law material (Wood) 
EP = 1000 MPa, τP = 50 days, b = 0.25  (perpendicular to grain) 
Duration of analysis: T = 1000 days 

Adapted Burgers model 
E = 603 MPa, η = 1.52e6 MPa*day, EK = 1223 MPa, and ηK = 1.45e5 MPa*day 

Steel 
EP = 200000 MPa, c = 1 ‰ (0.001), AST = 3 cm2

Cable force before bonding: Fo = 50 kN (⇒ σST
o = 167 MPa) 
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Table 8. Example3: Outlines of an analysis of wood subjected to prestress.  

Discussion: Similar comments can be made to the success of predicting prestress behavior by 
adapted Burgers models, as for predicting strain under variable stress in Example 1. The inhe-
rent ‘errors’ of the Burgers model do not significantly influence the overall results of such an 
analysis. 
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Figure 16. Example 3: Cable force and strain in a prestressed wood specimen. 
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 Figure 17. Example 3: Stresses developed in a prestressed wood specimen. 
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Example 4:  Creep of reinforced wood 
A wood specimen is reinforced parallel to grain. Which creep functions apply parallel and 
perpendicular to grain respectively? Layout and stiffness formulas from (10) are shown in Fi-
gure 18. Materials data are presented in Table 9. Creep is determined by the simple e-v-analo-
gy outlined in Appendix B at the end of the paper. The results are presented in Figures 19 and 
20. 

 
 
 

⊥ ≠to fibers with fibers

P

P

ST ST

P ST P

E 1 c(n 1) stress parallel with fibres
E

n (n 1)(1 c) cE stress perpedicular to fibres
E n (n 1) c

V E
c volume concentration ; n stiffness ratio

V V E

= + −

− − −
=

− −

= =
+

 Figure 18. Wood reinforced perpendicular to, and parallel with fibres 

Table 9. Example4: Power-Law creep parameters and associated parameters for the adapted Burgers 
material. 

Power-Law material (Wood) 
EP = 1000 MPa, τP = 50 days, b = 0.25  (perpendicular to grain) 

EP = 16000 MPa, τP = 10000 days, b = 0.2  (parallel with grain) 
Duration of analysis: T = 1000 days 

Adapted Burgers model 
E = 603 MPa, η = 1.52e6 MPa*day, EK = 1223 MPa, and ηK = 1.45e5 MPa*day  (perp. to gr.) 

E = 12809 MPa, η = 1.01e8 MPa*day, EK = 70362 MPa, and ηK = 8.0e6 MPa*day (parallel to gr.) 
Reinforcement (Steel) 

EST = 200000 MPa, c = 20 % (reinforcement) 

CREEP FUNCTION
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Figure 19. Creep function, perpendicular to
grain of wood reinforced parallel to grain. 

Figure 20. Creep function parallel to grain of
wood reinforced parallel to grain. 
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Example 5:  Curiosum: Maxwell material 
Finally, as a curiosum we will demonstrate the applicability of the method presented also to 
describe the behavior of Maxwell materials. A Maxwell model is a Burgers model without the 
Kelvin element. It is also a Power-Law model with a creep power of b = 1. The accurate 
creep- and relax-functions presented in Equation 8 are from (e.g. 2) 

 

P P

P
P

1 tc(t) 1 creep function
EA Maxwell material can be described

(8)
as a Power Law material with b 1: tr(t) E exp relaxation function

⎧ ⎛ ⎞
= +⎪ ⎜ ⎟τ⎧⎪ ⎪ ⎝ ⎠⇒⎨ ⎨

− = ⎛ ⎞⎪⎩ ⎪ = −⎜ ⎟⎪ τ⎝ ⎠⎩

Figure 21 confirms the ability of the method presented in this paper also to apply when going 
from a Maxwell model described as a Power-Law model with b = 1 to a Maxwell models tra-
ditionally described. 
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 Figure 21. Maxwell material adapted from a Power-Law material with Young’s modulus EP =
16000 MPa, relaxation time τP = 200 days, and a creep power of b = 1. The Maxwell properties
become: E = 16000 MPa and η = 3.2 e6 MPa*day (corresponding to τ = η/E = 200 days). 

 

 

7. Conclusion and final remarks 
Following the procedures explained in Sections 5 and 6 a number of Power-Law expressions, 
with various parameters EP, b, τP, have successfully been tested with respect to Burgers adap-
tion. Apparently the process of including a rapid (‘invisible’) Kelvin strain into elastic (Hoo-
ke) strain works well. It is of special interest to notice that the reduced Young’s modulus in 
practice can be predicted by E = EP/(1 + (∆/τP)b) with ∆ ≈ (1 - b2)/100 of the duration of ana-
lysis (T). 

As previously indicated: Of course, a simplification of a materials viscoelastic stress-strain re-
lation has its price. In the present paper, where Power-Law materials are considered, a maxi-
mum loss of accuracy is limited to appear over the first approximately ∆ days after stress 
jumps. The errors, however, will fade out as time proceeds to longer times (within the time, T, 
decided for the duration of analysis). To illustrate this feature a magnified section of Figure 
10 is shown in Figure 22.  

As can be seen from Figure 23, errors can be reduced locally, decreasing the duration of ana-
lysis (T). This feature might be useful in a higher accuracy analysis for small periods of time. 
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Nature of errors: We re-call that the errors discussed throughout the paper are not real, per-
manent errors. They are the results of replacing a fast working Kelvin strain with an extreme-
ly fast working Hooke strain. Both such strains are reversible meaning that they, after some ti-
me, become equal. In a way these errors are ‘self-repairing’. 

Real errors are deviations between Power-Law and Burgers results, which show up after T be-
cause the ‘duration of analysis’, T, has been chosen too small, see Figure 24. These errors are 
of the same kind as those which will turn up if a stress-strain analysis is based on a Burgers 
model established directly from experimental data collected from tests with too short durati-
ons of load, (here 2000 days). 

Summary: Viscoelastic analysis (and incremental analysis) of Power-Law materials can be 
made by stress-strain relations based on the behavior of adapted Burgers creep models. The 
adaption can be made by a very simple algorithm (Table 4) where the only in-put parameter is 
the period of analysis (T). The method applies for any creep power 0 < b < 1, (numerically 
0.000000001 ≤ b ≤ 0.999999999). 
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Figure 22. Blow-up of the strain history
presented in Figure 10 at ages less than 3
years. (Still from a T = 30 years analysis).

Figure 23. The same example as considered in
Figure 10. The duration of analysis, however, is
reduced to T = 1100 days (3 years). 
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Figure 24. Errors turning up at longer times
because the duration of analysis, T, has been
chosen too short. In this case T = 2000 days.
Materials data and load history are as used in
example 1, see Figure 10. 
The figure is also an illustration of errors,
which will turn up if a Burgers model is ap-
plied which is based on data collected from
tests with too short durations of load (here
2000 days). 
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Notations 
 Subscripts 
 K     Kelvin element 
 H     Hooke element 
 N     Newton element 
 P     Power-Law 
 B     Burgers 
 SH     Shrinkage  

Stress-strain 
 Stress     σ  
 Strain     ε  

Various 
 Moisture content   u (kg/kg dry) 
 Shrinkage coefficient   s (strain pr unit moisture content) 
  Creep in general 
 Time in general    t 
 Creep function    c(t) 
 Relaxation function   r(t) 
 Young’s modulus   E 
 Viscosity    η 
 Relaxation time in general  θ = η/E 
 Power-Law creep 
 Relaxation time    τP
 Creep power    b 
 

Appendix A: On adapted Burgers models 

 

COINCOIN COIN

COIN

COIN
b

t * Et t1 1 1 K1 + = + + 1 - exp -
E τ η ηP P K K

t * EKCOINη =K
t1

-log 1 - E 1 +e K E τP P

The Kelvin viscosity is calculated as follows assuming coinciding
Burgers- and Power creep values at t = t :

⇒
⎛ ⎞ ⎛ ⎞⎛ ⎞ ⎛ ⎞⎜ ⎟ ⎜ ⎟⎜ ⎟ ⎜ ⎟⎜ ⎟⎝ ⎠ ⎝ ⎠⎝ ⎠⎝ ⎠

⎛ ⎞
⎜
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E E
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η

⎛ ⎞⎛ ⎞⎛ ⎞
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b 1 b
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We estimate viscosity from slope of Power Law at t
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E t t1Burgers viscosity
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The Burgers Young 's moduli are det er min ed as f
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⎛ ⎞
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P P K
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P P

K

ollows :
Calculate the auxiliary parameter Y as follows, see also Figure 8,

t1 1 1Y c (t ) t 1 (1 b) where
E E E

E E / with 1 / is effective Young 's modulus of the Burgers model and
1E

Y 1

⎛ ⎞⎛ ⎞⎜ ⎟= − α = + − = +⎜ ⎟⎜ ⎟τ⎝ ⎠⎝ ⎠
= β β = + ∆ τ

=
−

is effective Young 's modulus of the kelvin element
/ E
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Appendix B: On the elastic-viscoelastic analogy 
ch solutions to an elastic stress-strain problem can be transformed to 

mple form the analogy can 
reep function, cP(t), and 

An analogy exists by whi
solutions applying to the counterpart viscoelastic problem. In a si
be expressed as follows (e.g. 2) where phase P is viscoelastic with c
relaxation function, rP(t): 

1) Viscoelastic solution is obtained from the elastic counterpart solu
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