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2 Summary 

This paper treats the subject Yield line Theory for Concrete Slabs Subjected to Axial Force.  

In order to calculate the load-carrying capacity from an upper bound solution the dissipation has to 

be known.  

For a slab without axial force the usual way of calculating this dissipation is by using the normality 

condition of the theory of plasticity together with the yield condition. This method is equivalent to 

the original proposal by K. W. Johansen. This method has shown good agreement with experiments 

and has won general acceptance.  

In this paper the dissipation in a yield line is calculated on the basis of the Coulomb yield condition 

for concrete in order to verify K. W. Johansen’s method. It is found that the calculations lead to the 

same results if the axes of rotation are the same for adjacent slab parts. However, this is only true if 

the slab is isotropic and not subjected to axial load. 

An evaluation of the error made using K. W. Johansen’s proposal for orthotropic rectangular slabs 

is made and it is found that the method is sufficiently correct for practical purposes. 

For deflected slabs it is known that the load-carrying capacity is higher. If it is assumed that the axis 

of rotation corresponds to the neutral axis of a slab part and the dissipation is found from the 

moment capacities about these axes K. W. Johansen’s proposal may be used to find the load-

carrying capacity in these cases too. In this paper this is verified by comparing the results with 

numerical calculations of the dissipation. Also for deflected slabs it is found that the simplified 

method is sufficiently correct for practical purposes.  

The same assumptions are also used for rectangular slabs loaded with axial force in both one and 

two directions and sufficiently good agreement is found by comparing the methods. 

Interaction diagrams between the axial load and the transverse load are developed at the end of the 

paper for both methods. Different approaches are discussed.  

Only a few comparisons between experiments and theory are made. These indicate that the theory 

may be used if a proper effectiveness factor is introduced and the deflection at failure is known. 

If the deflection is unknown an estimate of the deflection based on the yield strains of the concrete 

and the reinforcement seems to lead to acceptable results. 
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3 Resume 

Denne rapport behandler emnet brudlinieteori for plader belastet med normalkræfter og 

tværbelastning.  

For at kunne beregne bæreevnen ud fra en øvreværdibetragtning er det nødvendigt at kunne udregne 

dissipationen.  

Plader uden normalkraft beregnes normalt ud fra plasticitetsteoriens normalitetsbetingelse 

kombineret med pladens flydebetingelse. Denne metode er ækvivalent med K. W. Johansens 

oprindelige forslag. Denne metode har vist god overensstemmelse med forsøg og er almindeligt 

benyttet.  

I denne rapport udregnes dissipationen i en brudlinie ud fra dissipationsformlerne for et Coulomb 

materiale og dette sammenholdes med K. W. Johansens metode. Af dette fremgår det at resultatet er 

det samme hvis rotationsakserne for tilstødende pladedele ligger i samme højde. Dette vil dog kun 

være rigtigt for isotrope plader og der er derfor gennemført en vurdering af fejlen ved beregninger 

af ortotrope plader. Fejlen vurderes at være uden praktisk betydning.  

Det vides at bæreevnen for en plade stiger under udbøjning. Det er her vist at hvis man antager at 

rotationsaksen svarer til nullinien for den enkelte pladedel og beregner dissipationen efter K. W. 

Johansens fremgangsmåde kan man beregne bæreevnen. Dette er eftervist ved at sammenligne med 

numeriske beregninger der baserer sig på dissipationsudtrykkene for et Coulomb materiale. 

Beregningerne viser, at afvigelserne er uden praktisk betydning.  

Beregninger af plader med normalkraft og udbøjede plader med normalkraft i både en og to 

retninger viser tilsvarende god overensstemmelse. 

Interaktionsdiagrammer for normal og tværlast behandles til sidst og der gives forskellige bud på 

hvordan dette kan gribes an. 

Kun ganske få forsøg er her fundet brugbare til verifikation af teorien. Disse data er for kvadratiske 

plader med normalkraft i én retning.  

Ved sammenligning mellem forsøg og teori er det vist at beregninger med en passende 

effektivitetsfaktor giver god overensstemmelse med forsøg hvis man anvender den målte 

brududbøjning.  

Kendes brududbøjningen ikke kan man tilsyneladende anvende et skøn der baserer sig på 

flydetøjningen for beton og armering.  
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5 Notation 

The most commonly used symbols are listed below. Exceptions from the list may appear, but this 

will then be noted in the text in connection with the actual symbol. 

 

Geometry  

h Height of a cross-section 

A Area of a cross-section 

Ac Area of a concrete cross-section 

As Area of reinforcement close to the bottom face 

As’ Area of reinforcement close to the top face 

Asc Area of reinforcement in compression 

hc Distance from the bottom face to the centre of the bottom reinforcement 

hc’ Distance from the top face to the centre of the top reinforcement 

y0 Compression depth  

L Length of an element 

Lx,Ly Length of a slab in the x and y direction, respectively 

e Eccentricity 

u Deflection 

um Deflection in the mid section 

x, y, z Cartesian coordinates 

 

Physics  

ε Strain 

σ Stress 

σc Stress in concrete  

fc Compressive strength of concrete 

fy Yield strength of reinforcement 

ρ Reinforcement ratio 

Φ0 Degree of Reinforcement  

Φ0x, Φ0y Degree of Reinforcement in the x and y direction, respectively 

p Line load, uniform load per unit length 



Yield line Theory for Concrete Slabs Subjected to Axial Force 

 - 8 - 

q Surface load, uniform load per area unit 

mp yield moment in pure bending 

mpx,mpy  yield moment in pure bending in the x and y direction, respectively 

mf yield moment for a given axial load 

mfx,mfy  yield moment for a given axial load in the x and y direction, respectively 

n Axial load per unit length 

nx,ny Axial load per unit length in the x and y direction, respectively 

Wi,We internal and external work, respectively 

Wc,Ws concrete and reinforcement contribution to the dissipation, respectively 
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6 Introduction 

This paper has two main purposes.  

The first one is to investigate the possibility of calculating the load-carrying capacity of a slab in a 

simplified way based on an interpretation of K. W. Johansen´s proposal regarding the dissipation 

and C. R. Calladine´s proposal regarding the axes of rotation. 

The second purpose is to investigate the possibility of finding a calculation method for the relation 

between axial load-carrying capacity and lateral load-carrying capacity. 

In order to determine the load-carrying capacity for slabs by using an upper bound approach the 

dissipation in a yield line has to be found.  

In section 7.1 the contribution from the concrete and the reinforcement are found separately. In both 

cases formulas for the dissipation are developed for all possible yield lines starting in a corner, 

followed by the formulas for the special case of a right-angled corner. 

Section 7.2 treats beams. This illustrates the basic problems in these calculations. 

The following sections (7.3 to 7.5) treat different cases of rectangular slabs starting with the square 

slab without axial force and initial deflection and ending up with rectangular slabs with axial force 

and initial deflections. 

In section 7.6 a conservative proposal for an interaction curve between the axial load and the 

transverse load is given.  

In chapter 8 test results are compared with theory. 

Finally conclusions are made in chapter 9. 

 



Yield line Theory for Concrete Slabs Subjected to Axial Force 

 - 10 - 

7 Theory 

7.1 Dissipation in a yield line  

If the axes of rotation for two slab parts are not at the same depth measured from the slab surface, 

the relative displacement discontinuity is no longer perpendicular to the yield line. The angle 

between the displacement discontinuity and the yield line changes with the depth from the slab 

surface and this must be taken into account when calculating the dissipation.Equation Section 7 
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Figure 7.1. Displacement for two slab parts. 

7.1.1 The contribution from the concrete 

The concrete dissipation in the yield line may be calculated from the dissipation formulas for plane 

stress assuming a modified Coulomb material. Setting the tensile strength of concrete to zero, the 

contribution to the dissipation (per unit length) from the concrete may be calculated as: 

 ( )( )
0

1 1 sin
2

h

c cW f u dzα= −∫  (7.1) 

u being the relative displacement and α the angle between the displacement and the yield line. 

Formula for plane stress has been used, see [5]. 

Both u and α depends on z, which is the depth from the top surface to the point considered. uI and 

uII are the displacements of slab part I and II, respectively. Depending on whether the displacements 

uI and uII are positive or not, α and u has to be calculated from one of the following cases: 
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Case 1: 

 

u 
uI 

uII 

-α
uI>0 & uII>0

 

 ( )2 2 2 cosI II I IIu u u u u wπ= + − −  (7.2) 

 
2 2 2

cos
2 2

II I

II

u u uv Arc
u u

πα
  + −= − + −     

 (7.3) 

 

Case 2: 

 

 

u -uI 

uII 

-α
uI<0 & uII>0

 

 ( ) ( )2 2 2 cosI II I IIu u u u u w= + − −  (7.4) 

 ( )22 2

cos
2 2

II I

II

u u u
v Arc

u u
πα
  + − −
 = − + +  

    
 (7.5) 

Case 3: 

 

u uI 

-uII 

α
uI>0 & uII<0

 

 ( )2 2 2 cosI II I IIu u u u u wπ= + − −  (7.6) 

 
2 2 2

cos
2 2

II I

II

u u uv Arc
u u

πα
 + −= − −  − 

 (7.7) 
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Case 4: 

 

u 
-uI 

-uII 
α

uI<0 & uII<0

 

 ( )2 2 2 cosI II I IIu u u u u wπ= + − −  (7.8) 

 ( )22 2

cos
2 2

II I

II

u u u
v Arc

u u
πα

 + − −
= − +  

 − 
 (7.9) 

It is seen that the calculation of u is the same in all the cases and u may in general be calculated as: 

 ( )2 2 2 cosI II I IIu u u u u w= + +  (7.10) 

The angle between the displacement and the yield line α varies with respect to uI and uII depending 

on whether they are positive or negative. 

  

The relation between the two rotations about I and II may be found from the geometrical conditions 

demanding the same displacement at a point of the yield line. 

 

( )sinII v
δω =

       

( )sinI w v
δω =

−
 

•  δ 

v
w w-v

x

y

II
I

sin(w-v) 
1 

sin(v) 

       

1
δω =  

II

I

 
Figure 7.2. Geometrical relation between the rotations. 

It appears from Figure 7.2 that the rotations may be calculated as 

 
( )

( )

sin

sin

I

II

w v

v

ωω

ωω

=
−

=
 (7.11) 

Here ω is the rotation of slab part line about an axis along to the yield line. 
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In the calculation of the displacement it is assumed that the rotation is small and the displacement 

may therefore be calculated as the rotation multiplied with the height. The displacements uI, uII and 

u may be calculated as 

 
( )

( )

sin

1
sin

I
I

I I

h zu h
w v h h

u h z
h w v h h

ω

ω

 = − ⇔ −  

 = − −  

 (7.12) 

 
( )

( )

sin

1
sin

II
II

II II

h zu h
v h h

u h z
h v h h

ω

ω

 = − ⇔ 
 

 = − 
 

 (7.13) 

Inserting (7.12) and (7.13) into (7.10) leads to: 

 

( ) ( )

( ) ( ) ( )

( ) ( )

2 2

2 2

sin sin

2 cos
sin sin

2

sin sin

I II

I II

I II I

h hz zh h
w v h h v h h

u
h hz zh h w

w v h h v h h

h h hz z z
u h h h h h h

h w v v

ω ω

ω ω

ω

      − + −         −       = ⇔
     + − −       −      

        − − −              = + +
−   

   
   

( )
( ) ( )

cos

sin sin

IIh z w
h h

w v v

 − 
 

−

 (7.14) 

The angle α may be calculated as: 

Case 1(uI>0 & uII>0): 

 
2 2 2

cos
2 2

II I

II

u u uv Arc
u u

πα
  + −= − + −     

 (7.15) 

Case 2 (uI<0 & uII>0): 

 ( )22 2

cos
2 2

II I

II

u u u
v Arc

u u
πα
  + − −
 = − + +  

    
 (7.16) 

Case 3 (uI>0 & uII<0): 

 
2 2 2

cos
2 2

II I

II

u u uv Arc
u u

πα
 + −= − −  − 

 (7.17) 

Case 4 (uI<0 & uII<0): 

 ( )22 2

cos
2 2

II I

II

u u u
v Arc

u u
πα

 + − −
= − +  

 − 
 (7.18) 
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It is seen that the contribution to the dissipation from the concrete is a function of both the position 

of the axes of rotation hI, hII, the depth h, the rotation ω and the compressive strength fc. The 

dissipation may be calculated in a dimensionless form as: 

 ( )( )1

2 0

1 1 sin
2

c

c

W u zd
h f h h

α
ω

= −∫  (7.19) 

A general analytical expression has not been found. However, for the special case of right-angled 

corners (w=π/2) the dissipation becomes: 

 

( ) ( )

( ) ( ) ( ) ( )

( ) ( ) ( ) ( )

( ) ( )

2

2 2
2 2 2 2

2 2
2 2 2 2

2 2

1
4sin cos

-1 2 sin cos sin cos

1 - 2 cos - 2 sin 1- sin - cos

- sin - cos
log

c

c

I II I II

II II I I I II

I II

W
h f v v

h h h hv v v v
h h h h

h h h h h hv v v v
h h h h h h

h hv v
h h

ω
= ⋅

       + + + +            

        + + +                   

+
+

( ) ( )

( ) ( ) ( ) ( )

( ) ( )( )

2 2
2 2

2 2
2 2 2 2

2 2
2 4

sin cos

1- sin - cos 1 - 2 cos - 2 sin

2 - - cos - cos

I II

I II II II I I

I II I II

h hv v
h h

h h h h h hv v v v
h h h h h h

h h h h v v
h h h h









  
     +        

       + + +                  
     ⋅            












 
 
 
 
 
 
 
 
   (7.20) 

This expression is found from integrating by parts over the interval in which the expressions for α 

are valid. Distinctions must be made whether h1 is larger than h2 and whether these are larger than 

h. As an example it is seen that if h1<h2 and h2>h the formula becomes: 

 ( )( ) ( )( )1

1

1

1 22 0

1 11 sin 1 sin
2 2

hc
case caseh

c

W u z u zd d
h f h h h h

α α
ω

= − + −∫ ∫  (7.21) 

Fortunately all the combinations of h1, h2 and h lead to the result given in (7.20). 

Plots of results of calculations for hII/h =0.5 w=0.5π and v=0.25π may be seen in Figure 7.1 to 

Figure 7.6. 

These plots show which case has to be used in the calculation, how the different parts in the 

function (7.19) depends on the height and finally the function it self.  
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Figure 7.3.  z/h as a function of the case no. 
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Figure 7.4. z/h as a function of 1-sin(α). 
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Figure 7.5. z/h as a function of u/(hω). 
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Figure 7.6. z/h as a function of ∆W. 

As expected, most of the contribution to the dissipation is from the top (z/h is small).   
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Plots of results of calculations for hII/h =0 w=0.5π and v=0.25π may be seen in Figure 7.7 to Figure 

7.10. 
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Figure 7.7. z/h as a function of the case no. 
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Figure 7.8. z/h as a function of 1-sin(α). 
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Figure 7.9. z/h as a function of u/(hω). 
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Figure 7.10. z/h as a function of ∆W. 

In the case where one of the axes of rotation is in the top face it is seen that the main contribution is 

from the top of the slab. 
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A plot of the dimensionless dissipation contribution from the concrete is shown as a function of hI/h 

and hII/h for w=0.5π and w=0.25π in Figure 7.11 and Figure 7.12. 

These values are found from numerical integration over the depth of the section. 
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Figure 7.11. Surface and contour plot of the dimensionless dissipation contribution from the concrete. 
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Figure 7.12Contour plot of the dimensionless dissipation contribution from the concrete. 
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It appears that the actual calculations are somewhat comprehensive and a simplification is therefore 

desirable.  

K. W. Johansen, see [1], proposed that the bending moment in a section perpendicular to the yield 

line may be calculated as if the principal directions were coinciding with the directions of the 

reinforcement. The agreement between the yield condition and K. W. Johansen’s proposal has been 

demonstrated by M. P. Nielsen in [5].  

If a similar relation is valid for the dissipation, the dissipation contribution from the concrete might 

be calculated from the rotation about the axis, assuming a displacement perpendicular to the axis of 

rotation. This may be calculated quite easily since only the compression zone contributes to the 

dissipation and the displacement is perpendicular to the axis of rotation. In this case 
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 (7.22) 

A numerical comparison between the simplified calculation and the theoretical one may be seen in 

Figure 7.13 to Figure 7.18 along with the deviation. These plots illustrate how large the difference 

is and how it depends on the position of the axis of rotation. They are made for different values for 

v in order to illustrate the influence of such a variation. 
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Figure 7.13 Contour plot of the dimensionless dissipation contribution from the concrete 
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Figure 7.14. Deviation plot for the two calculation methods. 
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Figure 7.15 Contour plot of the dimensionless dissipation contribution from the concrete 
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Figure 7.16. Deviation plot for the two calculation methods. 
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Figure 7.17 Contour plot of the dimensionless dissipation contribution from the concrete 
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Figure 7.18. Deviation plot for the two calculation methods. 

It appears that the simplification underestimates the dissipation if w=1/2π. The underestimation is 

large where the difference between hI/h and hII/h is large. Furthermore, it also appears that an 

increasing difference between v and π/4 leads to a larger underestimation. 
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The influence of w has also been studied and the following conclusions may be made: 

If w is larger than 1/2π the simplification underestimates the dissipation as seen in Figure 7.19 to 

Figure 7.20 

If w is less than 1/2π the simplification overestimates the dissipation as seen in Figure 7.21 to 

Figure 7.24. 

If w is very small the overestimation becomes quite significant as seen in Figure 7.25 and Figure 

7.26. 

These figures (Figure 7.19 to Figure 7.26) are illustrative representations of the different situations 

where w is larger or smaller than 1/2π.  
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Figure 7.19 Contour plot of the dimensionless dissipation contribution from the concrete 
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Figure 7.20. Deviation plot for the two calculation methods. 
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Figure 7.21 Contour plot of the dimensionless dissipation contribution from the concrete 
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Figure 7.22. Deviation plot for the two calculation methods. 
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Figure 7.23 Contour plot of the dimensionless dissipation contribution from the concrete 



Tim Gudmand-Høyer 

 - 27 - 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hI/h

h II/h

(Wc K.W.J.-Wc)/Wc for w=1/4π v=1/16π

0.2
0.2

0.2
0.2

0.4

0.4
0.4

0.6
0.6

0.6
0.8

0.8 1

 
Figure 7.24. Deviation plot for the two calculation methods. 

 

 

0 0.2 0.4 0.6 0.8 1
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

hI/h

h II/h

Wc/(h
2ωfc) for w=1/16π v=1/32π

2

2

2

2

4

4

4

6

6

8

2

2

2

4

4

4

4

6

6

6
8Theoretical

K.W.J. Simplification

 
Figure 7.25 Contour plot of the dimensionless dissipation contribution from the concrete 
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Figure 7.26. Deviation plot for the two calculation methods. 

It appears that the formula proposed by K. W. Johansen is not accurate if w derivates significantly 

from π/2. However, this does not necessarily mean that this way of calculating leads to a similar 

over- and underestimations when calculating the load-carrying capacity of a slab since concrete 

dissipation is only a part of the dissipation.  

 

One of the most common situations is a yield line starting from a right-angled corner and the 

formulas for this particular situation is therefore found. In these cases the following formula is 

valid: 
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The formula for the simplified calculation becomes: 

 ( ) ( )
2 2

_ . .
2

1 1 1tan
2 2 tan

c K W J I II

c

W h hv
h f h h vω

    = +         
 (7.24) 

7.1.2 The contribution from the reinforcement 

If the reinforcement is placed in a direction perpendicular to the axis of rotation at a distance from 

the slab surface as shown in Figure 7.27 the contribution from the reinforcement to the dissipation 

per unit length becomes: 

 
( )( )

( )( )
1 , ,

2 , ,
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s s I cI I s I I cI

s II cII II s II II cII

W w v A h h h A h h

v A h h h A h h

ω

ω

= − − + − +

− − + −
 (7.25) 

where ωI and ωII are the rotations about axis I and II, respectively. These are determined in (7.11) 

and the expression may be written as: 
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 (7.26) 
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Figure 7.27. Reinforcement arrangement 

If the corner is right-angled the dissipation becomes: 
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0, 0,2

0, 0,

'tan 1 '
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c

cII cIIII II
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 
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 

 (7.27) 

7.2 Beam example 

For slabs the position of the axes of rotation are not always easily found. An exact analysis for a 

slab is impossible since no correct analytical expression may be found for the dissipation. 

Therefore, a numerical investigation has to be made in each situation.  

However, it may be assumed that the axes of rotation must be placed at the same position as the 

neutral axis. For a beam this assumption may be shown to be correct and is therefore worth studying 

first. 

For all combinations of transverse loads, the load-carrying capacity always depends on the 

dissipation for a unit rotation ω=1 in the yield line. Therefore, it is sufficient to find the minimum 

dissipation in order to find the minimum load-carrying capacity. 
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Figure 7.28 Stresses in a beam.  

Considering the beam in Figure 7.28 it is seen that the position of the neutral axis may be found 

from a projection equation as: 
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 (7.28) 

where  

 0
s y

c

A f
bhf

Φ =  (7.29) 

The yield moment becomes 
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An upper bound approach leads to the following result: 
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 (7.31) 

 0 0
0

0dW y h
dy

= ⇔ = Φ  (7.32) 

As seen, the minimum load-carrying capacity is found where the position of the axis of rotation 

equals the position of the neutral axis. Furthermore, it is seen that the dissipation found by the upper 

bound approach is the same as the yield moment times the rotation. 
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Similarly it may be shown that this assumption is valid if both top reinforcement and bottom 

reinforcement are included. Furthermore, it may also be shown that the assumption is valid if an 

axial force is applied. In these situations the dissipation plus the work caused by the dissipation of 

the axial force equals the yield moment (including the contribution from the axial force) times the 

rotation.  

h 
σh

Φ0´hfc 

Φ0hfc

σ'c 

y0 

hc
´

hc 

M 

 
Figure 7.29. Beam with axial force. 

For the reinforced beam illustrated in Figure 7.29 the position of the neutral axis may be calculated 

as: 

For 0 0
´0 ´ch

fc h
σ≤ ≤ − Φ − Φ  

 0
0 0´

y
h fc

σ= + Φ + Φ  (7.33) 

For 0 0 0 0
´ ´´ ´c ch h

h fc h
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 0 cy h
h h

=  (7.34) 

For 0 0 0 0
´ ´ ´c ch h h

h fc h
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 0
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y
h fc

σ= + Φ − Φ  (7.35) 

For 0 0 0 0´ ´c ch h h h
h fc h
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 0 cy h h
h h

−=  (7.36) 

For 0 0 0 0´ 1 ´ch h
h fc

σ− + Φ + Φ ≤ ≤ + Φ + Φ  

 0
0 0´

y
h fc

σ= − Φ − Φ  (7.37) 
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Knowing the position of the axis of rotation the dissipation per unit length may be calculated as: 

 
2

0 0 0
0 02

´1 1 ´
2

c c

c

y h y h yW
h f h h h h hω

   = + Φ − − + Φ −   
   

 (7.38) 

It appears that since the assumption about the neutral axis being the axis of rotation is valid the 

dissipation may be calculated quite easily for a beam.  

7.3 Square slab without axial force  

For slabs in general the assumption about the neutral axes being the axes of rotation can not be 

shown analytically.  

In the following examples the results of numerical calculations will be evaluated both regarding the 

assumption about the axes of rotation and the error made using K. W. Johansen’s simplification. 

 

Considering a uniformly laterally loaded isotropic square slab with the same amount of 

reinforcement in the top and bottom and simply supported along all four edges, it is known (see [5]) 

that the exact solution is: 

 Prager 2

24 pm
q

L
=  (7.39) 

L 

L 

mp 

mp 

 
Figure 7.30. Prager’s exact solution for a square slab 

If it is assumed that the failure mode in Figure 7.31 is the one that will occur the load-carrying 

capacity found from the above dissipation formulas is as follows: 
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Figure 7.31. Failure mode 1 for square slab. 

Failure mode 1: 

The external work becomes: 

 ( )1 1
2 3e y yW q D L L D Lδ  = + − 

 
 (7.40) 

 The dissipation becomes: 
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 (7.41) 

The work equation leads to: 
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 (7.42) 

Here Wc,v and Ws,v are the contributions to the dissipation per unit length for the yield line (Ls) from 

the concrete and reinforcement, respectively. Similarly, Wc,0 and Ws,0 are the contributions to the 

dissipation per unit length for the yield line (Dy) from the concrete and reinforcement, respectively.  

 

Calculating all possible combinations of the positions of the two axes of rotation and plotting the 

lowest load-carrying capacity for a given Dy leads to the results shown in Figure 7.32 and Figure 

7.33. 



Tim Gudmand-Høyer 

 - 35 - 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

Dy/Ly

q

24mp/L2

q1

 
Figure 7.32. Load-carrying capacity q1  for a square slab with L=2000mm, Φ0=Φ0´=0.1, hc/h= hc´/h=0.1, fc=30MPa 

(solid) and load-carrying capacity according to (7.39) (dashed). 
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Figure 7.33 Position of the axes of rotation  for a square slab with L=2000mm, Φ0=Φ0´=0.1, hc/h= hc´/h=0.1, 

fc=30MPa. 
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The yield moment mp used in these calculations is calculated as described in [5] (having hc/h= 

hc´/h): 

 0

0

´µ Φ=
Φ

 (7.43) 
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 (7.46) 

From Figure 7.32 it appears that the numerical calculations using the dissipation formulas above 

leads to the same solution as the one found using the yield condition for the slab when Dy=0. 

Furthermore, Figure 7.33 shows that the axes of rotation are at the same depth and this depth 

corresponds to the neutral axes. More plots for different degrees of reinforcement and different 

values of hc/h are shown in section 11.1.1.1.  

 

For isotropic square slabs it may be concluded that the position of the axes of rotation corresponds 

to the neutral axes and that the load-carrying capacity found from the above dissipation formulas 

corresponds to the exact solutions found from the yield conditions. 

  

7.3.1.1 Rectangular slabs  
For rectangular slabs the failure modes assumed in this paper are illustrated in Figure 7.34 

(Ingerslev´s solutions). These failure modes are not exact solutions to the problem. However, it is 

believed that the results are close to the exact solution and therefore acceptable.  



Tim Gudmand-Høyer 

 - 37 - 

Ly

Lx 

mpx 

mpy 

Failure mode 1                              Failure mode 2 

Dy 

Dx Ls 

Ls 

 
Figure 7.34. Failure modes. 

An upper bound solution leads to the following load-carrying capacity for a uniformly loaded slab:  

 py
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Yield line Theory for Concrete Slabs Subjected to Axial Force 

 - 38 - 

Formula (7.48) corresponds to failure mode 1 and (7.50) to failure mode 2. The yield moments mpx 

and mpy are calculated from cross-section analyses perpendicular to the x-axis and the y-axis, 

respectively. 

For the two failure modes the equations according to the dissipation formulas becomes: 

Failure mode 1: 

The internal work becomes: 

 ( )1 1
2 3e y x y y xW q D L L D Lδ  = + − 

 
 (7.52) 

The external work becomes: 
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 (7.53) 

The work equation leads to: 
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 (7.54) 

where Wc,v and Ws,v are the contributions to the dissipation per unit length for the yield line (Ls) 

from concrete and reinforcement, respectively. Similarly, Wc,0 and Ws,0 are the contributions to the 

dissipation per unit length for the yield line (Dy) from concrete and reinforcement, respectively.  

The work equation for failure mode 2 leads to load-carrying capacity: 
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 (7.55) 

Calculating all the possible combinations of the position of the two axes of rotation and plotting the 

lowest load-carrying capacity for a given Dy lead to the results shown in Figure 7.35. 
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Figure 7.35. Load-carrying capacity q1 and  q2 ,according to (7.54) (dashed dotted) and (7.55) (dotted),  for a 

rectangular slab with Lx=2000mm, Ly=16000mm, Φ0=Φ0´=0.1, hc/h= hc´/h=0.1, fc=30MPa  and load-carrying 

capacity according to (7.48) or (7.50) (*).The vertical line indicates the minium for the numerical calculculations. 
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Figure 7.36 Position of the axes of rotation  for a rectangular slab with Lx=2000mm, Ly=16000mm, Φ0=Φ0´=0.1, hc/h= 

hc´/h=0.1, fc=30MPa. 
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Apparently, the assumption about the neutral axes being the axes of rotation is correct and this may 

also be shown for isotropic slabs. Nevertheless, as shown in Figure 7.38, the assumption is not 

always correct. Numerical calculations show that the assumption is incorrect if the slab is 

orthotropic. In Figure 7.38 it is seen that the minimum load-carrying capacity is found where the 

axes of rotation are at positions 0.14 hx/h and 0.1 hy/h in a slab with the reinforcement degrees 

Φ0x=Φ0x´=0.1 and Φ0y=Φ0y´=0.05 and not at 0.2 hx/h and 0.1 hy/h as expected.  However, the 

minima of these curves are very flat as seen in Figure 7.39 where the load-carrying capacity is 

plotted as a function of the position of the axis of rotation in the x direction. 
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Figure 7.37. Load-carrying capacity q1 and  q2, according to (7.54) (dashed dotted) and (7.55) (dotted), for a square 

slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.2, fc=30MPa and load-

carrying capacity according to (7.48) or (7.50) (*). 
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Figure 7.38 Position of the axes of rotation  for a rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.1, 

Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.2, fc=30MPa. 
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Figure 7.39 Load-carrying capacity as a function of the position of the axis of rotation in the x direction for a 

rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.2, 

fc=30MPa, Dy/Ly=0.73, hy/h=0.1. 
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If the slab is reinforced in the top and bottom and Φ0+Φ0´>hc´/h the axis of rotation will be at the 

neutral axis (assuming Φ0=Φ0´). If Φ0+Φ0´<hc´/h the assumption is incorrect but the error made by 

such assumption is negligible.  

If the slab is not reinforced in the top the assumption is incorrect and the error may become 

noticeable. This is illustrated in Figure 7.40 and Figure 7.41 where the positions of the axes of 

rotation for a slab with Φ0y´=Φ0x´=0, Φ0x=0.7 and Φ0y=0.1 are at 0.4hx/h and 0.1hy/h, respectively. 

Even though the position of the axes of rotation is wrong in the x direction it is seen that the load-

carrying capacity is only underestimated about 5% in this case.   
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Figure 7.40. Load-carrying capacity q1 and  q2, according to (7.54) (dashed dotted) and (7.55) (dotted),   for a square 

slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.7, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa and load-

carrying capacity according to (7.48) or (7.50) (*). 
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Figure 7.41 Position of the axes of rotation  for a rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.7, 

Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa. 

It is obvious that the error decreases for increasing difference between the two side lengths, since a 

larger difference leads to larger contribution from the yield line parallel to the supports (Dx or Dy) 

where the assumption is correct. In other words the slab starts to carry the load as a beam.  

The fact that an increasing difference between the two degrees of reinforcement increases the error 

is also quite obvious. Therefore, in order to estimate the largest error a slab with the largest 

difference in the degrees of reinforcement and a side length ratio leading to almost no parallel parts 

of the yield line is considered. Setting Φ0y´=Φ0x´=0, Φ0x=0.9 and Φ0y=0.1 Ly/Lx=2.2 (see Figure 

11.7) leads to an error of about 17%. However, such a degree of reinforcement is quite unrealistic. 

A realistic guess on the limits found in practice may be found for Φ0y´=Φ0x´=0, Φ0x=0.3 and 

Φ0y=0.05 Ly/Lx=2.2 (see Figure 11.8) which lead to an error less than 4%.  

Keeping in mind that the assumption about the neutral axes being the axes of rotation leads to an 

underestimation of less than 4% for rectangular slabs, it is believed that the assumption may be 

acceptable for such slabs. 
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7.4 Rectangular slabs with axial force 

For rectangular slabs with axial force the failure modes assumed are the same as for slabs without 

axial force. They are shown in Figure 7.42.   
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Figure 7.42. Failure modes for rectangular slabs with axial force. 

An approximate solution to this problem is to calculate the yield moments in each direction 

including the axial force and then use these yield moments in Ingerslev´s solution. This calculation 

corresponds to the assumption about the neutral axes being the axes of rotation. The result is the 

same as if the dissipation is determined according to K. W. Johansen´s method for calculating the 

dissipation. 
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Figure 7.43.Cross section in a slab. 

For the cross-section shown in Figure 7.43 the yield moments becomes: 

For 0 0
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The formulas above are valid in both the x and y direction.  

For the two failure modes the equations using the dissipation formulas above becomes: 

Failure mode 1: 

The internal work becomes: 
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2 2 2 24 2
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 (7.66) 

 The external work becomes: 

 ( ) ( )
1 1 2 2
2 3 2 2

2 2

e y x y y x x y y y x x
x y y

h hW q D L L D L h L h h L hL L D
δ δδ σ σ     = + − + − + −      −     

(7.67) 
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where hx and hy are the distances from the top surface to the axes of rotation in the x and y direction, 

respectively. 

The work equation leads to: 
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 (7.68) 

where Wc,v and Ws,v are the contributions to the dissipation per unit length for the yield line (Ls) 

from concrete and reinforcement, respectively. Similarly, Wc,0 and Ws,0 are the contributions to the 

dissipation per unit length for the given line (Dy) from concrete and reinforcement, respectively.  

The work equation for failure mode 2 leads to: 
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 (7.69) 

Calculating all possible combinations of the position of the two axes of rotation and plotting the 

lowest load-carrying capacity for a given axial force in one direction lead to the results shown in 

Figure 7.44 to Figure 7.48. 
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Figure 7.44. Load-carrying capacity  for a rectangular slab Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, increasing σx and σy=0. 
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Figure 7.45 Difference between the calculation methods for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, increasing σx and σy=0. 
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Figure 7.46.Length of the part of the yield line parallel to the axes of rotation  for a rectangular slab Lx=2000mm, 

Ly=2000mm, Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, increasing σx and 

σy=0. 
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Figure 7.47.Position of the axes of rotation for failure mode 1  for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, increasing σx and σy=0. 
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Figure 7.48 Position of the axes of rotation for failure mode 2  for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, increasing σx and σy=0. 

As expected the calculations using the method based on Ingerslev´s solution lead to an 

underestimation of the load-carrying capacity. In general the underestimation increases as the axial 

force increases. This underestimation is caused by the underestimation of the dissipation 

contribution from the concrete.  

As seen in Figure 7.46 the length of the part of the yield line parallel to one of the axes for the 

Ingerslev solution is not the same as the one found from the dissipation formulas. It is seen that for 

σx=fc the load-carrying capacity found for failure mode 1 is the same as the load-carrying capacity 

found for failure mode 2 and both have a part of the yield line parallel to the axes. Ingerslev´s 

solution also leads to changes in failure mode at this stress but has no part of the yield line parallel 

to the axes.  

The positions of the axes of rotation found from the two methods are also different. It is seen that 

the normal force dose not effect the position as assumed. The position found by using the 

dissipation formulas determined by hy/h, is in general lower. This means that the axis of rotation is 

placed closer to the top of the slab and therefore the positive effect for the load-carrying capacity is 

higher. 

 

In order to evaluate the overestimation, an extreme slab is considered.  
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Knowing that the contribution to the dissipation from the concrete is calculated differently in the 

two methods it is obvious that a lower degree of reinforcement leads to a larger difference between 

the methods. 
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Figure 7.49. Maximum (*) and minimum (+) difference between the two calculation methods  for a rectangular slab 

Lx=2000mm, Ly=2000mm,  hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, σx variation from 0 to 

fc(1+Φ0x+Φ0x´),  σy=0 and different  Φ0x=Φ0x´= Φ0y=Φ0y´. 

When it comes to the Lx/Ly ratio an extreme case cannot be found from similar simple 

considerations. As illustrated in Figure 7.50 and Figure 7.51 extreme combinations of Lx and Ly 

changes along with the degree of reinforcement. In these plots * and + represents the maximum and 

minimum difference between the two calculation methods. 
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Figure 7.50. Maximum (*) and minimum (+) difference between the two calculation methods  for a rectangular slab 

Lx=2000mm,  Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, σx variation from 

0 to fc(1+Φ0x+Φ0x´),  σy=0 and different Lx/Ly ratios. 
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Figure 7.51. Maximum (*) and minimum (+) difference between the two calculation methods  for a rectangular slab 

Lx=2000mm,  Φ0x=Φ0x´=0.05, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, h=100mm, σx variation 

from 0 to fc(1+Φ0x+Φ0x´),  σy=0 and different Lx/Ly ratios. 
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Figure 7.51 shows that the maximum positive deviation is found for a Lx/Ly ratio of approximately 

0.5 if the degree of reinforcement is 0.05. It is also seen that the minimum deviation is always 

positive and this means that the simplified calculation always underestimates the load-carrying 

capacity. 

In Figure 7.52 to Figure 7.56 the results of the calculations for a slab with the Lx/Ly ratio of 0.5 and 

a degree of reinforcement of 0.05 are shown. Ingerslev modified refers to calculations using 

Ingerslevs solution ((7.54) or (7.55)) with the yield moment found when including the axial force 

((7.57) to (7.65)) and Ingerslev 1 and Ingerslev 2 refers to the solutions for the two yield patterns..  
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Figure 7.52. Load-carrying capacity  for a rectangular slab Lx=2000mm, Ly=4000mm, Φ0x=Φ0x´=0.05, 

Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, increasing σx and σy=0. 
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Figure 7.53 Difference between the calculation methods for a rectangularslab Lx=2000mm, Ly=4000mm, 

Φ0x=Φ0x´=0.05, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, increasing σx and σy=0. 
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Figure 7.54.Length of the part of the yield line parallel to the axes of rotation  for a rectangular slab Lx=2000mm, 

Ly=4000mm, Φ0x=Φ0x´=0.05, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, increasing σx and σy=0. 
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Figure 7.55.Position of the axes of rotation for failure mode 1  for a rectangular slab Lx=2000mm, Ly=4000mm, 

Φ0x=Φ0x´=0.05, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, increasing σx and σy=0. 

0 0.2 0.4 0.6 0.8 1 1.2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

σx/fc

h x/h
 o

r h
y/h

hx/h for q2
hy/h for q2
Ingerslev modified

 
Figure 7.56 Position of the axes of rotation for failure mode 2  for a rectangular slab Lx=2000mm, Ly=4000mm, 

Φ0x=Φ0x´=0.05, Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, increasing σx and σy=0. 
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It appears that the deviation between the two methods in general increases with the axial force. The 

largest deviation is approximately 50% and it is larger for axial stresses closer to fc + Φ0+Φ0´. 

However, this deviation is valid for an axial stress larger than fc and such a stress would not be 

allowed in practice because of problems of stability.  Assuming that the maximum axial stress is fc, 

the deviation is 40%. 

From this it may be concluded that the simple way (Ingerslev modified) of calculating the load-

carrying capacity for a rectangular slab loaded with axial force is always safe and the method 

underestimates the load-carrying capacity with max 40%. A 40% deviation is an extreme case and it 

is believed that the simplification is acceptable for most practical purposes.  

7.5 Rectangular slabs with axial force and with deflection 

If the slab is deflected, the calculation of the dissipation must be changed since the distance to the 

axes of rotation changes along the yield line. In these calculations it is assumed that the deflection 

follows the yield line pattern as shown in Figure 7.57. 

 

 

Deflected form 
Non deflected form

um 

 
Figure 7.57. Deflection assumption for rectangular slabs. 

Compared with the calculations for a slab without deflection the only difference is the calculation of 

the dissipation. In these calculations the vertical distance to the axes of rotation changes and this 

leads to different values of Ws,0  Ws,90, Ws,v, Wc,0, Wc,90, Wc,v.  

Regarding Ws,0  Ws,90, Wc,0 and Wc,90 the distance from the top of the slab to the axes of rotation 

changes from hx to hx-u and from hy to hy-u. Regarding Ws,v  and Wc,v the distance from the top of 

the slab to the axes of rotation varies along the yield line. This means that Ws,v  and Wc,v must be 

calculated as average values. The calculations are made numerically.   

When calculating the dissipation as described above, the formulas ((7.68) and (7.69)) for non-

deflected slabs may be used to determine the load-carrying capacity.  
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For a square slab the calculations lead to the results shown in Figure 7.58 to Figure 7.60. Since the 

slab is square and the reinforcement is the same in both direction the two yield patterns leads to the 

same results. 
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Figure 7.58 Load-carrying capacity  for a rectangular slab Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.2, Φ0y=Φ0y´=0.2, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, σx and σy=0 
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Figure 7.59 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with  

Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.2, Φ0y=Φ0y´=0.2, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, σx and σy=0 
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Figure 7.60 Position of the axes of rotation for failure mode 2  for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.2, Φ0y=Φ0y´=0.2, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, σx and σy=0. 
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In these figures it is seen that the load-carrying capacity increases as the slab deflects. This 

phenomenon is well-known and may be explained by the change in geometry from a slab to a 

shallow shell. In these calculations only the displacements at failure are included in the work 

equation, which means that the deflected slab is calculated as a shell with the shape corresponding 

to the deflection.  

As for non-deflected slabs it is interesting to investigate if the axes of rotation correspond to the 

neutral axes. Of course, the stresses are not known in the upper bound solution, but if we assume 

that the concrete stresses equal fc in the direction of the displacement and the reinforcement stresses 

equal fy it is found that the axes of rotation correspond to the neutral axes.  

Calculations verifying this result are usually very complicated since the direction of the 

displacement changes along the yield line area. However, some simple cases may be used to 

demonstrate the result.  

A square slab with Φ0x=Φ0x´=0.25, Φ0y=Φ0y´=0.25, hcx/h= hcx´/h= hcy/h= hcy´/h=0 is used here to 

demonstrate the result mentioned. The calculations of this slab lead to the results shown in Figure 

7.60 to Figure 7.62.  
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Figure 7.61 Load-carrying capacity  for a rectangular slab Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.25, Φ0y=Φ0y´=0.25, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa, σx and σy=0 
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Figure 7.62 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with  

Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.25, Φ0y=Φ0y´=0.25, hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa, σx and σy=0 

0 0.5 1 1.5 2
0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

h x/h
 a

nd
 h

y/h

u/h

q1
q2
Ingerslev modified1
Ingerslev modified2

 
Figure 7.63 Position of the axes of rotation for failure mode 2  for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.25, Φ0y=Φ0y´=0.25, hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa, σx and σy=0. 



Yield line Theory for Concrete Slabs Subjected to Axial Force 

 - 60 - 

It appears that the axes of rotation move downward as the deflection increases. For the situation 

where u/h equals 2 it is seen that the relative position of axes of rotation is 1. This situation is 

illustrated in Figure 7.64.  

From a projection equation in the x-direction it appears that if u/h =2 and hx=hy=h the degree of 

reinforcement becomes: 

 0

0

½ ½½ 2 ½
2

0.25

c
c

f h L f h L= Φ ⇔

Φ =
 (7.70) 

This corresponds to the degree of reinforcement used in the calculations.  

 

½ ½½ 2cf h L  

Φ0fch½L
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Figure 7.64 Failure mode for a square deflected slab. 

Similar observations may be made for slabs with axial force. In Figure 7.65 to Figure 7.67 the 

results of calculations for a square slab with Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.15, hcx/h= hcx´/h= hcy/h= 

hcy´/h=0 and σy=σx=0.1fc are shown. It appears that the axes of rotation correspond to the neutral 

axes.  
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Figure 7.65 Load-carrying capacity  for a rectangular slab Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.15, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa,  σx=σy=0.1fc 
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Figure 7.66 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with  

Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.15, hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa,  σx=σy=0.1fc 
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Figure 7.67 Position of the axes of rotation for failure mode 2  for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.15, hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa, σx=σy=0.1fc. 

One might suspect that the assumption about the axes of rotation being the same as the neutral axes 

is only valid for isotropic slabs. However, numerical calculations as the one shown in Figure 7.68 to 

Figure 7.70, show that this is not the case. In the calculations the reinforcement is orthotropic and 

the slab is only subjected to axial load in one direction (Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.25, hcx/h= 

hcx´/h= hcy/h= hcy´/h=0 and σy=0, σx=0.1fc). Since the axial load equals the difference in the 

reinforcement the slab behaves as if the reinforcement was isotropic. 
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Figure 7.68 Load-carrying capacity  for a rectangular slab Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.25, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa,  σx=0.1fc, σy=0 
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Figure 7.69 Difference between the load-carrying capacity for a non-deflected and a deflected rectangular slab with  

Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.25, hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa,  σx=0.1fc, σy=0 
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Figure 7.70 Position of the axes of rotation for failure mode 2  for a rectangular slab Lx=2000mm, Ly=2000mm, 

Φ0x=Φ0x´=0.15, Φ0y=Φ0y´=0.25, hcx/h= hcx´/h= hcy/h= hcy´/h=0, fc=30MPa, σx=0.1fc, σy=0. 

Since the calculations are made numerically it is not possible to prove strictly that the axes of 

rotation and the neutral axes are identical. However, assuming that the contribution to the 

dissipation from the concrete may be calculated according to the simplified formulas given in 

section 7.1.1, it may be shown that the axes of rotation corresponds to the neutral axes. 
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Figure 7.71. Yield pattern and cross sections. 
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For a failure mode as the one shown in Figure 7.71 the calculations becomes as follows.  

The external work: 

 ( )1 1 2 2
2 3 2 2

2 2

e x y x x y x y y y x x
yx x

h hW q D L L D L h L h h L h LL D
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(7.71) 

The internal work becomes: 
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 (7.72) 

The load-carrying capacity becomes: 
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 (7.73) 

The minimum load-carrying capacity is found for: 
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 (7.75) 

It appears that the axes of rotation correspond to the neutral axes for each slab part since the 

minimization leads to the same result as a projection equation. Similar calculations may be made for 

other positions of the axes of rotation and deflections and they all show that the axes of rotation 

correspond to the neutral axes. 
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For a given axial stress and deflection it is thus possible to determine the axes of rotation and 

thereby also the dissipation in the yield line (the simplified dissipation according to the K.W. 

Johansen’s method). 

The following equations are obtained from a projection equation of a deflected section of a slab, as 

shown in Figure 7.72. 
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Φ0hfc 

u hc 

σ 

 
Figure 7.72. Cross-section of a deflected slab subjected to axial load.  

The projection equation used for the determination of the compression zone depends on both the 

deflection and the compression zone it self. This means that there are quite a lot of intervals to 

consider. They may all be seen in 11.2.An example is given below for the situation where 0<u<hc 

& hc´<u+ hc´<h+ hc & h-hc<u+h-hc<h. 

if 0<u<hc & hc´<u+ hc´<h+ hc & h-hc<u+h-hc<h 

 and 0≤=y0<u 
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 (7.76) 

 and u≤y0<hc 
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 (7.77) 

 and hc≤y0<u+hc 
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 and u+hc=y0 
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 and u+hc<y0<h-hc 
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 and h-hc≤y0<h-hc+u 
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 and  h-hc+u≤y0<h 
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 and h<y0≤u+h 
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The dissipation is most easily calculated as the dissipation per unit rotation about the neutral axes. 

Using the K. W. Johansen method this may be done by taking moments about the rotation axes for 

each slab part.  

The moments are most easily calculated as contributions from the top and bottom reinforcement and 

the concrete. 

 , , ' ,f f c f s f sM M M M= + +  (7.85) 

for Mf,c we get: 

if u≤h 

 and y0≤u 
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for Mf,s’ we get: 

if y0≤hc 
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if hc<y0≤u+hc 
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 (7.94) 

 

for Mf,s we get: 

if y0≤h-hc  

 , 0 0 0
2

1- - 2 2 - 2 2 2 - 2 - 2 1 -
4

f s c c c

c

M h y h y h yu u D D u
f h L h h h h h h L L h h h

 = Φ − + + − + − + 
 

 (7.95) 

if h-hc<y0≤u+h-hc 

 

, 0 0
2

2 2
0 0 0

-1/ 4 -1 -1/ 4 2 2 - 2 1- - 2 1- _ -

-2 - 2 4 4 - 2 - 4 1-
-1/ 4

f s c c

c

c c c

M y h h yD u D Du h
f h L L h h h L h h L

y h y h y h D
h h h h h h L

u
h

     = Φ Φ + +     
     

      + +           Φ

 (7.96) 

if u+h-hc<y0≤h+u 

 , 0 0 0
2

1- - 2 2 - 2 2 2 - 2 - 2 1 -
4

f s c c c

c

M h y h y h yu u D D u
f h L h h h h h h L L h h h

 = Φ − + + − + − + 
 

 (7.97) 

From the formulas above the load-carrying capacity may be found as: 

Failure mode 1: 

The internal work becomes: 

 2 2

2 2 2

i fy fx
x y y

W M ML L D
δ δ= +

−
 (7.98) 

The external work becomes: 

 ( )
( )

1
1 1 - 2 - 2 -1 12 2 2 2

2 2

e y x y y x x y y y x x

x y y

h hW q D L L D L h L h h L h
L L D

δ δδ σ σ     = + + +     
      −

(7.99) 

The work equation leads to: 
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 (7.100) 

A similar formula is obtained for failure mode 2: 
2 2

00
2 22

2, 22

2 -2 2 1- 1 2
12

1- 2

y fy y y fx y yx x x

x c y c c c x x c x
eq c

x yx x

x x x

L M M L yy D
L f h L f h f f h L L f L hhq f

L LD D
L L L

σ σ σ        
+ + + + −        

       =
    

+    
    

 (7.101) 

For a given slab having a certain deflection and failure mode (u and D/L) it is now possible to 

calculate the load-carrying capacity without making any numerical integrations. This leads of 

course to a substantial reduction of the calculations since a theoretically correct calculation involves 

integration over the yield line (the Ls-part).  

In the following, the index ,eq indicates that the axes of the rotation are found from equilibrium of a 

slab part as described above. The index ,up indicates that the axes of rotation is found numerically 

from the minimum of upper bound solutions.  

In order to find the minimum load-carrying capacity for a given deflection the most optimal failure 

mode has to be found. 

In Figure 7.73 to Figure 7.75 and Figure 7.76 to Figure 7.78 the results of calculations for a square 

slab with axial force in two direction are shown for σ/fc=0.1 and σ/fc=0.4 respectively. In these plots 

both the results of the simplified way of calculating the load-carrying capacity (index eq) and the 

results of the numerical calculations (index up) are shown. Index 1 and 2 refers to the yield line 

pattern. 

In Figure 7.75 the contributions from reinforcement (index s) and concrete (index c) to the work are 

plotted and thereby showing the difference between the two calculation methods. 
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Figure 7.73.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=σy/fc=0.1. 
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Figure 7.74.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=σy/fc=0.1. 
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Figure 7.75.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=σy/fc=0.1. 
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Figure 7.76.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=σy/fc=0.4. 
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Figure 7.77.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=σy/fc=0.4. 

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10 x 10
5

D/L

W
i/ω

Wiq1,eq
Wicq1,eq
Wisq1,eq
Wiq1,up
Wicq1,up
Wisq1,up

 
Figure 7.78.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=σy/fc=0.4. 
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In the case σ/fc=0.1 it is seen that the agreement is very good for both the load-carrying capacity 

and the internal work per unit deflection increase even though the position of the axes of rotation is 

not quite the same. Part of the error is of course due to the limited accuracy of the numerical 

calculations. Despite this it is seen that the position of the axes of rotation has the right performance 

but not entirely the correct value. The same conclusions may be made when the axial force is 

increased to σ/fc=0.4.  

As described previously it may be proven that equalizing the axes of rotation with the neutral axes 

leads to the minimum load-carrying capacity if the concrete contribution to the dissipation is 

calculated in the simplified way. It may be seen in these plots that it is not quite the same if the 

correct dissipation formulas are used but the results are close enough to furnish the correct load-

carrying capacity. 

 

It is previously shown that the simplified way of calculating the concrete contribution to the 

dissipation is less accurate for small values of the angle v and for large differences between the 

positions of the two axes of rotation. A difference in the axial force in the two directions leads to a 

difference in the position of the axes of rotation. Therefore, it is expected that the agreement is less 

good if the slab is only subjected to axial force in one direction. Results of calculations for such a 

case may be seen in Figure 7.79 to Figure 7.80. 

It appears that the agreement is good. It is also seen that the simplified calculations lead to both 

over- and underestimations for different values of D/L in failure mode 2. However, it is also seen 

that the minimum load-carrying capacity is almost the same. It is therefore believed that the 

simplified method is sufficiently accurate for practical purposes. 
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Figure 7.79.Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.01,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=0.4, σy/fc=0. 
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Figure 7.80. Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.01,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=0.4, σy/fc=0. 
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Figure 7.81 Results of calculations by equations (7.76) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.01,hc/h=0.1, h=60mm, fc=50MPa, u/h=1 and σx/fc=0.4, σy/fc=0 
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7.6 Interaction curves 

It is obvious that the load-carrying capacity must be determined as the minimum for all values of 

D/L. How the load-carrying capacity should be determined in relation to the deflection is a question 

somewhat more difficult to answer.  

In Figure 7.82 the results of calculations of the load-carrying capacity as a function of the deflection 

are shown.  
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Figure 7.82 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.01,hc/h=0.1, h=60mm, fc=50MPa and σx/fc=0.4 or 0.2, σy/fc=0 

For low axial force it is seen that the load-carrying capacity has a minimum with respect to the 

deflection. For higher axial force the load-carrying capacity decreases as the deflection increases.  

Assuming that the slab is perfectly rigid plastic it is obvious that the load-carrying capacity is the 

maximum of the load carrying capacities found for different deflections. Nevertheless, taking into 

consideration the actual behaviour of a concrete slab it is equally obvious that the plastic behaviour 

does not give the correct picture for a non-deflected slab. A more thorough investigation would take 

into account the actual behaviour of the concrete to determine the deflection at failure but such 

calculations would be cumbersome. 

Instead the minimum value with respect to the deflection may be used. This is of course 

conservative.  

 

σx/fc=0.2

σx/fc=0.4 
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Using the minimum value with respect to both D/L and the deflection, it is possible to calculate an 

interaction curve giving the load-carrying capacity for combinations of axial load and lateral load.  

Results from calculations with both methods are plotted in Figure 7.85 and  

Figure 7.88. Figure 7.85 shows results for a slab with axial force in one direction and  

Figure 7.88 shows results for a slab with axial force in two directions. In both cases the deflection is 

determined in the one corresponding to the minimum of the load-carrying capacity. It should be 

noted that the results are obtained through numerical calculations and that  the maximum deflection 

is set at 110mm. 
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Figure 7.83 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, σy/fc=0. 
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Figure 7.84 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, σy/fc=0. 
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Figure 7.85. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy/fc=0. 
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Figure 7.86Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, σy=σx 
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Figure 7.87Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa, σy=σx.  
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Figure 7.88. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=Ly= 2000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=σx. 

These figures (Figure 7.83 to Figure 7.88) confirm that using the neutral axes as the axes of rotation 

and combining this assumption with the simplified way of calculating the dissipation lead to a load-

carrying capacity close to the theoretically correct one. This goes for slabs subjected to axial force 

in both one and two directions. It is also seen that the failure form (D/L) and the deflection at failure 

is not found to be the same in the two methods. Nevertheless, the most important issue here is the 

load-carrying capacity and it is seen that this is quite accurate.  

For rectangular slabs with a Lx/Ly ratio different from one, the simplified calculation method is not 

as good as for the square slabs. Examples of this may be seen in Figure 7.89 to Figure 7.95 

Dy/Ly
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Figure 7.89. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=σx. 
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Figure 7.90 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=σx. 
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Figure 7.91 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=σx. 
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Figure 7.92 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=0. 
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Figure 7.93 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=0. 

0 50 100 150
0

0.05

0.1

0.15

0.2

0.25

u [mm]

σ /
(f c(1

+Φ
+Φ

´))

u1,eq
u2,eq
u1,up
u2,up

 
Figure 7.94 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σy=0. 
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Figure 7.95. Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σx=0. 

0 0.2 0.4 0.6 0.8 1
0

0.05

0.1

0.15

0.2

0.25

0.3

0.35

0.4

DyLy

σ /
(f c(1

+Φ
+Φ

´))

Dy/Ly 1,eq
Dx/Lx 2,eq
Dy/Ly 1,up
Dx/Lx 2,up

 
Figure 7.96 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σx=0. 
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Figure 7.97 Results of calculations by equations (8.2) to (7.101) (solid) and numerical calculations (dashed) on a slab 

with Lx=2000mm, Ly=1000mm,Φ0x=Φ0x´=Φ0y=Φ0y´=0.1,hc/h=0.1, h=60mm, fc=50MPa,  σx=0. 

It may be seen that the simplified calculations underestimate the load-carrying capacity somewhat 

for rectangular slabs with axial force in both directions and also for rectangular slabs with axial 

force perpendicular to the longer side. Nevertheless, it is believed that the simplified calculation 

method is still useful due to the simplicity of the calculations. 

From the interaction curves it appears that the curve at a certain level of axial force almost makes a 

cut off. At this point the deflection actually goes towards infinity. In these figures the deflection is 

limited to 170mm in order to keep the number of calculations at a reasonable level. This axial force 

corresponds to stability failure. The slab may carry the load in a non-deflected state but a small 

deflection would lead to collapse of the slab. 

In an actual slab the level of stability found in this way is of course not quite correct since the slab 

may be far from a plastic state close to the non-deflected state and only gets closer to plastic states 

as the deflection increases. Therefore, a cut off level as the one seen in the interaction diagram 

Figure 7.92 may not be expected to be verified by experiments. 
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8 Theory compared with tests 

Only a few experimental investigations have been made on simply supported slabs subjected to both 

lateral and transverse loads. A. O. Aghayere and J. G. MacGregor (see [4]) made a test series, but 

because of the variation of many parameters (reinforcement ratio, concrete strength ect.) these tests 

are not very useful for the verification of the theory. Instead some of the tests made by L. Z. Hansen 

and T. Gudmand-Høyer (see[6]) are used.  

The main data are given in Table 8.1 and Table 8.2. Equation Section (Next) 

No fc Ec fY e h Layer Asx hcx ρ0x l x hcy Asy ρ0y l y

[MPa] [MPa] [MPa] [mm] [mm] [mm2/m] [mm] [ ] [mm] [mm] [mm2/m] [ ] [mm]

3 60,4 18081 593 0 61,66 1 523,6 35 0,008 2000 25 523,6 0,0085 2000
4 59,5 17425 593 0 62,03 1 523,6 35 0,008 2000 25 523,6 0,0084 2000
5 58,8 17662 593 0 61,63 1 523,6 35 0,008 2000 25 523,6 0,0085 2000
6 64,6 18688 593 0 61,37 1 523,6 35 0,009 2000 25 523,6 0,0085 2000
7 64,0 18466 593 0 61,26 1 523,6 35 0,009 2000 25 523,6 0,0085 2000
8 61,4 17718 593 0 60,99 1 523,6 35 0,009 2000 25 523,6 0,0086 2000
9 66,7 18744 593 0 61,56 1 523,6 35 0,009 2000 25 523,6 0,0085 2000
16 66,7 19394 593 0 61,48 1 523,6 35 0,009 2000 25 523,6 0,0085 2000  

Table 8.1. The data of the reinforced slabs. 

No q Nx u Notes
[kN/m2] [kN/m] [mm]

3 74,5 0,0 78 Material failure
4 21,5 1084,1 29 Rig failure
5 33,2 462,9 53 Stability failure
6 25,1 653,3 46 Stability failure
7 41,5 436,0 61 Stability failure
8 16,7 800,0 42 Stability failure
9 8,5 1103,4 17 Material failure
16 25,1 1030,1 37 Material failure  

Table 8.2. The results of the tests. 

The following calculation are made for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, 

Lx=Ly=2000mm, Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 if nothing else is mentioned. 

If the conservative simplified method proposed in the previous chapter is used to calculate the load-

carrying capacity for the slabs tested the results in Figure 8.1 to Figure 8.3 are obtained. 
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Figure 8.1 Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=1. 
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Figure 8.2 Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=1. 
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Figure 8.3 Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=1. 

It is obvious that the theoretical load-carrying capacity is much too high. This is of course expected 

since it is known that the concrete does not behave entirely according to plastic theory so an 

effectiveness factor should therefore be introduced.  

Besides from the load-carrying capacity being much too high, also the deflection is wrong. Not only 

is it wrong when it comes to the numerical value but also when it comes to the relation between 

axial force and deflection. The experiments shows that the deflection decreases as the axial force 

increases and the conservative method of calculation shows the opposite relation. This tendency is 

also expected to a certain extent. For instance it is obvious that for no axial force the conservative 

method of calculation corresponds to zero deflection whereas in the tests the slabs of course will 

have some deflection.  

 

In order to determine the effectiveness factor, interaction curves are found using the measured 

deflection (an approximate line close to the measured points). In Figure 8.4 and Figure 8.5 the 

results are shown for both ν=1 and ν=0.45 (fc is set to 0.45•60MPa) 
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Figure 8.4. Effectivenessfactor ν=0.45 or ν=1. Results of calculations for a slab with fc=60MPa, fy=593MPa, 

h=60mm, hcm/h=0.5, Lx=Ly=2000mm, Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0. 
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Figure 8.5 Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0. 

It is seen that if ν is set to 0.45 the calculations are in good agreement with the experiments.  

ν=0,45

ν=1 
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This effectiveness factor is quite small compared to the effectiveness factors normally used in 

calculations of moment capacities (approx. 0.85). In evaluation of such an effectiveness factor one 

should keep in mind that the strains in the yield lines may be far from the yield strains. Assuming 

that the yield strain for concrete is 2 ‰ and that the yield strain is 1,465‰ for the reinforcement the 

deflection at the midpoint would approximately be 

 21 2 1.465 2000 66
10 30 1000mu mm+= =

⋅
 (8.1) 

if the stresses in the mid section should be close to the yield stresses. Keeping in mind that a 

deflection of 66mm only leads to yielding in the top of the compression zone in the midpoint and 

not in the remaining parts of the yield line, it may seem reasonable that the effectiveness factor of 

the magnitude found above has to be used.  

If ν is set to 0.45 and the conservative simplified method is used to calculate the load-carrying 

capacity, Figure 8.6 and Figure 8.7 are obtained. 
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Figure 8.6. Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=0.45.  
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Figure 8.7. Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=0.45. 

It is seen that this approximation does not lead to useful results since the deviation from the tests is 

very large.  

Another approach could be to use the deflection corresponding to yielding in mid-section (in this 

case 66mm) for all axial forces. A similar approach is used in calculations of reinforced concrete 

columns and one might suspect that it might give useful results for slabs as well. Results using this 

approximation may be seen in Figure 8.8 and Figure 8.9.  

It appears that the results are closer to the values from tests. Nevertheless, these results only 

represent one slab type and further investigations and tests have to be made in order to verify the 

approach. 
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Figure 8.8. Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=0.45.  
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Figure 8.9. Results of calculations for a slab with fc=60MPa, fy=593MPa, h=60mm, hcm/h=0.5, Lx=Ly=2000mm, 

Φ’x=Φ’y=0.0085fy/fc, Φx=Φy=0 and ν=0.45. 
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These comparisons with test results show that the theory developed may be used if the deflection at 

failure is known and a proper effectiveness factor is introduced.  

If the deflection at failure is unknown the conservative simplified method may be used but it will 

lead to a large underestimation for low axial forces. 

Using a deflection corresponding to the yield strain in concrete and reinforcement in the mid section 

for all levels of axial force seems to lead to reasonable agreement with tests. 

From a critical point of view it may be said that this way of calculating the load-carrying capacity 

does not lead to any simple and useful calculation since the deflection has to be known from either 

experiments or from calculations that involve a much more detailed description of the behaviour of 

concrete.  
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9 Conclusion 

In this paper it is shown that calculations of the load-carrying capacity of rectangular slabs using the 

K.W. Johansen method agree with a calculation based on the correct dissipation formulas that is 

sufficiently correct for practical purposes.  

Furthermore, it is shown that for a deflected rectangular slab with axial force the load-carrying 

capacity may be calculated in the same way if the axes of rotation correspond to the neutral axes of 

the slab parts.  

 

Only rectangular slabs have been treated here but the agreement between the concrete contribution 

to the dissipation calculated according to the K.W. Johansen method and according to the correct 

dissipation formulas for a Coulomb material has been investigated in general. It is shown that if the 

corner angle w is larger than 1/2π the Johansen simplification underestimates the dissipation and if 

w is less than 1/2π the simplification overestimates the dissipation. 

 

Only tests with seven rectangular slabs with axial force in one direction have been used for 

verification of the theory and the conclusions are therefore not general. Furthermore, it should be 

noted that due to the small number of tests no great effort has been made in order to determine the 

effectiveness factor ν. 

However, it has been shown that if a proper effectiveness factor is used, the calculations seem to be 

in good agreement under the condition that the deflection at failure is known.  

A conservative approach using the minimum load-carrying capacity for all deflections leads to a 

large underestimation in some cases and thus can only be recommended as a rough estimate.  

If the deflection corresponding to yield strains of the concrete and the reinforcement is used for all 

levels of axial force, predictions of the load-carrying capacity seem to be reasonable. 
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11 Appendix 

11.1.1 Results of calculations for different slabs 

11.1.1.1 Square slab without axial force 
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Figure 11.1. Load-carrying capacity q1  for a square slab with L=2000mm, Φ0=Φ0´=0.1, hc/h= hc´/h=0.1, fc=30MPa 

(solid) and load-carrying capacity according to (7.39) (dashed) at the left hand side and position of the axes of rotation 

at the right hand side. 
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Figure 11.2. Load-carrying capacity q1  for a square slab with L=2000mm, Φ0=Φ0´=0.05, hc/h= hc´/h=0.2, fc=30MPa 

(solid) and load-carrying capacity according to (7.39) (dashed) at the left hand side and position of the axes of rotation 

at the right hand side. 
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Figure 11.3. Load-carrying capacity q1  for a square slab with L=2000mm, Φ0=Φ0´=0.1, hc/h= hc´/h=0.2, fc=30MPa 

(solid) and load-carrying capacity according to (7.39) (dashed) at the left hand side and position of the axes of rotation 

at the right hand side.  

11.1.1.2 Rectangular slab without axial force 
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Figure 11.4. Load-carrying capacity q1  for a rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=Φ0y=Φ0y´=0.1, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa (solid) and load-carrying capacity according to (7.48) or (7.50)  at the left 

hand side and position of the axes of rotation at the right hand side. 
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Figure 11.5. Load-carrying capacity q1  for a rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=Φ0y=Φ0y´=0.05, 

hcx/h= hcx´/h= hcy/h= hcy´/h=0.2, fc=30MPa (solid) and load-carrying capacity according to (7.48) or (7.50)  at the left 

hand side and position of the axes of rotation at the right hand side. 
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Figure 11.6. Load-carrying capacity q1  for a rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.1, 

Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.2, fc=30MPa (solid) and load-carrying capacity according to (7.48) or 

(7.50)  at the left hand side and position of the axes of rotation at the right hand side.  
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Figure 11.7. Load-carrying capacity q1  for a rectangular slab Lx=2000mm, Ly=4800mm, Φ0x=Φ0x´=0.7, 

Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa (solid) and load-carrying capacity according to (7.48) or 

(7.50)  at the left hand side and position of the axes of rotation at the right hand side.  
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Figure 11.8. Load-carrying capacity q1  for a rectangular slab Lx=2000mm, Ly=4800mm, Φ0x=Φ0x´=0.3, 

Φ0y=Φ0y´=0.05, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa (solid) and load-carrying capacity according to (7.48) or 

(7.50)  at the left hand side and position of the axes of rotation at the right hand side.  
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11.1.1.3 Rectangular slab with axial force 
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Figure 11.9. Load-carrying capacity (top left hand side), difference between the calculation methods (top right hand 

side), length of the part of the yield line parallel to the axes of rotation (middle left hand side), position of the axes of 

rotation for failure mode 1(middle left hand side) and position of the axes of rotation for failure mode 2(bottom)  for a 

rectangular slab Lx=2000mm, Ly=2000mm, Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, fc=30MPa, 

increasing σx and σy=0. 
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Figure 11.10. Load-carrying capacity (top left hand side), difference between the calculation methods (top right hand 

side), length of the part of the yield line parallel to the axes of rotation (middle left hand side), position of the axes of 

rotation for failure mode 1(middle left hand side) and position of the axes of rotation for failure mode 2(bottom)  for a 

rectangular slab Lx=2000mm, Ly=16000mm, Φ0x=Φ0x´=0.1, Φ0y=Φ0y´=0.1, hcx/h= hcx´/h= hcy/h= hcy´/h=0.1, 

fc=30MPa, increasing σx and σy=0.  

 

11.2 Calculations of the compression depth 

if 0<u<hc & hc´<u+ hc´<h+ hc & h-hc<u+h-hc<h 

 and 0≤y0<u 
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      + Φ +Φ Φ ≤ + Φ +Φ  (8.36) 

 and u+h-hc<y0≤u+h 
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- -1 2 1 1- ´
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c

u D u D u D
h L h L f h Ly
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σ     + + − + Φ +Φ +           =
+

 (8.37) 

if h <u & h<u+hc´ & h<u+h-hc 

 and 0≤y0<hc 
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 0

2 1- 2 ´

1-

c

D u
L h fy

Dh
L

σ   Φ +Φ +  
   =  (8.38) 

 and hc≤y0<h-hc 
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        =  (8.39) 

 and h-hc≤y0<h 
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         =

 (8.40) 

 

 and u+hc=y0 
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 (8.41) 

 and h<y0<u 
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   =

  Φ + Φ + 
 

 (8.42) 

 and u≤y0<u+hc 
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 (8.43) 

 and u+hc≤y0<u+h-hc 
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 and u+h-hc=y0 
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 (8.45) 
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 and u+h-hc<y0≤u+h 
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