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Overview

The subject dealt with in this monograph is the mechanical and physical behavior
of composites as influenced by composite geometry. This subject has a high prio-
rity in the general study of composite materials. A better understanding of the
behavior of natural composites, improvement of such materials, and design of new
materials with prescribed properties are just three examples in modern materials
research where more knowledge on geometry versus materials property is absolu-
tely necessary.

An analysis of various composite properties versus composite geometries is presen-
ted in this monograph as the result of integrating the results of two sub-studies:

One study is made on composite properties as these can be related to composite
geometry in general by so-called shape functions. The second study is made on
shape functions as these are related to the geometry of specific composites, such
as particulate composites, impregnated materials, laminated composites, and com-
posites made by compaction of powders.

In other words, global solutions for composite properties are developed by the first
study which apply for any composite. Final solutions for composites with specific
geometries are then obtained from the global solutions introducing specific shape
functions developed by the second study.

Special composite properties considered are stiffness, shrinkage, hygro-thermal
behavior, viscoelastic behavior, and internal stress states. Other physical properties
considered are thermal and electrical conductivities, diffusion coefficients,
dielectric constants and magnetic permeability. Special attention is given to the
effect of pore shape on the mechanical and physical behavior of porous materials.

The theories and methods developed are verified by results obtained from a FEM-
analysis presented, and by experimental and theoretical data from the composite
literature. A number of examples are presented which illustrate the very decisive
influence of the internal geometry on the mechanical and physical properties of
composites.

As a spin-off result the composite theory developed is re-organized to become a
"diagnostic tool" with respect to quality control of empirical or semi-theoretical
prediction methods suggested in the field of composite materials - and with respect
to materials design.

Remark: It is emphasized that strength is not considered as a genuine materials
property in this monograph. It is a phenomenon where discontinuities in the
materials structure suddenly occur as the result of violating local potentials to carry
stress and/or strain for example. As such strength is a *materials property’ which
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can be calculated from stress/strain results obtained in this monograph. Examples
of such strength predictions for composite materials are presented.

Readers guidance

Roughly speaking the monograph is divided into two parts. A theoretical part, and
a more applicative part, starting at Chapter 10 where the theories developed are
simplified, adapted, and generalized for most practice '.

Lists of notations and references used are presented at the end of the monograph.
The former list (Chapter 17) should be consulted frequently. Symbols and notations
used in the monograph are generally explained only at their first appearance in the
text.

The following superior concept of notations is emphasized: Whenever needed to
distinguish single component properties from composite properties, subscripts P
and S refer to property of component P and property of component S respectively
while composite property is not subscripted. Usually the subscripts g and k are
used to indicate quantities obtained from - or used in deviatoric analysis and in
volumetric analysis respectively. Formally these analysis are very often identical.
In such cases only the volumetric analysis is presented with deviatoric results
referred to by analogy. Alternatively both subscripts k and g are dropped when
the feature discussed applies in principles for both volumetric and deviatoric
behavior.

A number of auxiliary expressions and data documentations are presented in appen-
dix sections at the end of the monograph: Basic information are given on isotropic
elasticity and cubical elasticity in Appendix A. A method is presented in Appendix
B for the numerical determination of stresses in ellipsoidal particles in isotropic
dilute suspensions. A generalized version of the so-called SCS-analysis of composi-
te materials is presented in Appendix C (Self Consistency Scheme). A detailed de-
scription (with data documentation) of a FEM-analysis made on some composite
materials is presented in Appendix D. Some detailed geometrical functions are pre-
sented in Appendix E. Some general viscoelastic models are presented in Appendix
F. And finally, some re-interpretation of "flat and long’ geometries are considered
in Appendix G.

1) Readers, who are interested primarily in applications may start at this chapter. Soft-
ware (to be downloaded from Attp://www. byg.dtu.dk/publicering/software_d.him) is deve-
loped to solve a number of problems considered in this monograph.
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1. Introduction

In the past four decades considerable attention has been devoted to composite
materials. A number of expressions have been suggested by which macroscopic
properties can be predicted when the properties, geometry, and volume concentra-
tions of the constituent components are known. Many expressions are purely empi-
rical or semi-theoretical. Others, however, are theoretically well founded such as
the exact results from the the following classical boundary studies:

Bounds for the elastic moduli of composites made of perfectly coherent homogene-
ous isotropic linear elastic phases have been developed by Paul (1) and Hansen
(2) for unrestricted phase geometry and by Hashin and Shtrikman (3) for phase
geometries which cause macroscopic homogeneity and isotropy.

The composites dealt with in this monograph are of the latter type. For two speci-
fic situations (later referred to), Hashin (4) and Hill (5) derived exact solutions
for the bulk modulus of such materials. Hashin considered the so-called Composite
Spheres Assemblage (CSA) consisting of tightly packed congruent composite ele-
ments made of spherical particles embedded in concentric matrix shells. Hill consi-
dered materials in which both phases have identical shear moduli.

In the field of predicting the elastic moduli of homogeneous isotropic composite
materials in general the exact Hashin and Hill solutions are of theoretical interest
mainly. Only a few real composites have the geometry defined by Hashin or the
stiffness distribution assumed by Hill. The enormous significance, however, of
the Hashin/Hill solutions is that they represent bounds which must not be violated
by stiffness predicted by any new theory claiming to consider geometries in gene-
ral.

For a variety of other composites (than Hashin/Shtrikman/Hill) other theoretically
well founded analytical methods have been developed for strictly defined specific
phase geometries. Examples are as follows: Ellipsoidal particles in a continuous
matrix are examined by Christoffersen (6) and Levin (7). Other particulate com-
posites are considered in (8,9,10,11,12). A special particulate composite
with compacted spherical particles is examined by Budiansky in (13). Special
fibre reinforced materials are examined by Stang (14), and so-called graded
composite materials are considered in (15,16).

Early composite theories based on statistically defined phase geometries are revie-
wed in (17). Such approach using statistical continuum theories has been further
developed by Torquato in (18,19).

11
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If real geometry and theoretically assumed geometry agree with each other excel-
lent results can very often be obtained by the methods just mentioned. Many real
composites, however, have geometries which are substantially different from any
of the geometries considered in prediction methods known to day. Composites geo-
metry will change - not only from type of composite to another type - but also in
composites individually. First of all it is very likely that the geometry of material
components will vary with phase concentration. This means, for example, that a
method for stiffness prediction applying at one concentration is not necessarily the
right one to use at another concentration.

This feature is illustrated in Figure 1.1 showing the influence of porosity on the
stiffness of real porous systems such as tile and hardened cement paste. Very often
a final critical porosity of 35 -
75% is approached where stiff-
ness becomes zero. Obviously
the critical porosity indicates the
extreme state of a continuous
process of geometry transform-
ation where the solid phase is
increasingly separated and sur-
rounded by an increasing amount
of pores. No model with fixed
geometry can be used to predict
stiffness of porous material. For
- > this reason most relations to day
POROSITY — = between stiffness of porous
Figure 1.1. Stiffness of an isotropic porous mate- ~ Tnaterials and porosity are still
rial as related to pore shapes. Dots are various  the empirical expressions deve-
exp-data reproduced from Chapter 11. loped in (20,21,22) for
example. Only empirical rela-
tions are qualified which do not violate the shaded area in Figure 1.1 bounded by
the theory of Hashin (4) previously referred to.

1.0

POROUS MATERIAL

RELATIVE STIFFNESS

In itself the large number of completely different empirical stiffness expressions
suggested for porous materials clearly indicates a need for a more rational research
on composite properties versus composite geometry such as reported by the present
author in a study (23) on porous materials and impregnated materials.

Change of geometry will influence any mechanical/physical behavior of compos-
ites. Stiffness and viscoelasticity (creep and relaxation) will change. Shrinkage and

12
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eigenstress-strain (such as hygro-thermal) properties, and heat conductivity are
other examples of materials behavior which will change with geometry.

In order to cope rationally with such changes in composite analysis we must
increase our freedom to chose other analytical models than the specific, non-vari-
able ones most often used to day. Valuable progress in materials science can then
be achieved in areas, such as a better understanding of the behavior of natural
composites, a more rational improvement of such composites, and a rational design
of new materials.

Some ideas on how to obtain such freedom are presented by the author in (24)
where it is shown that "global" property relations for composites can be established
with geometry considered by independent variables, so-called shape functions,
which can be studied separately with respect to specific geometries (discrete, con-
tinuous, etc).

Aspects of the same problem, how to construct a composite geometry such that
prescribed properties can be obtained, have been studied by Milton (25) who
introduced the term "inverse homogenization problem" for such composite
analysis. Sigmund (26,27) approaches the problem of inverse homogenization
numerically looking at basic porous material structures made by trusses and plates.
Milton and Cherkaev (28) provide a basis for studying the problem through ana-
lytical studies and construction of so-called extreme materials.

Modern numerical solution techniques such as Finite Element Methods (FEM) have
had a tremendous impact on the research on composite materials. These techniques
introduced into composite analysis around 1970 (29,30) have proved themsel-
ves to be very efficient tools in handling composite problems of a complexity
(e.g. 31,32,33,34,35,36) far beyond what can be treated by analyti-
cal means. Recently, numerical methods have also proved their potentials with
respect to optimization between shape and properties of structures (37,38) and
between geometry and properties of some special orthotropic composites (39).
Such studies are very useful in the research of optimizing composite geometry in
general with respect to composite properties. This feature has been recognized in
the works of Sigmund (26,27) previously referred to.

1.1 Objectives of this work

In summary, the main objectives of this monograph is to increase our general un-
derstanding of the influence of composite geometry on composite behavior. Some
good reasons for increasing our knowledge on geometry versus behavior of compo-

13
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site materials have already been mentioned with respect to natural composites, im-
provement of such materials, and with respect to design of new materials with pre-
scribed properties.

As can be noticed from the literature previously cited, other composite researchers
agree that research is necessary on the significance of composite geometry. A
number of ways have been applied to approach the problem. Important works have
been reported which are based on very strict descriptions and studies (analytical
or FEM) of composite geometries, statistically defined (as in 18), or arranged from
basic microstructures (as in 26,28). Fine results can be expected from such studies
using continuum mechanics on microstructures the geometries of which are basical-
ly fixed.

The author’s approach presented in this monograph has another point of departure
with respect to "real" composite geometry: It is recognized that varying phase geo-
metries produced by nature or by man can not in general be described (or defined)
very precisely. A description must reflect deductions made from experimental stu-
dies primarily, including such which consider technologies used to produce compo-
sites.

Basically the methods presented are further developments of the ideas presented
in (23,24,40) of predicting the properties of any composite material from global
expressions with specific composite geometries considered by so-called shape
functions. Such functions are developed by which the author’s view on real co
mposite geometries previously explained is reflected by expressions with only a
few parameters to be calibrated. Geometries described with shape functions are
shown to be consistent with the overall composite assumptions previously made
with respect to macroscopical homogeneity and isotropy.

Shape functions are developed for a variety of composites including specific co
mposites previously considered in the composite literature. Also considered are
the somewhat self-defining geometries which appear in so-called SCS-analysis of
composites (Self-Consistency-Scheme).

Special composite problems/ properties considered are stiffness, shrinkage, hygro-
thermal behavior, viscoelastic behavior, and internal stress states - as well as other
physical properties of composites such as thermal and electrical conductivities, dif-
fusion coefficients, dielectric constants and magnetic permeabilities.

The theoretical results obtained are verified by a FEM-analysis made by the author
and by theoretical results obtained by other authors. The principal success criteria,
however, for the methods developed are that the results predicted comply with data
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obtained from experiments on real composites as these data are reproduced from
the composite literature.

As a spin-off result the composite theory developed is re-organized to become a
"diagnostic tool", useful in materials design and in quality control of empirical or
semi-theoretical prediction methods suggested in the field of composite materials
(are such methods consistent with "promises" made with respect to geometry and
isotropy?).

1.1.1 A summary of composites considered

We re-call that the composites primarily considered in this monograph are per-
fectly coherent two-phase materials with phase geometries causing macroscopic
homogeneity and isotropy. Both phases are isotropically linear-elastic (or -vis-
coelastic).

Flexible phase geometries primarily are considered which can adjust themselves
to form a tight composite. The adjustment can be natural (as in suspensions) or
organic (as in bone structures) or it can be the result of compaction (as in sintered
powder composites).

As in most literature on composite materials the terms composite, composite mate-
rial, and two-phase material are used synonymously - unless otherwise indicated
as in minor sections of this monograph where composites in practice do not behave
"theoretically’:

When phase geometries are not flexible (such as in composites made of stiff partic-
les in a solidifying matrix as concrete for example) air voids are inevitable at
certain concentrations. The two-phase material originally considered becomes a
porous two-phase material. In practice such a material can be considered as a "nor-
mal" two-phase composite with a porous matrix. This feature is explained in fur-
ther details in Chapter 11 together with some other composite "defects” (such as
incomplete impregnation and incomplete phase contact) which can also be conside-
red introducing some simple phase modifications.

15



2. Classification of composites

A systematic classification of composites is a necessity in any discussion and
analysis of, how the mechanical and physical properties of composites are
influenced by their internal geometries. A model is suggested in this monograph
by which basic isotropic composite geometries can be classified continuously as
stages in a process of geometry transformation where one phase changes from
spheres to spherical shells (" anti-spheres") - while the other phase in a complemen-
tary way transforms from spherical shells to spheres.

Spherical shapes and spherical shell shapes are the most extreme geometries when
isotropic composites are considered. Arguments for accepting this geometrical
concept can be found in the work of Hashin and Shtrikman (3) on bulk stiffness
bounds for isotropic composites. One H/S-bound is the exact solution to stiffness
of a composite where one phase has the geometry of spheres. The other H/S-bound
is the exact solution to stiffness of a composite where the other phase has the
geometry of spheres.

2.1 Volume concentrations

The most elementary information needed to quantify a composite is its content of
constituent phases. In the analysis of composites with respect to mechanical and
physical behavior it is very appropriate to quantify the content of a certain phase
by its volume fraction relative to the composite volume. It is implicitly understood
in this monograph that concentration ¢ means volume fraction of phase P as defi-
ned in Equation 2.1 where volumes are indicated by V. Phase S concentration is
then 1 - c.

\% V
c=__F _ (phase P) ; 1 -c=_—"— (phase (2.1)
v, e vy, e

On the basis of phase concentrations material property bounds can be developed
assuming that phase geometries take their most extreme, opposite shapes: Parallel
lamella for anisotropic composites - and sphere/shell geometries for isotropic com-
posites. No more information can be achieved on the behavior of composites
unless additional information is given on internal geometry.

Information on phase geometry is just as essential as concentration is. In some
cases it is even more important. A very simple example will demonstrate this
statement: A cracked material is a porous material with pores (phase P) having
an extremely flat geometry of no volume, meaning ¢ = 0. Stiffness (and streng
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th) of this material is not at all equal to stiffness and strength of the original un
cracked material which, of course, also has a porosity of ¢ = 0. From an elastic
point of view it is more appropriate to compare the cracked material with a
material with spherical pores of diameters equal to crack diameters in the original
material. Thus a real porous material can easily be a better material than a material
which is thought to be non-porous.

2.1.2 Concrete and hardening cement paste. At various occasions HCP
and concrete are studied in this monograph. The volumetric models used for these
materials are presented in Table 2.1 which is based on the basic paste concept deve-
loped by the author in (41). Water/cement and aggregate/cement ratios (by
weights) are denoted by W/C and A/C respectively. Basic paste is that volume part
of a hardening cement paste which will hydrate 100 % transforming to cement gel,
including gel pores.

CONCRETE
is HCP mixed with aggregates c = 384/C 4 = 1 -c
of volume concentration ¢ 100W/C + 384/C + 32 1 +¢

HARDENING CEMENT PASTE (HCP)
with W/C > 0.38 is basic

paste mixed with voids of vol- Coop = W A, = 35
concentration Cyop 100W/C + 32 100W/C - 3
with W/C =< 0.38 is basic

: : . 32 - 84W/C 23W/IC
aste mixed with cem-grains = A=
p & Cea = TOOWIC + 32 o = FEIWIC

of vol-concentration Ccgy

Table 2.1. Composition of concrete and HCP as related to A/C, W/C, and basic paste. Any
volume concentration is relative to total volume of components considered. Vol-parameter
is A, = (I-c)/(1+c) with i=cem,void.

Basic paste has a constant volume. Its stiffness, however, is time dependent with By, =
3.2e4*g(t) MPa where g(t) is the absolute degree of hydration (amount of cement hydrated
at time t relative to total amount of cement.

Cement grains (subscript cem in Table 2.1) which will never hydrate act as particles in basic
paste. Water which will never be used in the hydration process act as voids (subscript void
in Table 2.1) in basic paste.

Densities assumed in Table 2.1 are 3.1 gr/cm® and 2.6 gr/cm® for cement and aggregates
respectively. Hydration products (gel, including gel pores) occupy a volume 2.2 greater than
the bulk volume of the cement involved in the hydration process. These specifications are
consistent with the hydration studies of Powers and Brownyard (42,43).

The major advantage of using the concept of basic paste in concrete analysis is that har-
dening cement paste can always be modelled by a simple two-phase model.

2.1.3 Porosity of hardening cement paste. Also the porosities of hardening
cement paste are of interest in this monograph. The porosity expressions presented in Table
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2.2 are reproduced from (44) where they have been determined on the basis of the prin-
ciples developed by Powers and Brownyard in (42,43) previously referred to.

The time dependent change of porosities is controlled by the absolute degree of hydration,
g(t) previously referred to. The description of g(t) presented in Table 2.2 is suggested by
Freiesleben in (45) with characteristic hydration parameters 7 and B. The relative degree
of hydration q(t) is amount of cement hydrated relative to the amount of cement which can
be hydrated in capillary space available. The two hydration degrees are related as shown
in the Table 2.2.

wi/C Cror Ceap q(t)
100W/C-18q() | 100W/C-384()
> 0.38 TO0W/C+32 TO0W/C+32 &(®)
oss | 1OWICI-047q0] 100WIAL-gOT | iy [ 938,
T00W/C+32 T00W/C+32 WiC

f, HCP coheres only if ¢ = max (0.5W/C, 0.19)
i

gt = exp[—(ﬂt)ﬁ] absolute degree of hydration

Table 2.2. Total porosity ., and capillary porosity ¢ in hardening cement paste.

Absolute degree of hydration and relative degree of hydration are denoted by g(t)

Lauge Fuglsang Nielsen

and q(t) respectively, see main text.
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Figure 2.1. Phase geometries in two-
phase marerials. C, D and m (= C+
D) denote continuous geometry, discrete
geometry, and mixed geometry respecti-

2.2 Geometry at fixed phase concentrations

At fixed phase concentrations composites can be classified according to their
internal geometry as stylized in Figure 2.1. A phase with continuous geometry (C)
is a phase in which the total composite can be traversed without crossing the other
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phase. This is not possible in a phase with discrete geometry (D). A mixed
geometry (m) is a continuous geometry with some discrete elements. It is noticed
that there are only eight possibilities of mixing phase P and phase S. A mixture
where both phases are discrete is not possible.

2.2.1 Geometrical classification

Figure 2.2 is used in this work as a simplified classification scheme for composite
geometries at fixed volume concentrations ¢. The former and the latter letter used
in combinations indicate phase P and phase S geometry respectively.

- DC means that phase P appears as discrete elements in a continuous phase S.

- MM is a common descriptor for geometries mC, CC, mm, and Cm defined in
Figure 2.1. Continuous elements are always present. Some times the signa-
ture CC will be used subsequently in stead of MM. Only, however, if MM
in fact stands for a mixture of two fully continuous phases.

- CD means that phase P appears as continuous elements in a discrete phase S.

Combinations Dm and mD are not considered in this classification scheme. They
are anticipated to appear
COMPOSITE GEOMETRIES CONSIDERED in VEry narrow transition
geometries which are
very rare relative to
other combinations found
in practice (just think of
a concrete made with ag-
! o & gregates which are both
B PHASE P(first letter) §;:i’ surrounded and filled
with mortar).
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Figure 2.2. Simplified scheme of geometry classification.

2.3 Composites with variable geometry

Any of the geometry combinations considered in Section 2.2 can be thought of as
stages in a process of geometry transformation where phase P transforms organi-
cally from having a compact discrete geometry to having a continuous geometry
such that phase S simultaneously in a complementary way transforms from having
a continuous geometry to having a compact discrete geometry.

The variable composite geometry just outlined can be illustrated as shown in
Figure 2.3 where the critical concentrations c, and ¢, indicate geometrical transi-
tions between MM geometries and the geometry of phase P being fully continuous
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with fully discrete phase S particles (CD geometry) at ¢, - and the geometry of
phase S being fully continuous with fully discrete phase P particles (DC geometry)
at ¢,. The critical concentrations illustrated in Figure 2.3 are real (inside ¢ = 0-1).
Formally, however, they can also be non-real (outside ¢ = 0-1). This feature is
demonstrated shifting the movable geo-cylinders outlined in Figure 2.4. Examples:
If ¢, < O then a MM-composite is described at low concentrations. If ¢, > 1 then
a MM-composite is described at high concentrations. If ¢ < 0 and ¢, > 1 then
a composite is described which has a MM-geometry at any concentration.

SIMPLIFIED COMPOSITE GEOMETRY GEOMETRY -COMBINATIONS
Phase Ptrend: B - C BHASE P GOING FROMD TO C
]

PHASEP
mG o Cm PHASES ----------
U VR - et
Vokconcentration - ¢ m
5 "Gq oo < e
ot josvms [ e
Figure 2.3. Composite geometry when  Figure 2.4. Change of geometry. Various
phase P goes from D to C. composites are defined by different

positions of the movable geo-cylinders.

2.3.1 Geometrical classification

Various geometrical compositions can be illustrated by the model illustrated in
Figure 2.4 where the movable "geometry cylinders" help us to classify composites
as shown in Equation 2.2.

DC-DC
MM-MM
DC-MM MM-CD

DC-CD

CD-CD first two letters: geometry at ¢ =0 (2.2)
1

last two letters. geometry at ¢

Equation 2.2 is the main scheme of composite classification used in this monog
raph. It defines a composite by its geometries atc = Oandc = 1. Critical concen-
trations required to 'realize’ these geometries are explained in Figure 2.5.

In principles the process of geometry changes proceeds as previously indicated in
this chapter. For both natural and man made composites, geometries change as
the result of increasing the concentration of one phase on the expense of the other.

Remark: It is re-called at this point that it is assumed implicitly in this monograph
that geometries change such that phase P varies on a path from discrete geometry
to continuous geometry (as in Figures 2.3 and 2.4) unless otherwise indicated. The
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choice of phase numbering (P,S) in practice can always be chosen to agree with
this assumption involving critical concentrations ¢, = Cs.

Critical concentrations

It is obvious that the critical concentrations previously defined are very important
classification parameters. They are key-concentrations defining what concentrations

CLASSIFICATION OF COMPOSITES
‘cA

DC-DC

. (C3Ap)

DC-MM

DC-Ch
g ! P Cp

N MM-CD Mivi-MiM
CD-CD
(CSAs)

Figure 2.5. Composite geometries as rela-
ted to critical concentrations, (CSA-geo-

are used to change phase P from discre-
te particles in a continuous S-matrix to
the inverse of this geometry, namely
discrete phase S particles in a conti-
nuous P-matrix. Critical concentrations
are determined by technology (including
appearance and size distribution of raw
materials) used to produce composite
materials.

Example: To illustrate the latter state-
ment: In a DC-CD composite such as a
porous material the critical concentra-
tion ¢, is that void concentration at

metries are explained in Section 2.3.2). which discrete voids start to interfere

forming continuous geometries. Single sized voids will produce a lower ¢ than
will aggregates with a smooth and continuous size distribution. At increasing void
concentration the interference becomes so pronounced that the porous material
looses its coherence (no stiffness, no strength) at a critical void concentration of
¢,. The original porous material has become a composite with solid particles dis-
solved in a "void matrix".

Remark: It has been mentioned that critical concentrations can be real (inside 0-1)
or they can be non-real (outside 0-1). It is emphasized, however, that the latter
concentrations have no physical meanings others than indicating directions of geo-
metrical trends.

Percolation, permeability, impregnability

The discussion of composites geometry is closely related to the study of percola-
tion in composites. Percolation theory considers the connectivity of a phase across
a microstructure (46,47). A minor study on connectivity as related to the geo-
metrical classification of composites has been made by the author in (48). Trans-
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port properties of composite materials were considered such as permeability and
impregnability of porous materials.

PERCOLATION GRAPHS PERCOLATION GRAPHS

HEAVY: PHASE P
THIN:  PHASE S

G5

HEAVY: PHASE P
THIN:  PHASE S

VOLUME CONCENTRATION OF
CONTINUOUS PHASE

FRACTION OF PHASE VOLUME
BEING CONTINUOUS
o
w

Cs Cp
Q.0 ; 00 C Cp

0.5 f 0.5
VOL—CONCENTRATION (P) — ¢ VOL—CONCENTRATION (P) — ¢

o e -
PHASE P o || prasEP T

1.0

%

PHASE 5 PHASE S

Figure 2.6. Percolation graphs for phase  Figure 2.7. Concentration of continuous
P and phase S respectively. parts of phase P and phase S respectively.

The relation between geometrical classification and connectivity is outlined in
Figure 2.6 with so-called percolation graphs. When the material considered in the
figure has an empty phase P we notice that the material is not impregnable inc =
0 - ¢,. It is partly impregnable in ¢ = ¢, - 0.4, and it is fully impregnable in ¢ =
0.4-1.Inc = ¢, - 1, however, the porous material breaks down because of no
coherence. As noticed from Figure 2.7 the percolation graphs can easily be
converted to volume concentrations of continuous phases.

The concept of connectivity has recently been used by Bentz in (49) to relate
the microstructure of cement paste to the amount of cement hydrated.

2.3.2 Some composite examples

Some composites may keep their geometrical type independently of volume con-
centrations. Normally, however, composites change their geometry with volume
concentrations. Some examples of both types are considered in this section.

Composite Spheres Assemblage (CSA)

The Composite Spheres Assemblage shown in Figure 2.8 is a theoretical model
of a two-phase material introduced by Hashin (4): Tightly packed congruent co
mposite elements made of spherical particles embedded in concentric matrix shells.
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Two types of CSA-materials are sub-
sequently referred to: A CSA,-material
has phase P particles and a phase S
matrix at any concentration which
makes it a type DC-DC composite. A
CSA¢material, see subsequent Figure
4.1, has phase S particles and a phase
P matrix at any concentration which

Figure 2.8. Composite Spheres Assemblage  makes it a type CD-CD composite.
with phase P particles (CSA,).
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Particulate composites

At low concentrations a particulate composite is a mixture of discrete phase P
particles in a continuous phase S (so-called matrix). An ideal particulate composite
has a DC geometry at any concentration. This does not necessarily mean that the
geometry at ¢ = 1 is exactly the same as at ¢ = 0 (such as in the CSA-composites
previously considered).

Shapes may change considerably within a certain type classification. New shapes
may be formed, for example, by particle agglomeration. Ideal particulate com-
posites are classified as DC-DC composites. Very often the term, particulate
composite, is kept even if phase P particles grow together at higher concentrations
such that MM and CD geometries are formed. Thus, the term particulate com-
posite is frequently used as a somewhat inaccurate common descriptor for any DC-
DC, DC-MM, and DC-CD composite.

Special particulate composites are fibre reinforced materials. The fibres can be
straight or shaped like pearls on a string (rugged fibres). Other particulate compo-
sites considered in this monograph are disc reinforced materials. The discs can
be plain (pennies) or shaped like a jelly fish (frayed discs), or shaped like fried
eggs (rugged discs).

Lamella composites (incl. crumbled foils)

A lamella composite is the result of mixing two phases the geometries of which
are continuous at any concentration. Lamella composites (ribbons, long fibres,
sheets, and foils included) can be the results of mixing lamella shaped phase P
elements into a continuous phase S. They can also be the results of compacting
a mixture made of phase P lamella and phase S lamella. Lamella composites are
type CC composites at any concentration, which make them of the CC-CC type.
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When equal types of phase P and phase S geometries are used lamella composites
are likely to become phase-symmetric as explained below.

Special lamella considered in this monograph are so-called "Pearls on a string”
with geometries like interconnected compact particles. Pearls on a thin string and
pearls on a thick string are considered. A special lamella composite, the crumbled
foils composite, is considered where both phases have the shapes of crumbled foils
(or sheets).

Powder composites

A powder composite is the result of compacting a mixture of two powders. At low
concentrations (of phase P) such a composite appear as a type DC composite. At
high concentrations it is a type CD composite. When equally shaped powders are
used, powder composites are likely to become phase-symmetric as explained
below. In general powder composites are of type DC-CD. In the terminology used
in this monograph powder composites are special particulate composites.

Phase-symmetric composites

Phase-symmetric composites have geometries which are symmetric with respect
to ¢ = 0.5: The type of composite geometry at ¢ = 0.5-Ac (fx DC) equals the
symmetric type of composite geometry at ¢ = 0.5-+Ac (CD). Composites qualify-
ing to be phase-symmetric are types DC-CD and MM-MM (including CC-CC).

Porous material and impregnable material

The geometry of pores in a porous material changes with porosity (c). Pores are
not impregnable at ¢ < s, see Figures 2.6 and 2.7. Pores start being impregnable
at ¢ = ¢, and become increasingly impregnable as ¢ = ¢, is approached. A 100 %
impregnability is guarantied beyond ¢ = ¢,. Then, however, the porous material
is not coherent as in bricks which cannot in general be produced with porosities
higher than ¢ = ¢, =~ 70% without loosing their strength and stiffness. A pore
system with pearls on a string geometry is a transition system between a discrete
pore system and a continuous pore system. The strings are so-called bottle necks.
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3. Preliminaries on stress/strain

Some basic expressions are presented in this chapter which are subsequently used
to predict composites behavior as influenced by variable geometry. A consistent
composite analysis is ensured when these basic expressions are used properly. In
the present context consistency means that predicted stiffness, for example, does
not violate the Hashin/Shtrikman bounds (3) (H/S) presented in Equation 3.1 and
illustrated by solid lines in Figures 3.1 and 3.2. Prediction methods are no good
which involve violation of these bounds, even if they predict stiffness which do
not violate the Poul/Hansen bounds (1,2) (P/H) presented in Equation 3.2 and illu-
strated by dashed lines in Figures 3.1 and 3.2. (In the presentation of bounds just
made both Poisson’s ratios v, = v = 0.2 have been assumed).

Isotropic bounds
nrlrcn-0 o, gpy2rcn-1 for npz 1, reverse -1
n+1l-c¢cn-1) 2n - cn - 1) < when n < 1
l+(r-Deze= " Anisotropic bounds (3.2)
n-(n-1c

Compare Appendix A, the symbols used have the following meanings: Stiffness
ratio is n = E,/E,. Relative Young’s modulus of composite is e = E/Es. Young’s
moduli are denoted by E. Subscripts P and S indicate composite phase. No sub-
script means composite.

10.0 1.0 &
SOLID Isotropic bounds (H/S) v _/,f NN SOLID: sotropic bounds (HIS)
fid] DASHED" Anisotropic bounds (PIH) LA G ‘\:;_. N DASHED: Anisotropic bounds (P/S)
o - o RN
i 1" ! ~ ~ n=110

n=10

5.0

RELATIVE YOUNG s MODULUS - e
RELATIVE YOUNG SMODULUS - e

0.0 0.0
0.0 1.0 0.0 1.0

05 0.5
VOLUME CONCENTRATION — ¢ VOLUME CONCENTRATION — ¢

Figure 3.1. Shaded area is range of stiff- Figure 3.2. Shaded area is range of stijf-
ness for isotropic composites. ness for isotropic composites.

3.1 Stiffness

Hill (5) has shown that the remarkably simple relations presented in Equations 3.3
exist between averages (by volume) of stresses, strains, and stiffness of homogene-
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ous (not necessarily isotropic) composite materials consisting of homogeneous and
isotropically elastic components.

o, = (1 =0 Oy *C Oy s, =(1 =0 55+ C8y
g, = (1 -¢) gy tCEy € = (1 -0 ey +cCey (3.3)
Epy = O ;g = O s : e, = SPij ;e = SSij

3K, 3K, 702G, 726G

The symbols used have the following meanings: oy is volumetric stress, S; 18
deviatoric stress, e, is volumetric strain, e; is deviatoric strain. K is bulk modulus,
and G is shear modulus. As before, subscripts P and S indicate phase of com-
posite. No subscripts P and S indicate overall (average) stresses and strains of
composite.

The expressions in Equation 3.3 form the basis of the author’s stiffness analysis
of composites made in this monograph. They can be organized as follows,

g:fﬁ_+cg __1_—__1__ ;e..=_{""_+cs,___1___— 1 (3.4)
® 3K, "I3K, 3K 702G, 2G, 26

from which the stiffness of isotropic composites can be obtained introducing the
overall isotropic stress-strain relations,

g, = _3"7__( D e, = _2% (3.5)

where K and G are bulk modulus and shear modulus respectively of the compo
site.

The results are the following remarkably simple expressions which tell that co
mposite stiffness can be predicted from knowing the average stress (or strain) in
phase P.

-1 -1
1 -
k=Xl % e =1+c(nk—1)_8ﬂ‘f
Ks n, Ukk_1 . 2N (3.6)
1 - .
g::.g_= 1 +¢ ngff‘l =1+c(n—1)ff'—’
G, n, s, s e,
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The symbols used, k = K/K; and g = G/Gs, are relative bulk modulus and
relative shear modulus respectively. Bulk stiffness ratio is n, = K,/K;. Shear
stiffness ratio is n, = G,/G;.

Remarks: It is emphasized that any expression mentioned above and subsequent
expressions derived from them are exact, meaning for example, that exact stiffness
are predicted if the exact phase P stresses are known. It is furthermore noticed that
stiffness (K,G.) of cubical composites, with stress strain planes coinciding with
planes of elastic symmetry are also described by Equation 3.6. We only have to
replace (k,g) with (k. = KJ/Ks, gc = GJ/Gy).

It is interesting to notice that the simple anisotropic P/H bounds, formally are
described by Equation 3.6 introducing a homogeneous stress condition (o,/0 =
1) and a homogeneous strain condition (¢,/e = 1) respectively.

Curiosum: The following expression (to be used in Appendix B) can also be deri-
ved from Equation 3.3. It applies also for both isotropic composites and cubical
composites.

-1
_ E
e=£= 1+c1 it with n = L and
E, n oo, E, 3.7
I +v, - n(l + -n
S, - a d v, "I_Vo (i = 11,22,33)
- n -n

3.1.1 Dilute suspension

At very low phase P concentration (dilute suspension) where there is no interaction
between phase elements Equation 3.6 can be written as follows where supscript
o indicates stress at vanishing concentration c.

_1_:1+clunk0?’kk : }_=1+clungsm (3.8)
k R, 0, g n, s,

Example: From the Goodier’s and Dewey’s analysis (50,51) of a spherical
particle in an infinite matrix we have

0, 1

G 1L ¥ 1) (= f(E,E,v,1))

(’kk I’lk + KS ’ (3.9)
s n(l + vy)
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where ks,7s are Poisson parameters defined in Appendix A and f,, f, are so-called
stress functions. The stiffness of a dilute suspension with spherical particles is now
predicted as follows from Equation 3.8.

I (e S WP G 2 G (3.10)

1
k no+ K, g n, + v

3.2 Stress

Equation 3.6 can be used as follows for stress prediction when stiffness are known.

O o _Uk-1 . 0w Um - LK (3.11)
o, <l -1) " o A-0oln-1
Sy . lUg-1 . Sy Un -1g (3.12)
s, cln -1 7 s, A -on -1

Stresses in general (o) are determined from Appendix A combining these expres-
sions. Stress prediction is exact if exact stiffness properties are known.

3.3 Composite stiffness estimated by SCS

0 The stress functions, f, and f,, defined
P \ A CAER in Equation 3.9 can be used to esti-
? \\ — E?EE?E%EB;Aﬂ mate phase P stress in general if the
v \\‘;\\ - phase S properties are replaced with
= VoY the composite properties (not yet
= [N known). This method of generalizing
% \\\ O 7??“@0 a dilute suspension strc?ss ?o apply 'flt
2 \ . g any phase P concentration is the basis

* of so-called SCS-estimates of the beha-
00+ ‘"‘*15 . vior of composite materials (Self Con-

DORO%lOTY -%
Figure 3.3. Stiffness of porous sintered
Aluminum. SCS used with voids of various A new numerical SCS-analysis is de-
shapes. Aspect ratio A is length of particle
relative to its diameter.

sistency Scheme).

veloped in Appendix C at the end of
this monograph. It is based on Equati-
on 3.6 with phase P stresses introduced by numerically determined SCS-estimates.
Composites are considered with ellipsoidal particles of general shapes (including
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mixtures). Results of applying the SCS-analysis on stiffness of porous materials
with voids of various shapes are presented in Figure 3.3.

Closed analytical SCS-solutions for various aspects of the mechanical/physical
behavior of composites with special uni-shaped particles have previously been pre-
sented in the literature: Spherical particles were considered by Landauer, Bottcher,
and Budiansky in (52,53,13), extremely thin discs were considered by Brug-
geman in (54), and extremely long fibres were considered by Van Beek in
(55).

Obviously a SCS-solution is accurate at low phase P concentrations (dilute suspen-
sions). In Figure 3.3 this feature is observed by noticing that the SCS-solution for
a spherical pore system coincides with the H/S bound at low concentrations, (it
is subsequently shown in this monograph that the stiffness of porous CSA, com-
posites is very well predicted with the upper H/S-bound).

The approximate nature of stiffness estimates by SCS at higher phase P concentra-
tions must be emphasized. In general the SCS-analysis works on self-defined geo-
metries the real shapes of which can, at the present time, only be guessed upon.
It is demonstrated in Appendix C (as indicated in Figure 3.3) that any deviation
from spherical pores will cause lower SCS stiffness predictions than the prediction
obtained with spherical pores. Thus, the experimental data (22) in Figure 3.3
cannot be better described by SCS than by assuming that the pores are spherical
voids.

Remarks: It is obvious that the success of the SCS-method to predict stiffness of
composites in practice depends on how much the geometry in practice resembles
the self-defined geometry made by the SCS-analysis. Obviously the real pore
system of the porous aluminum considered in Figure 3.3 has a geometry which
disagrees with the SCS-geometry at higher porosities. Thus, SCS-methods cannot
in general be used as a "tool" in the research on composite materials behavior
versus composite geometry. This statement applies also for modified SCS-methods
where "new particles” are defined as the original ones surrounded by some matrix
(eg. 56).
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4. Composite stress and geometry

It has been shown in Chapter 3, Equation 3.6, that any stiffness modulus of
isotropic composite materials can be predicted if stresses are known for one of the
constituent phases. Therefore, the analysis of stiffness versus phase geometry is
basically an analysis of internal stresses as a function of phase geometry.

In this chapter a method is developed by which consistent estimates can be given
on stress versus geometry as classified in Chapter 2 for various types of composi-
tes. The term, consistent, means that the stress estimates presented agree with
exact quantities whenever such are known from the literature on composite
materials - and that the stiffness predictions subsequently made in Chapter 5 do
not violate the H/S bounds previously referred to.

4.1 Volumetric stress

As previously stated, the most ex-
COMPOSITE SPHERES ASSEMBLAGE (CSAs) treme, opposite phase geometries
COMPOSITE SPHERE to think of when isotropic compo-
sites are considered are defined by
the CSA; geometry illustrated in
Figure 2.8 and the CSA geometry
illustrated in Figure 4.1. In this
¢ conenmaten e chapter this statement forms the
basis of establishing consistent
stress solutions for any isotropic
composite.

Figure 4.1. Composite Spheres Assemblage with
phase § particles of concentration 1-¢ (CSAy).

4.1.1 CSA-composites

The phase P stress in a CSA,-material can easily be derived from Hashin (4),
Goodier (50), or Sokolnikoff (57). The result can be written as shown in the
first expression in Equation 4.1. The second expression is the phase S stress deri-
ved by the equilibrium expression in Equation 3.3. The Poisson parameter « is
a function of the Poisson’s ratio » as explained in Appendix A.

O _ n(l + k)

o, no+xll +(n - D] 4.1)
o n o+ ok, CSA, geometry

o, n +«[l + (n - 1)c]
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The stress state of a CSA, material can be obtained from the CSA, stresses in
Equation 4.1 by subscript interchange, (S,c,n,,«s) @ (P,1-c,1/n,,x,). The results
are presented in Equation 4.2.

Op _ 1 + ngk,

o L+ 1 + (n, - )] (4.2)
00 1+, CSA, geometry

o, 1 +x[l+ @ - 1)

It is observed, see (24), that Equations 4.1 and 4.2 can be given a common for-
mulation as shown in Equation 4.3 where the parameter 6, = «; when phase P has
the geometry of spheres and where 6, = Nk, when the phase P geometry is that
of spherical shells. The modified stiffness ratio N, introduced has the meaning
given in Equation 4.4 with Poisson parameters (x) introduced from Appendix A.

O MLtE) o mh, @

o, n +0[l+cm -] " o, n+0[l+cm-1)]

N = nkﬁ =n, Modified stiffness ratio 4.4)
KS

4.1.2 Any composite - geometry function

G

The quantities 6, = ks and 6, =

¢ .
S |SHADED AREA N,«s express the boundaries of
© (SBRERES MG SHELLS a1 .

| an area, described in Equation
8° 4.5 and illustrated in Figure
z ) 4.2, where general geometry
8 o o

. SPHERES L o R Bt functions 6, are found which
e N . e T . .

2 0u/ks=1 SPAERES generalize Equation 4.3 to pre-
L P dict stresses in composites with

ny

Oku//(sﬂ:ﬁj’v'
0

any isotropic geometry follo-

2 3 o . .
MODIFIED STIFFNESS RATIO — Ny=nykp/Ks wing the arrows in Figure 4.2
Figure 4.2. Influence of phase P geometry on  between the geometries of

geometry function. CSA, and CSA,.
Ok Ok
N < *<1 whenN <1 ad N =z -2+ =1 whenN,>1 (45)
KS KS
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Each isotropic composite geometry is represented in Figure 4.2 by its own geome-
try function 6,. Because composites in general change geometry with volume con-
centrations, this statement is similar to saying that any volume concentration will
have its own geo-function. Exceptions are geometry types which are independent
of concentrations such as in CSA composites. In these cases all volume concen-
trations have the same geo-function.

Remark: Tt follows from Equation 4.3 and Figure 4.2 that the volumetric stresses
are independent of geometry when n, = 1 and when N, = 1 respectively. The lat-
ter observation is of special interest: It tells (because N, = n,) that volumetric
stresses are independent of geometry when shear moduli of the constituent phases
are the same. The consequence on bulk stiffness of this observation is discussed
in Section 5.3.2.

4.1.3 Geometry function and shape function

The stress solutions predicted by Equation 4.3 with 6, from Equation 4.5 and Figu-
re 4.2 are consistent with the concept of composite materials being isotropic. At
this time we do not know more about stress. Stress prediction still has to be related
to type of composite as classified in Chapter 2.

As a first step to establish such relationship we observe that 6, obviously is a func-
tion of not only n,, »,, vs, but also of the more detailed geometry of phase P and
phase S. We consider these geometries by so-called shape functions gy, = pelC)
and pg = pg(c) respectively such that a geometry function (geo-function) can be
described by the former expression in Equation 4.6.

0, = 0,1y v Vg B By) = NI, Vo Ve pgs ) (4.6)

Invariance with respect to phase numbering is ensured by the latter expression in
Equation 4.6 which is obtained from Equation 4.3 claiming that the first expression
(0,) must equal the latter expression (o) when subscripts P and S are interchanged
(including ¢ & 1-c).

The geometry function just defined is further restricted when specific composites
are considered as they are classified in Chapter 2 according to their critical concen-
trations ¢, and c,. The influence of composite type on the geometry function is sub-
sequently determined by looking at a composite where phase P can be extremely
stiff (n, = oo) or it can be extremely soft (n, = 0). The following expressions,
derived from Equation 4.3 (with some help from Equation 3.3 with K; = nKy),
tell about stress and strain in these two cases. 0,, and 6,.. are limiting values of 6,

32



Lauge Fuglsang Nielsen Chap. 4: Composite stress and geometry

forn, - 0and n, - oo respectively. M = lim(8,/n,) for n, - o has a finite value
between 0 and «,, see Equation 4.5 with N, from Equation 4.4.

o, 1+86,
Very soft Prn, =0 = g = _*__~  ’w_
k 3K 0 (1 - c)
s Vko 4.7)
. 1 +M
Very stiff P: n, = o0 = Oy = 0,
1+ M(1-c) + cf,,
V' "|
14 1
g 0
- e Psk
5 Bk <
— =]
[&5] pu}
5 £
i;‘: o ek} E
S g
i &
=> \\ V2]
D N Bko 0 bl 1
[&h] \\ \C Cpj
YOk ™ o {' I Concentrat |
AN , o . Hap s oncentrationc E
0 rS Cpr 7 ] | ;
i e Geometry e Ho
Prase P DC ! MM ! ch
priase 5 [l

Figure 4.3. The variation in principles of Figure 4.4. Shape functions u,, and Mo
6 for two-phase materials with gradually both < 1.
changing phase geometry.

Equation 4.7 can be used as follows to ’calibrate’ the geometry function to become
consistent with the classification of composites made in Chapter 2. We simply
compare this expression with the following general deductions which can be made
from considering the two types of composites considered (n, - 0 and n, = o):

- Phase S is completely dissolved by phase P in ¢ = c,. This means that strain of a very
soft phase P becomes infinite in ¢ > Cp. The strain is finite in ¢ < c,.

- Phase P starts becoming continuous at ¢ = c,. This means that phase S stress becomes
0inc = ¢, where phase P has become an extremely stiff skeleton. Stress is finite in

¢ < ¢,
Equation 4.7 complies with these deductions only if 0,, and 6,.. vary in principles
as described in Equation 4.8 and illustrated in Figure 4.3. Also shown in Figure
4.3 is 6, = «; which is 8, from Figure 4.2 at N, = 1.

G . 1 _ [ finite ; ¢ < ¢ 4
ko = ( ; CP’ 'g_k'“" o> (8)

| finite ; ¢ <
0, = c =




Chap. 4: Composite stress and geometry Lauge Fuglsang Nielsen

A number of ,-expressions yield the conditions required in Equations 4.5, 4.6,
and 4.8. The relatively simple expression presented in Equation 4.9 is a slightly
modified version of an expression suggested in (24),

K
0, = -fz-s- o + BV, -+ \/wpk + u N + AN - w, - pg) (4.9)

where the influence of geometry is decided by the shape functions py(c) and pg(c)
varying with phase geometry as outlined in Equation 4.10a and Figure 4.4,

1
1

po 20 atc=<c¢, ; p,<0 arc > ¢, (4.10a)

2
pe =0 atczce, ; p, <O at ¢ < ¢

v IV

4.1.4 Shape functions - a closer look

It is noticed from Equation 4.10a and Figure 4.4 that DC, MM, and CD composite
geometries are described by shape functions of magnitudes (up, ps) = (+,-),
(Mpoprs) = (+,+), and (pp,ps) = (-, +) respectively. These properties of shape
functions represent the basic geometrical "signals" sent to Equation 4.3, through
Equation 4.9, that a special composite is considered.

Shape factors

Shape function values of special interest are the so-called shape factors, up’,ps’ =
prl0), 1s(0) quantifying the composite geometry of a P-S mixture with a dilute (va-
nishing) amount of phase P. In the subsequent text the term ’shape factor’ is also
used for pp',ps = pn(1),pus(1). An important principal difference between the
two set of shape factors is emphasized by sharpening (re-phrasing) the terms of
definition: A composite geometry is quantified by u,°,us’ at vanishing amounts
of phase P, while it is quantified by u,,',us at overwhelming amounts of phase P.

Special shape functions

CSA-geometries: It is immediately observed that the special DC and CD shape
functions presented in Equation 4.10b apply for the CSA, and CSA, composites.

Pope
P

1 and p, < 0 with ¢, > o = 0 =« (CSA, geometry) (4.10b)
1 and p,, < 0 with ¢, >0 = 0 = N, (CSA, geometry) =

Crumbled foils: Let us think of a P-element transforming its shape from being
a sphere to being the opposite, namely a spherical shell (see Figures 2.8 and 4.1).
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It is very plausible that the *mean geo-
metry’ in this transformation is a
"three dimensional Ply-wood’ structure
with both phases (P and S) having the
geometry of crumbled foils, see Figure
4.5.

The following hypothesis is suggested
for crumbled foils composites: Such

g g =(00) LLp. Il = (0.0) . . .
Figure 4.5. Crude model of crumbled foils materials will have shape functions as
composite. u, = s = 0 at any c. presented in Equation 4.10c with geo-

functions being *means’ of geo-functi-
ons applying for the CSA composites presented in Equation 4.10b.

Crumbled foils geometry (4.10c)

Hpe = 0 and Mg = 0 = 0k = KSVA," = /CSA, * CSA
P S

At several occasions the hypothetical crumbled foils geometry is discussed in more
details in subsequent sections of this monograph.

Outline of shape function graphs

In Chapter 2 it has been explained that composites considered in this monograph
are such where geometries change along ’stations’ between the composite being
a CSA, material and a CSA material. Possible
shape functions are outlined in Figure 4.6 for a
composite which starts up as a CSA, material at
§ % low concentrations and ends as a CSAg material
at high concentrations. A processing technique
0 cS P ; has been used which can keep a CSA, structure
be / MM \CD up to the first *dashed concentration’ and then a
less ideal DC structure up to the critical con-

/ \\ centration c. In a similar way the technique used

K PP can keep a CSA, structure after the second
’dashed concentration’ with a less ideal CD
structure from the critical concentration ¢,. In the
concentration area between the critical con-
centrations cs and ¢, both phases P and S appear

) 1
Mooy ! Mgk

Hpp Mo

Shape functions

Concentration ¢

Figure 4.6. Shape functions for
an ideal DC-CD composite.

with mixed geometries.
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The principles of the above description of shape functions are the ones subsequent-
ly used in Chapter 7 to describe composite geometries in general.

Remark: Theoretically the simplified scheme of geometry classification used in
this monograph (Figure 2.2) requires that the concentration at which ug becomes 1
is greater than ¢, - and that the concentration at which p, becomes 1 is smaller than
cs. When approximate shape functions are subsequently constructed in this mono-
graph we do not consider these conditions very seriously. We will just think of
shape functions which are slightly less than 1 until the requirements mentioned
are fulfilled. Numerical calculations show that the consequences of doing so are
insignificant.

Interaction
In composite theory the term "no interaction between phase elements" means that

a stress-strain analysis of a phase element can be made disregarding the presence
of "neighbouring" elements. The CSA, material subjected to volumetric load is
a well-known example of composites with no interaction between particles.

Geometries involving no interaction between phase elements are described by con-
stant shape functions in the geo-function, Equation 4.9. The geometrical influence
on stress is absent when shape functions are constants.

The presence of interaction (variable shape functions) cannot be clearly demonstra-
ted as its effect is mixed up with the effects of geometrical changes. It can, how-
ever, be shown by FEM-analysis that interaction also depends on loading mode,
see Figure 9.2 in Chapter 9. A volumetric analysis and a deviatoric analysis was
made on exactly the same particulate composite (TROC). The first analysis was
clearly not influenced very much by interaction. The second analysis was.

In the present study the term "interaction” is used quite practically. The influence
of geometry in general is considered as the joint influence of load induced interac-
tion and geometrically induced interaction. Complete interaction is obtained at real
critical concentrations (in ¢ = 0-1) where geometries change from particulate to
mixed. Geometrically induced interaction is anticipated to be overriding when criti-
cal concentrations are real. Load induced interaction is overriding when critical
concentrations are non-real (outside ¢ = 0-1).

4.1.5 Summary

A geo-function is presented in Equation 4.9 by which volumetric stresses for any
composite geometry can be consistently predicted by Equation 4.3. Specific com-
posite geometries and the variations of such with respect to volume concentration
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¢ are considered by so-called shape functions outlined in Figure 4.4 and quantified
in the subsequent Chapter 7.

Geo-functions depend on phase geometry and stiffness properties (as in N,). Volu-
me concentrations are involved only to tell about geometry at these concentrations.
In a composite with variable geometry this means that each volume concentration
has its own geometry function. When the class of composite geometry considered
(DC, MM, or CD) does not change with c, then geo-functions are expected to
keep relatively close in Figure 4.2. They are extremely close (coinciding) when
composites with no interaction between phase elements are considered such as
CSA, and CSA, materials with §, = 1 and 6, = n respectively (v, = »s = 0.2).

Finally, a crumbled foils geometry (3-dimensional Ply-wood structure) is suggested
which represents a plausible transition (average) geometry of phase P changing
organically from being spheres in CSA, to being spherical shells in CSA..

4.2 Deviatoric stress

The phase P deviatoric stress in a CSA, composite is postulated to be the following
modified copy of Equation 4.1.

Sy nd e vy .11)
S, m+ydl + (- 1]

Equation 4.1 is exact. Equation 4.11, however, is an approximation. No such
simple, exact, and closed form relation is known from the literature. The approxi-
mation, however, is very good. This has been justified by a FEM stiffness analysis
of particulate composites presented in (24). The approximation becomes exact at
low phase P concentrations (c - 0) where the following solution has been
presented (50,51,58).

Sy _ 1L+ ) @.12)
Sy n, + v

Remark: We emphasize that Equation 4.11 is considered exact in subsequent
deductions with respect to the behavior of composite materials. Such procedure
is strongly supported by some results obtained by Christoffersen (6) and Levin (7)
in their analysis of materials reinforced with randomly distributed spherical partic-
les. Predicted shear moduli in these references are the same as can be predicted
by the present theory (Chapter 5) with Equation 4.11 considered exact.
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4.2.1 Stress and geometry

Thanks to Equation 4.11 the deviatoric stresses in an isotropic composite can be
considered just as volumetric stresses were considered in Section 4.1. In fact, the
results subsequently presented in the following summary, Section4.3, are complete
duplicates of results obtained in Section 4.1 with bulk properties replaced with
shear properties. This means that bulk stiffness ratio n, is replaced by shear
stiffness ratio n, = G,/Gs, bulk Poisson parameters «s,«, are replaced by shear
Poisson parameters vs,v, (see Appendix A), and bulk geo-function 6, is replaced
by shear geo-function ,. The modified bulk stiffness ratio N, is at the same time
replaced with the modified shear stiffness ratio N, = n,y,/7s.

Deviatoric shape functions

Shape functions uy, and pg, are replaced with their deviatoric counterparts s, and
ps, determined in a similar way as pp,, ps, are determined in Chapter 7. Deviatoric
shape factors are pp° = pp(0), poy' = pr(D), ps” = ps,(0), and pss = ps(1).

Real critical concentrations ¢, and ¢, are invariable with respect to loading mode.
Deviatoric interaction is considered in a similar way as volumetric interaction has
been considered in Section 4.1.4.

4.3 Summary

A summary of the results obtained in this chapter is presented below. Expressions
are added which apply especially for porous materials (n = 0) and for composites
with extremely stiff pore systems (n = o). We emphasize, once again, that the
stress expressions are global. They apply for any geometry encountered. Geometri-
cal information on specific composites are "hidden" in the shape functions pp, pse
fhee, and pg, considered in details in Chapter 7.

4.3.1 Stress

Opa _ nk(l * ek) o O _ n 0‘“
o, Ol +c, -DI T oo, n +OIl+cl - DIy 13

n(l + 6) oSy n, + Og

n o+ 01l +cn - D] s, n + 0]l +cln, - D]
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4.3.2 Geo-function
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Porous materials and stiff pore systems

The geo-functions have the values presented in Table 4.1 when porous materials
(n = 0) and stiff pore systems (n = oo) are considered. Also presented in this
table are the geo-functions for such systems if they are dilute (¢ « 1).

Porous material Stiff pore system
0 = Pope * Pg ~ 1
01(0 = Ky ¢ = Cp ko s ¢ Cs
P
6, =0 c>c, g, = o c > c
- l"(’l’g + 'U/Sg - 1 c < C
980 = ‘YSPL[’g C S CP egm - N ,,(, S
Sg
6 =0 c>c 6 = oo c>c
go P g s
Dilute porous Dilute stiff
, _ M g~ 1
9:0 = Ky 9:"" I
u’Sk
c <1 - | c <1
o I'(’pg + :usg -
0; = Vs/’l’pg 92‘” s P
Mg,

Table 4.1. Geo-functions for porous materials and stiff pore systems.
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5. Composite stiffness and geometry

The statement previously made in Chapter 4, that the analysis of stiffness versus
phase geometry is basically an analysis of internal stresses versus phase geometry,
is made very concrete in this chapter: Composite stiffness is predicted by Equation
3.6 introducing stresses as they have just been summarized in Section 4.3. The

results of this straight forward procedure are subsequently presented with only a
few comments.

The stiffness expressions presented are global just as are the stress expressions
introduced. Specific geometrical information are hidden in the shape functions p
to be considered in more details in Chapter 7.

5.1 Bulk modulus and shear modulus

In general bulk modulus and shear modulus are predicted as follows with geo-func-
tions introduced from Equation 4.14.

g Mt Bl e - DL m + B+ el - 1] (5.1)

n o+ 0, -cn -1) n,+ 0 -cn -1

5.1.1 Porous materials and stiff pore systems

When porous materials (n = 0) and very stiff pore systems (n = oo) are con-
sidered Equation 5.1 reduces as follows with geo-functions introduced from Table
4.1. It is noticed that k, = g, = 0 are predicted at ¢ > ¢, and that 1/k,, = 1/g.,
= ( are predicted at ¢ > c;.

r = 1-¢ ] _L . Ll-c

© lw+clb, ° k, 1+cb, | porous material and (5.2)
g - 1 -¢ ] i N stiff pore system
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5.2 Young’s modulus and Poisson’s ratio

The Young’s modulus and Poisson’s ratio are determined as follows (Appendix
A) with bulk modulus and shear modulus introduced as just predicted.

e = 3kg : .z) - (1 + Vs)k -1 - 2Vs)g (5.4)
2(1 + vk + (1 - 2w)g 2(1 + vk + (1 - 2p)g

5.3 Special composites and observations

We re-call that Equations 5.1 and 5.4 apply in general for composite stiffness. As
previously mentioned, specific composites are considered introducing shape
functions which specify and quantify
the special type of composite geometry

"~ o ge Ws considered. At this point of the analy-
CRD O © L \/ ve sis our knowledge to shape functions
n g1 “stp . . P
% *e versus type of composite is limited to
L oo AL what is outlined in Figure 5.1 which
" . . .
>< . b AP FACTORS is a summary of information presented
] P = S NI =y in Section 2.3 and Chapter 4 (Figure
v wi= ps(c=0) - .
pi= e 4.4). Conclusive information on shape
3= pgle=1 . . .
AL — functions in general are presented in

Figure 5.1. Composite types as related to ~ Chapter 7 for various types of compo-
critical concentrarions. First two letters  sites. Important observations, howe-

denote geometry at ¢ = 0. Latter two  yer on some special composites can
lesters denote geomerry at ¢ = 1.
be made already now.

5.3.1 CSA-composites

For two special composites we do not have to calculate the geo-functions. The
CSA;-composite and the CSAg-composite have 6, = &g, 0, = v, and 6, = Nk,
8, = Ny, respectively (see Figure 4.2). The stiffness moduli of the CSA-composi-
tes are then immediately obtained from Equation 5.1. We get

n, + k[l +cn, - 1)] n, + vl + c(ng - 1]

k = i g = cs4, (5.5)
n,+ kg - cn, - 1) $ n +y, - cn, - 1) ’

I - ”kl + k,[1 + c(n, - 1)] g =n L+ v,[1 + cn, - D] CsA, (5.6)
n(l + «,) - cn, - 1) gng(l + ) - cn, - 1)
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Hashin/Shtrikman’s bounds

We re-call that these relations express the Hashin/Shtrikman’s lower and upper
bounds (3) respectively for isotropic composites with n,, = 1. When n,, < 1 the
stiffness of CSA, and CSA; change their roles with respect to bounds.

5.3.2 Composites with special shear moduli

Geo-independent bulk moduli

It has previously been observed in Section 4.1.1 that the volumetric stress in a
composite is independent of geometry when n, = 1. With Equation 3.6 in mind
this observation leads directly to the finding of Hill (5) previously referred to that
the volumetric stiffness of a composite does not depend on geometry when shear
moduli of the constituent phases are the same. This exact result can also be dedu-
ced from (59,60) where exact solutions are studied in the theory of composite
materials.

Geo-independent shear moduli

It comes from the particles deviatoric stress in Equation 4.13 and the deviatoric
counterpart to Figure 4.2 that deviatoric stresses are independent of geometry when
n, = land N, = (ny,/7ys) = 1 respectively. Referring to Equation 3.6 the latter
identity means that shear moduli of composite materials are independent of geome-
try when n, = (4-5v,)*(7-5v5)/((4-5v5) *(7T-5vy)).

5.3.3 Paul/Hansen versus geo-functions

It is interesting to note that the homogeneous stress analysis made by Paul (1) and
Hansen (2) to determine lower stiffness bounds for anisotropic composites is exact-
ly reflected by the present theory introducing 6, = 6, = 0 into the stiffness expres-
sion 5.1. In a similar way the homogeneous strain analysis made by Paul and Han-
sen to determine upper stiffness bounds for anisotropic composites is exactly
reflected by the present theory introducing 6, = 6, = oo.

It might be worthwhile exploring the possibility of generalizing the concept of geo-
functions to more general geometries. Apparently 6 is, in a way, proportional to
a "phase aspect ratio", @, defined by phase "length" parallel to "load" divided by
phase "thickness" perpendicular to load. The material models (parallel laminates)
such defined by 6 = 0 and § = oo are exactly those used by Hansen (2) to estab-
lish the lower and upper bound respectively for stiffness of composites with
unrestricted (un-known) phase geometries.
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6. Composite eigenstrain/stress

An analysis is made in this chapter on composites subjected to eigenstress (self-
equilibrated residual stresses) caused by different eigenstrains of the constituent
components. Typical eigenstrains are hygro-thermal strains like shrinkage, swelling
and thermal expansion which develop in solids without external forces and surface
restraint. Another example of eigenstrain is strain developed during phase transfor-
mation such as in solidification of a liquid impregnant. The analysis is a modified
version of similar analysis made by the author in (61,62,63).

6.1 Basics

The following expressions describe the volumetric stress-strain state in an isotropic
composite subjected to eigenstrains just as Equation 3.3 describes the stress-strain
state in a composite subjected to external load. Stresses and strains are volume
averages (leaving no averages of deviatoric stress and deviatoric strain). Volume-
tric eigenstrains are denoted by A\, = 3\ where \ are linear eigenstrains. Additio-
nal subscripts P, S, indicate phase P and phase S respectively. No additional sub-
script indicates composite.

0 =co, + (1 ~ 0o, Equilibrium condition
Ao =€ + (1 - 0)eg, Compatibility condition 6.1)
Opy = IK(Ep, - A . L
/
0y = 3K,(e,, - ) Physical conditions

The expressions in Equation 6.1 can be arranged as shown in Equation 6.2 to pre-
dict composite strain from a known phase P stress,

kk Skk

Mo = Mg AN, + 220 )| 5 AN, =, - A 6.2)
3K

P

6.1.1 Simple composites

The eigenstrain of a CSA, composite is predicted by Equation 6.2 introducing the
phase P stress presented in Equation 6.3 which is a re-written version of an
expression obtained by the author (64) in a stress analysis of CSA, composites
subjected to eigenstrain. The phase S stress also presented in Equation 6.3 is
obtained from the equilibrium expression in Equation 6.1,
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O _ “AN Ks(l -0
3K, “n,+ k1 + (n, ~ Dc] 6.3)
o K (CS4, geometry)

AN,
3K n, + gl + (n - 1)]

The eigenstrain of a CSA, composite is predicted by Equation 6.2 introducing the
phase P stress as it develops in a CSA composite. With constant volume concen-
tration this stress is expressed by Equation 6.4 obtained from Equation 6.3 inter-
changing the subscripts and replacing ¢ with 1 - c.

(;Iké " AN IE;(l _(C) Dc]

+ + (n, - I)c
P e g (CSA, geometry) (6.4)
Ogu K,C §

AN,
3K, T+l + (n, - Dl

6.2 General geometry

It is noticed that Equations 6.3 and 6.4 can be given a common description as
shown in the following Equation 6.5 where the parameter 6, = s when CSA, com-
posites are considered and where 6, = N,x; when CSA composites are considered.
The quantities 6, = g and 6, = Ny« introduced express the boundaries of the area
illustrated in Figure 4.2, where general geometry functions 6, can be defined which
generalize Equation 6.5 to predict eigenstresses in composites with any geometry
(following the arrows in Figure 4.2 between the geometries of CSA, and CSAy).
Consistency with other volumetric stress predictions presented in this monograph
is obtained introducing the geo-function as it is expressed by former expression
in Equation 4.14,

1 -
T S T
n + + (n -
! T e ‘ general geometry (6.5)
Ose c

AN,
3K, n,+ 0[1 + (n, - 1)]

6.2.1 Eigenstrain and eigenstress

Now, the eigenstrain/stress problem of a composite can be predicted in general
by Equation 6.2 with phase P stress introduced from Equation 6.5. Doing so, and
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eliminating the geo-function by the former expression in Equation 5.1, the remar-
kably simple results presented in Equations 6.6 and 6.7 are obtained between line-
ar eigenstrain (N = N\y/3) and hydrostatic stress (p = 0,/3).

1k -1
A= N+ AN 2 ;. (AN =N, - A 6.6
s T U ~1 ° (AN =N, = N (6.6)
cl/n, - 1) - (1/k - 1) c
= - 3KAN k : = - (6.7)
Pr a c(l/n, - 1) R W

Equation 6.6 reduces as follows when eigenstrain is only experienced by phase S,

A 1/n. - 1/k
o= s (N, =0 (6.8)
A I/n, -1 * =0

Remark: The eigenstress-strain phenomenon of composites has also been conside-
red by other authors (9,65,66,67,68). Relative to these works the present
study of the eigenstrain-stress problem has the advantage of reflecting the influence
of any phase geometry and at the same time predict the internal composite stresses.

6.2.2 Pore pressure in porous materials

The linear composite strain ¢ (= €,/3) of a porous material with a hydrostatic pore
pressure p (= - oyy) is developed as shown in Equation 6.9, first line, expressing
that composite strain can be considered as the difference between strains obtained
by considering the composite loaded 1) both externally and internally, and 2) only
externally with the pore pressure p. (K and K denote bulk moduli of porous mate-
rial and solid phase respectively).

The linear pore strain (e,) relation presented in Equation 6.9 is obtained combining
the composite strain just developed with the compatibility condition also shown
in Equation 6.9 of the problem considered.

_p[1 1 . .
e =2 |= - | composit strain
g = (1 _ 1 3 K P (6.9)
“ 3K K = s
s pl1 1+c¢ .
& = C&y + (1 - O)eg, & = 22 [E - T] pore strain
S

These expressions have been used by the present author in (62) and in (69) to
study the frost resistance and the phenomenon of drying shrinkage respectively
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in porous materials. Quite recently the drying shrinkage phenomenon in porous
glass has been studied in (70) using a method similar to the one used by the
present author in (69).
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7. Quantification of geometry

We re-call from Section 5.3 that phase P and phase S shape functions p,; = u,(c)
and pg = pg(c) (j = k,g) as outlined in Figure 7.1 consider the influence of phase
geometries on internal composite

& & T ue stre'sses - and therefor also on corrTu
. Tt \ \/ posite stiffness. Thus, shape functi-
y = e " N ons are the prime information needed
[ oooe oMM L_oeao in any analysis of composites. The
o ‘ behavior of natural composites can
e 1 L = i ﬁ;ﬁi‘;ﬂs not be explained - and design of new
AT ) materials can not be made without

| oo | e ) knowing these functions.

Figure 7.1. Composite types as related 1o~ [ general it is not possible to deter-
critical concentrations. Firsttwo lettersdeno- ~ mine shape functions analytically.

te geometry at ¢ = 0. Latter two letters de-  The complexity of most real compo-
note geometry at ¢ = 1. site geometries is much too high and
too un-predictable to think of accurately’ determined shape functions. As demon-
strated in this chapter it is, however, possible to estimate, in a relative simple way,
shape functions of relevance for studies of the composites considered in this
monograph.

The concepts used have already been touched upon in Section 4.1.3. We will
construct shape functions from knowing about shape factors, which can be cal-
culated or accurately estimated, and knowing (from processing technology) about
critical concentrations at which, shape function values are zero. The basic
geometrical models used for shape factor determination are outlined in the fol-
lowing. The final determination of shape functions is considered in Section 7.2

DC (and CD) composite: The basic materials model to be used extensively in the
shape function analysis of DC and CD composites is the following: A dilute par-
ticulate composite with isotropically distributed particles of regular shapes as defi-
ned in Figure 7.2. Fibre length is 1, cross-section is d*d, and aspect ratio is A =
I/d. With particles of compact shapes, flat shapes (disc path), and long shapes
(fibre path) this model can be considered as a reasonable working model with A =
I, A <1, and A > 1 respectively.

MM composite: The particulate composites model presented above cannot be used
for the analysis of shape factors of MM composites. Results from FEM analysis
have to be used. One of the FEM models applied for this purpose is an isotropic
mixture of cubic grid-composites as illustrated in Figure 7.3.
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Cylindrical inclusison with CROSS-COMPOSITE
) Hustratedatc =05
Aspect ratio: A = 2/d

d P as agglomerated long fibres
n S-matrixatc =0
d o 4L5 =(0.75,029)
[ P

9 P as matrix for agglomerated
long S-fibresatc= 1
Fiores have A > 1 Db e =(0.25,075)
Compacts have A = 1
Discs have A <1

Figure 7.2. Cylindrical inclusions are fib- Figure 7.3. FEM-model used Jor shape
res, compacts, and discs of ellipsoidal Jactor analysis of MM-composites.
shapes enveloped as shown.

In principles, a third model is needed to describe the transition between DC and
MM geometries. The strict cylindrical inclusions model is unable to describe the
"organic’ shapes considered in this monograph. According to Appendix G, howe-
ver, this discrepancy is effectively compensated for by the geo-function, 6, only
by re-interpreting aspect ratios according to the following:

Long shapes (A > 4) represent fibre particles preparing to serve as an enveloping
matrix phase. Flat shapes (A < 1/4) represent disc particles preparing to serve
as an enveloping matrix phase. For intermediate particle shapes (=1/4 < A <
~4), no reinterpretations of particles have to be introduced. The rate of ‘preparing
to become continuous’ is such that the results of an analysis of a composite with
organic particles approach the results of a counterpart analysis of a composite with
strict particles - when extreme stiffness ratios are approached (n - 0 or n - o),

Thus, the determination of shape factors and shape functions proceeds on the basis
of the two geometrical models explained above. The transition model is
automatically taken care of just by shape re-interpretation as just explained.

Remark: We notice that "preparing to become continuous" shapes are probably
more relevant in practice than strict shapes. It is very likely that interference bet-
ween long and thin particles will form these particles to appear organically.
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7.1 Shape factors?
7.1.1 DC-composites

The stiffness expression in Equations 3.8 for dilute suspensions is the basis of the
present analysis. At extreme stiffness ratios (n = 0 and oo) this equation can be
written as follows,

ka=1~l+_l.ac _1_=1_1+1 ¢
ni,w n=0; {cm mlk 0 = oo (7.1)
g =1- 11+ __]¢ — =1-11+ c
m g m
go = goo
with so-called shape parameters expressed by
(l—n o 1-n o \
Locim | 2T g L [ 2%,
m, >0 { n, o, m.. e n, oy ) (72)
1-n 52 1-n s°
L =lim|—2% -1 ; 1 = -lim| &7 4+ 1
m | noos, m new | NS
8o g i goe 4 ij

Accurate shape parameters, (my,,m,) = (ks,vs) and (my..,m,..) = (1/ks,1/v,), for
spherical particles (A = 1) are easily obtained from Equation 7.2 introducing the
exact phase P stress solutions presented in Equation 3.9. In general, however,
numerical methods have to be used to calculate shape parameters for arbitrary fibre
aspect ratios A.

1.0
N
BULK y 0 SHEAR \
\
/ \ Mo/ Ks \\ me/ s
7 \ | \ [ ———.
. _—
\
\
\
\
A}
\

g
o
o
o

\
’ Mooks 'y

SHAPE PARAMETERS

\

’ \ Mao?s
’ A \
4 N
R \ \
- N ~
- ~ . N
1 2

0.0 = 0.0

-2 -1 -2 -1 0
LOGo(ASPECT RATIO — A) LOG1o(A)

Figure 7.4. Bulk shape parameters for iso-  Figure 7.5, Shear shape parameters for
tropic composite, vy = 0.2. isotropic composite with v, = 0.2.

SHAPE PARAMETERS

2) Itis noticed that the shape factor analysis in this section resulting in Equation 7.6 can
be approximated very well by method described in Appendix Bb.
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For this purpose such a method has been developed in Appendix B by which
particles stress in isotropic dilute composites (with ellipsoidal inclusions) can be
calculated for any stiffness ratio (n). Shape parameters for any aspect ratio can
then be determined numerically with stiffness ratios n approaching 0 and oo in
Equation 7.2 simulated by n = 10 and 10® respectively. Examples of shape para-
meters determined in this way are shown in Figures 7.4 and 7.5. Shape parameters
do not depend very much on the phase P Poisson’s ratio »,. When spherical
inclusions (A = 1) are considered they do not depend at all.

For the sake of curiosity: Young’s modulus related shape parameters defined in
Equation 7.3 are obtained from their bulk and shear counterparts by Equation 7.4
which is developed from Equation 7.1 and Equation A2 in Appendix A with ¢ 0.
Examples of shape parameters related to Young’s modulus are illustrated in Figu-
re 7.6.

e0=1—[1+i]c ; .3_=1—[1+1]c (7.3)
m, e, m,.,
1 _1 1 -2, 201 + ) (i = o0, ) (7.4)
m, 3 m, m ’
Shape factors
T o Y Shape parameters are related to
o "dilute’ geo-functions comparing E-
é . |77 quation7.1 with Equation 5.3. We get
/ : (m,1/m,),, = (6°,0.7),, which, by
. / using Table 4.1, can be re-written as
z ) shown in Equation 7.5 to relate shape
flatter = _longer \\ii parameters and shape factors. Over-
20 5 J a il = lined m means shape parameter nor-

LOGwo(A)
Figure 7.6. Uniaxial shape parameters for
isotropic composite with vy = 0.2.

malized as indicated in Equation 7.5.
This equation can be solved explicitly
with respect to shape factors as shown
in Equation 7.6. Like shape parameters, shape factors can be considered practically
independent of »,.

So-called shape factor graphs can now be established as shown in Figures 7.7-7.9
which relate shape factors p,° of a discrete phase P to the complementary shape
factors ps° of the continuous phase S.
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— m — 7
_ o _ 0 . - — Sk
m, = . Bpe 5 M, = M kg = oy -1
s Hopy Fogg (75)
0
= m, _ . W o=m - Mg,
g0 - 'uf’g ? 1l 8°"’YS LI |
'Ys /’LPg ,'LSg
Tl (7.6)
Py =M, 5 py = -m ——2 5 (j=kg )
1 -m,

Notice: We notice that the shape factors for a CSA, composite are u,° = 1 and
ps’ = -1 at any Poisson’s ratio around 0.2. As the exact quantities are not needed
very often we keep (u°,us”) = (1,-1) as reference quantities for CSA, composites
whenever shape factors in general are subsequently discussed in this monograph.
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E o A=0 \\/ E o A=0 uzJ o A=0
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SHAPE FACTOR - up° SHAPE FACTOR — e’ SHAPE FACTOR — pup°
Figure 7.7. Shape factor Figure 7.8. Shape factor Figure 7.9. Shape factor
graphs. vy = 0.15. graphs. vy = 0.2, graphs. vy = 0.25.

Multi-shaped particles

Composite geometries hitherto considered in this chapter are based on uni-shaped
regular fibres and discs. More realistic models of composite geometries can be
made introducing shape distributed particles as shown in this section.

The average volumetric stress < oy,°> in particles of mixed shapes in a dilute sus-
pension is expressed by Equation 7.7 where o0, ° is volumetric stress in a vol-frac-
tion «; of phase P.

<0> K : -
— 2 =% o, ™ s average stress in phase P ; |Y o, =1 (7.7)
O i<l & i=1
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Average deviatoric particle stress is expressed in a similar way. It comes from
Equation 7.2 and Appendix B that the average shape parameters of the mixture
considered with discrete shape distributions can now be determined by Equation
7.8. The resulting average shape factors are presented in Equation 7.9 which is
a modified copy of Equation 7.6.

1 oy & L mekg j =0 (7.8)
<m > i<l M

mj mijd

1-<m >

1-<m_ >

moe

<po,> = <m,>; <pl> = -<m, > s (m = kg (7.9

mo

Continuous shape distributions & = $(A) can be used as shown in Equation 7.10.
An example is outlined in Equation 7.11 with a linear log-A distribution with
average aspect ratio A,, and standard deviation s.

1 - i_l JB(A) : (subscipts m = kg . j = 0,00)  (7.10)
<m,> m,(A)
o Lfq . logdd)) _ (0 when log,(Ald,) <-s

2 5 | T |1 when log(4/4,) > s

] 12 (7.11)
— % 5| = ; (X, X =log A, log,A,)
<m,> 25 J m, X 8, 108,64

Rugged fibres, Frayed discs, and Rugged discs

Three examples of special dilute suspensions made with double shaped particles
are shown in Figure 7.10:

e Rugged fibres (RF) are fibres (A >
= RN, | Dmiedvishes &= R
FRAYED DISC (FD) : ged fibres are subsequently also
@g FIBRE (A>1) referred to as "Pearls on a string"

) - fibres, thinking of spheres intercon-
M%RD) RUG@E) nected by fibres (strings). Pearls on
a thick/thin string is referred to when

Figure 7.10. Special multi-shaped particles. the volume fraction of fibres is
Stylized.
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larger/smaller than the volume fraction of spheres.
Frayed discs (jelly-fish) (FD) are discs (A < 1) mixed with fibres (A > 1).
Rugged discs (fried eggs) (RD), are discs (A < 1) mixed with spheres (A = 1).

Examples of shear shape factor determination by Equation 7.9 of suspensions made
with these special two-shape particles are presented in Figures 7.11 - 7.13. All
examples assume y; = 0.2,

00 T : 00 :
N \‘ ,%
2
v [y
‘o ® 0 “\%
3 X
]
- ! - |
S S )
8—o5~ N 8-0.5 ¢
[ s 4
o \ % ® %
5 Crosses mark a | & Crosses mark a 3
< 10% change of < 10% change of \
n volume fraction @) volume fraction
Dots from below: e Dots from below:
fibrest A = 1, 2, 3 5 10, N fibres: A = 1, 2, 3 5, , |
discs: A = 1, .5, B, 2, .1, 0. ﬁscs: A= 1,.5 .5 ,2, .1, 0. NG
-1.0 Jr —% -1.0 :
00 0.5 1.0 0.0 0.5 1.0
shape factor shape factor pp°
Figure 7.11. Frayed discs (FD) Jelly-fish:  Figure 7.12. Rugged discs (RD), Fried
Mixture of A = 0.1 and A = 3. eggs: Mixture of A = 0.2 and spheres
A= 1.

Remark: We notice that frayed discs (FD), at small aspect ratios, keep behaving
as discs almost independently of the fibre volume fraction.

Also noticed is that rugged discs (RD) keep behaving as discs independently of
spheres volume fraction.

Of interest is also that p,° = 1 is approached for any rugged fibre (RF) increasing
the spheres volume fraction.

7.1.2 CD-composites

The shape factors hitherto considered (1", ps°) are those which quantify the geome-
try of a DC-composite with a very small amount of phase P (¢ =~ 0). A similar
quantification can be made with respect to the shape factors (u,',us") which
quantify the geometry of a CD-composite with a very small amount of phase S
(c = 1).

CD shape factors can be determined copying the DC-analysis with phase properties
interchanged: Let us say that the DC shape factors are calculated by the algorithm
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0.0 € FAC. Then CD shape factors are
< determined as explained in Equation
i 7.12. An example of using this expres-
o, RO o e . o
3 I S sion is shown in Figure 7.14.
ot \t#
S e e
§—OA5 ‘\
© . ¥
g— Crosses mark a \ \
< 10% change of
G volume fraction \
Dots from below: \9
fibres: A = 1, 2, 3, 5, 10, = D
discs: A = 1, .5, .3, ,2, ,1, O.
-1.0 DY
Q.0 0.5 1.0

shape factor e’
Figure 7.13. Rugged fibres (RF), Pearls on If  DC-shape factors are obtaingd by FAC(v,,v,A,,, .

a string: Mixture of A = 3 and spheres (4 then CD-shape factors are(@@inkd by FAC(vy,v, Ay pe
= 1)

Remark: We re-call from Section 4.1.4 that u,',us' in Figure 7.14 quantify the
geometry of a composite material where phase P is the enveloping phase for a

small concentration of discrete S particles of aspect ratios as indicated in the fi-
gure.

Theoretically, the above observations agree with Figure 7.15 where results are
shown from deductions of various theoretical/experimental data subsequently consi-
dered in this monograph.

10 pp—— NAME c=0 C=1 TYPE  SHAPEFACTORS
T T o .
3 N N RN ug ue =41
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& « A=1 N BUDIANSK - uhoph = 11
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s A=00 DASH: SHEAR N
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=13 -0 =05 0o LANDAUER § u‘:p,u? "
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Figure 7.14. Shape factors in CD-composi-
te. v, = 0.2. Aspect ratios indicated apply
for phase § fibres.

Figure 7.15. Bulk shape factors for CSA
composites. v, = vs (= 0.2)
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7.1.3 MM-composites

To get a full picture of how shape factors vary with phase geometries we need
information with respect to MM-composites which are transition materials where
geometries change from being DC to CD. For two MM-geometries shape factors
can be deduced/estimated from the stiffness results obtained in a FEM-analysis
presented in Chapter 9: The CROSS composite is a phase-symmetric material rein-
forced by three dimensional grids. The pearls on a string composite is a material
reinforced by continuous fibres grown together with compacts (rugged fibres). The
shape factor results for these composites are presented in Figures 7.16 and 7.17
with data reproduced from Table 9.1.

The geometry of a dilute CROSS-system is that of a matrix reinforced with a 3-D
fibrework of very long agglomerated fibres. It is therefor not surprising that the
magnitudes of shape factors for this system are close to the theoretical result
(pe’s s’ = 0.75,0) previously obtained (Figure 7.8) for particulate composites with
very long cylindrical inclusions (A — o). The geometrical symmetry of the
CROSS-system is reflected by (', us' = ps’ypts”). We will use these observations
to suggest that shape factors for agglomerated fibres will develops with p,° + pg°
~ (.75.

1.0 1.0 N
MM G, MM
CROSS \{4— pearls on a string
(98] [95]
S S
o < 5
<05 S £ 054
L L) L
L ~Te o
o ‘&«p <It
T T 5
I AN
o thin string
o thick string
0.0 T 5 0.0 T
0.0 0.5 1.0 0.0 0.5 1.0
SHAPE FACTORS SHAPE FACTORS
Figure 7.16. Shape factors for 3-D grid Figure 7.17. Shape factors for Rugged fib-
reinforced material (CROSS) (v, = vy = re reinforced (Pearls on a string) material
0.2). Deduced from FEM-analysis. (v» = vs = 0.2). Deduced from FEM-ana-
lysis.

The pearls on a string path previously considered (see Figure 7.13, rugged fibres
with many spheres) has y, = 1 in the DC-section. From this observation and Figu-
re 7.17 is suggested that the shape factors for pearls on a string geometry proceed
in MM such that u,° + p® = 1.
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Summarizing the observations made above we suggest that shape factors for MM-
composites can be roughly estimated as suggested in Equation 7.13.

pr’ =all -y u = ay
P-geometries getting continuous Degree of transforming DC-CD
LO s ﬁbb;igsplzere mix 0 starting (7.13)
@= 1205 Jibreldisc mix v = (0.5 medium

1 complete

0 discs and plates

Remark: The crumbled foils composite previously defined is considered in Equati-
on 7.13 with (a,y) = (0,1): Atan average, discs are assumed to pass the MM area
agglomerating along u,° + u =~ O which is approximately the trend already pre-
pared in the DC area, see Figure 7.8, and suggested in Section 4.1.4.

7.2 Shape functions and geo-path

As already indicated in the introductory section to this chapter we will now con-
struct shape functions by straight line interpolations between known shape function
data sets: Atc = O and ¢ = 1 where shape factors are as determined in previous
sections of this chapter, and at critical concentrations ¢; and ¢g (known from pro-
cessing technique) where shape function values are zero.

Such construction means that shape functions are represented by simple broken
line with ’knees’ at the critical concentrations (e.g. Figure 7.18a) - and that un-
known geometries are approximated to vary ’linearly’.

The shape function construction technique considered above is outlined (exercised)
in the following Figure 7.18a where a DC-CD composite is considered. In prin-
ciples the construction of shape functions for other composite proceeds along the
same scheme. Some additional estimated/calibrated geo-parameters, however, have
to be introduced. This is illustrated in Figures 7.18b-7.18d where DC-MM, DC-
DC, and MM-MM composites respectively are considered.

Appropriate mathematical descriptions of the shape functions obtained are summa-
rized in Equations 7.14 and 7.15.

In principles shape functions for both bulk and deviatoric behavior are established
in the same way. Subscripts, k and g, are therefor omitted.
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7.2.1 DC-CD and DC-MM composites

Determine p,°, us’, ', is* as explained in Section 7.1 with known specific shape distri-
butions of particles at ¢ ~ 0 and ¢ = 1.

Mark these data as (0,1,°), (0,457 and (1,u,"), (1,1") in a shape function coordinate
system (c,u) together with the critical concentration data (c;,0) and (cs,0). Also mark
(pe’spis”) and (us',ps) into a (up,us) coordinate system (a so-called shape-function
graph).

In the shape function system, connect with straight lines (0,1,") to (c,,0) to (1,15"), and
0,us’) to (cs,0) to (1,us"). The shape functions are now described.

s
=

Read a = py(cy) and b = pg(c,) in the shape function system and mark these data as
(2,0) and (0,b) into the shape function system - and connect (u:°,4s°) to (a,0) to ©O,b)
to (us',ps"). The graph such obtained is the so-called geo-path which describes type
of composite geometry traversed as ¢ proceeds from 0 to 1.

1 1
o MM o
e M Mop \\Mp 1
%) C:1 ................... \ /u/s
=3 b \ ............. - N
z 7 2
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SHAPE FUNCTION - b VOL—-CON - ¢

Figure 7.18a. DC-CD: Shape function graph, geo-path, and shape functions for DC-CD
composite. Geo-properties: Known (w5, us’, u,', i) and real critical concentrations (¢, ¢s).
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Figure 7.18b. DC-MM: Geo-properties: Known (uy, 1) and c,. Estimated (us,us) by
Equation 7.13. Calculated ¢, > 1.
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Remark: To facilitate the identification of composite geometries traversed by the
geo-path at increasing phase P concentrations the “profiles’ u, + us = 0 and p,
+ ps = 1, are ’standards’ in a shape function graph. See subsequent Figure 7.19.

Mathematically the construction of shape functions for DC-CD and DC-MM com-
posites can be put into the 6-parameter representations shown in Equation 7.14.

DC-CD and DC-MM

,Cp = C - G = C -
P - at ¢ = CP /,LS P at ¢ = CS (7014)
— 4 — N
MP c - ’ MS - c -
U, T oatc > c, I S oatc > ¢
c, - ¢,

7.2.2 DC-DC and MM-MM composites
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Figure 7.18d. MM-MM: Estimated (., ps, pr'> pis') from Equation 7.13.
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Mathematically the construction of shape functions for DC-DC and MM-MM com-
posites can be put into the representation shown in Equation 7.15 which is simple
modified version of Equation 7.14.

po = (1 = Oy + cp,
pe = (1 - ps + cpg

DC-DC and MM-MM (7.15)

7.2.3 Composite geometry - a ’stylized summary’

The principles of the geometry quantification just made are outlined in Figure 7.19
representing both deviatoric and volumetric quantification.

CSAs =

PLATE WORKS
«= geo-path

Particulate geometries:
fibres+discs

fibres+spheres
{rugged fibres)
discs+spheres
{(rugged discs)

SHAPE FUNCTION - ¢ s
Q

VERY RUGGED HBRES

.Y

1

0 CSAp
SHAPE FUNCTION - 1 p

Figure 7.19 Stylized shape function graph and geo-path. Numbers are aspect ratios, A,
of strict discs/fibres. A shape function value in DC quantifies the geometry of discrete
phase P in a continuous phase S. A shape function value in CD quantifies the geometry
of phase P envelopes for discrete S fibres. Very rugged fibres are fibres mixed with a large
amount of spheres. Fibreworks are agglomerating crumbled fibres. Fibre/disc works are
agglomerating crumbled fibres and discs. Plateworks are agglomerating crumbled discs.
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We re-call that the areas around the axis p, = 0 and ps = 0 of Figure 7.19 define
geometries where strict fibre/disc shapes are reinterpreted as "preparing to become
continuous shapes’, see introduction to this chapter.

Remarks: As an approximation for practice Figure 7.19 can be used in general
for first estimate analysis (including shape factor estimations) of composites for
which geometrical and stiffness information are still somewhat uncertain, (assu-
ming both Poisson’s ratios to be around 0.2 and approximating deviatoric and vo-
lumetric shape functions to be similar).

As previously mentioned, the "profiles’ p, + ps = 0 and p, + ps = 1, are ’stan-
dards’ in a shape function graph. They facilitate the identification of composite
geometries (approximate) traversed by the geo-path at increasing phase P concen-
trations.

7.2.4 Examples

It is anticipated that modern technologies (in the near future) can produce any com-
posite geometry, meaning that the geo-path/geometry concept discussed in this
chapter is realistic enough to pursue experimentally - and to be used as a tool in
the analysis of real composite geometries.

We will put this statement into perspective by looking at two examples with geo-
metries produced by presently wellknown techniques. The shape functions and the
shape function graphs are constructed as previously explained in this chapter.

DC-CD composite

! 1 e
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Figure 7.20. Shape function graph, geo-path, and shape functions for DC-CD composite,
(v vs) = (0.3,0.1). Critical concentrations (c,,cg) = (0.8,0.3). Particulate mixture at ¢
= 0: P-particles: 80% A = 3 + 20% A = 0.3. At ¢ = I: S-particles 50% A = 5 + 50%
A= 0.2
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The DC-CD composite geometry presented in Figure 7.20 can be thought of as
produced by the following process: Phase P and phase S powders are made as
indicated in the capture of Figure 7.20. The powders are mixed and compacted
(voids squeezed out) such that the phase P concentration is ¢ - and such that the
first sign of P-continuity appears at ¢ = ¢, = 0.3 - and the first sign of S-disconti-
nuity appears at ¢ = ¢, = 0.8.
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Figure 7.21. Shape function graph, geo-path, and shape functions for DC-DC composite
(v vs) = (0.2,0.2): Non-real critical concentrations: (¢, cs) = (3,3). Particulate mixture
at ¢ = 0: P-particles: 60% A = 0.3 + 40% A = 3.

DC-DC composite

The DC-DC geometry presented in Figure 7.21 can be thought of as being the
result of mixing extremely well graded phase P particles into a solidifying phase
S. An estimate of critical concentrations ¢, = ¢ > 1 is used as suggested in (24)
for particulate composites.

For the two composites considered average geometries met at increasing concentra-
tions of phase P can be estimated by placing the shape function graphs in Figures
7.20 and 7.21 on top of Figure 7.19.

The influence on the composite stiffness and other composite properties of the
geometry described in Figure 7.20 is demonstrated in the following Chapter 8.

7.3 Comment on the level of geometrical knowledge

We recognize that the broken line’ shape functions established in this chapter are
approximate descriptions. Most often, however, we cannot do better than that. Pro-
bably, more realistic functions are curved such as parabolas. More geometrical
knowledge is required to establish more accurate functions. Examples: A shape
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function of y, = p(1-c/c,)* for ¢ < c,, was determined theoretically by the pre-
sent author in (40) for a porous material with uni-sized pores. A DC-CD composi-
te with CSA, geometries at low concentrations will have a shape function pp Which
starts up at ¢ = O with a horizontal tangent of u, = 1.

In the present monograph it is assumed that three levels of geometrical knowledge
are obtained from studies on the production technology used:

- Fairly high level (in present chapter): The critical concentrations composite
geometry at ¢ = 0 and at ¢ = 1 are known/estimated as described in the preceding
Section 7.2. This level of geometrical knowledge is assumed in any example
presented in the general parts of this monograph.

- High level: The geometry is known at any volume concentration (or a number
of concentrations). Complex representations of shape functions (as suggested in
Appendix E) are needed to consider this level of geometrical knowledge in compo-
site analysis. This feature is further discussed in a subsequent example considering
a plane-isotropic composite with cylindrical inclusions.

- Modest level: One critical concentration is known together with the geometry
atc = 0. As a default level of geometrical knowledge, this level is assumed in
chapters of this monograph which are based on the simplified version (Chapter
10) of the general theory presented. At modest levels of geometrical knowledge
composite analysis can be made with simple straight line representations of shape
functions (e.g. Figure 10.6). In most practice the level of geometrical knowledge
is modest which means that only simple straight line presentations of shape
functions are justified. This feature is further discussed in Chapter 10.
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8. Theory - summarized

A composite analysis proceeds as follows for any type of composite considered
with shape functions determined from Chapter 7:

- Geo-functions are determined as shown in Equation 4.14 (Chapter 4).
- Composite stresses are calculated by Equation 4.13 (Chapter 4).

- Bulk modulus, shear modulus, Young’s modulus, and Poisson’s ratio are calculated
by Equations 5.1 and 5.4 (Chapter 5) respectively.

- Eigenstrain/stress behavior and pore-pressure/strainrelations are determined by Equati-
ons 6.6 - 6.9 (Chapter 6).

For a rational computer programming it is worth recognizing that the general
stress/stiffness analysis is in fact a combination of two almost identical analysis.
A volumetric analysis where geometry is considered by volumetric shape functions
and a deviatoric analysis where geometry is considered by deviatoric shape functi-
ons. Formally the eigenstrain/stress analysis is a volumetric analysis.

8.1 Examples

8.1.1 DC-CD composite

Results from a composite analysis are presented in Figures 8.1 - 8.4. The com-
posite geometry considered is the one defined in Figure 7.20.
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Figure 8.1. Stiffness and Poisson’s ratio of ~ Figure 8.2. Stresses in composite with geo-
composite with geometry and Poissonratios  metry and Poisson ratios defined in Figure
defined in Figure 7.20. (E,E) = (10,1) 7.20. (E,E) = (10,1) MPa.

MPa.
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Figure 8.3. Eigenstrain of composite with
geometry defined in Figure 7.20. (\,,\;) =
(0.001,-0.010). (E,Ey) = (10,1) MPa.

8.1.2 Crumbled foils composite
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geomerry defined in Figure 7.20. (A, \g) =

(0.001,-0.010). (E,E) = (10,1) MPa.

The results presented in Equation 8.1, Figure 8.5, and Figure 8.6 are from a
composite bulk analysis of a crumbled foils composite with (E,,E,) = (10,1) and
vp = vy = 0.2. We re-call from Section 4.1.4 that the composite considered is
made of crumbled P-foils mixed with crumbled $-foils, producing a 3-dimensional
Plywood geometry, with geo-functions determined from Equation 4.10c.
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T _ n
% 1 +c(n - 1)
k=n+\/r7[1+c(n~1)]

n+\/;-c(n»-1)

1
w1 cln -1 (8.1)
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8.1.3 Porous MM-MM composite
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Figure 8.7. Shape functions for porous

"grid composite’.

A special phase symmetric MM-MM com-
posite is considered in this section which
consists of 3-D phase P grids (pores) mix-
ed with 3-D phase S grids. This composite
(CROSS composite) is further explained in
Chapter 9.

The shape functions for a CROSS composi-
te are presented in Figure 8.7 reproduced
from Figure 9.24. A composite analysis re-
veal Young’s moduli and Poisson’s ratios
as illustrated in Figures 8.8 and 8.9 re-
spectively.

Remark: It is noticed that the composite Poisson’s ratio approaches its maximum

of » = 0.5 at increasing porosity.
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9. Justification of theory

Results obtained by the composite theory just presented in Chapter 8 are compared
in this chapter with results obtained by FEM-analysis (the author’s) and results
reported by other authors in the fields of theoretical and numerical analysis of
cracked materials and phase-symmetric particulate composites.

Only stiffness data are considered. As indicated in Chapter 3 these data can be
considered as representatives also for composite stresses (predicted composite
stiffness is exact if composite stress introduced is exact - and vice versa). This
means that, if the theory developed is verified with respect to stiffness prediction,
it is at the same time verified with respect to stress prediction.

9.1 FEM-analysis

The theory presented in Chapter 8 on stiffness prediction of composites is based
on the concept introduced in Chapter 2 and quantified in Chapter 7 that the geome-
try of any isotropic composite can be thought of as stages in a process of one
phase transforming its geometry from spherical to anti-spherical (spherical shell),
while the geometry of the other phase in a complementary way transforms from
spherical shells to spheres.

The following three composites have been chosen to test the stiffness prediction
presented and the underlying geometrical concepts by finite element methods
(FEM). The four-letter classification used refers to path of geometrical changes
as explained in Chapter 2.

- DC-DC composite: Compact particles in continuous matrix at any volume concentra-
tion ("Particulate composite”).

- CC-CC composite: Interconnected compact particles in continuous matrix ("pearls on
a string composite").

- CC-CC composite: Three-dimensional grids of one phase in complementary grids of
the other phase ("Grid composite™). The composite considered is phase symmetric,

A special analysis of the influence of defective phase-contacts on composite stiff-
ness has been made as part of the analysis of particulate composites.

Parts of the FEM-analysis has previously been reported in (24,71). A full report
with data compilation is presented in Appendix C at the end of this monograph.
All FEM-results obtained are presented graphically in this chapter and discussed
together with results predicted by the method presented in Chapter 8.
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Data presentation

The FEM-results presented apply to isotropic composites as converted from isotro-
pic mixtures of cubic composites. This means that shear moduli, Young’s moduli,
and Poisson’s ratios are calculated as simple averages of bounds presented in
Appendix D. This procedure is well justified as these bounds are very close. FEM-
data are shown by symbols in the figures. Theoretical (predicted) data are shown
by graphs. The two data sets are very close. Whenever there might be any doubt
which FEM-result "belongs" to which theoretical graph it is always the closest
graph.

Shape factors

For any of the composites considered predicted data are calculated with shape
functions described by Equation 7.15. The shape factors (u°,u') associated are cali-
brated as summarized in Table 9.1.

COMPOSITE TYPE MODE i e e !

PEARLS ON A THIN bulk (k)

STRING (a = 76%) 0.9 0.1 0.5 0.5
(CC-CO) shear (g)
PEARLS ON A THICK bulk (k)
STRING (& = 60%) 0.8 0.2 0.5 0.5
(CC-CO) shear (g)
CROSS.GRID bulk (k) 0.75 0.25 0.25 0.75
(CC-CO) shear (g) || 0.75 0.0 0.0 0.75

Table 9.1. Summary of shape factors for DC-DC composites (shaded area) and CC-CC
composites deduced from the FEM-analysis presented in this chapter with v, = v, = 0.2.

9.1.1 Particulate composite

The TROC-composite shown in Figure 9.1 is the material model used in the FEM-
analysis of particulate composites (DC-DC) with compact particles. It is a tight
composition of identical composite elements each of which has the shape of a
TRuncated OCtahedron with edges of equal lengths. The composite element is re-
inforced by a centrally placed particle the shape and orientation of which are simi-
lar to the composite element itself. Basically the TROC-material is cubic. From

67



Chap. 9: Justification of theory Lauge Fuglsang Nielsen

a modelling point of view this is no pro-
blem. Isotropic composites can be con-
sidered as isotropic mixtures of parts
from cubic model sources. These sour-
ces may have different sizes of compo-
site elements such that the final compo-
site modelled by TROC elements can be
thought of as one made by filling smal-

\ ler and smaller composite elements into

Figure 9.1. TROC-composite. Stacked  ygjeq [oft in a stack of larger composite
TROC composite elements.

elements.

The FEM-data presented in Figures 9.4 - 9.13 are reproduced from Appendix D,
Table D3 (with shear-data at (n,vg,pp,c) = (10°,0.4,0.2,0.73) declared false for
reasons explained in Appendix D). The theoretical stiffness data presented are pre-
dicted with shape functions and geo-paths as illustrated in Figures 9.2 and 9.3.
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Figure 9.2. Shape functions of DC-DC  Figure 9.3. Geo-paths for DC-DC compo-
composite considered (TROC). site considered (TROC).
Discussion

An excellent agreement is observed between FEM-results and results predicted
theoretically with the shape functions illustrated in Figure 9.2 which look just as
expected from Chapter 7 for DC-DC composites. The bulk modulus shape functi-
ons are close to (up, us), = (1,-1) which indicate that the TROC-composite behaves
almost like the theoretical CSA,-composite in volumetric compression with no
interaction between phase P elements. In shear the TROC-composite behaves strict-
ly as a CSA,-composite only at low phase P concentrations where there is no inter-
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action. Increasing deviations of (p,,us), from (1,-1) indicate increasing interaction
between phase elements.

We recall that any TROC-analysis made in this section are based on shape factors
(Table 9.1) calibrated from FEM-tests where »s = 0.2. Thus, the results with »g
different from 0.2, presented in Figures 9.4, 9.5, and 9.10-9.13 indicate that shape
factors are not very sensitive to v, variations in the area 0-0.4. It has previously
been indicated that the influence of », on DC-DC shape factors is insignificant.
Thus, DC-DC shape functions can practically be considered to be independent of
Poisson’s ratios.
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9.1.2 Defective particulate composite

A special FEM-analysis was made on TROC-composites with thin layers of
"voids” (or zones of missing phase contact) spread over the surface of the particle
phase. Such zones were introduced by simple joint-cutting and by finite elements
of no stiffness. Sufficient openings are assumed between opposite zone faces such
that load does not produce closure effects. The degree of missing phase contact
x is defined in Equation 9.1 together with concentration ¢, of associated void
volume, relative to composite volume. Particle surface is denoted by S. Thickness
of void, relative to mean radius vector of particle, is denoted by A.
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X = S Suu degree of missing phase contact ©.1)

¢, = xc[(1 + Ay - 11 associated void volume

w

a0 The FEM-data presented in Figures
hm0.087 =0 9.14 - 9.16 are reproduced from Ap-
(eo=4.1% ot 1=0.5) pendix D, Table D6. These data can-
not be used for verification of the

\ theory presented in this monograph
where perfect phase contact is assu-
med in general. They can, however,

N

be used to suggest an approximate me-
thod by which the Young’s modulus of
defective particulate composites with
y o compact particles can be predicted.

0.0 0.5 1.
FRACTION OF SURFACE DEFECTED This feature is discussed just below.
Figure 9.16. Defective TROC with v, = v,
=02. (b= 15and z = 1.5).

YOUNG'S MODULUS — E/Eq

Discussion

The hypothesis is suggested that Young’s modulus of particulate composites with
compact particles can be predicted approximately by the Young’s modulus of a
CSA,-composite with an effective phase P stiffness (g = B, ze/Eg) which depends
on particle surfaces not effective. Voids associated with missing phase contact can
be considered approximately by a simple reduction factor (f). Following this
hypothesis, the "defective” stiffness of the composite considered is now predicted
by Equation 9.2, developed from Equations 5.4 and 5.5 with 7, = v, = 0.2 = &,
=17 =1,

The effective stiffness ratio and the reduction factor are determined by Equation
9.3 calibrating the hypothesis to the FEM-results obtained. Few larger defective
areas are considered with the lower distribution parameter b. Many smaller
defective areas are considered with a higher b.

Mg v 1+ e(ng, - 1) .

= . = = 9.2
Ny + 1 =, - 1) S Gr=r=02) 62

b
S +n

EFF

n... = nl-x9 with a=max[1,
f=1-z with z =15 ~2

] . b =7-15 (93)
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"Theoretical" data calculated by Equation 9.2 are presented in Figures 9.14 - 9.16
with solid lines. The hypothesis considered seems well justified by these figures.
This conclusion is consistent with results obtained in a work reported in (71) o
n particulate composites with defective phase contacts. Only Young’s moduli h
ave been considered in this section. The FEM-results in Table D6, Appendix D,
indicate, however, that the influence of defective phase contacts on Young’s
moduli, bulk moduli, and shear moduli can be estimated in similar ways.

9.1.3 Pearls on a string composite

A special FEM-analysis was made on TROC-materials where particles grow toge-
ther changing phase P from being discrete to being continuous like pearls on a
string - or in other words, from being a closed "pore"” system to being an open
"pore" system. The growing together zones were introduced by letting phase S
FEM-elements between TROC-particles take the phase P elastic properties. The
term "open” is used because the composite may be thought of as an impregnated
porous material with a fully continuous pore systems.

The phase P volume occupied by TROC-particles is quantified by the volume frac-
tion « of the total phase P volume. « is large for pearls on a thin string geometry.
« is small for pearis on a thick string geometry.

1 1
B & & g ® n .
Fep e g g
[0p] B & oy ©
Z 2 g 3 &y
@) g @@ " B I
B Hs m e ® @ = ’
= g & B = 5
= o GCo
b =z
L =
L e
T T
U‘) [%2]
CIRCLE: SHEAR
CROSS: BULK CIRCLE: SHEAR
CROSS: BULK
-1 -1
0.0 0.5 1.0 =1 .
PHASE P CONTENT — ¢ SHAPE FUNCTION — ip
Figure 9.17. Shape functions for a Figure 9.18. Geo-paths for a pearls
pearls on a thin string composite (o = on a thin string composite (o« =
76%). 76%).

The FEM-data presented in Figures 9.21 and 9.22 are reproduced from Appendix
D, Table D9. The theoretical data presented are predicted with CC-CC shape func-
tions as presented in Figures 9.17 and 9.18 for o = 0.76 and in Figures 9.19 and
9.20 for « = 0.60 with shape factors as summarized in Table 9.1. "Closed sys-
tem" data presented in Figures 9.21 and 9.22 are added from the analysis of
TROC-composites in Section 9.1.1.
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Figure 9.21. Pearls on a thin string,
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Figure 9.22. Pearls on a thick string,
vs=v,=0.2, 60% of phase P is TROC.

A very fine agreement is observed between FEM-results and results predicted theo-
retically with the shape functions illustrated in Figures 9.17 - 9.20. It is noticed
that p, + ps = 1 applies for both the bulk modulus shape functions and the shear
modulus shape functions independently of thickness (o) of strings.

Shape factors p,° > 0.75 are expected because the phase P geometry at low phase
P concentrations can be considered as a frame work formed by an agglomeration
of long rugged fibres, see Figure 7.13. Individually such fibres have shape factors
> 0.75 increasing with increasing degree of ruggedness (increasing fraction of
spherical shapes). This can be observed from Figure 7.13. In the present context
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of pearls on a string this means that the higher shape factors, p;°, should apply
at « = 76 %, which is also the case, see Figure 9.18 versus Figure 9.20.

The influence of pore geometry on the stiffness of porous materials impregnated
with a stiff impregnant (n > 1) is clearly demonstrated in Figure 9.21 and 9.22:
Composite stiffness increases considerably when pores transform from discrete
(closed) pores to continuous (open) pores.

9.1.4 Grid composite

The CROSS-composite shown in Figure 9.23 is the material model used in the
FEM-analysis of grid composites (CC-CC). It is a phase symmetric cubic frame
work of phase P embedded in a complementary cubic frame work of phase S.
Basically the CROSS-material is cubic.
From a modelling point of view this is no
problem as previously indicated. Isotropic
composites can be considered as isotropic
mixtures of parts from cubic model sources.
These sources may have different sizes of
composite elements.

The FEM-data presented in Figures 9.26-
9.33 are reproduced from Appendix D,
D Table D12. The theoretical data presented
' are based on the phase symmetric CC-CC
shape functions illustrated in Figures 9.24

Figure 9.23. CROSS-composite. As  and 9.25 with shape factors as summarized
illustrated, ¢ = 0.5. in Table 9.1.

Discussion

A very fine agreement is observed between FEM-results and predicted results. It
is observed that (u, + ps), = 0.75 and (up + ps) = 1. Shape factors p,° = pp,°
=~ (.75 were expected because the CROSS-model at low phase P concentrations
can be considered as a frame work formed by agglomeration of long fibres, see
Figure 7.13. The shape function u,, decreases more rapidly than u,,, indicating
that shear interaction is greater than bulk interaction - just as was observed in the
TROC analysis.
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9.1.5 Discussion of FEM-analysis

The influence on composite stiffness of two very different types of composite geo-
metries have been FEM-analyzed in this chapter: The TROC-composite with a DC
geometry at any concentration - and the CROSS-composite with a CC geometry
at any concentration.

A very satisfying agreement is observed between stiffness results obtained by
FEM-analysis of these composites and results obtained by the theory developed
in this monograph. Shape functions used in theory are fully compatible with such
expected from the analysis in Chapter 7 on shape quantification.

The composite geometries considered represent important "stations” on the path
of geometrical changes, DC - CC - CD. The TROC geometry is the start of this

77



Chap. 9: Justification of theory Lauge Fuglsang Nielsen

path. The CROSS geometry is the middle of the path - and a TROC; geometry
(phase S particles) is the end of the path. It is expected that other composites along
the path just indicated can also be considered by the theory developed. For examp-
le DC-MM and DC-CD composites. Support to this expectation is obtained from
the very salifying agreement observed in Section 9.1.3 between stiffness results
of "Pearls on a string” composites obtained by FEM-analysis and by theoretical
predictions. The phase P geometry of this composite can be seen as a frame work
made of long rugged fibres, see Figure 7.13.

An important conclusion can be made from the analysis of Pearls on a string
composites: Stiffness of porous materials impregnated with a stiff impregnant will
increase considerably when pores transform from discrete (closed) pores to con-
tinuous (open) pores.

Finally, from the FEM-analysis of TROC-composites: A semi-theoretical method
is suggested in Section 9.1.2 on, how defective phase contacts can be considered
in stiffness predictions of particulate composites. The method is subsequently
justified by experimental results presented in Section 11.6.

9.2 Crack analysis

In this section results from a crack analysis based on the present theory are com-
pared with results analytically determined by Levin (7). Also considered are results
which can be deduced from the FEM-analysis of defective particulate composites
presented in Section 9.1.2. Any crack considered is strict as defined by the
cylinder model in the introduction to Chapter 7 with an aspect ratio of A = 0.
Also from the introduction to Chapter 7: As extremely low (or high) stiffness
ratios are considered no re-definition of flat shapes is required. This means that
a composite analysis with organic particle shapes in the present theory produce
the same results as a composite analysis with strict particle shapes.

9.2.1 Soft cracks

Stiffness of dilute porous materials with isotropically distributed fibre shaped voids
can be written as presented in Equations 9.4 and 9.5 derived from Equations 5.3
and 5.4 with geo-functions from Table 4.1, and porosity of ellipsoidal voids ¢ =
(7/6)pAd® where p is void density (number of voids per vol-unit). As usual d and
A denote diameter and aspect ratio respectively of a fibre.
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Examples of the h, and h, factors from Equation 9.4 are shown in Figures 9.34
and 9.35 with shape factors (u,°) calculated as explained Chapter 7. The situation
of a cracked material is approached with aspect ratio A — 0.
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It is noticed from Figures 9.34 and 9.35 that the crack results (A = 0) of the
present analysis agree with results presented in Equation 9.6 which are deduced
from Levin’s theoretical work (7) on materials with isotropically distributed cracks.
Similar expressions can also be obtained from other works (14,23,72) in the
field of cracked materials.

1 -9 - :__4_(1~VS)(5—-1/S)

5 N ) A = O (9..6)
B 2oy, temd=0

Remarks: It is noticed from comparing the results from the present analysis with
the Levin results that "thick" cracks can be considered as real cracks as long as
A < 0.01. This feature is illustrated in Figures 9.36 and 9.37 (with a porosity
of ¢ = (w/6)pAd®).

It is worth noticing that the results in Figure 9.36 (and 9.37) are accurately predic-
ted also by the SCS-method presented in Appendix C with (E,,E;) = (0,1), (e, ¥5)
= (-,0.2), A < 0.01, and pd® = 6¢/(wA). The statement previously made that
SCS-solutions can be considered accurate when composites considered are dilute
is clearly supported by this observation where very small crack "volumes" are in-
volved.

FEM-analysis

Some results were presented in Section 9.1.2 from a FEM-analysis on defective
"composites” with (n,», = »,) = (1,0.2). This composite is in fact a cracked
material with cracks placed on hypo-

1.0
{m e = | thetical TROC particles. These cracks,
L however, are not isotropically distribu-
| 7| ted. They form a certain pattern by
§ 5982 which the original material in the end
D05 will transform to a porous material of
= finite stiffness with TROC-shaped
éf; pores. We do not, therefor, expect the
= Fe: results of the FEM-analysis to be ac-
= 0 49002 curately predicted by Equations 9.4

0.0 —] and 9.5.

0.0 1.0

CRACK PARAMETER - pd’
Figure 9.38. Lines: Isotropically cracked .
material. FEM-data: Cracks placed on hy- ~ compare the two data sets. This is
pothetical TROC-particles. v = 0.2 all  done in Figure 9.38 with crack para-
over.

It is, however, of some interest to
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meters (pd®) and aspect ratios (A) calculated in Section "Defective particulate
composite” in Appendix D.

9,2.2 Stiff "cracks"

The problem of very stiff discs in a material can be solved in a very similar way
the ’soft crack’ problem was solved in Section 9.2.1. The results are presented
in Equation 9.7 with the h-factors illustrated in Figure 9.39. As for soft cracks
the stiff crack solutions apply also for thick cracks of finite thickness A < 0.01.

1 6h
e =1=-hpd =1- 2 :
2 P A

6h
Loy cnpp =1 - 2
g.. ) wA

=%A 1+,{S/”‘Pk+/‘:sr<"1
[ Hse ©.7)
= T4 1+7M;g+ﬂgg_l
6 s o
Sg

9.2.3 Discussion

A very satisfying agreement is observed in this section between stiffness of materi-
als with isotropically distributed cracks predicted by the present theory and results
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Figure 9.39. h-factors for stiff disc mixture.
v = 0.2.

presented in (7). It is furthermore con-
cluded that "thick" cracks with A <
0.01 can be considered as real cracks.
FEM-results reported in Section 9.1.2
from an analysis of a special cracked
material have been compared with re-
sults predicted by the present theory.
The comparison is satisfying. As can
be seen from Figure 9.38, the FEM-
results are somewhat underestimated
by the theory because the cracks are
defined to follow paths on imaginary
TROC-particles (n = 1), creating, at
the end, a porous material of finite
stiffness.

9.3 Special DC-CD composite

The results presented in Figures 9.40 and 9.41 are from an analysis of a composite
with the special DC-CD geometry described in Appendix E. In the example consi-
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dered phase P is Silicon carbide (SiC) with E, = 320 GPa and », = 0.3. Phase
S is Carbon (C) with E; = 28 GPa and vs = 0.3. These phase properties are
adopted from (15,16) where a FEM-analysis, further discussed in Section 9.3.1,
was made on a layered SiC-C composite.
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Figure 9.40. Shape functions for a Figure 9.41. Stiffness of a special
special isotropic SiC/C composite. isotropic DC-CD SiC/C composite.

Remark: It is noticed that predicted stiffness and SCS-determined stiffness are
very close in the geometrical transition area. It is obvious, however, that such
simple procedure for stiffness estimation can only be used when the transition area
is small with a "centre" around ¢ = 0.5.

The author is aware of no results from experimental analysis or FEM-analysis of
isotropic particulate DC-CD composites to which the results predicted in this secti-
on can be compared. Implicitly, however, Justifications of the theory can be found
studying the results from the following FEM-analysis.

9.3.1 Plane-isotropic fiber composite with long parallel fibres

A FEM-analysis was made in (15,16) on various mechanical/physical properties
of a parallel-layered composite. With gradually increasing amount of phase P each
layer can be considered as a plane-isotropic version of the isotropic composite just
considered in Section 9.3 (and Appendix E): Up to a volume concentration of ¢ =
0.47 the composite geometry is FEM-modelled by discrete phase P fibres of hexa-
gonal cross-sections in a continuous phase S. From a concentration of ¢ =0.68
the geometry is modelled by discrete phase S fibres with hexagonal cross-sections
in a continuous phase P. The agglomeration of P-fibres starts creating continuous
phase P elements at ¢ = (.52, "De-agglomeration" of phase $ into discrete fibres
starts at ¢ = 0.63.
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It is observed in (16) that the numerical FEM-results obtained are very close to
results which can be obtained in an

400 N .
L analysis of the layered composite con-

HEAVY:| PRESENT ANALYSH . . .
| BRaliep. g punes sidered with each layer homogenized as
300 / follows with properties predicted by
/ known analytical plane-isotropic com-
i posite expressions: By the Mori-Tanaka
v theory (11) at lower and higher concen-
A trations (discrete cylinders in a conti-
Py nuum), and by the Davies SCS-expressi-
JIIE Sy on (73) at medium concentrations
S0 o2 s ok o5 in  (skeletal microstructure). The "gaps" be-
¢ - sic tween the two estimates (at ¢ = 0.49 and
¢ = 0.65) were considered in (16) by

Figure 9.42. Stiffness of plane-isotropic
composite with parallel circular fibres.

(EnE) = (320,28) GPa, v, = v, =  some empirical ’transition functions’.
0.25.

100

The observation made in (15,16) with re-
spect to plane-isotropic, transverse composite Young’s moduli versus phase P con-
centrations are presented graphically in Figure 5 of the latter reference which is
extremely well reproduced by Figure 9.42 presenting the results of a composite
analysis made using the plane-isotropic version of the isotropic theory presented
in this monograph, see Appendix C in (24).

With Poisson’s ratios », = »; = 0.25 the plane-isotropic analysis simplifies as
summarized in Equation 9.8. The difference between the actual (0.3) and Poisson’s
ratios of 0.25 is considered small enough to use this expression as a reliable basis
for numerical evaluations. Shape functions are assumed to be similar to those used
in the isotropic counterpart analysis, see Appendix E.

Plane-isotropic stiffness: For DC-CD composites with fibres of circular cross-sections
and », = »; = 0.25 the plane-isotropic theory referred to can be summarized as
presented in Equation 9.8 where k, = K/K,, g, = G/G, and ¢, = E/Ej, are transverse
plane strain bulk modulus, transverse shear modulus, and transverse Young’s modulus
normalized with respect to their respective phase S moduli. The transverse Poissons’s
ratio is denoted by ». The stiffness ratio is n = E./E..

n+ 0l +cn-1] _

k =g = x
n+6-~-cn-1
16x e
= sy = 1255 -1 9.8
SO T g g 3 ©-8)

1 ; 12
o= ZL‘P © g s, )+ 40—, - ) J > HS: 6 = {n/2
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SCS-solutions are very close to solutions obtained by Equation 9.8 with shape functi-
ons Y, = - ug = 1 - 2c.

9.3.2 Discussion

We may conclude from this section that theoretically predicted Young’s moduli
of a DC-CD composite agree well with resulis obtained by FEM-analysis.

The suggestion made in (15,16) of estimating stiffness by SCS and ’transition func-
tions’ in areas of geometrical transition is acceptable only in small transition areas
around ¢ = (.5. The present theoretical approach of considering the transition geo-
metry as a platework (crumbled foils) geometry is better, and more logical. This
approach also provides a more continuous analysis, well qualified for computer
analysis.

9.4 Conclusion

A general analysis of stiffness and eigenstrain/stress behavior has been presented
in Chapter 8. Important aspects of this analysis, including the underlying geometri-
cal concepts, have been checked successfully in this Chapter 9:

- Stiffness predictions of various composites, DC-DC, CC-CC, and DC-CD, compare
positively with results obtained by FEM-analysis.

- Stiffness predictions of cracked materials compare positively with results obtained by
FEM-analysis and theoretical results obtained by other authors.

- From the CROSS analysis presented in Section 9.1.4 is noticed that shape functions

reverse from (ue,ps) = (e, ts) at ¢ = 0 t0 (ppspts) = (e'sts) = (ps'yps’) at ¢ = 1
when composite geometries reverse. The same observation can be made from looking
at the special DC-CD composite analysis presented in Section 9.3.

From the latter analysis is also observed that composite geometry changes from DC
to CD through a transition area with shape functions (u,,15) = (0,0). These observati-
ons speak in favour of the concept, introduced in Chapter 7, of considering transition
geometries as the result of discrete shapes agglomerating into crumbled continuous
shapes.

It seems now justified to suggest that the theory developed in this monograph can
be used, as summarized in Chapter 8, in a complete analysis of isotropic composite
materials with arbitrary geometry. Results from real experiments reported in subse-
quent chapters support this statement. We re-call that positive conclusions with
respect to stiffness predictions automatically imply positive conclusions with re-
spect to stress and eigenstrain/stress predictions.
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10. Simplified theory

It has been justified in Chapter 9 that a complete analysis of composites with arbi-
trary phase geometries can be made by the method developed in this monograph
and summarized in Chapter 8. It is recognized, however, that the great many
geometrical parameters (up to 10) and stiffness coefficients needed for such
analysis are by far not present in most normal practice.

The purpose of this chapter is to show how the theory can be simplified to reflect
more realistically the somewhat limited knowledge available in most practice on
geometry and elasticity (Poisson’s ratios especially). An implicit consequence of
the simplifications introduced, is that a “modest level’ of geometrical knowledge
is assumed, see Section 7.3.

A number of comparative studies have been made between results obtained by
various simplified versions of the theory and results obtained by the accurate
version as it is presented in Chapter 8. It has been found that very acceptable
results are obtained introducing the following basic simplifications:

- Both Poisson’s ratios are 0.2 (in most practice Poissons’s ratios varies in 0.1 - 0.3).
- Both shape functions (u,,ps) can be approximated by their shear versions. They are
quantified by two shape factors, u.°,u, and one critical concentration, for example
Cs. They vary linearly all the way in ¢ = 0 - 1 such that p, + ps = a where the
constant 0 < a < 1 is the so-called geo-path factor a = p,° + pg.
Immediate consequences of these assumptions are the following reductions: Pois-
son’s parameters become x; = v, = 1, Stiffness ratios become N,=N,=n =
n, = n, Geo-functions become identical, 6, = 6, = 6. Any internal stress compo-
nent (oy; and o) relative to its external stress counterpart becomes predicted as
o,/0 and oy/0. Average normalized stiffness k = g = e are predicted. For typogra-
phical reasons this triviality is not always expressed. Thus, whenever e is mentio-
ned subsequently k and g may as well be thought of - or vice versa.

A consequence of introducing the simplified description of shape functions is that
the other shape factors ', us', and the other critical concentration appearing in
the accurate analysis become dependent variables. For practice, however, this dis-
crepancy can be counteracted by simple averaging measures explained in Section
10.1.3.

The subsequent presentation of the simplified theory and applications will follow
the same disposition as used for the general theory: Description of geometry, quan-
tification of geometry, preparation of analysis, and the analysis itself. The text is
rather brief. As the *translation’ of accurate analysis to simplified analysis is rather
obvious, no further explanations are really necessary. The presentation can be
adapted and used immediately as a users manual’ with operational introductions
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to computer programs which can be downloaded from Attp.://www. byg.dtu.dk/pub-
licering/software_d.htm.

10.1 Basis of analysis

The composites considered in this analysis are isotropic mixtures of two linear ela-
stic components: phase P and phase S. The amount of phase P is quantified by the
so-called volume concentration defined by ¢ = V,/(V,+V,) where volume is deno-
ted by V. The volume concentration of phase S then becomes 1-c.

The specific composite properties considered are stiffress and eigenstrain phe-
nomenons (such as shrinkage and thermal expansion) as related to volume concen-
tration, composite geometry, and phase properties: Young’s moduli E, and E, with
stiffness ratio n = E,/E, and linear eigenstrains A, and As. (Further notations used
in the text are explained in the list of notations at the end of the paper).

The strength of the composite analysis presented, relative to other prediction met-
hods (with fixed, not variable type of composite geometry such as spheres and fib-
res in a matrix), is that global (standard) solutions are presented which apply for
any composite geometry. Specific composites are considered in these global soluti-
ons by so-called ’geo-functions’ (9, Equation 10.2) where specific geometries are
quantified by so-called ’shape functions’ (y,, ps, Equation 10.1). Thus, properties
can be predicted where geometry can be respected as it really develops in natural
or man-made composite materials.

10.1.1 Geometry

As demonstrated in Figure 10.1 composite geometry can be described by so-called
shape functions which are determined by so-called shape factors (u,°, i) and criti-
cal concentrations, ¢, and ¢; < c,: Shape factors tell about the shapes of phase
components at dilute concentrations. Critical concentrations are concentrations
where the composite geometry changes from one type to another type.

At fixed concentrations we operate with the following types of composite geome-
tries’. DC means a discrete phase P in a continuous phase S. MM means a mixed
phase P geometry in a mixed phase $ geometry, while CD means a continuous

3) A phase with continuous geometry (C) is a phase in which the total composite can be
traversed without crossing the other phase. This is not possible in a phase with discrete
geometry (D). A mixed geometry (M) is a continuous geometry with some discrete ele-
ments.
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phase P mixed with a discrete phase S. We notice that MM-geometries (if porous)
are partly impregnable. In modern terminology this means that phase P percolation
exists in composites with ¢ > c,. Percolation is complete for ¢ = ¢,. Porous
materials have lost any coherence in this concentration area with no stiffness and
strength left.

M

Shape functions p

Figure 10.1. Geometrical significance of
shape functions. (upps) = (+,-) means
discrete P in continuous S. (upps) =
(+, +) means mixed P in mixed S. (iip i)
= (-, +) means continuous P with discrete
S. Black and white signatures denote
phase P and phase S respectively.

5

Volume concentration - ¢

Composite geometries may change as the result of volume transformations associa-
ted with increasing phase P concentration. We will think of changes as they are
stylized in Figure 10.1: At increasing concentration, from ¢ = 0, discrete P ele-
ments agglomerate and change their shapes approaching a state at ¢ = ¢; where
they start forming continuous geometries. Phase P grows fully continuous between
¢ = ¢sand ¢ = ¢, such that the composite geometry is a mixture of a continuous
phase P with discrete de-agglomerating phase S particles from the concentration
of c = ¢,

In a complementary way the geometry history of phase S follows the history of
phase P and vice versa. The geometries just explained can be shifted along the
concentration axis. A composite may develop from having a DC geometry at ¢
= 0 to having a MM geometry at ¢ = 1. Such composite geometries, with ¢, >
land 0 < ¢ < 1, are named DC-MM geometries. Other composites may keep
their DC type of geometry all the way up to ¢ = 1 in which case the composite
geometry is denoted as a DC-DC geometry, with both critical concentrations >
1. The geometry outlined in Figure 10.1 changes from DC to CD geometry which
makes it a DC-CD geometry with both critical concentrations in ¢ = 0-1.
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COMPOSITE SPHERES ASSEMBLAGE (CSAp) COMPOSITE SPHERES ASSEMBLAGE (CSAs)

COMPOSITE SPHERE COMPOSITE SPHERE
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e
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K

Telolt

PHASE P PHASE S
4 concentration  f-¢

S
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SRR
§ XXX XY
Wl
I8

Figure 10.2. Composite spherical as- Figure 10.3. Composite Spheres  As-
semblage with phase P particles, CSA,. semblage with phase S particles (CSA,).

Ideal geometries at ¢ = 0 and at ¢ = 1 of a DC-CD composite are illustrated in
Figures 10.2 and 10.3 respectively. We notice in this context that the composite
theory developed in the present monograph is based on the concept that any isotro-
pic composite geometry is a station on a geo-path going from the CSA, geometry
shown in Figure 10.2 to the CSA geometry shown in Figure 10.3. CSA is an
abbreviation of Composite Spheres Assemblage introduced by Hashin in 4). It
is noticed that the four letter symbols for composite geometries are subsequently
also used in the meaning, a ’DC-CD type of composite’ or just a "DC-CD compo-
site’.

Hp
Cp>t
0 L1 IS
i Cg>1
4 DGOC
1 ] 1
Bp
cse0 RO D) Figure 10.4. Composite types versus cri-
s< . P - . .
RO R anall RS (S| tical concentrations. Former and latter
Percolation two letters denote composite geometry ar
KSKd inphase P .
(L MMMM 4{_MMCD sl Nphase ¢ = 0and at ¢ = I respectively.

10.1.2 Quantification of composite geometry

The various types of geometries considered are listed in Figure 10.4 which defines
the following two composite classes considered in this chapter: Particulate compo-
sites are defined by the former row. They have a *particles in a matrix’ geometry
(DC) at small concentrations. Lamella composites are defined by the latter row.
They have a mixed phase P geometry in a mixed phase S geometry (MM) at low
concentrations. The phenomenon of percolation previously considered is noticed
to appear in Figure 10.4 in concentrations areas indicated by grey shadings (¢ >

Cs).
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We emphasize that the terms ’particulate composites’ and *lamella composites’ are
"working” terms telling about composite geometry at small concentrations only.
A number of other geometries may develop as the result of increasing volume con-
centrations.

Particle shapes - Aspect ratio

Particle shapes are subsequently referred by their aspect ratios A = length/di-
ameter of particles. Spherical particles have A = 1. Long particles (fibres) have
A > 1. Flat particles (discs) have A < 1.

SHAPE FACTORS
Particulate composite with uni-shaped particles (DC)

34

— ; A1 0 .
. |7 a1 .| A=l
Ky = 2 _ s e = -
oz A Al g5 ’ 4t -3 3 A > 1
44> - 54 + 4
Particulate composite with multi-shaped particles (DC) *
° = <m > e >t ST ith
= <m ; = -<M_> wi
He ° s Tl - <m >
o a. . o
<m> = |y L ; J=oe 5 Yo =1
it M. in1
where o, is volui;ze Jraction of joining aspect ratio A, and
34
m_ = e - or any A
- T AT J y
(m,, for4 <1
= 3 - 2 2 .
", m“=3A 4+ 1 for A > 1
4 - 3m, 44 - 54 + 4

Composite with transition geometry (MM)

pe = a(l - ) ; By = ay
P-geometries getting continuous Degree of transforming DC to CD
1-0.75 fibres 0  starting
a = |0.5 fibreldisc mix v = |0.5 medium
0 discs and plates 1 complete

Table 10.1. Shape factors to be used in simplified theory. The so-called geo-path factor
is determined as a = p,” + pg.

4) For first estimate determination of shape factors for particulate composites with multi
shaped particles a very easy formula is presented in Appendix B, Equation BS.
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Shape factors and geo-paths

Shape functions p, and g are related as illustrated in Figure 10.5 which is a
modified reproduction of Figure 7.19 in the present monograph. The geometries
passed when the phase P concentration increases from ¢ = 0 to ¢ = 1 are in-
dicated in this figure by the geo-path.

Shape factors can be calculated from Table 10.1 which represents a summary of
the accurate shape factor determination in Section 7.1 - except that the shape fac-
tors for particulate composites with uni-shaped particles, Equation 7.6, have been
introduced by their approximations presented in Appendix B, assuming shear and
vs = 0.2.

CSAs =

PLATE WORKS

«= geo-path: pp+us=a
with path factor
A=pp e+us e

Particulate gaometries;

fibres+discs

fibres+spheres )
(rugged fibres) @
-1 CSAp
SHAPE FUNCTION - p, p
Figure 10.5. Shape function graph with geo-path. Numbers indicate fibre aspect ratio A

of particles. Fibreworks are agglomerating crumbled fibres. Fibre/discworks are agglome-
rating crumbled fibres+discs. Plateworks are crumbled discs (sheets, foils).

SHAPE FUNCTION - p s
Q

- FIBRES+MANY SPHERES

Critical concentrations

It is emphasized that the critical concentrations depend very much on the proces-
sing technique used to produce composites. We notice that particle size distribution
is part of the processing. For particulate composites, for example, the critical con-
centration ¢ can be thought of as the concentration at first interference of phase P
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particles. Improved quality of size distribution (smoothness and density) is consi-
dered by increasing cq. At this concentration porous materials become very stiff
when impregnated with a very stiff material. At the other critical concentration,
C = ¢y, the composite becomes a mixture of phase S elements completely wrapped
in a matrix of phase P. As previously mentioned porous materials loose their stiff-
ness and strength at ¢, because phase P has become a continuous void system.

It is noticed that critical concentrations can be fictitious (outside ¢ = 0 - 1). In
such cases they do not, of course, have the immediate physical meanings just exp-
lained. Theoretically, however, we may keep the explanation given in order to
describe in an easy way how the rate of changing the composite geometry is influ-
enced by the processing technique used. In such fictitious cases critical concen-
trations will have to be estimated from experience, or detected from calibration
experiments.

TYPE Crit-con ¢ EXAMPLES

Particulate composite (concrete, mortar). Extremely high
DC cs > 1 quality of grading (approaching CSA, composites).

Pore system: Not impregnable. Finite stiffness at any
porosity

Particulate composite (concrete, mortar) with particle inter-
ference at ¢ = ¢, Increasing quality of grading is quan-

DC . ] .

MM | 1 > ¢ > -p/p || tified by larger concentration ¢ at first interference.

Pore system: Only impregnable for porosities ¢ > cs.

Finite stiffness at any porosity.

Mixed powders (ceramics).
CD || -us/p> > ¢ > O || Pore system: Only impregnable for porosities ¢ > ¢, No
stiffness for porosities ¢ > c;.

Mixed lamella/foils ("3D-plywood").
MM -u p > e Pore system: Fully open at any porosity. Finite stiffness at

any porosity.
Mixed lamella/foils ("3D-plywood").

CD |[0 > ¢, > -u/py° || Pore system: Fully open at any porosity. No stiffness for
porosities ¢ > c,.

MM

Table 10.2. Range of critical concentrations applying for various composites.

10.1.3 Preparation of composite analysis
The preparation of a composite analysis is as follows:

- Calculate shape factors (u,°,us”) from Table 10.1. (Or for first estimate analy-
sis: read directly from Figure 10.5).

- Then decide the critical concentration ¢, (or c;) from knowing about mixing
technology and observations made on geometrical formation.
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- These information quantify the composite geometry by the so-called shape func-
tions expressed by Equation 10.1.

We recall from the introductory section to this chapter; Shape functions are
expressed by simple mathematical expressions (in order not to predict proper-
ties with an "accuracy’ out of proportions to what is actually know about com-
posite geometry). A consequence of such simplification is that the quantities
of (us°,us”) and (¢ or ¢,) chosen above must be adapted to each other such that
the critical concentration not chosen is predicted realistically by Equation 10.1.
Figure 10.4 and Table 10.2 are useful when deciding on realistic shape
functions for a practical composite analysis. An example of shape quantification
is shown in Figure 10.6.

By = MIN[M§ [1 - £],1] SR T M [1 - i] with ¢, = - ¢,

s C ks (10.1)
a - or >a-1
Geo-path: . = [1 Hr jior Z: < g -1 Where a =y + p

1
= 2 Hp HMs
! &
z § 3
@) z
5O 2o
% Ld_J Cs Cp
T <
& &
<t
i
%)
DC -

-1 s 4

o 1

SHAPE FUNCTION = /e CONCENTRATION — ¢

Figure 10.6. Geo-path and shape functions for a DC-CD composite with multi shaped
particles at ¢ = 0 (20% A = 0.1 + 80% A = 10) and a critical concentration of ¢ =
0.26.

- The last step of preparing a composite analysis with the global solutions (valid
for any geometry) presented in Table 10.3 is to calculate the so-called geo-
function expressed by Equation 10.2.

1 E
6 = a[up R () e R = (102
N
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10.2 Composite analysis

With composite geometry described by the geo-function presented in Equation 10.2
a property analysis can now be made using the following global predictions with
symbols explained in the list of notations presented at the end of the paper.

STIFFNESS

n+0[l +cn - 1)
n+0-cn-1

STRESS CAUSED BY EXTERNAL LOAD

e=g=Fk=

% _ n(l + 6) . f_s _ n+0
o n+0l+cn-1] o n+6l+ch-1)
or _(E _ le-1 . <_7§ _ I/n - 1/e
o cdm-1) " ¢ ({A-0o0h-1)
EIGENSTRAIN
Nen e A KL e -
I/n -1
_A_- - l/n - l/k ; (AP = 0)
A I/n -1

s

EIGENSTRESS (K = E/1.8)

Un -1 -k -1y _
p, = -3K N Cop, = -
A c(l/n - 1y 1l -¢

Table 10.3. Stiffness, stress, and eigenstrain/stress of composite material calculated by
simplified method of analysis. (A, Ny) and (p,,py) are eigenstrain (linear) and eigenstress
(hydrostatic) of phase P and phase S respectively. K; is bulk modulus of phase S.

10.2.1 Bounds and other accurate stiffness expressions

It comes from (24,48) and the present monograph that the above stiffness predicti-
ons are bounded as follows between the exact solutions for the CSA composites
illustrated in Figures 10.2 and 10.3.

n+1+c(n—1)<e<n2+c(n—1)

n+1-cn-1 " = 2n-cin-1)
reverse signs when n < 1 (10.3)

e(n,c) * e(l/n,c) =1 ; e(n,c) = n* e(l/n,l—c)

Phase -symmetric

n=1

P

The stiffness bounds are obtained introducing # = 1 and 6 = n respectively into
the stiffness expression of Table 10.3. The bounds such determined are the same
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as can be obtained from the studies made by Hashin and Shtrikman in (3) on com-
posite stiffness. The bounds are subsequently referred to by H/S. The latter two
relations in Equation 10.3 are reproduced from (24). They express some interes-
ting relations between e, ¢, and n for CSA,- and phase-symmetric composites re-
spectively. In the present context: TROC (approximately) and CROSS composites.

10.2.2 Test of simplified theory

To test the accuracy of the simplified theory a composite analysis has been made
on the TROC material and the phase symmetric CROSS material previously con-
sidered with », = », = 0.2. The geo-parameters used, see Figures 10.7 and 10.8,
are calibrated from the FEM-results reported in Sections 9.1.1 and 9.1.4 respec-
tively. The results of the analysis are shown by solid lines in F igures 10.9 - 10.12.
Dots are FEM-data.

T

SHAPE FUNCTION — us
[

N | K&

o] 1
SHAPE FUNCTION  — up

Figure 10.7. TROC: DC-DC com-
posite with (u,’, us,c;) = (1,-1,3.33),

(c = 3.33),
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Figure 10.9. TROC: Young’s modulus
predicted by simplified theory.
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Figure 10.8. CROSS: Phase-sym-
metric - MM-MM: (1, usc) =
(0.75,0.15, -0.25), (c, = 1.25).

-1

:E/ES

<

.0

05 1.0
PHASE P CONCENT - C

Figure 10.10. CROSS: Young’s modulus
predicted by simplified theory.
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Figure 10.11. TROC: Bulk modulus pre-  Figure 10.12. CROSS: Bulk modulus pre-
dicted by simplified theory. dicted by simplified theory.

10.2.3 Intermediate conclusion

We notice from Figures 10.7 and 10.8 that the calibrated geo-parameters are consi-
stent with values suggested in Section 10.1.2 for a simplified analysis. It is further-
more observed from Figures 10.9 - 10.12 that results predicted by the simplified
theory are very close to the more accurately predicted results presented in Chap-
ter 9.

It seems then justified to proceed the analysis of composite materials using the sim-
plified theory. First by looking at the theoretical potentials of the theory in Section
10.3 and then by looking at practical applications in Chapter 11.

10.3 Illustrative examples

Theoretical examples are considered in this section which illustrate how the simpli-
fied theory works in the analysis of various composite materials such as particulate
composites, phase-symmetric composites and porous materials. Numerically the
analysis is made by Table 10.3 with geo-functions (and shape functions) from Equ-
ation 10.2 (and Equation 10.1). Whenever possible, however, full analytical solu-
tions are presented in order to illustrate most clearly the basic influence of geome-
try on the behavior of composite materials. Practical examples are presented in
Chapter 11 where the theory is tested against real experimental data.

10.3.1 Composites with spherical particles (CSA,)

As previously mentioned a CSA, composite has a geo-function of § = 1. A com-
plete composite analysis can easily be made by Table 10.3. The results are presen-
ted in Table 10.4. The additional solutions of the matrix stresses at spheres are
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developed in (61,62) from the Sokolnikoff stress solutions (57) of a hollow sphere
subjected to internal pressure (equal to pressure in phase P). We re-call that the
stiffness of a CSA, composite represents the lower H/S bound solution for n >
1, and the lower H/S bound solution for n < 1.

Some results of an eigenstrain/stress analysis are graphically presented in F igures
10.13 and 10.14.

PROBLEM CSA,-SOLUTIONS
Young’s modulus e-L _A+n with 4 =1 7€ gng y = E’l
E 1 + An 1 +¢ E,

Internal stress caused by (1 + An o - co,
external stress ¢ Gp =0 a7 o % T o =
Eigenstrain/stress caused || )\ = A, + AN nl - 4 ;AN =N, =
by particle eigenstrain \, ‘; tn E
and matrix eigenstrain \ = - =-_F¢ -

& P 3K"A)\A +n P T & 18

ix- 3-4

Matrix-stress at spheres O = Pp 3 Oy = - - o,

Table 10.4. Composite analysis of CSA,-material. In eigenstrain/stress analysis: (A, \y)
and (py,ps) are eigenstrain (linear) and eigenstress (hydrostatic) of phase P and phase §
respectively. 0., is radial phase S stress at sphere, 0.4, is tangential phase S stress at

Sphere.

2.0E-008

(linear)

1.0E~-005

EIGENSTRAIN

SOLID: PREDICTED
DOTTED: H/S

0.0E4000
0.0 1.0

0.5
VOL—CONCENTRATION - ¢

Figure 10.13. Thermal eigenstrain/°C of
CSA, composite (E, E) = (15,1)*10* MPa.
AeN) = (2%10°, 0)/°C.
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Figure 10.14. Thermal eigenstress/°C in
CSA, composite (E, Eg = (15,1)*10° MPa.
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Nearly CSA, composites

We look at particulate DC-DC composites with spherical particles (aspect ratio
A = 1). According to the simplified composite theory, shape factors for such com-
posites are p,° = -u° = 1 with critical concentrations Co = Cs > 1. A composite
analysis proceeds with the following geo-function introduced in Table 10.3.

E
9=%b+wﬁrf@ﬂ MMD:¢g1~m[1—i];n=j§ (10.4)

10 *] 3
% ,, o}
LI ~
o ’ <)
| HISy ©
|
& ’ 9 \ PHASE P
= w
L AR
L o ..l
E & el
PrASE S = = =
0 0
0.0 0.5 1.0 0.0 Q.5 1.0
PHASE P CONCENTRATION - ¢ PHASE P CONCENTRATION — ¢
Figure 10.15. Stiffness of a nearly CSA, Figure 10.16. Stresses in a nearly CSA,
composite with ¢, = 1 andn = 9. composite with ¢, = 1 and n = 9,

Comment. As previously mentioned, the critical concentration Cs tells about quality
of the phase P size distribution (smoothness and density). Increasing quality is as-
sociated with increasing c,. CSA, composites have an extremely high quality of
size distribution, ¢; = o. Some results from a composite analysis of a nearly
CSA, composite with a less ideal size P distribution (¢s = 1) are shown in Figures
10.15 and 10.16.

10.3.2 Phase symmetric composites

Looking at composites which change geometry along a disc path with p, = -
(see Figure 10.5) we get coinciding critical concentrations, ¢, = ¢; = 0.5, from
Equation 10.1 which produces the geo-function presented in Equation 10.5, for-
ming the basis for the analysis of so-called phase-symmetric compacted powder
composites (DC-CD) and phase-symmetric compacted lamella composites
(MM-MM).
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0=%[D+WJ

D = w1 - 201 - n)

;¢ =c, =05 (10.5)

10 3 7
Lf.ln o
~ i
Lol éh 2
5 PHASE P
= Sy g7 % 1
& % R
N~ _ PHASE S
Olr 1 — 0
0.0 0.5 1.0 0.0 0.5 1.0
PHASE P CONCENTRATION — ¢ PHASE P CONCENTRATION — ¢
Figure 10.17. Stiffness of spherical-powder Figure 10.18. Stresses in spherical-powder
composite with n = 9, composite with n = 9,

Example 1. Compacted spheres composite

A special phase-symmetric composite is the one made with compacted spherical-
powders (u,° = 1). The geo-function for this composite becomes as expressed by
Equation 10.6 by which the stiffness solution presented in Equation 10.7 is
predicted from Table 10.4. Stiffness and other results of a composite analysis by
Table 10.4 are demonstrated in Figures 10.17 - 10.20.

9 = %[D + JD? + 4n J ; [Spheres: (10.6)

c.=c, =05
D=0 -mn1 -2

s P

e = %[(1 - md - 2¢) + /(1 - n(1 - 2 + 4n] (10.7)

Remarks: It is observed that Equation 10.7 is exactly the same expression as can
be deduced from the analysis of Budiansky (13) on phase-symmetric composites
made of compacted spheres.

It is of some interest to notice that Equation 10.7 relates to the simple P/H-bounds
as illustrated in Figure 10.21. It is also interesting to notice that Equation 10.7
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can be obtained implicitly from the general stiffness expression in Table 10.3 by
introducing 0 = e.
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Figure 10.19. Thermal eigenstrain/°C of Figure 10.20. Thermal eigenstress/°C in
spherical powder composite. (E,E) = Sspherical powder composite. (E, Ey) = (15,
(15,1)*10° MPa. (\,,\) = (2*10°, 0)/°C. 1)*10° MPa. (\, \g) = (2%107,0)/°C.
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Figure 10.21. Stiffness of spherical
powder composite is "horizontal mean"
of P/H bounds.

Example 2: Compacted lamella composite

A compaction of a mixture of crumbled P-plates and S-plates with u,° = 0 can be
thought of as the plate counterpart to the compacted spheres composite just consi-
dered. A geo-function of § = +/n is obtained from Equation 10.5 which is the
same geo-function applying for the crumbled foils composite previously considered
in Section 4.1.4. The composite stiffness obtained from Table 10.3 is presented
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in Equation 10.8 with examples shown in Figure 10.22. The results of a subse-
quent stress analysis are illustrated in Figure 10.23.

_n+ \/nm[l +cn - 1)] (10.8)
n + \/rT— cn - 1)
10 3
% ©
Lit ~L
o bZG 2
| | \
0 ° - n PHASE P
& HiSy |- L)
Z 0
o HIS, A N
F(/3 (}/_7 \‘“~\“_~ PHASE S
0 ¢}

0.0 0. 1.0

5
PHASE P CONCENTRATION — ¢

Figure 10.22. Stiffness of crumbled foils
composite with n = 9,

0.0 1.0

05 .
PHASE P CONCENTRATION - ¢

Figure 10.23. Stresses in crumbled foils
composite with n = 9,

10.3.3 Eigenstrain/stress versus geometry

The influence of phase geometry on composite shrinkage and stresses is demonstra-
ted in this section. We proceed using the simplified composite analysis as summa-

rized in Table 10.3.
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Figure 10.24. Eigenstrain (shrinkage) of
TROC composite with shrinking phase S.
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Figure 10.25. Eigenstrain (shrinkage) of
CROSS composite with shrinking phase
S.
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The TROC (DC-DC) and CROSS (CC-CC) composites previously defined are con-
sidered with geo-parameters, phase properties, and eigenstrains assumed as fol-
lows.

TROC (s 1ss €s) = (1, -1, 3.33), (¢, = 3.33)
CROSS (mes us’s ¢ = (0.75, 0.15, -0.25), (¢, = 1.25)
Phase S: E; = 1000 MPa, Shrinkage, As = -3 %o

Phase P: E; = 30000 MPa, Shrinkage, A, = 0

The results of an eigenstrain/stress analysis are presented in Figures 10.24 - 10.27.
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P Z
L ]
O SOLID: PHASE P o SOLID: PHASE P
L DASHED: PHASE S {J DASHED: PHASE S
=30 =3
0.0 0.5 1.0 0.0 0.5 1.0
VOL—CONCENTRATION — ¢ VOL—CONCENTRATION ~ ¢
Figure 10.26. Eigenstress in TROC com- Figure 10.27. Figenstress in CROSS
posite with shrinking phase S. composite with shrinking phase §.

10.3.4 Porous materials

Porous materials are composites where one phase is an empty pore system. In the
present context we consider phase P to be pores. Porosity and stiffness ratio are
then given by ¢ and n = 0 respectively from which the following stiffness expres-
sion is easily obtained by the simplified analysis with a geo-function of § = p,.
Stiffness is identical O whenever negative values are predicted.

_ 1-c . _ | #e = po(l = clc)) when ¢ < ¢,
¢ 1+ c/f, with 6, 0 when ¢ > c, 10.9
1
e=>1-[1+—}c as ¢—0
My

Examples of stiffness predictions by Equation 10.9 are presented graphically in
Figures 10.28 and 10.29. An easy approximation of Equation 10.9 is presented
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in Equation 10.10 with e = 0 for ¢ > c,. Qualitatively Equation 10.10 applies
at any ¢, < I. Quantitatively, however, it is best when ¢, and up° are related as
indicated.

~[1-1".p-. 1 L ifu > 0.5 (10.10)
e~[1 _.} s D =c, |1 + 2] forc, < wif pl < 0.5

P o
CP M P

Remark: This equation tells us that stiffness of porous materials can be predicted
approximately by a very simple porosity relation raised to a power reflecting only
the pore geometry. In general (with a fixed c,) this power will increase with
increasing complexity of the pore geometry (decreasing u,°).

1.0 1.0
FROM TOB: up° = i FROM TOP: w° =
[V VAR 1, 1/3,1/5 1/7
% »
Lol L
. ™~
Lid ]
| !
%) 0.5 ) 0.5 4
2] 98]
Led Lud
= e
L .
L &
= pn
m m §
0.0 ‘L &»\ 0.0 i
0.0

1.0 0.0 1.0

05 05
POROSITY - ¢ POROSITY — ¢
Figure 10.28. Porous material with shape  Figure 10.29. Porous material with shape
Jactors as indicated, and c, = 1. Jactors as indicated, and ¢, = 0.75.

Theory versus empirical expressions

A variety of empirical stiffness-porosity expressions, critically reviewed by Fager-
lund in (20), are presented in the literature on porous materials. It is of some inte-
rest to discuss briefly Equations 10.9 and 10.10 in relation to the two expressions
presented in Equation 10.11 which are among the most frequently used to fit data
obtained from tests on porous media - the former in (74,75) and the latter in
(76,77) for example. F and H are constants to be determined experimentally.

o
]

a1 -oF 1 - Fc
- as ¢ =0 (10.11)

exp(-Hc) 1 - He

®
i
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Excellent fits are often observed by these expressions at low and moderately low
porosities. At higher porosities, however, difficulties may be encountered. The
former expression cannot be used when DC-CD and MM-CD composites are con-
sidered with ¢, < 1. The latter expression always predicts a finite stiffness at
¢ = 1. Non of these disadvantages apply to Equations 10.9 and 10.10.

Remark: Mathematically the expressions presented in Equations 10.10 and 10.11
are of similar types. It is concluded that the factors F and H of the empirical
expressions are related to composite geometry just as is the factor M of Equation
10.10.

Deduction of shape parameters from experiments

At low porosities both fit expressions in Equation 10.11 and the results obtained
by the present method in Equations 10.9 and 10.10 approach identical stiffness
when Equation 10.12 applies.

1 . 1 1
F=H=__+1 le., u = = (10.12)
i T FCT TR0

Obviously this observation can be used to deduce shape factors from experimental
data - or it can be used to give some geometrical explanation to the empirical fac-
tors F and H used in the literature. More general information, however, on the
geometry and stiffness of porous materials can be retrieved from experimental
data. We linearize Equation 10.9 (with ¢ = E/E,) as shown in Equation 10.13.
Then w°, c,, and E; are easily deduced by linear regression of the manipulated
experimental data (X,Y), optimizing the fit quality with respect to Cp.

c 1 -¢
— and Y = =
T<oc, ° E (10.13)

E =1/Y, 5 p, =Y/a from intersection Y, and slope o

Y=Y +oaX with X =

Remark: It is noticed that no other information on composite geometry than p,
and ¢, can be obtained directly from mechanical tests on porous materials. To get
information on ps and c, the pore system considered has to be impregnated - or
supplementary studies on percolation and diffusivity have to be made.

10.3.5 Stiff pore systems

Stiff pore systems are composites where one phase (P) is extremely stiff relative
to the other phase (S). The stiffness relation presented in Equation 10.14 is easily
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obtained by the simplified analysis letting n - oo and utilizing that the geo-func-
tion 6 reduces as shown in Table 4.1. Infinite stiffness is predicted for ¢ = c.
A graphical representation of Equation 10.14 is shown in Figure 10.30. The com-
posite considered is particulate with an aspect ratio of A = 2 and a critical concen-
tration of ¢ = 0.6. Equation 10.14 is also developed in (78,79).

B + opg = 1
¢ = 1 +9mc ) 0 - —‘L—-ﬁiu% ¢ < ¢ (10.14)
— ’ ® s
L-c % c >

10.4 Conclusion

The general composite analysis presented in Chapter 8 has been successfully sim-
plified in this Chapter to reflect realistically the somewhat limited knowledge avai-
lable in most practice on composite geometry. Standard stiffness-, stress-, and ei-
. . genstrain/stress  solutions for various

j T types of composites have been developed.

STIFF PORE SYSTEM
| The CSA composite especially has been
/ considered - and special attention has

w

been given to the mechanical behavior of
porous materials. Reliable empirical evi-

o

dence compares positively with predicti-

ons made by the simplified theory. It is

demonstrated, how experiments on po-

// rous materials can be used to detect

PA ‘ Y : - T, important composite geometrical informa-
aggregate concentration — ¢ tion.

Figure 10.30. Particulate composite
with shape functions defined by particles  The overall positive expectations build up

of aspect ratios A = 2 and a critical iy ¢his chapter to the simplified theory
concentration of ¢; = 0.6 are further justified in the subsequent
Chapter 11 where theoretical results and experimental data are compared directly.

stiffness (E/Es)

w

CSA,: e(n,c)*e[—lli,c -1 (TROC)

(10.15)

Phase-symmetric: e(n,c) = n*e _l.,l-cJ (CROSS)
n
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11. Theory and experiments

A number of examples are presented in this chapter where experimentally obtained
data for various mechanical composite properties are compared with data predicted
by the simplified method presented in Chapter 10. Predictions of internal stresses
are included whenever such information might be of interest.

Some times the analysis has to be slightly modified in order to consider special
features which apply to composites in practice. Examples are modifications with
respect to interference phenomena, modifications with respect to incompletely im-
pregnated pore systems, and modifications with respect to defective phase contacts.
These topics are considered in the following introductory section.

11.1 Introduction

11.1.1 Non-flexible geometry - interference

We recall from the introductory section of Chapter 2 that flexible phase geometries
are considered primarily in this monograph which can adjust themselves (naturally,
by compaction, or otherwise) to form a tight composite. When phase geometries
are not flexible, air voids are inevitable at certain concentrations. For example,
in a material reinforced by non-flexible particles (phase P) voids will turn up at
concentrations ¢ > ¢, Where the latter concentration is the packing concentration
of particles (as packed in the composite) where a stable phase P structure is
formed.

FLAT PARTICLES, A« 1 LONG PARTICLES, A » 1 A number of theories (ex 80’81)
— J have been developed by which the
0 packing concentration can be estima-
ted. For uni-sized discs and fibres
: very rough estimates can be made
from Equation 11.1 based on the figu-
re presented close to this paragraph. In
practice considerably higher packing concentrations can be obtained by modern
grading and vibration techniques.

/4> ; A > 1

n 2443 _ =
Cg= 2= A Cg= k%3 = UA?

(11.1)

C

oAck rough estimate

The amount of voids, cyop = Vyep/ (Vs+Vyon), relative to the original phase S vo-
lume can be expressed as follows,
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€ = Chx ) >

c
?
Com = | €1 - ¢

) Crack (11.2)
PACK
0 i C < ¢

There is some resemblance between Ceacx and the critical concentration ¢, where
phase P leaves the state of being 100 % discrete. In the present context we may
put Cs =~ Cpucx assuming that the state of interference is considered to be a so-called
stable interference where large areas of contact between neighbouring particles are
"glued" together by a very thin layer of a sufficiently strong phase §S.

60 1.0
Mp
- % .
[ =
@) O
40 —
| O
=
%) = c
=z ’ L s
i a g
L 20+ <
= < /
w ) B
o.L - -1.0 J»

05 1.0 0.5 1.0
PHASE P CONCENTRATION — ¢ PHASE P CONCENTRATION — ¢

Figure 11.1. Particulate composite with Figure 11.2. Particulare composite with non-
non-flexible particles. (u,’, u0) = (1,-0.5 ), flexible particles. (u,%pus) = (1,-0.5), Cpicx
Crck = 0.7. (E,E,) = (25,75) MPa. = (0.7.

0.0 0.0

The analysis of composites with non-flexible phase P is not different from the ana-
lysis of composites hitherto considered when ¢ < Cs (= Concw). When ¢ > ¢
phase geometry is frozen to stay as it is at ¢ = Crack Where the MM-geometry is
just about to be encountered. The volume concentration of phase P (relative to
phase S) can only increase by replacing some phase S material with voids. Obvi-
ously the stiffness of phase S now becomes that of a porous phase S. We introduce
effective stiffness geometric properties as presented in Equation 11.3 assuming
that pores are spherical (other void shapes can easily be considered; to do so, how-
ever, is too speculative). We recall that composite geometry stays at the geometry
defined at ¢ = ¢,,. Then the analysis proceeds as explained in Equation 11.4 fol-
lowing the general principles presented in this monograph. As a consequence of
the frozen MM-geometry of the composite stiffness approaches 0 as ¢ approa-
ches 1.
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An example of a stiffness analysis of particulate composites with non-flexible multi
shaped particles is demonstrated in Figures 11.1 and 11.2, 10% short fibres (A =
2.5) + 90% spheres (A = 1).

1 -¢ 1 +¢
E&EFF = Esl +““—CVOD ; Ny = nl — CVOD
Yo Vo (11,3)
Pp g = /'LP(CPACK) ; Psprr = H’S(CPACK) = 0 ¢ > Crack

GEH«' =05 l:luP,EFF * \/ﬂi’,EFF * 4nm(1 B 'u’P.EFF)

E=E P * 0EFF[1 + cPACK(nEFF - D] c > c (11.4)
e R eE'FF - CPACK(nEFF - 1) ’ e

In most practice the interference phenomenon is of theoretical interest mainly. For
a number of reason we do not want composites with self-inflicted voids. Much ef-
forts are made to produce particle size distributions such that voids can be avoided.
In some special cases, however, where weight and heat insulation are principal
design parameters such voids may be desirable. This feature is discussed in Section
11.5.

11.1.2 Incomplete impregnation

If a composite is made by impregnation of a porous material, then the impregnant
(phase P) may be porous itself for a number of reasons. Shrinkage of the impreg-
nant, for example, may cause this phenomenon. In this case phase P appears as
a porous material the effective stiffness property of which can be approximated
as shown in Equation 11.6 with void ratio and degree of impregnation defined in
Equation 11.5. Spherical void shapes are assumed. Other shapes can easily be con-
sidered. However, to assume void shapes others than spherical might be too specu-
lative.

volume of impregnant

= s d 10 nati
B vore volime Is degree of impregnation (11.5)
Coop =1 - B is void ratio in impregnant
1-c¢ i B
E, _=E YP = F = = (11.6)
P.EFF Pl o+ cvom P2 N B nEI'T n2 _ ,8
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11.1.3 Incomplete phase contact

For several reasons perfect contact between phases in a composite material may
be destroyed. Impurities on aggregate, bleeding, early age volume changes, and
particles interference in concrete, for example, may cause this problem. It is justi-
fied in Section 9.1.2 that missing phase contact in particulate composites with com-
pact particles can be considered approximately in a stiffness analysis by replacing
the stiffness ratio, n, with an effective stiffness ratio, nge. In a slightly modified
version the procedure is demonstrated in Equation 11.7 determining the stiffness
of a CSA, composite with a degree of defective particle surfaces (S) defined as
X = Spereer/S. Defective areas are considered with no voids associated.

A + My

1 + An,,

A=(0-09/(1+c¢)
with Mo = (1 = x% (11.7)
a

= max[l, 9/(5 + n)]

11.2 Various porous materials

o~
Q

. Experimentally determined stiffness
< data of porous materials are compared
g in this section with data described by
' Equation 10.9 in Section 10.3.4. Geo-
) °
3 parameters (u,’,c;) and solid phase
§ 20+ stiffness (Es) are deduced from the ex-
= perimental stiffness data using the re-
(/) 3 ° ° °
O \a gression technique also explained in
a N Section 10.3.4. In the following figu-
g res experimental data and theoretical
o =+ - data are presented by dots and lines
POROSITY - ¢ respectively.
Figure 11.3. Stiffness of tile: (uy, c,) =
0.9, 0.53).

11.2.1 Tile

Young’s modulus of tile has been determined experimentally in (82) as shown
by dots in Figure 11.3. The theoretical stiffness presented is based on E; = 38000
MPa, p,° = 0.9, and ¢, = 0.53.
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11.2.2 Porous magnesium oxide

Experimental data on Young’s modulus of porous magnesium oxide (MgQO) were
collected in (77) from six sources representing a variety of processing techniques.
Porosities considered were ¢ < 30%. It was shown that all these data were fitted
very well by the exponential expression presented in Equation 10.11 with H =
4.74 and E; = 3.2%10° MPa. The data such described are digitalized as presented
in Figure 11.4 with dots. The theoretical data are based on the geometrical infor-
mation (p,°,¢,) = (0.24,0.88). It is noticed that the shape factor obtained complies
well with p,° = 0.26 deduced by Equation 10.12.

11.2.3 Porous aluminum oxide

In a similar experimental analysis of the elasticity of porous aluminum oxide
(ALQ;) it was shown in (83) that experimental data from 11 sources with porosi-
ties ¢ < 40 % were very well fitted by the exponential expression in Equation
10.11 introducing H = 3.95 and Eg = 4.1*10° MPa. The data such described are
digitalized as presented in Figure 11.4 with dots. The theoretical data are based
on the geometrical information (u,°,¢;) = (0.35, = 1). It is noticed that the shape
factor obtained complies well with u,° = 0.34 deduced by Equation 10.12.

'~
w
o

40

SYSTEM 1:
SOLID: AlyOs PHASE S: CEMENT GEL SOLID
DASHED: Mg0 PHASE P: GfL PORES + CAP PORES

SYSTEM I:
PHASE S: GEMENT GEL
~ PHASE P: CAP PORES
0 = 0

0.5 1.0 0.0 0.5 1.0
] ‘ POROSITY - ¢ . TOTAL OR CAPILLARY POROSITY
Figure 11.4. Stiffness of porous materials  Figure 11.5. Young’s modulus of hardened
made of polycrystalline oxides. Portland cement paste.

YOUNG'S MODULUS — E(GPa)
S

STIFFNESS — E (10°MPa)

11.2.4 Hardened cement paste

The data presented in Figure 11.5 illustrate the influence of porosity (evaporable
water measurement) on elasticity of nearly fully hydrated hardened portland cement
paste (HCP). The experimental data presented in the figure are from (75, cement
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15366). They are related to two pore systems defined in (24). System I: Solid
phase (S) is made of cement gel solids, the pore phase is the total of cement gel
pores and capillary pores. System II: Solid phase is cement gel, the pore phase is
capillary pores. The theoretical data are based on the following information.

Composite:  System I: (1°, c;) = (0.33, =~ 1)
System II: (u°, ¢p) = (0.4, =1)
Phase S: System I. E; = 80000 MPa (gel solid)
System II: E; = 32000 MPa (gel including gel pores)

11.2.5 Lime mortar

An examination of lime mortars with porosities of approximately ¢ = 0.3 was re-
ported in (84). Various material properties (such as stiffness, frost resistance,
and capillary suction) were measured and related qualitatively to the microstructure
of material tested. Different microscopical techniques were used to characterize
the microstructure for homogeneity and coherence on a scale from H = 1 (bad)
to H = 5 (high quality). The stiffness data are presented in Figure 11.6.

10 The idea was suggested by Nielsen
] ) (85,86) that the qualitative evaluation

¢ 7  made in (84) can be quantified by Equati-
4 1

on 10.9 with ¢, = 1 and shape factors y,°
= H/5 introduced. This means that high
quality mortars are assumed to have sphe-
rical voids, while bad mortars have flat
voids. Nielsen’s description of structure
versus stiffness made in this way with
Ey = 16 GPa is illustrated in Figure 11.6

Microscopical impression -+~ reproduced from (85). The ideas of Niel-
Figure 11.6. Young’s modulus of lime  sen were evaluated positively in an image
mortars as related to structure (micro- analysis (87) on planar sections made

scopical impression H). on some of the mortars considered in
(84). This analysis seems to indicate that it might be worthwhile pursuing the pos-
sibilities of using image analysis in quality control of porous materials.

Stiffness — GPg

0

11.2.6 Summary - porous materials

Stiffness data obtained from tests on porous materials have been shown in this
section to be very well described by the theoretical Equation 10.9. The geometrical
information used indicate that the pore systems become finer and more complex
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(decreasing p,°) as we go from tile (u,> = 0.9), to HCP(cap-por) (0.4), to
HCP(tot-por), to ALO, (0.33), to MgO (0.24). For comparison the theoretical
descriptions made in Sections 11.2.1-11.2.4. The results are presented in Equation
Equation 11.8. The lime mortar results from Section 11.2.5 are not presented in
Equation 11.8 because only one porosity was considered. Atan average, however,
one may expect that lime mortar behaves approximately as HCP.

e = (1 -1.9¢)" ; Tile (u7,c) = (0.9,0.53)

e = (1 -¢)* s HCP(cap-pore) (us.c,) = (0.4,1) (11.8)
e = (1 - ¢)*° ;s HCP(tot-pore), AL, (u3.c,) = (0.33,1)

e = (1 -1.14¢0)0** ;  MgO (u3,c) = (0.24,0.88)

The expressions in Equation 11.8 are ranked with respect to increasing powers
of the stiffness descriptions. It is observed that this ranking is the same as a ra
nking with respect to decreasing shape factors. This feature can be taken as an
experimental justification of the theoretical statement made in Section 10.3.4 th
at stiffness of porous materials can be expressed by simple porosity relations ra
ised to a power which increases with increasing complexity (away from spherical)
of pore geometry.

It is interesting to note that the third expression in Equation 11.8 is numerically
identical to an empirical expression suggested in (88) to predict the elasticity
of pore systems created by incomplete compaction of cement concrete. Thus, it
seems that pores created by incomplete compaction of concretes have a geometry
the complexity of which is similar to the geometry of the total pore system in
HCP.

11.3 Sulphur impregnated cement/silicate system

Figure 11.7 illustrates the influence of pores (measured by Helium comparison
pycnometry) on the elasticity of autoclaved ("empty") systems made of water and
equal amounts of portland cement and silica powders (8i0,, max diameter 0.15
mm) - and such systems impregnated by sulphur. The experimental data are from
(89) and (90) respectively. The theoretical data shown are predictions by the
simplified composite theory previously presented with the geo-parameters e’y Coy
and solid phase stiffness E, obtained by regression of experimental stiffness data
from the empty system. The additional information on type of composite (phase
symmetry) is estimated as no further geometrical information can be obtained from
(89,90).
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Composite:  Phase-symmetric CC-CC with (1, Cp) = (0.45,1)
Phase S: E; = 36000 MPa
Phase P: E, = 16000 MPa, 8 = 0.82 (B, = 11000 MPa)

The stiffness of Sulphur is calculated from information presented in (91) for
Young’s moduli of polycrystalline sulphur. An inspection of the test results in (90)
reveals that the degree of impregnation

: ROTTEDLINES varies non-systematically between 0.75
g and 0.87 with an average of 8 = (.82
%3 from which the effective stiffness of
N N Sulphur is calculated by Equation
“ »\\waEGNAT =D SYSTEM 11.6. (The incomplete impregnation

' was due to shrinkage of sulphur when

4 | ““‘*’f-i:::_\\}%\ solidifying).

é 1 e sysm& Remarks: It is noticed that similar or-

% ) ders of magnitudes apply for the shape
o factor u,° and stiffness for the pore

o] 0.15 1>.O

POROSITY - VOL-CONCENTRATION system considered in this example and
Figure 11.7. Young’s moduli of porous and  ¢o the HCP pore system II in Section
Sulphur Hmp regnated autoclaved Portland 11.2.4. This observation agrees with
cement/silicate systems. i i

the expectation one might have that

pores defined by Helium comparison pycnometry will not include gel pores. These
pores are included in the "solid phase" of the system considered which has a
stiffness of similar magnitude as cement gel in Figure 11.5.

The assumed composite geometry (phase-symmetric CC-CC) of the system con-
sidered is justified implicitly by the excellent simultaneously agreement between
experimental data and theoretical data demonstrated in F igure 11.7 for both empty
and impregnated pore systems.

11.4 Salt infected bricks

The thermal expansion of salt infected (impregnated) bricks shown in Figure 11.9
has been determined experimentally in (92) as related to porosity and weight
amount of salt (NaCl). The theoretical data shown are based on the following
information:

Composite: CC-CD with (", pe, c) = (0.9, 0, 0.53), (cs = 0)
Phase S (Tile): E; = 38000 MPa, A\, = 6.0%10°/°C
Phase P (Salt):  E, = 20000 MPa, \, = 3.8%10%/°C, 8 = 0.15-0.25
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YT / X The thermal expansion coefficients (\)
of plain rock salt and plain tile were
2 s L determined in (92). The Young’s mo-
2 R dulus of salt is estimated from the lite-
% /“jo/ ’ . rature (93). The geometrical data
w00 (w°, ¢p) and the Young’s modulus for
§ tile are reproduced from Section
5o 11.2.1. The additional information of
oL shape factor u° = 0 is estimated from
DASHED: 15 e knowing that the major part of pores

~-1.0

0.0 1o in tile are continuous. We may think

0.5

PHASE P CONCENTRATION — ¢ ¢ fls on a string pore svstem

Figure 11.8. Shape functions for tile: (7, ~ ©' @ Pearis String pore syster

uss ¢) = (0.9, 0.0, 0.53). with ps® = 0. It is noticed that g in
Figure 11.8 has been truncated to have

max(us) = 1 as required in Equation 10.1.

An inspection of the test results in (92) reveals that the degree of impregnation
varies non-systematically as indicated with an average of 8 = 0.20 from which
an effective stiffness E, g = 2200 MPa of the pore system can be calculated from
Equation 11.6.
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Figure 11.9. Thermal eigenstrain (/C°) of Figure 11.10.  Predicted thermal
salt infected tile. eigenstresses (/°C) in salt infected brick.
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Remark: The assumed geometry of considering tile as a CC-CD composite with
shape functions from Figure 11.8 is justified implicitly by the excellent agreement
between experimental data and theoretical data demonstrated in Figure 11.9. The
internal stress state calculated for a degree of impregnation, 8 = 0.25, is shown
in Figure 11.10.
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11.5 Non-flexible particles in particulate composite

The experimental data shown in Figure 11.11 are from tests reported in (%4)
on cement mortars made of cement paste mixed with compact, nearly uni-sized
coarse quartz particles, which interfere at c,,o = 0.55. It is assumed that the com-
posite considered is basically a CSA, material with (e’ 1Y) = (1,-1). The method
of analysis used to predict stiffness (solid lines) is the one outlined in Section
11.1.1 where particulate composites with non-flexible geometries are considered.

40

50 .
] 1 =
~ S DENSITY: s
R > . POROSITY ds=2000 kg
= dp=900 kg e
O & ) STIFFNESS:
% & Es=25 GPa
O E,=8 GPa
| @ PACKING:
& i ' Coack=0.6
) \
() 25 = /0\207 [
L a N /
Z &)
B ~ STIFFNESS
— 0]
—
% 0
=
. L
QUARTZ SAND IN HCP . =
Conek = 0.55 DOTTED: H/S =
o 0+ —~
1 800 o}

.0 1.0

PHASE P CONCENTRATION — o COMPOSITE DENSITY — d(icg/m?)
Figure 11.11. Sand in HCP. (E, E,) = (75, Figure 11.12. Ligth clinker concrete. Mate-
25) GPa. (u'us) = (1,-1). rial properties as indicated. (u°,ps) =
(1,-1).
The experimental data shown in Figure 11.12 are from (95) where the phenome-
non of interference has been used deliberately (weight, economy, heat insulation)
in design of light weight concrete. The method of analysis used for stiffness
prediction (solid lines) is the same as used in the previous example. It is assumed
that the concrete considered starts up at ¢ = 0 being a CSA, composite with
(e’ 1s") = (1,-1). A packing concentration of Coack = 0.6 (= ¢,) is a realistic
estimate for the packing of light clinker. Density of composite is d = c*d, + (1-
¢)*d;. Porosity indicated in the figure is relative to composite volume, meaning
porosity = Vyop/(Vs+V,o+ Vi) = (c-Coack)/C.
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11.6 Defective phase contact in concrete

Hansen suggests in (96,97) that stiffness of concrete (with stiffness ratio n
> 1) can be predicted by the lower P/H bound as indicated by dots in Figure
11.13. Hansen’s suggestion is strongly justified by experimental data. Implicitly
Hansen’s observations seem to indicate that concrete is an anisotropically layered
composite. Concrete, however, is a macroscopically isotropic composite similar
to a CSA, material (spheres in a continuous matrix). Stiffness should therefor be
predicted close to the lower H/S-bound also indicated in Figure 11.13,

One might state that this discrepancy in observations can be explained as a conse-
quence of defective phase contacts between aggregates and mortar. The theoretical
data shown in Figure 11.13 indicated by a solid line are calculated by Equation
11.7 assuming that the concrete considered behaves as a CSA, material with defec-
tive phase contacts. Further information used are:

Defective phase contact: x = 20%
Phase S (Mortar): Es = 30000 MPa
Phase P (Coarse aggregate): E, = 70000 MPa

Stiffness such estimated are order of magnitudes usually met in concrete technolo-
gy. The degree of defective phase contact assumed between coarse aggregate and
mortar agrees with observations made by Nielsen in (98) on normal concrete.

It seems then justified by Figure 11.13 that the "Hansen’s paradox" can very well
be explained as the result of defective phase contacts.

60 40
2
(@] H/SL ©
a |
40 — .- /w/ LUl)J
I /.//‘/ g
A P 220
L -
=z
™ -
L 20 %
I &
DOTS: P/H, AND S
HANSENBE PREDICTION
SOLID: PREDICTION WITH INITIAL DEFECTIVE BOND
DEF. RHASE CONTACT AREA: yagr = 200/0
0
0
0.0 02 0.4 06 %EDUCT)ON oF DEFECTSISE BOND AREA o
COARSE AGGREGATE — ¢ - o/o
Figure 11.13. Stiffness of concrete with Figure 11.14. Gain of concrete strength
defective contact berween coarse aggre- obrained by reducing defective bond are-

gate and mortar. as on coarse aggregates.
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11.6.1 A strength mechanism for concrete. When stiffness reduction is known as
a function of increasing defective bond areas then strength reduction can be estimated
as follows using some ideas, suggested in (71) on the basis of the well-known *Com-
pliance calibration equation’, see (99) for example. The ideas are subsequently de-
monstrated on a CSA, composite subjected to tensile stress o. Defective bond areas
are considered as a crack system expanding along the bond area. For such a crack
system the energy involved in crack expansion can be expressed by the *“Compliance
calibration equation’ formulated as shown in Equation 11.9a with E, from Equation
10.7, and I" denoting Young’s modulus and the so-called strain energy release rate.

Equation 11.9a can be organized as shown in Equation 11.9b performing the differen-
tiation of E with respect to crack area. Strength (o) can then be predicted introducing
a failure criterion which tells that failure will occur when I' becomes critical (T' =
Pcr). Relative strength, ocg/0cg rer iS given by the latter expression in Equation 11.9b
where I, has been eliminated introducing the reference strength (0crrur) at areference
degree of defective aggregate surface (xgee)-

T' = Strain energy release rate
I' « 02___._d(a1,}/9E) where |B = -3_;;_0 = Crack area per vol-unit (11.92)
R = Radius of particle
TE,  Rnax™ 1 -4 0, _ Avng, (oo (11.9b)
o 3¢ (A + nEFF ’ UCR,REF A+ nEI-F,REF Xrer

An example is presented in Figure 11.14 where Equation 11.9b has been used to esti-
mate which strength gain can be expected by reducing the defective bond areas on
coarse aggregates in a concrete with (c,n) = (0.5,2.5) where ¢ and n are volume con-
centration and stiffness ratio respectively of coarse aggregates.

It is emphasized that predicted strength must be truncated at a certain level determined
by the theoretical (un-cracked) bond strength. It should also be noted that strength in
the present context refers to bond failure. Other failure mechanisms may act simul-
taneously.

11.7 Hydrating cement paste and concrete

The stiffness of a hardening cement paste and concrete can be calculated from
Table 11.1 which combines the volumetric models of these materials presented
in Section 2.1.2 with the geometry of CSA, composites. The exponent Q
introduced to describe the stiffness of HCP with W/C > 0.38 considers empirical-
ly that the geometrical complexity of basic paste voids decreases with increasing
degree of hydration.

Theoretically predicted Young’s moduli by Table 11.1 and experimentally determi-
ned moduli from (100) are compared in Figure 11.16. The degree of hydration
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shown in Figure 11.15 is fitted by the g(t)-expression presented in Table 2.2 from
experimental data reported in (100).

Recently the influence of hydration on the stiffness of HCP has also been studied
by Bentz in (101) using a special computer simulation technique, and by Lok-
horst & Breugel (102) considering HCP as part of concrete modelled as a laye-
red composite.,

CONCRETE
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A+n
E=EHCP1+An

HCP

with n =

HCP

W/C > 0.38 E,, =E, «A2_ with Q =7 - 530)
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A E
W/C < 0.38 By = Eyow 2omt " s iy o Bow 17

sk L R,
e o 1 * ACEAﬂ BAS EBAS g(t)
Basic paste Epis = 32000%g(t) MPa

Table 11.1. Stiffness of concrete and HCP as related 1o volume parameters from Table

2.1 and stiffness of basic paste. It is assumed that un-hydrated cement has a Young’s
modulus of 55000 MPa,
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Figure 11.15. Degree of hydration, g(t), Figure 11.16. Concrete with (W/C, A/C)
defined by (r,8) = (0.625 days,0.95). = (0.45,5.21), E, = 50000 MPa, and de-
gree of hydration from Figure 11.15.
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11.7.1 A strength mechanism: Just for the sake of curiosity, a crack mechanical
theory has been presented in (40,44) by which compressive strength o, of HCP can
be related to total porosity (cr) and relative degree of hydration (q), see Table 2.2.
The result is presented in Equation 11.10 and illustrated in Figure 11.17.
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4501 - ¢,..) MPa art q > (W/IO)2 . 2.35 11.10
S = ror with B = __2°2 ____ (11.10)
0 at g < (WO)/2 [q@®) - 0.19]°%

11.8 Conclusion

In this chapter results of the simplified composite theory presented in Chapter 10
have been successfully compared with experimental results reported from the
literature. Composites of different geometries have been considered such as
hardened cement paste, salt infected tile materials, impregnated silicate systems,
concrete, and cement mortars made with sand of discontinuous size grading. Stiff-
ness was considered together with other composite properties such as thermal
expansion and internal stresses. Also the effect of defective phase contact as well
as interference between non-flexible particles on stiffness properties of composites
have been studied. Special topics considered are stiffness of porous materials
relative to pore geometry.

Summary: All together it can be concluded that the simplified prediction method
presented qualifies as an efficient tool in the analysis of various practical problems
with respect to the mechanical behavior of composite materials. Combining this
statement with the positive indications
made in Chapter 10 on the many types
of composite classes the theory can
handle, is seems that the simplified
composite theory presented in Chapter
10 is well qualified as the basic instru-
ment in further studies of the behavior
of composite materials. Examples,
such as rheology and other physical
properties are considered in the subse-
quent Chapters 13 - 15.
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Compressive strength — MPa
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logio(t, days) 1 Two further arguments for this state-
Figure 11.17. Compressive strength of @  ment is presented in the subsequent
HCP with W/C = 0.45 and degree of  Chapter 12: 1) The theory qualifies as
hydration from Figure 11.15. a reliable diagnostic instrument for
evaluating experimentally, semi-theoretically, and theoretically (SCS) obtained pre-
diction methods with respect to reliability and underlying geometry, and 2) The
theory has potentials with respect to design of composites.
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12. Diagnostic aspects of theory

The principles of the present theory to work with global descriptions (6) of compo-
site geometries have been successfully justified in previous chapters. Potentially
these principles qualify the theory also to be used as a "diagnostic tool" in two
areas of importance in modern composite theory: 1) Examination with respect to
isotropy and geometry of empirical or seme-theoretical composite expressions -
and 2) Design of composite materials. These two features are considered in this
chapter.

SIMPLIFIED COMPOSITE GEOMETRY Remark: The composites hitherto
Phase P trend: C - D considered in this monograph

PHASE P have geo-paths going from
PHASES CSA; to CSA, geometries, which
cD MM  DC_ - is the default path considered. The

P 1¢s phase numbering P,S have been

FEEER DISCRETE PHASE Eooutrry > THASE chosen consistent with this con-

Figure 12.1. Stylized illustration of a composite cept.

with reversed geo-path. Phase P geometry  1[p this chapter where diagnostic
changes from Cat ¢ = Oto D at ¢ = I. aspects of the theory are conside-
red we must be prepared to meet reversed geo-paths where composite geometries
change along paths going from CSA; geometries to CSA, geometries, see Figure
12.1. There are no difficulties in using the theory hitherto developed on composites
with reversed geo-paths. Some obvious changes of signs for shape functions turn
up - and the critical concentrations change their relative orders of magnitudes,
meaning that the default ¢, = ¢, becomes ¢, < c.

12.1 Examination of stiffness expressions

A number of semi-empirical and semi-theoretical expressions are suggested in the
literature for stiffness prediction of composites. Very often these expressions are
not well documented with respect to isotropy and consistency of underlying geome-
tries. In other words:

- They are not guarantied, not to violate the bounds of Hashin/Shtrikman’s, meaning
that isotropy is not guarantied.

- They are not guarantied to have underlying geometries which are invariable with res-
pect to stiffness ratios, n.

Methods are developed in this chapter by which prediction methods can be checked
with respect to isotropy and geometry. The frame of geometrical reference used
is the concept of organic geometries used throughout this monograph. This means
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that geometries, successfully checked are those by which the present analysis and
the analysis being investigated will predict the same stiffness. Implicitly this state-
ment means that each stiffness expression which passes the checks can be taken
as a justification of the composite analysis developed in this monograph.

Remark: For SCS-expressions being tested, a special remark should be made: We
re-call that strict cylindrical particles (as used in SCS-analysis) do not comply with
the organic geometry considered in this monograph. Therefor, we cannot expect
composite geometries to be fully independent of stiffness ratios unless the
SCS-expressions considered are based on particles defined as explained in the
introductory remarks to Chapter 7, meaning aspect ratios ~1/4 < A < =4 or
extreme stiffness ratios, n —> 0 and n — .

We can expect, however, that reliable composite types (DC-CD, MM-CD, a.s.0.)
are revealed - together with accurate shape factors, namely those applying to the
particle shape used to establish the SCS-expression.

It is demonstrated in Chapter 15 that the methods developed in this chapter can
also be used to evaluate expressions suggested to describe other physical properties
of materials such as conductivity and dielectricity.

12.1.1 Isotropy check

Stiffness expressions can be tested for consistency with respect to isotropy by the
following expression,

_ [n—c(n—~1)]em—n
B 1+c(n—1)~em

s isotropy check (12.1)

which comes from Table 10.3 solving the stiffness expression (e) with respect t
o the geo-function (6). The consistency considered requires that the geo-function
obtained respects n < 6 < 1 when n < landn = 6 = 1 whenn > 1, see
Figure 4.2 simplified with x, = x, = 1.

Examples

Re-written versions of three of the more well-known semi-theoretical stiffness pre-
diction methods are presented below. Hirsch (103)/Dougill (104) and Popo-
vicz/Erdey (105) suggested that composite stiffness can be determined from
the Paul/Hansen’s lower bound e, and Paul/Hansen’s upper bound e, (Equation
12.2) as shown in Equation 12.3. The expression in Equations 12.4 was suggested
by Counto (106) and by Lokhorst & Breugel (102). These three methods have
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recently been reviewed in (107) with respect to their quality to predict stiffness
of fired clay-perlite composites. The theoretical expression added in Equation 12.5
is deduced from the SCS-analysis of Budiansky (13) on a compacted spheres com-
posite. The results of isotropy checks on these four expressions are presented in
Figures 12.2 - 12.6 where admissible 6-variations are indicated by shaded areas.

e, =1+mn-Nc ; e = " (Paul/Hansen) (12.2)
- n-m - 1)

L oal-e o w<a<=1)  (HirschiDougill

Cor €y e (12.3)

Cpy = _;:(e" + e, (Popovics/Erdey)

L Jo + e (Counto/Lokhorst-Breugel) — (12.4)

st 1+ - 1ye

€. = %[(1 - n(l - 2c) + ‘/(1 TP < 207 + 4n| (Budiansky) (12.5)

10 - 10
© @
| |
=z =z
s o
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Z e
@ @
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O=1
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1 5 10 0 1 10
STIFFNESS RATIO — n STIFFNESS RATIO - n

Figure 12.2. Hirsch/Dougill with o = Figure 12.3. Hirsch/Dougill with o =
0.5. (For other o the geo-functions fall 0.6.

outside the shaded area).

It is obvious that only the Hirsch/Dougill expression with ¢ = 0.5, the Popo-
vicz/Erdey expression, and the Budiansky expression qualify as reliable for stiff-
ness prediction of isotropic composites. The expression suggested by Counto and
Lokhorst/Breugel is clearly influenced by some sort of anisotropic sub-modelling,
see Section 5.3.3.
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Figure 12.4. Popovics/Erdey. Figure 12.5. Counto and Lokhorst-
Breugel

10 ] Remark: The review (107) of stiffness
L expressions previously referred to includes
the Maxwell model (108) for particula-
te composite with spheres. This model ap-
plies for diffusion properties, not for stiff-
ness. In the present isotropic check of
composites the Maxwell model comes out
with a geo-function of # = 2 which is ex-
-z : actly the value expected for an expression
o 7 predicting diffusion properties of the com-

STIFFNESS RATIO — n posites considered by Maxwell, see Chap-
Figure 12.6. Budiansky ter 15.

o

GEO—FUNCTION - @

@
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12.1.2 Geometry check

Stiffness expressions can be checked as follows with respect to geometries. The
geo-function applied in this monograph is examined in details as shown in Equation
12.6. Specific shape functions (u, and us) can be derived from this expression if
geo-functions (6,,6,) are introduced as they are determined by Equation 12.1, at
two stiffness ratios (n,,n,). The results are presented in Equation 12.7 from which
the composite geometry can be evaluated.

As previously indicated, shape functions determined must show invariance with
respect to stiffness ratios chosen if the stiffness expression investigated can be con-
sidered fully consistent with respect to geometry. For numerical reasons the well-
known solutions (psus) = (1,-1) for the CSA, composite with § = 1 - and
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(ppspis) = (-1,1) for the CSA, composite with § = n cannot be predicted by Equa-
tion 12.7.

1
b= fzf{ﬂp “ g+ G, + e - dn( = g, - ) =
6 ~ 0, + np) - n(l - p, ~ p) =0 = (12.6)
_ =) <60 - ) n(l- ) - 60 - npy)
Hs n(l - 8) > H n-0

np0, - 0) + 6n(l - 6) - Fn(l - 0)

Bp =
n!nz(oz - 01) * 01n2(1 B 02) - 02”}(1 - 01) . (12,7)
_on(l =) - 6,6, - p) ; geometry check
Mg nl(l - 91)
Examples

The following checks are the results of running Equation 12.7 with various combi-
nations of stiffness ratios. The geometry check of the Budiansky’s expression pre-
sented in Figure 12.7 shows that the composite considered by this expression is
a phase-symmetric DC-CD composite changing its geometry along a disc path -
with P spheres in a continuous phase S at ¢ = 0 to discrete phase S spheres in a
continuous phase P at ¢ = 1.
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0.0 0.5 1.0 0.0 0.5 1.0

VOL—CONCENTRATION — ¢ VOL~CONCENTRATION — ¢
Figure 12.7. Budiansky: Geometry Figure 12.8. Popovics/Erdey:Geometry
check. check.

The geometry check of the Popovics/Erdey expression presented in Figure 12.8
shows that the composite considered by this expression is a phase-symmetric MM-
MM composite changing its geometry along the path of PS-frameworks - with con-
tinuous phase S fibres in a continuous phase P at ¢ = 0 to continuous phase P fib-
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res in a continuous phase S at ¢ = 1. (We notice that the geo-path associated with
Figure 12.8 is reversed describing geometries on a path going from CSA; to
CSA;).

A geometry check of the Hirsch/Dougill expression shows a strong n-dependency
on shape functions, (the results of a geometry check become completely un-reaso-
nable). The following examples illustrated in Figure 12.9a and 12.9b illustrate the
influence of the stiffness ratio: At n = 50 the Hirsch/Dougill model corresponds
to a nearly CSA, composite. At n = 1/50 the model corresponds to the "opposite”
of this material, namely a nearly CSA, composite. It is obvious that such geometri-
cal modelling is no good.
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Figure 12.9a. Hirsch/Dougill stiffness Figure 12.9b. Hirsch/Dougill stiffness

prediction with stiffness ratio, n = 50. prediction with stiffness ratio, n = 0.02.

12.1.3 Summary

The stiffness estimates considered in this section are checked with the results sum-
marized in Table 12.1.

METHOD - Hirsch/Dougill | Popovics/Erdey
¢+ CHECK (a = 0.5)

Counto/Lok-
hurst/Breugel

SOtOy S — ——— = =
Geometry - + (rev) - +

Table 12.1 Summary of check results for methods considered. Good results and less good
results are denoted by "+’ and -’ respectively. Reversed geo-path is denoted by ‘rev’.
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12.2 Aspects of materials design

Equations 12.1 and 12.6 can be used to suggest types of composite geometries
which will produce pre-described composite Young’s moduli. The procedure to
follow is summarized in the algorithm presented in Equation 12.8 with pre-descri-
bed quantities indicated by *. As usually two materials, phase P and phase S, are
considered with Young’s moduli E, and Eq respectively with stiffness ratio n =
E,/E,. The first term of the algorithm is the geo-function value at ¢* determined
by Equation 12.1. The second term is shape function value p" at ¢c* determined
by the third expression of Equation 12.6. The simplified shape functions have been
used with function values related by u," = a - us” where the geo-path factor a =
e’ + us’, see introduction to Chapter 10.

Pre-described Young modulus is e = E*/E  at ¢ = ¢*
9 = [n-c'(n-1le* -n
1L +c(n-1 -e*

. nl -a + 6@ - 6% . «
= : = a —_
s 61 - 1) Hr s

(12.8)

Remark: We notice that a number of composite geometries are suggested by Equ-
ation 12.8. For the simple geometries considered in Section 10.1 geo-paths are
defined for any 0 < a < 1. The number of geometrical possibilities is reduced
for each additional pre-described composite property. Potential processing techni-
que must also be considered in this context. For example, composites produced
by impregnation of porous materials exclude DC-DC geometries.
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MM MM
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Figure 12.10. Example 1: Geometry
of composite for which pre-described
Young’s modulus can be obtained

using a geo-path with a = 0.
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Figure 12.11. Example 1: Geometry
of composite for which pre-described
Young’s modulus can be obtained

using a geo-path with a = 1.
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12.2.1 Examples

Two examples are subsequently presented where Equation 12.8 is used to identify
which type of geometry a composite must be given in order to obtain pre-described
composite stiffness properties (Young’s moduli) which, of course must not violate
the H/S bounds presented in Equation 10.3.

T Example 1. Stiffness ratio: n = 0.1, Pre-
\ e described property: Composite Young’s
modulus: ¢* = 0.5 at ¢* = 0.5. Some
results of an analysis with Equation 12.8
\ are illustrated in Figures 12.10 and 12.11.

\ It is noticed that the pre-described Young’s
h modulus can be obtained forming the com-
crelo: ower < posite with a DC geometry (a = 0), and
stors fsher ¢ forming it with a MM geometry (a = 1).

CcD

myS

GEO—PATH

DC .
o ° The latter geometry is to prefer if an ad-
i ditional design criterion is that the compo-

Figure 12.12. Example 2: Geometry of . .
composite for which pre-described  S1t€ geometry must be produced by impreg-

Young’s moduli can be obtained using  nation technique.
a geo-path with a = 0.5.
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Figure 12.13. Example 2: Shape func- Figure 12.14. Example 2: Young’s mo-
tions consistent with geo-path in Figure duli of designed composite.

12.12.

Example 2: Stiffness ratio: n = 100. Pre-described moduli: ¢* = Sat¢* = 0.4
and e” = 30 at ¢" = 0.7.Each pre-described property can be considered individual-
ly as in Example 1. We will, however, add the following pre-description that the
two pre-described Young’s moduli must be based on the same geo-path (the same
processing technique!). It is then tempting to predict stiffness for any P-concentra-
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tion along this particular geo-path. The results of such an analysis, with a geo-path
parameter of a = 0.5, are shown in Figures 12. 12 - 12.14 showing that the pre-de-
scribed Young’s moduli, for example, can be obtained producing a compacted par-
ticulate composite with P fibres of aspect ratios A =~ 3 (see Figure 10.5) which
start growing together at a packing concentration of ¢, = 0.45. (The compaction
ensures a tight composite when ¢ > ¢).

12.2.2 More refined materials design

Theoretically the method suggested above for a simple materials design process
can easily be generalized also to apply for composites not restricted by the simpli-
fied theory introduced in Chapter 10. Implicitly, shape function values can be
determined from Equation 12.6 for any geo-path (us = f(up)) - and the analysis
can be split into a deviatoric and a volumetric part from which we can determine
a number of qualified deviatoric and volumetric shape function values (various
geometry suggestions).

The difficult part, however, is left. How can we attach these values to specific
composite geometries. More geometrical knowledge is required than what is suffi-
cient for the simplified theory. The following future research is suggested in this
area:

- FEM tests on a number of standard composites should be made - from which shape

function values can be deduced at various concentrations - in principles as made in this
monograph for the CROSS composite considered in Section 9.1.4 (and Appendix D).

- This step, of course, has to be made parallel with technology studies on, how to produ-
ce such standard composites in practice.

As an example of more refined design, look at Section 8.1.3 which can be read
as the result of a design process to suggest porous materials with Poisson’s ratios
higher than 0.2 (being the matrix Poisson’s ratio).

12.3 Conclusion

Justifications have been presented in Chapter 11 that the theory developed in Chap-
ter 10 is a qualified basic instrument in further studies of the behavior of compo-
site materials - such as with respect to rheology and other physical properties of
composites. Further qualifications of the theory have been presented in this Chap-
ter 12: The theory can be used also to evaluate semi-theoretical and empirical pre-
diction methods, and it has potentials with respect to design of materials.
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13. Viscoelasticity

Any relation previously developed on geometry, stiffness, stress, strain, and eigen-
stress/strain are further developed in Chapter 14 also to apply when composites
are considered with linear viscoelastic components. The analytical basics for doing
so are certain powerful analogies which exist between the theory of viscoelasticity
and the theory of elasticity. To keep this monograph self-contained with respect
to viscoelastic analysis, including analogies, it has been found appropriate to sum-
marize very briefly the theory of viscoelasticity as it has been adapted by the
author in (e.g. 64,109,110) for the analysis of viscoelastic composites.

Viscoelastic materials are considered which comply with the elastic materials con-
sidered in Chapter 10, meaning that bulk creep and shear creep develops propor-
tionally with Poisson’s ratios keeping the orders of magnitudes =~0.2. Theoreti-
cally it is not difficult to perform a more general analysis (111,112). The
mathematics, however, will increase to a level which cannot be justified by our
present knowledge on the rheological properties of most materials, especially when
composite geometrical aspects are also considered as they are in Chapter 14. The
relevance of assuming an approximately constant Poisson’s ratio in concrete analy-
sis has been further discussed in (113).

Unless otherwise indicated viscoelastic materials are considered with constant
material properties meaning, for example, that Young’s modulus does not change
with time. Most materials behave in this way. One very important group of mate-
rials, however, does not. Portland cement paste and related materials are so-called
aging viscoelatic materials with properties which change considerably, especially
at young ages (< =3 weeks). At more mature ages hardened cement paste (HCP)
and concrete can be considered by easy approximate methods presented in this
chapter together with methods developed for the analysis of non-aging viscoelastic
materials. These methods suffice for most practice. At early age loading, however,
cement paste and concrete have to be considered by the more complex theory of
aging viscoelasticity presented by the author in (109,113,114).

13.1 Stress-strain relations

The stress-strain relation of a viscoelastic material can be expressed in three diffe-
rent ways as shown in Equation 13.1, see (115) for example. The integral
expressions relate strain and stress through the creep function, C(t) defined in
Figure 13.1, or the relaxation function, R(t) defined in Figure 13.2. The creep
function and the relaxation function are related as shown in Equation 13.2.
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N d'o o de
Epk =, 4~ differential representation

dt * &0
e = J C(t - G)g_ng creep integral representation (13.1)
o = J R(t - 0)%61’6 relaxation integral representation

1=-o0

dC(O)dg (13.2)

jC(t ) dR(e)de jR(r 6)

{=~00

[y

ot Creep function 4. Relaxation function
&
Ct) = ¢(1) R =o(t)
/// E
=1 €=
el °
h: A b A A I
0 time - t v 0 Time -t v

Figure 13.1. Creep function is strain of Figure 13.2. Relaxation function is stress
material subjected to a constant stress of in material subjected to a constant strain of
magnitude 1 applied at t = 0. magnitude 1 applied at t = 0.

13.1.1 Analogy Young’s modulus

Very compact and efficient versions of the stress-strain relations for viscoelastic
materials can be obtained by Laplace transformation of Equation 13.1, see
(115,116). This feature has been used by the author in (110) to introduce the
concept of "analogy Young’s modulus" into the theory of viscoelasticity: Laplace
transformed stress and laplace transformed strain are related by the viscoelastic
"Hooke’s law" in Equation 13.3 where the analogy Young’s modulus E* relates
to laplace transformed creep- and relaxation functions as presented in Equation
13.4.

The advantage of introducing the analogy Young’s modulus is that statements or
expressions subsequently presented can be given a very rational and short formula-
tion, especially when viscoelastic composites are considered.
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g = % "Hooke's law"with laplace transformed stress and strain ~ (13.3)

Eqksk 1
EA - EA(S) - k;() -
Y s sC(s)

k=0

= sR(s) Analogy Young's modulus ~ (13.4)

Laplace transformation: In laplace transformation the image function, overlined
f(s), and the object function f(t) are related as shown in Equation 13.5. The
symbols £ and £ mean laplace transformed and inversion of laplace transformed
respectively. The complex variable is denoted by s. « and B are real numbers. The
imaginary unit is denoted by i.

o a+if

fis) = E{f0)} = Jﬂt)e‘”dt . R = LR} = = lim j Rs)e'ds (13:5)

2w )

Information on laplace transformation, laplace transformed, and their inverse can
be found in a number of mathematical handbooks, for example (117,118,
119). Numerical methods are found in (120,121,122). Some general
properties of Laplace transforms and some special Laplace transforms are shown
in Table 13.1.

Elastic-viscoelastic analogy (e-v-analogy)

A number of analogies have been presented (e.g. 123,124,116) which for-
mulate the relationship between quasi-static stress analysis of viscoelastic structures
and similar stress analysis of elastic counterpart structures. The basic version of
these analogies (elastic-viscoelastic analogies, e-v-analogies) can be expressed as
follows: Viscoelastic solutions are obtained from their corresponding elastic
solutions replacing flexibility (1/E) or stiffness (E) in these solutions with the
corresponding viscoelastic integral operators expressed in Equation 13.6.

E do do

LI jC(t _ollly . E= JR(t - @1 (13.6)

The author’s version of the e-v-analogy is the following formulated and applied
in (109,110):
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The Laplace transformed solution to a linear-viscoelastic structural problem is ob-
tained from the corresponding linear-elastic solution by replacing Young’s modulus
with the analogy Young’s modulus presented in Equation 13.4 - and time depen-
dent terms, such as load/stress and displacement/strain, with their respective Lap-
lace transformed quantities.

OBJECT - fit IMAGE - fis) loJECT - fl8 IMAGE - f(s)
c*g() c % 3(s) H(?) (Heaviside) _i_
g@) + h(o) 2(s) + () 5() = _d_gf.’l (Dirac) |1
g(@) * exp(c * 1) g(s - 0 " (n = 0) F(Tnf—ll B S’i
- B 1
gt/c) c = g(cs) e —
- _— nyect n!
gt - 7) e x g(s) t'e G on
[ gy = h(t - Ddr [8(s) * F(s) cos(wr) s
[sar B)s sin(w) S
dg@® . _ B 1, - 1
E2 5 g<0) = 0 |og() e G0
1
‘15[’ - - eﬁ)] G+ 0
A0) = lim[s = f(s)] ; f(o0) = lim[s * fs)] - T
s$m000 520 e - e
b -a (s + a)s + b)

Table 13.1. Some general properties of Laplace transforms and some special Laplace trans-
forms. Gamma function I'(a+1) = faculty a (a!).

Unless otherwise indicated this (quasi-static) version of the e-v-analogy is always
used in the following sections of this monograph. Formally the e-v-analogy works
as outlined in Equation 13.7 where A is the solution to a viscoelastic problem in
the analysis of a viscoelastic body. Time dependent actions are symbolized by P =
P(t). Usually the inversion of the second expression in Equation 13.7 must be
made by handbook tables or by numerical means as previously referred to.
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A, = FIE, P(1)]
Kwsc(s) = F[EA(S), P(S)] E—v—analogy (]3 7)
Awsc(t) = g-x{zstc(s)}

13.1.2 Vibrations

We re-call that the analogy just considered applies strictly only for quasi-static ana-
lysis with any forces of inertia neglected. A general analogy, however, can be
established which considers such forces also (dynamic problems). Keeping the con-
cept of analogy Young’s modulus in mind it can be concluded from
(125,126) that:

The Laplace transformed solution to a viscoelastic structural problem is obtained
by Laplace transforming its elastic counterpart solution, and replace Young’s
modulus with its analogy Young’s modulus.

Obviously the quasi-static e-v-analogy previously considered is included in this
general analogy. Usually the Laplace transforms obtained are rather complicated.
Numerical inversion procedures have to be used. One special dynamic problem,
however, can be solved in a more easy way. As shall subsequently be seen the
important harmonic vibration problem can be solved analytically introducing the
so-called complex Young’s modulus.

Complex Young’s modulus

The special stress-strain relation presented in Equation 13.8 applies to viscoelastic
materials subjected to harmonic stress o, = 0,6 where o, is stress amplitude, w
is angular frequency °, and i is complex unity. The so-called complex Young’s
modulus E. is related to the analogy Young’s modulus as shown in Equation 13.9.
The stress-strain relation is graphically presented in Figures 13.3 and 13.4 with
complex Young’s modulus in algebraic notation as explained in Equation 13.10.

o . . , o, = oexp(iwr)
e = 2 with harmonic stress/strain " ° ,
“ E, g, = eexp(i(wt - 0)) (13.8)
g, = | ;" | is strain amplitude and & is loss angle
C
E. = E(w) = E"iw) Complex Young's modulus (13.9)

5) Angular frequency w = 27/T where T is cyclic (or oscillation) time. It relates to tradi-
onal frequency, f (cycles/time unit) by w = 2f. If time unit is second then f is in Hz.
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E =E, + IE, ; E, E, are real, imag. Young's moduli
|E | =\E. +E} ;  is absolute stiffness (13.10)
tan(6) = EJ/E, ;Is loss tangent

Equations 13.8 and 13.9 are easily verified by the first expression in Equation 13.1
introducing stress and strain from Equation 13.8 and then comparing the results
obtained with Equation 13.4. An example of complex Young’s modulus determined
by Equation 13.9 is presented in Section 13.3.

o 10 7 PR
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\,\ N £,=0,/IEd]
4 \
/
[ \
° A Z 0s \ .
Og= 0405(8) 7 Ep= 7 g \ /
" — 0 = 97/, TV2N /
= =90 g w \ /
]tc]—"" ] -
€0 4 \ /
¥ oo \ /
e N ’
€o w € @ N a |
Ll 7
0 3 \
w b /
3 p A ’
=
I \ \\ /
- (alb)k
cos(8) = 05l ¢ & = (alb)n | g
\ \ ,
7/
~ -~

-1.0
0.0

0.5 1.0
TIME (1) / OSCILLATION TIME (T)

Figure 13.4. Oscillation time T, = frequency
f = 1/T, (angular frequency w = 27f).

Figure 13.3. Stress-strain test of Vis-
coelastic material subjected to harmonic
vibration.

Creep functions and relaxation functions are related to the complex Young’s modu-
lus by Equation 13.12 adapted from (127,128,129). Examples of creep
and relaxation determined from the complex Young’s modulus are presented in
the subsequent Section 13.3.

Rt) =E - 2 lE,(w) 1 - cos@h) 4. (E is R at very high )
B © (13.11)
1 2 7 1 - cos(w?) E,
cH =+ = |J — N d : J =
MR e KN T

Remark: We re-call that one of the functions considered in Equation 13.11
(usually the relaxation function) can be determined from the other one (creep
function) by Equation 13.2.
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Vibration analogy

From (125,126) can be concluded that the general e-v-analogy previously presented
can be continued as follows when harmonic vibration problems specifically are
considered (keeping in mind the concept of analogy Young’s modulus):
The analysis of a viscoelastic structure with sine (or cosine) varying load can be
made by the theory of elasticity with Young’s modulus replaced by its viscoelastic
counterpart, namely the complex Youngs modulus expressed by E, = EANiw) from
Equation 13.4.
Formally the analogy works as outlined in Equation 13.12 where the vibration
deflection A of a viscoelastic body is considered subjected to the harmonically
varying load P,

A,, =FE, P]

Vibration-analo (13.12)
AH,VLS'C = FIEC, PH] gy

Experimental vibration analysis

The vibration analogy has been used by the author in (130,131,132,
133) to develops a method by which the complex Young’s modulus of a
material can be determined experimentally by modern vibration analysis equipment
like the Briiel & Kjar type 3550 apparatus (134). Creep and relaxation are sub-
sequently determined by Equation 13.11. This new experimental method of deter-
mining materials viscoelasticity is a promising supplement (135) to the more
traditional ways of material testing by direct measurements of creep and relaxation,
see Figures 13.1 and 13.2.
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13.2 Models of viscoelastic materials

A complete analogy exist between viscoelastic stress-strain relations and force-
deflection relations for mechanical systems composed of springs (Hooke elements)
and dash pots (Newton elements). For practical convenience we subdivide viscoela-
stic materials into two groups: Simple viscoelastic materials, and less simple visco-
elastic materials. The former group can be modelled as shown in Table 13.2 with
up to 4 basic elements (Hooke, Newton). More than 4 basic elements are needed
to model the latter group of materials.

13.2.1 Simple models

Closed analytical expressions for stress-strain relations, analogy Young’s moduli,
creep- and relaxation functions apply for simple viscoelastic materials. They are
summarized in Tables 13.3 and 13.4 reproduced from (110). Complex stiffness
of the simple material models are easily obtained by replacing s with iw as
explained in Equation 13.9.

The so-called Burgers model is the most general of the simple models of a vis-
coelastic material. All basic strain modes observed in practice are considered:
Elastic strain (Hooke), delayed elastic strain (Kelvin), and flow strain (Newton).
The latter two strain components are also named reversible creep and irreversible
creep respectively. The viscoelasticity of a number of building materials can be
modelled by the Burgers model.

MODELS MATERIAL PARAMETERS
E Ui Mg . .
VVE B T =t T, F e Relaxation times
HOOKE W E S E
KX
" THOUSON 5 1
—{— = =1+ ; =
g 0 M S T
NEWTON +
: Et 1 il K NNy .
Ll % )
MAXWELL |ETHERSICH m r r 2 r
’"=11+a+,_xi 1 + o + X - 4.k
& T a £ nlyz 2 T T T
<
s ¢ || | conrot: = m,emy =1
BURGERS mrol: my,,m,, = — 5 My, my, = o -
KELVIN T T

Table 13.2. Simple models of viscoelastic materials. Hooke and Newton are the basic models.

Reproduced from (110).
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MODEL STRESS-STRAIN RELATION E* (ANALOGY-E)
Hooke o = Eeg E
Newton g = n%f- 7S
do o de s
M || =+ <~ =E= O
axwe dt T dr s+ 1/7
Kelvin | o = E, [»,Kflf . 8] Er(s + lr)
¢
Thomson TK@ +mo = E TKflf + g _f_i_ﬁ"_
da ar s+ mlT,
do d’e  de s(s + l/r)
. Te— * M0 = mj [TK-—-—; + _] - X
Lethersich dar dr dr L?’]»—-—WS e,
@+(m +m)7.(_zg+mmo—
B Kdtz B B2 Kdt BI' " "B2 S(S + I/TK)
A E[Tf(dze . f’dﬁ] G+ m ) + mJr)
ar’ t

Table 13.3. Simple viscoelastic models: Stress-strain relations and analogy Young’s moduli.
Abbreviations from Table 13.2. Reproduced from (110).

MODEL CREEP FUNCTION RELAXATION FUNCTION
Hooke 1/E E
Newton | t/y n6(f) ; Dirac’s delta function 6@)
Maxwell || 1 1+ ! E exp -I
1 t
Kelvin L. [1 - €xp [‘T—K] ] E(l + 7,60))
Th _1_l+a1—exp - E|l-_% I ~exp|-m—
omson || G T 1 +a Ty
Lethersich | = + = [1 - exp |-L ma |6@() + Lem, exp [ -m *
n E, T, 2 T, P L;;]
L PN £ (m, - Dexp ~mB,-{.
E T My, = My, Ty
Burgers I [ t
o [1 ~- €Xp [“_]:l ] - (mm = Dexp y,— :]
TK TK

Table 13.4. Simgle viscoelastic models: Creep functions and relaxation functions. Abbreviations

from Table 13.
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13.2.2 Less simple models

It can be shown that general mechanical models for viscoelastic materials can be
established in two ways. One general model is a Maxwell model connected in
series with a chain of several Kelvin models in series. The other general model
is a Hooke model connected in parallel with a chain of several Maxwell models
in parallel. Both these models are discussed in further details in Appendix F.

Power Law model (Wood, Polymers, Ceramics)

A very special and important "less simple model" is the so-called Power Law
model presented in Table 13.5. This model cannot be composed by a finite number
of elementary mechanisms. An infinite number of elements have to be used.

The Power Law model is the result of a complete analysis made in (129) of an
expression, C(t) = (1 + at®)/E with constants a and b, which has very often been
used successfully in the literature (e.g. 136) to fit experimental data from creep
tests on a variety of building materials such as wood, polymers, and ceramic
materials. Physically the fit expression is very unfortunate (one material constant
"a" has the dimension of time raised to minus the other material constant "b").

POWER LAW CREEP

CREEP FUNCTION C(t) RELAXATION FUNCTION R(t)

1 )’ EYCZOr o 1 o1

vl R [;] Yrim w3
ANALOGY YOUNG’S MODULUS EX(s)

(7s)’
'l + b) + (z5)

Table 13.5. Power law creep. Z(x) = T'(1+b)(x/7)’ where I' means gamma function.
Reproduced from (129). 7 is relaxation time. b is creep power.

Re-formulated, however, as it is in in Table 13.5 the expression becomes viscoela-
stically sound, characterizing the materials rheology by independent material pro-
perties, namely the relaxation time 7 (or creep doubling time (C(r) = 2C(0)), and
the dimensionless creep power, b.

The Power Law model is a very efficient tool in viscoelastic stress-strain analysis.
A number of material problems for a number of different materials can be solved
in one approach, by developing standard solutions (’master solutions’) from which
solutions for specific materials can be picked introducing specific material parame-
ters, 7 and b.
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Remark: The efficiency of the Power Law model in viscoelastic stress-strain ana-
lysis of materials can be generalized to include the influence of curing conditions
with respect to moisture and temperature: The relaxation time is the obvious mate-
rials parameter to be influenced by climatic conditions. For wood, for example,
7 1s known to be very sensitive to moisture content (137). This observation has
been utilized in (137) to produce *master graphs’ from which fatigue-life of wood
can be predicted as a function of moisture content.

Complex stiffness of a material with Power-law creep is obtained by replacing s
with iw in E*(s) as explained in Equation 13.9. The results are presented in Equati-
on 13.13 and 13.14 reproduced from (129). The Power law creep model degenera-
tes with b = 1 to the so-called Maxwell model defined in Table 13.2. The com-
plex stiffness quantities become very simple as demonstrated in Equation 13.15,

IE l - E - tand = Ysm(b7r/2)
1+ ¥ 1 2Ycosbnl2) 1 + Yeos(bw/2)
with Y = 't +b) _ b _ tan() : (13.13)
(rw)’ (rw)’ sin(bx/2) - tan(6)cos(bw/2)
E =F 1 + Ycos(bw/2) . E -F Ysin(bx/2)
® 1 + Y + 2Ycos(bn/2) ~ ' 1 + Y + 2Ycos(bw/2)
S[E fo=o Y fo=00o (1314
| Ec | (0 fos0 3 @O=>{ gy froog P
1
|E.| =FE T2 __ = Ecos(d) ; tan(6) = — ; (Maxwell)  (13.15)

Time modified models - aging viscosity

Some viscoelastic materials like Portland cement paste and concrete are so-called
aging viscoelastic materials (109) with time dependent material properties meaning
that the creep functions, relaxation functions, and the material parameters p and
q in Equation 13.1 become dependent of time. Some aging materials, however,
can be analyzed by the theory of non-aging materials hitherto considered if we
assume that the "spring constants” (E) in the mechanical models are constants (in
practice almost constants) and that viscosities (5) change in the same way with age.
Then the aging phenomenon can be removed by introducing a modified time as
subsequently demonstrated in Equation 13.16 on a Maxwell material with age
dependent viscosity or time dependent relaxation time.
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. do o de
A M 1l b —_— = E% =3
ging Maxwe yr + 5 g
differentiation through : %% + ;% = E%% = (13.16)
g_(.f_ .9 = E_a_'g =5
do  t(Hdolde do
Maxwell with modifie do _ pde 13.17
time ¢ and "1" =1 d} do To= Eg;b‘ (13.17)

where modified time is related to real time by r(t)d¢/dt = 1, meaning

_ i .. [time t measured from piiy
¢ =0 = J }‘Z’g—)de with {age at first loading t,

tn

Thus, a Maxwell material with aging viscosity can be considered as a non-aging
Maxwell material when time t is replaced with modified time ¢ (also named "creep
parameter"), and relaxation time 7 is replaced with modified relaxation time
7 = 1. Then from Table 13.4 creep functions and relaxation functions become as
presented in the first row of Table 13.6.

Remarks: The e-v-analogy applies for time-modified models if stress and strain
are formulated in modified time before laplace transformation. The vibration analo-
gy, however, does not apply. The analogy becomes meaningless introducing "har-
monic" variations in stress and strain with time in modified time.

Hardened cement paste (HCP)

Based on the classical papers of Dischinger’s (138,139) on creep of concre-
te the modified time concept was suggested by the author in (109,140) and sub-
sequently further developed and generalized in a number of papers (110,41,
141,147,142) on the rheology of hardened portland cement paste and port-
land cement based materials. The concept was introduced into international con-
crete codes in (143).

For hardened HCP, cured at (T,RH) =~ (20°C,60%), the creep parameter can be
estimated by the expression presented in Table 13.6 which is developed from Equ-
ation 13.18 assuming a relaxation time (or viscosity) which develops proportional
with time. The expressions presented in Table 13.6 are consistent with general
rheological observations made in (109,114,113) on cement paste and concrete.
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MATURE HCP (age > 3 weeks)
CREEP FUNCTION RELAXATION FUNCTION
I
CO)yep = 1+ ¢) R®uep = Eyep * €xp(~9)
EHCP
STIFFNESS (MPa) CREEP PARAMETER (t in days)
(
cetos [P0 pa s wies 04

Py (T0ME 111, ) = i6 = 97 xlog, | —= 15 9" = (50 e 04

Table 13.6. Creep of hardened cement paste at t days afer loading at the age of t, days.
Creep factor is denoted by ¢".

The creep parameter for hardened HCP is independent of W/C > 0.4. Very soft
aggregates (voids) in a particulate composite do not influence the type of viscosity
relative to the one applying to the matrix (here, basic paste) (110,78,79).

DRYING SHRINKAGE OF HCP AT RH ~ 0.6
AN=kxg with  k = -0.50/00

Table 13.7. Drying shrinkage of hardened cement paste. Shrinkage factor is denoted by k.

Shrinkage: A composite analysis of concrete will subsequently be demonstrated
in Chapter 14 where concrete is modelled as aggregates mixed into a matrix of
cement paste. In this context, it is of great interest to evaluate the influence of
cement paste shrinkage on the shrinkage of concrete. For this purpose cement paste
shrinkage can be estimated by Table 13.7, adopting an idea from (147).

Remark: When early age cement pastes are considered where stiffness and visco-
sity properties change very much with age the concept of time modified Maxwell
behavior is not applicable. More refined models have to be used such as referred
to in Section 14.2.4,

13.3 Summary, analysis, and approximate analysis

A number of material models have been demonstrated in this chapter some of
which are of immediate relevance for the analysis of viscoelastic materials often
met in practice. Examples are cement- and wood based materials, asphalt, and po-
lymers.

Various tools have been presented which can be used to predict the stress-strain
behavior of viscoelastic materials subjected to static or dynamic loads. Methods
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are presented which convert material properties (creep function, relaxation func-
tion, and complex elastic moduli) of relevance for such analysis. An illustrative
example of property conversion between creep/relaxation functions and complex
elastic moduli are demonstrated in Figures 13.5 and 13.6.

The material considered is a Burgers material with E = 30000 MPa, « = 1, and
(7,70 = (1000,10) days. The complex Young’s modulus is determined from the
analogy Young’s modulus presented in Table 13.3 replacing s with iw as previous-
ly explained. The results (calculated on a computer with complex number facilities)
are presented in Figure 13.5.

The creep function and relaxation function presented in Figure 13.6 are calculated
in two ways: The solid line data are exact as determined directly from Table 13.4.
The dotted data are predicted by Equation 13.11 with complex stiffness introduced
as previously calculated (Figure 13.5). The two data set agree very positively (as
they should) which tells about the quality of Equation 13.11 to act as a materials
property ’converter’.

Remark: The latter observation is emphasized: With modern technology, the data
in Figure 13.5 could have been detected experimentally, meaning that Equation
13.11 opens a new way of property determination for viscoelastic materials, see
Section 13.1.2.
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[(E BURGER MODEL ﬁ CREEP
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ANGULAR FREQUENCY LOGyo(w ~ sec™) TIME — LOGq{t — days)
Figure 13.5. Complex stiffness of Figure 13.6. Creep and relaxation cal-
Burgers: E = 30000 MPa, o = 1, and culated from "experimental" complex
(r,7¢) = (1000, 10) days. Young’s modulus in Figure 13.6.

13.3.1 Approximate analysis

The well-known ’effective modulus method” (E™F-method) (e.g.144,145)
presented in Equation 13.19 for quasi-static stress-strain analysis of viscoelastic
materials is a crude approximation of the accurate stress-strain analysis considered

141



Chap. 13: Viscoelasticity Lauge Fuglsang Nielsen

in this chapter. The advantage in practice of the E**-method is that it is very con-
venient to use for first stress-strain estimates. It is emphasized, however, that the
method when used un-reflected (as it commonly is) may lead to results which are
completely wrong. This discrepancy was recognized already in (144). An obvious
false prediction is that e becomes 0 whenever o drops to 0. Obviously the method
can not be used in vibration analysis.

o) ~ 2O gy g L _ _E
E™* 80)) 1 +¢
where ¢ = ¢(f) = EC(H) - 1 is the so-called creep -parameter

E*" -method (13. 19)

A general description of the "accuracy’ of the E¥F-method is impossible. It will
depend on both type of materials viscosity and type of problem to be solved. How-
ever, for the type of problems (analysis of material properties) considered in this
monograph we ’risk” to state the following simple quality assessment of the E-
method. It is based on results obtained from running a number of evaluation calcu-
lations on Burgers, Thomson, Maxwell, and Power-Law viscoelastic materials -
and on the author’s work on creep of concrete in (146,147):

Reasonable estimates can be obtained by the E¥F-method when stress varies monotoni-
cally, restricted as outlined in Equation 13.20. The better estimates are obtained when
the materials considered have creep functions (C) and relaxations functions (R) which
are, approximately, each others reciprocals, meaning R*C > approx 0.9.

When R*C < 0.9 the E™"-method can still be used (with stress restricted as Jjust ex-
plained). Creep parameters ¢ < 4, however, are required. Obviously the E¥ -method
cannot in general be used to predict a relaxation function. It might be necessary to
determine this function numerically from the creep function using the basic Equa-
tion 13.2.

o(l +¢)" <o < gl +¢) o, = o(t=0) (13.20)
or o = k¢ k is a constant

Similar "rules’ will apply when modified E¥F-methods are used as these are presen-
ted in (e.g.148,149),

The E*"-method applies almost accurately when Power-Law materials are conside-
red with b < 0.3. As previously observed the creep function and the relaxation
function for such materials are each others reciprocals.

Approximate inversion method

The effective Young’s modulus can be related to the analogy Young’s modulus E* by
the following deductions involving Equation 13.4 and the general properties section
of Table 13.1.
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MPa

stress —

1
C(s) = =

® SE*(s)
Cle) = lim—_ ; CO) = lim_-_ = (13.21)

=0 E4(s) = E4(s)
1 1

C p ; EEFF = . EA /

O = o ap ~ FO

where v is a so-called inversion parameter for which the order of magnitude can be
estimated to be 0.5 < y < 1 with minimum and maximum applying to *only reversib-
le creep’ and “only viscous creep’ respectively.

Remark: It can easily be shown that Equation 13.21 is a special result of using the fol-
lowing approximate inversion rule developed from Table 13.1,

F) =~ sF(&s) with s = %f approximate inversion rule (13.22)

which can be used directly to develop approximate real solutions from their Laplace
transformed counterparts. This procedure (approximate inversion method) is demon-
strated in the following expression for stress in a Thomson material subjected to a
constant strain, e = 1 (laplace transformed 1/s).

- _ E s+ lr 1 + tlylr
G=xE =2""""% o o4 ~ g " "V7x (13.23)
ss +mlr, L+ mtlylr,
40000
1 thick |solid: cCuraty
i thin solid: E7 —method
1 dashgd: apptox. inversion method
30000
20000 x
g \’i~ o T T o .
10000 ] e Figure 13.7. Thomson model loaded with
] constant strain ¢ = 1. E = 30000 MPaq,
] a = 2, 7, = 100 days. Approximate in-
o3 P P P P version with y = 0.5.

9] 6
days
The results of a stress analysis of a Thomson material using the E**-method and the

approximate inversion method respectively are compared in Figure 13.7.

Remark: In this monograph the approximate inversion method is considered mainly
as an interesting curiosum. Approximate analysis are always made with the E¥*-me-
thod unless otherwise indicated.
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14. Viscoelastic composite analysis

Creep functions, relaxation functions, internal stresses, and eigenstress/strain phe-
nomenons of composite materials with various geometrical configurations are pre-
dicted in this chapter from known viscoelastic properties of the constituent phases.

Basically the composites considered in this chapter are the same as those defined
in Chapters 13 and 10: Viscoelastic composite components are considered with
constant Poisson’s ratios of the order of magnitudes =~ 0.2. The composite geome-
try can be sufficiently well described using the 3-parameter shape function descrip-
tions. As previously indicated in Chapters 10 and 13: There are no problems theo-
retically in generalizing the analysis to more general composites with respect to
Poisson’s ratios and shape functions. The mathematics, however, will increase to
a level which cannot be justified by our present knowledge on geometries and
rheological properties of composite phases.

In principles the analytical methods used in this chapter are the same as have been
developed previously by the author (109,110) in studies on the rheological beha-
vior of prestressed concrete and on the viscoelasticity of concrete as a function
of aggregate content - and in (150) in a study of stiffness and damping of im-
pregnated materials.

In most examples presented the theory is illustrated using composite components
which exhibit Power Law creep. The principles, however, are kept general such
that composites can be considered with components of any viscoelastic observance.
The reason for choosing Power law creep as *default viscoelastic behavior’ in ex-
amples is that many viscoelastic materials in practice can be well approximated
in this way - and that analytical results obtained can be presented very explicitly.
These features have previously been discussed in Section 13.2.2.

14.1 Composite analysis

14.1.1 Accurate analysis

The theoretical basis of the analysis presented in this chapter is the finding in
(151,152) that the complex stiffness (E.) of a composite made of viscoelas-
tic phases (P,S) can be determined by the elastic counterpart composite stiffness
(B), replacing phase stiffness (E;,E) with their respective complex counterparts
(Eec, Eso).

Keeping in mind the significance of the analogy Young’s modulus previously intro-
duced in Section 13.1.1, and re-calling the vibration analogy from Section 13.1.2,
this means that the analogy Young’s modulus of a composite material (E*) can be
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obtained from the elastic counterpart stiffness solution (E), replacing phase
stiffness (E,,E) with their respective analogy Young’s moduli (E,*,E).

Having established the basic rheological property (E*) of the composite material
we may proceed just as explained in Chapter 13 with the composite material
considered as a homogeneous viscoelastic material. A further conclusion which
can be made from (151,152) and the concept presented in this monograph of a ana-
logy Young’s modulus, is that composite stress/strain solutions can be established
from Laplace transforming the elastic counterpart solutions (Tables 10.3 and 10.4)
and replacing (E,,E;) with (E,*,Es*"). A summary of results such obtained from an
analysis of composite materials is presented in Tables 14.1 and 14.2. Analogy
Young’s moduli (E;* Es*) for various homogeneous materials are presented in
Section 13.2.

YOUNG’S MODULUS = ANALOGY YOUNG’S MODULUS
E=EE,E) = E*=E<s)=KE.,E)

B o (rs)’ L N
EXAMPLE P T(1+b) + (15) | , s I'(1+b) + (rs) |

ANALOGY YOUNG’S MODULUS = COMPLEX YOUNG’S MODULUS
E* = EXs) = B(E/, Ef) = E, = E%iw) = EE,. E,) = Efw) + iE(w)

A

: b 2 b
E - |E (iTw) - E - |E (itw)
EXAMPLE | e [ T(I+b) + Groy |, © | T+ + Gray |,
COMPLEX YOUNG’S MODULUS = RELAXATION AND CREEP

o

RGO =E - 2 IE,(w) 1 - cosn)
T w

o

12 1 - cos(w?) . E
60) 5t [J,(w) 2T Y dw

VAL
OR ANALOGY YOUNG’S MODULUS = RELAXATION AND CREEP

@ = £ { _1_] . RQ) = 52[%]
sSE* s

Table 14.1. Complex Young’s modulus, creep, and relaxation of composite material deter-
mined from Young’s modulus of such material. Examples are composites made of compo-
nents exhibiting Power law viscoelasticity. [], and [J; mean that E, b, and 7 in [] are sub-
scripted as indicated.

w

Remarks: The procedure presented in Table 14.1 of determining the creep and
relaxation functions for a composite material from the complex stiffness is very
efficient using computers with the capability of handling complex numbers. It is
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obvious how the experimental vibration analysis explained in Section 13.1.2 can
be used also in the research on composite geometry versus viscoelasticity of com-
posite materials.

With respect to the determination of creep- and relaxation functions we re-call that
only one of these functions are needed to predict the other one by the basic Equati-
on 13.2,

In general the determination of internal stress and eigenstrain-stress as expressed
in Table 14.2 calls for numerical laplace-inversions. Alternatively, approximate
solutions can be found as explained in the following section.

INTERNAL STRESS FROM EXT-LOAD (¢* = EYE#; n* = EAEMN

Up(t) - l - 7 1/e* - 1 . O's(t) - U(t) - Cop(t)
¢ 1/n* -1 1l -¢

EIGENSTRAIN/STRESS (K,* ~ E,V1.8)
ORI A N W) AR WD

/n* -1
o) = % K}\K:C(l/n -1 -1/ - 1) Do) = - ¢ o)
c(l/n* - 1) 1 -¢

Table 14.2. Internal stress from external load and eigenstrain/stress in composite material
determined from analogy Young’s modulus of such material,

14.1.2 Approximate analysis

A very simple approximate quasi-static analysis of viscoelastic composites can be
obtained from the elastic counterpart analysis explained in Equation 14.1,

F o~ Fy (PETE™) where F,, =F, (PE,E) (14.1)

where Fg .5, and F are the elastic and viscoelastic solutions respectively to the pro-
blem considered. E,*F and E&T are the effective Young’s moduli explained in Sec-
tion 13.3.1. Load (stress or strain) is denoted by P. In another formulation the
method was first suggested by Ross (144) as an easy way of estimating the stress
distribution in a composite structure made of concrete and steel. An example of
applying Equation 14.1 in a composite analysis is explained in Equation 14.2. The
elastic composite stiffness, E, is converted to the creep function of the counterpart
viscoelastic composite.

) ~ E—l” with E™" = E(EE,EP) where E = E(E,E) (14.2)
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Remark: The quality of composite solutions obtained by the *composite E**-me-
thod’ depends on the quality of E,*F and ES™ considered in Section 13.3.1. The
load restrictions explained in this section must hold for each phase also on a *com-
posite level’. The author’s (tentative) experience with respect to the quality of EF-
estimates is the following after having tested the composite E¥-method on isotro-
pic composites made of Maxwell materials mixed with elastic spheres, isotropic
composites made of two materials exhibiting Power Law creep, and layered com-
posites made of two Maxwell materials:

Estimates of ‘reasonable accuracy’ can be obtained for the material properties, creep
functions, creep stresses, eigenstress/strain properties. To get a similar level of
accuracy for “estimated’ relaxation functions, it might be necessary to determine this
function numerically from the creep function using the basic Equation 13.2,

In general, estimates of reasonable accuracy can be expected in any analysis when
composites are considered where both components have Power Law viscoelasticity
with b < 1/3,

Approximate inversion method

It is tempting (see Section 13.3.1) to use this method when problem solutions are
formulated by their Laplace transformed as they are in Table 14.2: Multiply the
Laplace transformed solution with s and then replace s with ~v/t. The inversion
parameter v, however, has to be estimated as some composite average of inversion
parameters applying to phases P and S. In the author’s opinion this feature disqua-
lifies, in practice, the approximate inversion method to be better than the plain
E*"-method. In any case, more research has to be made on this matter.
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14.2 Applications

Some examples are presented in this section which illustrate how the analysis of
viscoelastic composites just explained in Section 14.1 works on various composi-
tes. We emphasize that the accurate method of analysis is always used - unless
otherwise indicated.

14.2.1 Porous materials and stiff pore systems

It is of some interest to know how does a very soft phase P (n = 0) and a very
stiff phase P (n = oo) modify the rheology of a composite. The question is imme-
diately answered as presented in Equation 14.3 developed from Equations 10.9,
10.14, and 13.4.

This expression tells that composite creep- and relaxation functions are proport
ional with the corresponding function of the matrix material (phase S). Examples:
Viscosity of a fresh concrete is proportional with the viscosity of fresh cement
paste, such that Figure 10.30 can be read with 4. /5 as second axis. In a similar
way the creep function of asphalt concrete is proportional with the creep function
of asphalt (considered as Newton material).

R _CO _ 1-¢ | 0 - (1, ¢ =c
R( C» 1+cb, > ~ |0 ¢ > ¢
f _1 (14.3)
R(H C@H 1+0c ) e TH T <o
= = ; - = I’l’
R(®) C (9 1 -¢ o § ¢ > ¢

Equation 14.3 has been used by the author in (78) to predict the rheological beha-
vior of fluids mixed with voids or with very stiff particles. The latter application
is of special interest when modern self compacting concretes (SCC) are considered
(79).

14.2.2 Particulate composite

A CSA, composite is considered with viscoelastic components. The questions are,
how does this composite creep, relax, and how do stresses develops internally
when the composite is loaded externally or by eigenstrains.

The questions asked are solved as explained in Section 14.1: The elastic solutions
are presented in Chapter 10, Tables 10.3 and 10.4. The laplace transformed "vi-
scoelastic" answers to the problems formulated are determined from these solutions
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replacing the stiffness moduli (E, n) with their viscoelastic counterparts (E*,n*
and load with the laplace transformed load. The final solutions are determined by
laplace inversion. The analysis is exemplified in Equation 14.4 looking at the
phase P stress in a CSA, composite subjected to an external load.

0, = aﬁL*:i)_’Z (elastic particle Stress) =

A +n ) ) (14.4)
o, =oAL - g [5._“_.__(1 * An ]

A + n A4 +n?

The abbreviations used (and others for further viscoelastic analysis of CSA compo-
sites) are explained in Equation 14.5.

_A+n A +n : _E, _
e = T4 E —Esm_ with n = —ZZ CSA, with 145
1 -¢ .
y y E*| 4
e"=A+n . pr-psd o ith n* = _* 1 +¢

1+ An*’

Maxwell-Hooke CSA4,-composite

It is now assumed that the particle phase (P) is elastic and the matrix phase (S)
is viscoelastic like a Maxwell material. The analysis proceeds as Jjust explained
with material specific analogy stiffness properties and appropriate abbreviations
presented in Table 14.3, and with laplace transformation/inversion used as
described in Table 13.1. The final set of answers to the questions asked are
summarized in Table 14 4.

Maxwell-Hooke CSA,-material

s

4
Phase properties E = E s+ 1/7 Maxwell copd =St s
E! = E, Hooke $
Abbreviations appropriate 0 =_0" L0 = An
in viscoelastic analysis Y ey
Analogy Young’s modu- et =St O/t E‘ep S  S*QI
lus s+ Qfr s+1lr s+ Qfr

Table 14.3. Auxiliary quantities for viscoelastic analysis of CSA,-material with Maxwel]
matrix (phase S) and elastic particles (phase P). The abbreviations, E (composite Young’s
modulus) and A are explained in Equation 14.5.
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PROBLEM VISCOELASTIC CSA~SOLUTIONS

Creep function @ = 1 lrl v del . AU - Ae) [1 - exp[~Q1£] ]]
E T n T

E[éexp[—.{] + uexp[-gzi]]
e T A+n T

Relaxation function R(%)

_n{l + 4 A _ At
Internal stress caused by || %» = 1T [1 * 7] [1 CXP[ Ql;] ”
constant external load o o - Co

Eigenstrain/stress caused [N = k4 |7 + 1-4, [1 - exp [-QI_{] ]]

by matrix (linear) eigen- n 4

ain h. = t
strain A = kt p, = kKAt [1 - CXP["Ql;] ] ;P = e C'O”
Max-matrix stress  at 3 -4
spheres Ospan = Pp 5 Osrw = —_4A—pp
Matrix stress at spheres _ A t] . _ . 3-4
from const AN = A - A || O5m0 3K”A>\A i n exp[ Q‘? Ry R

Table 14.4. Viscoelastic composite analysis of CSA-material. In eigenstrain/stress analy-
sis: N is composite eigenstrain (linear). (A, Ny) and (p,, ps) are eigenstrain (linear) and ei-
genstress (hydrostatic) of phase P and phase S respectively. s ., and 0., are radial and
tangential phase S stress respectively at sphere. Bulk modulus K, = E,/1.8. The abbrevi-
ations, A, E (composite Young’s modulus), e, Q1, and Q2, are explained in Table 14.3.

PROBLEM CONCRETE SOLUTIONS
Creep function C@ = 1 [1 + dep, + M(l - exp(—Ql¢s))“
E n
. . A nl - A4
Relaxation function R = E I-Eexp(ﬂbs) + ,._(Z+_nz)exp(—Q2¢s):|
_ o n(l + 4) Al B
Internal stress caused by || 77 =~ C 135, [1 * 7{(1 exp( Q1¢S)>:I
constant external load o ¢ - co,
0' =
s 1 -¢
Eigenstrain/stress caused || A = kA [- ¢, + 1-4 (1 - exp(-Qld)S))]
by matrix (linear) eigen- L n
strain Ay = ko P, = 3kKsA(1 - CXP(“Q1¢S)) ;oo = "1 i CpP
Max-matrix stress at sph- _ - 3 -4
eres Ospp = Pp 3 Osran = ——'a“'pp
Matrix stress at spheres = a3 expl- . . .3-4
from COI]St A)\ — }\P - )\S O-S,RAD P A +n Xp( Q1¢S) 2 o.S,TAN 4A US.RA.D

Table 14.5. Viscoelastic composite analysis of Concrete. Abbreviation are explained in
Table 14.4
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14.2.3 Mature cement concrete

It has previously been discussed that concrete (and cement paste) can be considered
non-aging introducing the authors concept of modified time, see Section 13.2.2.
This means that the results of Table 14.4 apply for concrete when the Maxwell
relaxation time ,7, is replaced with ’1’, and time in general ,t, is replaced with
the modified time ,¢.

The results obtained are presented in Table 14.5. The expressions presented in
Table 14.6 are of special interest when normal concretes and porous "concretes”
are considered.

We emphasize that phase S properties in general (including Eg and ¢) are the HCP
properties presented in Table 13.6.

PROBLEM SPECIAL CONCRETE SOLUTIONS
. 1 AEQSS when n > 2
Creep function c@ = E(l +¢) with ¢ = | E,

& when n =0

=~ Ax X, when n > 2

Eigenstrain caused byl ) - s
A when n = 0

matrix eigenstrain Ag

s

Table 14.6. Special solutions for concretes with hard aggregates and very soft aggregates
(voids).

The normal concrete results in Table 14.6 comply well with orders of magnitudes
observed in (153) that creep strain for concrete relative to creep strain of ce-
ment paste varies with (1 - ¢)® with B increasing from 1.7 to 2.1 with time under
load, and that shrinkage of concrete relative to shrinkage of cement paste varies
with (1 - ¢)® with B = 1.7 observed in (154), B = 1.4 in (155), and B =
1.2 - 1.7 observed in (156).

Examples

Two examples are now presented on how the results in Table 14.5 can be used
in practice to predict creep, relaxation, and eigenstrain/stress in concrete. The
concrete considered has a water/cement ratio of W/C = 0.4 and a total ag-
gregate/cement ratio of A/C = 4.33 from which a volume concentration of ¢ =
0.7 is obtained from Table 2.1. The aggregate stiffness is E, = 55000 Mpa. The
rheological cement paste properties used in the analysis are predicted from Table
13.6 with an estimated creep factor of ¢* = 1.4,
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Example 1: The concrete is loaded at the age of t, = 28 days. The creep function
and the relaxation function predicted from Table 14.5 are illustrated in Figures

14.1 and 14.2.
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(1/Mra)

P
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Figure 14.1. Creep function of concrete

considered. t, = 28 days.
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Figure 14.2. Relaxation function of concre-
te considered. t, = 28 days.

Example 2: The concrete is exposed to drying from the age of t, = 28 days. The
drying is anticipated to cause a HCP shrinkage corresponding to a shrinkage factor
of k = -0.0005 (see Table 13.7) which causes concrete eigenstrain and internal
stresses to be predicted by Table 14.5 as shown in Figures 14.3 and 14.4. The
dotted data presented in Figures 14.3 and 14.4 are from an experimental study by
Nielsen (98) on the influence of shrinkage on aggregate stress in concrete. The
concrete (LL3) used by Nielsen is exactly as defined above.
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Nielsen’s study in (98): Strain gauges were attached to an artificial steel "stone”
constructed to simulate very precisely the stiffness properties of the other coarse
aggregates. The data shown in Figures 14.3 and 14.4 are typical discrete averages.
The experiments, however, were continuously monitored in age periods 0-60, 200-
260, and 860-915 days. A single set of data were monitored at the end of the expe-
riment at 1060 days. Unfortunately no rheological information on cement paste
and concrete are reported in (98). There is also no information on shrinkage of
paste. The simultaneous agreement, however, between experimental and theoretical
strain/stress data observed in Figures 14.3 and 14.4 indicates that the creep- and
shrinkage factors, assumed in this analysis are probably close to simulate the real
creep and shrinkage behavior of the concrete used by Nielsen.

Remark: It is noticed from Figure 14.4 the max HCP stress is threateningly close
to the tensile strength of HCP estimated to be one tenth of the compressive
strength predicted by Equation 11.10.

A strength mechanism for concrete. The stress solutions at a sphere (phase P) in
an infinite continuum (phase S) can be developed from Goodier (50) as presented by
the former expression in Equation 14.6. Load at infinity (S) and stresses of interest
at the sphere are defined in Figure 14.5 together with coordinates. The corresponding
stresses in a CSA,-composite with many spheres are predicted by the SCS method pre-
viously introduced (E; is replaced with E and n with E,/E = n/e). The results are pre-
sented in the second expression in Equation 14.6.

g, = S(1 + cos20)—— : 7 = Ssin0)—"_ (single sphere)
1 +n 1 +n

o, = S(1 + cos20))—"— : 7 = Ssin(0)—"_ (SCS solution) (14.6)
€ + n e +

+ AN + C

- E
e = e(c,n) = lA +An with A = i ¢ and n = »E_‘f (Stiffness)

The elastic composite strength expression presented in Equation 14.8 can be predicted
from the composite stresses if we assume that the so-called Coulomb’s failure conditi-
on expressed in Equation 14.7 applies in bond areas between phases.

_ . [ C is cohesion in bond area 14.7
7= C o8N 5\ X s fricrion angle in bond area 149
_ Ceos®h) n+e o o 1o 1 + T (14.8)

*® 1 -sin(\) n 2 tan(\) 2

The strength of concrete can be found approximately as follows using the simple E®*-
method with n = E/E,.
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__Ceos(N Mo * [T = 1L Bye) (14.9)

o 1 - sm()\) N €opp e(c,r ZEFF)

Some results of strength prediction by Equation 14.9 are presented in Figure 14.6.
A concrete is considered made with W/C = 0.4 and a total aggregate concentration
(E; = 70000 MP2) of c = 0.7. Age at loading is t, = 28 days. A creep factor of ¢" =
1.4 is assumed (Table 13.6). Bond failure is controlled by Coulomb parameters C ==
30 MPa and A = 30° (producing 6 = 60°).
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Figure 14.5. The sphere of Goo-  Figure 14.6. Creep strength of concrete. Bond

dier’s. shear failure berween coarse aggregate and
mortar.

It i noticed that the concrete considered has a threshold strength of approximately
70%. Sustained loads lower than this threshold strength will never cause failure. A
similar conclusion was made by Riisch in his classical experimental work on creep-
rupture in concrete (157,158).

14.2.4 Young concrete

It is recalled that the creep parameter presented in Table 13.6 for cement pastes
applies for ages > =3 weeks. This time limit of validity applies of course also
for the concrete results presented in Section 14.2.3.

When Young’s modulus of the material considered changes significantly with time
the method of introducing modified time cannot be used. More refined models
have to be used which reflect the general effect of aging on all sub-elements in
the materials stress-strain relation, for example on any p and q appearing in Equa-
tion 13.1. A general constitutive model of this kind has recently been developed
by the author in (113) which applies for concretes (including HCP) of any com-
position (water/cement and aggregate/cement ratios), any curing conditions, and
for any age of loading greater than about half a day.

The results of a general composite analysis of concrete (creep, relaxation, and ei-
genstrain/eigenstress/prestress phenomenons) are not presented in this monograph.
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They can, however, be studied on the software "ComCon" with manuals (159,
160) which can be downloaded from http://www.byg.dtu.dk/publicering/softwa-
re_d.htm. Quite recently (114) the general theory has been adapted for fast FEM
analysis of concrete structures.

14.2.5 Influence of geometry on viscoelastic composite behavior

Particulate composite versus grid reinforced composite

Two viscoelastic composites are considered. They are identical except for geome-
try. One composite is a particle reinforced material like cement concrete. The
other composite is a regular frame work reinforced material like the CROSS-
material previously defined. The geometries are quantified as follows,
Composite A: DC-DC (TROC) with (u°,ps’,¢) = (1,-1,3.33), ¢ = 0.5
Composite B: CC-CC (CROSS) with (u.°,us,c,) = (0.75,0.15,1.25), ¢ = 0.5

Both phases are Power Law viscoelastic with the following parameters,

Phase §: Es = 30000 MPa, 7, = 15 days, b = 0.3
Phase P: E, = 70000 MPa, 7, = 10" days, b = 0.3

The complex stiffness of the composites just defined are calculated as shown in
Table 14.1. The resulting absolute stiffness and loss-angle (see Equation 13.10)
are shown in Figures 14.7 and 14.8. Quantities at the very high and at the very
low frequencies are of rather academic interest. In the present context, however,
they are needed in order to get a complete picture of the phenomena considered.

Creep and relaxation of the composite are calculated as shown in Table 14.1 from
the composite complex Young’s moduli just determined in Figures 14.7 and 14.8.
The results are presented by solid lines in Figure 14.9. The results shown by
dotted lines are calculated by the approximate E¥*-method explained in Section
14.1.2 with elastic solutions from Table 10.3. As expected from Section 14.1.2
accurately determined data and approximately determined data almost coincide.
Both creep powers are b < =0.3.

When the two composites considered are subjected to a constant external load,
internal stresses develop as shown in Figure 14.10. The stress state has been deter-
mined using the approximate method. As both b < =0.3 we may expect stresses
to be fairly well predicted in this way.

Other examples on composite viscoelastic behavior as influenced by TROC and
CROSS geometries are illustrated in Figures 14.11 and 14.12. Again, the two
composites considered only differ by their internal geometries.
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Chap. 14: Viscoelastic composites

Two particulate composites with different particle shapes

Two particulate composites like asphaltic concretes are considered with the follo-
wing geometrical properties and Power Law viscoelastic phase properties.

Composite A:
Composite B:

Phase S:
Phase P:

10* days, b = 0.25

DC-DC (spheres) with (u°,15°,Cp) = (1,-1,00)}, ¢ = 0.7

DC-DC (discs, A = 0.0035) with (u.°,pus,C) = (0.01,-0.01,00), ¢
= 0.7
Es = 1000 MPa, 7, = 100 days, b = 0.8
E, = 70000 MPa, 7,

The complex stiffness of the composites just defined are calculated as shown in
Table 14.1. The resulting real stiffness and imaginary stiffness are shown in
Figures 14.13 and 14.14.
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Subsequently the creep and relaxation functions of the composite are calculated.
Table 14.1 is used again, now with the composite complex Young’s moduli just
determined as in-put data. The results are presented with solid lines in Figures
14.15 and 14.16. The results shown by dotted lines are calculated by the approxi-
mate E**-method explained in Section 14.1.2 with elastic solutions presented in
Table 10.3. As expected, these results cannot in general be considered very reli-
able as both creep powers b are not < =~0.33.

14.2.6 Monomer impregnated HCP and porous glass

Experiments on HCP and porous glass being impregnated with a monomer are
made by Hastrup in (161). Specific properties considered are composite visco-
elasticity versus degree of impregnation (8 = volume of impregnant/accessible
pore volume). The results of Hastrup’s are shown in Figures 14.17 - 14.20.

A more detailed description of the materials used is the following: The impregnant
is in situ polymerized methylmethacrylate monomer. The porous glass considered
is porous fused silica glass® (porosity 33 %, accessible for both water and impreg-
nant). The HCP considered is made with W/C = 0.4 (degree of hydration =~
0.75, porosity 36 % and 30%, accessible for water and impregnant respectively).

Detailed materials description

The material properties presented below are from (161) except the HCP data with
respect to porosity and the Young’s modulus E; of the solid phase. These data are
reproduced from a composite analysis made in (150) of the original HCP data re-
specting that porosity must relate to voids accessible for the impregnant.

Glass: E; = 64300 MPa, loss tan(sy) = 0.06%

HCP (solid): Es = 57000 MPa, loss tan(sy) = 0.27%

Monomer:  E, = 4700 MPa, loss tan(s,) = 6.16%
The geo-parameters (u,°,c,) presented are determined from the ° porous data’ using
the regression method explained in Section 10.3.4. Open (impregnable) pore sy-
stems are assumed with u® = 0.

Porous glass: CC-CC with (u,%, us,c;)
HCP: CC-CC with &,,,/vcs, Cp)

6) Vycor, Corning Glass Works, Corning, NY
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Composite analysis

It is now demonstrated that the results of Hastrup’s can be explained by the theori-
es developed in this monograph - more specifically by the *’Complex Young’s mo-
dulus’ expression in Table 14.1.

First, however, we have to re-organize Hastrup’s stiffness and loss data for phases
P and S in a way he does not present them, namely by their complex stiffness mo-
duli, Ey. and Es.. We do that by suggesting that both phases are Power law viscoe-
lastic 7 - and then re-writing Equation 13.13 to obtain Equation 14.10 with Power
law creep powers (b) to be determined by calibration with experimental data (it
is worthwhile noticing that relaxation times () do not appear in Equation 14.,10).
The degree of impregnation, 8, is considered in Equation 14.10 by the efficiency
factor B/(2-B) defined in Section 11.1.2.

E -F 1 + Ycos(b,n/2) + iY,sin(b,x/2) g

FC P 1 + Y, + 2Y,cos(b,x/2) 2-8
g o p L * Yoosb/2) + i¥sin(berl2) with (14.10)
sc s 1 + Y; + ZYSCOS(bSW/z)

tand tand

P . s

Y = ; Y =
" sin(b,w/2)-cos(b,x/2)tand, * sin(byr/2)-cos(br/2) tand,

S
o

= T -
a VYCOR OGLASS H/S VYCOR GLASS
= =033 ¢ = 033 T /S
<r© ““““““““““““““““ — T
- S
L w
] O
I o2 . Z3
e © <C
wn =
N
. %9}
& %
& - H/S R [
= /M/
(93] 5 o
% @ @o _________________
__________________________ H/S
<C 0 ezt 0 Z ———————— /
0.0 0.5 1.0 0.0 0.5 1.0
DEGREE OF IMPREGNATION — g DEGREE OF IMPREGNATION — g
Figure 14.17. Absolute Young’s modulus of ~ Figure 14.18. Loss tangent of impregnated
impregnated porous glass. porous glass.

7) At this stage of the analysis this suggestion is a qualified estimate for any of the
constituent components. The relevance of the estimates can be justified when looking at
the final, overall results of the analysis.
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Results and discussion

The solid lines shown in Figures 14.17-14.20 are data predicted by E. = E(E,,
Eso) as explained in Table 14.1. A very satisfactory agreement is demonstrated
between experiments and the theory developed in this monograph. This means that
the suggestion of phase P and phase S behaving as Power Law viscoelastic materi-
als is justified. For both matrix phases (S) the calibrated creep power is bs = 0.25.
The calibrated creep power, b, = 1, indicates that the impregnant behaves like
a Maxwell material.

4 6
HCP ¢ = 0.30 B
= "H/S,___,.ﬂ" MCP ¢ = 0.30 s
D PR Lhi b — \.‘\\
S ®
— / f—
iy o e 5
e &)
{2 Z3
<
W —
& ) %
- o
B H/S i
s —
m -~
)
[as] e
L gfes o
0.0 0.5 1.0 0.0 0.5 1.0
DEGREE OF IMPREGNATION — g DEGREE OF IMPREGNATION — g
Figure 14.19. Absolute Young s modulus of  Figure 14.20. Loss tangent of impregnated
impregnated Hardened cement paste. Hardened Portland cement paste.

14.2.7 Damping of wood

A study on the damping properties of wood has been reported by the author in
(162). One purpose of the study was to explain the ’curious’ damping results
from bending vibration experiments on Hoop Pine, reported by Pentoney (163).

Pentoney’s data, shown in Figure 14.21 by dashed lines ®, cannot at all be explai-
ned by the Power law creep model normally assumed for wood (see Figure 14.22
from (129)). They can, however (162), if wood is considered as a composite made
of very long parallel fibres (P) in an isotropic matrix (S, Lignin mainly) with both
phases exhibiting simple Power-law viscoelastic behavior.

The theoretical results shown in Figure 14.21 (solid line) are obtained by the theo-
ry presented in this monograph with ¢ = 0.9, (E,,E) = (16000,16000) MPa, (b,,

8) Right graph: Average of 6 domestic woods. Left upper graph: Compression wood.
Left lower graph: Normal wood.
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bs) = (0.25, 0.2), and (73,75) = (10%,10"°) days - and a geo-function of § = oo
as suggested in Section 5.3.3 for equal-strain analysis of anisotropic composites.
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Figure 14.21. Damping of Hoop Pinewood  Figure 14.22. Damping of ‘normal’ wood
in bending parallel to grain. in bending parallel to grain. (E,7,b) =
(16000 MPa, 10" days, 0.25)

Remarks: The damping of 'normal’ wood is calculated from assuming that this
material is homogeneous with a Power Law creep function as it is measured in
static tests (f < approx 0.005 Hz). The main conclusion which can be drawn from
the analysis made in (162) is that the rheological behavior of materials at high
frequency loading can only be detected by vibration analysis.

A full understanding of the mechanical behavior of a material requires the most
complete rheological knowledge one can get on this material. The example consi-
dered in this section has shown how vibration experiments may change the traditio-
nal modelling of a material from being a homogeneous material to being a micro-
composite. In this context we re-call from Sections 13.1.2 and 14.1.1 the great
potentials offered by modern experimental vibration analysis.

14.3 Discussion

It has been demonstrated in this chapter how the influence of geometry on the
behavior of viscoelastic composites can be determined by relatively simple mathe-
matical means. The power of Table 14.1 to predict composite creep and relaxation
from known elastic composite behavior should be emphasized.

The significance of knowing the complex stiffness of the composite is of special
interest in this context. This property can be determined theoretically by knowing
the geometry (as described in this monograph) of the composite considered - or
it can be determined experimentally (without knowing the geometry, as shown by
the author in (130)). This means that further research on geometry versus com-
posite behavior can benefit very much from refining the experimental and
mathematical techniques used in modern experimental vibration analysis (132).
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15. Other physical properties (Conductivity)

Many physical properties are proportionality constants between fluxes and potential
gradients (just as Young’s modulus is proportionality constant between stress and
strain), e.g. thermal and electrical conductivities, and diffusion coefficients. Other
physical properties are proportionality constants between inductions and force field
strengths, e.g. dielectric constants and magnetic permeabilities. A composite mate-
rials analysis with respect to any of these properties will, by analogy, follow the
same pattern and produce similar solutions. For example, expressions developed
to predict the bulk stiffness of composites can also be used to predict thermal con-
ductivity of composites. Of course appropriate substitutions of notations have to
be introduced (including proper transformation of vector field phenomenons (stiff-
ness) to scalar field phenomenons (like thermal conductivity). The existence of an
analogy is clearly observed comparing the works on dielectric properties by Hashin
(164) and Hashin and Shtrikman (165) on CSA materials with the same aut-
hors analysis (3,4) previously referred to on stiffness of such materials.

The bulk stiffness expressions presented in this monograph for composites of
arbitrary geometry are generalized by the author (24) to include other physical
properties only by introducing »; = », = 0 into the geometry function ,, which
means s = k, = 2 and bulk shape factors determined for », = », = 0.

Note: The term conductivity is subsequently used as a synonym for any of the sca-
lar field properties previously considered. This means, for example, that the
solutions subsequently presented apply to both thermal conductivity and electrical
conductivity as well as to dielectricity and magnetic permeability.

15.1 Theory

The results of the analogy presented above are summarized in Equations 15.1 -
15.3. The bounds presented in the latter expression are the exact conductivities
for CSA, and CSA; composites respectively. They correspond to 6 = 2 and 6 =
2n respectively, see Figure 15.1.

g=-L2 _n*fl+cem-11 . | _ G (15.1)
0, n+6-cn-1) ’ 0,

(15.2)

2

to * g+ Gy + )+ dn(l — g, - Hy)

=
]
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n+2[1+c(n—1)]< < 3 +2c(n-1)
n+2-cn-1 R R ) (15.3)
valid for n = 1 ; reverse signs when n < 1

We notice that the left side expression in Equation 15.3 equals the well-known
Maxwell relation for electrical and magnetic permeability (108) of particulate com-

posites with spherical particles.
&

It is emphasized that composite geo-
metry is considered in conductivity
analysis just as in stiffness analysis,
meaning that shape functions to in-
troduce into Equation 15.2 are the
bulk shape functions determined
$ from Section 7.1 (with », = »g =
’ 2 0.

CONDUCTNITY RATIO - n

SHADED AREA:
GEOMETRIES BETWEEN
SPHERES AND SHELLS

o~

SPHERES

~n

g=2 SPHERES

GEOMETRY FUNCTION - ©

Figure 15.1. Influence of phase P geometry
on geometry function.

15.1.1 Shape functions

The description of these shape functions require that at least 6 geo-parameters are
known: Shape factors (uu’, s’ o » s’ ) fOr s = », = 0 and critical concentrations
(cp,cs). For demonstrative purposes it is assumed in the former of the subsequent
examples that such geometrical knowledge is actually available.

In general, however, such ’accurate’ determination of shape functions cannot be
justified in practice. We therefore simplify the conductivity analysis as we have
simplified the elastic analysis introducing the 3-parameter descriptions of shape
functions developed in Chapter 10. We summarize: The geo-function expressed
by Equation 15.2 is kept. The shape functions (u»,us), including shape factors
(w°,ps’), however, are determined as explained in Chapter 10.

It is recognized that some accuracy is lost in a conductivity analysis using the
simple shape descriptions. However, subsequent examples and previous examples
re-considered show that the loss of accuracy is not very significant. In the author’s
opinion the level of analytical accuracy corresponds rather well to the level of ac-
curacy characterizing the determination of geometrical in-put data.

Remark: In the subsequent text we keep the general way of shape function de-
scription - unless otherwise indicated.
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15.2 Mlustrative examples

Results from a conductivity analysis of the DC-CD composite defined in Figure
15.2 are presented in Figure 15.3. The composite considered has previously been
subjected to a stiffness analysis in this monograph, see Section 7.2.4, Figure 7.20,
and Section 8.1.1, Figure 8.1.
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Figure 15.2. Geo-path and shape functions for a DC-CD composite with (c,,c;) = (0.8,
0.3). At ¢ = 0: P-particles: 80% A = 3 + 20% A = 0.3. At ¢ = 1: S-particles 50% A
=5+ 50%A = 0.2.
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Figure 15.3. Conductivity of composite as
defined in Figure 15.3. (0, Q) = (10,1),
1.0 same units.
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15.2.1 Porous materials and stiff pore systems

It comes immediately from Equation 15.2 and the analogy previously explained
(k = 2) that the conductivity of particulate composites with very "soft" (n = 0)
particles and very "stiff" particles (n = oo) can be written as presented in Equa-
tion 15.4.
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09, 1-c¢ ) _[2u, when ¢ < ¢,
9 = 0. 1+clf, with 6, = 19 when ¢ > c,
-1 (15.4)
o, 1+0c¢ ol "W T hen ¢ < C,
q, = —= = o with 6_ = P
s oo when ¢ > ¢

15.2.2 Dilute porous materials and stiff pore systems

The conductivities of dilute systems are obtained introducing ¢ - 0 into Equation
15.4. The results are presented in Equation 15.5.

a=1-|1+ Llc ; g =1+|12B8" 1, @53
2p5 2

Notes: Special solutions obtained by Equation 15.5 are presented in Equation 15.6.
They agree with results obtained in (53,52) for spheres and in (55) for fibres. The
disc (crack) result is presented only for the sake of completeness. Cracks have no
volume.

Spheres (A = 1): q,=1-15c ; q,=1+3c
Fibres (A = o): g =1 - gc ; g, =1+ oc (15.6)
Discs (cracke) (A =0): g =1 -0c ; g =1+ oo

15.2.3 Cracked materials (soft and stiff cracks)

The conductivity of materials with cracks (soft cracks, n = 0) or stiff "cracks"
(n = o0) can be considered by Equation 15.5. We introduce ¢ = (#/6)pAd® where
p is crack density (number of cracks per vol-unit), A is aspect ratio of (ellipsoidal)
fibre considered (with A - 0), and d is crack (fiber) diameter. We get

qg =1- hqu3 with h, = _7r6_A 1+ 10] cracks (soft)
o (15.7)
o o _ 1
.;. =1 - hpd with h, = fgi 1+ 2&*__’{5___] stiff cracks
¥

The h-factors are shown in Figure 15.4 with shape factors determined numerically
as explained in Chapter 7. It is noticed that discs practically can be considered to
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be cracks for any A < 0.01. This means that the influence of discs with A <
0.01 on composite conductivity can be considered as if the discs were real cracks
(A = 0).

1.0
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& Dot: Pregsent theory
< A with A < 0.01
&)
Il
v o
8 STIFF CRACKS |
Qos > 0.5 A
N =
| =
2 b
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Z
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O \
00 0.0 ®
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-30 ‘ -15 ’ ' 2 ‘ ) 5
LOGo(ASPECT RATIO - A) CRACK PARAMETER — pd’=6c/(mA)

Figure 15.4. h, factor for conductivity of Figure 15.5. Present crack theory versus
"cracked" composite. accurate crack theory (Levin).

The crack results predicted by the present theory are successfully compared in
Figure 15.5 with exact results, q = 1 - (2/9)pd®, as they can be obtained from the
Levin’s bulk modulus analysis (7) considered in Section 9.2 with », = 0.

In a similar way the conductivity of a material with stiff cracks is developed
numerically from the latter expression in Equation 15.7. The result is very close
toq =1+ 0.3pd.

Remark: It has been checked that the results in Figure 15.5 can be predicted accu-
rately also by the SCS-method presented in Appendix C with (Q,,Qs) = (0*,1) and
A < 0.01. The statement previously made that SCS-solutions can be considered
accurate when composites considered are dilute is clearly supported by this obser-
vation where very little crack "volume" is involved.

15.2.4 Crumbled foils composite

In a crumbled foils composite, see Section 4.1.4, both phases have continuous flat
geometries, meaning that both shape functions (u,,us) = 0. The conductivity of
such composites is easily derived from Equation 15.1 with a geo function § = 2+/n
introduced from Equation 15.2.

g-Q _n- 2/nl + cn - 1] (15.8)
Oy n+2\/_n_—c(n~—1)
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15.3 Theory versus experiments
15.3.1 Chloride diffusion in HCP and HCP with Silica fume

The data shown in Figures 15.6 and 15.7 are from a study reported in Bentz et
al. (166) on the influence of silica fume on the chloride diffusion in cement
based materials. The materials considered were computer-simulated applying a ce-
ment paste model which has previously been developed by Bentz in (167).
Bentz et al. (166) verify their (model)results comparing them with experimental
data reported in (168) and re-evaluated experimental data (W/C = 0.3, ¢ =
0.043) reported in (169). (Leaching systems used in (169) versus un-leaching
systems in (166)).

The diffusion coefficients presented in Figures 15.6 and 15.7 are normalized with
respect to the chloride diffusion coefficient of free water, Q, = 2%¥10° m*/sec, sug-
gested in (170). Volume concentration of capillary pores (obtained using W/C
ranging from 0.2 to 0.7) are denoted by c.

Percolation (model)results presented in (166) show that phase P (capillary pores)
starts being continuous at ¢ ~ 0.2. In the terminology of the present monograph
this corresponds to a critical concentration of ¢ =~ 0.2. Adding an estimate of
¢, = 0.6 for the other critical concentration (beyond which O-stiffness of HCP is
normally expected) the solid lines presented in Figures 15.6 and 15.7 are predicted
by the conductivity analysis presented in this monograph with shape functions as
illustrated in Figure 15.8. A, and A denote aspect ratios of phase P atc = 0
(discrete ellipsoidal cap-pores) and of phase S at ¢ = 1 (discrete ellipsoidal solid
particles dissolved in a continuous cap-pore system) respectively.
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Figure 15.8. Shape functions: (c,, ¢s)
= (0.6,0.225), (A,As) = (3,0.3).
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Curiosum: It has been mentioned that the
model-results of Bentz et al. (166) were
verified by re-evaluated experimental data
(W/C = 0.3, ¢ = 0.043) reported by
Mejlhede in (169). The data shown in
Figure 15.9 are the original chloride dif-
fusion data for leaching systems reported
in (169). The following discussion will
show that these data can, on their own, be
givena microstructural explanation: Appa-
rently the capillary pores of Mejlhede’s
system are permeable already from ¢ = 0,
meaning that ¢, < 0. The diffusivities
shown in Figure 15.9 with a solid line are
predicted with shape functions as presen-
capillary pore system always has a MM-

geometry, starting at ¢ = 0 with a pore geometry of long shapes mixed with flat
shapes, and ending at ¢ = 1 with a shape of crumbled foils.
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Figure 15.10. Shape functions:

(crcy) = (0.6,<0), p = 0.3,

ps = 0.

Discussion: Apparently two different capillary pore systems are revealed by the
studies on leaching systems (169) and on un-leaching systems (166). An explana-
tion is that the pore system changes as the results of leaching. The pore system

opens up decreasing the critical conce
pore system to be crumbled foils.

It is interesting to notice that the experi

ntration ¢ and transforming the capillary

mental chloride diffusion data obtained by

Mejlhede (169) (including HCP with silica fume) under leaching conditions were
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fitted excellently by Equation 15.8. This expression applies for pores with crumb-
led foil geometries at any pore concentration. The hypothesis can be made that
stiffness (and strength) of HCP reduces as the result of leaching chloride exposure.

Future research on chloride diffusivity of HCP will show that this problem can
be solved only by considering also the mechanical behavior of this material: Mea-
sured stiffness before, and after chloride exposure.

The theory developed in this monograph for the prediction of conductivity of com-
posite materials is well justified by the results of this section. The justification is
even more pronounced by the observation made in (166) that the general trends
of chloride diffusivity of leaching HCP systems are in good agreement with experi-
mental data obtained by Christensen (171) with respect to the electrical conduc-
tivity of such systems: W/C = 0.4 with 0% and 20% silica fumes.

15.3.2 Thermal conductivity of special DC-CD composite

The results presented in Figures 15.11 and 15.12 are from an analysis of the speci-
al DC-CD composite defined in Section 9.3. In the example considered phase P
is Silicon carbide (SiC) with Q, = 135 Wm"/°C. Phase S is Carbon (C) with Qs
= 9.5 Wm/°C. These phase properties are adopted from the FEM-analysis
(15,16) previously referred to in Section 9.3.1 of a layered fiber composite.

1.5 160
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Figure 15.11. Shape functions of iso- Figure 15.12. Conductivity of isotro-
tropic DC-CD composite considered. pic DC-CD composite considered.

Plane-isotropic fiber composite with long parallel fibres

A plane-isotropic version of the composite just considered has been described in
Section 9.3.1. The conductivity (perp to fibres) of this composite can be predicted
by by Equation 15.9 developed from a plane-isotropic version (24, Appendix C)
of the isotropic composite theory presented in this monograph. For the composite
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160 presently considered with fibres of
| B6TEd: e shnas TSP circular  cross-sections, shape
DASHED: SCS .
(120 functions can be based on shape
L factors very close to (u,°,us®) = -(u,',
' ps) = (1,-1).
= 80 .
| The results of the analysis are shown
- in Figure 15.13 which agrees very po-
3

0 . J = sitively with results (16, Figure 7) de-

. M“:” duced from the FEM-analysis (15,16)
0 . . . . previously referred to on DC-CD fi-
GOm0 &% % ' per composites.

Figure 15.13. Perp o fibre thermal con-

. ; . . Remark: In principles, the discussion
ductivity of plane-isotropic composite with ] . ]
parallel circular  fibres. (0,Q) = made in Section 9.3.2 on the descrip-

(135,9.5) Wm'/°C. tion of geometry transitions around
¢ = 0.5 applies also when conducti-

vity predictions are considered.

q, = _QI - Ol + el - 1) (plane isotropy, perp to fibre)

Q, n+6-cn-1)

(15.9)

2

. 1
with 0 _2.{,% + npg + \/(/LP +np) +An(l - p, - p)

H/S bounds: 6 = 1 and 0 = n

15.3.3 Electrical conductivity of binary metallic mixtures

(Considered with simple 3-parameter descriptions of shape functions). The ex-
perimental data shown in Figure 15.14 are from tests (172) on the electrical
conductivity of Cu,Sb-Sb systems with n = 0.27. The solid line is conductivity
theoretically predicted with (u,°, us°,¢;) = (1,-1, 0.5) - which define the same com-
posite geometry as previously detected in Chapter 12 for the Budiansky’s SCS
stiffness analysis.

Landauer (52) showed that experimental data from a number of binary metallic
mixtures were well fitted by the Btcher/Landauer expression subsequently presen-
ted in Table 15.1. Some data, however were not. An example is shown in Figure
15.15 with experimental data from (173) on Mg,Pb-Pb systems with n = 8.55.
The solid line represents data theoretically predicted with (u,°, ps,C,) = (-1,1,0.5).
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Discussion: Conductivity for a number of binary metallic mixtures can be predic-
ted on the basis of phase-symmetric DC-CD geometries created by compacted
spheres - which also apply for the Budiansky’s stiffness expression previously con-
sidered. It is noticed from Figure 15.14 that the prediction qualities of the present
theory and of the Bottcher/Landauer expression are identical.

1.0 10
4 N v DOTS: EXPERIMENT
& & SOLID: THIS STUDY
s N S | CROSS: SCS (LANDAUER/BOTTCHER)
< RN O BOTTED: H/S BOUNDS .
W #
I N I 41'
O \\\\\(\ o Ras A
l i § /
0.5 5 L <
> — A
= - . .
> > 2
= =
© &
) ) .
[ = =
DOTS: EXPERIMENT g
5 SOLID: THIS STUDY Z |
S CROSS: 5CS (LANDAUER/BOTTCHER) O
DOTTED: H/S BOUNDY ©
0.0 0

0.0 1.0 1.0

0.5 0.0 0.5
VOL—-CONCENTRATION — ¢ (Sb) VOL—CONCENTRATION — ¢ (Pb)

Figure 15.14. Electrical conductivity of ~Figure 15.15. Electrical conductivity of
Cu,Sb-Sb. Shape functions defined by M8:Pb-Pb. Shape functions defined by
(uensscs) = (1,-1,0.5). (ue'pss¢r) = (1,1,0.5).

Apparently the geometries of the Cu,Sb-Sb and Mg,Pb-Pb systems considered in
Figure 15.14 and Figure 15.15 respectively vary differently. Figure 15.14 indicates
that small amounts of Sb have spherical shapes such as in a CSA, composite. Figu-
re 15.15 indicates that small amounts of Pb have continuous shapes such as in a
CSA composite. From a mechanical point of view the latter statement sounds
somewhat strange. Apparently the electrical diffusion in a Mg,Pb-Pb system is a
phenomenon which has its own way of using the mechanical composite structure.
A first hypothesis to explain this feature might be that certain conductivity pheno-
menons utilize the surfaces primarily of microstructures. A special future composi-
te study is revealed by these remarks.

Incidentally, the discussion just made tells that the theory developed has no diffi-
culty in handling the opposite geometrical trend CD - DC than what is implicitly
assumed as default (DC — CD) in this monograph, see Chapter 2.3.

15.3.4 Thermal conductivity of fire-brick

(Considered with simple 3-parameter descriptions of shape functions). The ex-
perimental data in Figure 15.16 are from (174). A thermal conductivity of the
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solid Qs =~ 0.825 kcal/mh°C, a shape factor p,° = 1, and a critical concentration
¢, =~ 0.82 have been deduced by regression of experimental data as explained in
Equation 15.10. A shape factor of us° = 0 is estimated observing that fire-bricks
normally are impregnable already at low porosities. With these geo-parameters
the conductivity of the porous brick are predicted as shown in Figure 15.16.
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Figure 15.16. Thermal conductivity of fire-
brick. Geometry: (n,°, us,c) = (1, 0, 0.82)
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Figure 15.17. Geometry of fire-brick consi-
dered. p;,ps,cp = 1,0,0.82. Max(uy) = 1.

Deduction of geo-parameters from experiments

With a 3-parameter descriptions of shape functions the conductivity expression for
porous materials, Equation 15.4, can be re-written as shown in the former expres-
sion of Equation 15.10. It is subsequently shown, how this expression can be used
to derive the shape factor y,° and the critical concentration ¢, from experimental
observations. The regression is made optimizing the fit quality (1*) with respect
to the critical concentration.

Remark: Ideally, ¢, must agree with ¢, determined by a linear regression of data
from stiffness tests on the porous material considered, see Equation 10.13.

Q _ 1 -¢ =
Qs 1 +c/2p(1 - c/cy)]
Y=Y +oX with X=—C _ gng v=1-6¢ 4 (15.10)
° 1 - cle, o
Y
g, = % ;oW = 2" Jrom intersection (Y)) and slope ()
164
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15.4 SCS-estimates

The numerical SCS-method previously referred to in Chapter 3 (with Appendix C)
to estimate composite stiffness has also been generalized in this monograph to con-
sider composite conductivity. The results are presented in Appendix C where com-
posites are considered with a larger range of particle shapes than what is conside-
red in analytical SCS-methods presented in the literature:

Electrical conductivity and dielectricity of two-phase materials was studied by Lan-
dauer (52) and Béttcher (53) respectively using a SCS-model with spheres as the
basic element. Their theoretical results can, after some re-writing, be expressed
as shown in Table 15.1, first row. It is interesting to observe that this expression
can be obtained from Equation 15.1 introducing 6 = 2q (just as the Budiansky’s
stiffness expression in Equation 10.7 can be obtained from the stiffness equation
in Table 10.3 introducing 8 = e).

AUTHOR BASIC ELEMENT CONDUCTIVITY - q = Q/Q;
Bottcher (53) Sphere (A — 1) q = -i—[B + \/BZ + 8n ]

L 2
andauer (52) with B =2 -3¢ - n(l - 3¢

1 2
Long fiber (A = ») |49 = —2—[3 + JB + 4nfl + %(n - 1]

with B = (1 —n)[l —gcl

Beek (55)

Bruggeman (54) |Thin disc (A = 0) _ n3 +2¢(n - 1)

1 3n-cn-1)

Table 15.1. Some SCS solutions for the conductivity of composite marerials. Strict ellip-
soidal particles.

Other conductivity expressions were developed for a composite with extremely
long fibres by Van Beek (55), and for a composite with extremely thin discs by
Bruggeman (54). After some re-writing the results obtained by these authors can
be formulated as shown in Table 15.1, second and third row respectively. All three
SCS solutions presented in Table 15.1 are illustrated in Figures 15.18 and 15.19
which compare very accurately with the numerical SCS-results obtained in Appen-
dix C.
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15.4.1 Examination of SCS-expressions

We re-call that the composite geometries for SCS-solutions are self-defined and
unknown, except at small phase P concentrations. To compare the present analysis
with results from a SCS-analysis it is of interest to know the underlying geometri-
es. The geometrical reference to be used is the concept of organic geometries ap-
plied throughout this monograph. This means that geometries revealed are those
for which the present analysis and the SCS-analysis being investigated will predict
the same stiffness.
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Figure 15.18. Compositedielectricity. Fibr-  Figure 15.19. Compositedielectricity. Fibr-
es (A=oco), spheres (A=1), discs (H-S es (A=), spheres (A=1), discs (H-S lo-
upper bound) (A=0). (n = 10). wer bound) (A=0). (n = 0.1).

SCS-expressions (and other estimates) suggested for prediction of composite
conductivity can be examined with respect to isotropy and geometry just as stiff-
ness expressions have been examined in Chapter 12. The analogy between stiffness
and conductivity is considered such that Equations 12.1 and 12.7 become Equati-
ons 15.11 and 15.12.

_ [n - cn - Dlgy, -

0 ;. isotropy check
1 +cn - 1) - q Py (15.11)
. <0 <2 whenn < 1
Wlth =0 =2 whenn > 1

_ 4nn0,-0) + 6n(2-60) - On(2-0)
P = Tnn0,-0) + 26,,2-6) - 265.(2-0,)
_a4n(l - ) - 60,6, - 2u) ’
21,2 - 0))

geometry check (15.12)

=
5
f
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These expressions will be used in this section to reveal the underlying ’hidden’
geometries in the SCS-expressions presented in Table 15.1.

15.4.2 Spheres: Bottcher/Landauer
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Figure 15.20. Underlying geo-functions in  Figure 15.21. Underlying geometry in the
the Bottcher/Landauer analysis. Borttcher/Landauer analysis.

The results of a geo-analysis of the Bottcher/Landauer’s SCS-solution in Table
15.1 are shown in Figures 15.20 and 15.21. They define a phase-symmetric
DC-CD composite geometry with (u,°, us®) = (1,-0.5) and ¢, = 2/3. With Figures
7.10 and 10.5 the geometry can be estimated to be the result of compacting pow-
ders made of very rugged fibres (many spheres mixed with a few fibres).

Remark: We notice that the shape functions in Figure 15.21 deviate from those
revealed in Chapter 12 for the Budiansky’s SCS-stiffness analysis which also has
a sphere as the basic inclusion. Theoretically, the reason for not getting the same
shape functions, is that a conductivity analysis, basically is a bulk modulus analysis
released from the restraints of a simultaneous shear modulus analysis.

Practically, however, we should not be disturbed: Whatever shape functions are
chosen, conductivities are predicted with equal reliabilities, see Section 15.3.3.

15.4.3 Long fibres: Beek

We re-call from Section 12.1 that we cannot expect a fully consistent geometry
revealed from this SCS-solution (A > 4), unless at extreme stiffness ratios (n =
0 or o). The type of composite, however, is consistently revealed by Equations
15.11 and 15.12 for various stiffness ratios as a MM-CD with (u,°,us°) =

175



Chap. 15: Other physical properties Lauge Fuglsang Nielsen

(0.75,0.25) and (', us') = (-0.5,1). The shape functions in Figure 15.23 are deter-
mined with (n,,n,) = (10",10"), simulating extreme stiffness ratios.

We may then conclude that the analysis reveals a MM-CD composite geometry
with (%, 115°) = (0.75,0.25), (us',ps") = (-0.5,1.), and ¢, = 0.6. With Figure 10.5
the geometry can be estimated at ¢ = 0 to be agglomerating P-fibreworks, chan-
ging to end at ¢ = 1 as a mixture of S-fibres and S-spheres in a continuous pha-
se P. Phase P changes from being continuous to being discrete at ¢ = 0.6.
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Figure 15.22. Underlying geo-functionsin ~ Figure 15.23. Underlying geometry in the
the Beek analysis. Beek analysis.

Remarks: We notice from Figure 15.23 that the *accurate’ shape functions revea-
led do not comply with the feature discussed in Section 15.1.1 on simple 3-pa-
rameter shape descriptions. The following example, however, will demonstrate
the statement made in Section 15.1.1 that simple descriptions will only cause
insignificant loss of accuracy in conductivity predictions.

Conductivity of MM-CD fibre composite

The Beek-solution, presented in Table 15.1, for the conductivity of composites
with very long fibres are considered in Figure 15.24 as experimental data from
tests on a MM-CD composite.

An analysis with (p,°, us°,p) = (0.75,0,0.6) produces the conductivities presented
with a solid line. The shape functions associated are illustrated in Figure 15.25.

Remark: It is noticed that there are only small differences between the Beek
prediction and the prediction made by the analysis of this monograph.

176



Lauge Fuglsang Nielsen Chap. 15: Other physical properties

10 7 ! -
& LONG FIBRES 7
™~ SOLID: THIS STUDY /
o DOTS: BEEKs SCS
DASH: H/S BOUNDS [92]
I z
/,4 O
o P =
,”Ia S <
! 5
> 5 3 - o 0
= o
=
= <
3 5
D
)
5
: lid
© lie: doshed/dotted
) 0.5 1.0 “ob 05 10
VOL—CONCENTRATION ~ ¢ VOL—CONCENTRATION ~ ¢
Figure 15.24. Long fibres: Present ana- Figure 15.25. Long fibres: Shape
lysis versus Beek’s solution. n = 10. Junctions in present analysis.

15.4.4 Thin discs: Bruggeman

Obviously, see Equation 15.3, a CSA, geometry is the underlying composite geo-
metry in the SCS-analysis of Bruggeman which is based on strict discs with A «
1. This geometry-observation agrees with numerical SCS results obtained in Ap-
pendix C on both stiffness and conductivity of particulate composites with thin
discs. It also agrees with conclusions made in analytical studies on particulate
composites (e.g. 14) such as made with thin discs.

In the context of the geometrical concept applied in this monograph thin discs act,
by agglomeration, as phase P envelopes for phase S particles (CSA,). From the
opposite geometry (CSA,;) the geometry changes through the crumbled foils
geometry previously explained in this monograph (e.g. Sections 4.1.4 and 8.1.2),
defining the "half way’ phase P geometry between the geometry of a CSA, and
the geometry of a CSA,.

The conductivity expression for crumbled foils has already been presented in
Equation 15.8. Experimental justifications for this expression has been presented
in Section 15.3.1.

15.4.5 Summary and discussion

The SCS-estimates of conductivity presented in Table 15.1 are checked with the
results summarized in Table 15.2. All estimates are evaluated positively with
respect to both isotropy and stability of underlying composite geometries. All
estimates are included in the theory presented in this monograph. There are,
however, two minor comments to be made:
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Although the Boticher/Landauer’s estimate on conductivity and the Budiansky’s
stiffness estimate on stiffness are both based on a spherical particle, they do not
reveal exactly the same composite geometry. The theoretical reason for that is
explained in Section 15.4.2. The same fype of geometry (phase-symmetric DC-
CD), however, is revealed. Because of that there will bee no significant difference
between predictions made with the Botcher/Landauer’ expressions or made with
the theory presented in this monograph using the ’Budiansky geometry’, an
example is presented in Section 15.3.3.

METHOD —- Béttcher/Landauer Beek Bruggemann
{ CHECK (Spheres) (Long fibres) (Thin discs)

Isotropy + + +
Geometry + (+) +

Table 15.2 Summary of check results for conductivity SCS-estimates considered in Table
15.1. Good results are marked +. A positive check on type of geometry is denoted (+).

The second comment to be made concerns the Beek analysis of long fibre composi-
tes. Because the particle aspect ratio is very high (A = o) no fully consistent geo-
metry can be found, as expected from Section 12.1. The type of geometry, howe-
ver, is fully consistent (also as expected).

15.5 Conclusion

A method has been developed in this chapter by which the stiffness theory for
composite materials presented in Chapter 8 can be used in the analysis of other
physical properties of composites with arbitrary geometry. Examples of properties
considered are thermal conductivity, electrical conductivity, dielectric constant,
and magnetic permeability.

The method presented is based on a very simple modification of the bulk modulus
expression from the general stiffness theory. It is emphasized that the influence
of composite geometry on other physical properties considered is the same as on
stiffness. The analysis is verified by comparison of predicted results with theoreti-
cally and experimentally obtained data - including SCS-estimates (Self-Consis-
tent-Scheme) known from the literature.

A new generalized, numerical SCS-method has been developed (in Appendix C)
for estimation of composite conductivity. The method is based on mixtures of ellip-
soidal particles of any shapes.

178



16. Conclusion and final remarks

We re-call from the introductory chapter, ’Overview’: The subject dealt with in
this monograph is the mechanical and physical behavior of composites as influen-
ced by composite geometry. This subject has a high priority in the general study
of composite materials. A better understanding of the behavior of natural composi-
tes, improvement of such materials, and design of new materials with prescribed
properties are just three examples in modern materials research where more knowl-
edge on geometry versus materials property is absolutely necessary.

The author’s contribution in this respect is presented in this monograph: A theory
is developed which predicts the influence of variable composite geometry on the
mechanical and physical behavior of isotropic composites. Features especially con-
sidered are the elastic behavior (including eigenstrain/stress), the viscoelastic beha-
vior, and the conductivity behavior.

16.1 Analysis

The complete analysis presented in this monograph on composite materials is based
on the following three step procedure used to determine the influence of composite
geometry on the elastic behavior of such materials:

1. Composite geometries are classified. Various types of composites are considered such
as particulate composites, laminated composites, and compacted powder composites.
A special scheme for composite classification is developed in Chapter 2.

2. Global elastic solutions (master solutions) are developed in Chapters 3 - 6 which are
valid for any composite geometry. The influence of specific composite geometries are
“hidden’ in so-called geometry functions (6).

3. Shape functions (1) are developed in Chapter 7 such that geometry functions can be
related to the special composite geometries classified under step 1, meaning 6 = 0(u).

16.1.1 Elastic composite analysis

Elastic composite solutions can now be determined, as summarized in Chapter 8,
for any composite, introducing its special geometry functions, § = 6(u) developed
under step 3, into the global solutions obtained under step 2.

Simplified analysis

Recognizing that elastic and geometrical information are often not very accurate
in practice, a simplified version of the elastic theory is presented in Chapter 10.

16.1.2 Viscoelastic and conductivity analysis

Composite solutions for viscoelastic and conductivity problems are developed, in
Chapters 14 and 15, from the elastic solutions applying some analogy schemes
presented in these chapters.
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16.1.3 Inverse analysis (diagnostics, materials design)

Any expression presented in this monograph is consistent with respect to isotropy
and geometry assumed. Well-known empirical methods often used in composite
analysis are not always consistent in this respect. The composite theory developed
is re-organized in Chapters 12 and 15 to become a "test method" with respect to
quality control of prediction methods suggested in the field of composite materials.
In Chapter 12 is demonstrated that this method can be used in materials design.
In Chapter 15 it is used to reveal the underlying geometries in composite solutions
obtained by SCS-analysis (Self Consistent Scheme).

16.2 Justification

The very basis of the analysis, namely the elastic part is justified in Chapter 9
comparing the analytical results with experimental and theoretical works made by
other authors in the field of composite materials - and with results obtained in the
author’s own FEM analysis reported in Appendix D.

Inany field considered (elasticity, viscoelasticity, conductivity) the theories develo-
ped are successfully checked against a number of experimental data and composite
theories previously reported in the composite literature.

16.2.1 General SCS analysis

To test some elementary influence of particle shapes on the stiffness and conducti-
vity of particulate composites a generalized SCS-analysis has been developed in
Appendix C. It works with mixtures of ellipsoidal particles of arbitrary shapes.

16.3 Applications

In general no special composite materials are thought of. In examples, however,
constitutive materials such as cement and wood materials, polymers, ceramics, and
metals are used. Among the subjects considered by the theory are the following:

Elasticity: Internal stress/strain states, stiffness, shrinkage and hygro-thermal beha-
vior. Quality control of existing expressions for estimation of stiffness. Porous
materials. Image analysis. Stiffness of hardened cement paste (HCP) and concrete.
A strength mechanism for concrete.

Viscoelasticity: Creep- and relaxation analysis, complex stiffness moduli and dam-
ping. Internal stress/strain state. Experimental vibration analysis. Power-law creep
of wood, polymers, and ceramics. Time-modified creep for HCP and concrete.
A lifetime mechanism for concrete.
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Conductivity (Other physical properties): Thermal and electrical conductivities,
diffusion coefficients, dielectric constants and magnetic permeabilities. Electrical
conductivity of binary metallic structures. Examination of existing SCS-estimates
on conductivity. Thermal conductivity of fire-brick. Chloride diffusion in HCP.
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17. Notations

The notations most frequently used in this monograph are listed below. A few
symbols have been allowed to have two meanings - only, however, where the
proper meaning is obvious from the text associated. The list does not include local
symbols used only in intermediate results.
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P, S

no sub/supscript
k, g

(sub),

(sup)®

x©

EFF

A%

¢ = VJ/(Vs + V)
I-¢

A = (1-¢)/(1+c)

CPACK

Cp,Cs

Com = (Cp + C)/2
!

M

0
A
o

=

-« OR o™

k= 2(1 -2»)/(1 + »)
v = (7-5v)/(4 - 5v)/2

Sub/supscripts

Phase P and phase S respectively

Composite material

Bulk- and deviatoric behavior respectively

Porous material (or state of reference)

Dilute solution

Very stiff inclusions

Effective quantity used to simplify/approximate analysis

Volume

Phase volumes

Volume concentration of phase P
Volume concentration of phase S
Volume parameter

Void ratio in a packed pile of particles

Geometry

Critical concentrations

Symmetry concentration

Shape factors

Shape function

Geometry function

Fiber aspect ratio (length/diameter)

Volume fraction of particles with one shape in a mix-
ture of particles of various shapes

Pore saturation of impregnated phase P
Density (number per volume unit) of voids or cracks

Elasticity

Young’s modulus
Bulk modulus

Shear modulus
Poisson’s ratio
Bulk Poisson factor
Shear Poisson factor
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Chap. 17: Notations

n = E,/E;

n, = Ky/K

n, = Gu/Gg

N, = nu/is = 1,
N, = ngve/vs

e = E/E;
k = K/K
g = G/Gq

'—bg"ﬁ\—r

Stiffness ratio - relative stiffness
Young stiffness ratio

Bulk stiffness ratio

Shear stiffness ratio

Modified bulk stiffness ratio
Modified shear stiffness ratio

Relative stiffness of composite
Relative Young’s modulus of composite
Relative bulk modulus of composite
Relative shear modulus of composite

Viscoelasticity

time

Oscillation (cyclic) time

= 27/T, angular frequency

= w/(27), traditional frequency, cycles/time unit

Creep function

Relaxation function

Relaxation time

Creep power in Power-Law creep

Creep parameter and creep factor respectively for HCP

and concrete

Complex Young’s modulus
Real Young’s modulus
Imaginary Young’s modulus
Loss angle

Loss tangent

Stress/strain

General stress (i = 1,2,3,j = 1,2,3)
Volumetric stress (o + 0n + 03)
Hydraulic pressure/tension
Deviatoric stress

General strain

Volumetric strain

Deviatoric strain

Eigenstrain/stress
Eigenstrain (linear)
Eigenstress (hydrostatic)
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CSA
CSA,/CSA
TROC
CROSS
H/S

P/H

w/C

HCP
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Abbreviations

Composites spheres assemblage

CSA with phase P/phase S as kernel

Special particulate composite

Special grid composite

Hashin-Shtrikman’s stiffness/conductivity bounds
Paul-Hansen’s stiffness bounds

Water/cement ratio by weight

Hardened cement paste
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Introduction

Various aspects of the main text are considered in this appendix section. Most
appendixes are auxiliary ’tools’ for presenting the ideas developed in the main text
of this monograph. Two appendixes, however, can be read as separate papers:
Appendix C where a new numerical SCS analysis is developed - and Appendix
D where a complete FEM-analysis of composite materials is reported. Notations
used in this appendix section are the same as used in the main section of the mo-
nograph.
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Appendix A - Elasticity

Isotropy

Stiffness of an isotropic elastic material is defined by the bulk modulus K and the
shear modulus G. Young’s modulus E, and the Poisson’s ratio (») together with
two p-parameters (x and ) are related to K and G as follows.

_ 9KG ., . 3K-2G
3K + G 23K + G

. __E . k-__E (A1)
2(1 + ») 3(1 - 2»)
21 -2 T -5
S S —— . Y OF e
1+ 2(4 - 5»)

Composite aspects

In composite theory it is very often appropriate to relate composite elastic moduli
(K, G, E, ») to elastic moduli (K, G, Es, vs) of an isotropic reference material S.
Dimensionless versions of E and » are then presented as follows with k = K/K,,
g = G/Gq, and e = E/E;

3kg .y = 1+« Vs)k -1 - 2V3)g (A2)
21 + w)k + (1 - 2p)g ’ 21 + pk + (1 - 2v)g

Stress-strain

The stress tensor oy and the strain tensor e, are related as follows (ex 1) when an
isotropic elastic material is considered with stiffness properties from Equation Al.

_ 1L+ 4
- e T
ij =12,
ij 1 + p kK Ul - 2V
with Kronecker's delta o, = (1) chi ;J j

Volumetric stress and strain are denoted by o, = 0y, + 05, + 05 and e, = ¢, +
€» + €, respectively. The stress strain relation can also be written as follows in
two expressions - one relating volumetric strain to volumetric stress - and another
one relating deviatoric strain (e;) to deviatoric stress (sy).
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_ Y ith e T & T E, T Ey
g, = — Wit S LR
Oy = Oy 0y Oy
S, L WK
T ag M s, =0, - 80,3
i ij i e

volumetric strain
volumetric stress
deviatoric strain
deviatoric stress

(Ad)

Cubic elasticity

Stiffness of a cubic elastic material is defined by the cubic bulk modulus K., the
cubic shear modulus G, and the cubic Young’s modulus E. or the cubic Poisson’s

Atz

X

Figure Al. Coordinate system used in
FEM-analysis.

ratio ».. The constitutive equation of a
cubical elastic material can be expres-
sed as shown in Equation A5 using the
coordinate system defined in Figure
A1 with stress-strain planes coinciding
with planes of elastic symmetry (and
materials symmetry).

Qubic material models are considered
in Appendix D of this monograph. The
stiffness parameters for these materials
can be determined performing the two
"FEM-experiments’ outlined in Equati-

ons A6 and A7. The cubic Young’s modulus, the cubic Poisson’s ratio, and the
cubic bulk modulus are obtained from the "axial experiment" explained in Equati-
on A6. The cubic shear modulus is obtained from the "shear experiment" explai-

ned in Equation A7.

| [we e wyE. 0 0o o] o]
e| |-wE, UE, —JE. 0 0 0 0
o| B B VE. 0 0 0 | o] g
e, o 0 0 126G 0 0 o
. o 0 0 0 172G, 0 o
: o 0 0 0 0 16, o
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Conditions: & =& =¢ =¢ =& = 0
Load = response: &, = a, (= 0,)
o - 20 + o0 Y
Results: E =2 — 1 = — = (A6)
efo, + o) 9, "0,
© " 3(1 - 20)
Conditions: e, =¢ =¢ =¢,=¢,=0
== : =
Load = response: &y Oy (A7)
g
Result: CE
Zexy

Poly-cubic elasticity

Isotropic mixtures of parts from a cubic material behave elastically, just as an
isotropic mixture of cubic crystals. Equation A8 expresses the exact bulk modulus
for such mixtures (2).

E
K=K =___ "¢ (A8)
c 31 - 2v)

No corresponding exact poly-cubic shear modulus solution has yet been found.
However, it has been shown (3) that the true value is bounded between two
solutions derived in (4,5). Some re-writing of these boundary values imply

-1

<G=G +2
5

E, _ G

12
+ POV
20 +v) €

2(1+VC)_ 1
G. 5| B

E. G.

C C

(A9)

The lower bound (5) is based on an assumption which is tantamount to assuming
that the state of stress is identical from crystal to crystal. Correspondingly the
upper bound (4) assumes identical states of strain. If the crystals were isotropic
then Equation A9 predicts G = G.. Improved bounds for poly-crystals have been
given by Hashin and Shtrikman (6). For the present work, however, the bounds
in Equation A9 suffice. The upper and lower bounds are sufficiently close to
justify simple mean value approximations.
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Composite aspects

When isotropic mixtures of cubic composite elements are considered it is very
often appropriate to relate composite cubic elastic moduli (K., G, Ec, ».) to the
elastic moduli (K, Gs, Es, »5) of an isotropic reference material S. Normalized
versions of Equations A8 and A9 with respect to phase S are presented as follows
with relative coefficients of cubical elasticity k. = K/K;, gc = G/Gs, and e, =
E//E;,

1 -2
’s = y,= L1 - S -2y
1 - 2y, 2 k.,

B
1 211 +wv, 1 1 211 + »
— — < < + - e. -
[gc 5[1+ys €. gc}] ¢ & 5[1+yc ¢ gC

which can also be expressed as follows with v, introduced

k =k

c = €

(A10)

13t |3 1-2
g Sgc 5(1 + VS) €. kc } (All)
gz B M w3 1-2

5 5 e. k.
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Appendix B - Dilute particulate composites

The main purpose of this appendix is to show how average particle stresses in an
isotropic dilute particulate composites can be evaluated numerically. The particles
are cylindrical with lengths 1 and cross-sections d*d (aspect ratios A = 1/d). The
isotropic composite is thought to be an isotropic mixture of parts from a cubic
composite with similar particles, see Figures Bl.

It is emphasized that whenever cubic behavior is considered the stress coordinate
system referred to is the system defined in Figure B2 where coordinate planes
coincide with planes of elastic symmetry.

CUBICAL FIBRE SYSTEM 408878
3 0\3 023 N
8
(-3
. T at3 - b 022-02
d 012 <
A &g
» 2 N2 —
P 2
e 7
¥ -
1’ R
L e d ‘
Aspect ratio A = {d 1

Figure B1. Isotropic fibre composite is an  Figure B2. Coordinate system with coor-
isotropic mixture of parts from this cubic ~ dinate planes coinciding with planes of
model. elastic symmetry.

Cubic stiffness, shape parameters, and stress

The composite stiffness expressions presented in Section 3.1 (in main text of mo-
nograph) can be written as follows applying for the dilute cubic composite just de-
scribed in Figure B1.

‘ 1 - n, o
_1_=1+1+_1_c with 1. M Im
ke ¢ Py n,o O
1 -n s
I E N P L
s,
8 R P, C sz (B1)
Loova i Lo wim L2120 o1 i
€ P. P. n. o
1 +p, ~n(1™+vp) v, — Ry E
8¢ = r S - L S¢%° 5 and n o= <
Pii 1 -n Pii 1 -n Pk !
@ii=11,22,33)
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Cubical stiffness are denoted by k¢ = K%K, g° = GG, and ¢ = EY/E, with
supscript C denoting cubical behavior. Cubical shape coefficients are defined by
p® which can be determined numerically if the appropriate stress components are
known.

Particle stress

For the cubic composite defined in Figure B1 we can determine these stresses in
the following way: The particles are thought of as orthogonal "triple” particles
with very large distances between single particles. The average particle stresses
for these triple particles can be determined by means of Equation B2 after having
solved the stress problems described in Figures B3, B4, and BS by the Eshelby’s
classical analysis (7) of the stress field at an ellipsoidal particle in an infinite
homogeneous matrix.

Remark: The computer program developed by the author to translate the basic
theoretical results of Eshelby to numerical quantities has kindly been cross-chec-
ked by Henrik Stang (8) using an algorithm developed for his own work on com-
posite materials (9).

1

13

%)

-
e
~

1 determine oPkk { determina oP13 0 determine oP23

from this test from this test from this test

Figure B3. Stress analysis for ~ Figure B4. Stress analysis for cubic shear behavior.
cubic bulk behavior.

3, TEST3a 3, TESTS3h

7 determine oPYand oPkk 1 determine oP22 and oPkk
from this test from this test

Figure B5. Stress analysis for cubic uni-axial beha-
vior.
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o o
s P Jrom TEST I  (bulk)
Gkk kk
oc o’ o’
T2 LHo%ns Ol hom TEST II (shear) (B2)
ij 3 0, 0y
S 1| S, .S ’
o= ) Jrom TEST III (Young) (ii=11,22,33)
o}i 3 Gll 022

Now, cubic stiffness can be determined by Equation B1 calculating the cubic
shape parameters, p,°, p,°, and p, as indicated with stress components calculated
from Equation B2.

Isotropic stiffness, shape coefficients, and stress

The isotropic counterpart to Equation B1 is

£=1+1+ic;_1.=1+1+—1-0
k D, g p,

(B3)

where the isotropic shape coefficients, p, and p,, are related to their cubic coun-
terparts presented in Equation B4. This expression is obtained from the poly-cubic
(isotropic) stiffness bound solutions presented in Equations A10 and A11 (Appen-
dix A) introducing cubic stiffness from Equation Bl and observing that the g-
bounds for dilute poly-cubic materials coincide. This observation means that
Equations B4 and B3 are exact.

(B4)

11 . 1 _3 1 13 1-2
P pf p, Sp° 51 +w)|pc ps

Particle stress

By means of Equation 3.8 accurate particle stresses in isotropic dilute composites
can now be derived from Equation B3 as shown in Equation BS.

T n
T U B T N
Gkk pk 1 - i’lk (BS)
s 1 n
i 4 8
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Remark: We emphasize that the stress functions, f, in Equation B5 and anywhere
in this monograph implicitly also carry the argument A (aspect ratio) - including
the stress functions of Goodier’s in Equation 3.9 where A = 1 (sphere).

Approximate description of shape factors

Uni-shaped particles

The somewhat cumbersome accurate determination of shape factors represented
by Equation 7.6 for uni-shaped particles can be acurately approximated as follows
for Poisson’s ratios 0 < », < 0.5.

_ _1-m
Wy =, opy = Mk (= X at oy =1); (G =kg  (B6)
- M,
z
Astom, =34 m -3 g
AP+ A+ 1 . S EA |
347 3X(1 -m_ ) +m B7)
A> 1w, =4 =% i)~ e
7 A% + A% + 1 i 4}(5(1 - mjm) + }ﬁjm
Power Z = X + (X - X)A™*?
X = 0.84 + 0.21k, - 0.05¢
Bullk ®) 1% - 13073 + 038, - 0.11) (B8)
X =178 - 1.88y, + 1.104%
Shear @) 1 x' = 0.6 + 0.4y,

Remark: Accurately determined shape factors are normally used in this mono-
graph. Approximate shape factors are used only if explicitly noticed as in the sim-
plified theory presented in Chapter 10 where the shear version of the above ap-
proximation is used with »; = 0.2. The very simple expressions obtained in this
way can be seen in Table 10.1.

Multi-shaped particles

The shape factor determination for multi-shaped particles proceeds as explained
in Section 7.1. It can, however, also proceed using the following easy approxi-
mation.
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-1
. . it
wo = |y — s J=PS 5 Yo =1 (BY)
i=1 /.Lj,‘i i=1
where «, is volume fraction of joining aspect ratio 4,

The difference between the results of the two methods is small enough to suggest
Equation B9 to be used as a ’next best” way of determining shape factors for par-
ticulate composites with multi-shaped particles.
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Stiffness

As previously mentioned in Chapter 3 exact composite stiffness can be predicted
by Equation 3.6 if exact stress solutions are known (at any concentration c) for
one of the constituent phases. Stiffness estimates, however, can be made on consi-
derably less stress information using the so-called Self Consistency Scheme (SCS)
introduced in Section 3.3: The stress of a phase P element at any concentration
in a composite can be estimated from the low concentration stress solution (¢ =
0) for phase P replacing the properties of phase S in that solution with the isotro-
pic properties of the composite. This statement is formalized in Equation C1 with
stress functions, f, and f,. In the present study these functions, are as determined
numerically in Equation BS (Appendix) B for ellipsoidal particles.

Single particle ¢ < 1 SCS-estimates: ¢ in general

o o

‘Oﬁﬁ =f, = JELE,v,.v) "’(;pﬁ = ﬁ(EP’E’VwV) (C1)
kk = kk

s S,

% =f, = f(E E,v,,v) % = JZ(EP,E,VP,V>
ij i

With known stress functions composite stiffness is now predicted implicitly by
Equation 3.6 introducing the SCS-estimates of phase P stresses. The results of this
procedure are summarized in Equation C2. The two stiffness expressions are
coupled by the third expression shown relating stiffness to Poisson’s ratio. Relati-
ons between elastic moduli are reproduced from Equation Al in Appendix A.

K K rK
Y=L - 2|2t - 1| fEEp,») =0; E = 3K(1 - 2)

K X X,

G G G (C2)
12:__G£a__”+c_é-1fg(EP,E,vP,v)=O;E=2G(1+v)

s S

. 3K-2G

23K + G

As previously mentioned in Chapter 3 the SCS method was first applied for
stiffness prediction of particulate composites with spherical particles (10). The
solution could be given an analytical form because of the very simple Good-
ier/Dewey stress functions presented in Equation 3.9. In this appendix the SCS-
method various particle shapes can be considered because shape dependent stress
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functions can be introduced from Appendix B where such functions are developed
as part of the main study presented in this monograph.

In general Equation C2 has to be solved numerically. From known f, and f,
functions calculation starts at ¢ =~ 0 with estimating the Poisson’s ratio » = »sof

L the composite. Then K and G are

VERY SOFT POWDER: E. determined by the former two expres-

o ?Wiw " PS“EES:@E " sions in Equation C2 (letting K and G
b *  EXPERIMENTAL E, grow between their limits, KK, and
Ul) G¢G,, respectively). Then a new
- . Poisson’s ratio is calculated from K
§O'5 xo and G, and the analysis is repeated
v ?\\ o . with a better estimate of the Poisson’s
é EANN S e, ratio. Calculation stops when a satis-
” o\ e factory agreement is obtained be-
e tween estimated and calculated Pois-
o0 OLUME ComcENTRATION — ¢ sons’s ratios. Then the analysis

Figure C1. Composite with very soft and ~ proceeds with next volume con-
very stiff spherical powders. centration c.

It is obvious that SCS-solutions are accurate at low phase P concentrations if f,
and f, are accurately known. The approximate nature, however, of stiffness esti-
mates by SCS at higher phase P concentrations must be emphasized. The geome-
try considered in this region is somewhat self-defining. This feature is clearly ob-
served from the subsequent section where results from a SCS-analysis are compa-
red with experimental results.

Spherical particles

It has previously been indicated that the present analysis, Equation C2, reduces
to become the Budiansky’s analysis (10) when particulate composites with
spherical particles are considered. For this particular the expressions decouple
when », = v, = 0.2, meaning that the following results can be calculated immedi-
ately.

e=k=g=0.5[ +\/D2+4n] ;o (v = 0.2) (C3)

with D = (1 - n)(1 - 2¢) : (m=n =ng)

k
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Equation C3 (Figure C1) predicts zero stiffness of porous materials (n = 0) and
infinite stiffness of stiff pore systems (n = o) for ¢ > 0.5. Obviously the geo-
metrical model of the composite considered is that of a phase symmetric DC-CD
powder composite with agglomerating spherical phase P elements which create a
fully continuous phase P at ¢ = 0.5 dissolving phase S into discrete elements
which approach spherical particles at ¢ = 1. The concentration area of geometry
transition is extremely narrow. Thus both critical concentrations c, and cg are 0.5.

The experimental stiffness shown in Figure C1 are from tests on porous sintered
aluminum reported in (11). Obviously the pore geometry of material used in
these tests does not comply with the pore system "described" by the Budiansky
analysis. No better predictions, however, can be obtained by the SCS-method.
This feature is demonstrated in the following section where the SCS-analysis is
applied to particulate composites with particles of non-spherical shapes: Any
shape different from spherical causes predicted stiffness of porous materials to be
lower than the Budiansky solution.

Various particle shapes and cracks

A number of examples of the present SCS-analysis applied to materials reinforced
with fibres of aspect ratios (particle length/diameter) A > 1, spheres with A =
1, and discs and plates with A < 1 are presented in Figures C2 - C5. The H/S
bounds referred to are calculated from the general expressions presented in
Chapter 5.

10 10
SOLID: A=! fi AN SOLID: A=!

LONG DASH: A=100 1\ LONG DASH: A=100
SHORT DASH: A=0.01_ e VN SHORT DASH: A=0.01
DOTTED: H/S BOUNDS ya RN DOTTED: H/S BOUNDS

YOUNG'S MODULUS — E/Fs
w

YOUNG'S MODULUS — E/Es
&
7,

0.0
0 0.0

VOLUME CONGENTRATION — ¢ ) VOLUME CP’%@ENTRAT‘O_N - ¢
Figure C2. Composites with discs (A Figure C3. Composites with discs (A =
0.01), compacts (A = 1), and fibres (A 0.01), compacts (A = 1), and fibres (A =
]00)' (EP»'ES) = (]0:]); (yp = VS = 0.2. ]00)' (EPlES) = (0'])]); Vp = Vs = 002,

1.0
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It is noticed from Figures C2 and C3 that any deviation from spherical shapes of
particles will increase composite stiffness from that predicted by the Budiansky
solution (spheres, A = 1) when n > 1. Any deviation from spherical shapes will
decrease composite stiffness from that predicted by the Budiansky solution when
n < 1. The most efficient influence on stiffness of particle shape is observed
when particles are plates and discs (A < 1).

It is, at the same time observed that stiffness of a composite made with very thin
discs (A « 1) approaches the H/S upper bound when n > 1, and the H/S lower
bound when n < 1. These observations agree with statements made in analytical
studies on particulate materials (ex 9) made with very thin discs.
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Figure C4. Composite with plate particles  Figure C5. Composite as in Figure (4,
(A =0.1), (E,E) = (0.01,1), (v,,v) = Plate particles, however is a mixture of
0.4, 0.2). 50% A = 0.1+ 50% A = 0.001.

1.0

Cracks: The stiffness of cracked materials can also be considered by the SCS-
method presented. The results coincide perfectly with results obtained in Section
9.2.1 from the general composite theory developed in this monograph - and also
with results otherwise determined in the composite literature.

Multi-shaped particles

When particulate composites are considered with multi-shaped particles Equations
CI and C2 are used with averaged stress functions expressed as follows, see
Section 7.1.1. An example of stiffness prediction for such materials is presented
in Figure C5.

o @

<> =Yaf, i <f>=Yaf, ; iai =1 (C4)

i=1 i=1
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Other physical properties

Other physical properties (conductivities) such as thermal and electrical
conductivities, diffusion coefficients, dielectric constants, and magnetic per-
meabilities can be determined from stiffness analysis by an analogy explained in
Chapter 15. In the present SCS context this analogy can be formulated from
Equation C2 as shown in Equation C5 where Qs, Qy = nQs, and Q are the
physical properties of phase S, phase P, and composite respectively. Ratio of
conductivity is introduced as n = Q,/Q;.

0, O 0, (C5)
Y =22 -2 v |20 - 1| £30,30,0,0) =0
Q Qs C[Qs ]f;( QP Q )

The point of departure in developing Equation C5 from the analogy just men-
tioned is the former expression in Equation Cl with f, = f(E;,Egwpv) =

fk(3QP93QS’O9O) with (Q,,Qy) = (K;,K) and (7, = (0,0).

In principles, the conductivity Equation C5 can solved numerically just as the
stiffness were solved in Equation C2.

Spherical particles

When particulate composites with spherical particles are considered the stress
functions f, and f, in Equation C5 are introduced by the Goodier/Dewey expressi-
ons in Equation 3.9. Then the following conductivity expression can be developed
immediately,

q = %[B + B + 8n } with B =2 - 3¢ - n(1 - 3¢) (C6)

which was first developed by Boticher and Landauer in their analysis (12,13)
of spherical powder composites.

Particles of various shapes and cracks

Some examples are presented in Figures C6 - C8 on composite conductivity deter-
mined by Equation C5. The bounds shown are calculated by Equation 15.3.

Similar comments can be made on composite conductivities determined by SCS-
analysis as were previously made on composite stiffness determined by SCS: For
conductivity ratios, n > 1, it is noticed from Figure C6 that any deviation from
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spherical shapes of particles in a particulate composite will increase composite
conductivity relative to that determined for spherical particles. For conductivity
ratios, n < 1, it is noticed from Figure C7 that any deviation from spherical sha-
pes will decrease composite conductivity from that determined for spherical
particles.

In general, the most efficient influence on composite conductivity of particle
shape is observed when particles are plates and discs (A < 1).
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Figure C6. Conductivity of particulate  Figure C7. Conductivity of particulate
composite with particles of various aspect — composite with particles of various aspect
ratios, (0, Q,) = (10,1). ratios, (Q,Qs) = (0.1,1).

1.0

Figures C6 and C7 also indicate that
2OLD: 100w A= the conductivity of a composite made

+ 40% A=0.01 with very thin discs (A « 1) approa-
| DOTS: H/S BOUNDS ches the H/S upper bound when n =
h Q,/Q, > 1, and the H/S lower bound

whenn < 1.

o
&

. Cracks: The conductivity of cracked
L materials can also be considered by
b the SCS-method presented. The re-
sults coincide perfectly with results
VOLUME COMCENTRATION — ¢ ° obtained in Section 15.1.4 from the
Figure C8. Conductivity of a composite: 1) general composite theory developed
with spheres and 2) with a mixture of sphe- in this monograph - and also with re-
res and discs. (@nQy) = (0.0L1). sults otherwise determined in the

composite literature.

CONDUCTMITY — q = 0/Qs

0.0
0.0
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Multi-shaped particles

When particulate composites are considered with multi-shaped particles Equation
CS5 is used with an averaged "stress function" just as in a stiffness analysis. An
example is shown in Figure C8.
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Introduction

Parts of the FEM-analysis reported in Chapter 9 has been reported in (14,
15). A full report on the analysis is made in this appendix with references made
to the original research reports (16,17,18,19,20,21,22).
The FEM-method used is STRUDL (23).

Preliminaries

Composite models used in the FEM-analysis presented are models which can be
made by a tight stacking of equally sized congruent composite elements. A num-
ber of composite elements form so-called basic-cells (such as cubic cells) which
repeat themselves into a macro model of the material considered. A test volume
for FEM-analysis is volume large enough to represent the macro model with
respect to specific material property considered in analysis. Test volumes can be
small as they are in the present study (smaller than the volume of a basic cell)
when they are carefully selected with respect to loading and materials symmetry.

Cubical elasticity

The material models presented have cubic basic cells which means that cubical
elasticity (Ec, »c, and G.) of the macro model (material model) can be determined
by the following "theoretical FEM-experiments”, see Appendix A, cubical elasti-
city. Only two experiments are needed. The cubic Young’s modulus and the cubic
Poisson’s ratio are obtained from the "axial experiment" explained in Equation
D1. The cubic shear modulus is obtained from the "shear experiment" explained
in Equation D2. The results of the axial experiment can be checked by the
"control experiment” explained in Equation D3 from which the (E.,».)-dependent
cubic bulk modulus K. can be obtained.

AXIAL EXPERIMENT
Conditions: & =¢ =¢ =¢, =¢,=0
Load: e, = 107 (D1)
Responses. o, (= o)
o - 20
Results: E =2 - 7 % ;v = %
efo, + o) o, + o,

[\~
Ay
~3
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SHEAR EXPERIMENT

Conditions: ¢, =¢ =¢ =¢,=¢, =0
Load: e, = 107 (D2)
Responses: o,
g
Results: G, = 2
< 2

Conditions: &, = €, =&, =&, =0

Load: & =g =¢, = 10" (D3)
Responses: o, (= 0, = 0,
Y E
Results: K = _* . Ze
3e 3(1 - 27
Isotropy

Isotropic material models can be thought of as isotropic mixtures of parts from
cubic model sources. These sources may have different sizes of composite
elements which allows for size graduation in the total composite. Isotropic stiff-
ness is converted from cubic stiffness by Equations D4 and D5 reproduced from
Appendix A, poly-cubic elasticity. The isotropic bulk modulus is calculated exact.
The isotropic shear modulus is given by upper and lower g-bound solutions. In
the present analysis the bounds are sufficiently close to justify a simple mean
value approximation.

E
K=K, = __"°__ (D4)
31 - 2»)
._!_.+.%_2;E_1_+_;1}_C).~i < G GC+;2_ E. —C(DS)
G, 5 E, G, 5121 + )

N2
ot
(o]
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Composite models and analysis

Particulate composite (DC-DC)

The so-called TROC-composite outlined in Figures D1 and D2 is considered. It
is a tight composition of identical composite elements each of which has the shape
of a TRuncated OCtahedron with edges of equal lengths. The composite element
is reinforced by a centrally placed particle the shape and orientation of which are
similar to the composite element itself.

COMPOSITE ELEMENT

z
B TROC-PARTICLE

Figure DI. Stacked TROC-elements. Dis- Figure D2. TROC-composite: Composite
tance berween square faces of element is 1. element and basic cell. Length unit 1 is
heigth of composite element.

Test volume and FEM-division

Due to symmetry and antimetry with respect to both materials model and the
FEM-setup, subsequently explained, a test volume of only 1/16 of the basic cell
is used in the stiffness analysis of TROC-composites. The test volume and basic
cell are shown in Figure D3. Another illustration of the test volume is shown in
Figure D4 with coordinate system and symbols introduced which define the FEM-
division subsequently used.

With 6 and ¢’ as points of affinity the test volume is divided into 2 times 13
layers affine to the surfaces C’B’EABDD’ and CBEA’B’D’D respectively, see
Figure D5. Thickness of layers can be chosen arbitrarily. By taking the factors
of affinity as independent variables this feature gives us the possibility of choosing
an arbitrary volume concentration of particles (defined as the area inside a layer).

Every layer is then subdivided into finite elements as shown in Figure D6. The
elements used are isoparametric and of the types IPLS and TRIP defined in (23),
see Figure D7. The total amount of finite elements in the basis element is 738
with 948 sets of joint coordinates. The supporting joints in planes AA’6’C and
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A’C’¢’ are modified by infinitely stiff bars to pick up reaction forces on the test
volume. The version of the finite element program applied, STRUDL (23), is
unable to give reactions directly from finite element joints.

A Z ? Z
c )
B \\\ 5]
AN
XF
EY - \\
B Y 5] T AN — Y
‘"\»__\_D
Szl
A B -

B I ¥ '
] X X

Figure D3. Basic cell and test volume for  Figure D4. Test volume for FEM-analysis
FEM-analysis of TROC-composite of TROC-composite.

!
<>
SRS

Y
““\ &tm“

Figure D5. FEM-division of test volume in  Figure D6. Principle of FEM-division of
X = Y. Shaded areas are TROC-particles.  test volume. Unfolded surface of TROC-
Arbitrarily chosen phase P concentrationc.  element.

(As illustrated ¢ =~ 0.34).

BASIC STRUDL
ISOPARAME TRIC FEM-ELEMENTS
IPLS TRIP

DETAILS AT ORIGO OF
FINITE ELEMENT DIVISION

Figure D7. FEM-elements used
and some combinations.
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A detailed description of the finite element division is given in (16). This
reference also describes a program which is developed to generate automatically
the 1255 sets of joint coordinates needed when changing the particle concentration
(factors of affinity).

FEM-setup

The following set-ups are designed to execute the experiments outlined in E-
quations D1-D3. The average strain is joint movement divided by associated
length (0.5) of test volume, see Figure D3. The average stress is sum of bar for-
ces divided by associated surface area of test volume.

AXTAL EXPERIMENT

Conditions: All joints in faces of test volume are smoothly supported against infinitely
stiff parallel walls.

Load: Joints in face AOC are moved 0.5%10* in Z-direction.

Response: Sum of Z-forces picked up from bars in face A’C’¢’

SHEAR EXPERIMENT

Conditions: All joints in faces of test volume except AGC’A’ and AA’6’C are smooth-
ly supported against infinitely stiff parallel walls. The joints in face
AOC’A’ can move freely only in Y-direction. Joints in AA’6’C can move
freely only in X-direction.

Load: All joints in face AGC’A’ are moved 0.5%10* in X-direction.

Response: Sum of Y-forces picked up from bars in face AA’0’C

CONTROL EXPERIMENT (spot checks only)

Conditions: As in axial experiment.

Load: Joints in face AGC are moved 0.5%10* in Z-direction. Face AA’0°C is
moved -0.5*%10* in X-direction.

Response: Sum of Z-forces picked up from bars in face A’C’0’

FEM-results

A number of FEM-experiments have been made varying the stiffness parameters
and the volume concentrations (see Figure D5) of the TROC-model. The variables
are summarized as follows:

Variables: ¢ = 0.22-0.86,v,=0-04,»,=0-04,n=20-10°

The raw data obtained from the axial experiment (ox,0y) and the shear experiment
(0xy) are presented in Table D1, Cubic stiffness parameters derived from these
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data by Equations D2 and D3 are presented in Table D2. Isotropic stiffness
parameters derived from Equations D4 and D5 are presented in Table D3.

n c E, vy Y o, 0, Oy
.0 216 8.e5 2 2 1471278  55.06929  43.23578
.0 .343 8e5 2 2 11.68733 40.53782  32.33229
.0 512 8e5 2 2 8.29173 25.76719  20.28353
.0 729 8e5 .0 2 2.19976 11.43127 10.40773
.0 729 8.e5 2 2 4.35933 12.12563 8.88100
.0 729 8.e5 4 2 7.97351 14.75839 7.93490
.0 8574 8.5 .0 2 1.22059 5.55475 4.76655
.0 .8574 8.5 2 2 2.21903 5.84648 4.02942
.0 8574 8.5 4 2 3.78670 6.93173 3.55923
1/14 729 265 4 0 2.02856 5.30578 3.56397
1 512 2.e5 2 2 2.46370 8.63511 6.71724
1/3 512 265 2 2 3.36936 13.00879 9.92820
1/3 729 265 2 2 2.64806 10.24968 7.79571
1. 5 6.e5 .2 2 16.68391 66.73593  50.05188
3. 216 2.e5 2 2 6.95928  27.63501 20.93380
3. 512 2e5 .2 2 9.49556  37.53126  28.90596
3, 729 2e5 2 2 12.03125  47.74705 36.73804
10. 512 2e5 2 2 13.90655 54.83788  44.99459
10. 129 2e5 2 2 22.24486  89.02735  73.71604
35/3  .729 2e5 2 4 39.03639 105.92799  73.82064
100. 512 2.e5 2 2 17.21308  68.72851 60.51260
100.  .729 2.e5 2 2 33.13180 138.70803 128.49007
l.e5 729 2.5 .0 2 21.06033 145.07626 144.18834
l.e5 729 2e5 .2 2 35.15577 147.93230 140.50922
l.e5 729 2.e5 4 2 107.13340 237.20075 197.75796
n c Vs 123 Ecw/Es Vers Gewn/Gs
00000 21600 .20000 .20000 .61082 .21084 .64854
00000 .34300 .20000 .20000 .44134 .22379 .48498
00000 51200 .20000 .20000 .27162 .24345 .30425
00000 .72900 .00000 .20000 .13402 .16138 .13010
00000 .72900 .20000 .20000 .12275 .26444 .13321
00000 72900 .40000 .20000 .11456 .35076 .13886
00000 .85740 .00000 .20000 .06394 .18015 .05958
00000 .85740 .20000 .20000 .05782 .27513 .06044
00000 .85740 .40000 .20000 .05320 .35329 .06229
07143 .72900 .40000 .00000 .20918 27658 .24948
.10000 51200 .20000 .20000 .37707 .22198 .40303
.33330 51200 .20000 .20000 .58112 .20572 .59569
.33330 .72900 .20000 .20000 .45812 .20531 .46774
1.00000 .50000 .20000 .20000 1.00104 .20000 1.00104
3.00000 .21600 .20000 .20000 1.24175 .20117 1.25603
3.00000 .51200 .20000 .20000 1.68483 .20192 1.73436
3.00000 .72900 .20000 .20000 2.14521 .20126 2.20428
10.00000 .51200 .20000 .20000 2.46057 .20229 2.69968
10.00000 .72900 .20000 .20000 4.00666 .19991 4.42296
11.66700 .72900 .20000 .40000 4.24522 .26928 4.42924
100.00000 .51200 .20000 .20000 3.09167 .20029 3.63076
100.00000 .72900 .20000 .20000 6.29660 .19281 7.70940
100000.00000 .72900 .00000 .20000 6.98684 .12677 7.20942
100000.00000 .72900 .20000 .20000 6.72157 .19202 8.43055
100000.00000 .72900 .40000 .20000 8.52677 .3111313.84306
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n c v, v G/G, K/K E/E v
00000 21600 .20000 .20000 .63054 .63371 63117 20120
63126 - 63175 20093
00000 34300 .20000 .20000 .46265 .47934 46590  .20842
46409 46707  .20768
00000 51200 .20000 .20000 .28588 .31763 29171 22448
28740 29298 22328
00000 72900 .00000 .20000 .12379 .19788 14144 14262
12422 14181 14168
00000 72900 20000 .20000 .12598 .15633 (13107 24848
12653 13154 24757
00000 72900  .40000 .20000 .13004 07676  .12429  .33808
.13081 12495 33723
00000  .85740  .00000  .20000 .05730 .09995  .06680 .16584
05742 06691  .16258
00000  .85740 20000 .20000 .05788 .07713 .06092 26307
05803 06105  .26254
.00000  .85740  .40000 .20000 .05917 03626 .05678  .34343
.05939 05697  .34291
07143 72900 40000 .00000 .24104 .09363 21814 26701
24145 21846 26668
10000 51200 20000 20000  .38926 40688  .39266  .21048
.38993 39321 21008
-33330 51200 20000 .20000 .58864 .59243 58939 20154
58876 58949 20149
.33330 72900 .20000 20000 .46301 46637 46368 20173
.46308 46374 20170
1.00000  .50000 .20000 .20000 1.00104 1.00104 1.00104  .20000
1.00104 1.00104  .20000
3.00000 21600 .20000 20000 1.24979 1.24661 1.24915 .19939
1.24983 1.24919  .19938
3.00000 51200 .20000 .20000 1.71309 1.69567 1.70958 .19754
1.71347 1.70988  .19749
3.00000 72900  .20000 .20000 2.17933 2.15429 2.17428  .19722
2.17975 2.17461 19717
10.00000  .51200 .20000 .20000 2.59657 2.47953 2.57229  .18878
2.60216 2.57667  .18825
10.00000  .72900 .20000 .20000 4.24660 4.00551 4.19609 .18573
4.25656 4.20386 .18514
11.66700 72900 .20000 .40000 4.25302 5.52002 4.45765 25774
4.26294 4.46637  .25726
100.00000  .51200 .20000 .20000 3.39367 3.09464 3.32933 17725
3.41482 3.34559 17567
100.00000 72900  .20000 .20000 7.09358 6.14915 6.88218 16424
7.15947 6.93169 .16182
100000.00000  .72900  .00000 .20000 6.76900 9.35985 7.45705  .10165
6.80597 7.48692 10005
100000.00000  .72900  .20000 .20000 7.67556 6.54732 7.41984 .16002
7.76497 7.48650  .15697
100000.00000 72900 40000 .20000 11.45786 4.51468 10.39236 .26981
11.94772 10.76603  .26153

Table D3. Poly-cubic stiffness bounds for plain TROC-composite.
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Defective particulate composite

Particulate composites with defective phase contact are considered in a FEM-
analysis just as the TROC-material. A thin layer of "voids" (or zones of missing
phase contact), however, is spread over the surface of the particle phase covering
several fractions of the total surface. The degree of missing phase contact is
defined by Equation D6 where S denotes particle surface.

x =8 IS  degree of missing phase contact (D6)

inactive’ " total

¢, = xc[(1 + Ay - 1] associated void volume

Each zone of missing phase contact may be covered by a void of uniform thick-
ness A (relative to mean radius vector of particle) which is related to void con-
centration c, (relative to composite volume) and x as given in Equation D6.

Remark: The zones of missing contact are introduced into FEM-analysis by
simple joint-cutting and by finite elements of no stiffness. Sufficient openings are
assumed between opposite zone faces such that load does not produce closure
effects.

FEM-setup and results

The FEM models used have an area of missing phase contact centrally placed on
each of the 6-edge faces (N = 8) or on each of the 4-edge faces (N = 6) of the
TROC-particle. A number of FEM-experiments have been made varying the stiff-
ness parameters, the volume concentrations (see Figure D5) and degree (o) of
missing phase contact. The variables are summarized as follows:

Variables: ¢ = 0.25, v,
¢ = 0.42, v

v = 0.2, n = 0.1-10, x = 22%-78%, c, = 0-6%
v, = 02:n=1-10with x = 2% and ¢, = 4.1%

The raw data obtained from the axial experiment (oy,0y) and the shear experiment
(0yy) are presented in Table D4. Cubic stiffness parameters derived from these
data by Equations D2 and D3 are presented in Table D5. Isotropic stiffness
parameters derived from Equations D4 and D5 are presented in Table D6.

Defects as cracks

x = 78 % corresponds to no contact at all between matrix and 6-edge faces of
particle. x = 0.224 corresponds to no contact at all between matrix and 4-edge
faces of particle.
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The defective areas including voids corespond to short hollow cylindrical fibres
the characteristics of which can be calculated by Equation D7. H is height of
composite element, h is corresponding height of inclusion. N = 8 for number of

6-edge faces per TROC-particle. N = 4 for number of 4-edge faces per
TROC-particel.

Fibre diameter: d (diameter of void)

Fibre aspect ratio: A = 1/d (I is length of fibre = thickness of void)
Crack density: p (number of cracks per volume unit)

Crack parameter: pd® (easily calculated by (16))

d=h= [%ﬁ(l + 2\/5 ) where h = H Vc_ (crack diameter)
w

32 D7
p = 2_}]2_\3@ (crack density) = pd® = 2N#c = [gz(l + 2\/3-)] 7
T
A= ﬁ2<£[(1 + A) - 1] (aspect ratio)

wpd’

A cracked homogeneous material

A “defective particulate composite’ with a stiffness ratio of n = 1 is of special
interest because this composite is, in fact, a cracked homogeneous material. One
such material with cracks placed on the 8-edge faces of fictitious TROC-particles
is defined in Equation D8. The crack characteristics (pd*,A) are calculated by
Equation D7 with geometrical information introduced from Table D6. The (crac-
ked) materials stiffness associated (E/Ey) is also shown in Equation DS.

(pa = 0,072
(¢,N,x,4A) = (0.25,8,0.3128,0) = |4 =0

E/E, = 0.96

pd = 0.272 D8)
(e.N,x,4) = (0.25,8,0.3128,0.1111) = |A = 0.136

E/E, = 0.92

f

pd* = 0.92
(e.N,x,4) = (0.422,8,0.497,0.067) = |4 = 0.0623

E/E, = 0.82
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n c E X N A Cyu g, 0, Oy

0.1 025 3e5 0.0 8. 0.0 0.0 5.64187 21.4337 16.6075
0.1 0.25 3.5 0.3128 8. 0.0 0.0 5.52754 21.0901 16.4699
0.1 0.25 3.e5 03128 8. 0.1111 0.0252 5.30531 20.3145 15.7044
0.1 0.25 3.5 0.7760 8. 0.0 0.0 5.31115 20.2065 15.8471
0.1 0.25 3.5 07760 8. 0.1111 0.0596 4.78016 18.0350 13.9938
1.0 0.25 3.5 03128 8 0.0 0.0 7.63060 31.7567 24.1558
1.0 0.25 3.5 0.3128 8. 0.1111 0.0252 7.47874 30.5322 23.1879
2.3333 025 3.e5 0.2240 6. 0.1111 0.0232 9.07449 37.0004 28.4921
2.3333 0.25 3.5 0.3128 8. 0.0 0.0 9.13265 38.5681 29.4133
2.3333 0.25 3.5 0.3128 8. 0.1111 0.0252 8.91010 37.0617 28.1979
2.3333 0.25 3e5 0.7760 8. 0.0 0.0 6.43111 31.9672 24.7755
2.3333 0.25 3.e5 07760 8. 0.0317 0.0170 6.47292 30.8845 23.9469
2.3333 025 3.5 07760 8. 0.1111 0.0596 6.47904 29.4582 22.6830
10. 0.25 3.5 0.0 8. 0.0 0.0 12.9076 50.7740 39.5445
10. 0.25 3.5 0.3128 8. 0.0 0.0 11.2129 47.9405 37.4999
10. 025 3.5 0.3128 8. 0.1111 0.0252 10.7837 46.0183 35.7760
10. 0.25 3.5 07760 8. 0.0 0.0 6.93955 38.9623 30.7241
10. 0.25 3.5 07760 8. 0.1111 0.0596 7.15779 35.4200 27.2428
1. 0.422 3.e5 0497 8. 0.067 0.041 6.37132 26.7849 20.6577
10. 0.422 3.5 0.497 8. 0.067 0.041 11.1205 53.4810 41.3576

Table D4. Reaction stresses (kp/cm’) in experiments on defective

TROC-composite. Axial o, and o,. Shear: o,.

n c X A Ca Ecw/Es  Vew  Gew/Gs
.100000 .25000 .00000 .00000 .00000 .63608 .20837  .66430
.100000 .25000 .31280 .00000 .00000 .62648 .20766 .65880
.100000 25000 .31280 11110 .02520 .60391 .20708 .62818
.100000 .25000 .77600 .00000 .00000 .59985 .20814 .63388
.100000 .25000 .77600 .11110 .05960 .53440 .20952 .55975

1.000000 .25000 .31280 .00000 .00000 .96000 .19373  .96623
1.000000 .25000 .31280 .11110 .02520 .91964 .19675 .92752
2.333300 .25000 .22400 .11110 .02320 1.11420 .19695 1.13968
2.333300 .25000 .31280 .00000 .00000 1.16904 .19146 1.17653
2.333300 .25000 .31280 11110 .02520 1.12026 .19382 1.12792
2.333300 .25000 .77600 .00000 .00000 .99377 .16748 .99102
2.333300 .25000 .77600 .03170 .01700 .95471 .17327 .95788
2.333300 .25000 .77600 .11110 .05960 .90407 .18029  .90732
10.000000 .25000 .00000 .00CO0 .00000 1.51805 .20269 1.58178
10.000000 .25000 .31280 .00000 .00000 1.45632 .18956 1.50000
10.060000 .25000 .31280 .11110 .02520 1.39746 .18985 1.43104
10.000000 .25000 .77600 .00000 .00000 1.22880 .15118 1.22896
10.000000 .25000 .77600 .11110 .05960 1.10045 .16811 1.08971
1.000000 .42200 .49700 .06700 .04100 .81121 .19216 .82631
10.000000 .42200 .49700 .06700 .04100 1.65508 .17214 1.65430

Table DS. Cubic stiffness of defective TROC-composite.
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n ¢ x A ca G/G, KK, EE, v

100000 25000 .00000 .00000 .00000 .65085 .65435 .65155 20128
65125 65187 20114

100000 25000 .31280 .00000 .00000 .64378 .64290  .64361 .19967
64428 64400 .19949

100000 .25000 31280 .11110 .02520 .61675 .61850 .61710 .20068
61705 61734 20056

100000 .25000 .77600 .00000 .00000 .61809 .61658 .61778 .19941
61866 61824 .19919

100000 .25000 77600 .11110 .05960 .54754 55191 .54841 .20190
.54793 .54872 20173

1.000000 .25000 31280 .00000 .00000 .96576 .94036  .96057 .19355
96576 96057 .19355

1.000000 .25000 .31280 .11110 .02520 92536 .90979  .92220 .19591
92537 92221 .19591

2333300 25000 .22400 .11110 .02320 1.13052 1.10299 1.12490 .19404
1.13063 1.12499 .19402

2.333300 25000 .31280 .00000 .00000 1.17689 1.13667 1.16862 .19157
1.17689 1.16862 .19157

2.333300 .25000 .31280 .11110 .02520 1.12717 1.09764 1.12114 .19358
1.12718 1.12114 .19358

2.333300 .25000 .77600 .00000 .00000 1.00297 .89659 97972 .17218
1.00319 97989 .17213

2.333300 .25000 .77600 .03170 .01700 .96523 .87661 .94610 .17622
96331 94616 .17620

2.333300 .25000 .77600 .11110 05960 .91202 .84833  .89853 18225
91206 89856 .18224

10.000000 25000 .00000 .00000 .00000 1.55423 1.53178 1.54969 .19649
1.55493 1.55025 .19638

10.000000 .25000 .31280 .00000 .00000 1.48748 1.40733 1.47073 .18648
1.48764 1.47085 .18646

10.000000 .25000 .31280 .11110 .02520 1.42230 1.35171 1.40760 .18760
1.42238 1.40766 .18758

10.000000 .25000 .77600 .00000 .00000 1.24923 1.05683 1.20534 .15784
1.24974 1.20572 .15773

10.000000 25000 .77600 .11110 .05960 1.10566 .99471 1.08154 .17381
1.10602 1.08181 .17373

1.000000 .42200 49700 .06700 .04100 .82237 .79055 .81581 .19042
82240 81583 .19041

10.000000 .42200 .49700 .06700 .04100 1.67012 1.51444 1.63648 .17583
1.67035 1.63665 .17579
Table D6. Poly-cubic stiffness bounds for defective TROC-com-

posite.
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Pearls on a string composite (CC-CC)

The FEM-analysis of a TROC-material is also used in an analysis of composites
where particles have grown together changing phase P from being discrete to
being continuous like pearls on a string - or in other words, from being a closed
"pore" system to being an open "pore” system.

FEM-setup and results

FEM-setup is as explained in Figures D1 - D7. The "pearls on a string" geometry
of phase P is obtained by interconnecting the TROC-particles between the 6-edge
faces of the TROC-particles. Cylindrical tunnels are formed by letting the finite
elements between particles, see Figure D5, take the properties of the particles.
The volume fraction of phase P TROC-particles relative to total phase P volume
(both TROC and tunnels) is denoted by «.

A number of FEM-experiments have been made on Pearls on a string composites
defined as follows:

Variables: ¢ = 0.36, 0 = 60%, v, = v, = 0.2:n=0-10
¢ =045 o =76%, vs = v, = 0.2: n = 0 and 100
c=067,a=7%,v,=v,=02:n=0-100

IR

The raw data obtained from the axial experiment (oy,0y) and the shear experiment
(oxy) are presented in Table D7. Cubic stiffness parameters derived from these
data by Equations D2 and D3 are presented in Table DS8. Isotropic stiffness
parameters derived from Equations D4 and D5 are presented in Table D9.
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n c (%) E, s Vs o, 0, Ty

0. .36 60. 8.e5 2 2 8.34233 36.98560 24.36056
333333 .36 60. 2.e5 2 2 3.78127 15.24916 11.37820
3. .36 60. 2.e5 2 2 8.49105 32.80770 25.30464
10. .36 60. 2.e5 2 2 16.42488 51.60347 45.69911
l.e-5 451 76. 2.e5 2 2 1.729845 7.21862 477155
100. 451 76. 2.e5 2 2 124.22087 286.63932 321.55018
l.e-5 674 76. 2.e5 2 2 0.65792 3.43617 1.46436
1333333 674 76. 2.e5 2 2 2.66456 10.89348 7.99115
3. 674 76. 2.e5 2 2 11.67492 46.63378 35.29817
10. 674 76. 2.e5 2 2 28.42779 107.75521 86.38002
100. 674 76. 2.e5 2 2 229.42133 770.07510 679.22262

Table D7. Reaction stresses (kp/cm’) in experiments on Pearls on a String

TROC-composite. Axial o, and o,. Shear: o.

n c (%) vy Ecw/Es  vew Gew/ Gy
.00000 .36000 60. 20000 .20000 142394 18404 36541
.33333 .36000 60. .20000 .20000 .68733  .19870 68269

3.00000 .36000 60. .20000 .20000 1.46581 .20560 1.51828
10.00000 36000 60. 20000 20000  2.18361 .24144  2.74195
.00001 45100 76.  .20000  .20000 32749 19331 28629
100.00000 45100 76. 20000 .20000 10.57623 .30234 19.29301
.00001 67400 76 20000 20000 16124 16070 .08786
.33333 67400  76. 20000 .20000 49231 .19653 47947
3.00000 67400 76 20000 .20000 2.09793 .20023 2.11789
10.00000 67400 76, 20000 20000  4.79434 20875  5.18280
100.00000 67400 76, 20000 20000 33.23769 .22954 40.75335

Table D8. Cubic stiffness of Pearls on a String TROC-composite,

n c(a%) Vs v, GIG, K/K E/E; v
.00000 .360(60) .20000 .20000 .38865 40253 39135 .20833
39110 39334 20685
33333 .360(60)  .20000 .20000 68483 68435 68474 19983
.68484 68475 .19983
3.00000 .360(60) .20000 .20000 1.49400 1.49369 1.49394 19995
1.49457 1.49439 .19986
10.00000 .360(60) .20000 20000 2.44899 2.53360 2.46546 .20807
2.48945 2.49816 .20420
00001 .451(76) .20000 .20000 .30208 .32035 .30557 .21384
.30351 30673 21275
160.00000 .451(76) .20000 .20000 13.86086 16.05243 14.24996 .23369
15.47385 15.58620 .20871
00001 .674(76) .20000 .20000 .10836 14256 11382 26048
.11939 12341 24031
33333 .674(76) .20000 .20000 .48508 .48668 48540 20079
48518 48548 .20074
3.00000 .674¢76) .20000 .20000 2.10970 2.09951 2.10765 .19884
2.10975 2.10769 .19883
10.00000 .674(76) .20000 20000 5.00482 4.93832 4.99138 .19678
5.01354 4.99831 .19636
100.00000 .674(76) .20000 20000  36.96384  36.86753  36.94454 .19937
37.42770 37.31431 .19636

Table D9. Poly-cubic stiffness bounds for Pearls on a String TROC-com-

posite.
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Grid composite (CC-CC)

The so-called CROSS-composite shown in Figure D8 is considered. It is a phase
symmetric cubic frame work of phase P embedded in a complementary cubic
frame work of phase S. The composite element and the basic cell of a CROSS-
composite are shown in Figure D9.

COMPOSITE ELEMENT (CROSS-ELEMENT) A 7 Cpess-CENTRE
Az

Y

J“‘:‘ > <
= \x \ < o
e d 7 S — Y

Figure D8. CROSS-com-pos- Figure D9. Composite element and basic cell for
ite CROSS-composite. Both heights are 1.

FEM-DIVISION OF
A/ TEST VOLUME

o

STRUDL BOX
ELEMENT

71 a2
al?

e R B ><
Y : AT
W-O.E_ c=a’(3-20)

S

Figure DI0. Shaded box is rest Figure DI1. FEM-structure of test volume. Size of
volume for FEM-analysis. Length FEM-elements and phase P concentration (c) is
unit 1 is heigth of composite regulated by 0 < « < 1 as indicated.

element.

Test volume and FEM-division

Due to symmetry and antimetry with respect to both materials model and the
FEM-setup, subsequently explained, a test volume of only 1/64 of the basic cell
is used in the stiffness analysis of CROSS-composites. The composite element,
basic cell and test volume are shown in Figures D9 and D10.

The very simple FEM-structure of the test volume shown in Figure D11 is made
possible combining the cubic regularity of the composite element with very
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refined STRUDL box type elements, see Figure D11, defined in (23). It is indica-
ted in Figure D11 how volume concentrations (c) can be chosen arbitrarily in ana-
lysis.

The supporting joints in planes X = 1/2 and Z = 1/2 are modified by infinitely
stiff bars to pick up reaction forces on the test volume. The version of the finite
element program applied, STRUDL (23), is unable to give reactions directly from
finite element joints.

FEM-setup

The following set-ups are designed to execute the experiments outlined in Equa-
tions D1-D3. The average strain is joint movement divided by associated length
(0.5) of test volume, see Figure D10. The average stress is sum of bar forces
divided by associated surface area (0.25) of test volume, see Figure 10 again.

AXTAL EXPERIMENT

Conditions: All joints in faces of test volume are smoothly supported against infinitely
stiff parallel walls.

Load: Joints in face Z = 0 are moved 0.5%10 in Z-direction.

Response: Sum of Z-forces picked up from bars in face Z = 1/2.

SHEAR EXPERIMENT

Conditions: All joints in planes Z = 0 and Z = 1/2 are smoothly supported against
infinitely stiff parallel walls. The joints in planes Y = O and Y = 1/2 can
move freely only in Y-direction. Joints in X = 0 and X = 1/2 can move
freely only in X-direction,

Load: All joints in plane Y = 0 are moved 0.5%10* in X-direction. All

joints in X = 0 are moved 0.5%10* in Y-direction
Response: Sum of Y-forces picked up from bars in plane X = 1/2

CONTROL EXPERIMENT (spot checks only)

Conditions: As in axial experiment.

Load: Joints in plane Z = 0 are moved 0.5%10* in Z-direction. Joints in
plane X = 0 are moved 0.5%10* in X-direction. Joints in plane Y
= 0 are moved 0.5%10* in Y-direction.

Response: Sum of Z-forces picked up from bars in plane Z = 1/2 (= sum of X-

forces picked up from bars in plane X = 1/2),

FEM-results

A number of FEM-experiments have been made varying the stiffness parameters
and the volume concentrations, ¢, of the CROSS-model. The variables are sum-
marized as follows:
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Variables: ¢ =0.25-0.75, v, =y, =02, n=0- 10’

The raw data obtained from the axial experiment (oy,0y) and the shear experiment
(oxy) are presented in Table D10. Cubic stiffness parameters derived from these
data by Equations D2 and D3 are presented in Table D11. Isotropic stiffness
parameters derived from Equations D4 and DS are presented in Table D12.

n c E Vs Vs A g, Gy
5.6 .2522 25 2 2 2.34360 12.2310 7.56482
.01 2522 265 2 2 2.42376 12.4551 7.79996
.1 2522 265 2 2 3.04553 14.1795 9.56759
333333 2522 2e5 2 2 4.11096 17.2564 12.5175
3. 2522 265 2 2 7.10379 30.3116 21.5464
10. 2522 265 2 2 9.18508 49.9761 27.8779
100. 2522 265 2 2 27.1192 275.502 67.9144
1000. 2522 2.5 2 2 203.517 2515.67 443.012

0. .5 2.e5 2 2 .830440 6.23841 2.45587
.001 S 2.e5 2 2 .839332 6.26705 2.48726
.01 5 265 2 2 918772 6.52110 2.76339
1 5 2e5 2 2 1.64688 8.78233 5.11944
333333 .5 2.e5 2 2 3.08359 13.3206 9.39984
1. 5 2.e5 2 2 5.55480 22.2220 16.6656
10. .5 2.e5 2 2 16.4687 87.8232 51.1945
0. 7478 265 2 2 .195981 2.48889 416377
.01 7478 265 2 2 271191 2.75504 679140
.1 7478  2.e5 2 2 918508 4.99762 2.78779
1000. .7478 265 2 .2 2351.29 12252.7 7588.46

Table DI0. Reaction stresses (kp/cim’) in experiments on CROSS-
composite. Axial o, and o,. Shear: oy,.

n [ Vg v, E.w/Es Veus Geo/ Gy

5.e-6 25220 .20000 .20000 .57386 .16080 45389
01000 .25220 .20000 .20000 58327 .16290 .46800
.10000 .25220 .20000 .20000 65513 .17681 .57406
.33333  .25220 .20000 .20000 78373 .19239 75105
3.00000 .25220 .20000 .20000 1.38071 .18986 1.29278
10.00000 .25220 .20000 .20000 2.35620 .15526 1.67267
100.00000 .25220 .20000 .20000  13.53207 .08961 4.07486
1000.00000 .25220 .20000 .20000 124.26030 .07484  26.58072
.00000 .50000 .20000 .20000 30216 11748 .14735
.00100 .50000 .20000 .20000 .30344 11811 .14924
.01000 .50000 .20000 .20000 31471 12349 .16580
.10000 50000 .20000 .20000 41311 15791 .30717
33333 50000 .20000 .20000 .60807 .18798 .56399
1.00000 .50000 .20000 .20000 1.00002 .19997 .99994
10.00000 .50000 .20000 .20000 4.13110 15791 3.07167
00000 .74780 .20000 .20000 .12301 .07299 .02498
.01000 .74780 .20000 .20000 13532 .08961 .04075
.10000 .74780 .20000 .20000 23562 .15525 16727
1000.00000 .74780 .20000 .20000 574.77850 .16100  455.30760

Table D11. Cubic stiffness of CROSS-composite.
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n c Vs vp G/G, K/K E/E; v

5.e-6 .25220 20000 20000 .50096 50755 50226 20312

.50963 - 50921 .19901
.01000 25220 .20000 .20000 51371 .51908 51477 20249
52155 - 52105 .19886
10000 .25220  .20000 .20000 .60829 .60812 .60825 .19993
61165 - 61094 19861
.33333 25220 .20000 .20000 76568 76435 76541 19958
76612 - 716577 19944
3.00000 .25220 .20000 .20000 1.33089 1.33558 1.33183 .20084
1.33266 - 1.33324 20052
10.00000 .25220 .20000 .20000 1.91519 2.05039 1.94078 .21604
1.98256 1.99579 20799

100.00000 .25220 .20000 .20000 5.74434 9.89221 6.27016 .30985
8.40611 - 8.66650 23717
1000.00000 .25220 20000 .20000 39.28336 87.68112 44.15820 .34891
71.44010 - 74.18846 24616

00000 .50000 .20000 .20000 .18851 .23698 19655 25117
.21820 - 22172 21932
00100 .50000 .20000 .20000 .19052 23837 .19849 25019
21981 - 22328 21899
01000 .50000 .20000 .20000 .20796 25076 21531 24242

.23394 - 23712 21632
.10000  .50000 20000 .20000 .34630 36228 .34939 21068
.35555 - 35688 20448
.33333 50000 .20000 .20000 .58306 .58463 58338 .20064
.58408 - 58419  .20023
1.00000 .50000 .20000 .20000 .99998 99992 1.00002 .19999
.99998 - 1.00002 19999
10.00000 .50000 .20000 .20000 3.46304 3.62282 3.49386 .21068
3.55551 - 3.56877 20448

.00000 .74780 .20000 .20000 .03714 .08643 04192 35448

.07002 - 07278 24736

.01000 .74780 .20000 .20000 05744 .09892 06270 30985
.08406 - .08667 23717

.10000 .74780 .20000 .20000 19152 20504 19408 21604
.19826 - 19958 20799

1000.00000 .74780 .20000 .20000 502.23610 508.65840 503.50760 20304
510.81840 - 510.38490 .19898

Table DI2. Poly-cubic stiffness bounds for CROSS-composite.

On the accuracy of analysis

Approximately every second cubic bulk K. = E//(1 - 2»;) obtained from axial
experiments are checked by the control experiment explained in Equation D3. The
results agree within the first five significant digits. The isotropic Young’s modulus
forn = 1 and », = »; = 0.2 is calculated with an accuracy < 1 %o. It is conclu-
ded from these observations that the FEM-partitioning used in the analysis is ap-
propriate in general, and that numerical errors are very modest at moderate stiff-
ness ratios.

In general no accurate error analysis can be made on the stiffness moduli predic-
ted by FEM-analysis. Some valuable estimates on accuracy, however, can be
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made at », = », = 0.2 from Equation D9 which is an adapted compilation of ex-
pressions presented in Equations 10.3 and 12.1 in the main text.

0 _[n-cn - Dleg, - n n<0,<1lan<]l

T v en - 1) - ey, 1 <86, <nan>1

€., (1n,0) = bt (CSA,) (D9)
eFEM(I/n,c)

€ (N,C) = n* eFEM(l/n,bc) (Phase ~symmetry)

- The former expression checks that no FEM results violate the H/S bounds. A high
accuracy of the FEM-analysis is indicated by a continuous and smooth development
of 6,,,(C) at increasing stiffness ratios, n. Particulate composites will have 0:u(C)
close to 1. Phase-symmetric composites will have 64(C) closer to .

- The second expression can be used to check the accuracy of the FEM-analysis of
the TROC material assuming that this material behaves as a CSP, composite

- The latter expression can be used to check the FEM-analysis of the CROSS mate-
rial because this material is in fact phase-symmetric.

The TROC FEM-results (with », = », = 0.2) have been checked by the former
expression in Equation D9. No violations of the H/S bounds were found (Figures
D12 and D13). It was observed that O (c) keeps very much to = 1, meaning that
the material tested behaves approximately as a CSA, composite (Figure D14). An
accuracy of about 1% is then calculated by the second expression in Equation D9,

[ e | TROC (Young) e
._---—-«tet=n : 10*
) : |
: \ 8
\
|

tetEXP | TROC (Young)

20 40 60 80 Nn100

Figure DI12. TROC-composite with v, =  Figure DI3. TROC-composite with v, =
y, = 0.2: 0-test on FEM-data obtained to vy = 0.2: §-test on FEM-data obtained to
determine Young’s modulus. determine Young’s modulus.
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Also for the CROSS FEM-results (with », = » = 0.2), no violations of the H/S
bounds were found (Figures D15 and D16). The phase-symmetric geometry is
confirmed which means that an accuracy of « 1 % is calculated by the latter term
in Equation D9.

Conclusion: From the above discussion is stated that only very modest errors are
attached to the stiffness properties determined in this monograph by FEM-analy-
sis.

r ]
e eEXP(c) 1 ® tetEXP]
TROC (e) eCSAp el C o CROSS (Young)
FP A S =i a0 | tet=1 ] .................
n=1
: . :
8 . / i
5 ° 20 :
<L
d b /
4 v = /’
/ 10 4—
2 z /
;@
0 a ofzitiziiizizizeiizes
0 5 eCSAp 10 0 20 40 60 80 P100
L

Figure D14. TROC-composite with v, =  Figure DI15. CROSS-composite with v, =
v = 0.2: FEM-Young’s modulus compared vy = 0.2: 0-test on FEM-data obtained to
with Young’s modulus of CSA, composite.  determine Young ’s modulus.

be made which fits very well a large
number of familiar data with only a
few data as clear exceptions - then
these data can be considered false.
Only one false data set was found in
this FEM-analysis, namely shear

' * modulus g of the TROC-composite at
1 (n,7s,75,¢) = (10°,0.4,0.2,0.73). The
Figure DI16. CROSS-composite with v, = reason for exclusion is obvious from

b, = 0.2: 6-test on FEM-data obtained 1o Figure 9.5 in Chapter 9.
derermine Young’s modulus.

False data
Tﬂ#ﬁ——ﬂfﬁm'ﬂ The following rule has been used to
— o tet=n i i
1 CROSS (Young) |- -« - - - ot | \ exclude false data (mlstakes.m.tests or
10 g R \ data treatment): If a description can
| |
|

THETA
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Appendix E - Complex shape functions

When composites are considered where shape function values are known better
than just at ¢ = 0, ¢,, Cs, and 1 a more detailed description may be justified, for
example as outlined in Table E1 and Figure E1.

MORE DETAILED SHAPE FUNCTIONS
Z" ) M}j 0 =c¢ <cg
S = ,'('S
By = ME(CS = O/ = C) + Up(C = CH(C; — Cy) c <c <
te = plC, = ©)/(cg — C) s s
e = (G, — O)/(C, = €Y
< <

pe = pglC = c)l(c, - ¢ G =C< G
MP - ’[,LP(C - CP)/(CPP - Cp) l CP < c < CPP
ILS = PLSP(CPP - C)/(CPP B CP) + #b(c - CP)/(CPP B CP)

= !
ZP Mf CPP S ¢ < 1
S = 'LLS

Table El. Special shape functions. The symbols used are explained in Figure E1. Shape
Jactors pys,us, us, s are as determined from Section 7.1.
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Figure El. More detailed shape functions.
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Figure E2. Detailed shape functions for
special DC-CD composite defined in the
main text. (v,,vy) = (0.3,0.2).

Example: Special DC-CD composite

A special fabrication technique has been developed such that the following DC-
CD composite can be produced: Up to a concentration of ¢ = 0.47 the geometry
is that of discrete phase P spheres in a continuous phase S. From a concentration
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of ¢ = 0.68 the geometry is that of discrete phase S spheres in a continuous phase
P. The agglomeration of P-spheres starts creating continuous phase P elements at
¢ = 0.52. "De-agglomeration" of phase S into discrete spheres starts at ¢ = 0.63.
A skeletal microstructure defines the composite geometry in the transition area
¢ = 0.52 - 0.63 where there is no clearly defined matrix and reinforcement
phase.

These observations are enough to suggest a special shape function description
defined by (ups,usp) = (0,0) and (Cgs,Cs,Cp,Cop) = (0.47,0.52,0.63,0.68). An
example with (v,,75) = (0.3,0.2) is presented in Figure E2.
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Appendix F - General viscoelastic models

It can be shown (e.g. 2) that general mechanical models for viscoelastic materials
can be established in two ways as illustrated in Table E1. One general model is
a Maxwell model connected in series with a chain of several Kelvin models in
series. E denotes momentary stiffness, Eg, denotes delayed stiffness and
denotes relaxation time. The number of Kelvin elements can be finite (N) with
creep functions consequently described as shown in Equation F1 - or it can be
infinite in which case creep functions can be expressed as shown in Table F1 with
continuously distributed Kelvin relaxation times considered by the so-called retar-
dation spectrum, L = L(7).
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Table F1. Complex viscoelastic models with spectra and analogy Young’s moduli. Repro-
duced from (24).

The other general model is a Hooke model connected in parallel with a chain of
several Maxwell models in parallel. E denotes momentary stiffness, Eg; denotes
relaxed (final) stiffness and 7 denotes relaxation time. The number of Maxwell
elements can be finite (N) with relaxation functions consequently described as
shown in Equation F1 - or it can be infinite in which case relaxation functions can
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be expressed as shown in Table F1 with continuously distributed Maxwell relax-
ation times considered by the so-called relaxation spectrum, H = H(r).

N
@) = l P Zi 1 - EXP -t ;. Kelvin chain
E n n=l L) 7, (Fl)
N
R() = E,, + Y Eexp [wi] . Maxwell chain
n=1 Tn

The Power Law model introduced in Section 13.2.2 is a model which can only be
explained by a composition of an infinite number of elementary mechanical ele-
ments. The spectra associated are presented in Table F2 reproduced from (25).

POWER LAW CREEP

RETARDATION SPECTRUM L(7) RELAXATION SPECTRUM H(7)
Z(7) sin(b ) E Z(7) sin(b )
7E w1 + Z(7)* + 2Z(7) cos(bn)

Table F2. Power law creep. Z(x) = TI'(1+b)(x/1,)’ where T' means gamma function.
Reproduced from (25).

Remark: It is emphasized that the two spectra are not independent. They relate
to each other as indicated by the two alternate expressions in Table F1 for the
analogy Young’s modulus. It is also emphasized that the results in Equation F1
can be predicted from Table F1 with discrete rheological spectra (retardation,
relaxation). Most often the analysis of complex viscoelastic materials can only be
made numerically. In this context should be mentioned that useful information on
couplings between rheological characteristics of materials can be found in (fx
2,26,27,25).
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Appendix G - Re-interpretation of flat and long shapes

We re-call from introductory remarks to Chapter 7 that the quantification of geo-
metries made in this chapter is based very much on the cylindrical inclusions
model. It is obvious that this model, strictly speaking, does not comply with the
continuous description of geometry changes considered in this monograph. It
shows, however, that this discrepancy is effectively compensated for by the geo-
function, 6, introduced in Section 4.1.

This feature is illustrated in this appendix by comparing the ’dilute’ phase P stres-
ses obtained by the method presented in this monograph with the accurate stresses
for strict fibres numerically developed in Appendix B. The former stresses are
determined from Equation GI reproduced from Section 4.3 with a particle P
concentration of ¢ = 0.
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Gkk nk + OZ SU ng * 02
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0 = Sl - Nat o, Ny - AN~y ) v

’Y o o o o o (4
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R
13

Remark: From a descriptive point of view, we introduce the term "particles, pre-
paring to become continuous’ as a re-interpretation of strict cylindrical inclusions
when discussing the role of particles in the history of a continuous geometry chan-
ges.

Flat shapes

Some results of comparing stresses in organic particles and in strict particles are
shown in Figures G1-G6. We notice that CSA¢-shells (u,° = -1) have the same
phase P stress as can be determined accurately for strict thin discs. This feature
is consistent with the following observations:

From (9) can be deduced that the bulk modulus of a particulate composite with
randomly distributed thin strict discs equals the bulk modulus (a H/S bound solu-
tion) which is predicted by the present theory for a CSAg-composite. This means
that the volumetric particle stresses, at identical volume concentrations (including
¢ = 0) are the same in thin strict discs and in spherical shells as these are defined
in this monograph.
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Appendix G - Re-interpretation of flat and long shapes
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Aspect ratio is indicated by A (0-1).
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Aspect rtion is indicated by A (0-1).

From Figures G7 and G8 is observed that accurate stress in strict discs become
increasingly well predicted by the present method when very high stiffness ratios
or very low stiffness ratios are approached. At such stiffness ratios this means that
there will be no difference between accurately determined stiffness for particulate
composites with strict discs, and stiffness determined by the present method as-
suming organic discs. This statement follows from Equation 3.6: If stress is
accurate, then stiffness is accurate - and vice versa. Of course the observations
just made are closely related to the procedure applied in Chapter 7 of letting n ap-
proach zero and infinity when shape factors are determined.
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Re-interpretation of flat shapes
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= (1.8,0.2,0.2).

Looking at Figures G1 - G6 it seems appropriate to introduce the following re-in-
terpretation of flat shapes: For moderate stiffness ratios aspect ratios have the tra-
ditional (strict) meanings when A > =1/4. For lower aspect ratios flat shapes
have to be re-interpreted as has previously been indicated: Shapes are agglomera-
ting discs preparing to become a continuous laminate (crumbled sheets/foils).

For extreme stiffness ratios, composite stresses in strict disc reinforced composi-
tes keep very close to those calculated by the present method (with organic discs).

Crumbled foil: A flat organic shape of special interest is the crumbled foil defined
in Section 4.1.4. In the present context we consider a crumbled foil to be the
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result of the agglomeration of many thin discs (A = 0). The dilute version of the
geo-function for such geometry becomes as shown in Equation G2, consistent
with Equation 4.10c. Dilute phase P stresses are as presented in Equation G3.

O = kN, 3 6 = yyN, forus, =2 =0 5 Crumbled disc (G2)
< 5
T s = 02) (G3)
Ou ij

Long shapes

An analysis of dilute composites with fibres has been made with results similar
to the disc results. A joint conclusion is presented just below.

Conclusion

In the present work organic particles are considered by the strict cylinder model
in the following way: Long shapes (A > 4) define fibre particles preparing to
serve as an enveloping matrix phase. Flat shapes (A < 1/4) define disc particles
preparing to serve as an enveloping matrix phase. For intermediate particle shapes
(=1/4 < A < =4) no reinterpretations of particles have to be introduced.

The rate of ’preparing to become continuous’ is such that the results of an analy-
sis of a composite with organic particles approach the results of a counterpart ana-
lysis of a composite with strict particles - when extreme stiffness ratios are ap-
proached (n - 0 or n - o).

Thus, a composite analysis based on strict cylindrical particles and a composie
analysis based on organic particles will produce similar results when the following
combinations of aspect ratio (A) - stiffness-ratio (n) are held:

- Moderate aspect ratios (=1/4 < A < =~4) at any stiffness ratio.
- Any aspect ratio at extreme stiffness ratios (n— 0 and n - ),

We notice that "preparing to become continuous" shapes are probably more rele-
vant in practice than strict shapes. It is very likely that interference between long
and thin particles will form these particles to appear organically.
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