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Introduction 
 
This report is prepared for students in materials mechanics - and other persons - 
who show interest in exploring the mechanical behaviour of fresh Self-Compac-
ting Concrete (SCC). The report consists of the following two papers written by 
the author: 
 
Nielsen, L. Fuglsang: ‘The behaviour of Bingham materials in a rotation rheometer’, 
A text note prepared for students in material mechanics, September 2002. 
The paper explains how concrete (and other materials), modelled as a Bingham material (ex-
plained in the paper), behaves when tested in a so-called rotation rheometer (described in the 
paper). Some results are well known – others are new, developed for research purposes. 

Software, RHEOTEST1), is attached for fast applications of the theory: Experimental 
quantification of fresh concrete as a Bingham material. 

 

Nielsen, L. Fuglsang: ‘Generalized Bingham description of fresh concrete’. A paper 
presented at the XVIII Symposium on Nordic Concrete Research in Helsingør, Den-
mark, 12-14 June 2002. Proceedings, Danish Concrete Society 2002. 
The paper presents a method by which the well-known Bingham description of flow in ho-
mogeneous liquids with yield stress can be generalised to apply also for composite fluids. In 
the present context such fluids are defined as traditional Bingham fluids mixed with very 
stiff particles of known shapes and size distributions. In practice the composite aspects of 
the generalised Bingham description is a major advantage. Only a few geometrical parame-
ters for the particles and two material properties for the fluid matrix are required in order to 
describe the Bingham behaviour of any composition of the composite fluid considered. The 
Bingham method normally used needs experimental calibration for any new composition. 

Software, SCC1), is attached for fast applications of the theory: Prediction of the in-
fluence of shapes and volume concentrations of aggregates on the rheological beha-
viour of concrete. 
 
 

 
 
 
 
 

                                                           
1)   To be downloaded from http://www.byg.dtu.dk/publicering/software_d.htm. It is much recom-
mended to ‘play around’ with this software while reading the report. 
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A note on the behaviour of 

A Bingham-material in a rotation rheometer 
 

Lauge Fuglsang Nielsen 22. July 2002 (rev. Sept, 2002) 

Introduction 
This note is prepared for a lecture on the deformations occurring in a rotation viscosi-
meter (see Figure 1) filled with a Bingham-material. The text of the note is rather 
brief. For a full understanding of the note it is required that the student is present at 
the lecture – or on her own has obtained some basic knowledge of the theory of ela-
sticity, and knows about the analogy between elasticity and viscosity. It is assumed 
that the student knows about the stress-strain relation of a Bingham model, see 
Equation 1. 

The basic results presented in the lecture agree with such obtained by Reiner (and 
Riwlin) (1,2). However, the methods used by the lecturer to develop these results 
deviate from those used by Reiner. Additional results are obtained in special sections 
of the note where the theoretical results are adapted to become useful expressions for 
experimental detection of material properties of a Bingham material – also when a 
so-called ’slip-effect’ (later explained) appears. 

The aspects of experimental determination of material properties are considered in 
details at the end of this note. Algorithms are presented which form the basis of 
the software, RHEOTEST, developed for this lecture. The software is demon-
strated. It is ‘constructed’ for practice as well as for teaching purposes. It can be 
downloaded from http://www.byg.dtu.dk/publicering/software_d.htm. 
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Figure 1. Rotation rheometer:
The mantle is rotated with N 
revolutions/sec, by which the 
kernel is affected with the tor-
sional moment M. 
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It should be mentioned that the RHEOTEST can be used also to determine the rheo-
logical properties of composite fluids. Fresh concrete such as young Self-Compac-
ting Concrete (SCC) is an example of composite fluids. 
Lists of symbols used in this note and relevant references are presented at the end of 
this note. The ‘slip effect’ previously mentioned is considered separately in an Ap-
pendix, also at the end of this note. The results already developed for Bingham mate-
rials are modified to include the special phenomenon that the Bingham material, as 
the result of being tested, might change to a fluid very close to the surface of the 
fixed kernel. The ‘slip-effect’ is considered in a separate software RHEOTEST(2) 
embedded in RHEOTEST. 

Elastic solution 
As an introduction to the Bingham problem we will look at the elastic counter 
problem outlined in Figure 2: We will determine the deflection v (or the rotation, Ω = 
v/r) located at (r,θ) in a composite cylinder where the mantle material behaves 
conditionally elastic as described in Equation 2. 
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Figure 2. Concentric composite cylinder of height h with a fixed stiff kernel embedded in an 
infinite mantle of a conditionally elastic material, see Equation 2. The load is a ‘far away’ 
acting rotational moment, M, corresponding to equally distributed shear stresses τ acting in 
the mantle at a centre distance of r. 
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Analysis 
Strain in (r,θ) according to Timoschenko and Goodier (4, Equation 51 with δu/δθ = 
0):  
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(Notice that indices r,θ on τ and γ subsequently are implicitly understood.) 
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Resulting equation of movement 

From Equations 3 and 4: 
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from which the following rotation solutions are obtained. 
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ro is the so-called plug-radius outside which the rotation is constant, meaning that 
material for r > ro moves as a stiff mantle. It can be shown by Equation 4 that stress τ 
= τTH at r = ro . 

Deformation 

The movement itself (v = rΩ) becomes as expressed by Equation 7. It is noticed that 
the movement is proportional with the radius vector for r > ro. 
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Viscoelastic analysis 

The elastic solutions just derived can be used to develop the counterpart velocity 
solutions for a Bingham material. We just have to use the elastic-viscous analogy. 
(Replace deformation, including rotation, with the corresponding velocities, and G 
with η).  At the same we inter change the threshold stresses τTH and s. 

Equation 3 becomes Equation 8. After this Equations 4-6 become Equations 9-11 
respectively. 
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where ro is the so-called plug-radius outside which the rotation velocity is constant, 
see Figure 3, meaning the material moves as a stiff mantle for r > ro. From Equation 9 
is derived that the stress τ = s for r = ro . (The similarities are noticed between the 
viscous Equation 11 and the elastic Equation 6). 

Deformation velocity 

Velocities are determined as. 
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It is noticed that velocities are proportional with centre distance for r > ro, see Figure 
3. 
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Figure 3. (RI, RO, h) = (0.1,0.2,0.2) m. M = 1 Nm. η = 30 Pa*sec, s = 30 Pa 

Special solutions for a rotation rheometer 

We will now think of the mantle material being very stiff outside a centre distance of 
r = RO. In this way we have modelled the rotation rheometer outlined in Figure 1. The 
velocity of the stiff mantle becomes 
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which can also be written as shown in Equation 14 with revolutions/sec introdu-
ced by N = /(2πR)R(v O&
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Potentials of theory in experimental parameter detections 
It is obvious that the former expression in Equation 14 – together with measured N-
M relations – is useful in determination of the basic material properties (s,η) of a 
Bingham material. From linear regression of experimental data we get 
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where Mo and α are the intercept and slope respectively of the straight line obtained 
by graphically relating measured torsion moment (M) to measured revolutions/sec 
(N): 

N + M = M o α  (16) 

We notice that the method of regression has the following restrictions decided by the 
ro-expression in Equation 11 (ro > RO) and the former expression in Equation 14. 
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For lower M and N the M-N relation has to be determined theoretically from the se-
cond expression in Equation 14, where we must remember that ro is a function of M. 
To use this relation for parameter determination is significantly more difficult (not 
impossible) than using the linear regression method just considered with RO < ro. 
The linear regression method forms the basis of the software, RHEOTEST, attached 
to this lecture note. An example of using this software is demonstrated in Figure 4. 
We notice that some experimental data set have to be excluded as a consequence of 
Equation 17. (OBS: ‘Torque’ is another word for torsional moment, M) 
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Figure 4. Treatment of experimental data using the linear regression method, RHEO-
TEST: The former figure shows that the first data set has to be excluded because N < 
NPLUG.. The final results are obtained by the latter figure: s = 21.5 Pa, and η = 13.04 
Pa*sec. The rheometer applied has (RI, RO, h) = (0.1,0.15,0.2) m.  

Plug flow 
This term, used internationally, is explained indirectly as follows: In tests with N 
< NPLUG parts of the material tested sticks to the mantle of the rheometer – and gets 
the same rotation velocity as the mantle (see Equation 11). Thus, ‘plug flow’ 
characterizes the state where the material tested is not stirred completely. The 
phenomenon of plug flow is considered in details in the software RHEOTEST 
previously referred to. 
Remarks: Tests with N > NPLUG are the most rational to use in parameter determi-
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nation for Bingham-materials: Threshold stress, s, and viscosity, η. For practice we 
must expect that the determination becomes an iterative process, where some 
experimental data with N < NPLUG have to be excluded, see Figure 4.  
Notations 
RO, RI, h are dimensions of rheometer, see Figure 1 
r  is radius vector in polar coordinate system, see Figures 1 and 2 
θ is angle in polar coordinate system, see Figure 2 
M (or T) is torsional moment (torque) measured on the kernel of the rheometer 
N is revolutions/sec of the rheometer mantle 

      Nplug is N under which parts of the test material sticks to rheometer mantle 
Mplug (or Tplug) is torque at Nplug 

      ro is 'plug' radius, outside which test material sticks to the rheometer mantle in tests with N 
< Nplug 
τ (or 'tau') is shear stress 
γ is change of angle 
dγ/dt is rate of change of angle 
 η (or 'eta') is viscosity of a Bingham-material, see Equation 1 
 s is threshold stress for a Bingham-material, see Equation 1 
G is shear modulus of a material with conditionally elasticity, see Equation 2 
τTH is threshold stress in a material with conditionally elasticity, see Equation 2 

Literature 
1. Reiner. M.: ‘Lectures on theoretical rheology’ (third edition), North-Holland Publ. 
Comp., Amsterdam , 1960. 
2. Reiner, M. and Riwlin, R.: ‘Über die Strömung einer elastische Flüssigkeit im Cou-
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licher Viskosität, Kolloid-Z. 43(1927), 127. 
3. Schwedoff, T.: ‘Recherches experimentales sur la cohésion des liquides’, J. 
de Phys., 9(1890), 116 
4. Timoschenko, S. and Goodier, J.N.: ‘Theory of elasticity’, second edition, McGraw-
hill Book Comp., New York, 1951. 
5. Nielsen, L. Fuglsang: "Rheology of extreme composites", In "Papers in Structural 
Engineering and Materials - A Centenary Celebration", 179-187, Dept. of Struct. and 
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6. Idem: “Generalized Bingham description of fresh concrete”, XVIII Symposium on 
Nordic Concrete Research in Helsingør, Denmark, 12-14 June 2002. Proceedings, Da-
nish Concrete Society 2002. 
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10. Geiker, M.R., Brandl, M., Thrane, L. Nyholm, Bager, D.H., and Wallevik, O.: ‘On 
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ting concrete’, Cement and Concrete Research, 32(2002), 1791-1795. 
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APPENDIX: Slip-layer 
In practice some sort of smear effect can sometimes be observed between the test 
material and the kernel surface. Apparently the surface of the rheometer kernel 
can influence the test material such that a thin contact layer will exhibit a rotation 
velocity different from 0 as predicted by Equation 11. 
Such behaviour can be counted for approximately by assuming that the test 
material in a transition zone (slip-layer) from r = RI to r = RI2, see Figure 5, 
transforms to a plain Newton-fluid (defined in Equation 18). 
Various slip-states can be described by varying the Newton viscosity (ηo) and/or 
the thickness of the slip layer. Although only very thin slip layers are expected, it 
is chosen, subsequently, to introduce slip layers of arbitrary thickness between 0 
and RI2 - RI. By doing so, the Bingham analysis originally developed in this note 
will include Newton materials. 
Remark: Presently, there is no convincing quantitative evidence on the physical 
nature of slip layers. Thus, at the present time, the subsequent analysis based on 
Newton layers must be considered as a pure hypothesises. 
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The two latter terms stay as in Equation 11 – only that the original kernel radius RI is 
replaced with the ‘new kernel radius’ RI2. After this, the analysis proceeds in a 
similar way as the analysis previously used to obtain Equations 12-14. The properties 
of the Bingham material (outside the slip layer) become as expressed in Equation 20 
after linear regression of experimental data - which must yield Equation 21. 
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In principles, the determination of Bingham parameters (considering a slip layer) 
proceeds in a similar way as if no slip layer was present (RHEOTEST). Some mo-
difications, however, have to be introduced respecting Equations 19-21. Such mo-
difications are considered in software, RHEOTEST(2), included in RHEOTEST. 
An example of using RHEOTEST(2) is presented in Figure 6. 
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Figure 6. Treatment of experimental data by RHEOTEST(2) assuming ηo/η = 0.1 and RI2 
= 0.1005 m: The former figure shows that the first experimental data point must be ex-
cluded from analysis because N < NPLUG.. The final analysis is shown in the latter figure: 
s = 25.30 Pa, and η = 15.13 Pa*sec. The rheometer used is the same as defined in 
Figure 4. 
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Generalized Bingham description of fresh concrete 
A paper presented at the XVIII Symposium on Nordic Concrete Research in Helsingør, 
Denmark, 12-14 June 2002. Proceedings, Danish Concrete Society 2002. 

 

Lauge Fuglsang Nielsen 
Associate professor, Ph.D. 

Department of Civil Engineering, Building 118 
Technical University of Denmark 

DK-2800 Lyngby, Denmark 
 

Abstract 
A method is presented by which the well-known Bingham description of flow in homogene-
ous liquids with yield stress can be generalised to apply also for composite fluids. In the 
present context such fluids are defined as traditional Bingham fluids mixed with very stiff 
particles of known shapes and size distributions. In practice the composite aspects of the 
generalised Bingham description is a major advantage. Only a few geometrical parameters 
for the particles and two material properties for the fluid matrix are required in order to 
describe the Bingham behaviour of any composition of the composite fluid considered. The 
Bingham method normally used needs experimental calibration for any new composition.  

Due to the very strict space limits for papers to this conference the generalization method just 
outlined is presented as an operational summary of a detailed study on the rheology of fluid 
composites recently reported in [1]1). In the present paper composites thought of are self-
compacting concretes (SCC) modelled as aggregates in a fluid matrix of cement paste (or 
mortar)2). 

Key words: Composite fluid, Bingham, Composite Bingham, Self-compacting concrete 
(SCC) 
 

Introduction and theoretical results 

The prime scope of this paper is to look at possibilities of establishing a composite 
method of predicting the rheology of SCC, which may serve as an alternative to the 
semi-empirical method, suggested by deLarrard [2]. The theoretical basis of doing so 
has recently been developed in [1] from which the following presentation is summa-
rized: The composite fluid considered is a mixture of very stiff particles (phase P) in 
a Bingham fluid  (phase S). The shear stress (s) – shear strain (e) relation is expressed 
by Equation 2 where Equation 1 determines the volume concentration, c, of particles 

in the composite fluid. V denotes volume.  Subscripts P and S refer to particle phase 

         particles of ionconcentrat Volume   
V + V

V = c
SP

P                                     (1) 

 
1) The electronic version of this reference should be preferred. Due to a number of printing 
errors the paper version is very difficult to read. 
2)  A software SCC has been developed to consider the rheology of fresh concrete. It can be 
downloaded from http://www.byg.dtu.dk/publicering/software_d.htm. 
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and matrix phase S respectively. 

Formally the original- and the composite (or generalized) Bingham expression, 
see [3], look alike. The viscosity (η) of the material first becomes active when the 
matrix (fluid) stress exceeds the matrix yield stress SS.  

c-1
c + 1

 =   :Viscosity   and   c) + (1S =   S: stressYield

 withfluid Bingham composite  
dt
de2 +  S=   s  

2
 S- s = 

dt
de

SS
γ

ηηγ

η
η

∞
∞

⇒

                 (2) 

Composite geometry 

The composite geometry (particle shape and size distribution) is considered in 
Equation 2 by the so-called geometry function (ϒ∞) expressed by Equation 3 with 
shape functions (µP,µS), expressed by Equation 4 and illustrated in Figure 1. 

Principal parameters for the description of geometry in this paper are aspect ratio 
(A = length/diameter) and the critical concentration cS of ellipsoidal particles con-
sidered (cS ≈ maximum packing density ≈ eigenpacking). Normally, we may 
expect improved quality of particle size distribution (smoothness and density) to 
be associated with higher cS.  

     
⎜
⎜
⎜

⎝

⎛

>∞
∞

S

S
S

SP

cc              

c < c  1 -  + 
2
3

 =  
;

;
µ
µµ

γ                                Geo-function          (3) 

The so-called shape factors, µo
P, µo

S, appearing in Equation 4 are determined by 
Equation 5. 

)( SSo
S

o
P

p

M

p

o
PP

M

S

o
SS ccc- = c   with

c
c - 1 =   ;  

c
c - 1 = ≤⎟

⎟
⎠

⎞
⎜
⎜
⎝

⎛
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
µ
µ

µµµµ              (4) 

⎜⎜
⎜
⎜

⎝

⎛ ≤

⎜
⎜
⎜
⎜

⎝

⎛ ≤

1 > A   3 - 4

 
1  A        

- =    ;  
1 > A  

4 + 5A - A4
1 + A - A3

1  A      
1 + A + A

3A

 = 
o
P

o
P

o
S

2

2

2
o
P

µ

µ
µµ

      Shape factor                 (5) 

Normally an interaction power of M = 1 is used in composite analysis assuming a 
'moderately' increasing state of interaction between aggregates at increasing con-
centration. Lower interaction and higher interaction can be described with M < 1 and 
M > 1 respectively. Unless otherwise stated, a moderate interaction with M = 1 is 
used in this paper. If otherwise stated MS and MV indicate interaction powers used in 
yield stress analysis and in viscosity analysis respectively. 
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Figure 1. Shape functions (µP,µS) with M = 1 
and critical concentration cS (concentration 
of solid phase in a pile of particles). 

 

Figure 2. Spherical particles (A = 1) in a viscous 
matrix. Present analysis and empirical descrip-
tions by Eilers and Brinkman. 

 

Theory and experiments 
As can be seen from Figure 2, reproduced from [1], the relative viscosity 
predicted by Equation 2 agrees with a solution developed by Einstein [4] in his 
study of the viscosity of dilute sugar solutions. The expression also agrees with 
data obtained from experiments on mixtures made of fluids with finite particle 
concentrations. Two empirical descriptions (Eilers and Brinkman), reported in 
[5,6,1] for such data are also shown in Figure 2. At the Technical University of 
Denmark an experimental study has recently been made on the influence of coarse 
aggregates on the rheology of fresh concrete. The study is reported in [7] from 
which the results presented in Figures 3 and 4 are reproduced. 

 

Figure 3. Viscosity of concrete as related to 
volume fraction of coarse aggregates [7]. 
Solid lines are predicted with MV = 1. Mortar 
viscosity is ηS = 2.5 Pa*sec. cS  = 0.65. 

 

Figure 4. Yield stress of concrete as related to 
volume fraction of coarse aggregates [7]. Solid 
lines are predicted with MS = 3.5. Mortar yield 
stress is SS = 1 Pa. cS  = 0.65. 
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  Error! Unknown switch argument.

Conclusion 
The well-known Bingham description of the rheology of homogeneous fluids has been 
generalised in this paper also to include the rheological description of composite fluids. 
The advantage of such generalisation is obvious: With a few parameters (shape 
factors, packing density cS, and interaction power M) to describe the composite 
geometry, only two material properties (viscosity ηS, and yield stress SS) of the 
fluid matrix are required to describe the generalised Bingham behaviour at any 
composition of the composite fluid considered. The traditional Bingham model 
needs experimental calibration for any new composition considered 
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