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Standard Methods for Seismic Analyses 

1. Introduction 

The following report gives a general survey of the most important methods nowadays 
at disposal for a structural engineer when performing a seismic design of a given 
structure.  

The methods to be discussed are the response spectrum method and the linear time-
-history analysis. The first one is widely used as it applies to the major part of a 
seismic analysis necessary for design purpose. The time-history response method 
provides more detailed information regarding the seismic behaviour of a structure 
and is therefore used for more specific earthquake analyses. Both methods assume 
linear behaviour of the structure, i.e. proportionality between deformations and 
forces. For its simplicity, the static equivalent method, usually used in the pre-design 
phase of regular structures, is also introduced.   

The theoretical information given in this report is complemented with analysis of a 
bridge similar to one designed for the High Speed Transportation System in Taiwan. 

This document is intended for students or civil engineers who want to have a basic 
knowledge about earthquake analysis. Before discussing seismic analysis in 
particular, the reader is introduced to some of the corresponding basic concepts from 
elementary Structural Dynamics.  
It should be noted that this report does not intend to be neither a reference book nor 
a Structural Dynamics or Earthquake Analysis textbook. For further study a number 
of references are given. 
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2. Structural Dynamics Fundamentals 

2.1 Formulation of Equation of Motion for SDOF Systems 

The essential properties of any linearly elastic structural system subjected to 
dynamical loads include its mass, m, its elastic characteristics (stiffness), k, and its 
energy loss mechanism (damping), characterized by a number c. In dynamical terms, 
a system is called a Single Degree of Freedom (SDOF) system if all these properties 
may be modelled by a physical element with only one component of displacement, q. 
See figure 1 a).  

Figure 1 – a) Simplified sketch of a SDOF system; b) Dynamical equilibrium of a SDOF system 

The primary objective in a structural dynamical analysis is to evaluate the time 
variation of the displacements and to accomplish this the Equation of Motion must be 
formulated and solved.  

One of the methods to formulate the Equation of Motion1 is direct use of Newton’s 
second law, which implies that the mass develops an inertia force, fi, proportional to 
its acceleration and opposing the acceleration. The dynamical equilibrium condition is 
given by (2.1)2. 

     
( ) ( )
( ) ( ) 0

0
=⋅−⇔

⇔=−

tqmtF
tftF i

&&
                                            (2.1) 

Referring to Figure 1 b) the resultant force acting on the mass, F(t), may be defined 
as the difference between the external loads p(t) and the sum of the elastic forces, fk, 
and the damping forces, fc. The equilibrium condition may then be written as follows: 

( )tpfff kci =++                                               (2.2) 

� Elastic forces, fk, are determined using Hooke’s law: 
( )tqkfk ⋅=                                                    (2.3) 

                                            
1 Chapter 1-5 and chapter 2-2 of reference 1 on the formulation of the Equation of Motion is 
recommended.  
2 A dot means differentiation with respect to time 
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� Damping forces, fc, of the viscous type are proportional to the velocity, i.e.3. 
( )tqcfc &⋅=                                                     (2.4) 

Introducing equations (2.3) and (2.4) into equation (2.2) one may write the 
equilibrium condition in terms of the coordinate q(t), the system properties, m, k and c 
and the external dynamical loads as follows: 

( ) ( ) ( ) ( )tptqktqctqm =⋅+⋅+⋅ &&&                                     (2.5) 

This last expression is known as the Equation of Motion of a SDOF system. 

2.2 Undamped Free Vibrations  

The motion of a SDOF system free from external action or forces is governed by the 
initial conditions. If damping is disregarded the equation of motion (2.5) is of the form: 

( ) ( ) 0tqktqm =⋅+⋅ &&                                              (2.6) 

This is a homogeneous second order linear differential equation with constant 
coefficients. 

Considering solutions of the form 
( ) ( )tAtq ⋅⋅= ωcos                                               (2.7) 

or  
( ) ( )tsinBtq ⋅⋅= ω                                                (2.8) 

where A and B are constants, one may easily verify by direct substitution, that these 
are solutions to the differential equation (2.6). For instance, the substitution of 
equation (2.7) into (2.6) leads to: 

( ) ( ) 0tAkm- 2 =⋅⋅⋅+⋅ ωω cos                                      (2.9) 

In order to satisfy this condition at any time t, the term in the first parenthesis must be 
equal to zero, giving: 

m
k

=ω                                                    (2.10) 

Since the differential equation (2.6) is linear and homogeneous, the superposition of 
the two solutions above is also a solution. Therefore one may write the general 
solution as: 

( ) ( ) ( )tcosBtsinAtq ⋅⋅+⋅⋅= ωω                                   (2.11) 

                                            
3 Damping forces are always present in any physical system undergoing motion. These forces are part 
of a mechanism transforming the mechanical energy of the system to other forms of energy such as 
heat. The mechanism is quite complex and still not completely understood. Therefore the damping 
influence is usually quantified on the basis of experience.   
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The constants of integration A and B may be expressed in terms of the initial 
conditions, i.e. the displacement, q(0), and the velocity, ( )0&q , at time t=0. Thus the 
solution becomes: 

 ( ) ( ) ( ) ( ) ( tcos0qtsin0qtq
.

⋅⋅+⋅⋅= ωω )
ω
&

                             (2.12) 

This last equation is the equation for the motion of an undamped SDOF system 
under free-vibration conditions. This is a simple harmonic motion, in which the 
quantity ω  is the circular frequency. Dividing ω  by the factor π⋅2 , one obtains the 
natural frequency of the system, f, expressed in Hz (cycles per second). As shown by 
expression (2.10), this parameter only depends on the system properties k and m.  

Expression (2.12) may be used qualitatively to understand how the response is 
influenced by the stiffness and inertia properties of the system as well as the initial 
conditions:  
� A very stiff (or very “light”) SDOF system has a large value of k (or low value 

for m), and so the response frequency is high and the displacements are 
mainly given by ( ) ( ) ( )tqtq ⋅⋅= ωcos0& . Consequently the maximum displacement 
will be of the same order as the initial displacement, q(0); 

� A very flexible (or very “heavy”) SDOF system has a large value for m (or low 
value of k). The response frequency is low and the maximum displacement is 

mainly governed by ( ) ( ) ( tsin0qtq ⋅⋅= ω )
ω
&

& . This implies that the maximum 

displacements may be larger than the initial displacement, q(0).     

2.3 Damped free vibrations 

We now discuss a SDOF system vibrating freely but we include the effect of the 
damping forces. The equation of motion (2.5) then has the form: 

( ) ( ) ( ) 0tqktqctqm =⋅+⋅+⋅ &&&                                      (2.13) 

This differential equation is of the same form as before for the undamped case, but 
the solution now is: 

( ) tseCtq ⋅⋅=                                                  (2.14) 

where C is a constant. This is proved substituting (2.14) into (2.13) which leads to 

( ) 0eCkscsm ts2 =⋅⋅+⋅+⋅ ⋅                                      (2.15) 

Requiring the parenthesis to be zero we get: 

0=+⋅+⋅ kscsm 2                                             (2.16) 

The roots of this quadratic equation are: 
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2
2

2

1

22
ω−








⋅
±

⋅
−=





m
c

m
c

S
S

                                    (2.17) 

As in the previous paragraph, the general solution is given by superposition of the 
two possible solutions: 

( ) tsts eCeCtq ⋅⋅ ⋅+⋅= 21
21                                         (2.18) 

Depending on the value of c, one gets three types of motion, according to the 
quantity under the square-root sign being positive, negative or zero.  

The value making the square-root quantity zero is called the critical damping value, 
ω⋅⋅= mcc 2 , and it may be shown that this value represents the largest value of 

damping that leads to oscillatory motion in free response. Structural systems under 
normal conditions do not have values of damping above this critical value. So, in the 
following, only the situation for underdamped systems will be discussed, i.e. systems 
with damping below the critical value. 

Under these conditions, equation (2.18) may be written in a more convenient form, 
introducing the parameters: 

� ξ , which is the damping ratio to the critical damping value i.e. 
ω

ξ
⋅⋅

=
m2
c  

� dω , the damped vibration frequency, i.e. 2
d 1 ξωω −⋅=   

( ) ( ) ( )[ ]tsinBtAetq dd
t ⋅⋅+⋅⋅= ⋅⋅− ωωωξ                               (2.19) 

Finally, when the initial condition of displacement, q , and velocity, q , are 
introduced, the constant of integration A and B can be evaluated and substituted into 
equation (2.19), giving:   

0 0
&

( ) ( ) ( 







⋅⋅

⋅⋅+
+⋅⋅= ⋅⋅− tsinqqtcosqetq d

d

00
d0

t ω
ω

ωξ
ωωξ & )                  (2.20) 

The term in parenthesis represents simple harmonic motion, as it is of the same form 
as equation (2.12). It is of interest to note that the frequency for this harmonic motion 
is now given by dω  with the expression as above. For common structural systems 
(ξ <20%) this value differs very little from the undamped frequency as shown by 
equation (2.10), so it may be inferred that, for normal conditions, damping will not 
have any significant influence on the frequency of motion. 

The effect of damping is more evident when considering the successive peak 
responses (see figure 2). It may be shown that the ratio between two successive 
peaks, qn and qn+1, is given approximately by: 

ξπ ⋅⋅−+ ≅ 21 e
q

q
n

n                                                  (2.21) 
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Figure 2 – Plot of a free-vibration response equation of motion for underdamped SDOF systems 

q n

t

q(t)

q n+1

We may now formulate the equation of motion for SDOF systems by introducing the 
damping ratio, ξ , and the natural vibration frequency, ω : 

( ) ( ) ( ) ( )
m
tptqtq2tq 2 =⋅+⋅⋅⋅+ ωωξ &&&                              (2.22) 

2.4 Resonant Response4 

To explain this important phenomenon, taking place when a structure is submitted to 
dynamical loading, response to harmonic loading will be considered. 

The simplest load of this type is of the form: 
( ) ( )tsinptp ⋅⋅= ω0                                             (2.23) 

where p0 is the maximum value and ω  its frequency  

The equation of motion (2.5) may now be written as follows: 
( ) ( ) ( ) ( )tsinptqktqctqm 0 ⋅⋅=⋅+⋅+⋅ ω&&&                           (2.24) 

                                            
4 The study of SDOF systems cannot be completed without discussing the equations of motion for 
harmonic and periodic loading. However these subjects are not directly related to the standard 
methods for seismic design to be presented in this document. The reader is referred to, for example, 
chapters 4 and 5 of reference 1 or chapter 3 of reference 2.  
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One has now a non-homogenous differential equation which solution is of the form: 

  
( ) ( ) ( )[ ]

( ) ( ) ([ ]
( ) ( )

)
222

2
0

dd
t

21
tcos2tsin1

k
p

tcosBtsinAetq

βξβ

ωβξωβ

ωωωξ

⋅⋅+−

⋅⋅⋅⋅−⋅⋅−
⋅+

+⋅⋅+⋅⋅⋅= ⋅⋅−

       (2.25) 

Here: 
A and B have the same meaning as before i.e. they depend on the initial conditions.  

The parameter β is defined as the ratio 
ω
ωβ = . 

The first term in (2,25) is called the transient response and because of its 
dependence on the factor e ,it damps out quickly. Therefore its evaluation is of 
little interest for the present discussion. 

t⋅⋅− ωξ

The second term is called the steady-state response and it may be written in a more 
convenient form: 

( ) ( )θωρ −⋅⋅= tsintq                                          (2.26) 

The term ρ  is the amplitude, i.e. the maximum value of the displacement. It may be 

shown that this value is given in terms of the static displacement 
k
p0  multiplied by the 

factor, D, which is called dynamical magnification factor: 

D
k
p0 ⋅=ρ                                                   (2.27) 

with D expressed as: 

( ) ( )222 21

1D
βξβ ⋅⋅+−

=                                       (2.28) 

The value θ  is called the phase angle and describes how the response lags behind 
the applied load: 









−

⋅⋅
= 2

1-

1
2tan

β
βξθ                                            (2.29) 

Several plots of the dynamical magnification factor with respect to β  are shown in 
figure 3 for values of damping, ξ , usually found in common structures. 

As it may be seen the peak values of D are reached when β  is very close to 1 (in 

fact, when 221 ξβ ⋅−= ). This means that when the load frequency approaches the 
natural vibration frequency of the SDOF system, the response will increase more and 
more. This phenomenon is called resonance.  
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Figure 3 – The dynamical magnification factor D as a function of β  
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D

       β

Substituting the value of β  for which D is maximum, one has the following 
expression for the maximum response, qmax: 

k
p

12
1q 0

2max ⋅
−⋅⋅

=
ξξ

                                     (2.30) 

The effect of damping on the resonant response is seen clearly: The lower is the 
damping value, ξ , the bigger the response. Theoretically for undamped conditions 
the value is infinite.  

The physical explanation for resonance is of course that both load frequency and 
natural vibration frequency of the system are so close that most part of the time the 
response and the load signals are in the same phase. This means that when the 
system is moving in a certain direction the load is in the same direction. This will lead 
to a consecutive amplification of the response in each cycle until the limit given by 
expression (2.30) is reached. For undamped conditions the response will grow 
indefinitely. 

It should be also noticed that for values of β  near 0, i.e. when the natural vibration 
frequency of the system is much higher than the load frequency, D approaches unity. 
This means that the response will be closer to the static response. In fact, for highly 
stiff systems the quantity ( )tqk ⋅  is expected to play an important role in the final 
response. 
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2.5 Base Motion for SDOF Systems 

Figure 4 shows a sketch of a SDOF system when submitted to base motion. 

Figure 4 – SDOF system submitted to base motion 

When a SDOF system is submitted to base motion, one may write the absolute 
displacement, q, in terms of the sum of the relative displacement, q*, and the support 
displacement, qs (figure 4). 

sqqq += *                                                   (2.31) 

The formulation of the equation of motion leads to the same form as (2.2). However it 
should be noted that no load is acting on the system. The only action able to induce 
deformation on the system is the support displacement, . Therefore, as in (2.2), 
one may write the dynamical equilibrium condition: 

sq

  0=++ kci fff                                                 (2.32) 
Here: 
� Inertia forces, fk, are in terms of absolute coordinates, . q&&

� Elastic forces, fk, and damping forces, fc, are in terms of relative coordinates, 
 and q , respectively. *q *&

( ) ( ) ( ) 0** =⋅+⋅+⋅ tqktqctqm &&&                                  (2.33) 

By means of (2.31) it’s possible to write the previous equation in terms of relative 
coordinates. This is more convenient for the purpose of achieving the effects on the 
system due to base motion: 

( ) ( ) ( ) ( )tqmtqktqctqm s&&&&& ⋅−=⋅+⋅+⋅ ***                           (2.34) 

Equation (2.34) is of the same form as (2.5). Therefore the response analysis of a 
SDOF system submitted to ground motion, in terms of relative coordinates, may be 
treated assuming a load applied on the system equal to ( ) (tqmtp s&&⋅ )−= .   
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Equation (2.34) may also be formulated in the same way as (2.22): 

( ) ( ) ( )tqtqt*q2tq s
2 &&&&& −=⋅+⋅⋅⋅+ )(** ωωξ                         (2.35) 

Again we have a non-homogeneous differential equation and so it is necessary to 
find a particular solution, which depends on the form of . In chapter 4, the 
solution for base acceleration of general form will be discussed. 

( )tqs&&

2.6 Formulation of the Equation of Motion for MDOF systems 

From the discussion in the previous paragraphs, a degree of freedom is defined as 
an independent coordinate, necessary to specify the configuration or position of a 
system at any time, q(t). 

 
                                                                       a)                                              b) 

Figure 5 – Examples of MDOF systems 

A structural system composed by more than one degree of freedom is called a Multi-   
-Degree of Freedom system (MDOF). Figure 5 shows two examples of MDOF 
systems. 

The establishment of the equations of motion for several degrees of freedom 
proceeds analogously as for the SDOF systems, which leads to a dynamical 
equilibrium condition of the same form as (2.2) for each degree of freedom. The 
result is a system of N differential equations, in which N is the number of degrees of 
freedom.     

( )
( )

( )tpfff
................................

tpfff
tpfff

NNk,Nc,Ni,

2k,2c,2i,2

1k,1c,1i,1

=++

=++

=++

                                          (2.36) 

Each of the resisting forces, fi,i, fc,i or fk,i developed for a certain degree of freedom, i, 
is due to the motion of one degree of freedom. For example the elastic force 
produced for the degree of freedom 1, fk,1, is the sum of the different elastic forces 
acting at point 1, each one due to the displacement of each of any of the other 
degrees of freedom.  
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Most conveniently the resisting forces may be expressed by means of a set of 
influence coefficients. Considering again the example above one has: 

( )tqkf i

N

1i
1ik,1 ⋅= ∑

=

                                             (2.37) 

in which k1i is called the stiffness influence coefficient. It may be defined as the force 
at degree of freedom 1 due to a unit displacement corresponding to degree of 
freedom i. 

In figure 6 is illustrated the analysis of the stiffness coefficients in a two-storey frame 
with masses M1 and M2, bending stiffness of the columns EI and lengths of the 
columns L.   

 

( ) ( ) ( ) ( )
332231221311

122122122122
b

b

a

a

a

a

a

a

L
EI

L
EIk

L
EIKk

L
EIk ⋅

⋅+
⋅

⋅=
⋅

⋅−==
⋅

⋅=  

Figure 6 – Analysis of frame stiffness coefficients 

Analogously one may define the damping forces produced for degree of freedom 1: 

q1=1

q2=1

M1

(EI)a, La

(EI)b, Lb

M2

k11

k22k21

k12

( )tqcf i

N

1i
1ic,1 &⋅= ∑

=

                                             (2.38) 

in which c1i are called the damping influence coefficients. They may be defined as the 
force at degree of freedom 1 due to unit velocity of the degree of freedom i. 
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Finally the inertia forces produced for degree of freedom 1: 

( )tqmf i

N

1i
1ii,1 &&⋅= ∑

=

                                            (2.39) 

in which m1i  are called the mass influence coefficients and may be defined as the 
force at degree of freedom 1 due to unit acceleration corresponding to degree of 
freedom i. 

It is important to notice that the principle of superposition may be applied only if linear 
behaviour is assumed. 

The set of equations in (2.36) may be written in matrix form: 
[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }tptqKtqCtqM =⋅+⋅+⋅ &&&                            (2.40) 

This equation is equivalent to (2.5) for a given MDOF system as it expresses the N 
equations of motion defining its response5. In the following paragraphs until 2.11 the 
procedures leading to the solution of this system will be discussed.  

2.7 Frequency and Vibration Mode Shape Analysis 

The problem of determining the vibration frequencies in MDOF systems is solved as 
for SDOF systems, i.e. assuming undamped conditions and no loads applied. For 
this situation equation (2.40) is written as follows: 

 [ ] ( ){ } [ ] ( ){ } 0tqKtqM =⋅+⋅ &&                                       (2.41) 

By analogy with the behaviour of SDOF systems, it is assumed that the free-vibration 
motion response is simple harmonic, i.e. of the form (2.12): 

( ){ } { } ( )θω +⋅⋅= tsinqtq                                        (2.42) 
Here  

{ }q  represents the vibration shape of system, (constant in time) 
ω  is the vibration frequency and 
θ  the phase angle. 

Introducing the equation of motion into (2.41) and observing that 
( ){ } { } ( )θωω +⋅⋅−= tqtq sin2&&  one has (after omitting the sine term): 

[ ] { } 0qMK 2 =⋅⋅− ω                                           (2.43) 

                                            
5 For further study of the formulation of the equations of motion for MDOF systems, the reader is 
referred to chapter 11 in reference 1 regarding the evaluation of the matrices [M], [C] and [K] . 
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The only non-trivial solution of this equation is the one making the determinant of the 
matrix [ ]MK 2 ⋅− ω  equal to 0, (2.44). Thus the problem of determining the frequencies 
in a MDOF system results in an eigenvalue problem of the non-standard form. The 
eigenvalues are the squares of the frequencies and the eigenvectors are the 
vibration modes associated with the frequencies. 

0MK 2 =⋅− ω                                              (2.44) 

Equation (2.44) is called the frequency equation for MDOF systems. Expanding the 
determinant gives a polynomial expression of the Nth degree. Therefore one has a 
set of N solutions ( )2

N
2
2

2
1  ,..., , ωωω , each one representing a possible vibration mode. 

Each shape vector, { , is determined substituting the corresponding frequency, }q iω , 
into equation (2.43). 

The lowest frequency (also called the natural frequency) corresponds to the first 
vibration mode, the next higher corresponds to the second vibration mode, etc. 

It is of interest to notice that, as for SDOF systems, the frequencies and the 
corresponding vibration mode shape depend only on the mass, , and the 
stiffness, , of the system. 

[M ]
[ ]K

It should also be noticed that the system resulting from substituting a given 
frequency, iω , into equation (2.43) is homogeneous, with linear dependent equations 
and therefore indeterminate. This means that it’s impossible to determine the 
amplitudes of each degree of freedom in the corresponding vibration shape by simply 
resorting to equation (2.43). Only ratios between these amplitudes may be 
established. 

It is obvious that there are infinitely many ways of computing the relations between 
the values of each vibration mode shape. It is usual to do it so to obtain an easy 
interpretation and comparison of the several vibration modes.  
One of these ways is to normalize the vectors so that the largest value corresponds 
to unity. Another way is to assign the same value for a given degree of freedom in 
each vibration mode vector. 
Either way it is convenient to express the vibration mode shapes in the normalized 
form, i.e., in dimensionless terms by dividing all the components by one reference 
component. The resulting vector is called the nth mode shape φn. The matrix, [ ]Φ , 
assembling each of the mode shapes in a column is called the mode shape matrix 
and may be written as follows: 

[ ]





















=Φ

NNNN

N

N

φφφ

φφφ
φφφ

...
......................

...
...

21

22221

11211

                                        (2.45) 
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2.8 Orthogonality Conditions 

The free vibration mode shape vectors, φn, have certain special properties called 
orthogonality conditions, which are very useful in structural dynamical analysis.  

Orthogonality with respect to the mass matrix 

The dynamical equilibrium equation in the form (2.43) may be written for the modes n 
and m as follows. 

[ ] [ ] nnn MK φωφ ⋅⋅=⋅ 2                                           (2.46) 

  [ ] [ ] mmm MK φωφ ⋅⋅=⋅ 2                                          (2.47) 

Multiplying equation (2.46) by  one has: T
mφ

[ ] [ ] n
T
mnn

T
m MK φφωφφ ⋅⋅⋅=⋅⋅ 2                                     (2.48) 

Transposing equation (2.47) and noticing that [ ]M  and [ ]K  are symmetrical, i.e.: 
 and , one has: [ ] [ ]TMM = [ ] [ ]TKK =

[ ] [ ]MK T
mm

T
m ⋅⋅=⋅ φωφ 2                                        (2.49) 

If equation (2.49) is multiplied on the right-hand side of each member by nφ , the 
following expression is achieved: 

[ ] [ ] n
T
mmn

T
m MK φφωφφ ⋅⋅⋅=⋅⋅ 2                                    (2.50) 

Subtracting equation (2.50) from equation (2.48) results in: 

( ) [ ] 022 =⋅⋅⋅− n
T
mmn M φφωω                                      (2.51) 

It is evident from the discussion in paragraph 2.7 that if m ≠ n, the corresponding 
frequencies will be different, making the following equation (2.52) valid: 

[ ] 0=⋅⋅ n
T
m M φφ                                               (2.52) 

This condition shows that the vibration mode shapes are orthogonal with respect to 
the mass matrix. 

Orthogonality with respect to the stiffness matrix 

Dividing equations (2.48) and (2.50) by  and , respectively, one has: 2
nω 2

mω

[ ] [ ] n
T
mn

T
m

n
MK φφφφ

ω
⋅⋅=⋅⋅⋅2

1                                    (2.53) 

[ ] [ ] n
T
mn

T
m

m
MK φφφφ

ω
⋅⋅=⋅⋅⋅2

1                                    (2.54) 
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Subtracting equation (2.54) from (2.53) gives the following condition: 

[ ] 011
22 =⋅⋅⋅








− n

T
m

mn
K φφ

ωω
                                    (2.55) 

Thus for different vibration mode shapes the following orthogonality condition with 
respect to the stiffness matrix is valid: 

[ ] 0=⋅⋅ n
T
m K φφ                                               (2.56) 

The results (2.52) and (2.56) lead to: 

[ ] [ ] [ ] [ ]GT MM =Φ⋅⋅Φ                                           (2.57) 

[ ] [ ] [ ] [ ]GT KK =Φ⋅⋅Φ                                           (2.58) 

in which the matrices [  and ]GM [ ]GK  are of diagonal form. 

2.9 Modal Coordinates 

For dynamical analysis of linear systems with any kind of property (damped or 
undamped; with or without loading) it is assumed that the displacements are 
represented in terms of the free vibration mode shapes, nφ . These shapes constitute 
N independent displacement patterns, the amplitudes of which may serve as  
generalized coordinates to express any form of displacement. This is the same to say 
that any displacement vector, { }q , may be written by superimposing suitable 
amplitudes, Y, of the N modes of vibration. 

{ }

{ } n

N

n
n

NN

Yq

YYYq

⋅=⇔

⇔⋅++⋅+⋅=

∑
=1

2211 ...

φ

φφφ
                             (2.59) 

It is evident that the mode-shape matrix serves to transform from the generalised 
coordinates, Y, to the geometric coordinates, q. These generalized mode-amplitude 
coordinates are called modal coordinates. 

{ } [ ] { }Yq ⋅Φ=                                                 (2.60) 

The problem lies now in determining the modal coordinates vector, { , so that it may 
be used in equation (2.60) in order to determinate the response of the system in 
geometrical coordinates. The procedure of determining the displacement vector, 

}Y

{ }q  
using (2.60) is called mode superposition method.  

It should be noted that the mode-shape matrix, [ ]Φ , is composed by N independent 
modal vectors and therefore it is non-singular and may be inverted. This means that 
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it may always be solved directly for the modal coordinates amplitude, Y, associated 
with any given displacement vector, { }q . 

{ }Y

T
nφ

[ ] { }q⋅Φ= −1                                                (2.61) 

2.10 Equation of Motion in Modal Coordinates 

The equation of motion (2.40) represents a set of N simultaneous differential 
equations coupled by the off-diagonal terms in the mass and stiffness matrices. It will 
now be shown that, with an appropriate normalizing procedure for the vectors nφ  and 
regarding the orthogonality conditions observed previously, it is possible to transform 
the equation of motion into a set of N independent modal coordinate equations. 
Solving each of these equations and applying the mode superposition method leads 
to the establishment of the dynamical response of the system. 

The normalising procedure is called normalization with respect to the mass matrix, 
, and may consist in writing the vibration mode shape vector, [M ] nφ , so that the 

following condition will be valid: 
[ ] 1=⋅⋅ nM φ                                                (2.62) 

In order to determine, nφ , the reference component by which the nth vibration mode 
shape, { } , should be divided is: nq

{ } [ ] { }                                             (2.63) n
T
n qMq ⋅⋅

Finally the normalized vibration mode shape vector nφ : 

{ }
{ } [ ] { }n

T
n

n
n

qMq

q

⋅⋅
=φ                                         (2.64) 

As a consequence of this normalization, using (2.62), one has: 

[ ] [ ] [ ] [ ]IMT =Φ⋅⋅Φ                                             (2.65) 

with  as the N x N identity matrix. [ ]I

Another important result deriving from this type of normalization may also be shown: 

1) Multiplying both members of equation (2.46) by , one obtains: T
nφ

[ ] [ ] n
T
nnn

T
n MK φφωφφ ⋅⋅⋅=⋅⋅ 2                                    (2.66) 

2) Using the result expressed in (2.65) and remembering (2.58), 

[ ] 2
,

2
nnGnn

T
n KK ωωφφ =⇒=⋅⋅                                (2.67) 
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Therefore, the diagonal element at line n of the stiffness matrix, [ , equals the 
square of the nth vibration mode frequency. 

]GK

Regarding damping, it will be assumed that, as for the mass and stiffness matrices, 
the damping matrix is written in a way that the orthogonality conditions are satisfied:  

[ ] [ ] [ ] [ ]GT CC =Φ⋅⋅Φ                                            (2.68) 

It may be shown that, if the mode shape matrix, [ ]Φ , is normalized according to 
(2.64), then the matrix  is a diagonal matrix with each diagonal element  as: [ ]GC nnGc ,

[ ] nnn
T
nnnG Cc ξωφφ ⋅⋅=⋅⋅= 2,                                    (2.69) 

where nξ represents the nth mode damping ratio. This parameter may be interpreted 
as an energy loss mechanism associated with the corresponding vibration mode6. 

In the following the steps that allow writing equation (2.40) in terms of modal 
coordinates and therefore as a set of independent equations are described. 

1) Equation of motion in terms of the geometrical coordinates. 
[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } ( ){ }tptqKtqCtqM =⋅+⋅+⋅ &&&                            (2.40) 

2) Multiplication of both members by [ ]TΦ  and introduction of the neutral element 
[ ] [ ] [ ]I=Φ⋅Φ −1  in the first member. 

[ ] [ ] [ ] [ ] ( ){ } [ ] [ ] [ ] [ ] ( ){ }
[ ] [ ] [ ] [ ] ( ){ } [ ] ( ){ }tptqK

tqCtqM
TT

TT

⋅Φ=⋅Φ⋅Φ⋅⋅Φ+

+⋅Φ⋅Φ⋅⋅Φ+⋅Φ⋅Φ⋅⋅Φ
−

−−

1

11 &&&
          (2.70) 

3) Simplification considering the results (2.65), (2.58) and (2.68). 

[ ] ( ){ } [ ] [ ] ( ){ } [ ] [ ] ( ){ } [ ] ( ){ tptqKtqCtq T
GG ⋅Φ=⋅Φ⋅+⋅Φ⋅+⋅Φ −−− 111 &&& }          (2.71) 

It is evident now that one may write the previous equation for the modal coordinate, 
Yn, considering the transformation expressed in (2.61) and simplifying by means of 
(2.67) and (2.69), in the following form. 

( ){ }tpYYY T
nnnnnnn ⋅=⋅+⋅⋅⋅+ φωξω 22 &&&                            (2.72) 

Two comments should be made about this equation: 

i. The mode shape matrix, [ ]Φ , does not change with time which implies: 

{ } [ ] ( ){ }tqY && ⋅Φ= −1                                         (2.73) 

                                            
6 The conditions regarding damping orthogonality are discussed in detail in chapter 13-3 of reference 1 
and section 12.3 of reference 2. 
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{ } [ ] ( ){ }tqY &&&& ⋅Φ= −1                                         (2.74) 

ii. Equation (2.72) is written in terms of modal coordinates, in which the 
normalizing procedure has been done with respect to the mass matrix. 
Therefore the following equation may be inferred from (2.72) using (2.57) and 
(2.65): 

( ){ }
nG

T
n

n
2
nnnnn M

tpYYY
,

2 ⋅
=⋅+⋅⋅⋅+

φωξω &&&                           (2.75) 

The similarity between the previous expression and equation (2.22), describing the 
equation of motion for SDOF systems, is evident. This similarity is the basic principle 
for carrying out a dynamical analysis using the mode superposition method assuming 
that the system behaves linearly. In fact it is assumed that the motion response for 
the mode n (modal coordinate Yn) is the same as the motion response computed for 
a SDOF system with the properties m, ω  and ξ  having the same values as the 
corresponding ones written in modal coordinates , nGM , nω  and nξ . As already 
discussed in the chapters referring to SDOF systems it is possible to solve equations 
(2.72) or (2.75) for each of the N modes and therefore achieve the modal coordinates 
vector . As mentioned before, once the vector { }Y { }Y  is determined, application of 
the transformation (2.60) leads to the global response of the system in terms of 
single degree of freedom equations in geometric coordinates. 

However, for common structural systems subjected to extreme dynamical loading, as 
in a strong earthquake, it may be rather unrealistic to assume linear behaviour. For 
instance, in reinforced concrete structures submitted to dynamic loading, the stiffness 
distribution successively changes, not only due to the fact that certain elements are 
near yielding but also due to cracking. These are effects very difficult to take into 
account with the mode superposition method, since this method assumes that the 
structural properties remain constant in time. Therefore no information beyond the 
elastic limit is provided such as the inelastic energy dissipation. It is known that the 
formation of plastic hinges in a structure designed in a redundant way leads to the 
dissipation of energy transmitted by dynamic loading. This has a similar effect as 
damping and has a significant contribution to the structural response after yielding.         

2.11 Base Motion for MDOF Systems 

The establishment of the equations of motion for several degrees of freedom MDOF 
systems follows the reasoning described above. Again, relative coordinates, q*, 
presented in (2.31), are used due to the convenience regarding the effects of base 
motion on the system.  
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Because no dynamic load is applied on any degree of freedom, the set of equations 
of motion, in the form of (2.36), will be written as follows: 

0fff
........................

0fff
0fff

Nk,Nc,Ni,

k,2c,2i,2

k,1c,1i,1

=++

=++

=++

                                            (2.76) 

As in SDOF systems, only the inertia forces, , are in terms of absolute coordinates. 
Reducing (2.76) to relative coordinates and expressing the equation in matrix form 
leads to: 

iif ,

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ } [ ] ( ){ }tqMt*qKt*qCt*qM s&&&&& ⋅−=⋅+⋅+⋅ 7                  (2.77) 

The vector {  is the support acceleration vector and depends on the particular 
support conditions. However, it is reasonable to neglect this fact due to simplification 
regarding the common structural dimensions. 

( )tqs&& }

} }
It should also be noted that the support acceleration vector has three components 

,  and { , corresponding to direction X, Y, and Z. It will be assumed 
here that the first two directions are in the surface plane and Z corresponds to 
vertical direction.  

( ){ }tqsX&& ( ){ tqsY&& ( )tqsZ&&

Referring to the explanation, given in paragraph 2.6 about the influence coefficients, 
mi,i, ci,i and ki,i, composing the matrices [ ]M , [ ]C  and [ ]K , it is evident that if a degree 
of freedom, i, is under direction J, only the motion of the degrees of freedom under J 
direction will affect the motion of the actual degree of freedom i. Therefore it is 
practical to introduce into equation of motion (2.77) a set of vectors , { }X1 { }Y1  and 

. These are written so that nth line corresponds to the nth degree of freedom and 
the corresponding value will be unity, if the degree of freedom is in the same 
direction as that of the vector, otherwise it is zero. 

{ }Z1

Introducing the above vectors the equation of motion for MDOF systems submitted to 
base motion will have the following form: 

[ ] ( ){ } [ ] ( ){ } [ ] ( ){ }
[ ] { } ( ) { } ( ) { } ( )( )tqtqtqM

tqKtqCtqM

sZZsYYsXX &&&&&&

&&&

⋅+⋅+⋅⋅−=
=⋅+⋅+⋅

111
      (2.78) 

It is obvious that this equation is of the same form as (2.40). The procedures 
described in the previous paragraph, regarding the equation of motion in modal 
coordinates, may then be applied. Considering again the nth modal coordinate, one 
has: 

                                            

7 In the present document whenever support motion is discussed for MDOF systems, the relative 
coordinates are used. Therefore the symbol * will be omitted in the following expressions. 
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[ ] { } ( ) [ ] { } ( ) [ ] { } ( )tqMtqMtqM

YYY

sZZ
T
nsYY

T
nsXX

T
n

n
2
nnnnn

&&&&&&

&&&

⋅⋅⋅−⋅⋅⋅−⋅⋅⋅−=

=⋅+⋅⋅⋅+

111

2

φφφ

ωξω
(2.79) 

The term , affecting each acceleration value q , is denominated the 
modal participation factor of the nth mode for direction J, P

[ ] { }jT
n M 1⋅⋅φ sJ&&

nJ. As it may be inferred it 
only depends on the vibration mode shape, the mass distribution and the direction of 
each degree of freedom. By superposition analysis, regarding the linear behaviour of 
the system, is possible to solve the equation separately for each direction, which will 
lead, for mode n and direction J, to the following differential equation. 

( )tqPYY2Y sJnJn
2
nnnnn &&&&& ⋅−=⋅+⋅⋅⋅+ ωξω                            (2.80) 

It was mentioned before that the support motion from an earthquake is of the form of 
an excitation. Therefore the minus sign in (2.80) is of minor interest. Generally the 
sign of the response does not have any important significance in an earthquake 
analysis. From now on it will be omitted due to simplification. 

Equation (2.80) is of the same form as (2.72), which means that it may be solved 
analogously as for a SDOF system. Moreover, as the modal participation factor is a 
dimensionless parameter and the behaviour of the system is linear, it is possible to 
solve the equation of motion in the form (2.80) without using Pnj (first line in (2.81)). 
This parameter may be used again to compute the actual modal coordinate by simply 
multiplying it by the solution determined as mentioned above (second line in (2.81)). 

( )
nnJnn

nsJn
2
nnnnn

YPYYCoordinateModalFinal
YtqYY2Y

′⋅=⇒

′⇒=′⋅+′⋅⋅⋅+′

,

&&&&& ωξω                  (2.81) 

As before, the equation of motion under direction J for the nth degree of freedom 
may be computed applying the transformation (2.60). 

( ) ( )tYPtq niJ

N

i
inJn ′⋅⋅= ∑

=1
,, φ                                         (2.82) 

It appears from this expression, that the modal participation factor serves also as a 
measure of each mode contribution for the response in geometric coordinates. For 
instance, consider the response of a degree of freedom under X direction, in a given 
MDOF system. It is expected that modes with displacements mainly under X direction 
will contribute more to this response, than other modes having their displacements 
mainly in other directions.  
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2.12 Vibration Analysis by the Rayleigh Method 

The Rayleigh method is widely used as it provides a simple method of evaluating the 
natural frequency both for SDOF and MDOF systems.  

Basic concepts 
The basic concept in this method is the principle of conservation of energy. This 
implies that the energy of a SDOF system, as shown in figure 1, must remain 
constant if no damping forces, fc, act to absorb the energy when the system is freely 
vibrating. The total energy in this case consists of the sum of the kinetic energy of the 
mass, T, and the potential energy of the spring, V. 

The motion of this system may be assumed harmonic i.e.: 
( ) ( )tsinZtq ⋅⋅= ω0                                             (2.83) 

where Z0 is the amplitude and ω  the frequency. 

Under these conditions is evident that: 
� when the systems is in its neutral position, q(t)=0, the force of the spring is 0 

and the velocity is maximum, ω⋅0Z . The entire energy of the system is then 
given by the kinetic energy of the mass: 

( 2
0max 2

1 ω⋅⋅⋅= ZmT )                                           (2.84) 

� when the system is at maximum displacement the velocity of the mass equals 
0 which means that the entire energy of the system is the potential energy of 
the spring: 

2
0max 2

1 ZkV ⋅⋅=                                               (2.85) 

According to the principle of conservation of energy, for the present conditions, the 
previous expressions must be equal. Thus the same result is established as in (2.10): 

( )

m
k

ZkZm

=⇔

⇔⋅⋅=⋅⋅⋅

ω

ω 0
2

0 2
1

2
1

                               (2.86) 

Approximate analysis of a general system; Selection of the 
vibration shape 

The main advantage of this method is that it provides a simple procedure to 
determine a good approximation of the natural frequency of MDOF systems. 

Consider a simply supported beam as shown in figure 7. 
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Figure 7 – Simply supported beam with a 

selected deformed shape possible 

This beam may be considered as a MDOF system as it has an infinite number of 
degrees of freedom. To apply the Rayleigh method one has to assume a deformed 
shape for the fundamental mode of vibration so that it may be possible to compute 
the maximum potential and kinetic energy.  

This may be achieved writing the deformed shape in terms of a shape function, ( )xψ , 
representing the ratio of the displacement at any point x to a reference displacement, 
Z(t), varying harmonically in time (see figure 7): 

( ) ( ) ( )tZxtxq ⋅= ψ,                                             (2.87) 

with ( ) ( )tZtZ ⋅⋅= ωsin0 . 

The previous assumption of the shape function, ( )xψ , effectively reduces the beam to 
a SDOF system as the knowledge of a single function allows the evaluation of the 
displacement of the entire system. 

The flexural strain energy, V, of a prismatic beam, as shown in figure 7, is given by 
the following expression, EI being the bending stiffness,  

( ) ( ) dx
dx

txqdxEIV
L

2

0 2

2 ,
2
1

∫ 







⋅⋅=                                    (2.88) 

Introducing equation (2.87) into this expression and letting the reference 
displacement, Z(t), take its maximum value one finds the following expression for the 
maximum strain energy, Vmax: 

( ) ( ) dx
dx

xdxEIZV
L

2

0 2

2
2
0max 2

1
∫ 








⋅⋅⋅=

ψ                                (2.89) 

The kinetic energy of the beam vibrating as assumed in (2.87) is: 

( ) ( ) dx
dt

txdqxmT
L

2

0

,
2
1

∫ 




⋅⋅=                                     (2.90) 

where m(x) is the mass per unit length. 

Proceeding as above to find the maximum strain energy, one may write the maximum 
kinetic energy as follows: 
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( ) ( ) dxxxmZT
L2

2

0

2
0max 2

1
∫ ⋅⋅⋅= ψω                                  (2.91) 

The application of the principle of conservation of energy leads to the following 
natural vibration frequency: 

( ) ( )

( ) ( ) dxxxm

dx
dx

xdxEI

L

L

2

0

2

0 2

2

∫

∫

⋅









⋅

=
ψ

ψ

ω                                     (2.92) 

The accuracy of the vibration frequency obtained by the Rayleigh method depends 
entirely on the shape function assumed, ( )xψ . Any shape function satisfying the 
geometrical boundary conditions may be selected as it represents a possible 
vibration shape. However, any shape other than the natural vibration shape requires 
the action of additional external constraints that contribute to stiffen the system and 
therefore to increase the corresponding frequency. Consequently from the infinity of 
vibration shapes possible in a general system, the true vibration shape yields the 
lowest frequency. 

A good approximation to the natural frequency / vibration shape may be obtained 
considering the static performance of the system.  

One common assumption is to identity the inertia forces with the weight of the 
masses in the system. The frequency is then evaluated assuming that the vibration 
shape, ( )xψ , is the deflected shape resulting from the application the weight in the 
direction where the principal vibratory motion is expected to take place. Therefore 
considering the system in figure 5a) one would assume the weight load being vertical 
as this is the direction where the vibration motions are expected to take place. In a 
multi-storey building the vibration shape is mainly due to horizontal displacements of 
each storey and so the inertia forces should be put in the horizontal direction. 

In the following the application of this procedure in determining the natural frequency 
of a MDOF system with N degrees of freedom is explained. 
 
According to (2.87) the displacements for the degree of freedom n is given by the 
expression: 

( ) ( )tsinZtq nn ⋅⋅= ω                                            (2.93) 

Here Zn is the amplitude, which depends on the position of the mass and may be 
taken as the displacement at the degree of freedom when the system is acted upon 
by the weight load. 

The potential energy is given by the sum of the work of each weight-load, Wn. The 
maximum potential energy is given by: 
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∑
=

⋅⋅=
N

i
nn ZWV

1
max 2

1                                            (2.94) 

The maximum velocity of mass number n, may be easily found using equation (2.93). 
One gets q nn Z⋅= ωmax,& . 

Therefore the maximum kinetic energy may be written in the form: 

∑
=

⋅⋅⋅=
N

i
n

2
n

n Z
g

WT
1

2
max 2

1 ω                                        (2.95) 

Thus the frequency in a MDOF with N degrees of freedom determined by equating 
the maximum values for the strain and kinetic energies, respectively, is: 

∑

∑

=

=

⋅

⋅
⋅= N

i
nn

N

i
nn

ZW

ZW
g

1

2

1ω                                           (2.96) 
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3. Seismic Analysis by Response Spectra 

Response spectrum analysis is perhaps the most common method used in design to 
evaluate the maximum structural response due to the seismic action. This is a linear 
approximate method based on modal analysis and on a response spectrum 
definition. According to the analogy between SDOF and MDOF systems, the 
maximum modal response of the nth mode, Y  , is the same as for a SDOF system 
having 

max
n

nωω = and nξξ =  (see equation (2.75))   

It should be emphasized that this procedure only leads to the maximum response, 
instead of fully describing the response. This saves up a lot of calculation effort with 
evident consequences in the time consumed and CPU requirements. The maximum 
response is established for each mode by means of the adequate response 
spectrum. Therefore the response spectrum analysis is often considered to be the 
most attractive method for the seismic design of a given structural system.  

3.1 Response Spectrum Concept 

To explain the response spectrum concept, one considers a SDOF system submitted 
to an external action that may be either an applied force or a support displacement. 
The procedures used to formulate and solve the equation of motion, ( )tq , and 
therefore to achieve the time dependent response of the referred SDOF system, 
were already discussed in paragraphs 2.1 to 2.5. For the response spectrum 
definition, it is necessary to evaluate the value of the maximum response, which may 
be easily determined once its equation of motion, ( )tq , is fully known. 

         Figure 8 – Typical representation of response spectrum 

If the procedure of determining the maximum response is repeated for a sufficient 
range of SDOF systems, with a specified critical damping ratio, ξ , and for different 
natural vibration frequencies, ω , submitted to the same external action, it is possible 
to define a function and represent it in a diagram similar to the one shown in figure 8. 
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This diagram is generally known as a response spectrum, ( )ξω ,S . Usually it is 
represented with the x-axis being the natural vibration frequencies or periods of 
vibration8 of the SDOF and the y-axis being the corresponding maximum response 
values. Generally, in the same graph different response spectra, corresponding to 
the same action and to different damping ratios usually found in common structures 
(2%, 5% and 10%) are shown as in figure 8.  

)

Figure 8 represents a typical relative displacement response spectrum, ( )ξω ,dS , for 
values of critical damping ratio, ξ , usually found in common structural systems. The 
meaning of the relative displacement, q*, was already discussed in paragraph 2.5. It 
is worth to analyse the evolution of the response spectrum function: 

1) For low values of frequency, close to zero, one 
may see that the maximum value for the relative 
displacement tends to a certain value, which is 
the support displacement, qs. This is easily 
explained if one remembers the concept of the 
natural vibration frequency, ω , in a SDOF 
system, described by expression (2.10). In fact a 
SDOF with a low value of ω  is very flexible and 
behaves as shown in figure 9 when submitted to 
a support displacement.  

f
i

Figure 9 

 

2) After a certain value of frequency, the relative 
displacement tends to zero. In fact high values of 
frequency correspond to a very stiff system. The 
response motion will then be as shown in figure 
10 – the relative displacements, q*, tend to zero. 

F
F
i
F

Figure 10 

It should be noted that the maximum responses, ( )ξω ,S  may be presented in every 
desired form, i.e. for displacements, ( )ξω ,Sd , velocities, ( ξω ,vS , and accelerations, 

( )ξω ,Sa , or even in the form of internal forces or bending moments in a given point of 
the SDOF system. 

                                            
8 The period T, in seconds, is the inverse of the cyclic frequency in Hz (cycles per second) 
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The available response spectra used for design purpose, in most of the Seismic 
Design codes, are defined by means of an accelerogram representing a typical 
earthquake in the region of the structure.  

N.B.: An accelerogram is a record of the ground accelerations either measured in a 
certain place or generated artificially. 

3.2 Response Spectrum Analysis Applied to MDOF Systems 

It was concluded in chapter 2.11 that the equation of motion for the nth degree of 
freedom under a support excitation in direction J for a given MDOF system may be 
written as in (3.1): 

( ) ( )tYPtq niJ

N

i
inJn ′⋅⋅= ∑

=1
,, φ                                         (3.1) 

As mentioned, the term PiJ may be omitted, and so the modal coordinate, ( )tnY ′ , may 
be found using to the analogy between equations (2.80) and (2.22) for MDOF and 
SDOF systems, respectively.  

For direction J, the maximum value for the modal coordinate in terms of 
displacements, max,nY ′ , may be easily achieved if the displacement response 
spectrum, ( )ξω ,Sd , is available. Instead of solving mathematically an expression in 
the form of (2.80), Y  is established from the response spectrum, max,n′ ( nnd ,S )ξω , for the 
SDOF system with both the same natural vibration frequency, nω  and critical 
damping ratio, nξ . The procedure is illustrated in figure 11. 

Figure 11 

After establishing the maximum value for the modal coordinate, Y , the modal 
participation factor is recovered as: 

dn S=′ &max,

( )nnd,JiJn,max ,SPY ξω⋅=&                                          (3.2) 
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 In the same way one may calculate the maximum response in terms of 
accelerations, Y , or velocities, Y , if the corresponding spectra, max,n

&&
max,n

& ( )ωaS  or ( )ωvS  
are accessible9. 

( )nnJa,iJmaxn, ,SPY ξω⋅=&&&                                        (3.3) 

( )nnv,JiJn,max ,SPY ξω⋅=&&                                          (3.4) 

We now discuss the problem of establishing a reasonable value for the global 
maximum response of the system. The assumption behind the reasoning expressed 
in (3.1), i.e. to sum the maximum values of each modal coordinate, Y , certainly 
will correspond to an upper limit of the global response with a low probability of 
occurrence, since is very unlikely for the maximum modal responses to happen 
simultaneously. In fact this is the main disadvantage of the response spectra 
analyses: The result provided is a set of extreme values that don’t take place at the 
same time and therefore do not correspond to an equilibrium state. Thus this method 
can’t provide information on the failure mode of the structure, which is an important 
information from the engineering point of view.  

n,max

To minimize these disadvantages it is necessary to combine the modal responses. 
There are several ways of carrying out this and it is out of the purpose of the present 
text to discuss them. Therefore only two methods are presented. It should be 
mentioned that there is some controversy about which method leads to better results. 
In the design codes, usually the first method to be discussed below is suggested. 
However is up to the designer to choose more accurate procedures of combining the 
modal response if the SRSS method can’t be applied.    

1) SRSS (Square Root of Sum of Squares) 
This is one of the most frequently used modal combination methods. According to 
this rule the maximum response in terms of a given parameter, G, 
(displacements, velocities, accelerations or even internal forces) may be 
estimated through the square root of the sum of the m modal response squares, 

, contributing to the global response, i.e. ( )2
nG

( )∑
=

≈
m

n
nGG

1

2                                                  (3.5) 

This method usually gives good results if the modal frequencies of the modes 
contributing for the global response are sufficiently separated to each other. 
Otherwise another method, such as the one following, will be more adequate. 

                                            
9 Alternatively this may be done by means of the so-called pseudo-response-spectra. These are 
determined remembering that each vibration mode will have an expression in the form of (2.42) for the 
corresponding equation of motion. Therefore one has ( ) ( )ωωω dv SS ⋅=&  and S . ( ) ( )ωωω d

2
a S⋅=&
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2) CQC (Complete Quadratic Combination) 
The reason why this method is more effective in evaluating the maximum 
response when the modal frequencies are close to each other is due to the fact 
that it considers the correlation between modal responses, whereas the SRSS 
method considers these to be independent. In fact if two vibration modes have 
close frequencies their contribution to the global response is not independent. 
Usually this method is used if 1.5n1n ≤+ ωω . The correlation between modes i and 
n is estimated using the parameter, inρ , given by the following expression: 

( )
( ) ( )2inin

222
in

2
3
inin

2

in
141

18
ββξβ

ββξρ
+⋅⋅⋅+−

⋅+⋅⋅
=                                 (3.6) 

The parameter inβ  is 
n

i
in ω

ωβ = . 

The global response is achieved applying the following expression. 

∑∑
= =

⋅⋅≈
m

n

m

i
niin GGG

1 1

ρ                                           (3.7) 

3.3 Ductile Behaviour Consideration 

As may be understood by the discussion so far, earthquake analysis by response 
spectra is based on the assumption that the system behaves linearly. This means 
that even for the maximum response situation the internal forces on the different 
structural elements of the system are assumed to be proportional to the 
displacements achieved. 

However this hypothesis is far from reality for structural materials as reinforced 
concrete or steel. For instance, a sketch of the stress-strain curve for steel, in figure 
12, shows that this material will roughly behave linearly until yielding and thereafter 
non-linearly until failure. The symbols yε  and uε stand for yielding and ultimate 
strains, respectively. 

Figure 12 – Typical stress-strain curve for steel in uniaxial tension or compression 
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The capacity of the material to absorb deformations in a stabilized way is called 
ductility. One way of measuring ductility is the ratio of ultimate deformation to the 
yielding deformation. The larger this value the more ability of the material to dissipate 
energy after yielding, and therefore the more ductile. 

The seismic design criteria consider that a structure submitted to an extreme 
earthquake should be prevented from collapse but significant damage is expected. 
Therefore this type of action must be included among the design load conditions for 
the Ultimate Limit State design. Under these conditions, yielding is expected which 
will lead to inelastic response of the structure.  

Assuming that the deflections, δ , produced by a given earthquake are essentially the 
same whether the structure behaves linearly or yields significantly, one can utilize the 
non-linear behaviour and design structures for less values of stresses, σ, or internal 
forces, F. This idea is illustrated in figure 13. 

Figure 13 

Therefore if the response spectra method is used to design a structural system, the 
stresses / internal forces corresponding to the maximum deformations previously 
achieved may be reduced to take into account the yielding of the material. This is 
done by means of the coefficient, η , called the reduction factor or behaviour 
coefficient the physical meaning of which is shown in figure 13.  

The determination of this coefficient is also a matter of controversy. Usually, the 
value given for the behaviour coefficient is much less than the real one as the elastic 
response is reduced using further reduction coefficients (see chapter 6). However, it 
is accepted that in order to maximize the non-linear behaviour of the system and thus 
its behaviour coefficient, it is desirable to design it in a redundant way i.e. with a 
sufficient number of plastic hinges allowed before collapse.  

It should be stated that ductility does not depend only on the material characteristics 
but also on the system and the direction of loading. Consider, for instance, the MDOF 
system in figure 5 b). The horizontal motion of the mass will induce bending moments 
on the column whereas the vertical motion of the mass will lead to a compression / 
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tension. For the first situation the moment-rotation curve will show that the element 
has capacity to absorb deformations after yielding and so ductile behaviour may be 
assumed. On the other hand, the axial force – axial deformation diagram often show 
brittle behaviour and so 1=η  is usually adopted. This is the reason why in most of 
the analyses, for vertical seismic action, the reduction factor is taken as unity.  
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4. Seismic Response by Time-History Analysis 

Time-History analysis is a step-by-step procedure where the loading and the 
response history are evaluated at successive time increments, ∆t – steps. During 
each step the response is evaluated from the initial conditions existing at the 
beginning of the step (displacements and velocities) and the loading history in the 
interval. With this method the non-linear behaviour may be easily considered by 
changing the structural properties (e.g. stiffness, k) from one step to the next. 
Therefore this method is one of the most effective for the solution of non-linear 
response, among the many methods available. Nevertheless, in the present text, a 
linear time history analysis is adopted i.e. the structural properties are assumed to 
remain constant during the entire loading history and further it is assumed that the 
structure behaves linearly. As a consequence the mode superposition method, 
already discussed in chapter 2, may be applied. 

4.1 Response of a SDOF System to General Dynamic 
Loading; Duhamel’s Integral 

The equilibrium equation for a given general dynamic loading, p(t), may be 
expressed in the same form as (2.22) for a damped SDOF system, i.e.: 

( ) ( ) ( ) ( )
m
tptqtq2tq 2 =⋅+⋅⋅⋅+ ωωξ &&&                               (2.22) 

It should be noted that both the response, q(t), and the dynamical loading, p(t), 
depend on time. The purpose of Duhamel’s integral is to achieve the response at any 
time, t, due to load applied at another time τ.  

The response to general dynamic loading of a SDOF system subjected to initial 
conditions q0 and q  is deduced considering first the corresponding free vibration 
response as in equation (2.20). 

0
&

( ) ( ) ( 







⋅⋅

⋅⋅+
+⋅⋅= ⋅⋅− tsinqqtcosqetq d

d

00
d0

t ω
ω

ωξωωξ & )                 (2.20) 

If the starting time is different from 0, the above expression may be written in a 
general form introducing τ as the time corresponding to the initial conditions: 

 ( ) ( ) ( ) ( )( ) ( ) ( ) ( )( 







⋅⋅

⋅⋅+
+⋅⋅= ⋅⋅− τω

ω
ωξτττωττ τωξ -tsinqq-tcosqe-t d

d
d

-t & )q         (4.1) 
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Now we consider the same SDOF system acted upon by a load p(τ). This load 
induces into the system a velocity variation, q&∆ , in the interval ∆τ given by the 
impulse-momentum relationship: 

( ) ττ dpqm ∫=∆⋅ &                                               (4.2) 

The second term in this equation represents the area of the plot p(τ) in the time 
interval ∆τ. For a differential time interval, dτ, this area is simply p(τ)dτ, which allows 
to re-write equation (4.2) as follows: 

( ) ( ) τττ dpqdm =⋅ &                                               (4.3) 

Using the previous relation and noticing that the response after the termination of the 
short duration impulse, ( ) ττ dp , is a free vibration motion subjected to an initial 
velocity, , one may write the differential response, dq(t), as follows, for t>τ: ( )τqd &

( ) ( ) ( ) ( )( 







−⋅⋅

⋅
⋅

= ⋅⋅− τω
ω

τττωξ tsin
m

dpetdq d
d

-t )                             (4.4) 

The entire loading history may be considered to consist of a succession of such short 
impulses, each producing its own differential response according to the expression 
above. Because the system is assumed to be linear, the total response may be 
established by summing all the differential responses developed during the loading 
history. This is the same as saying that the response at time t is given by the integral 
of the differential displacements since time t=0 until time t., i.e.: 

( ) ( ) ( ) ( )( ττωτ
ω

τωξ dtsinep
m

tq d
tt

d
−⋅⋅⋅

⋅
= −⋅⋅−∫0

1 )                         (4.5) 

This result is known as Duhamel’s Integral and is one of the most important results in 
Structural Dynamics as it may be used to express the response of any damped 
SDOF system subjected to any form of dynamical loading, p(τ). There are several 
procedures to evaluate this integral and it is out of the purpose of this text to discuss 
them here.10 

To take into account initial conditions, the free damped vibration response must be 
added to the solution, which leads to the result: 

( ) ( ) ( )

( ) ( ) ( )( ) ττωτ
ω

ω
ω

ωξω

τωξ

ωξ

dtsinep
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tsinqqtcosqetq
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−⋅⋅⋅
⋅
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+







⋅⋅

⋅⋅+
+⋅⋅=

−⋅⋅−

⋅⋅−

∫0

1

&

            (4.6) 

                                            
10 References 1, chapter 7, and reference 2, section 4, provide useful information about the evaluation 
of the Duhamel Integral for SDOF systems. 
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As one may notice the general response in the form (4.6) for damped SDOF systems 
is composed by two terms with the same nature as discussed in paragraph 2.4. The 
first term reflects only the influence of the initial conditions and the second term 
corresponds to the loading effect on the structural response. 

4.2 Linear Time History Analysis for MDOF Systems 

It may be inferred from the discussion held in paragraphs 2.6 to 2.11, that the 
solution given by the Duhamel Integral may be used to determine the modal 
coordinates of a given MDOF system submitted to general dynamic loading. The 
mode superposition method is then used to determine the global response of the 
system.   

The determination of the modal coordinates of a given MDOF systems, Yn(t), is 
accomplished from equation (2.72) in which the vector ( ){ }tp  represents the general 
dynamic loading applied in the corresponding degrees of freedom.    

( ) ( ) ( ) ( ){ }tptYtY2tY T
nn

2
nnnnn ⋅=⋅+⋅⋅⋅+ φωξω &&&                           (4.7) 

The modal coordinate Yn(t), has the same form as (4.5), assuming that the system 
starts from rest, with nξξ = and nωω = , i.e.: 

( ) ( ) ( )( ττωτφ
ω

τωξ
ωξ

dtsinpeetY nd

N

i

t
iin

nd,

t

n
nn

nn

−⋅⋅⋅⋅⋅= ∑∫
=

⋅⋅
⋅⋅−

,
1

0
)                 (4.8) 

Once this procedure is done for all normal coordinates, one applies the expression 
(2.60) to obtain the time dependent equation of motion for each degree of freedom in 
geometric coordinates. This will lead to the global response of the system at any 
desired time t.  

If the system is submitted to initial conditions different from zero, then it is obvious 
that equation (4.8) would have to be written in the form of (4.6). For this case one 
would have to compute the modal initial conditions q0,n and  as expressed in 
(2.61) considering the vectors 

nq ,0
&

{ }0q  and { }0q& . 

It should be noticed that, in order to obtain the equation of motion for a given degree 
of freedom at a time t in a MDOF system with N degrees of freedom, it is required to 
solve the set of N equations as (4.8). To obtain the global response of the system it is 
necessary to compute the equation of motion for the N degrees of freedom. This is 
done by means of expression (2.60). Therefore one may conclude that to establish 
the deformed shape of a structure at a certain time t, NxN equations in the form of 
(4.8) must be solved. If one wants to represent the time history of the displacements, 
then a set of time intervals must be established taking into account the desired 
accuracy of the time history representation. If the time history has m time intervals 
then it is obvious that mxNxN equations in the form of (4.8) must be solved. In most 
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cases less than N modes are considered since, the modes corresponding to high 
frequencies have a small contribution for the response of the structure. 

Thus, it may be concluded, that the decision about the number of degrees of freedom 
and the desired accuracy for the time history representation affect directly the 
number of calculations to accomplish and therefore must be chosen carefully taking 
into account the time consuming and the CPU requirements to proceed a time history 
analysis. However, for some structures or certain types of analysis the number of 
degrees of freedom may be very high, which makes the application of this method 
impracticable. This is actually one of the main disadvantages of the method. 

4.3 Time History Analysis for Earthquakes  

As mentioned before, an earthquake action is considered as a base motion 
computed on the basis of the support acceleration. Thus all the results in paragraph 
2.5 and 2.11 may be applied. 

Separating the support acceleration vector, ( )tqs&& , in its three components, along the 
axes X, Y and Z, we have for each degree of freedom a dynamic load given by the 
product of the mass, m, and the corresponding acceleration value, .  ( )tqsJ&&

As stated in paragraph 2.11, the definition of the modal coordinates Yn(t) may be 
done for each direction separately, using the mode superposition approach and the 
assumed linear behaviour of the system. If expression (2.80) is used, the equation of 
motion for the nth mode under direction J is the following: 

( ) ( ) ( ) tqPtYtYtY sJnJnnnnnn &&&&& ⋅=⋅+⋅⋅⋅+ 22 ωξω ( )                        (4.9)  

Remembering the expression of the modal participation factor, PnJ, it is obvious that 
the second term in (4.9) may be written as: 

( ) [ ] { } ( )tqMtqP sJJ
T
nsJnJ &&&& ⋅⋅⋅=⋅ 1φ                                (4.10)  

The analogy between expression (4.9) and (4.7) is evident expressing the load vector 
 as: ( ){ tp }

 ( ){ } [ ] { } ( )tqMtp sJJ &&& ⋅⋅= 1                                      (4.11) 

A solution is achieved by substituting into equation (4.8) the term ( )tp{  by 
which leads to: 

}
[ ] { } ( )tqM sJJ &&⋅⋅ 1

( ) ( ) ( )( ττωτ
ω

τωξ
ωξ

dtsinqPeetY nd,
t

sJnJ
nd,

t

n
nn

nn

−⋅⋅⋅⋅⋅= ∫ ⋅⋅
⋅⋅−

0
&& )                 (4.12) 

The problem now consists in solving this expression above for each modal 
coordinate. One of the most common techniques is to assume the load subdivided 
into a sequence of time intervals, steps, in which the modal coordinates, Yn(t), are 
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calculated. This procedure is called the step-by-step integration method and next we 
shall briefly describe one of the many different ways to solve it. 

Step-by-step integration method with linear variation of the load 

In order to perform a time history analysis of a given structure, normally, the designer 
uses an accelerogram of a certain earthquake considered to be a typical seismic 
action. As previously stated an accelerogram may be a record of the ground 
accelerations measured in a certain place during the period of an earthquake. A 
complete accelerogram contains the record of the acceleration for the three 
directions corresponding to the three cartesian axes, X, Y and Z, and therefore 
making automatically available to the designer the values of q ,  and( )tsX&& ( )tqsY&& ( )tsZ&&q . 

According to the desired accuracy of the time history analysis, the designer decides 
the number of time intervals, ∆t, in which each acceleration component should be 
divided. The acceleration is assumed to vary linearly within the referred interval 
between the initial value, ( )τ0,sJq&& , and the final value, ( )tsJq ∆+τ&& , i.e.: 

( ) ( ) ( ) ( )
τ

τ
ττ

ττ ⋅
∆

−∆+
+= 0,

0,
sJsJ

sJsJ
qtq

qq
&&&&

&&&&                              (4.13) 

Thus, equation (4.12) for the modal coordinate, Yn(∆t), becomes: 
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It should be noted that this expression is exact for the first time interval assuming that 
the system is at rest until the load is applied. For the next time intervals, ∆ti, regarding 
the continuity of the response, the initial conditions, Y  and Y  must be 
determined. These parameters are achieved computing the response at the end of 
the previous time interval, ∆t

1, −in 1, −in
&

i-1, in terms of displacements and velocities. Therefore at 
the time i the response for the modal coordinate n is of the same form as (4.6), 
i.e.: 
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(4.15) 

Once all the modal coordinates have been determined for the time ti ∆⋅ , it is 
possible to compute the corresponding global response in terms of geometric 
coordinates using superposition. The repetition of this procedure for each time 
interval leads to the time history response of the structure. 
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5. Equivalent Static Method 

This method is perhaps the simplest procedure at disposal for a structural engineer 
to perform an earthquake analysis and achieve reasonable results. It is prescribed in 
any relevant code for earthquake analysis and is widely used especially for buildings 
and other common structures meeting certain regularity conditions. 

The method is also called The Lateral Forces Method as the effects of an earthquake 
are assumed to be the same as the ones resulting from the statical transverse 
loadings. 

As discussed before, in the Rayleigh method, an inertia loading provides a good 
approximation to the natural vibration shape of the structure. If the structural 
response is not significantly affected by contributions from higher modes of vibration 
it is reasonable to assume that with an appropriate set of inertia forces one may 
achieve a good approximation for the response. This is the basic concept of the 
Equivalent Static Method. 

Each code presents its own procedure to compute and to distribute the static 
equivalent forces in order to achieve the earthquake effects on the structure11. 
Usually an expression is defined to prescribe the minimum lateral seismic force, also 
designated the base shear force.  

One usual requirement for the structure regarding the application of this method is 
that the natural vibration period of the structure should be limited by a maximum 
value, which leads to a certain minimum value of frequency/stiffness. This is due to 
the fact that often the response is mainly controlled by the first mode of vibration. 
Thus, imposing a minimum value of frequency the higher modes contribution may be 
neglected. 

The structure to be analysed by the equivalent static method should respect certain 
criteria regarding its geometrical regularity and stiffness distribution such as12: 
� All lateral load resisting elements (such as columns or walls) should run from 

the base to the top without any interruption: 
� Mass and lateral stiffness should not change abruptly from the base to the top; 
� Geometrical asymmetries in height or in plan due to setbacks should not 

exceed certain values; 
 
 

                                            
11 Regarding the determination and distribution of the static equivalent forces in a given structure, the 
chapters 23 and 24 at reference 1 and the section 4.3.3.2 in reference 3 are recommended.  
12 A complete set of requirements of this type is presented, for example, in Reference 3 at section 
4.3.3.2.1. 
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6. Case Study 

The present chapter presents seismic analyses of a bridge, similar to one designed 
for the High Speed Transportation System in Taiwan, using the methods discussed 
before. 

6.1 Structural Model of the Bridge 

A sketch of the bridge is shown in figure 14.   

Figure 14 

The bridge is a three-span bridge with two rail tracks. Each span has a length 40m 
and a 13m width. The cross-section is a box girder. The alignment of the main span 
axis is straight. The piers are 15.80m and 12.35m tall and both are rigidly connected 
to a shear tap element at the top. The shear tap element is a concrete box with 2m 
height and of length 5.4m for each side.  

 
Figure 15 – Structural model (See table 1 for detailed information about cross section properties) 
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The following assumptions are made for the structural model: 

i. The three spans are independent and simply supported at the abutments and 
shear taps; 

ii. The pier supports are assumed to be fixed; 
iii. Both abutments allow rotations perpendicular to the bridge plane and restrain 

all the others; 
iv. The abutments (see figure 15) allow translation in the same direction as the 

main span axis; 
v. To take into account the torsional effects due to train loads, the tracks are 

assumed to be connected to the girder centroid through weightless rigid 
members (see Detail in figure 15); 

vi. Cracked column section with effective flexural rigidity, (EI)e, equal to ½ EI is 
used.  

N.B.: The support system assumed for the piers and abutments is too much on the 
conservative side. In fact it would be more realistic to admit spring systems to 
simulate it. However the procedure adopted is considered adequate for the present 
purpose.  

The global axes X and Y are shown in figure 15. The axis Z is defined applying the 
right-hand rule. The local coordinate system coincides with the global coordinate 
system for horizontal members. For vertical members the local coordinate system is 
achieved applying a positive rotation of 90º on the global coordinate system. 

Three types of loads are considered: 

� Self Weight – the weight of the entire structure which is carrying the loads; 
� Superimposed dead load on the span – 200 kN/m in vertical direction which 

includes the weight of the components other than the main structure stated 
above; 

� One train live load – the weight of a train occupying one track. It is computed 
as shown in figure 16. 

Figure 16 – One train live load  

The geometrical parameters of each cross-section shown in Figure 15 are 
summarized in Table 1.  
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Table 1 – Geometrical properties of the cross-sections 
 

 A (m2) Ixy (m4) Iyy (m4) Izz (m4) ey (m) 

End Girder 18.7 68.6 109 47.6 -0.53 

Mid Girder 8.82 31.9 80.7 20.2 -0.34 

Rigid cross-section 1000 1000 1000 1000 0 

Tracks 7.7x10-3 0.1 0.1 0.1 0 

Pier Tap 29.2 120 70.9 70.9 0 

Pier 11.5 16.6 12.4 9.83 0 

 
 
 
 
 
 

Here: 
� A, Cross section area; 
� Ixy, Torsional moment of inertia;  
� Iyy, Moment of inertia about local axis y; 
� Izz, Moment of inertia about local axis z; 
� ey, local coordinate y of shear centre with respect to centroid.  

Finally, the material assigned for all the sections is concrete of class C25/30. 
Exceptions for the Rigid cross-section and Pier cross-sections are made considering 
assumptions vi. and vii., respectively. Therefore no mass density is considered for 
the concrete assigned for the Rigid cross-section and the Young’s Modulus, E, is 
reduced to half the standard value for the Pier cross-section. 

6.2 Frequencies and Vibration Mode Shape Determination for 
the Bridge 

The first step to accomplish a dynamical analysis is to model the structure as a 
MDOF system. This means to define the degrees of freedom of the structure. The 
model definition must represent the real behaviour of the system and plays a 
fundamental role in the accuracy of the results.  

Regarding the geometry of the bridge, the use of uni-axial finite-elements, called 
members, for all elements (piers, spans or pier tap’s) less than 4m long is considered 
adequate. The drawings A.1 in the Appendix represent the identification of the 
members and joints adopted in this study 

The establishment of the degrees of freedom is done according to the mass 
distribution and the static loads applied: 

 49



Standard Methods for Seismic Analyses 

� Half of the mass of each member is considered to be concentrated in the 
nearest joint. 

� The sum of the loads applied on each member is concentrated at the middle 
and “transformed” to a mass dividing by the acceleration of gravity, 9.81 m/s2. 

Thus it is possible to define the mass properties of the structure assuming that the 
entire mass is concentrated at the nodes at which the translational displacements are 
specified. This procedure leads to a lumped-mass matrix with null off-diagonal terms 
and it represents the simplest form of defining the mass properties of a given 
structure. 

In this study 640 degrees of freedom were computed.  

The procedures leading to the definition of the stiffness matrix, [K], may be found in 
any publication about finite-elements and it is out of the purpose to expose them 
here. 

Once the mass and stiffness matrix are computed, each frequency and the 
corresponding vibration mode shape of the system may be determined using 
equations (2.44) and (2.43). As one may remember there will be as many modes as 
degrees of freedom. This means that the above procedure will be repeated 
successively as many times as the number of the degrees of freedom to achieve all 
the mode frequencies and vibration shapes.  

For the present simplified model, the computation of the 639 frequencies and 
vibration mode shapes considered does not represent a significant computational 
effort, regarding the automatic calculation systems available nowadays. More 
accuracy in the results means bigger refinement of the model, which leads to more 
degrees of freedom and therefore larger calculation requirements to solve the eigen-
value problem. 

One of the most common ways to overcome this situation is the mass participating 
criterion. Under this criterion, the response determined by considering only a few 
modes is a good approximation as long as the mass participating in it exceeds a 
certain value. Of course, the larger this value the more accurate the results. Usually 
this value should be bigger than 70% 

For this study it is decided to use the first 125 modes, ordered by ascending 
frequency values. Generally the modes with lower frequencies contribute more for 
the global response. Table 2 shows, for each direction, the mass participation in 
terms of percentage of all the mass of the system. 

Table 2 – Total mass participation factors for the first 125 modes 

 Transverse direction Longitudinal direction Vertical direction

Mass Participation % 97.8 99.89 99.30 
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As it may be seen, with only 20% (125/640) of the modes, practically all the mass 
participates in the response. According to the mass participation criterion, the 
response results determined considering only 20% of the modes are practically the 
same as considering all the modes, with an evident decrease of the time consumed 
to perform the calculations. 

In the Appendix one may find the results for the eigen-value problem solution. Table 
A.2.1 summarizes the frequencies / period and each mass participation factor for 
each mode in the three directions. The following figures refer to the deformed shape 
of the first three modes, each one with the corresponding displacements in one 
predominant direction. 

Finally, it is worth to compare the results for the first mode shape and frequency 
given by the eigen-value solution with the solution provided by the application of the 
Rayleigh method. As one may see in table A.2.1 the solution of the eigen-value 
problem leads to a frequency of 1.11 Hz for the first mode. The application of the 
Rayleigh method assumes that the first mode shape will have displacements mainly 
in the longitudinal direction. Therefore the weight load is applied on this direction in 
order to compute the natural frequency as in (2.96). The result is 1.53 Hz. As 
expected, is an upper value of the real frequency. However this is considered to be a 
good approximation if one compares the figures in Appendix A.2 of the first vibration 
mode shape given by the eigen-value problem solution with the one given by the 
Rayleigh method.  

6.3 Response Spectrum Analysis of the Bridge 

Once the modal frequencies and the vibration mode shapes are computed, a 
response spectrum analysis may be done. 

For the present analysis a response spectrum in terms of accelerations vs period, T 
is assumed. This spectrum is computed from the North-South component of El 
Centro earthquake scaled by a factor of 2 and is shown in table 3.  

Table 3 – The EL Centro’s N-S component acceleration response  
spectrum scaled up by a factor of 2 for critical damping ratio, %5=ξ  

a (m/s2) 6.26 9.58 14.5 13.8 15.4 15.3 18.1 14.7 9.92 10.3 10.0

T (sec) 0 0.01 0.11 0.21 0.31 0.41 0.51 0.61 0.71 0.81 0.91

It should be noticed that the response spectrum used is only considered for periods 
up to 0.91 sec. In fact, as shown in table A.2.1, the period of the first mode is 0.90 
seconds making it pointless to compute the response analysis with spectrum values 
for periods greater than this as all the other modes will have lower periods. 
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Because the present analysis is merely an example, simplifications are assumed. For 
instance the response spectrum above is used regardless the soil nature. It is known 
that the soil characteristics influence a great deal the way the seismic waves reach a 
structure and affect its dynamical behaviour. A correct analysis would require the 
consideration of the response spectrum corresponding to the soil conditions of the 
area where the bridge is built. Usually the soils are classified for earthquake analysis 
according to their consistence as soft or hard and/or according to the soil being 
sandy or argillaceous. 

Another factor the designer needs to take into account is the geographical 
localization of the structure. In fact, depending on many factors, there are regions 
with a seismic intensity higher than others. In most of the Seismic Codes, this fact is 
taken into account by scaling up or down the given response spectra by means of 
regional coefficients. For the present case, a correct analysis would require the use 
of a response spectrum typical for Taiwan instead of El Centro’s N-S component. 
Still, given the exemplificative nature of this text, it is decided to use the set of four 
regional coefficients, Z, in the Code of Taiwan. The maximum value is 0.4 and the 
minimum is 0.22. The structure analysed will be in a region for which the regional 
coefficient, Z, is 0.34, i.e. the expected earthquake intensity is scaled down to 85% of 
the one expected in the most sensitive region. 

For each direction, transverse, longitudinal and vertical, response spectrum loads are 
created from the response spectrum shown in table 3. It is not usual to use the same 
response spectrum to compute the vertical loading as done in this example. In fact 
the vertical motions are generally of a lower intensity than horizontal. For the present 
analysis, this is taken into account by reducing the vertical action using a coefficient, 
αv, equal to 2/3.  

Since the mode frequencies were very close, it is decided to adopt the CQC modal 
combination. 

The behaviour coefficient assumed, η, is 2, i.e. internal forces evaluated by means of 
linear analysis are reduced to 50%.  

It should be noted that since the earthquake action is in the form of an excitation, the 
analysis using response spectra provides an envelope of the response, Therefore the 
results are presented regardless of the sign. Thus the designer is requested a critical 
attitude when analysing the results attained. 

Before discussing the results for the present bridge it is worth to make the following 
consideration with respect to the modal participation factors of the modes shown in 
the figures of Appendix A.2.  
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Table 4 – Modal Participation Factors for modes 1, 2 and 3. 

 Transverse direction Longitudinal direction Vertical direction 

Mode 1 0.01 201.73 0.94 

Mode 2 166.02 0.22 5.46 

Mode 3 2.84 5.87 124.2 

As referred in the end of paragraph 2.11 the modal participation factor, PnJ, is a good 
measure of the contribution of the nth mode for the global response in J direction. 
This may easily be confirmed by comparing the figures in the  Appendix with the 
results in table 4. In fact it is observed that for each mode the largest modal 
participation factor is achieved precisely for the predominant direction of the 
displacements.    

6.4 Results of the Response Spectrum Analysis 

The results obtained are processed in a different manner according to the direction of 
the loading and its type (displacements or forces in the members). In the following 
these results are presented separately.  

The results to be presented correspond to the members and joints identified in the 
figures in Appendix A.1.  

Internal forces due to earthquake loading in horizontal direction 

For this type of results, non-linear behaviour is allowed and therefore the reduction 
factor, η, is used as discussed in paragraph 4.3.  

As is defined in some modern seismic codes for earthquake analysis, the Design 
Specifications elaborated by the Taiwan High Speed Rail Corporation, allow the 
designer to reduce the member forces considering to structural type of the system 
using a coefficient, αy, equal to 1.25. The coefficient αy may be defined as the ratio of 
the seismic design action used to the seismic design action leading to formation of a 
sufficient number of plastic hinges for overall structural instability.      

Therefore the reduction coefficient adopted for multiplying the internal member forces 
due to earthquake loading in the horizontal direction is given by: 

136,0
225,1

34,0
=

×
=

⋅ηα y

Z                                           (6.1) 

Tables A.3.1 to A.3.4 in the Appendix A.3 present the reduced internal member 
forces for both earthquake loadings in transverse and longitudinal direction. 
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Internal forces due to earthquake loading in vertical direction 

Usually ductility is not taken into account to compute the internal forces obtained 
when the earthquake acts under vertical direction. This is due to the fact that the 
response is mainly influenced by the vertical vibration modes, which are normally 
associated with brittle behaviour. So the reduction coefficient will be of the same form 
as in (6.1) assuming η equals to the unity. 

181,0
25,1

34,032
=

×
=

⋅

y

v Z
α

α                                          (6.2) 

Tables A.3.5 and A.3.6 in Appendix A.3 present the reduced internal member forces 
for earthquake loading in vertical direction. 

Displacements 

The displacements were reduced by simply using the same coefficients for Z and αv. 
Therefore the following reduction coefficients are considered: 

� Displacements due to earthquake loading in horizontal direction:  
Z = 0.34                                                     (6.3) 

� Displacements due to earthquake loading in the vertical direction:  

227.034.032 =⋅=⋅α Zv                                        (6.4) 

Tables A.3.7 to A.3.9 in Appendix A.3 present the reduced displacements. 

Combination of Orthogonal Seismic Effects 

To account for the directional uncertainty of earthquake motions and the 
simultaneous occurrences of the corresponding internal forces in three perpendicular 
directions, the results achieved are usually combined. For the present case the 
Taiwan High Speed Rail Corporation suggests the combination according to (6.5). 
The maximum displacement, internal force or moment, Smax is given by: 

















⋅+⋅+

⋅+⋅+

⋅+⋅+

=

yxz

zxy

zyx

SSS
SSS
SSS

S
3,03,0
3,03,0
3,03,0

maxmax                                  (6.5) 

6.5 Time-History Response Analysis of the Bridge  

Once the modal frequencies and the vibration mode shapes are computed, a time 
history analysis may be performed.  
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Considering the exemplificative nature of this analysis and, and the simplification 
used previously for the response spectra analysis, only the North – South component 
of the El Centro’s accelerogram scaled up by a factor of 2 is used to compute the 
three earthquake loadings. Each load corresponds to the application of El Centro’s 
N-S component in one direction of the bridge. Figure 17 represents the acceleration 
plot of the N-S component of the El Centro earthquake. 

Figure 17 – Accelerogram of the N-S component of the El Centro earthquake scaled up by a factor of 2 

A complete time history analysis of this bridge would require the use of three 
components of the acceleration vector. In this case two situations would have to be 
considered corresponding to the application of each horizontal acceleration 
component for both transverse and longitudinal direction of the bridge. 

As in chapter 6.3 the considerations about the coefficients related to the soil nature, 
to the regional coefficients and to the vertical direction apply here. 
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6.6 Results of the Time-History Response Analysis 

The results are computed in the same way as in the response spectrum analysis. 
This is due to the fact that both analyses rest on the mode superposition method 
based on the assumption that the system behaves linearly. 

Therefore, in this analysis the same values for the reduction coefficients as adopted 
for the response spectrum analysis are used. 
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Tables A.4.1 to A.4.9 present the results similar to the ones presented in tables A.3.1 
to A.3.9. Each result refers to the maximum value during the whole time history 
reduced by applying the reduction coefficients summarized here: 
� Member forces due to horizontal earthquake loading: 0.136 
� Member forces due to vertical earthquake loading: 0.181 
� Displacements due to horizontal earthquake loading: 0.340  
� Displacements due to vertical earthquake loading: 0.227 

Because the same accelerogram is used to define the support acceleration in the 
three directions, X, Y and Z, to account for the directional uncertainty of the 
earthquake motions and the low probability of simultaneous occurrence of the 
maximum response for each direction, the rule presented in (6.5) may be applied 
again. It should be noted that the value S is to be inserted regardless of the sign. 

As mentioned the time-history method allows a much more complete analysis 
because it provides the time evolution of any kind of result. The graphs shown in the 
following provide some examples of time variation of certain results. 
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Figure 18 – Time variation of the moment at the base of pier 1 due to earthquake loading in the 
transverse direction 
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Figure 19 – Time variation of the shear force in longitudinal direction at base of pier 2  
due to earthquake loading in the longitudinal direction 

Figure 20 – Time variation of the transverse displacement at mid-span section of the middle span  
due to earthquake loading in the transverse direction 
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6.7 Equivalent Static Analysis of the Bridge 

As discussed in chapter 5, this method provides good results when applied to 
structures meeting certain “regularity” conditions with respect to geometry, stiffness 
and mass distribution. Bridges are not usually part of this group of structures as they 
are normally rather complex. Moreover, bridges are often important infrastructures in 
social and economic terms, which implies a more careful analysis used in the design. 
Therefore equivalent static analysis is normally used only in the pre-design phase for 
this type of structures. However in this paragraph we illustrate the application of this 
method by computing the base shear force when the earthquake is in the transverse 
direction. 

The Design Specifications of the Taiwan High Speed Rail Corporation prescribe that 
the bridge shall be designed and constructed to resist a minimum lateral seismic 
force, V, given by the expression: 

( )
g

WTSZV tot
a

y

⋅⋅
⋅

=
ηα

                                           (6.6) 

where  
� T is the fundamental period in the direction under consideration. Since we use 

a simplified method, this parameter may be determined by the Rayleigh 
method which gives T=0.65 sec for the longitudinal direction (cf. paragraph 
6.2); 

� Sa(T) is the acceleration corresponding to the fundamental period determined 
by means of a typical response spectrum. In this case, as in the previous 
analyses, we use the N-S component of the El Centro earthquake scaled up 
by a factor of 2. The value for the acceleration is computed from table 3 by 
linear interpolation and is equal to 12.6 m/s2; 

� Wtot is the total weight of the structure accounting for the train loads. 
and kNWtot 89472=

� Z, αy and η have the same meaning as in the previous analyses. 

The base shear force for the earthquake acting in the transverse direction, Vz, is: 

kNVz 73412
81.9
894726.12136.0 =××=                               (6.7) 

As expected, this value is higher than the ones obtained using the previous analyses. 
For instance, consider the results from the response spectrum analysis for the shear 
force in the longitudinal direction in the support joints (2 and 5) when the earthquake 
acts in the same direction (see table A.3.4). The sum of these internal forces equals 
10 019 kN. In fact, as discussed in paragraph 2.12, the deformed shape from the 
inertia loading is an approximation to the natural vibration shape and therefore 
introduces additional stiffness/frequency and consequently higher internal forces in 
the structure.      
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It should be noted that expression (6.7) is to be applied for each direction of the 
bridge so that a complete set of internal forces and displacements may be obtained. 
This implies the determination of the fundamental period for the three directions. 

As in the previous analyses a combination rule such as in (6.5) should be applied to 
obtain the maximum design values in terms of displacements and internal forces. 
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A.1 Model Identification 
 
 
 

� Members Identification 

� Joints Identification 
 
 
 





 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

A.2  Eigen – Value Solution 
 
 
 

� Table A.2.1 

� Deformed Shapes 

i. Mode 1 
ii. Mode 2 
iii. Mode 3 
iv. Mode 1 applying the Rayleigh Method 



X Y Z
1 4,83E+01 1,11 0,904 94,747 0,002 0,000
2 2,23E+02 2,37 0,421 0,000 0,072 66,490
3 5,65E+02 3,78 0,264 0,080 37,217 0,019
4 5,70E+02 3,80 0,263 0,514 10,163 0,005
5 6,68E+02 4,11 0,243 0,007 21,406 0,039
6 1,09E+03 5,26 0,190 0,000 0,002 0,087
7 3,42E+03 9,31 0,107 0,000 0,000 9,956
8 4,21E+03 10,32 0,097 0,001 0,022 0,005
9 5,44E+03 11,74 0,085 0,000 0,001 4,589
10 7,25E+03 13,55 0,074 0,876 0,039 0,078
11 7,45E+03 13,73 0,073 0,259 0,632 0,120
12 7,54E+03 13,82 0,072 0,083 0,000 0,132
13 8,02E+03 14,25 0,070 0,369 1,018 0,000
14 1,04E+04 16,26 0,061 0,000 0,002 0,003
15 1,15E+04 17,05 0,059 0,000 0,003 0,080
16 1,29E+04 18,06 0,055 0,061 0,343 0,001
17 1,32E+04 18,30 0,055 0,236 0,647 0,004
18 1,56E+04 19,86 0,050 0,119 1,224 0,041
19 1,63E+04 20,34 0,049 0,011 5,519 0,023
20 1,77E+04 21,19 0,047 0,067 2,082 0,013
21 1,81E+04 21,42 0,047 0,011 0,011 3,106
22 1,84E+04 21,59 0,046 0,106 0,100 0,061
23 1,93E+04 22,10 0,045 0,070 0,244 0,637
24 1,99E+04 22,48 0,044 0,122 1,384 0,492
25 2,01E+04 22,56 0,044 0,016 0,856 1,451
26 2,08E+04 22,94 0,044 0,054 3,189 0,033
27 2,25E+04 23,89 0,042 0,294 0,265 0,002
28 2,75E+04 26,38 0,038 0,516 0,059 0,016
29 2,92E+04 27,19 0,037 0,001 21,406 0,000
30 3,11E+04 28,05 0,036 0,008 0,036 0,136
31 3,30E+04 28,89 0,035 0,001 0,036 0,082
32 3,94E+04 31,57 0,032 0,000 0,016 0,389
33 4,81E+04 34,91 0,029 0,003 0,297 0,110
34 5,01E+04 35,62 0,028 0,053 0,068 0,070
35 5,49E+04 37,31 0,027 0,067 0,632 0,001
36 5,69E+04 37,97 0,026 0,000 0,064 0,616
37 6,48E+04 40,52 0,025 0,029 0,012 0,408
38 6,59E+04 40,85 0,024 0,000 0,032 0,003
39 6,89E+04 41,79 0,024 0,001 0,000 0,667
40 7,66E+04 44,04 0,023 0,012 0,000 0,890
41 7,72E+04 44,22 0,023 0,014 0,647 0,130
42 8,72E+04 47,01 0,021 0,355 0,007 0,183
43 9,01E+04 47,77 0,021 0,027 0,006 0,386
44 9,91E+04 50,11 0,020 0,020 0,027 0,961
45 1,06E+05 51,72 0,019 0,005 0,024 0,022
46 1,09E+05 52,61 0,019 0,001 0,000 0,004
47 1,10E+05 52,77 0,019 0,016 0,244 0,053
48 1,25E+05 56,34 0,018 0,015 0,003 0,001
49 1,29E+05 57,18 0,017 0,000 0,077 0,116
50 1,34E+05 58,30 0,017 0,045 0,095 0,001
51 1,37E+05 58,95 0,017 0,087 0,099 0,061

Mass participation (%)

Mode Eigenvalue 
( d/ 2)

Frequency 
(H )

Period 
( )

Mass participation (%)

Mode Eigenvalue 
(rad/sec2)

Frequency 
(Hz)

Period 
(sec)



X Y Z
52 1,53E+05 62,15 0,016 0,003 0,109 0,064
53 1,55E+05 62,69 0,016 0,032 0,059 0,017
54 1,60E+05 63,73 0,016 0,007 0,132 0,000
55 1,74E+05 66,43 0,015 0,035 0,009 0,015
56 1,77E+05 66,99 0,015 0,024 0,027 0,047
57 1,86E+05 68,57 0,015 0,001 0,018 0,003
58 1,90E+05 69,46 0,014 0,026 0,039 0,008
59 1,95E+05 70,34 0,014 0,083 0,068 0,015
60 1,98E+05 70,78 0,014 0,049 0,007 0,051
61 2,12E+05 73,31 0,014 0,001 0,005 0,351
62 2,19E+05 74,56 0,013 0,001 0,000 0,004
63 2,27E+05 75,81 0,013 0,001 0,004 0,000
64 2,28E+05 76,00 0,013 0,004 0,008 0,145
65 2,32E+05 76,70 0,013 0,006 0,000 0,136
66 2,37E+05 77,41 0,013 0,002 0,002 0,747
67 2,47E+05 79,05 0,013 0,026 0,002 0,011
68 2,61E+05 81,36 0,012 0,000 0,006 0,002
69 2,72E+05 82,99 0,012 0,002 0,000 0,169
70 2,90E+05 85,71 0,012 0,037 0,030 0,043
71 2,99E+05 87,06 0,011 0,087 0,000 0,097
72 3,06E+05 88,03 0,011 0,002 0,017 0,216
73 3,10E+05 88,66 0,011 0,002 0,004 0,183
74 3,13E+05 89,03 0,011 0,000 0,022 0,105
75 3,20E+05 90,02 0,011 0,015 0,379 0,143
76 3,26E+05 90,90 0,011 0,007 0,536 0,072
77 3,45E+05 93,47 0,011 0,024 0,109 0,000
78 3,61E+05 95,62 0,010 0,000 0,002 0,004
79 3,66E+05 96,26 0,010 0,000 0,004 0,036
80 3,80E+05 98,10 0,010 0,007 0,044 0,000
81 3,87E+05 99,03 0,010 0,053 0,003 0,000
82 4,20E+05 103,13 0,010 0,000 0,032 0,015
83 4,34E+05 104,79 0,010 0,012 0,039 0,001
84 4,74E+05 109,53 0,009 0,000 0,004 0,000
85 4,87E+05 111,09 0,009 0,000 0,000 0,119
86 4,94E+05 111,83 0,009 0,000 0,193 0,029
87 5,20E+05 114,80 0,009 0,008 0,405 0,174
88 5,37E+05 116,59 0,009 0,017 0,018 0,034
89 5,39E+05 116,85 0,009 0,019 0,008 0,072
90 5,60E+05 119,14 0,008 0,009 0,001 0,179
91 5,68E+05 119,94 0,008 0,000 0,028 0,000
92 5,74E+05 120,55 0,008 0,007 0,027 0,011
93 5,79E+05 121,16 0,008 0,018 0,019 0,000
94 5,92E+05 122,43 0,008 0,001 0,025 0,178
95 5,97E+05 123,02 0,008 0,001 0,030 0,402
96 6,15E+05 124,79 0,008 0,000 0,000 0,002
97 6,27E+05 126,06 0,008 0,000 0,000 0,018
98 6,59E+05 129,24 0,008 0,000 0,001 0,003
99 6,85E+05 131,68 0,008 0,000 0,152 0,000
100 7,07E+05 133,81 0,007 0,000 0,060 0,003
101 7,10E+05 134,13 0,007 0,000 0,536 0,000
102 7,28E+05 135,78 0,007 0,000 0,000 0,041

X Y Z
Mass participation (%)Mode Eigenvalue 

(rad/sec2)
Frequency 

(Hz)
Period 
(sec)

Mode (rad/sec2) (Hz) (sec)



103 7,58E+05 138,57 0,007 0,000 0,003 0,000
104 7,68E+05 139,52 0,007 0,000 0,000 0,002
105 8,12E+05 143,41 0,007 0,000 0,001 0,031
106 8,23E+05 144,41 0,007 0,000 0,000 0,065
107 8,29E+05 144,88 0,007 0,000 0,032 0,021
108 9,08E+05 151,66 0,007 0,000 0,011 0,000
109 9,65E+05 156,33 0,006 0,000 0,003 0,010
110 9,83E+05 157,79 0,006 0,000 0,022 0,306
111 9,97E+05 158,96 0,006 0,000 0,074 0,038
112 1,05E+06 163,00 0,006 0,000 0,000 0,005
113 1,07E+06 164,30 0,006 0,000 0,018 0,000
114 1,08E+06 165,74 0,006 0,000 0,017 0,018
115 1,09E+06 166,30 0,006 0,000 0,046 0,017
116 1,12E+06 168,73 0,006 0,000 0,000 0,002
117 1,15E+06 170,54 0,006 0,000 0,000 0,000
118 1,15E+06 170,61 0,006 0,000 0,002 0,021
119 1,17E+06 171,89 0,006 0,000 0,025 0,000
120 1,22E+06 176,01 0,006 0,000 0,000 0,000
121 1,29E+06 181,10 0,006 0,000 0,000 0,002
122 1,33E+06 183,64 0,005 0,000 0,039 0,036
123 1,42E+06 189,47 0,005 0,000 0,020 0,031
124 1,44E+06 190,78 0,005 0,000 0,002 0,079
125 1,45E+06 191,76 0,005 0,000 0,060 0,438



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deformed Shape – Mode 1 
 

i. Isometric view 
ii. X-Y Plane view 

 
 
 

 
 
 
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deformed Shape – Mode 2 
 

i. Isometric view 
ii. X-Z Plane view 

 
 
 

 
 
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deformed Shape – Mode 3 
 

i. Isometric view 
ii. X-Y Plane view 

 
 
 

 
 
 
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Deformed Shape – Mode 1 –  
using the Rayleigh method 

 

i. Isometric view 
ii. X-Y Plane view 

 
 
 

 
 
 







 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A.3 Tables of Results for  

Response Spectra Analysis 

 
i. Internal Forces in the Girder – Transverse Loading 
ii. Internal Forces in the Piers – Transverse Loading 
iii. Internal Forces in the Girder – Longitudinal Loading 
iv. Internal Forces in the Piers – Longitudinal Loading 
v. Internal Forces in the Girder – Vertical Loading 
vi. Internal Forces in the Piers – Vertical Loading 
vii. Displacements – Transverse Loading 
viii. Displacements – Longitudinal Loading 
ix. Displacements – Vertical Loading 



Span ID Element Joint Axial Shear Y Shear Z Torsion Bending Y Bending Z

1 0 57 3230 8454 74744 0
14 10 57 3230 8454 61962 227
14 10 57 3230 8454 61962 227
15 17 47 3203 8397 49224 442
15 17 47 3203 8397 49224 442
16 20 40 3081 7978 36822 583
16 20 40 3081 7978 36822 583
17 22 32 2994 7878 24838 672
17 22 32 2994 7878 24838 672

18 27 21 2840 7657 13773 691
18 27 21 2840 7657 13773 691
19 32 21 2632 7369 5594 634
19 32 21 2632 7369 5594 634
20 35 32 2404 7139 9307 527
20 35 32 2404 7139 9307 527
21 39 42 2132 6867 17166 366
21 39 42 2132 6867 17166 366
22 42 56 1787 6742 24033 142
22 42 56 1787 6742 24033 142

23 44 63 1513 6469 26992 0
24 47 96 2052 3413 31121 0
25 47 96 2052 3413 35119 194
25 47 96 2052 3413 35119 194
26 51 87 1529 3115 40991 535
26 51 87 1529 3115 40991 535
27 55 68 914 2520 44393 790
27 55 68 914 2520 44393 790
28 56 47 419 2027 45763 963
28 56 47 419 2027 45763 963

29 58 25 284 1524 44940 1039
29 58 25 284 1524 44940 1039
30 57 20 848 850 41618 982
30 57 20 848 850 41618 982
31 55 51 1453 762 35850 801
31 55 51 1453 762 35850 801
32 52 70 1965 1061 28047 536
32 52 70 1965 1061 28047 536
33 49 91 2552 1470 17987 191
33 49 91 2552 1470 17987 191

34 46 98 2872 1713 12311 0
35 44 65 715 7657 9704 0
36 44 65 715 7657 8884 132
36 44 65 715 7657 8884 132
37 41 57 1023 7945 6284 374
37 41 57 1023 7945 6284 374
38 38 43 1292 8044 5421 542
38 38 43 1292 8044 5421 542
39 35 31 1521 8313 9275 655
39 35 31 1521 8313 9275 655

40 31 17 1719 8539 15527 705
40 31 17 1719 8539 15527 705
41 27 16 1908 8809 22930 680
41 27 16 1908 8809 22930 680
42 23 30 2053 9012 31072 582
42 23 30 2053 9012 31072 582
43 20 41 2137 9103 39659 431
43 20 41 2137 9103 39659 431
44 15 51 2243 9448 48680 236
44 15 51 2243 9448 48680 236

8 0 59 2265 9476 57721 0

25

26

Table A.3.1 - Member Forces in the Girder - Earthquake 
loading in transverse direction (kN-m)

30
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29
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3

17
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8

9

10

2

11

12

13

14

15

16

Forces Moments

1

4

5

6

1

2

3

7



Pier ID Element Joint Axial Shear Y Shear Z Torsion Bending Y Bending Z

2 172 19 1737 2876 22935 77
9 172 19 1737 2876 16897 20
9 172 19 1737 2876 16897 20
10 172 15 1717 2874 11125 38
10 172 15 1717 2874 11125 38
11 171 14 1658 2871 5630 76
11 171 14 1658 2871 5630 76
3 169 15 1547 2865 1583 118
3 169 15 1547 2865 1583 118
4 167 15 1338 2848 3085 142
5 174 19 3242 4065 33124 65
12 174 19 3242 4065 21957 11
12 174 19 3242 4065 21957 11
13 174 16 3218 4062 11058 53
13 174 16 3218 4062 11058 53
6 173 16 3143 4057 1276 103
6 173 16 3143 4057 1276 103
7 171 16 2967 4039 6077 133

Table A.3.2 - Member forces in the Piers - Earthquake 
loading in transverse direction (kN-m)

2

35

36

37

39

Forces Moments

32

1

31

33

34

38



Span ID Element Joint Axial Shear Y Shear Z Torsion Bending 
Y

Bending 
Z

1 0 249 24 100 145 0
14 254 249 24 100 117 997
14 254 249 24 100 117 997
15 669 217 23 93 89 1780
15 669 217 23 93 89 1780
16 1011 171 21 75 88 2334
16 1011 171 21 75 88 2334
17 1283 132 21 58 93 2695
17 1283 132 21 58 93 2695
18 1582 99 20 32 58 2751
18 1582 99 20 32 58 2751
19 1881 92 20 28 55 2546
19 1881 92 20 28 55 2546
20 2152 114 20 37 68 2157
20 2152 114 20 37 68 2157
21 2422 156 20 49 82 1533
21 2422 156 20 49 82 1533
22 2760 215 20 64 97 643
22 2760 215 20 64 97 643
23 2994 254 20 70 105 0
24 408 162 21 42 126 0
25 408 162 21 42 111 329
25 408 162 21 42 111 329
26 754 92 21 38 99 678
26 754 92 21 38 99 678
27 1090 73 22 34 84 663
27 1090 73 22 34 84 663
28 1359 112 22 42 77 498
28 1359 112 22 42 77 498
29 1628 139 22 49 83 567
29 1628 139 22 49 83 567
30 1924 126 22 43 63 809
30 1924 126 22 43 63 809
31 2218 80 22 30 73 929
31 2218 80 22 30 73 929
32 2487 49 22 35 97 849
32 2487 49 22 35 97 849
33 2823 97 21 53 112 432
33 2823 97 21 53 112 432
34 3055 143 21 60 117 0
35 2972 328 20 94 103 0
36 2972 328 20 94 103 665
36 2972 328 20 94 103 665
37 2625 263 20 86 109 1816
37 2625 263 20 86 109 1816
38 2290 192 20 63 101 2582
38 2290 192 20 63 101 2582
39 2022 135 20 42 96 3074
39 2022 135 20 42 96 3074
40 1753 96 21 29 98 3266
40 1753 96 21 29 98 3266
41 1457 105 21 40 63 3175
41 1457 105 21 40 63 3175
42 1160 153 21 68 49 2766
42 1160 153 21 68 49 2766
43 889 205 21 84 57 2057
43 889 205 21 84 57 2057
44 551 261 23 100 87 1115
44 551 261 23 100 87 1115
8 0 297 23 110 133 0

18

25
3

21

22

23

24
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30

27

28

26

2

11
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3

1

1

4

7

8

9

10

Table A.3.3 - Member Forces in the Girder - 
Earthquake loading in longitudinal direction (kN-m)

2

5

6

Forces Moments



Pier ID Element Joint Axial Shear Y Shear Z Torsion Bending 
Y

Bending 
Z

2 278 3319 9 2 36 51776
9 278 3319 9 2 12 40166
9 278 3319 9 2 12 40166
10 276 3309 7 2 22 28925
10 276 3309 7 2 22 28925
11 273 3274 5 2 37 17804
11 273 3274 5 2 37 17804
3 269 3206 5 2 48 6614
3 269 3206 5 2 48 6614
4 263 3069 6 2 54 856
5 297 6700 12 3 47 82745
12 297 6700 12 3 16 59634
12 297 6700 12 3 16 59634
13 296 6684 11 3 40 36911
13 296 6684 11 3 40 36911
6 293 6633 9 3 69 13710
6 293 6633 9 3 69 13710
7 287 6506 8 3 83 992

2

35

36

37

39

Table A.3.4 - Member forces in the Piers - Earthquake 
loading in longitudinal direction (kN-m)

Forces Moments

1

31

32

33

34

38



Span ID Element Joint Axial Shear Y Shear Z Torsion Bending Y Bending Z

1 0 2598 159 945 3583 0
14 31 2598 159 945 2964 10394
14 31 2598 159 945 2964 10394
15 79 2240 157 877 2335 19428
15 79 2240 157 877 2335 19428
16 115 1671 151 732 1723 25828
16 115 1671 151 732 1723 25828
17 142 1046 145 591 1142 29903
17 142 1046 145 591 1142 29903
18 171 297 138 373 604 30744
18 171 297 138 373 604 30744
19 193 669 128 400 232 28168
19 193 669 128 400 232 28168
20 199 1373 116 515 476 22732
20 199 1373 116 515 476 22732
21 196 1960 100 628 848 14952
21 196 1960 100 628 848 14952
22 182 2452 80 725 1145 5341
22 182 2452 80 725 1145 5341
23 152 2592 67 735 1264 0
24 476 2169 119 601 1458 0
25 476 2169 119 601 1667 4392
25 476 2169 119 601 1667 4392
26 490 1973 87 589 1980 12353
26 490 1973 87 589 1980 12353
27 492 1538 55 495 2167 18336
27 492 1538 55 495 2167 18336
28 497 1020 30 368 2235 22364
28 497 1020 30 368 2235 22364
29 501 401 29 211 2176 23880
29 501 401 29 211 2176 23880
30 505 384 60 149 1974 22472
30 505 384 60 149 1974 22472
31 506 1052 95 406 1644 18305
31 506 1052 95 406 1644 18305
32 507 1556 123 527 1253 12140
32 507 1556 123 527 1253 12140
33 512 1985 151 622 887 4351
33 512 1985 151 622 887 4351
34 508 2111 168 639 816 0
35 148 2648 46 787 821 0
36 148 2648 46 787 743 5362
36 148 2648 46 787 743 5362
37 162 2446 55 778 560 15222
37 162 2446 55 778 560 15222
38 168 1962 68 679 415 22858
38 168 1962 68 679 415 22858
39 171 1377 77 564 496 28298
39 171 1377 77 564 496 28298
40 165 668 81 450 750 30866
40 165 668 81 450 750 30866
41 146 281 85 414 1060 30035
41 146 281 85 414 1060 30035
42 118 1046 91 610 1400 25898
42 118 1046 91 610 1400 25898
43 92 1676 99 743 1767 19249
43 92 1676 99 743 1767 19249
44 65 2250 109 873 2169 10489
44 65 2250 109 873 2169 10489
8 0 2610 114 932 2590 0

Table A.3.5 - Member Forces in the Girder - Earthquake 
loading in vertical direction (kN-m)
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Forces Moments

1
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Pier ID Element Joint Axial Shear Y Shear Z Torsion Bending 
Y

Bending 
Z

2 4507 424 156 133 1333 1997
9 4507 424 156 133 842 554
9 4507 424 156 133 842 554
10 4495 414 153 133 492 935
10 4495 414 153 133 492 935
11 4472 398 147 132 548 2261
11 4472 398 147 132 548 2261
3 4439 385 138 132 910 3584
3 4439 385 138 132 910 3584
4 4388 382 124 131 1133 4332
5 4446 522 224 192 1676 1938
12 4446 522 224 192 993 380
12 4446 522 224 192 993 380
13 4434 511 221 192 591 1672
13 4434 511 221 192 591 1672
6 4412 493 215 192 917 3369
6 4412 493 215 192 917 3369
7 4373 484 205 191 1260 4322

2

35

36

37

39

Table A.3.6 - Member forces in the Piers - Earthquake 
loading in vertical direction (kN-m)

Forces Moments

1

31

32

33

34

38



X Y Z X Y Z

1 0,0 0,0 0,0 0,0 0,0 0,0
8 0,0 0,0 0,0 0,0 0,0 0,0

18 0,0 0,4 9,2 0,1 0,0 0,0
4 0,0 0,0 23,8 0,1 0,0 0,0
29 0,0 0,6 30,4 0,1 0,0 0,0
7 0,0 0,0 21,2 0,1 0,0 0,0
40 0,0 0,4 7,5 0,1 0,0 0,0

Translations (mm) Rotations (rad)

Table A.3.7 - Displacements - Earthquake 
loading in transverse direction

Joint



X Y Z X Y Z

1 73,5 0,0 0,0 0,0 0,0 0,0
8 73,0 0,0 0,0 0,0 0,0 0,0

18 73,3 7,8 0,0 0,0 0,0 0,0
4 73,0 0,1 0,0 0,0 0,0 0,4
29 72,9 1,8 0,0 0,0 0,0 0,0
7 72,5 0,0 0,0 0,0 0,0 0,5
40 72,8 9,8 0,0 0,0 0,0 0,0

Translations (mm) Rotations (rad)

Table A.3.8 - Displacements - Earthquake 
loading in longitudinal direction

Joint



X Y Z X Y Z

1 0,2 0,0 0,0 0,0 0,0 0,0
8 0,2 0,0 0,0 0,0 0,0 0,0

18 0,2 6,0 0,1 0,0 0,0 0,0
4 0,2 0,3 0,4 0,0 0,0 0,2
29 0,2 4,3 0,5 0,0 0,0 0,0
7 0,2 0,2 0,3 0,0 0,0 0,2
40 0,2 6,0 0,1 0,0 0,0 0,0

Translations (mm) Rotations (rad)

Table A.3.9 - Displacements - Earthquake 
loading in vertical direction

Joint



 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
A.4 Tables of Results for  

Time-History Analysis 

 
i. Internal Forces in the Girder – Transverse Loading 
ii. Internal Forces in the Piers – Transverse Loading 
iii. Internal Forces in the Girder – Longitudinal Loading 
iv. Internal Forces in the Piers – Longitudinal Loading 
v. Internal Forces in the Girder – Vertical Loading 
vi. Internal Forces in the Piers – Vertical Loading 
vii. Displacements – Transverse Loading 
viii. Displacements – Longitudinal Loading 
ix. Displacements – Vertical Loading 



Span ID Element Joint Axial Shear Y Shear Z Torsion Bending Y Bending Z

1 0 66 3349 8163 -74498 0
14 8 -66 -3349 -8163 61289 264
14 8 -66 -3349 -8163 61289 264
15 -8 -57 -3278 -8074 48635 541
15 -8 -57 -3278 -8074 48635 541
16 7 -47 -3095 -7660 36368 718
16 7 -47 -3095 -7660 36368 718
17 -10 -34 -2971 -7557 24420 819
17 -10 -34 -2971 -7557 24420 819
18 -16 18 -2791 -7399 -14410 812
18 -16 18 -2791 -7399 -14410 812
19 -22 17 -2578 -7208 -6205 739
19 -22 17 -2578 -7208 -6205 739
20 -26 33 -2357 -7058 9452 608
20 -26 33 -2357 -7058 9452 608
21 -29 49 -2089 -6862 -16767 410
21 -29 49 -2089 -6862 -16767 410
22 -31 66 -1731 -6812 -23320 149
22 -31 66 -1731 -6812 -23320 149
23 36 73 1547 -6591 -26305 0
24 40 121 -2060 -3388 30514 0
25 -40 -121 2060 3388 -34527 244
25 -40 -121 2060 3388 -34527 244
26 44 -108 1591 3068 -40359 672
26 44 -108 1591 3068 -40359 672
27 51 -85 985 2403 -43701 1006
27 51 -85 985 2403 -43701 1006
28 55 -57 449 -1973 -45028 1237
28 55 -57 449 -1973 -45028 1237
29 59 -24 -311 -1580 -44222 1335
29 59 -24 -311 -1580 -44222 1335
30 58 20 812 -922 -41025 1259
30 58 20 812 -922 -41025 1259
31 53 61 -1425 -700 -35478 1019
31 53 61 -1425 -700 -35478 1019
32 48 87 -1940 -1252 -27925 673
32 48 87 -1940 -1252 -27925 673
33 -42 111 -2498 -1836 -18067 242
33 -42 111 -2498 -1836 -18067 242
34 -40 120 2791 -2135 -12778 0
35 36 79 865 -7638 10553 0
36 -36 -79 -865 7638 -9764 160
36 -36 -79 -865 7638 -9764 160
37 -34 -70 -1081 7900 -6307 440
37 -34 -70 -1081 7900 -6307 440
38 -33 -53 1252 7974 -6207 646
38 -33 -53 1252 7974 -6207 646
39 -29 -36 1506 8223 -11357 783
39 -29 -36 1506 8223 -11357 783
40 -25 -17 1766 8430 -16383 848
40 -25 -17 1766 8430 -16383 848
41 -19 14 2006 8693 22300 826
41 -19 14 2006 8693 22300 826
42 -12 36 2188 8899 30906 704
42 -12 36 2188 8899 30906 704
43 -8 51 2314 8991 39893 514
43 -8 51 2314 8991 39893 514
44 -5 63 2484 9351 50096 279
44 -5 63 2484 9351 50096 279
8 -3 71 2551 9425 60519 0

Table A.4.1 - Member Forces in the Girder - Earthquake loading in transverse 
direction (kN-m)
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Pier ID Element Joint Axial Shear Y Shear Z Torsion Bending 
Y

Bending 
Z

2 198 -15 1814 -2852 -23193 -71
9 -198 15 -1814 2852 16845 18
9 -198 15 -1814 2852 16845 18
10 -198 14 -1775 2851 10811 -32
10 -198 14 -1775 2851 10811 -32
11 -197 13 -1694 2848 5215 -75
11 -197 13 -1694 2848 5215 -75
3 -196 12 -1561 2843 -1058 -118
3 -196 12 -1561 2843 -1058 -118
4 -194 12 -1339 2830 -3089 -141
5 209 16 3325 3999 -33436 61
12 -209 -16 -3325 -3999 21964 -9
12 -209 -16 -3325 -3999 21964 -9
13 -209 -16 -3283 -3997 10800 48
13 -209 -16 -3283 -3997 10800 48
6 -208 -15 -3191 -3993 -1011 101
6 -208 -15 -3191 -3993 -1011 101
7 -208 -15 -3001 -3980 -6371 131

Table A.4.2 - Member forces in the Piers - Earthquake loading 
in transverse direction (kN-m)
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Forces Moments
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Span ID Element Joint Axial Shear Y Shear Z Torsion Bending Y Bending Z

1 0 -209 22 77 -115 0
14 -253 209 -22 -77 -109 -835
14 -253 209 -22 -77 -109 -835
15 -667 175 -21 72 -88 -1545
15 -667 175 -21 72 -88 -1545
16 -1009 141 -21 58 -82 -2001
16 -1009 141 -21 58 -82 -2001
17 -1281 -122 -21 -44 84 -2342
17 -1281 -122 -21 -44 84 -2342
18 -1579 -89 -20 27 -45 -2500
18 -1579 -89 -20 27 -45 -2500
19 -1877 80 -20 17 50 -2381
19 -1877 80 -20 17 50 -2381
20 -2147 -117 -20 28 53 -1996
20 -2147 -117 -20 28 53 -1996
21 -2418 -159 -19 47 68 1363
21 -2418 -159 -19 47 68 1363
22 -2756 -218 19 62 -85 608
22 -2756 -218 19 62 -85 608
23 -2991 -239 19 66 -90 0
24 405 143 -20 -25 -105 0
25 -405 -143 20 25 87 289
25 -405 -143 20 25 87 289
26 -753 -73 20 -22 -93 533
26 -753 -73 20 -22 -93 533
27 -1089 -75 20 23 -82 -490
27 -1089 -75 20 23 -82 -490
28 -1359 -106 20 -31 -73 488
28 -1359 -106 20 -31 -73 488
29 -1628 -119 20 -35 76 620
29 -1628 -119 20 -35 76 620
30 -1924 -110 20 33 -54 830
30 -1924 -110 20 33 -54 830
31 -2218 -75 20 25 58 892
31 -2218 -75 20 25 58 892
32 -2487 -42 20 32 -77 814
32 -2487 -42 20 32 -77 814
33 -2823 -82 20 -47 -94 424
33 -2823 -82 20 -47 -94 424
34 -3056 -131 20 -56 -99 0
35 -2970 294 -19 -84 -96 0
36 2970 -294 19 84 -95 596
36 2970 -294 19 84 -95 596
37 2623 -247 19 78 -105 1600
37 2623 -247 19 78 -105 1600
38 2288 -195 -20 59 -99 2308
38 2288 -195 -20 59 -99 2308
39 2019 -136 -20 36 90 2842
39 2019 -136 -20 36 90 2842
40 1751 -87 -21 -20 92 3083
40 1751 -87 -21 -20 92 3083
41 1455 -88 -21 28 -48 2988
41 1455 -88 -21 28 -48 2988
42 1158 -134 -21 -59 39 2570
42 1158 -134 -21 -59 39 2570
43 888 170 -22 -71 -51 1905
43 888 170 -22 -71 -51 1905
44 550 224 -23 -81 -79 1036
44 550 224 -23 -81 -79 1036
8 137 259 -23 -85 -115 0

Table A.4.3 - Member Forces in the Girder - Earthquake 
loading in longitudinal direction (kN-m)
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Pier ID Element Joint Axial Shear Y Shear Z Torsion Bending 
Y

Bending 
Z

2 -238 3306 -6 -2 29 51731
9 238 -3306 6 2 -8 -40159
9 238 -3306 6 2 -8 -40159
10 237 -3301 6 2 -15 -28934
10 237 -3301 6 2 -15 -28934
11 236 -3271 5 2 28 -17812
11 236 -3271 5 2 28 -17812
3 234 -3205 4 2 39 -6594
3 234 -3205 4 2 39 -6594
4 232 -3069 4 2 44 726
5 232 6692 7 -3 -25 82717
12 -232 -6692 -7 3 17 -59629
12 -232 -6692 -7 3 17 -59629
13 -231 -6682 -6 3 29 -36911
13 -231 -6682 -6 3 29 -36911
6 -231 -6633 -5 3 -44 -13696
6 -231 -6633 -5 3 -44 -13696
7 -229 -6507 -4 3 -52 992

Table A.4.4 - Member forces in the Piers - Earthquake 
loading in longitudinal direction (kN-m)
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Span ID Element Joint Axial Shear Y Shear Z Torsion Bending Y Bending Z

1 0 2638 165 -905 -3951 0
14 15 -2638 -165 905 3293 10551
14 15 -2638 -165 905 3293 10551
15 -48 -2301 -163 841 2598 19825
15 -48 -2301 -163 841 2598 19825
16 47 -1730 -161 714 1911 26486
16 47 -1730 -161 714 1911 26486
17 55 -1076 -155 592 1260 30755
17 55 -1076 -155 592 1260 30755
18 -76 -255 -146 369 630 31693
18 -76 -255 -146 369 630 31693
19 -89 651 134 440 -229 29094
19 -89 651 134 440 -229 29094
20 -94 1398 121 -615 532 23535
20 -94 1398 121 -615 532 23535
21 -93 2016 104 -764 943 15524
21 -93 2016 104 -764 943 15524
22 -104 2548 83 -891 1253 5539
22 -104 2548 83 -891 1253 5539
23 -80 2708 68 -909 1369 0
24 -397 2188 162 -618 -1562 0
25 397 -2188 -162 618 1774 4430
25 397 -2188 -162 618 1774 4430
26 415 -1997 -118 586 -2260 12527
26 415 -1997 -118 586 -2260 12527
27 415 -1539 -71 473 -2581 18538
27 415 -1539 -71 473 -2581 18538
28 421 -995 -28 355 -2715 22489
28 421 -995 -28 355 -2715 22489
29 424 -380 -31 211 -2659 23841
29 424 -380 -31 211 -2659 23841
30 424 397 65 -168 -2389 22230
30 424 397 65 -168 -2389 22230
31 418 1070 113 -403 -1900 17913
31 418 1070 113 -403 -1900 17913
32 414 1547 154 -496 -1263 11742
32 414 1547 154 -496 -1263 11742
33 -419 1926 196 -557 928 4180
33 -419 1926 196 -557 928 4180
34 -409 2018 221 -553 884 0
35 73 2735 44 -961 -855 0
36 -73 -2735 -44 961 777 5538
36 -73 -2735 -44 961 777 5538
37 -91 -2543 -55 954 574 15772
37 -91 -2543 -55 954 574 15772
38 -71 -2039 -65 840 402 23732
38 -71 -2039 -65 840 402 23732
39 -67 -1427 -72 696 573 29391
39 -67 -1427 -72 696 573 29391
40 -60 -672 -78 514 824 32048
40 -60 -672 -78 514 824 32048
41 54 249 -83 -412 1120 31133
41 54 249 -83 -412 1120 31133
42 43 1088 92 -614 1457 26757
42 43 1088 92 -614 1457 26757
43 33 1750 98 -735 1833 19786
43 33 1750 98 -735 1833 19786
44 -39 2327 100 -853 2259 10713
44 -39 2327 100 -853 2259 10713
8 0 2664 99 -911 2695 0

Table A.4.5 - Member Forces in the Girder - 
Earthquake loading in vertical direction (kN-m)
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Pier ID Element Joint Axial Shear Y Shear Z Torsion Bending 
Y

Bending 
Z

2 4809 352 201 -153 -1696 1799
9 -4809 -352 -201 153 1011 -566
9 -4809 -352 -201 153 1011 -566
10 -4811 -349 -199 152 -504 -811
10 -4811 -349 -199 152 -504 -811
11 -4805 -340 -191 152 -564 -1909
11 -4805 -340 -191 152 -564 -1909
3 -4784 -329 -181 151 -998 -2999
3 -4784 -329 -181 151 -998 -2999
4 -4747 -323 -164 150 -1314 -3610
5 -4711 422 295 224 -2084 1654
12 4711 -422 -295 -224 1066 375
12 4711 -422 -295 -224 1066 375
13 4623 -419 -293 -224 -653 -1419
13 4623 -419 -293 -224 -653 -1419
6 -4578 -411 -287 -223 -942 -2667
6 -4578 -411 -287 -223 -942 -2667
7 -4567 -405 -275 -221 -1487 3475

Table A.4.6 - Member forces in the Piers - Earthquake 
loading in vertical direction (kN-m)

32

33

34

Forces Moments

38

2

35

36

37

39

1

31



X Y Z X Y Z

1 0,0 0,0 0,0 0,0 0,0 0,0
8 0,0 0,0 0,0 0,0 0,0 0,0

18 0,0 -0,5 -9,1 0,0 0,0 0,0
4 0,0 0,0 -23,6 0,1 0,0 0,0
29 0,0 -0,7 -30,2 0,1 0,0 0,0
7 0,0 0,0 -21,3 0,1 0,0 0,0
40 0,0 -0,5 -7,6 0,0 0,0 0,0

Translations (mm) Rotations (rad)Joint

Table A.4.7 - Displacements - Earthquake 
loading in transverse direction



X Y Z X Y Z

1 73,5 0,0 0,0 0,0 0,0 0,0
8 73,0 0,0 0,0 0,0 0,0 0,0

18 73,3 0,4 0,0 0,0 0,0 0,0
4 73,0 0,0 0,0 0,0 0,0 -0,4
29 72,9 0,6 0,0 0,0 0,0 0,0
7 72,5 0,0 0,0 0,0 0,0 -0,5
40 72,8 0,9 0,0 0,0 0,0 0,0

Translations (mm) Rotations (rad)Joint

Table A.4.8 - Displacements - Earthquake 
loading in longitudinal direction



X Y Z X Y Z

0 -0,2 0,0 0,0 0,0 0,0 0,0
8 -0,2 0,0 0,0 0,0 0,0 0,0

18 -0,2 -9,3 -0,2 0,0 0,0 0,0
4 -0,2 -0,5 -0,6 0,0 0,0 0,0
29 -0,2 -6,5 -0,8 0,0 0,0 0,0
7 -0,2 0,4 -0,5 0,0 0,0 0,0
40 -0,2 -9,3 -0,2 0,0 0,0 0,0

Translations (mm) Rotations (rad)Joint

Table A.4.9 - Displacements - Earthquake 
loading in vertical direction
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