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   with respect to materials design 

 
Lauge Fuglsang Nielsen 

 

Abstract: An operational summary of a composite theory previously developed by the 
author is presented in this paper. Expressions are presented by which mechanical pro-
perties such as stiffness, eigenstrain/stress (e.g. shrinkage and thermal expansion), and 
physical properties (such as various conductivities with respect to heat, electricity, and 
chlorides) can be predicted for composite materials with variable geometries. Examp-
les are presented, demonstrating an excellent agreement between material properties 
determined experimentally and such properties predicted by the theory considered. 

In a special section of the paper the theory is examined with respect to its potentials 
with respect to materials design. Examples are presented, demonstrating how the 
method can be inversed to determine composite geometry from prescribed compo-
site properties, such as Young’s moduli and conductivities. Finally, research pro-
jects are suggested by which new production techniques might be found which are 
more rational than the ones known to day – and which could in a flexible way pro-
duce geometries determined by the inverse composite analysis indicated above. 

A software, ‘CompDesign’ is prepared with application programs covering both the 
prediction aspects and the design aspects of the method presented. On special re-
quest the software is available contacting the author, lfn@byg.dtu.dk 

 

Introduction 
The composites considered in this paper are isotropic mixtures of two components: phase P 
and phase S. The amount of phase P in phase S is quantified by the so-called volume con-
centration defined by c = VP/(VP+VS) where volume is denoted by V. It is assumed that 
both phases exhibit linearity between response and gradient of potentials, which they are 
subjected to. For example: Mechanical stress versus deformation (Hooke's law), heat flow 
versus temperature, flow of electricity versus electric potential, and diffusion of a substan-
ce versus concentration of substance. 

For simplicity – but also to reflect most composite problems encountered in practice – 
stiffness and stress results presented assume an elastic phase behavior with Poisson’s ratios 
νP = νS = 0.2 (in practice νP ≈ νS ≈ 0.2). This means that, whenever stiffness and stress ex-
pressions are presented, they can be considered as generalized quantities, applying for any 
loading mode: shear, volumetric, as well as un-axial. This feature is explained in more 
details in a subsequent section (Composite analysis). 

The composite properties specifically considered in this paper are stiffness, eigenstrain 
(such as shrinkage and thermal expansion), and various conductivities (with respect to 
chloride or heat flow e.g.) as related to volume concentration, composite geometry, and 
phase properties: Young's moduli EP and ES with stiffness ratio n = EP/ES, eigenstrains λP 
and λS, and conductivities QP and QS with conductivity ratio nQ = QP/QS. Further notations 
used in the text are explained in the list of notations at the end of the paper.  

The composite properties presented in this paper are determined by a general method deve-
loped by the author in (1,2,3). The strength of this method, including the present simplified 



method, relative to other prediction methods with fixed, not variable types of composite 
geometries (such as plates or fibers in a matrix), is that global (standard) solutions are pre-
sented which apply for any isotropic composite geometry. The influence of geometries on 
material properties are ‘hidden’ in so-called 'geo-functions' (θ, see Equation 5) where spe-
cific geometries are quantified by so-called ‘shape functions’ (µ, see Figure 1 and Equation 
4). Thus, properties can be predicted where geometry can be respected as it really develops 
in natural or man-made composite materials. 

Not to exaggerate our present knowledge of composite geometries it has, deliberately, been 
chosen to keep the shape functions described by simple mathematical expressions defined 
by only three geometrical parameters (two shape factors and one critical concentration, see 
Equation 4 and Figure 1). It is emphasized, however, that the complexity of shape func-
tions does not influence the global property predictions previously referred to. As more 
knowledge on the description of composite geometry turns up as the result of new research 
we just introduce the more 'accurate' shape functions. 

It is emphasized that the paper is not a "textbook" in composite materials. It should rather 
be considered as an operational introduction to the basics of the composite analysis develo-
ped by the author – and to results, which can be obtained by such analysis. The text is 
rather brief, and no attempts have been made to explain expressions theoretically. Readers, 
interested in theoretical aspects are referred to the literature references presented along 
with the text. 

Geometry 
As demonstrated in Figure 1 composite geometry can be described by so-called shape 
functions which are determined by so-called shape factors (µP

o,µS
o) and critical concen-

trations, cP and cS ≤ cP: Shape factors tell about the shapes of phase components at dilute 
concentrations. Critical concentrations are concentrations where the composite geometry 
changes from one type to another type. 

 

 

 

 

 

 

 
 
 
Figure 1. Geometrical significance 
of shape functions. (µP,µS) = (+,-) 
means discrete P in continuous S. 
(µP,µS) = (+,+) means mixed P in 
mixed S. (µP,µS) = (-,+) means con-
tinuous P with discrete S. Black and 
gray signatures denote phase P and 
phase S respectively. (µP

o,µS
o) are 

so-called shape factors. (cP,cS) are 
so-called critical concentrations. 

  



At fixed concentrations we operate with the following types of composite geometries: DC 
means a discrete phase P1) in a continuous phase S. MM means a mixed phase P geometry 
in a mixed phase S geometry, while CD means a continuous phase P mixed with a discrete 
phase S. We notice that MM-geometries (if porous) are partly impregnable. In modern 
terminology this means that phase P percolation exists in composites with c > cS. Perco-
lation is complete for c ≥ cP. Porous materials have lost any coherence in this concentration 
area with no stiffness and strength left. 

Composite geometries may change as the result of volume transformations associated with 
increasing phase P concentration. We will think of changes as they are stylized in Figure 1: 
At increasing concentration, from c = 0, discrete P elements agglomerate and change their 
shapes approaching a state at c = cS where they start forming continuous geometries. Phase 
P grows fully continuous between c = cS and c = cP such that the composite geometry from 
the latter concentration has become a mixture of discrete, de-agglomerating, phase S 
particles in a continuous phase P. 

In a complementary way the geometry history of phase S follows the history of phase P 
and vice versa. The geometries just explained can be shifted along the concentration axis. 
A composite may develop from having a DC geometry at c = 0 to having a MM geometry 
at c = 1. Such composite geometries, with cP > 1 and 0 < cS < 1, are named DC-MM geo-
metries. Other composites may keep their DC type of geometry all the way up to c = 1 in 
which case the composite geometry is denoted as a DC-DC geometry, with both critical 
concentrations > 1. The geometry outlined in Figure 1 changes from DC to CD geometry 
which makes it a DC-CD geometry with both critical concentrations in c = 0-1. 

 

Remark: Ideal geometries at c = 0 and at c = 1 of a DC-CD composite are illustrated in 
Figures 2 and 3 respectively. We notice in this context that the composite theory developed 
in (1,2,3) is based on the concept that any isotropic composite geometry is a station on a 
geo-path moving from the CSAP geometry shown in Figure 2 to the CSAS geometry shown 
in Figure 3. CSA is an abbreviation for the composite model Composite Spheres Assem-
blage introduced by Hashin in (4). It is noticed that the four letter symbols for composite 

                                                
1 A phase with continuous geometry (C) is a phase in which the total composite can be traversed 
without crossing the other phase. This is not possible in a phase with discrete geometry (D). A 
mixed geometry (M) is a continuous geometry with some discrete elements. 

 

 
Figure 3. Composite Spheres Assemblage with 
phase S particles, CSAS. 

 
Figure 2. Composite spherical assemblage with 
phase P particles, CSAP. 



geometries are subsequently also used in the meaning, for example: a 'DC-CD type of 
composite', a ‘DC-CD type of geometry’, or just a 'DC-CD composite'. 

Composites considered 

The various types of geometries considered are listed in Figure 4 which defines the fol-
lowing two composite classes considered in this paper: Particulate composites are defined 
by the former row. They have particles in a matrix geometry (DC) at small concentrations. 
Lamella composites are defined by the latter row. They have a mixed phase P geometry in 
a mixed phase S geometry (MM) at low concentrations. Obviously, the phenomenon of 
percolation previously considered develops between the two critical concentrations. In 
Figure 4 gray shadings indicate the phase P percolation. We assume that percolation varies 
linearly from being 0 at c < cS to being 100% at c > cP. 

 

 
 
 
 
 
 
 
 
 
 
 
 
 

 

TYPE EXAMPLES 

 
 

 
DC 

Particulate composite (concrete, mortar). Extremely high quality of grading 
(approaching CSAP composites). 
Pore system: Not impregnable. Finite stiffness at any porosity 

 
 
DC 

 
 
MM 

Particulate composite (concrete, mortar) with particle interference at c = cS. 
Increasing quality of grading is quantified by larger concentration cS at first 
severe interference. 
Pore system: Only impregnable for porosities c > cS. Finite stiffness at any 
porosity. 

  
CD 

Mixed powders (ceramics). 
Pore system: Only impregnable for porosities c > cS. No stiffness for 
porosities c > cP. 

 
MM MM 

Mixed lamella/foils ("3D-plywood"). 
Pore system: Fully open at any porosity. Finite stiffness at any porosity. 

 CD 
Mixed lamella/foils ("3D-plywood"). 
Pore system: Fully open at any porosity. No stiffness for porosities c > cP.  

Table 1. Examples of composites outlined in Figure 4. 
 

 
Figure 4. Composite types versus critical concentrations. 
Former and latter two letters denote composite geometry at 
c = 0 and at c = 1 respectively. 



Quantification of composite geometry 
Shape factors 

Shape factors for particulate composites with plain fiber/disc particles can be accurately 
determined by Equation 1, reproduced from (3)2) where particle shapes are quantified by 
the aspect ratio, A = length/diameter of particle. Spherical particles have A = 1. Long par-
ticles have A > 1. Flat particles have A < 1. 

shapeone
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For particulate composites with phase P being a mixture of particles with various aspect 
ratio distributions the shape factors can be accurately calculated by a method developed in 
(3). For the case of mixtures with only two aspect ratios this method is included as part of 
the sub program ‘Comp’ in ‘CompDesign’ previously referred to. An example: A mixture 
made with 20% A = 0.3 and 80% A = 2 is characterized by the shape factors (µP

o,µS
o) = 

(0.83,-0.68). 

An approximate determination of shape factors for a two-shape (A1, A2) particulate com-
posite can be obtained by the following expression, where α1 is volume fraction of partic-
les with aspect ratio A1 while (µP1

o,µS1
o,µP2

o,µS2
o) are shape factors individually determined 

by Equation 1 for the two aspect ratios.  

 (2) 

 

Shape factors for laminate composites are estimated as explained in a subsequent section. 

Critical concentrations 
It is emphasized that the critical concentrations depend very much on the processing tech-
nique used to produce composites. We notice that particle size distribution is part of 
processing. For particulate composites, for example, the critical concentration cS can be 
thought of as the concentration at first severe interference of phase P (starting the creation 
of a continuous skeleton). Improved quality of size distribution (smoothness and density) is 
considered by increasing cS. At this concentration porous materials become very stiff when 
impregnated with a very stiff material. At the other critical concentration, c = cP, the 
composite becomes a mixture of phase S elements completely wrapped in a matrix of 
phase P. As previously mentioned porous materials loose their stiffness and strength at cP 
because phase P has become a continuous, enveloping, void system. 

Remark: The definition of interference ('severe') introduced above is kept throughout the 
paper. It is implicitly assumed that particles at c > cS are kept together by a very thin, suffi-
ciently strong matrix "glue". 

                                                
2 Modified version of a similar expression presented in (2). 
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As previously indicated, critical concentrations can be fictitious (outside c = 0 - 1). In such 
cases they do not, of course, have the immediate physical meanings just explained. Theore-
tically, however, if we think of the c-axis as a plain geometry axis we may keep the expla-
nation given in order to describe in an easy way, how the rate of changing the composite 
geometry is influenced by the processing technique used. In such fictitious cases critical 
concentrations will have to be estimated from experience, or detected from calibration 
experiments. 

Geo-path 

A geo-path defines the type of composite geometry as it develops when the volume con-
centration of phase P increases from c = 0 to c = 1. Obviously this ‘history’ is a matter 
of production technology, which cannot be studied by theoretical means only. Reaso-
nable estimates, however, can be made (3) from knowing about shape factors (shape 
function values at c = 0) and from knowing about critical concentrations (where one 
shape function value is 0). The geo-path shown in Figure 5 is reproduced from (3,5) 
assuming a production technology that can produce geometries (shapes) for which sha-
pe function values are related by the 

o
S

o
PPS aoffactorpathawithapathGeo µµµµ +=−=− ;:   (3) 

compiling the following shape functions with one known critical concentration (cP or 
cS) estimated from experience, 
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Figure 5. Geo-path 
and qualitative des-
cription of geometri-
es: Numbers indicate 
fiber aspect ratio A 
of phase P particles. 
In section CD aspect 
ratios of phase S 
particles are symme-
trical with respect to 
µP = µS. Frame- and 
fiber works are ag-
glomerating MM-
structures of long 
crumbled fibers and 
shorter crumbled fi-
bers respectively. 
Disc works are ag-
glomerating MM-st-
ructures of crumbled 
discs (sheets). Plate 
works are crumbled 
sheets (foils).   



Remark: The geo-path suggested in Equation 4 has been successfully applied in (2,3) 
on a number of composites made with traditional technologies: Particles mixed into a 
continuous matrix, compaction of powders, production of porous materials, impreg-
nation of porous materials, particulate composites with self-inflicted pores (light clinker 
concrete), three dimensional ‘Plywood’ composites. 

Composite analysis 
The preparation of a composite analysis is as follows: 

- For particulate composites, calculate shape factors (µP
o,µS

o) from Equations 1 and 2. 
For lamella composites, use Figure 5 to estimate (µP

o>0 and µS
o>0) with µP

o increasing 
from 0 for plate works to 1 for open frame works. 

- Then decide the critical concentration cS (or cP) from knowing about mixing tech-
nology and observations made on geometrical formation. 

- Now composite geometry can be quantified as expressed by the shape functions 
presented in Equation 4. 

- The last step of preparing a composite analysis by the global solutions (valid for any 
geometry) presented in Equations 6 to 10 is to calculate the so-called geo-functions 
expressed by Equation 5 for stiffness analysis and conductivity analysis respective-
ly. 

2 P
P S P S P S

S

2 P
Q Q Q QP S P S P SQ

Geo - function for stiffness analysis :

1 E =  + n  + (  + n  + 4n(1 -  - )   ;  n = )
2 E

Geo - function for conductivity analysis :

Q
 =  +  + (  +  + 4 (1 -  - )  ;   = )n n n n

θ µ µ µ µ µ µ

θ µ µ µ µ µ µ

 
  

SQ

  (5) 

Composite properties 
With composite geometry described by the geo-functions presented in Equation 5 a pro-
perty analysis can now be made using the following global solutions 6 - 10 with symbols 
explained in the list of notations presented at the end of the paper. 

Remark: We re-call from the introduction that the stiffness- and stress expressions presen-
ted have a generalized meaning. They can be used for any loading mode, shear, volumetric, 
as well as uni-axial. For example, E/ES can also be used to predict the composite shear 
modulus, G/GS, and the composite bulk modulus, K/KS, normalized with respect to the 
phase S properties. In a similar way the phase stresses, σP/σ and σS/σ, also apply inde-
pendently of loading mode as long as both phase stress modes (σP,σS) and composite 
(external) stress modes (σ) are the same. 

Stiffness and eigenstrain/stress 

Stiffness 

S

E n  +  [ 1  +  c ( n  -  1 ) ]
e  =   =  

n  +   -  c ( n  -  1 )E

θ
θ

   (6) 



Stress due to external mechanical load 
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Eigenstrain - linear 
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Eigenstress – hydrostatic 
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E

3

5
- = ∆   (9) 

Conductivity 

1) - nc( -  + n

1)] - nc( + [1 + n
 = 

Q

Q
 = q

QQQ

QQQ

S θ
θ

   (10) 

Bounds on stiffness and conductivity 
It comes from (1,2,3) that the above predictions are bounded as follows between the exact 
solutions for the CSA composite illustrated in Figures 2 and 3. 

1 < n  when signsreverse  1;  nfor  valid

1) - c(n - 2n

1) - c(n + 2
n  <   

E

E
 = e    
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1) - c(n + 1 + n

S

≥

≤
 (11) 

The stiffness bounds are obtained introducing θ ≡ 1 and θ ≡ n respectively into Equation 6. 
The conductivity bounds are obtained introducing θQ ≡ 2 and θQ ≡ 2nQ respectively into 
Equation 10. The bounds such determined are the same as can be obtained from the studies 
made by Hashin and Shtrikman in (6) on composite stiffness and in (7) on composite 
conductivity. The bounds just considered are subsequently referred to by H/S. 
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Examples 
Three examples are presented in this section where composites are subjected to a property 
analysis as it has been presented in this paper. The text of the examples is very short. Only 
information absolutely necessary for solving the problems is presented. Other examples of 
property predictions are presented in (8,3). 

Thermal expansion of salt infected bricks  
The dotted data shown in Figure 6 are from an experimental study reported in (9) on 
damage of bricks caused by salt intrusion. The solid line data are the results of a compo-
site analysis with the following component properties justified in (3). Additional results 
from the analysis are the internal stresses presented in Figure 7. 

Composite: CC-CD with (µP
o,cP) = (0.9,0.53) and estimated µS

o = 0.05 
Phase S (Tile): ES = 38000 MPa, λS = 6*10-6/oC 



Phase P (Salt): EP = 20000*β/(2-β) MPa, (degree of pore impregnation: β = 0.15 - 0.25) 
  λP = 3.8*10-5/oC 

 

 

Stiffness of – and diffusion coefficient (Chloride) in cement paste system 
Phase properties: The components are phases (P,S) = (saturated capillary pores, cement 
gel). The Young's moduli and the Chloride diffusion coefficients are (EP, ES) = (0,32000) 

MPa and (QP,QS)/QP = (1, 0.00008) respec-
tively (with QP = 2*10-9 m2/sec). These data 
are deduced from stiffness experiments repor-
ted in (10,11) and chloride diffusion experi-
ments reported in (12,13). 

Geometry: We estimate that pores, at an 
average, have an aspect ratio of A = 4 at low 
porosities. Shape factors of (µP

o,µS
o) = (0.81,-

0.25) are then calculated by Equation 1. A criti-
cal concentration of cP = 0.78 is estimated from 
(14) where it was shown that cement paste ex-
hibits no stiffness (and strength) at porosities 
greater than c ≈ 0.78. (The solid phase (S) be-
comes surrounded by voids at that concentrati-
on). From Equation 4 we get cS = 0.24. 

Equation 4 now determines the shape functions 
presented in Figure 8. The composite analysis proceeds exactly as explained in the 
previous section of the paper. The results are shown in Figures 9 and 10 together with test 
data from (10,11,15,13). 

Remarks: It is of some interest to compare the results just obtained with Figures 11 and 12 
presenting predictions assuming two other composite geometries: 

1) DC-CD composite with compacted spheres: (In the present theory quantified by (A,cS) = 
(1,0.5) ⇒ µP = 1 - 2c and µS = 2c – 1). The stiffness prediction for this geometry can be pre-
sented in a closed analytical form, namely Equation 13, which according to (1) is identical 
to a solution, which can be obtained from the analysis of Budiansky (16). 

  
  

 
Figure 8. Cement paste considered: Geome-
try of cement paste considered. 

Figure 7. Predicted thermal eigenstre-
sses (/oC) in salt infected brick. 

Figure 6. Thermal eigenstrain (/oC) of 
salt infected tile. 



igure 11. Cement paste system considered
ith other geometries as explained in the text:
olid line is Geometry 1. Dashed line is
eometry 2. 

igure 12. Cement paste system considered
ith other geometries as explained in the text:
olid line is Geometry 1. Lower dashed line is
eometry 2. 

              2 21
e  =  ( 1  -  n ) ( 1  -  2 c ) +  ( 1  -  n ( 1  -  2 c  +  4 n) )

2
 
  

 (13) 

 

 

 

2) DC-DC composite with P-spheres in a continuous S-matrix, see Figure 2: (In the present 
theory quantified by (A,cS) = (1,∞) ⇒ µP  ≡ 1 and µS ≡ -1). The stiffness prediction for this 
geometry can also be given a closed analytical form, namely Equation 11(left side), which 
according to (1) is identical to the CSAP solution previously referred to by Hashin (4). We 
notice that geometry 2) equals one of the H/S bounds previously referred to. 

We notice from Figures 9 – 12 that the influence of composite geometries 1) and 2) on 
composite properties are very different from the influence of the geometry applying for 
the composite system considered in this example. 

 

Figure 9. Cement paste system considered: 
Stiffness as related to capillary porosity, 
present analysis. 

 

Figure 10. Cement paste system consi-
dered: Chloride diffusivity as related to ca-
pillary porosity, present analysis. 
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Conclusion on property prediction  
The statement, that composite properties depend very much on composite geometry has 
been convincingly confirmed and quantified in (1,2,3,8) demonstrating a very satisfying 
agreement between theoretically predicted data and experimentally obtained data reported 
in the composite literature. 

It is emphasized that the basic prediction expressions presented are global, meaning that 
they apply for any isotropic composite geometry. 

Aspects of materials design 
The quality of the present theory to work with global descriptions (θ) of composite geo-
metries qualifies it to be used in design of composite materials, meaning that geometries 
can be found which associate with prescribed composite properties. We just have to 
make an inverse analysis of the composite expressions previously presented. Keeping 
our source materials, Phase P and Phase S, such analysis can be made by the following 
expressions applying for any geo-path.  

Geo-function versus properties (from Equations 6 and 10) 

Shape functions versus geo-functions (from Equation 5) 

Remark: We notice that a number of possibilities of shape function values are possible 
for predicting prescribed material properties: For each µP there is a µS.   

Illustrative example 
As previously indicated Equations 14 – 16 apply for any geo-path, µS = f (µP). In order 
to simplify matters, however, we will demonstrate the design procedure applying the 
simple path µP + µS = a defined by the so-called geo-path factor, 0 ≤ a ≤ 1. 
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One prescribed property: With a prescribed Young’s modulus of E*, or conductivity 
Q*, at volume concentration c* the shape function values are determined as follows, 
meaning that one data set (µP*,µS*) on the geo-graph is presented. 

Two prescribed properties: With two prescribed Young’s moduli, E1 and E2, or conduc-
tivities Q1 and Q2, at volume concentrations, c1 and c2 respectively the shape function 
values (µP1,µS1) and (µP2,µS2) are determined. Assuming that the same geo-path factor, 
a, applies for both analysis, the full shape functions (µP,µS) can be determined using that 
the shape functions vary linearly with volume concentrations. This means that the full 
geo-path, µS = f(µP) can be presented. We will demonstrate this feature by two 
examples: 

Example 1 (Stiffness) 
Sources: (EP,ES) = (0,32000) MPa 
Geo-path factor: a = 0.5. 
Prescribed Young’s moduli: (E1,E2) = (12500,5000) MPa at (c1,c2) = (0.3,0.5). 
Results of analysis: Figures 13 and 14. 

Evaluation of geometry: 

The shape functions presented in Figure 13 are easily transformed to the geo-path graph 
shown in Figure 17. The prescribed stiffness data are properties of a composite 
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Figure 13. Shape functions in stiffness 
analysis 
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Figure 15. Geo-path in stiffness analy-
sis. 

Figure 16. Geo-path in conductivity 
analysis 

Figure 17. Geo-path in stiffness ana-
lysis 

Figure 18. Geo-path in conductivity 
analysis 

produced with geometries described placing Figure 17 on top of the master path graph 
in Figure 5.  

Example 2 (Conductivity) 
Sources: (QP,QS)/QP = (1,0.00008) with QP = 2*10-9 m2/sec 
Geo-path factor a = 0.9. 
Prescribed conductivities: (Q1,Q2)/QP = (0.001,0.1122) at (c1,c2) = (0.19,0.43). 
Results of analysis: Figures 15 and 16. 

Evaluation of geometry: 

The shape functions presented in Figure 15 are easily transformed to the geo-path graph 
shown in Figure 18. The prescribed conductivity data are properties of a composite 
produced with geometries described placing Figure 18 on top of the master path graph 
in Figure 5.  

 

 

Figure 16.  Conductivity analysis. Figure 15. Shape functions in conductivity 
analysis 
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Conclusion on design aspects  

A method has been presented in this paper which applies for design of composites with 
simple geo-paths, µS + µP = a, previously shown to apply well in property predictions 
for a number of composites produced with traditional technologies: Particles mixed into 
a continuous matrix, compaction of powders, production of porous materials, impreg-
nation of porous materials, particulate composites with self-inflicted pores (light clinker 
concrete), three dimensional ‘Plywood’ composites. 

An interesting aspect of the composite theory presented in this paper is that it offers the 
possibility to explore in general, how geo-paths should look to obtain prescribed material 
properties. This feature may act as a challenge to traditional technologies: Can we do better 
by new, not yet known, technologies? In order to answer this question we have to open 
new research projects such as the following:  

- FEM tests on a number of standard composites are made - from which shape function values 
can be deduced at various concentrations - in principles as made in (3) for various particulate 
composites and so-called grid composites. 

- Parallel technology studies are made on, how to produce such standard composites in prac-
tice. 

Notations 
  Abbreviations and subscripts 
   V Volume 
   P Phase P 
   S Phase S 
     no subscript  Composite materials 
   H/S Hashin/Shtrikman's property bounds 
  Geo-parameters 
 c = VP/(VP+VS) Volume concentration of phase P 
   µ

o Shape factor 
   µ Shape function 
   cP,cS Critical concentrations 
   θ Geo-function for stiffness 
   θQ Geo-function for conductivity 
  Stiffness and other properties 
   E Stiffness (Young's modulus) 
  e = E/ES Relative stiffness of composite 
  n = EP/ES Stiffness ratio 
   Q Conductivity (e.g. thermal, electrical, chloride) 
  q = Q/QS Relative conductivity of composite 
  nQ = QP/QS Conductivity ratio 
   λ Linear eigenstrain (e.g. shrinkage, thermal expansion) 
   ∆λ = λP-λS Linear differential eigenstrain 
  Stress 
   σ External mechanical stress 
   σP Phase P stress caused by external mechanical stress 
   σS Phase S stress caused by external mechanical stress 
   ρ Hydrostatic stress caused by eigenstrain 
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