Alfred Heller (red.)
Carsten Wesenberg NIRAS
Aage Hansen NIRAS

Udvikling af flydende lågkonstruktioner til damvarmelagre

Løsning i tyndpladestål
Udvikling af flydende lågkonstruktioner til damvarmelagre

Løsning i tyndpladestål

Alfred Heller (red.)
Carsten Wesenberg NIRAS
Aage Hansen NIRAS

Det kan fremhæves at projektet har medført resultater der går ud over det man havde aftalt ved projektstart. Ud over en løsning til flydende låg er der samtidig udviklet en løsning til tætning af dammen. Hermed viser foreliggende rapport en endelig løsning til hele sæsonvarmelagre opbygget som damvarmelagre. De grundlæggende metoder er herudover anvendelige til alle mulige tætningskrævende konstruktioner hvor tyndpladeliner kan anvendes, f.eks. andre termiske lagre, funderinger osv.

Resultater fra projektet er endvidere præsenteret på verdenskonferencen for den internationale solenergiforening, ISES, i Adelaide, Australien, i november 2001 og vil danne grundlag for publikationer i danske, tekniske tidsskrifter.
Lågkonstruktioner til damvarmelagre - Fase IV, (Rustfri stålliner)

INDHOLDSFORTEGNELSE

FORORD .. 1

1 INDLEDNING ... 4
 1.1 Formål og den overordnede fremgangsmåde ... 4
 1.2 Historisk forløb for udvikling af flydende låg til damvarmelagre 5
 1.3 Fremgangsmåde ... 6
 1.4 Rapportens indhold og læsevejledning ... 6
 1.5 Projektorganisation ... 7

2 PROJEKTFORLØB .. 7
 2.1 Det overordnede forløb .. 7
 2.2 Opbygning af forsøgsbassin og bassinets bundmembran ... 8
 2.3 Opbygning af lågsektion og udtrækning på vandoverflade .. 9

3 FORSØGSLAGERETS OPBYGNING .. 10

4 OPBYGNING AF LÅGET (BUND) I TYNDEPLADESTÅL ... 16
 4.1 Foldning af tyndplader i hjørnerne ... 16
 4.2 Problemer ved lågkant .. 17
 4.2.1 Kantstropper ... 17
 4.2.2 PEX-rør som afstandsholder ... 18
 4.2.3 Tykpladeløsning .. 19
 4.2.4 Lodret kant .. 20
 4.3 Bukning af tyndplader i baner ... 20
 4.4 Svejsning af tyndplader (tynd-tynd, tyk-tynd) ... 20

5 EFTERFØLGENDE FORSØG OG RESULTATER ... 23
 5.1 Monitorering ... 23
 5.2 Styring af opvarmnings- og køleforløb ... 23
 5.3 Opvarmningsforløb ... 23
 5.4 Termografering og varmetab .. 23
 5.5 Fugtindtængning ... 25
 5.6 Lågets bevægelser som følge af termisk udvidelse m.v. ... 25
 5.6.1 Korrosive omgivelser ... 25

6 DEN ENDELIGE LÅGKONSTRUKTION ... 26
 6.1 Teknisk beskrivelse ... 26
 6.1.1 Dammen ... 26
 6.1.2 Stabile hjørner og kanter .. 26
 6.1.3 Isoleringen ud over kanten ... 26
 6.2 Økonomiske forhold .. 27
 6.2.1 Sammenligning med priser for ikke-tryksatte ståltanke .. 27
 6.3 Planlægningsmæssige forhold .. 29

7 DIVERSE .. 29
7.1 Niveaukontrol ... 29
 7.1.1 Optisk niveaukontrol .. 30
 7.1.2 Niveaukontrol og spædevand (af Carsten Wesenberg, NIRAS) 31
7.2 Ind- og udløb samt manøvrearrangement og tilslutningsanlæg 32

REFERENCELISTE ..33

BILAG 1: KRAV TIL SVEJSEPROCEDURERNE ...34

BILAG 2: OPTISK SENSOR TIL NIVEAUMÅLER ...38

BILAG 3: BYGGEMODEREFERAT AF 2. MAJ 2001 ...39

BILAG 4: SVEJSEPROCEDURE PROVNINGSRAPPORT ...40

BILAG 5: SKITSEFORSLAG TIL ISOLERING UD OVER KANTEN41

BILAG 6: ØKONOMISKE FORHOLD FOR DAMVARMELAGRE42
1 INDLEDNING

1.1 Formål og den overordnede fremgangsmåde

Gennem flere års arbejde med store, termiske lagre, er ”damvarmelagre” udpeget som den teknologi der menes at være den mest lovende og billigste lagerudformning Wesenberg, C. [1]. Denne antagelse har vist sig at ”holde vand”, da vi i det foreliggende projekt kan forevise en teknologi der er billig og skalerbar, dvs. opfylder de mål der er stillet for en række år siden for en teknologi der opfylder behovet for sæsonvarmelagring osv.

Damvarmelagre involverer to problemstillinger der skal løses:

2. Lågkonstruktioner holder lageret tæt og varmt hvilket er hovedemnet i foreliggende rapport.

1.2 Historisk forløb for udvikling af flydende låg til damvarmelagre

Det er klart at forholdene kun er opdaget på grund af de specielle forhold linerne er testet under, nærmere sagt vand-luft grænsebetingelsen. Dette ville man ikke havde opdaget ved anvendelse af vand-til-vand eller luft-til-luft grænsebetingelser som anvendes til standardiserede undersøgelser. Dermed er der måske behov for ændringer af normerne.
1.3 Fremgangsmåde

Den foreliggende fase IV af udviklingsprojektet ”Flydende låg til damvarmelager” er på grund af de ovenfor nævnte problemer med plastiklinerne reduceret til en undersøgelse af damvarmelagre der er tætnet med stållinere.

1.4 Rapportens indhold og læsevejledning

Formålet med modelforsøget var, ifølge Bilag 1 til ansøgning ”Lågkonstruktioner – fase IV” (DTU, oktober 1999), oprindeligt at undersøge de i fase III fremkomne løsningers funktionsduelighed og anvendelighed ved forsøg i stor skala med henblik på at muliggøre en efterfølgende konstruktion af en flydende lågkonstruktion i fuld skala. Herunder at undersøge:

1. arbejdsmetode samt tids- og materialeforbrug
2. monteringsmæssige erfaringer
3. materialernes anvendelighed (vand-/damptæthed, fugt- og vandindtrængning i isoleringen) samt
4. lågets bevægelser som følge af termisk udvidelse m.v.

Formålet er opfyldt og dokumenteret i foreliggende rapport. Her bliver der fremlagt nøjagtige budgettal til opbygning af damvarmelagre med flydende låg, tætnet med stålliner af rustfrit materiale i bunden og på lågets underside. Procedurene og metoder til opbygning og håndtering af liner etc. bliver dokumenteret i ord og billedet. Materialernes anvendelighed er dokumenteret, bl.a. gennem målinger og løbende erfaringsopsamling. Lågets bevægelse kunne ikke dokumenteres tilfredsstillende da man ikke var i stand til at opbygge låget i den endelige udformning. Det viser sig dog klart at løsningen er meget tolerant over for fysiske påvirkninger, personer, vind, vejr, termiske påvirkninger m.m.

Dermed kan den foreliggende rapport anses som en fuldstændig dokumentation for udførelse af damvarmelagre med tyndpladeliner i rustfrit stål. Prissætningen vil dog nok i et vist omfang afhænge af de involverede aktører og den aktuelle konjunktur.

I bilagene findes dokumenter der danner grundlag for de resultater der er vist i rapporten.

Rapporten i elektronisk form og et billedgalleri kan findes på BYG.DTU’s hjemmeside på adressen www.byg.dtu.dk under publiceringer og solenergi.

1.5 Projektororganisation

Projektet er gennemført i et samarbejde mellem følgende virksomheder og kontaktpersoner:

- NIRAS, Aage Hansen (bygherrerådgiver)
- NIRAS, Carsten Wesenberg (designer og rådgiver)
- Jacobsen & Blindekilde (Esben Pedersen og medarbejdere), entreprenør for jordarbejde og plastlinerarbejde
- Marstal VVS, (Michael Pedersen og medarbejdere), entreprenør for tyndplade-stålarbejde
- BYG•DTU, DTU, Alfred Heller og Karsten Duer, projektleder og redaktør for nærværende rapport

Herudover har projektet fået hjælp fra FORCE-Instituttet der har kontrolleret svejsninger i konstruktionen.

2 PROJEKTFORLØB

Af Carsten Wesenberg, NIRAS.

2.1 Det overordnede forløb

Oprindeligt var det tanken at teste 2 lågløsninger – en plastbaseret løsning og en stålløsning – samtidigt i et lavvandet bassin placeret i DTU’s gamle forsøgs-damvarmelager, som havde et lågareal på ca. 16 x 16 m.

Da plastløsningen ikke var moden til afprøvning ved forsøgets planlagte start i foråret 2000, besluttede projektgruppen i samråd med Energistyrelsen at afprøve stålløsningen først i et ca. 6 x 16 m lavvandet forsøgsbassin placeret i den ene side af DTU’s gamle forsøgsstølb. En plastløsning kunne så afprøves på et senere tidspunkt i samme bassin.

Forsøgsbassinet skulle udformes som en omvendt kuglestub (dybde ca. 80 cm) med en sidehældning på 1:2 og en kantkonstruktion som i et fuldskala damvarmelager.
For senere at give mulighed for at afprøve lågkonstruktioner ved en høj temperatur (op til 95°C), blev det valgt at tætne forsøgsbassinet med én stor 0,4 mm rustfri stålliner af samme type som den der skulle bruges i bunden af lågsektionen. Endvidere skulle bassinet isoleres i bunden.

Lågsektionen skulle bygges op på et formbord placeret ved bassinets langsider – med flydebro til udtrækning over vandoverfladen og i øvrigt udformet som et fuldkomplet formbord til en 110 x 110 m lågkonstruktion.

Efter flere forgæves forhandlinger med CONSWEDE AB om levering og montering af de rustfri stålmembraner til bassinbund og bund i lågsektionen inden for de givne tids- og budgetmæssige rammer, blev det i februar 2001 besluttet at overdrage stålempreisen til Marstal VVS som i mellem tiden havde valgt selv at investere i det nødvendige mobile sømsvejseudstyr.

Af hensyn til de fremtidige perspektiver og den pressede økonomi valgtes tæthedskontrollerede enkeltsømsvejsnings i stedet for dobbeltsømsvejsninger, som kun CONSWEDE AB kunne udføre.

2.2 Opbygning af forsøgsbassin og bassinets bundmembran

Udgravningen af bassinet og opbygningen af formbordet samt bund og kantkonstruktioner i forsøgsbassinet forløb – som det fremgår af vedlagte byggemøderegister fra 2. maj 2001 (Bilag 3) – nogenlunde planmæssigt.

Sammensvejsningen af de 1,2 m brede rustfri stålmembraner med den helt nye sømsvejsemaskine forløb – efter et par forsøg med svejseprøver m.v. - i ligeledes planmæssigt, idet FORCE forinden havde godkendt svejseprocedurem.v. (se godkendte svejseprocedureprøver i Bilag 4).

I et forsøg på at undgå dyre og vejrfølsomme manuelle TIG-svejsninger i hjørnerne, var det blevet besluttet at afprøve en ny foldeteknik, som gik ud på at trække stållinere ud over bassinet i ét stykke, og herefter folde hjørnerne, så lineren fulgte bassinets bundprofil som en omvendt keglestub.

På baggrund af foldningsforsøget må det konstateres, at foldning af hjørnerne i en større bundmembran vil være besværligt og kræve nogen øvelse samt betydelige investeringer i specielt storskala bukke- og monteringsværktøj. Dog viser disse ligeledes at det grundlæggende er muligt at udføre en tæt bundmembran i 0,4 mm rustfri stål - udformet som en omvendt keglestub – udelukkende samlet med tæthedskontrollerede sømsvejsninger – helt uden tidskrævende og vejrfølsomme TIG-svejsninger.

Dette emne diskuteres mere i afsnit 4.1.

Lågkonstruktioner til damvarmelagre - Fase IV, (Rustfri stålliner)
2.3 Opbygning af lågsektion og udtrækning på vandoverflade

Tirsdag den 1. maj udførtes sømsvejsning af stållineren til undersiden af lågsektionen (ca. 125 m²), og den 2. maj var hjørnerne føldet og anbragt på flydebroen og udtrækningen over vandoverfladen påbegyndt. Efterfølgende kontrol af sømsvejsningerne viste dog at sømsvejsningerne – måske på grund af en fejl ved svejsemaskinen - ikke var perfekte, og at krav til svejsekernen i fremtiden bør beskrives nøjere. Se mere herom i afsnit 4.4.

Monteringen af stropper pr. 600 mm til fastgørelse af isolering og tagmembran var ligeledes påbegyndt. Entreprenøren havde valgt at bruge rustfri popnitter i stedet for punktsvejsninger, hvilket dog skyldtes manglende svejseudstyr. Se endvidere byggemødereferat af 2. maj 2001.

Den efterfølgende montering af isoleringen forløb planmæssigt – men det viste sig dog nødvendigt at gøre noget for at undgå at lågsektionens skrå kant ikke lagde sig på kanten af bassinet når flydebroen blev fjernet.

Det blev derfor på byggemødet den 2. maj besluttet at afprøve 3 forskellige metoder til afhjælpning af problemet;

1. Et 50 mm PEX-rør blev placeret mellem bundlinerne og låglineren, på den side hvor flydebroen befandt sig.

2. På den modsatte side af flydebroen (op mod formbordet) foretages ingen særlige foranstaltninger. Her var problemet yderligere forværret af at der ikke kunne frembringes veldefinerede kanter ved bukning.

3. På de 2 andre sider anvendes stropper til fastgørelse af stållineren ind i lågkonstruktionen. Stropperne, der er tynde striber linermateriale, popnites til svejebanerne og hænges op i plader der ligger mellem isoleringen og holder siderne op.

Nedsænkningen og fastgørelsen af låget forløb planmæssigt, og den 15. maj 2001 var låget på plads i forsøgsbassinet.
3 FØRSGØSLAGERETS OPBYGNING

Dammen er udført af entreprenøren Jacobsen & Blindekilde. Det er ligeledes dette firma der har dokumenteret det foreliggende arbejde ved fotografering.

Dammen udgraves med tunge maskiner, og udgravningen udføres med fint sand for at beskytte lineren mod spidse sten osv.

Kanten til dammen støbes i beton.

Bemærk at plastliner er anbragt for at beskytte isoleringen mod regnvand. Det har ikke noget formål på det nuværende anlægstrin.

Dammen isoleres. Det må bemærkes at et stort lager ikke isoleres i bunden. Her er isoleringen trukket helt ned for at sikre velfungerende forsøg uden for store varmetab gennem bunden.

VIGTIGT: Dammen efterkontrolleres og rettes op, så den geometrisk er meget eksakt. Dette er vigtigt, da det er besværligt at tilpasse stållineren til ”mærkelige” former.

Nu er opgaven at lægge en bundliner der sikrer mod vandudsivning. Arbejdet udføres og dokumenteres af Marstal VVS A/S ved fotografering.

For at kunne håndtere udlægningen af stållineren, opbygges en arbejdsplatform på dammens langside. Platformen består af lægter og krydsfinerplader i en bredde på ca. 5 meter. Platformen trækkes til begge sider ud over dammens længde for at muliggøre opstilling af stållinerrullerne osv.

For at undgå unødvendig fugt- og regnophobning i lågkonstruktionen anbefales det i fremtiden at overdække platformen.
Stållineren kommer i baner der er rullet op og opstilles i nærheden af arbejdsplattformen. Der udtrækkes to baner som hver for sig bukkes i kanterne.

Kanterne fæstnes under svejsningen med svejsetænger.

Svejsningen udføres af en simpel maskine der presser to ruller sammen omkring de to opbukkede baner. Ved tilførsel af elektrisk strøm smeltes metallet og trykkes sammen.
Udsnit af en svejsning. Eksemplet viser tydelig at man skal overholde et højt krav til renholdelse af arbejdspladsen, nøje indstilling af svejsemaskinen osv.

Eksemplet viser et sted hvor svejsemaskinen ikke helt er indreguleret. Mens de ydre områder er ret ”jævne” i svejsesporene, viser den centrale del at der er problemer. Disse kan så undgås ved indregulering og rimelig renholdelse.

Proceduren gentages indtil man har en helt liner parat til udlægning. I det foreliggende billedrække vises udlægningen af dammens bundmembranen.

Tyndpladelineren svejes i en stor sektion.

Lineren lægges ned i dammen.
Nu ser man at lineren ikke er andet end et stykke "aluminiumsfolie" der krøller som det passer den.

Nu skal kanterne og hjørnerne tilpasses:
I første omgang forsøger man at "forme" en kant ved at bukke to kanter i materialet hvorefter det forventes at kanten kan "klappes" sammen. Det viser sig ikke at være muligt.

Nu er dammen klar til at blive fyldt op med vand. Vandet fyldes helt op til kanten, så låget kan flyde ud på vandet.

I gennemgangen er der kun vist de overordnede proceduretrin. Nedenfor gennemgås nogle centrale detaljer nærmere.

Det kan bemærkes at håndteringen af tyndpladelineren er ens for dammen og låget. Dermed kan ovenfor viste billeder anvendes til dokumentation af opbygningen af låget.

Når en række baner er svejset sammen, lægges de op på en flydeponpon.

I forsøget lægges der et lag PUR-skum i bunden som flydelag. Resten isoleres med mineraluld.

Plastdugen der beskytter isoleringen mod regnen lægges ligeledes direkte på isoleringen.
Hele konstruktionen trækkes ud over vandet ved hjælp af nogle trækarrangementer der er sat fast på den anden side af dammen. (Se wire på stålkanten.

Det er en løbende proces, hvor stålbaneerne svejses, isoleringen og plastdugens pålægges og konstruktionen trækkes ud på vandet.

Fremgangsmåden er planlagt som en løbende arbejdsrutine mellem de involverede entreprenører.

Når hele lineren er trukket ud over vandet skal pontonen fjernes og vandet sænkes. Herved lægger låget sig ind i lageret og lukker opadtil. Næste trin er nu at tætne lageret mod mulig dampudsivning fra bassinet.

Det udlægges et Butyl-gummibånd langs kanten mellem de to stållinere. Herefter lægges regndugen ud over, og hele kantkonstruktionen skrues fast ved hjælp af en stålskinne betondybler for hver ca. 10-20 cm.

Bemærk: Det anbefales at trække isoleringen og topdugen ud over kanten for at undgå kuldebroer og deformationer i isoleringen. Emnet diskuteres nedenfor.

Fastgørelsen af topdugen udføres ved at lægge en hulplade imellem isoleringslagene og herefter at sætte dugen fast med skruer fra dugens underside gennem hulpladerne, som skitseret i foregående rapport, Duer, K. [2].

Der er naturligvis nogle forhold der ikke er medtaget i dokumentationen, herunder ind- og udløb, måleudstyr, samt niveaukontrolle der sikrer at vandspejlet holdes konstant. Disse skal naturligvis udføres så utætheder undgås.

1 Svampegummi 40x10 mm-EPDM fra H.Sindby & Co, Vejle.
4 OPBYGNING AF LÅGET (BUND) I TYNDPLADESTÅL

Som det er vist på DTU’s forsøgslager, kan tætning af bunden og tætning af låget gennemføres på helt den samme måde. Derfor kan resultaterne fra lågudviklingen direkte overføres til bundlineren, hvilket en vågen læser skal holde sig for øje.

4.1 Foldning af tyndplader i hjørnerne

I et foregående afsnit ses det, at linerbanerne svejser sammen til en hel folie der. Folien trækkes ned i dammen og formes herefter i kanter og hjørner for at passe til dammens form.

På låget bukkes den første kant før låget trækkes ud over vandet.

I dette afsnit diskuteres fremgangsmåden for opbukningen.

For at kunne folde lineren prøver man at bruge simple værkøjer, skruetvinger og hammer.

Efter nogle anstrengelser fungerer det nogenlunde.

Til sidst lægges (bankes) hjørnet så fladt som muligt.

Der er to grundlæggende muligheder for at løse problemet med foldningen;

1) at udvikle en procedure hertil
2) at undgå foldninger som vist nedenfor

Det er den anden løsning der er udviklet i foreliggende projekt og dokumenteres nedenfor. Her anvendes tykkere plader der danner veldefinerede kanter og hjørner. Derved undgås...
deformationer af materialerne, og det medfører mere kontrol med udlægningen, fastgørelsen og tætningen. Se denne alternative løsning i afsnit 4.2.3.

4.2 Problemer ved lågkant

Lågkonstruktionen flyder på vandet. På grund af opdriften, der skyldes isoleringsmaterialet, er det kun en lille del der trykkes ned under vandoverfladen. Derfor er trykket på lågets skrå sider meget begrænset. Det medfører at de aktuelle lågkanter ”hænger igennem”. Isoleringen tilpasser sig deformationen hvilket igen resulterer i at der kan opstå kuldebroer, og at oversiden af låget bliver ujævn. Ujævnhederne på overfladen medfører ansamling af vand og et heraf følgende øget tryk på oversiden af isoleringen. Dette accelererer deformationen af isoleringsmaterialet og en øget vandansamling. Efter det første regnskyl var renden ca. 20 cm langs siderne. Efter ca. 2 måneder var denne udvidet langt ind på låget. Herefter er den uheldige udvikling gået i stå og isoleringen har tilsyneladende sat sig på plads.

4.2.1 Kantstroppe

På de sider hvor der findes samlinger mellem linerens sammensvejsede og opbukkede baner, vil man umiddelbart kunne hænge lineren fast i nogle stropper og holde siderne op til isoleringen. Fremgangsmåden er dokumenteret, dog er det vanskeligt at forklare den ud fra billederne. Derfor følgende skitse.
Metoden går grundlæggende ud på at popnitte en strop linermateriale til de kanter der fremkommer ved rullesvejsning. Denne strop trækkes så op igennem isoleringen og sættes fast mellem de øverste lag isolering, f.eks. med en træplade der fordeler trækspændingen over et større areal. I afsnit 5.4 vises om denne løsning løser problemet med deformationen og det dermed forøgede varmetab.

4.2.2 PEX-rør som afstandholder

Kanten på låget kan endvidere holdes oppe ved hjælp af en afstandsprofil af en eller anden art. Vi har forsøgt at anvende et 50 mm PEX-rør, da dette materiale ville kunne holde i mange år.

PEX-røret ligger foran på jorden.

Røret lægges mellem bundlineren og lågets side på vandoverfladen.

I afsnit 5.4 vises om denne løsning løser problemet med deformationen og det dermed forøgede varmetab.
4.2.3 Tykpladeløsning

Et tredje løsningsforslag er at anvende tykt linermateriale i de kritiske områder (kanter og hjørner) og derved undgå at materialet "hænger igennem".

Materialer kan f.eks. bukkes og dermed stabiliseres. Fremgangsmåden er dog næppe realistisk i banernes længderetning. Alternativt kan der påsvejes stivere ved TIG-svejsning.

Pladeelementer kan præfabrikeres på værkstederne i lange elementer der svejes sammen på byggepladsen. I langsgående retnings svejes tyndpladebanerne sammen med de tykke plader ved rullesvejsning. På de stødene mellem de tykke plader kan umiddelbart bruges TIG-svejsning, eller der påsvejes overgangskanter i tyndt materiale som vist nedenfor.

Fremgangsmåden er demonstreret ved en skuemodell tegnet af NIRAS (Aage Hansen), afprøvet på DTU og udført på værkstedet af Marstal VVS. Fremgangsmåden har vist sig at være gangbar og procedurerne bliver dokumenteret i den følgende tabel.

På billedet ses to sidesektioner der stødes sammen i en hjørnesektion i størrelse 1:1.

Hjørnerne kan direkte svejes ved TIG, da begge sider er af tykt linermateriale.

Bundlinerbanen (der er "uendelig lang") stødes med siden op mod kantsektionen og svejes ved rullesvejsning.

Samlingen mellem bundsegmentet og det "tværgående kantsegment" beskrives i næste bilde.

Man ser to bundsektioner der møder den tværgående kantsektion. Beskrivelse af denne detalje findes nedenfor.

Ud fra de erfaringer der er højet med projektet, skal det anbefales at mulige entreprenører gennemfører "øvelser" og indarbejder de nødvendige færdigheder på deres værksteder før de drager ud på byggepladsen. Man skal kunne håndtere hvert samlingselement uden utætheder og usikkerheder før man gennemfører et anlægsprojekt. Tidsforbruget hertil behøver ikke overstige nogle få timer eller dage, afhængig af håndværkernes forkundskaber.
Som vist på billederne, er metoden undersøgt på en model i fuld skala. Metoden er desværre ikke demonstreret på eksperimentlageret på DTU. Alligevel har metoden vist sig at være så sikker at vi kan stå inde for denne fremgangsmåde.

4.2.4 **Lodret kant**

I konstruktionen med skrå sider findes ingen overgange mellem statiske og ikke-statisk dele, og udvidelsen kompenseres af lågets skrå sider og højde over vandspejlet.

4.3 **Bukning af tyndplader i baner**

Ovenfor er det dokumenteret hvor besværligt det er at bukke hjørnerne på tyndpladem- konstruktioner. Ved anvendelse af stålliner i lange baner vil der forekomme to typer af bukninger der skal gennemføres på stedet:

1. Langsgående bukninger i hele længden af de givne linerbaner.
2. Endebukninger som gennemføres i hånden ved hjælp af et simpelt bukkeværktøj.

Langsgående bukninger gennemføres med en specialmaskine, f.eks. fra firmaet Schleback SPA Automatic Profiling Machine, der kan bukke fra ruller til lange profiler. Informationer om maskinene kan findes på Internettet ved at søge efter firmaet.

4.4 **Svejsning af tyndplader (tynd-tynd, tyk-tynd)**

Svejsning af tyndpladematerialerne involverer tre typer svejsning:

1. **To tynde (lige tykke) plader der er opbukket og svejet sammen med rullesvejsning.**
2. **En tyk og en tynd (ulige tykke) plade der er opbukket og svejet sammen med rullesvejsning.**
3. **TIG- eller elektrode-svejsning af løse samlinger.**

4.4.1 **Tynd-tynd**

Kravene til svejseprocedurerne der står i gængse normer har vist sig at være for upræcist formulerede til at tilsynet kan kassere svejsninger med henvisning til de anførte krav. Derfor er der i Bilag 4 udarbejdet en revideret udgave til specifikationskrav til svejseprocedurerne, hvor der er tilføjet følgende under pkt. 2: Sømbredden skal være mindst 4 gange kvadratroden af pladetykkelsen, og opsmeletningen skal være mindst 40% af pladetykkelsen. Disse krav er fastlagt ud fra styrkemæssige hensyn, og kravene kan fraviges efter forudgående skriftlige aftale med bygherren for somsvejsninger, hvortil der kun er tæthedsmæssige krav, men ikke behov for nævneværdig styrke.
4.4.1.2 Tyk-tynd

Forsøg på værkstedet har vist at man kan gennemføre rulle-svejsninger med forskellige tykkelser af materialet. For at kunne opnå sikre resultater skal forskellen i pladetykkelser kompenseres af de anvendte "svejseruller" og nødvendig tilpasning af stromtilførsel m.m.

4.4.1.3 TIG-svejsning (el. Elektrode-svejsning) af samlinger – Detaljer

Når en rullesvejet samling møder en opkantet bane i en ret vinkel, skal der anvendes en særlig samlingsprocedure. Proceduren, der dokumenteres i den følgende tabel, er tidligere med succes anvendt ved rekonstruktion af Tubberupvængetanken i Herlev, se rapport af Wesenberg, C og Munch, K [10].

Man ser to bundsektioner der møder den tværgående kantsektion.

2) På bundsegmenterne udkæres en rondel på en specielt måde der muliggør at man kan rullesveje helt ind i "rondellen". Dette opnås ved ikke at fjerne den del af "rondellen" der er en del af opbukningen. Ved en endelig version anvendes specialværktøj til "udskæring" af den runde form. Dermed vil spændinger og tilpasningsproblemer kunne undgås. De to bundbaner rullesvejes sammen. Her skal man sikre sig at svejsningen er perfekt helt ind over "rondellen".

3) Efter rullesvejsning mellem bundelementerne kan den del af opbukningen der rækker ind i rondellen, skæres af.

Se også afsnit 4.4.1.3
I beskrivelsen er det ikke vist at man har påsvejet tykke plader under det område der skæres ud i tyndpladeelementerne.

Hele området under “rondellen” er altså lukket af en tyk plade.

Når rullesvejsningen er overstået, kan man nu lukke hullet tæt ved enten TIG- eller elektrode-svejsning.

Det er vigtigt at svejssesømmene trækkes helt op til rullesvejsningen for at undgå lækager.

Bemærk: De viste samplingsdetaljen kan ligeledes bruges til liner i dammen som lineren i låget.
5 EFTERFØLGENDE FORSØG OG RESULTATER

5.1 Monitorering

På forsøgslageret er der monteret en række følere der bruges i den videre analyse af lågkonstruktionens anvendelighed. Her gennemgås de vigtigste.

Fugtmålinger gennemføres med HIH-3602-L, integrerede fugtfølere fra Honeywell, fordelt over låget på fem punkter, i hjørnerne og i centrum. Højden er valgt forskellig for at finde fugt i toppen og bunden af låget.

Ud over temperaturer og fugt, måler et multifunktionsinstrument energistrømmen, masse-transport og temperaturer til/fra lageret.

5.2 Styring af opvarmnings- og køleforløb

5.3 Opvarmningsforløb

For at undersøge materialernes og løsningernes opførsel under opvarmning af lageret, er der gennemført to opvarmningscykler til 72°C. På grund af en defekt varmekedel kunne vi ikke øge temperaturen til de ønskede 90°C, da varmetabet var for stort. Dette skyldes naturligvis de uhensigtsmæssigt store varmetab i kantsamlingerne der er diskuteret ovenfor. Der er ikke fundet afgørende forskelle mellem forsøgsrækkerne.

I det følgende ses på varmetabet set ved termografering. Herudfra kan varmetabet fra en "god" løsning forudsiges.

5.4 Termografering og varmetab

Da lagertemperaturen var på sit højeste, blev der taget nogle termograferings billeder der viser temperaturen på overfladen af lageret, låget og kanterne. Det viste sig at være en ikke helt triviel opgave, og de viste billeder er derfor taget om natten og under nogenlunde vindstille forhold hvor man kan forvente mindst indflydelse fra sol m.m. Derved er forskellige uønskede indflydelser elimineret.

Af billedet kan man se at temperaturen langs lagerkanten er afgørende større end inde på lagerets låg. Mens temperaturen på låget er mellem 2 og 6 grader, er temperaturen langs kanterne mellem 15 og 30 grader. Temperaturen skyldes varmetransporten i linermaterialet, samt varmetab pga. dårlig isolering. Man kan helt klar se at der er forskel i varmetab langs kanterne.

I figuren til venstre er låget afbildet på nært hold. Man ser små ”pletter” med temperaturer der ligger omkring 17 grader. På disse punkter er topdugen sat fast til nogle hulplader lidt længere nede i isoleringslagene. Dette viser at der er kuldebroer forbundet med samlings-detaljen, dog ikke så kritiske at det kan sammenlignes med de mere problematiske kantløsninger.
Der er taget en hel række billeder som det viste. Der er ikke nogen kanter der ikke viser høje temperaturer. Dermed kan ingen af de anvendte løsninger anvendes direkte uden at man skal regne med et uhensigtsmæssigt varmetab.

5.5 Fugtindtrængning

Mulig fugtindtrængning er målt løbende under forsøgene og efterfølgende også som stikprovekontrol. Der har ikke vist sig fugt- og vandindtrængning i isoleringen.

For at sikre disse resultater, er et af hjørnerne blevet åbnet. Ved at undersøge lågets forskellige dele i det givne hjørne, blev konstruktionen undersøgt for fugt. Der er fundet lidt vanddråber i bunden af låget hvilket tilskrives den fugt der er tilført låget under opbygning. Da lageret var koldt under inspektionen, har fugten lagt sig i bunden af lageret. Havde man et varmt lager, ville man kunne forvente fugten i toppen af lageret.

Dette forhold viser at man i konstruktionen skulle anvende ”udluftnings-header” der kendes fra tagkonstruktioner.

Da fugtmålingerne ikke har vist nogen afgørende svingninger, anses tilstedeværelsen af fugten ikke at være kritisk. Tilførsel af fugt under opbygningen skal dog helst undgås ved at anvende overdækning af arbejdsplattformen, så isoleringen holdes tør.

5.6 Lågets bevægelser som følge af termisk udvidelse m.v.

Opvarmningen af bassinet har ikke givet anledning til ødelæggende deformationer af bassinbunden eller lågkonstruktionen. Der er iagttaget nogle lommer i lågets overside som har gjort at der samles regnvand i store vandpytter på låget. Efter et års forløb med en hård vinter ser det dog ikke ud til at låget tager skade heraf.

5.6.1 Korrosive omgivelser

Det er stadig usikkert om rustfrie bundlinere kan anvendes i alle omgivende jordarter. Da damvarmelagre bygges i jord, er det denne omgivende ”jordart” der bestemmer hvilken slags rustfrit stål der kan anvendes til at tætningslageret. Jorden kan, specielt i nærheden af havvand, indeholde høj-korrosive substanser, som f.eks. klorider og lignende. Dette spørgsmål bearbejdes ikke i foreliggende rapport og lægges ud til andre specialister i emnet som en meget relevant problemstilling ved anvendelse af den her demonstrerede linerløsning. Det anbefales at inddrage f.eks. FORCE-Instituttet i vurderingen af sådanne forhold.
6 DEN ENDELIGE LÅGKONSTRUKTION

6.1 Teknisk beskrivelse

6.1.1 Dammen
Anlægsarbejdet har vist at man skal være meget nøjagtig i sit arbejde. Man skal gå ud fra at linerarbejdet kræver en veldefineret og symmetrisk geometri.

Isoleringen af dammen har ikke vist nogen overraskende forhold og kan gennemføres efter gængse rutiner.

Betonarbejdet i toppen af dammen skal udføres på en måde at kanterne er nøjagtige og ikke resulterer i at der fremstår nogen skarpe ujævnheder på overfladen.

Linerarbejdet er dokumenteret ovenfor. Det anbefales at gennemprøve alle detaljer i modeller der er 1:1 i værksteder. Hermed spares afgørende tid på byggepladser hvor indlæringen er vanskeliggiort af snavs, regn m.m.

6.1.2 Stabile hjørner og kanter
Som vist i nærværende rapport, anbefales det at der anvendes tykke (1,5 mm) materialer i kanter og hjørner. Herved er det muligt at sjeve med TIG og elektroder. Dette giver veldefinerede kanter og hjørner og letter montagearbejdet betragteligt. Prisen stiger ikke afgørende pga. materialeforbruget, da tidsforbruget nok er mindre i forhold til den vanskelige håndtering af tyndpladeløsninger. Tykke plader sikrer herudover geometrisk stabilitet hvilket er vigtigt for at undgå kuldebroer gennem konstruktionen og vandansamling på oversiden af låget.

Anvendelse af tykke materialer anbefales såvel til tætning af dammen som til tætning af låget.

6.1.3 Isoleringen ud over kanten

Ulempen ved ændringen er primært en mindre merudgift i forhold til det første forslag.
6.2 Økonomiske forhold

Af Carsten Wesenberg, NIRAS.

I Bilag 6 gengives detaljerede prisdifferentier for damvarmelagre med stålliner som tætning i dammen og låget. Prisen kan sammenfattes i følgende priskurve der viser afhængigheden mellem prisen per kubikmeter lager og lagerets volumen.

Vi ser at prisen for begge kurver aftager med volumen, og at de forløber nogenlunde parallelle. Lagre på en størrelse omkring 10.000 m³, dvs. ret store lagre, kan udføres for en volumenpris på ca. 788 kr. per kubikmeter. Vi ser at et damvarmelager på 100.000 m³ kan udføres for 310 kr. per kubikmeter. Prisen er inkl. rådgiverhonorar, men ekskl. moms.

Det var målet, i 1990, at finde et damvarmelager til en totalpris på 250 kr. per kubikmeter. Indekskorrigeres dette tal, findes at vi har opnået målet næsten på kr.

6.2.1 Sammenligning med priser for ikke-tryksatte ståltafel

Da ståltanker er den mest anvendte teknologi og mange bygherrer er trygge ved denne teknologi, er det nærliggende at sammenligne priserne for disse ståltanker med de fundne priser for damvarmelagre.
Lågkonstruktioner til damvarmelagre - Fase IV, (Rustfri stålliner)

Figur 1. Pris per kubikmeter tank op til 100.000 m³ for et lertætnet damvarmelager, et damvarmelager med rustfri stålliner og priser for ståltanke, givet af tankentreprenører Ståltank A/S til formålet, samt en kurve genereret ud fra en undersøgelse fra Lawætz i 1996 der er index-korrigeret med 24% fra 1999 til 2002.

**Tilbudspriser for et damvarmelager med plastliner for lave temperaturer er plottet under ”Tilbud London”.

Ståltankspriser fra gennemførte projekter er plottet som enkelte punkter i plottet. Her er der en 2100 m² tank bygget i 1996 i Marstal, en 4000 m³ tank bygget i 2000 i Store Rise, samt en ståltank på 7000 m³ bygget i 1996 på DTU.

Der er en hel del observationer der kan gøres ud fra figuren:

Sammenlignes damvarmelagerpriser med de realiserede ståltankspriser, så ser det ud til at priserne kan holdes ganske lave for ret store ståltanke, dog at der synes en tendens til at priserne bestemt ud fra Lawætz er relativ lave.

Figuren kan ikke give entydig svar på konkurrenceforholdet mellem ståltanke og damvarmelagre!

De underliggende priser for figuren findes i følgende tabeller:
Lågkonstruktioner til damvarmelagre - Fase IV, (Rustfri stålliner)

Tabel 1. Priser for forskellige store varmelagere.

<table>
<thead>
<tr>
<th>Ståltanker</th>
<th>Årstal</th>
<th>Volumen</th>
<th>Årstal f. opførelse</th>
<th>Bemærkning</th>
<th>Pris pr. m³ i kr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Marstal (1996)</td>
<td>2100</td>
<td>1997</td>
<td></td>
<td></td>
<td>700</td>
</tr>
<tr>
<td>Store Rise (2000)</td>
<td>4000</td>
<td>2000</td>
<td></td>
<td></td>
<td>666</td>
</tr>
<tr>
<td>Vestkraft Esbjerg</td>
<td>40000</td>
<td>1991 tryksat (?)</td>
<td></td>
<td></td>
<td>625</td>
</tr>
<tr>
<td>Skærbæk Fredericia</td>
<td>27000</td>
<td>1991 tryksat</td>
<td></td>
<td></td>
<td>852</td>
</tr>
<tr>
<td>Adveøre</td>
<td>26000</td>
<td>2000 2. stks</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Studstrup</td>
<td>30000</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DTU, Lyngby</td>
<td>7000</td>
<td>1996</td>
<td></td>
<td></td>
<td>607</td>
</tr>
</tbody>
</table>

Tabel 2. Priser for konkrete ståltanke.

<table>
<thead>
<tr>
<th>Sted</th>
<th>Volumen</th>
<th>Årstal</th>
<th>Årstal f. opførelse</th>
<th>Bemærkning</th>
<th>Pris pr. m³ i kr.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Damvarmelager m. rustfrit stålliner</td>
<td>2001</td>
<td>788</td>
<td></td>
<td></td>
<td>310</td>
</tr>
<tr>
<td>Damvarmelager m. hybrid lernmembran</td>
<td>2001</td>
<td>707</td>
<td></td>
<td></td>
<td>276</td>
</tr>
<tr>
<td>Ståltank</td>
<td>Lawætz</td>
<td>1996</td>
<td>410</td>
<td></td>
<td>285</td>
</tr>
<tr>
<td></td>
<td></td>
<td>2001</td>
<td>1.24</td>
<td>508</td>
<td>353</td>
</tr>
<tr>
<td>Ståltank A/S</td>
<td>2001</td>
<td>1500</td>
<td>500</td>
<td></td>
<td>1000</td>
</tr>
<tr>
<td>Ståltank uden fundament</td>
<td>Bladt A/S</td>
<td>2001</td>
<td>1100</td>
<td></td>
<td>800</td>
</tr>
</tbody>
</table>

Priserne for et damvarmelager med polypropylenliner er 1200 og 934 kr/m³ for hhv. en 100 og en 1500m³ lager. Priserne stammer fra konkrete tilbud givet i 2002.

Det er relevant at fremhæve at omkostningerne for store lagre i Tyskland er reduceret til en tredjedel til en fjerdedel af omkostningerne for de første forsøg. Her er damvarmelagre af beton, dvs. statiske konstruktioner, tendentielt dyrere end kunstige aquifer-lagre der medfører anlægsomkostninger på ca. 250 DM/m³, dvs. ca. 1000 kr./m³. Ståltanke er i sammenligning angivet til 200 DM/m³, dvs. ca. 800 kr./m³.

Vi kan se herudfra at stål-tankprisen, givet af Ståltank A/S, er i god overensstemmelse med den tyske pris. Vi ser også at de danske damvarmelagre er afgørende billigere end dammene der bygges af beton-konstruktioner i Tyskland.

Da prisen for varmelagre er afgørende for at få et gennembrud af solvarme i større målestok, er det centralt at få viden om damvarmelagre udbredt.

6.3 Planlægningsmæssige forhold.

Det er vigtigt for udførelse af damvarmelagre at de involverede entreprenører er interesserede i opgaven, og at de er villige til et tæt samarbejde med de andre involverede entreprenører. Det er helt afgørende ved samlingen af låget, hvor stållineren samles parallelt, til udførelse af isoleringen og pålægning af plastdugen som regnbeskyttelse. Derfor skal de involverede håndværkere kunne koordinere deres indsats.

7 DIVERSE

7.1 Niveaukontrol

Da låget i damvarmelagre kan forventes at blive ødelagt ved større vertikale bevægelser, og da lågkonstruktionen stadig udgør næsten halvdelen af etableringsomkostningerne ved et
damvarmelager, stilles store krav til kontrol med lågets position og til fastholdelse af vandspejlet i bassinet. I dette afsnit følger nogle overvejelser om mulige metoder til niveaukontrol.

7.1.1 **Optisk niveaukontrol**

Niveauet for låget kan bestemmes i forhold til vandoverfladen eller i forhold til den omgivende dam.

Ønskes lågets højde holdt fast i forhold til vandspejlet, så er der i projektet udviklet følgende simple opstilling som er vist i [Figur 1](#).

![Figur 1. Niveaukontrol med tre optiske følere.](image)

Figur 1 viser en aluminiumskinne hvori der er fastgjort tre optiske sensorer.

Sensorerne bygger på optisk måling af refleksion fra en given væske. Databladet for sensorerne kan findes i [Bilag 2](#).

Højden, og dermed højden for responsen for den enkelte sensor, kan kontrolleres af underlagsskiver af velvalgt tykkelse som lægges på oversiden af aluminiumskinnen. De tre sensorer indstilles til hver sin højde med følgende formål:

1. **Laveste vandniveau.** Hvis vandet falder under dette niveau, skal der pumpes vand til lageret.
2. **Normalniveau.** Når der fyldes vand på, stoppes pumpningen på dette niveau. Hvis der udtrækkes vand, standses dette ved dette normalniveau.
3. **Højeste vandstand hvor en udpumping startes.**

Det må bemærkes at sensorerne har en hysterese og nøjagtigheden derfor nok ikke kan være under ca. 2 mm omkring et setupunkt. Dette synes for de fleste tilfælde at være tilstrækkeligt og diskuteres ikke mere i den foreliggende rapport. Styringen som sådan behøver ikke tage hensyn til hysterese ud over at tilpasse højden af sensorerne med de ovenfor nævnte underlagsskiver.

De enkelte sensorer giver signaler som hver elektrotekniker kan udnytte til en given styringsenhed. Det er op til det aktuelle projekt at koble niveaukontrolenheden til den omgivende styringsenhed. Koblingen afhænger også af om der er tale om en enkelt eller to pumper udelukkende til niveaukontrol, eller om man udnytter den almindelige pumpe i varmesystemet til dette formål.
I et virkeligt anlæg ville man naturligvis udskifte aluminiumskinnen med en statisk konstruktion der gøres fast på siden af dammen. Dette medfører at der skal laves plads i låget for at kunne placere niveaukontrollen uden forstyrrelse fra låget. Endvidere er det en god ide at overveje to sæt (reundans) af sådanne følere for at undgå fejlstyring på grund af defekt i en enkelt følner.

7.1.2 Niveaukontrol og spædevand (af Carsten Wesenberg, NIRAS)

Følgende tekst stammer fra rapporten "Forundersøgelse for 10-20.000 m³ damvarmelager ved Sydlangeland halmvarmeværk.

Når vandet i lageret opvarmes, vil vandet udvide sig. Opvarmes vandet om 50°C, vil vandets udvidelse være ca. 2 % svarende til 2.000 m³ i et 100.000 m³ damvarmelager og 200 m³ i et 10.000 m³ damvarmelager. I standardudformningen med et 110 x 110 m låg, vil vandets udvidelse svare til en vandstandsstigning på 165 mm, men da vandoverfladen skal holdes konstant, skal en tilsvarende mængde vand bortledes fra bunden af bassinet, hvor det er koldest.

Spædevand bør tages fra egen vandforsyning med rent grundvand fra en boring tæt ved damvarmelageret. Spædevand skal påfyldes og aftappes automatisk og sikre, at låget maksimalt bevæger sig op/ned svarende til +/- 5 mm. Da belastningen af låget vil variere over året, kan ind- og udpumping af spædevand ikke styres efter en niveauføler i en overløbsbeholder som i Ottrupgårdlageret, men skal styres efter en niveauføler på undersiden af låget.

Da låget vil blive ødelagt ved større vertikale bevægelser - som følge af en defekt styring, vandmangel eller en massiv lækkage - skal der etableres en visuel alarm og et nødstrømsanlæg til sikring af spædevandsforsyningen. Et mekanisk styret overløb (påvirket direkte af låget) skal ligeledes sikre, at låget maksimalt kan bevæge sig 10 mm over "dagligt vande" - uafhængigt af det offentlige elnet.

Vandstanden i bassinet og lågets position bør kunne aflæses med 1 mm's nøjagtighed - både manuelt og via fjernaflæsning - og ind/udpumping af spædevand kontrolleres via et SRO-anlæg i manøvrerummet på halmvarmeværket. SRO-anlægget skal endvidere kunne sende en alarm til driftslederen ved for høj/lav vandstand/lågniveau.

Damvarmelageret skal fyldes med rent vand, som adskilles fra fjernvarmenettet og et eventuelt solvarmeanlæg med varmevekslere. Vandet kan være blødgjort (calcium fjernet), for at undgå belegninger og tilstopning i varmevekslere m.v. i ladekredsen. Udfældning af calcium direkte i tanken eller permanente rensekredse ved varmevekslerne bør overvejes.

Ind- og udpumping af koldt vand til og fra damvarmelagerets bund, skal - for at undgå forstyrrelse af lagerets termiske lagdeling - foregå via en præisoreret rørlødning, som evt. kan være røret til den nederste diffusor.

Herudover kan følgende systemløsninger anvendes til niveaukontrollen:

A. Daglig driftskontrol (automatisk styring af ind- og udløb)

Elektronisk niveaukontrol med optiske følere i "forbundne kar" fyldt med ren glycol (frøstfri) - hvoraf det ene kar placeres/fastgøres midt på låget over en strop til bundlineren - og det andet kar placeres i manøvrerum i flught med overside låg. Karrene forbindes med en tynd kobberledning (Ø10 mm), som føres/fastgøres oven på lågets topmembran.
B. Manuel stikprøvekontrol (check of driftskontrol)
Nivellering med nivellérapparat eller laserudstyr - opstillet permanent ved låg. Stadiet placeres/fastgøres på midten af låget lige over en strop til bundlinereren.

C. Mekanisk overløb
Overløbsbeholder med justerbar overløbskant forbundet med præisoleret fjernvarmerør til bunden af bassinet (hvor vandet er koldest).
Rørdimensionen skal være så stor, at vandet fra en defekt spædevandsventil kan løbe igennem overløb til recipient uden vandstanden i bassinet hæves mere end nogle få mm. Røret skal være beskyttet mod frost, hvor det føres i jord etc.
Overløbsbeholderen placeres i manøvrerum i højde med underkant låg - og forsynes med niveaufølere, som kan give alarm ved for høj vandstand. Alarmen føres til SRO-anlæg, så driftslederen øjeblikkeligt kan se, at der er noget galt - vandspildet kan være stort, hvis ikke en defekt magnetventil i spædevandsforsyningen etc. opdages hurtigt.

7.2 Ind- og udløb samt manøvrearrangement og tilslutningsanlæg

Den i Ottrupgård benyttede udformning af ind- og udløb, diffusorer, manøvrearrangement m.v. har givet en god lagdeling i tanken. Alle rør, pumper og ventiler m.v. i kontakt med bassinvandet bør dog udføres i rustfrit stål, idet lange perioder med iltholdigt vand vil kunne forekomme.
Rørdimensioner og pumpekapaciteten i lagerkredsen (diffusorer, ind- og udløbsrør, forbindelsesledninger, varmevekslere m.v.) skal dimensioneres under hensyn til det lave statiske tryk (trykløs tank med fri vandoverflade) og vandets lave temperatur ved opstart (10 * 20°C); Tryktabet er typisk 2,8 gange så stor ved 20°C som ved 80°C.
Der bør benyttes variable og flowstyrede pumper i ladekredsen.
Vandhastigheden ved udmundingen af diffusørerne skal være < 0,1 m/sek. for at sikre en god lagdeling i varmelageret.
REFERENCELISTE

BILAG 1: KRAV TIL SVEJSEPROCEDURERNE

Af Aage Hansen, NIRAS, Allerød.

Krav vedrørende svejsning:

1. **Dokumentation af stålmaterialer**

 Alt stål skal leveres med certifikat efter DS/EN 10204 i form af inspektionssertifikat type 3.1.B. Certifikater skal foreligge inden materialernes ankomst til montagepladsen.

 Prøvningsomfanget skal mindst omfatte kemisk analyse samt mekaniske egenskaber som flydespænding, brudspænding og brudforlængelse.

 Alt stål skal være mærket, således at en angivelse af mærkningen på certifikaterne er tilstrækkelig identifikation af materialet. Mærkningen skal omfatte chargenummer og ståltype.

 Ved opskæring af mærkede plader m.v. skal mærkningen overføres til hvert enkelt delelement under tilsyn af en af NIRAS accepteret, uvildig instans, der arbejder for entreprenørens regning.

 Stålet skal være fri for overfladefejl, herunder revner, lagdeling, buler m.m., af betydning for fremstilling og anvendelse.

2. **Svejseprocedureprøver (PQR)**

 For alle svejseprocedureer der anvendes, skal der udføres prøvesvejsninger under overværelse af tilsynet. Prøvesvejsningerne skal udføres på plader og profiler af samme materiale og tykkelse som i den endelige konstruktion.

 Alle svejsedata skal måles og registreres kontinuerligt under svejsearbejdets udførelse.

 De udførte prøvesvejsninger skal underkastes afprøvning efter bygherrens ønske, og for hver af svejseprocedureerne skal der udarbejdes en procedure-prøveattest, PQR (Procedure Qualification Record) eller WPAR (Welding Procedure Approval Record), hvor alle svejsedata og testresultater er anført. Denne procedure-prøveattest skal godkendes og underskrives af NIRAS.
For lysbuesvejsning (TIG svejsning og Mikro-TIG svejsning) skal procedureprøverne udføres efter DS/EN 288-3. For modstandssvejsning (sømsvejsning) skal der udføres følgende prøver, idet EN 15614-12 er vejledende for WPAR:

- Skrælleprøve
- Besigtigelse
- Undersøgelse af makroætsede slib.

PQR/WPAR skal indeholde følgende data:

- Svejseudstyr (svejsemaskine, motor, gear, styring, motorstyring, trykmåler)
- Elektroder (rullemateriale samt rullediameter og rullebredde med 0,2 mm nøjagtighed)
- Materialer (materialtype, pladetykkelse)
- Svejsedata, indstilling (strømstyrke, svejsehastighed og elektrodetryk)
- Svejsedata, målinger (strømstyrke, svejsehastighed og elektrodetryk)
- Resultater af prøver efter svejsning (skrælleprøve, besigtigelse, undersøgelse af makroætsede slib, samlet bedømmelse af svejsningen)

3. **Svejseprocedurespecifikationer (WPS)**

På basis af de udførte procedureprøver (PQR) skal der for hver procedure udarbejdes en procedurespecifikation, WPS (Welding Procedure Specification).

For lysbuesvejsning (TIG svejsning og Mikro-TIG svejsning) skal procedurespecifikationerne udføres efter DS/EN 288-2. For modstandssvejsning (sømsvejsning) er EN 15609-5 vejledende for udførelse af WPS. Sømbredden skal være mindst 4 gange kvadratroden af pladetykkelsen, og opsmeltningen skal være mindst 40% af pladetykkelsen. Disse krav er fastlagt ud fra styrkemæssige hensyn, og kravene kan fraviges efter forudgående skriftlig aftale med bygherren for sømsvejsninger, hvortil der kun er tæthedsmæssige krav, men ikke behov for nævneværdig styrke. WPS'en skal indeholde alle svejsedata i overensstemmelse med den tilsvarende PQR/WPAR. WPS'en skal godkendes og underskrives af NIRAS.

4. **Godkendelsesprøvning for svejsere (WPQ)**

Alle svejsere skal, inden de deltager i arbejdet, have aflagt en tilfredsstillende arbejdspøve, WPQ (Welder Performance Qualification), gældende for de svejseprocedurer, som de skal arbejde med.
For lysbuesvejsning skal arbejdspøøven udføres efter DS/EN 287-1. For modstandssvejsning skal arbejdspøøven udføres efter DS/EN 1418. Acceptkriterier for prøveemner er som ved procedureprøvning.

Arbejdspøøven kan samtidig være procedureprøve, såfremt alle svejsedata måles og registreres kontinuerligt under svejsearbejdets udførelse, hvilket ikke kræves ved godkendelsesprøvning for svejse.

Certifikater for godkendelsesprøvning af svejsere skal godkendes af NIRAS før de pågældende svejsere deltager i arbejdet.

5. **Svejsekvalitet**

Svejsearbejdet skal udføres i en kvalitet svarende til acceptkravet for procedureprøverne.

6. **Svejsekontrol**

Under arbejdets udførelse skal entreprenøren dagligt foretage kontrol af at WPS'erne overholdes ved måling og registrering af alle svejsedata. Kontrollen skal dokumenteres med måleresultater. NIRAS vil kontrollere svejsedataene stikprøvevis.

Entreprenøren skal foretage visuel kontrol af alle svejsninger. Kontrollen skal dokumenteres med kontroljournal.

7. **Ikke-destruktiv prøvning (NDT)**

NIRAS vil lade en uvildig prøvningsinstans foretage stikprøvevis ikke-destruktiv prøvning af svejsningerne.

Såfremt der findes fejl i svejsningerne ved denne prøvning, udvides prøvningsomfanget for entreprenørens regning med to svejsninger, den forudgående og den efterfølgende svejsning udført af samme svejser.

Hvis én af disse to svejsninger indeholder fejl, udvides prøvningsomfanget yderligere for entreprenørens regning med 6 svejsninger, 3 forudgående og 3 efterfølgende.

Hvis én af disse 6 svejsninger udført af samme svejser indeholder fejl, skal alle svejsninger udført af den pågældende svejser undersøges for entreprenørens regning.
8. Destruktiv prøvning

NIRAS kan udvælge nogle svejsninger til destruktiv prøvning.

Entreprenøren skal udskære svejsningerne og udføre de nødvendige udbedringsarbejder. Den destruktive prøvning skal udføres som ved procedureprøverne.

Bygherren betaler omkostningerne ved prøveningen og udbedringsarbejdet såfremt svejsningen bliver godkendt. Hvis svejsningen imidlertid ikke opfylder alle acceptkriterierne, skal entreprenøren betale omkostningerne.

I så fald kan NIRAS udtage yderligere én svejsning til destruktiv prøvning, og omkostningerne ved både prøvning og udbedring af denne svejsning skal betales af entreprenøren uanset resultatet af prøveningen.

Hvis svejsningen ikke opfylder kravene, kan kontrolomfanget udvides yderligere på entreprenørens regning. Omfanget af en sådan udvidet kontrol fastlægges af NIRAS med henblik på at sandsynliggøre, at svejsearbejdet i sin helhed overholder de stillede krav.
BILAG 2: OPTISK SENSOR TIL NIVEAUMÅLER

Databladet for optiske sensorer til brug for vandspejlets niveaukontrol.
Level Sensors
Optical
Types VP, Modulated, Metal Housing

Product Description
Optical level probe with modulated infrared light for detection of liquids. Self-contained unit has built-in amplifier. Separate transmitting and receiving elements sealed behind the tip. Designed for direct mounting through the wall of a tank. The polysulphone tip is especially resistant to most acids and bases.

Type Selection

<table>
<thead>
<tr>
<th>Housing material</th>
<th>Tip material</th>
<th>Ordering no. NPN, Make & break switching Cable</th>
<th>Ordering no. NPN, Make & break switching M12 Plug</th>
</tr>
</thead>
<tbody>
<tr>
<td>Stainless steel</td>
<td>Polysulphone</td>
<td>VPA1MNA</td>
<td>VPA1MNA-1</td>
</tr>
<tr>
<td>Stainless steel</td>
<td>Glass</td>
<td>VPA2MNA</td>
<td>VPA2MNA-1</td>
</tr>
<tr>
<td>Nickel plated brass</td>
<td>Polysulphone</td>
<td>VPB1MNA</td>
<td>VPB1MNA-1</td>
</tr>
<tr>
<td>Nickel plated brass</td>
<td>Glass</td>
<td>VPB2MNA</td>
<td>VPB2MNA-1</td>
</tr>
</tbody>
</table>

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Rated operational voltage</td>
<td>10 - 40 VDC</td>
</tr>
<tr>
<td>Ripple</td>
<td>≤ 10 V</td>
</tr>
<tr>
<td>Output current</td>
<td>200 mA</td>
</tr>
<tr>
<td>No-load supply current</td>
<td>≤ 7 mA</td>
</tr>
<tr>
<td>Voltage drop</td>
<td>≤ 2.5 VDC</td>
</tr>
<tr>
<td>Protection</td>
<td>Reverse polarity, short circuit, transients</td>
</tr>
<tr>
<td>Ambient light</td>
<td>≤ 50,000 lux</td>
</tr>
<tr>
<td>Transient voltage</td>
<td>1 kV</td>
</tr>
<tr>
<td>Delay after power-on</td>
<td>20 ms</td>
</tr>
<tr>
<td>Operating frequency</td>
<td>≤ 30 Hz</td>
</tr>
<tr>
<td>Indication for Output ON</td>
<td>LED, yellow</td>
</tr>
<tr>
<td>Sensing accuracy</td>
<td>Liquid level difference: ± 5 mm</td>
</tr>
<tr>
<td></td>
<td>Vertical mounting: ± 2.5 mm</td>
</tr>
</tbody>
</table>

Ordering Key

<table>
<thead>
<tr>
<th>Type: Refraction principle</th>
<th>Housing material</th>
<th>Tip material</th>
<th>Light source</th>
<th>Output type</th>
<th>Connection</th>
</tr>
</thead>
<tbody>
<tr>
<td>VPB1 MNA-1</td>
<td>Stainless steel</td>
<td>Polysulphone</td>
<td>Modulated</td>
<td>Metal Housing</td>
<td></td>
</tr>
</tbody>
</table>

VPB1 MNA-1

• Modulated light
• Built-in amplifier
• Output: NPN or PNP, 4-wire (NO & NC)
• Housing: Stainless steel or nickel plated brass
• Tip: Polysulphone or glass
• High chemical resistance to most acids and bases
• Liquid and electrical circuit completely isolated
• Power supply: DC models 10 to 40 VDC

Specifications

<table>
<thead>
<tr>
<th>Parameter</th>
<th>Specification</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pressure</td>
<td>≤ 10 bar at +60°C (+ 140°F)</td>
</tr>
<tr>
<td>Environment</td>
<td>IP 67</td>
</tr>
<tr>
<td>Operating temperature</td>
<td>-20° to +80°C (-4° to +176°F)</td>
</tr>
<tr>
<td>Storage temperature</td>
<td>-40° to +100°C (-40° to +212°F)</td>
</tr>
<tr>
<td>Liquid temperature</td>
<td>+100°C (+212°F) for ≤ 60 s</td>
</tr>
<tr>
<td>Housing material</td>
<td>Stainless steel or nickel plated brass</td>
</tr>
<tr>
<td>Cable</td>
<td>2 m, 4 x 0.3 mm², grey, Ø 5.2 oil resistant PVC</td>
</tr>
<tr>
<td>Resistance</td>
<td>≤ 100 Ω, extension possible</td>
</tr>
<tr>
<td>Weight</td>
<td>90 g</td>
</tr>
<tr>
<td>Tightening torque</td>
<td>Stainless steel</td>
</tr>
<tr>
<td></td>
<td>Nickel plated brass</td>
</tr>
<tr>
<td></td>
<td>30 Nm</td>
</tr>
<tr>
<td>External thread</td>
<td>3/8” (ISO 228/1)</td>
</tr>
<tr>
<td>CE-marking</td>
<td>Yes</td>
</tr>
</tbody>
</table>
Mode of Operation

The probe contains IR transmitter, receiver and amplifier with open collector NPN or PNP output. The light source is a Ga-As diode emitting modulated, infrared light in short pulses.

This level probe is thus insensitive to ambient light (up to 50,000 lux) and suitable even for adhesive liquids.

The conical tip of the sensor forms an angle of 90°. This angle acts as a prism, i.e. the beam, emitted from the Ga-As diode placed in one side of the sensor head, is reflected internally to the phototransistor placed in the other side of the sensor head (fig. 1), provided that the tip of the sensor is situated in free air. If the sensor tip is immersed in a liquid, always having a refractive index different from air (fig. 2), the beam will be refracted into the liquid.

All types of sensors can operate in oil, waste water, aqueous solutions such as beer, wine, alcohol etc. without any kind of accessory.

Dimensions

![Dimensions Diagram](image)

Wiring Diagrams

![Wiring Diagrams](image)

Accessories

- Plugs: Standard M 12, CONH1A-.. or CONH1O-.. series.
BILAG 3: BYGGEMØDEREFERAT AF 2. MAJ 2001
Mødereferat

BYG.DTU, Danmarks Tekniske Universitet

DAMVARMELAGER MED FORSØGSLÅG

Referat af Byggemøde nr. 1

Mødetid/-sted: 2. maj 2001 på DTU, Lyngby

Mødedeltagere: Alfred Heller, DTU
Karsten Duer, DTU
Esben S. Pedersen, Jakobsen & Blindkilde
Paul Jakobsen, Jakobsen & Blindkilde
Michael Jacobsen, Marstal VVS
Carsten Wesenberg, NIRAS
Aage Hansen, NIRAS (ref.)

Fraværende: Ingen

Fordeling: Mødedeltagerne

Næste møde: Efter nærmere aftale

1. **Generelt**
 1.1 **Byggemøder**
 Næste byggemøde afholdes i forbindelse med aflevering af begge entreprier. Det afholdes efter nærmere aftale i uge 19.

 1.2 **Øvrige møder**
 Sæsonlagergruppen ved Per Alex Sørensen blev inviteret til at se montagearbejdet i uge 18 og evt. deltagte i nærværende byggemøde. Ingen ud over bygherren og rådgiveren deltog.

 1.3 **Byggepladsindretning og -drift**
 Entreprenørerne har fået tilladelse til at benytte DTU's toilet og bad. Alle øvrige sikkerheds- og sundhedsforanstaltninger samt miljø- og arbejdsmiljøforanstaltninger i henhold til gældende lovgivning er etableret af entreprenørerne.

4. maj 2001
2. **Kontrakt**
Entreprisafalterne mellem bygherren og henholdsvis Jakobsen & Blindkilde A/S og Marstal VVS A/S foreligger hos bygherren i to eksempler for hver aftale underskrevet af entreprenørerne.

3. **Planlægning**

3.1 *Arbejdets forløb og status for Jakobsen & Blindkilde*

3.2 *Arbejdets forløb og status for Marstal VVS*

Tirsdag den 1. maj 2001 udførte Marstal VVS sømsvejsning af liner til låget, og på mødetidspunktet den 2. maj var hjørnerne foldet, lineren
anbragt på flydebroen og udtrækningen påbegyndt. Montering af stropper pr. 600 mm for fastgørelse af isolering var ligeledes påbegyndt. Entreprenøren har valgt at anvende rustfrie popnitter i stedet for punktsvejsning.

3.3 *Planlagte aktiviteter*
- Udtrækning af låg
- Montering af hulplader i rustfrit stål for fastgørelse af isolering
- Tildannelse og fastgørelse af isolering til låget
- Pålægning af topliner
- Montering af temperaturfølere
- Montering af fylderør og sugerør
- Sænkning af vandspejl til blivende niveau
- Fastgørelse af lågkonstruktion til betonkant

3.4 *Tidsplan*
Entreprenørerne påregner afleveringsforretning i uge 19.

3.5 *Levering af materialer*
Alle materialer er leveret.

4. *Organisation*

Aage Hansen er byggeleder og tilsynsførende og Carsten Wesenberg er bygherrådgiver og projekterende.

Esben S. Pedersen er projektleder for Jakobsen & Blindkilde A/S og Michael Jacobsen er projektleder for Marstal VVS A/S.

5. *Koordination*
Entreprenerørerne skal selv indhente de nødvendige godkendelser fra myndigheder, Arbejdstilsynet, DTU’s tekniske forvaltning m.v.

6. *Teknik*
6.1 *Rørgennemføringer*
6.2 **Vandstandsregulering**
NIRAS udfører skitse og indhenter tilbud fra Jakobsen & Blindkilde. Efter mødet er det aftalt at udelade automatisk vandstandsregulering.

6.3 **Temperaturfølere**

6.4 **Stabilitet af låg efter fjernelse af flydebro**
Det blev drøftet, hvilke foranstaltninger der skal træffes for at hindre stållineren i at hænge ned på midten langs bassinkanten, når flydebroen fjernes. Der kan anvendes stropper, som fastgøres i modsat side, eller der kan placeres et 50 mm pex-rør mellem bundliner og låg.

Det blev aftalt at prøve tre forskellige løsninger: Et pex-rør placeres på den side, hvor flydebroen befinder sig. På den modsatte side foretages ingen særlige foranstaltninger, men på de to øvrige sider anvendes stropper, som ovenfor beskrevet.

Efter mødet foreslog Carsten Wesenberg at stållineren bukkes og tilbagebukkes som papirfold i skarpt hjørne inden ilægning af isolering.

7. **Økonomi**
7.1 **Betalingsplan**
I henhold til entrepriseaftalerne sker betaling af den faste entreprise-sum når entreprisen er afleveret til bygherren.

7.2 **Tillægspriser**
Ingen ekstraarbejder må igangsættes, før bygherren har afgivet skriftlig accept heraf, og der foreligger en aftale om arbejdsomfang og afregning.

Der udestår prisaftale om den nødvendige afvanding af byggegruben.

8. **Kvalitetssikring**
Der mangler dokumentation for udførelse af makroslib på lågets stålliner.

I henhold til entrepriseaftalerne skal den krævede dokumentation for entreprenørens kvalitetssikring foreligge ved aflevering af entreprisen.

9. **Sikkerhed og miljø**
Al koordinering for sikkerhed efter arbejdsmiljøloven påhviler påhviler entreprenørerne, ligesom det påhviler entreprenørerne at sikre sig, at alle arbejdsmiljøregler og miljøbestemmelser overholdes.

Aage Hansen
BILAG 4: SVEJSEPREDURE PRØVNINGSRAPPORT
Vedr.: Sømsvejsning af 2 X 0.4 mm SS2343 rustfri stålliner, DTU forsøgslager.

FORCE Instituttet skal hermed kort redegøre for svejsekvaliteten af den rustfrie ståliner. Lineren er sammensvejst med modstandssvejsning (sømsvejsning), samt ved en enkelt reparation med TIG svejsning.

Sømsvejsning

Som det ses af figur 1, er der lidt deformation af selve lineren. Dette skyldte ikke svejsningen, men stammer derimod fra afklipningen af prøven. Figur 2 viser at der er lidt afstand mellem svejsningerne, men der er fuld binding i mellem, og dermed fuld tæthed.
Figur 1. Makroslib af sømsvejsning fra bundliner på tværs af svejsningen 47 X 1:2

Figur 2. Makroslib af sømsvejsning fra bundliner på langs af svejsningen 90 X 1:2
Figur 3. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 2 øst. 1:2

Skrælleprøverne af svejsningerne viser generelt en god styrke i alle de afprøvede udklip. Alle bryder i grundmaterialet, og ikke i svejsningen. Det vil sige, at der umiddelbart ikke er styrkeproblemer.

En umiddelbar konklusion på ovenstående afprøvninger må være, at der er en relativ stor spredning i kvaliteten på de udførte svejsninger af toplinen, set i relation til opsmeltning. Se figur 4-9. Dette ville under normale omstændigheder medføre, at svejsningerne skulle kasseres. Makroslib af svejsning 3 vest i høj forstørrelse (370 X), viser dog at der er binding, i nogle af de områder, hvor der ikke er opsmeltning. Se. figur 10.

TIG svejsning

Figur 4. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 1 vest. 1:2

Figur 5. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 2 vest. 1:2
Figur 6. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 3 vest. 1:2

Figur 7. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 4 vest. 1:2
Figur 8. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 5 vest. 1:2

Figur 9. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 47 X. Svejsning 6 vest. 1:2
Figur 10. Makroslib af sømsvejsning fra topliner på tværs af svejsningen 370 X. Svejsning 3vest. 1:2

Med venlig hilsen
FORCE Instituttet

Kim Hurup
Annex A (informative)
Welding procedure specification - I - Planned process requirements

<table>
<thead>
<tr>
<th>Issue/Revision: 1</th>
<th>No. of welding procedure specification for next operational sequence for this joint/assembly: NA</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 6-4-2001</td>
<td>Customer: BYG.DTU, Brovej, Bygning 118, 2800 Lyngby</td>
</tr>
<tr>
<td></td>
<td>Manufacturer: Marstal VVS A/S, Industrivej 5, 5960 Marstal</td>
</tr>
</tbody>
</table>

Product

- Description: Varmelager m. forsøgsåg, SS
- Joint location/operation number/identification code:
- Parent material: SS2343, thickness 0,4mm
- Surface condition:
- Number of welds per joint:
- Quality category:

Process specification

- Type: IBE 10 SSA
- Environmental constraints: None
- Machine identification No.: 1334
- Manual/mechanized/automated: Automated
- Electrode set-up:
- Special services needed:
- Machine control type: SME 10DC
- Electrode holder drilled/not drilled:
- Machine control identification number:
- Auxiliary services:
- Type of actuator (air cylinder): **
- Seam and roller spot welding:
- Active travel speed (m/min): Max 3,6 m/min
- Non-active travel speed (m/min):
- Welding rate (weld/min):

Special instructions:

- Prepared by: Michael Jakobsen
- Date: 6-4-2001

Location: Open air – In Situ

- Machine type: PS
- Machine size/capacitv. (0,1+0,1) – (0,5+0,5)
- Tooling:
- Electrode change/dressing program: Annex C
- Control settings (program) chart No.:
- Welding current form:
- Monitor type:
- Welding current (kA): 3,1 kA at 60% load
- Secondary voltage (V): 3,0V
- Electrode force (kN): 3,0 Nm +/- 0,2
- Forge force:
- Cooling type/flow rate (l/min): Aut. - water
- Specified post-weld treatment: Annex C
- Post-weld treatment equipment: NA
Annex B (informative)

Welding procedure specification - 11 - Quality acceptance criteria

Issue/Revision: 1
No. of welding procedure specification for next operational sequence for this joint/assembly: NA
Date: 6-4-2001
Customer: BYG.DTU, Brovej, Bygning 118, 2800 Lyngby
Manufacturer: Marstal VVS A/S, Industrivej 5, 5960 Marstal

Product

| Description | Varmelager m. forsøgslåg, SS
| Assembly name |
| Joint location/operation number/identification code |
| Product identification No. |
| Assembly No. |
| Joint type | Seam welding

Quality requirements

| Product |
| Type of weld | Seam
| Welds quality rating |
| Appearance |

Geometrical and physical properties of joint

| Specified test values | minimum value (mm) | minimum value (kN) | minimum plug diameter (mm) |
| Nugget diameter | 2v0.4 | 26 |
| Nugget indentation |
| Electrode indentation diameter |
| Electrode indentation death |
| Sheet separation |
| Chisel test |
| Peel force |
| Shear force |
| Cross tension force |
| Impact force |
| Fatigue force (kN) and cycles |
| Corrosion test |

Special instructions

Prepared by: Michael Jakobsen
Date: 6-4-2001

2) Insert drawing number
Welding procedure specification

111- Welding machine set-up

Annex C (informative)

Issue/Revision: 1
Date: 6-4-2001
Customer: BYG.DTU, Brovej, Bygning 118, 2800 Lyngby
Manufacturer: Marstal VVS A/S, Industrivej 5, 5960 Marstal

<table>
<thead>
<tr>
<th>Product</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Description:</td>
<td>Varmelager m. forsøgslåg, SS</td>
</tr>
<tr>
<td>Assembly name:</td>
<td></td>
</tr>
<tr>
<td>Joint location/operation number/identification code</td>
<td></td>
</tr>
<tr>
<td>Parent metal:</td>
<td>SS2343, thickness 0.4mm</td>
</tr>
<tr>
<td>Product identification No.</td>
<td></td>
</tr>
<tr>
<td>Assembly No.</td>
<td></td>
</tr>
<tr>
<td>Joint type:</td>
<td>Seam</td>
</tr>
<tr>
<td>Number of welds per joint:</td>
<td>Multiple</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Machine</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine/Gun type:</td>
<td>Iberobot 10 SSA</td>
</tr>
<tr>
<td>Platen/electrode dimension (mm):</td>
<td>Ø54x3mm</td>
</tr>
<tr>
<td>Transformer rating:</td>
<td></td>
</tr>
<tr>
<td>Tap No.:</td>
<td></td>
</tr>
<tr>
<td>Control timer/programmer:</td>
<td></td>
</tr>
<tr>
<td>Cylinder type:</td>
<td></td>
</tr>
<tr>
<td>High lift:</td>
<td></td>
</tr>
<tr>
<td>Electrode set-up:</td>
<td></td>
</tr>
<tr>
<td>Check of auxiliaries:</td>
<td></td>
</tr>
<tr>
<td>Electrode force (kN):</td>
<td>3N +/− 0.2*</td>
</tr>
<tr>
<td>Safety guard:</td>
<td></td>
</tr>
<tr>
<td>Location (work station):</td>
<td>In Situ</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Weld control parameters</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pre-squeeze time (cycles with 50 or 60 periods):</td>
<td></td>
</tr>
<tr>
<td>Squeeze time (cycles):</td>
<td></td>
</tr>
<tr>
<td>Weld time (cycles):</td>
<td>Continuous</td>
</tr>
<tr>
<td>Off time (cycles):</td>
<td></td>
</tr>
<tr>
<td>Repeat weld time (cycles):</td>
<td></td>
</tr>
<tr>
<td>Hold time (cycles):</td>
<td></td>
</tr>
<tr>
<td>Monitor type:</td>
<td></td>
</tr>
<tr>
<td>Stepper control type:</td>
<td></td>
</tr>
</tbody>
</table>

Machine identification No.: 1334
Secondary cable/shunt size (mm x mm):
Secondary cable (s) type x length (m):
Transformer identification No.:
Control timer/programmer identification No.:
Tooling:
Cooling type/flow rate (l/min): Automatic
Electrode approach rate (m/min):
Source of start signal: Manual switch
End of cycle trigger signal:
Throat dimensions:

Weld current:
Heat setting:
Number of pulsations:
Weld current: 60% +10/-5%
Heat setting:
Up-slope:
Down-slope:
Recorder active:
Stepper control active:
Stepper control program:
<table>
<thead>
<tr>
<th>Machine/tooling</th>
<th>Condition of electrodes</th>
<th>Condition of tooling</th>
</tr>
</thead>
<tbody>
<tr>
<td>Machine control settings</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Conditions of auxiliary services</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Post-weld treatment:</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Special instructions: Measured at

Prepared by: Michael Jakobsen, MVVS

Date: 6-4-2001

AUT. GAS-, VAND- OG SANITETSMESTER • OLIEFyrsservice • SMEDE- OG BLIKKENSLAGERARBEJDE

ALTERNATIV ENERGI • VENTILATION M. M.

ALLE ARBEJDER OG LEVERANDÆR UFØRES I HENHOLD TIL GÆLDENDE SÅLS- OG LEVERINGSBETINGELSER. ETV. REKLAMATIONER INDEN 8 DAGER.
Welability lobe prEN 14327:2000

<table>
<thead>
<tr>
<th>Test</th>
<th>Strøm</th>
<th>Hastighed</th>
<th>Slib</th>
<th>Opsmeltning</th>
<th>Bemærkninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60%</td>
<td>5</td>
<td>x</td>
<td>1,30 mm</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>70%</td>
<td>5</td>
<td>x</td>
<td>1,45 mm</td>
<td>Overfladesmelt</td>
</tr>
<tr>
<td>3</td>
<td>80%</td>
<td>6</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>85%</td>
<td>5</td>
<td></td>
<td></td>
<td>Møgel gennembrænding</td>
</tr>
<tr>
<td>5</td>
<td>90%</td>
<td>5</td>
<td></td>
<td>0 mm</td>
<td>Mangefuld svejsning, ingen smelt</td>
</tr>
<tr>
<td>6</td>
<td>50%</td>
<td>3,5</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>60%</td>
<td>3,5</td>
<td>x</td>
<td>1,70 mm</td>
<td>Gennembrænding</td>
</tr>
<tr>
<td>8</td>
<td>70%</td>
<td>3,5</td>
<td>x</td>
<td>1,7 mm</td>
<td>Gennembrænding</td>
</tr>
<tr>
<td>9</td>
<td>80%</td>
<td>7,5</td>
<td>x</td>
<td>1,85 mm</td>
<td>Pore i midt, max strøm ved hastigheden</td>
</tr>
<tr>
<td>10</td>
<td>90%</td>
<td>7,5</td>
<td></td>
<td></td>
<td>Overflade smelt</td>
</tr>
</tbody>
</table>

Diagram:

```
  10
   |
   |
   9
   8
   7
   6
   |
   5
   |
   4
   3
   |
   2

Svejsestrøm
```

Note:
- AUT. GAS-, VAND- OG SANITETSMESTER • OLIÆFVRSSERVICE • SMEDE- OG BLIKKENSLAGERARBEJDE
- ALLE ARBEJDER UDEN FORPLIGTELSE I ENHOLD TIL GELDERDE SALGS- OG LEVERANDØRBESTEMTELSE.
- EVT. REKLAMATIONER INGEN & DAGE.
Weldability lobe prEN 14327:2000

<table>
<thead>
<tr>
<th>Test</th>
<th>Strom</th>
<th>Hastighed</th>
<th>Str</th>
<th>Øp smeltning</th>
<th>Bemærkninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>60%</td>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>65%</td>
<td>5</td>
<td>x</td>
<td>1,33mm</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>70%</td>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>75%</td>
<td>5</td>
<td>x</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Weldability lobe

![Weldability diagram](image_url)

Svejsestrøm

Hastighed

40% 50% 60% 70% 80%

Operator: Jan-Ole Hansen

Dato: 06-04-01

Elektrode: Ø54*3,5mm, klasse 3

Elektrodekraft: 3,0 N

Materiale: SS 2343 plade 0,4mm

Type: IBEROBOT IBE10SSA

Maskine:

CVR-NR.: 21 82 54 41

GIRO: 454-6601

BANK: AMTSPAREKASSEN FYN

KONTO NR.: 0823-076-56-11865
Svejse log - modstandssvejsning

<table>
<thead>
<tr>
<th>Dato</th>
<th>Svejsning no.</th>
<th>Hastighed</th>
<th>Strøm %</th>
<th>Ruller</th>
<th>Bemærkninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>19-04-01</td>
<td>Bund 1</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Gennembrænding på mellem.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>svejsningen kasseret og klippet ud.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>Svejsehjul renset for svejselægger.</td>
</tr>
<tr>
<td>19-04-01</td>
<td>Bund 1.1</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>19-04-01</td>
<td>Bund 2</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>19-04-01</td>
<td>Bund 3</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>19-04-01</td>
<td>Bund 4</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>20-04-01</td>
<td>Bund 5</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>20-04-01</td>
<td>Bund 6</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>27-04-04</td>
<td>Låg 1</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>27-04-04</td>
<td>Låg 2</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
<tr>
<td>27-04-04</td>
<td>Låg 3</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemsvejsning.</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>ingen gennembrændinger.</td>
</tr>
</tbody>
</table>

Side 1 af 2 sider

10-05-01

Svejselog modstandssvejsning

AUT. GAS-, VAND- OG SANITETSMESTER • OLIEFyrSSERVICE • SMEDE- OG BLIKKENSLAGERARBEJDE
ALTERNATIV ENERGI • VENTILATION M. M.

ALLE ARBEJDER OG LEVERANZER UDPEDES I HENHOLD TIL GÆLDENDE SALGS- OG LEVERINGSBetingELSER.

AVT. REKLAMATIONER INDEJER BØDS.

MARTSTAL VVS A/S
INDUSTRIEJ 5 • DK-5960 MARSTAL • DANMARK
TLF: +45 6253 2346 • FAX +45 6253 1929 • MOBIL +45 2168 2600
E-MAIL: mar_vvs@post10.tele.dk

CVR-NR.: 21 62 54 41
GIRO: 454-0001
BANK: AMTSPAREKASSEN FYN
KONTO NR.: 0823-076-56-11865
Svejse log - modstandssvejsning

<table>
<thead>
<tr>
<th>Sted</th>
<th>DTU - Forsøgsområde 120</th>
<th>Svejser</th>
<th>JOH</th>
<th>WPS</th>
<th>MVVS01</th>
</tr>
</thead>
<tbody>
<tr>
<td>Projekt</td>
<td>Låg forsøg - Sæsonlager</td>
<td>Svejsemaskine</td>
<td>IBEROBOT IBE 10 SSA</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<p>| | | | | | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>01-05-01</th>
<th>Låg 4</th>
<th>5</th>
<th>65%</th>
<th>3,5mm</th>
<th>Fuld gennemvejsning, ingen gennembrændinger.</th>
</tr>
</thead>
<tbody>
<tr>
<td>01-05-01</td>
<td>Låg 5</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Fuld gennemvejsning, ingen gennembrændinger.</td>
</tr>
<tr>
<td>01-05-01</td>
<td>Låg 6</td>
<td>5</td>
<td>65%</td>
<td>3,5mm</td>
<td>Gennembrænding på sidste meter, svejsningen undersøgt med vakuumkæse og fundet tæt. Skiftet svejse hjul til 3,0mm.</td>
</tr>
</tbody>
</table>

Svejselog modstandssvejsning

AUT. GAS-, VAND- OG SANITETSMESTER • OLIEFYRÆR SERVICE • SMEDE- OG BLIKKENLAGERARBEJDE

ALTERNATIV ENERGI • VENTILATION M. M.

ALLE ARBEJDER OG LEVERANERE UDFØRES I HENhold TIL GÆLDENDE SALGS- OG LEVERINGSBETINGELSER.

EVT. REGULATIONER INDEN 8 DAG.

Side 2 af 2 sider
Chemical Composition:

- C: 0.03
- Si: 0.44
- Mn: 0.91
- P: 0.028
- S: 0.05
- Fe: 16.9
- Ni: 10.7
- Cu: 2.57
- Cr: 0.047
- Mo: 0.20
- Cu: 0.39

Heat Treatment:
- 2D 7 380 316 633
- 2D 7 284 307 624

Tests:
- Tensile strength: 1100 MPa
- Charpy impact: 44 J
- Heat treatment: 1100 C
- Begin: 61
- End: 62

Certificate issued by:
E. LARSSON
Poul Thinggaard AS
BILAG 5: SKITSEFORSLAG TIL ISOLERING UD OVER KANTEN
BILAG 6: ØKONOMISKE FORHOLD FOR DAMVARMELAGRE

Af Carsten Wesenberg, NIRAS, Ålborg.
<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MENGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYGGEPLADS</td>
<td>4714274 kr</td>
<td>4.00 %</td>
<td>188571 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drift af byggeplads/-vej</td>
<td>1101 m2</td>
<td>100.00 kr/m2</td>
<td>110091 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td></td>
<td></td>
<td>298662 kr</td>
<td>5.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>29.67 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TÆRHOLDERSEF AF BYGGEGRUBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Anstilling af lænsenpumper</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
<td>6000 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leje/drift af lænsenpumper og</td>
<td>12 stk</td>
<td>4000.00 kr/stk</td>
<td>48000 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>spugspidsanlæg</td>
<td>1 stk</td>
<td>7475.00 kr/stk</td>
<td>7475 kr</td>
<td>1994-overlag+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>i 3 måneder samt etablering af</td>
<td>1 stk</td>
<td>1753.75 kr/stk</td>
<td>2263 kr</td>
<td>1994-overlag+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>tiltering m/dykpegivning</td>
<td>1 stk</td>
<td>7475.00 kr/stk</td>
<td>7475 kr</td>
<td>1994-overlag+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Vandforsyning til m. råvand fra</td>
<td>4 stk</td>
<td>19500.00 kr/stk</td>
<td>78000 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pilotanlæg</td>
<td>1 stk</td>
<td>85000.00 kr/stk</td>
<td>85000 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td></td>
<td></td>
<td>247898 kr</td>
<td>4.4%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>24.54 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UDGRANVING OG FØLTERMONTERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Muldfremring</td>
<td>6017 m2</td>
<td>10.00 kr/m2</td>
<td>60170 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Udgravning, transport og</td>
<td>1 stk</td>
<td>8000.00 kr/stk</td>
<td>8000 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>depoeraning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>af råvand på grunden, inkl.</td>
<td>1 stk</td>
<td>27.00 kr/m2</td>
<td>140142 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>atfølering og montering af folie</td>
<td>1 stk</td>
<td>4600.00 kr</td>
<td>4600 kr</td>
<td>1994-overslag+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>2361 m2</td>
<td>321.68 kr/m2</td>
<td>794285 kr</td>
<td>17.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>94.29 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TÆTNINGSMEMBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Bagsidemembran</td>
<td>3426 m2</td>
<td>66.03 kr/m2</td>
<td>226213 kr</td>
<td>Pilotanlæg+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Levering og indbygning af 0,75 mm</td>
<td>Membranudlægning</td>
<td>3426 m2</td>
<td>6.61 kr/m2</td>
<td>22653 kr</td>
<td>Pilotanlæg+15%</td>
</tr>
<tr>
<td></td>
<td>EFDM-membran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>lagt m. 1-2 m overtæng samt</td>
<td>2508 m3</td>
<td>0.00 kr/m3</td>
<td>0 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>transport og depoeraning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>af råvand fra depot < 15 km fra</td>
<td>4 stk</td>
<td>68524 kr/stk</td>
<td>68524 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>atfølering og montering af folie</td>
<td>1 stk</td>
<td>15964 kr /stk</td>
<td>15964 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>2050 m3</td>
<td>5564568 kr</td>
<td>9.9%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>22.73 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BASSINKANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Atfølering i 2,4 m brede</td>
<td>522 m2</td>
<td>10.00 kr/m2</td>
<td>5215 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Dæmningstræet afrettes med fald</td>
<td>825 m2</td>
<td>15.00 kr/m2</td>
<td>12375 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>og afdækkes med geotextil</td>
<td>255 m2</td>
<td>390.00 kr/m2</td>
<td>99454 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Boletenemlenter og singles/fiser</td>
<td>22 m2</td>
<td>600.00 kr/m2</td>
<td>132666 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Drænrende</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>til opsamling og regn kan enkabel</td>
<td>1 stk</td>
<td>250.00 kr/m3</td>
<td>3260 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>plastafslutte afslutet i 4 brede</td>
<td>225 m2</td>
<td>100.00 kr/m2</td>
<td>21251 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Afslutning</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>228876 kr</td>
<td>41.5%</td>
<td>5.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>29.76 kr/m3</td>
<td>550943.2763</td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IND- OG UDLØB M.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Ind-udløb</td>
<td>52 m2</td>
<td>2500.00 kr/m2</td>
<td>130235 kr</td>
<td>Overlag</td>
<td>CONSWEDE</td>
</tr>
<tr>
<td></td>
<td>Ind- og udløber i rustfrit stål</td>
<td>3 stk</td>
<td>15500.00 kr/stk</td>
<td>45000 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td></td>
<td></td>
<td>175235 kr</td>
<td>3.1%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>17.41 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FLYDENDE LÅGKONSTRUKTION, SYNFRED</td>
<td>Anstilling, spil m/v.</td>
<td>5 stk</td>
<td>2199758 kr</td>
<td>109988 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td></td>
<td>Levering og montering af låg</td>
<td>Form, fyldende kant m/v.</td>
<td>52 m</td>
<td>2333.00 kr/m3</td>
<td>121146 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td></td>
<td>baseringsform gennem gangen</td>
<td>2581 m2</td>
<td>229.20 kr/m3</td>
<td>595148 kr</td>
<td>MARITAL VVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>0,4 m syrefast, rustfri stålløj</td>
<td>2581 m2</td>
<td>22.92 kr/m3</td>
<td>591548 kr</td>
<td>MARITAL VVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>stålløj samt m/ 1,2 m overtæng</td>
<td>252 m2</td>
<td>837.50 kr/m3</td>
<td>211160 kr</td>
<td>MARITAL VVS</td>
<td></td>
</tr>
<tr>
<td></td>
<td>og depoeraning</td>
<td>2352 m2</td>
<td>1178.75 kr/m3</td>
<td>85413 kr</td>
<td>1994-overlag+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>af retning og montering af folie</td>
<td>232 m2</td>
<td>1178.75 kr/m3</td>
<td>85413 kr</td>
<td>1994-overlag+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>550943.2763</td>
<td>4.4%</td>
<td>5.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>229.42 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TÆRÆNREGULERING OG RETABLERING</td>
<td>Indbygning af råvand i råvand</td>
<td>5189 m3</td>
<td>50.00 kr/m3</td>
<td>259472 kr</td>
<td>Overlag</td>
</tr>
<tr>
<td></td>
<td>Tanvægeregulering og ævning</td>
<td>9501 m2</td>
<td>1.73 kr/m2</td>
<td>16388 kr</td>
<td>Pilotanlæg+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Multudsogning, grøvning og afhæng.</td>
<td>1504 m3</td>
<td>37.70 kr/m3</td>
<td>56706 kr</td>
<td>Pilotanlæg+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(fordusat jordbalance)</td>
<td>9501 m2</td>
<td>3.45 kr/m3</td>
<td>32777 kr</td>
<td>Pilotanlæg+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Græsåning</td>
<td>221 m</td>
<td>69.00 kr/m2</td>
<td>15160 kr</td>
<td>Pilotanlæg+15%</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>228876 kr</td>
<td>41.5%</td>
<td>4.4%</td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>krm3 tank:</td>
<td></td>
<td></td>
<td>22.73 kr/m3</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DIVERSE OG UFORUDSIGELIGE UDGITTER</td>
<td>Tæthedsoving i 4 brede</td>
<td>10068 m3</td>
<td>5.00 kr/m3</td>
<td>50338 kr</td>
<td>Overlag</td>
</tr>
<tr>
<td></td>
<td>Udgifter til tæthedsoving (excl. vand)</td>
<td>5 stk</td>
<td>501294 kr</td>
<td>501294 kr</td>
<td>Overlag</td>
<td></td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td></td>
<td></td>
<td>54.79 kr/m3</td>
<td>9.9%</td>
<td></td>
</tr>
</tbody>
</table>

Ekst. udgifter: 41% overslag, grund, byggeomrind, geotekniske undersøgelser, instrumenterering og projektering.
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEDEL</th>
<th>MÆNGDE</th>
<th>ENHÆDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ANLÆGSARBEJDER IALT:</td>
<td>5564568 kr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

- Geotekniske undersøgelser, deltagelse i byggemøder m.v., GEO + NIRAS: 3 stk 500.000 kr/stk 150000 kr
- Geotekniske detailundersøgelser, GEO Boringer: 6 stk 1500.000 kr/stk 90000 kr
- Databeh.: 1 stk 250.000 kr 25000 kr

Projektering og udbud i fagrepmr. Projektering m.v.: 5829568 kr
- Byggeledelse, tilsyn, adm. m.v.: Byggeledelse m.v. 6412524 kr 160313 kr

11 Byggelånsrenter, stempeludgifter o.l.: 6572837 kr 492963 kr

BETABLINGSOMKOSTNINGER DAMVARMELAGER (kr/m³ tank og kr ialt):
- Damvarmelager med flydende låg: 20065800 kr

GEOMETRI, ENERGI, MÆNGDER M.V.

- VOLUMEN: 10000 m³ (valgt vandvolumen)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>VOLUMEN:</th>
<th>VANDVOLUMEN:</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>10000 m³</td>
<td>10068 m³</td>
</tr>
</tbody>
</table>

VANDVOLUMEN: 10068 m³

ENERGI M.V.

- Varmelagerkapacitet med maksimal afkøling: 55 °C 642 MWh
- Anslået maksimal effekt (17 MW v/78.000 m³ DMVL): 3.4 kW/MWh 2.2 MW
- Indløb-/udløb ved maksimal effekt og temp. diff.: 20 °C 94 m³/h
- Anslået nyttiggjort varmeindhold som sæsonvarmelmængde: 80 kWh/m³ 805 MWh

MÆNGDER (Indbyggede mængder)

- Jordvolumen, vandret bund: 13.61 m 13.34 m
- Jordvolumen, totalbredde incl. bassin: 69.59 m 69.57 m
- Jordvolumen, totalvolumen: 5189 m³
- Muldlagets gennemsnitlige tykkelse: 0.25 m 0.25 m
- Muldludlægning: 1504 m³
- Terrænafremning, indtil 4 m ud fra skråningsfod: 1505 m³
- Terrænafremning, indtil 20 m ud fra skråningsfod: 1505 m³
1 BYGGEPLADS

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Byggepladsdrift</td>
<td>590759 kr</td>
<td>23.67 kr/m³</td>
</tr>
<tr>
<td>Drift af byggeplads-/væg</td>
<td>1212 m²</td>
<td>10.00 kr/m²</td>
</tr>
<tr>
<td>I alt</td>
<td>357483 kr</td>
<td>5.1%</td>
</tr>
</tbody>
</table>

2 TØRROLDSEL AF BYGGEGRUBE

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anstilling af lænsøumper</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
</tr>
<tr>
<td>Gaardinformasjon</td>
<td>13 stk</td>
<td>175.73 kr/stk</td>
</tr>
<tr>
<td>I alt</td>
<td>3519 m²</td>
<td>5.00 kr/m²</td>
</tr>
</tbody>
</table>

3 UDGRAVNING OG FØLTERMONTERING

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidæmning</td>
<td>7495 m²</td>
<td>10.00 kr/m²</td>
</tr>
<tr>
<td>Ind- og udgravning</td>
<td>1 stk</td>
<td>8000.00 kr/stk</td>
</tr>
<tr>
<td>af råjord på grunden, inkl.</td>
<td>7600 m³</td>
<td>27.00 kr/m³</td>
</tr>
<tr>
<td>I alt</td>
<td>3519 m²</td>
<td>833.35 kr/m²</td>
</tr>
</tbody>
</table>

4 TÆTNINGSMEMBRAN OG KONTR

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagsidedemembran</td>
<td>4417 m²</td>
<td>66.03 kr/m²</td>
</tr>
<tr>
<td>Membrandelegning</td>
<td>4417 m²</td>
<td>66.11 kr/m²</td>
</tr>
<tr>
<td>Læprris</td>
<td>3273 m³</td>
<td>0.00 kr/m³</td>
</tr>
<tr>
<td>Transport + indbygning</td>
<td>601 m³</td>
<td>149.89 kr/m³</td>
</tr>
<tr>
<td>I alt</td>
<td>3519 m²</td>
<td>833.35 kr/m²</td>
</tr>
</tbody>
</table>

5 BASSINKANT

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Atrefring i 2,4 m brede</td>
<td>593 m²</td>
<td>10.00 kr/m²</td>
</tr>
<tr>
<td>Geotextil + udlægning</td>
<td>928 m²</td>
<td>15.00 kr/m²</td>
</tr>
<tr>
<td>af dækkedes med geotextil,</td>
<td>290 m²</td>
<td>390.00 kr/m²</td>
</tr>
<tr>
<td>afstængelse af geotextil,</td>
<td>252 m²</td>
<td>600.00 kr/m²</td>
</tr>
<tr>
<td>I alt</td>
<td>3519 m²</td>
<td>833.35 kr/m²</td>
</tr>
</tbody>
</table>

6 IND- OG UDLØB M.V.

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Belægning</td>
<td>3144 m²</td>
<td>70.00 kr/m²</td>
</tr>
<tr>
<td>Dæmpningsrør m.v.</td>
<td>3 stk</td>
<td>7500.00 kr/stk</td>
</tr>
<tr>
<td>I alt</td>
<td>57 m</td>
<td>2500.00 kr/m³</td>
</tr>
</tbody>
</table>

7 FLYDENDE LÅKONSTRUKTION, SYNFRI

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anstilling, spil m.v.</td>
<td>5 stk</td>
<td>2792843 kr</td>
</tr>
<tr>
<td>Levering og montering af låg bestående af:</td>
<td>59 m</td>
<td>2333.00 kr/m³</td>
</tr>
<tr>
<td>Form, flydende kant m.v.</td>
<td>59 m</td>
<td>2333.00 kr/m³</td>
</tr>
<tr>
<td>0,4 mm syrefast, rustfri stålliner (RS-liner) samt m.</td>
<td>3887 m³</td>
<td>229.20 kr/m³</td>
</tr>
<tr>
<td>1,2 m bred formbukket kant af 1,2 mm RS-liner</td>
<td>3887 m³</td>
<td>229.20 kr/m³</td>
</tr>
<tr>
<td>Svejsekontrol (FORCE m.v.)</td>
<td>3675 m³</td>
<td>12.50 kr/m³</td>
</tr>
<tr>
<td>I alt</td>
<td>3519 m²</td>
<td>833.35 kr/m²</td>
</tr>
</tbody>
</table>

8 TERRÆNREGULERING OG RETABLÆRING

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Terrænregulering og øvrig retablering.</td>
<td>1 stk</td>
<td>22500.00 kr/stk</td>
</tr>
<tr>
<td>I alt</td>
<td>237 m</td>
<td>1420.54 kr/m³</td>
</tr>
</tbody>
</table>

9 DIVERSE OG UFORUDSIGE UDGIFTER

<table>
<thead>
<tr>
<th>MENING</th>
<th>PRIS I ALT</th>
<th>compareTo</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tæthedskontrollerede sømsvejsninger og</td>
<td>4444 m²</td>
<td>15.00 kr/m²</td>
</tr>
<tr>
<td>Fugt kontrol, ventilation m.v.</td>
<td>3519 m²</td>
<td>31.00 kr/m²</td>
</tr>
<tr>
<td>I alt</td>
<td>3519 m²</td>
<td>833.35 kr/m²</td>
</tr>
</tbody>
</table>

10 VANDVOLUMEN: 15101 m³
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>Dato: 20.11.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ANLÆGSARBEJDER IALT:</td>
<td>3 stk</td>
<td>500000.00 kr/stk</td>
<td>150000 kr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>6 stk</td>
<td>155000.00 kr/stk</td>
<td>90000 kr</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>1 stk</td>
<td>250000.00 kr</td>
<td>25000 kr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Projektion og udbud i fagretr.</td>
<td>7232042 kr</td>
<td>10.00 %</td>
<td>723204 kr</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Byggelejlse, tilsyn, adm. m.v.</td>
<td>7955246 kr</td>
<td>2.50 %</td>
<td>19881 kr</td>
<td></td>
</tr>
</tbody>
</table>

GEOMETRI, ENERGI, MÆNGDER M.V.

- **Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade. Bassinvolumen: 15830 m3 106%**
- **NIRAS DIMENSIONER, VANDVOLUMEN Dato: 20.11.01 STANDARDFORM 1) VALGT FORM:***
 - Skråningsanlæg, 1:1 : 2.0 2.0 *
 - Afstand fra vandoverflade til overkant betonelementer: 0.00 m 0.21 m *
 - Topbredde (henholdsvis i vandoverflade og ved overkant betonelementer): 58.5 m 59.3 m *
 - Dybde (henholdsvis i vand og til overkant betonelementer): 8.0 m 8.2 m *
 - Bundbredde: 15.9 m 16.4 m *
 - Omkreds top: 233.9 m 237.3 m *
 - Omkreds bassin: 3420 m2 3519 m2 *
 - Bundmembranareal ialt: 3740 m2 3851 m2 *
 - Volumen (kontrol ud fra ovenståelstående data) 15101 m3 15830 m3 *

ENERGI M.V.

- **Vandvolumen (netto):** 15101 m3

MÆNGDER (Indbyggede mængder)

<table>
<thead>
<tr>
<th>MÆNGDER (Indbyggede mængder)</th>
<th>STANDARDFORM 1) VALGT FORM:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lermembran, tykkelse, t:</td>
<td>0.85 m 0.85 m*</td>
</tr>
<tr>
<td>Lermembran, vandret bredde i sider:</td>
<td>1.90 m 1.90 m</td>
</tr>
<tr>
<td>Lermembran, lodret højde i sider:</td>
<td>0.95 m 0.95 m</td>
</tr>
<tr>
<td>Udgravningdybde ved jordbalance, d = 0,6*(D+4):</td>
<td>5.29 m 5.42 m*</td>
</tr>
<tr>
<td>Udgravningsbredde, U:</td>
<td>48.16 m 48.67 m</td>
</tr>
<tr>
<td>Udgravningshøjde, breds (delta u), u:</td>
<td>26.98 m 26.98 m</td>
</tr>
<tr>
<td>Udgravningsvolumen, V\approx3*(U2+u2+Uu):</td>
<td>7310 m3 7600 m3</td>
</tr>
<tr>
<td>Jordvoldre, højde over terræn, h:</td>
<td>3.53 m 3.61 m</td>
</tr>
<tr>
<td>Jordvoldre, topbredde:</td>
<td>3.00 m 3.40 m*</td>
</tr>
<tr>
<td>Jordvoldre, skråningsbredde (anlæg som i bassin):</td>
<td>7.06 m 7.23 m</td>
</tr>
<tr>
<td>Jordvoldre, skråningslængde:</td>
<td>7.89 m 8.08 m</td>
</tr>
<tr>
<td>Jordvoldre, bundbredde:</td>
<td>15.22 m 14.95 m</td>
</tr>
<tr>
<td>Jordvoldre, totalbredde incl. bassin:</td>
<td>78.60 m 78.58 m</td>
</tr>
<tr>
<td>Jordvoldre, volumen</td>
<td>7517 m3 7325 m3</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>1875 m3 1874 m3</td>
</tr>
<tr>
<td>Jordvoldre, skipningslængde:</td>
<td>1.00 m 1.00 m</td>
</tr>
<tr>
<td>Jordvoldre, bundvoldre:</td>
<td>15.22 m 14.95 m</td>
</tr>
<tr>
<td>Jordvoldre, totalvoldre incl. bassin:</td>
<td>78.60 m 78.58 m</td>
</tr>
<tr>
<td>Jordvoldre, volumen</td>
<td>7517 m3 7325 m3</td>
</tr>
<tr>
<td>Muldsamling, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m2 7495 m2</td>
</tr>
<tr>
<td>Jordvoldre, skipningslængde:</td>
<td>1.00 m 1.00 m</td>
</tr>
<tr>
<td>Jordvoldre, bundvoldre:</td>
<td>15.22 m 14.95 m</td>
</tr>
<tr>
<td>Jordvoldre, totalvoldre incl. bassin:</td>
<td>78.60 m 78.58 m</td>
</tr>
<tr>
<td>Jordvoldre, volumen</td>
<td>7517 m3 7325 m3</td>
</tr>
</tbody>
</table>
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

NIRAS

Datato: 20.11.01

ANLÆGSDEL

<table>
<thead>
<tr>
<th>MENGDE (kr/m3)</th>
<th>ENHEDSPRIS (kr/m2/kr)</th>
<th>PRIS I ALT (kr)</th>
<th>%del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BYGGEPLADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggepladsdrift</td>
<td>697349 kr</td>
<td>4.00 %</td>
<td>278842 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Drift af byggeplads-/vej</td>
<td>1300 m2</td>
<td>100.00 /kr/m2</td>
<td>13009</td>
<td>Overslag</td>
</tr>
<tr>
<td>2 TÆTningsmembran og KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagsidemembran</td>
<td>5296 m2</td>
<td>66.03 kr/m3</td>
<td>349715 kr</td>
<td>Pilotanlæg+15%</td>
</tr>
<tr>
<td>Levering og indbygning af 0.75 mm EPDM-membran</td>
<td>5296 m2</td>
<td>6.61 kr/m2</td>
<td>35020 kr</td>
<td>Pilotanlæg+15%</td>
</tr>
<tr>
<td>Lagt m. 1 m over og transport og</td>
<td>Lepris</td>
<td>3955 m3</td>
<td>0.00 kr/m3</td>
<td>0 kr</td>
</tr>
<tr>
<td>Transport + indbygning, butyr</td>
<td>729 m3</td>
<td>149.75 kr/m3</td>
<td>106775 kr</td>
<td>Pilotanlæg+15%</td>
</tr>
<tr>
<td>Damvarmelager (lagtykkelse 0,85 m)</td>
<td>3227 m3</td>
<td>149.50 kr/m3</td>
<td>482460 kr</td>
<td>Pilotanlæg+15%</td>
</tr>
<tr>
<td>3 UDGRAVNING OG FØLÆMMONTERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Mulfædning</td>
<td>8788 m2</td>
<td>10.00 kr/m2/m3</td>
<td>87882 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Udgravning, transport og deponering</td>
<td>1 stk</td>
<td>8000.00 kr/stk</td>
<td>8000</td>
<td>Overslag</td>
</tr>
<tr>
<td>af råjord på grunden</td>
<td>Udgr. bassin</td>
<td>9880 m3</td>
<td>27.00 kr/m3</td>
<td>269459 kr</td>
</tr>
<tr>
<td>afhæng af løsehold og</td>
<td>Følæmmontering</td>
<td>1 stk</td>
<td>4600.00 kr/stk</td>
<td>4600</td>
</tr>
</tbody>
</table>
| at opsamling af regnvand kan etableres | Aflæsning | 5205 m2 | 4.60 kr/m2 | 24462 kr | Pilotanlæg+15%
| **4 TÆTNINGSMEMBRAN OG KONTROL** | | | | | |
| Aflæsning | 4552 m2 | 31.73 km3/m3 | 1476544 kr | 18.0% |
| **5 BASSINKANT** | | | | |
| Atfædning i 2 m brede | 649 m2 | 10.00 km2/m3 | 6490 | Overslag |
| Dæmningstørre atfættes med fald og | Geotextil + udlægning | 1011 m2 | 15.00 km2/m3 | 15163 kr | Overslag |
| afdækkelse med geotextil | Betonlementer | 319 m2 | 390.00 km2/m3 | 124312 kr | Jacobsen&Blindkilde A/S |
| betonlementer og singles/filer | Drænrende | 275 m | 600.00 km2/m3 | 165134 kr | Overslag |
| Til opsamling af regnvand kan etableres | Filtser udtagt | 278 m | 100.00 km2/m3 | 26562 kr | Overslag |
| plastafslutningsboder i 4 brede | Afsløsbøl | 1 stk | 25000.00 kr | 25000 | Overslag |
| **6 IND- OG UDLOBB M.V.** | | | | |
| Indløbsmure | 6 m | 25000.00 kr/m3 | 150480 kr | Overslag | CONSWEDE |
| **7 FLYDENDE LÅGKONSTRUKTION, SYNKEFRI** | | | | |
| Afløbsalæg | 1 stk | 15000.00 kr/m3 | 150480 kr | Overslag |
| **8 TERRÆNREGULERING OG RETABLERING** | | | | |
| Terrænregulering og øvrig retablering. | Terrænregulering | 11849 m2 | 3.45 km2/m3 | 40881 kr | Pilotanlæg+15% |
| **9 DIVERSE OG UFORUDSIGELIGE UDGIFTER** | | | | |
| Udgravning, transport og deponering | 1 stk | 8000.00 kr/stk | 8000 | Overslag |

Prisberegninger(CW) 5/24/023:21 PM

(kr/m3 tank og kr ialt)

Eksempelens udgifter til tilslutningsanlæg, grund, byggemodning, geotekniske undersøgelser, instrumentering og projektering.

DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG
NIRAS VANDVOLUMEN: 20135 M³

<table>
<thead>
<tr>
<th>PRISOVERSLAG</th>
<th>DATE: 20.11.01</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRISOVERSLAG</td>
<td></td>
</tr>
<tr>
<td>Niras Vandvolumen: 20135 m³</td>
<td>(2001-kr excl. moms) Dato: 20.11.01</td>
</tr>
<tr>
<td>Pos. ANLÆGSDEDEL</td>
<td>MÆNGDE</td>
</tr>
<tr>
<td>A ANLÆGSARBEBJDER IALT:</td>
<td>8221426 kr</td>
</tr>
<tr>
<td>10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.</td>
<td></td>
</tr>
<tr>
<td>Geotekniske undersøgelser, deltagelse i byggemøder m.v., GEO + NIRAS</td>
<td>3 stk</td>
</tr>
<tr>
<td>Geotekniske detaljunderøgelser, GEO</td>
<td>Boringer</td>
</tr>
<tr>
<td>Databeh.</td>
<td>1 stk</td>
</tr>
<tr>
<td>Projektering og udbud i fageretre.</td>
<td>Projektering m.v.</td>
</tr>
<tr>
<td>Byggeledelse, tilsyn, adm. m.v.</td>
<td>Byggeledelse m.v.</td>
</tr>
<tr>
<td>11 Bygdeløsnings, stempeludgifter o.l.</td>
<td>9568446 kr</td>
</tr>
<tr>
<td>--</td>
<td>--</td>
</tr>
<tr>
<td>B ETABLERINGSMØKOSTNINGER DAMVARMELAGE (kr/m³ tank og kr ialt)</td>
<td>510.85 kr/m³</td>
</tr>
</tbody>
</table>

=ekskl. udgifter til tilslutningsanlæg, grund, byggemodning, instrumentering og manøvrearrangement.

<table>
<thead>
<tr>
<th>GEOMETRI, ENERGI, MÆNGDER M.V.</th>
<th>VOLUME:</th>
<th>20000 m³ (valgt vandvolumen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin udført som en omvendt pyramiddelst m/kvadratisk grundflade.</td>
<td>Bassinvolumen:</td>
<td>21017 m³</td>
</tr>
<tr>
<td>DIMENSIONER, VANDVOLUME M.V.</td>
<td>Datdate: 20.11.01</td>
<td></td>
</tr>
<tr>
<td>Skråningsanlæg, 1:1</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td>Aftand fra vandoverflade til overkant betonelementer:</td>
<td>0.00 m</td>
<td>0.21 m²</td>
</tr>
<tr>
<td>Topbredde (henholdsvis i vandoverflade og ved overkant betonelementer):</td>
<td>64.4 m</td>
<td>65.2 m²</td>
</tr>
<tr>
<td>Dybye (henholdsvis i vand og ved overkant betonelementer):</td>
<td>8.8 m</td>
<td>9.0 m²</td>
</tr>
<tr>
<td>Bundbredde:</td>
<td>29.3 m</td>
<td>29.3 m</td>
</tr>
<tr>
<td>Skråningsbredde (vandret mål):</td>
<td>19.6 m</td>
<td>20.1 m</td>
</tr>
<tr>
<td>Søkkensmængde (skrå mål):</td>
<td>257.5 m</td>
<td>260.8 m</td>
</tr>
<tr>
<td>Topareal:</td>
<td>4143 m²</td>
<td>4252 m²</td>
</tr>
<tr>
<td>Skråningsstrek (4 skråningsflader, ialt):</td>
<td>3675 m²</td>
<td>3797 m²</td>
</tr>
<tr>
<td>Bundareal, vandret bund:</td>
<td>856 m²</td>
<td>856 m²</td>
</tr>
<tr>
<td>Bundmembranareal ialt:</td>
<td>4531 m²</td>
<td>4653 m²</td>
</tr>
<tr>
<td>Volumen (kontrol ud fra ovenstående data):</td>
<td>20135 m³</td>
<td>21017 m³</td>
</tr>
<tr>
<td>1) Standardform: D/B-forhold: 15/100000, anlæg 1:2,00 og V = 0,075*B³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>ENERGI M.V.</td>
<td>STANDARDFORM 1)</td>
<td>VALGT FORM: *</td>
</tr>
<tr>
<td>Overflade / volumenforhold:</td>
<td>0.43 m²/m³</td>
<td>0.44 m²/m³</td>
</tr>
<tr>
<td>Overflade i forhold til 1 m³ kugletank (1,86 m²/m³):</td>
<td>23%</td>
<td>24%</td>
</tr>
<tr>
<td>Varmelagertæthed med maksimal afdrag:</td>
<td>55 °C</td>
<td>1285 MWh</td>
</tr>
<tr>
<td>Anslået maksimal effekt (17 MW v/78.000 m³ DMVL):</td>
<td>3.4 kW/MWh</td>
<td>4.4 MW</td>
</tr>
<tr>
<td>Indfølsomhed ved maksimal effekt og temp. diff.</td>
<td>20 °C</td>
<td>188 MWh</td>
</tr>
<tr>
<td>Anslået nyttiggjort varmekapacitet som sæsonvarmelager:</td>
<td>80 kWh/m³</td>
<td>1611 MWh</td>
</tr>
<tr>
<td>MÆNGDER (Indbyggede mængder)</td>
<td>STANDARDFORM 1)</td>
<td>VALGT FORM: *</td>
</tr>
<tr>
<td>Lermembran, tykkelse, t:</td>
<td>0.85 m</td>
<td>0.85 m²</td>
</tr>
<tr>
<td>Lermembran, vandret bredde i sider:</td>
<td>1.90 m</td>
<td>1.90 m</td>
</tr>
<tr>
<td>Lermembran, lodret højde i sider:</td>
<td>0.95 m</td>
<td>0.95 m</td>
</tr>
<tr>
<td>Udgravningsdybde ved jordbalance, d = 0,6*(D+t):</td>
<td>5.78 m</td>
<td>5.90 m²</td>
</tr>
<tr>
<td>Udgravningsdybde, U:</td>
<td>52.78 m</td>
<td>53.27 m²</td>
</tr>
<tr>
<td>Udgravningsbund, bredde (delta u):</td>
<td>29.66 m</td>
<td>29.66 m²</td>
</tr>
<tr>
<td>Udgravningsvolumen, Vu=d/3*(U²+u²+U*u):</td>
<td>9632 m³</td>
<td>9980 m³</td>
</tr>
<tr>
<td>Jordvold, højde over terræn, h:</td>
<td>3.85 m</td>
<td>3.93 m²</td>
</tr>
<tr>
<td>Jordvold, topbredde:</td>
<td>3.00 m</td>
<td>3.00 m</td>
</tr>
<tr>
<td>Jordvold, skråningsbrede (anlæg som i bassin):</td>
<td>7.70 m</td>
<td>7.87 m²</td>
</tr>
<tr>
<td>Jordvold, skråningslængde:</td>
<td>8.61 m</td>
<td>8.80 m²</td>
</tr>
<tr>
<td>Jordvold, bundbrede:</td>
<td>16.50 m</td>
<td>16.24 m²</td>
</tr>
<tr>
<td>Jordvold, bundbrede:</td>
<td>85.77 m</td>
<td>85.75 m²</td>
</tr>
<tr>
<td>Jordvold, volumen</td>
<td>9627 m³</td>
<td>9396 m³</td>
</tr>
</tbody>
</table>

Forrige oversignavigninger (CW) 5/24/2023 21 PM
Indhold

1. **Prisoverslag**
2. **Pos. ANLÆGSDUEL**
3. **UDGRAVNING OG FØLERMONTERING**
4. **TÆTNINGSMEMBRAN OG KONTROL**
5. **BASSINKANT**
6. **IND- OG UDLØB M.V.**
7. **FLYDENDE LÅGKONSTRUKTION, SYNFRI**
8. **TERRÆNREGULERING OG RETABLERING**
9. **DIVERSE OG UFORUDSIGELIGE UDGIFTER**

1. Prisoverslag

Prisberegninger (CW) 5/24/023:21 PM

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1. BYGGEPLADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drift af byggeplads/vej</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggepladsdrift</td>
<td>7955876 kr</td>
<td>4.00 %</td>
<td>318235 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Byggeplads og -vej</td>
<td>1375 m²</td>
<td>100.00 kr/m²</td>
<td>137464 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>455699 kr</td>
<td>4.9%</td>
<td></td>
</tr>
<tr>
<td>kr/m³ tank:</td>
<td></td>
<td></td>
<td>18.11 kr/m³</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

2. TÆRTHOLDELSE AF BYGGEGRUBE

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anstilling af lænsespumper</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
<td>6000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Lejedrift af lænsespumper og sugespidsanlæg</td>
<td>1 stk</td>
<td>4000.00 kr/mdr</td>
<td>48000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>D&V, sugesp. anl.</td>
<td>13 uger</td>
<td>1753.75 kr/uge</td>
<td>22623 kr</td>
<td>1994-overslag +15%</td>
<td></td>
</tr>
<tr>
<td>Vandforsyningstank m.r. råvand fra filterboring</td>
<td>4 stk</td>
<td>19500.00 kr/stk</td>
<td>78000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>247398 kr</td>
<td>2.6%</td>
<td></td>
</tr>
</tbody>
</table>

3. UDGRAVNING OG FØLERMONTERING

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Multidæmning</td>
<td>9960 m²</td>
<td>10.00 kr/m²</td>
<td>99600 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>473731 kr</td>
<td>5.0%</td>
<td></td>
</tr>
</tbody>
</table>

4. TÆTNINGSMEMBRAN OG KONTROL

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bagsidemembran</td>
<td>6100 m²</td>
<td>66.03 kr/m³</td>
<td>402819 kr</td>
<td>Pilotanlæg +15%</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>686768 kr</td>
<td>7.8%</td>
<td></td>
</tr>
</tbody>
</table>

5. BASSINKANT

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Aretræng i 2,4 m brede</td>
<td>697 m²</td>
<td>10.00 kr/m²</td>
<td>6967 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningsskruer fastg. med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotextil + udlægning</td>
<td>1080 m²</td>
<td>15.00 kr/m²</td>
<td>16207 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>afstøytning</td>
<td>343 m²</td>
<td>390.00 kr/m²</td>
<td>133616 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>betonlementer og singles/liser.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drænringen</td>
<td>295 m</td>
<td>600.00 kr/m²</td>
<td>177063 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Til opsamling af regnvand kan etableres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singles</td>
<td>17 m²</td>
<td>250.00 kr/m²</td>
<td>4355 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Filler udlagt</td>
<td>298 m</td>
<td>100.00 kr/m²</td>
<td>28550 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Aflebsalag</td>
<td>1 stk</td>
<td>25000.00 kr</td>
<td>25000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>139562 kr</td>
<td>1.7%</td>
<td></td>
</tr>
</tbody>
</table>

6. IND- OG UDLØB M.V.

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Ind-/udløbes i rustfrit stål</td>
<td>63 m</td>
<td>2500.00 kr/m³</td>
<td>158057 kr</td>
<td>Overslag, CONSWEDE</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>203057 kr</td>
<td>2.2%</td>
<td></td>
</tr>
</tbody>
</table>

7. FLYDENDE LÅGKONSTRUKTION, SYNFRI

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Anstilling, spil m.v.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form, flydende kant m.v.</td>
<td>70 m</td>
<td>2333.00 kr/m³</td>
<td>165721 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>0,4 mm syrefast, rustfri stålliner (RS-liner) samt m. tæthedskontrollerede smøreyvigel</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 mm RS-liner</td>
<td>4769 m²</td>
<td>229.20 kr/m²</td>
<td>1093052 kr</td>
<td>MARSTAL VVS</td>
<td></td>
</tr>
<tr>
<td>1,2 m bred formbuksket kant af 1,2 mm RS-liner</td>
<td>340 m²</td>
<td>837.50 kr/m³</td>
<td>284520 kr</td>
<td>MARSTAL VVS</td>
<td></td>
</tr>
<tr>
<td>Svejsekontrol (FORCE m.v.)</td>
<td>5109 m³</td>
<td>12.50 kr/m³</td>
<td>658551 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>247398 kr</td>
<td>2.6%</td>
<td></td>
</tr>
</tbody>
</table>

8. TERRÆNREGULERING OG RETABLERING

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Indbygning af råjord i øvrigt</td>
<td>5782 m³</td>
<td>35.00 kr/m³</td>
<td>202360 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Hegn eller sten</td>
<td>293 m</td>
<td>69.00 kr/m²</td>
<td>20197 kr</td>
<td>Pilotanlæg +15%</td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>15826 kr</td>
<td>0.2%</td>
<td></td>
</tr>
</tbody>
</table>

9. DIVERSE OG UFORUDSIGELIGE UDGIFTER

<table>
<thead>
<tr>
<th>ANLÆGSDUEL</th>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tæthedspredning</td>
<td>25169 m³</td>
<td>5.00 kr/m³</td>
<td>125845 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Udgifter til tæthedspredning (excl. vand m.v.)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Øvrige diverse m.v.</td>
<td></td>
<td>100.00 %</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>talt</td>
<td></td>
<td></td>
<td>841157 kr</td>
<td>10.0%</td>
<td></td>
</tr>
</tbody>
</table>

Eksempel: udgifter til tilslutningsanlæg, grund, byggeomracing, geotekniske undersøgelser, instrumentering og projektering.

Priseregnsning(CW)

5/24/023:21 PM
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

<table>
<thead>
<tr>
<th>(2001-kr excl. moms)</th>
<th>PRISVOLUMEN:</th>
<th>25169 M³</th>
</tr>
</thead>
</table>

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

- Geotechniske undersøgelser, deltagelse i byggeomøder m.v., GEO + NIRAS
- Geotechniske detaliedersøgelser, GEO
- Boringer
- Databeh. 1 stk

Projektering og udbud i fagdrep:

- Projektger m.v. 9643577 kr
- Byggeledelse, tilsyn, adm. m.v. 10607935 kr

11 Byggeledersenter, stempeludgifter o.l. 10873134 kr

B ETLAPERINGSOMKOSTNINGER DAMVARMELAGER (kr/m³ tank og kr ialt):

- 464.40 kr/m³ 11688619 kr

Ekskl. udgifter til tilslutningsanlæg, grund, byggeomodning, instrumentering og manøvrearrangement.

GEOMETRI, ENERGI, MÆNGDER M.V.

- Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade.
- Bassinvolumen: 26191 m³

ENERGI M.V.

- Anslået maksimaleffekt (17 MW v/78.000 m³ DMVL): 3.4 kW/MWh
- Anslået nyttiggjort varmeindhold som sæsonvarmelager: 80 kWh/m³

MÆNGDER (Indbyggede mængder)

- Lermembran, tykkelse, t: 0.85 m
- Lermembran, vandret bredde i sider: 1.90 m
- Lermembran, lodret højde i sider: 0.95 m
- Udgravingsdybde ved jordbalance, d = 0.6*(D+t): 6.18 m
- Udgravningsbrede, U: 56.65 m
- Udgravningsbund, brede (delta u), u: 31.92 m
- Udgravningsvolumen, V=0.2*d*(U^2+u^2+U*u): 11937 m³
- Jordvoldo, højde over terræn, h: 4.12 m
- Jordvoldo, topbredde: 3.00 m
- Jordvoldo, skråningsbrede (anlæg som i bassin): 8.24 m
- Jordvoldo, skråningslængde: 9.22 m
- Jordvoldo, bundbredde: 17.59 m
- Jordvoldo, volumen: 11691 m³
- Multiafremning, indtil 4 m ud fra skråningsfod: 9965 m³
- Multiafremningsudlægning: 2491 m³
- Terrænregulering indtil 20 m ud fra skråningsfod: 12895 m³
- Lågareal, flydende låg: 4807 m²
- Lågareal, inklusiv kantafdækning bred: 246 m³

Volumen (kontrol ud fra ovenstående data): 25169 m³

Standardform: D/B-forhold: 1/5/100,00, anlæg 1:2,00 og V = 0.075*B^3

Vandvolumen (netto): 25169 m³

PEER Review (CW) 5/24/023:21 PM
<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDSEL</th>
<th>MENDELANGE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYGGEPLADS</td>
<td>Byggepladsdrift</td>
<td>7958876 kr</td>
<td>4,00 %</td>
<td>318235 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td>Drift af byggeplads-vej</td>
<td>Byggeplads og -vej</td>
<td>1375 m²</td>
<td>100.00 kr/m²</td>
<td>137464 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>talt</td>
<td></td>
<td></td>
<td>455699 kr</td>
<td>4,9 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td>km³ tank</td>
<td></td>
<td></td>
<td>18,11 km³</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TÆTningsmembran og kontrol</td>
<td>Bagsidemembran</td>
<td>6100 m²</td>
<td>6,63 kr/m²</td>
<td>402819 kr</td>
<td>Pilotanlæg +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr/m²</td>
<td>1994-overslag +15 %</td>
</tr>
<tr>
<td>3</td>
<td>UDGRAVNING OG FØLTERMONTERING</td>
<td>Muld af høj</td>
<td>9960 m²</td>
<td>10,00 kr/m²</td>
<td>99600 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Anlægsstørrelse</td>
<td>1 stk</td>
<td>8000 kr</td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>4</td>
<td>TÆTningsmembran og kontrol</td>
<td>Blishøj</td>
<td>6100 m²</td>
<td>6,61 kr/m²</td>
<td>40338 kr</td>
<td>Pilotanlæg +15 %</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BASSINKANT</td>
<td>Atretning i 2,4 m bredde</td>
<td>697 m²</td>
<td>10,00 kr/m²</td>
<td>6967 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Afløbsdrøbning</td>
<td>1 stk</td>
<td>0 kr/m²</td>
<td>0 kr/m²</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>0 kr/m²</td>
<td>Overslag</td>
</tr>
<tr>
<td>6</td>
<td>IND- OG UDLØB M.V.</td>
<td>Ind-udløb</td>
<td>63 m</td>
<td>2500 kr/m³</td>
<td>2500 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Udløb</td>
<td>3 stk</td>
<td>15000 kr/m³</td>
<td>15000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15000 kr/m³</td>
<td>15000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>15000 kr/m³</td>
<td>15000 kr</td>
</tr>
<tr>
<td>7</td>
<td>FLYDENDE LÅGKONSTRUKTION, SYNFRI</td>
<td>DTU Lågprojekt</td>
<td>349351 kr</td>
<td>5,16 %</td>
<td>186361 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>186361 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>8</td>
<td>TÆRÆNREGULERING OG RETABLERING</td>
<td>Torvafværk og byggeplads</td>
<td>12778 m²</td>
<td>1,73 kr/m²</td>
<td>22042 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>22042 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>9</td>
<td>DIVERSE OG UفورøDsigelige udgifter</td>
<td>Tæthedstilpasning</td>
<td>25169 m³</td>
<td>5,00 kr/m³</td>
<td>125845 kr</td>
<td>Overslag</td>
</tr>
</tbody>
</table>

BEMÆRKNINGER:

- Alle priser udelukkende moms.
- Alle værdier er i MDK (månedslunng).

PRISOVERSLAG

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MÆNGDE</th>
<th>ENHÆDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ANLÆGSARBEJDER IALT:</td>
<td></td>
<td></td>
<td>9378577 kr</td>
</tr>
</tbody>
</table>

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

Geotekniske undersøgelser, deltagelse i byggeområder m.v., GEO + NIRAS	3 stk	50000.00 kr/stk	150000 kr
Geotekniske detaliedersøgelser, GEO	6 stk	150000.00 kr/stk	90000 kr
Databeh.	1 stk	250000.00 kr	25000 kr

Projektering og udbud i fagenrepr. Projektering m.v. 9643577 kr 10.00 % 964358 kr

Byggeledelse, tilsyn, adm. m.v. Byggeledelse m.v. 10607935 kr 2.50 % 265198 kr

11 Byggeårsrenter, stampudgifter o.l. 10873134 kr 7.50 % 815485 kr

PRICE OVERVIEW: Niras Volume: 25169 m³ (2001-kr excl. moms) Dato: 20.11.01

DIMENSIONS, VOLUME

| Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade. Bassinvolumen: 26191 m³ 105% |

OVERVIEW:

Geometri, energi, mængder m.v.

ENERGI M.V.

<table>
<thead>
<tr>
<th>Overflade / volumenforhold:</th>
<th>0.40 m²/m³</th>
<th>0.41 m²/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varmelagerkapacitet med maksimal afkøling:</td>
<td>55 °C</td>
<td>1606 MWh</td>
</tr>
<tr>
<td>Anslået maksimal effekt (17 MW v/78.000 m³ DMVL):</td>
<td>3.4 kW/MWh</td>
<td>5.5 MW</td>
</tr>
<tr>
<td>Indløb-/udløb ved maksimal effekt og temp. diff.:</td>
<td>20 °C</td>
<td>235 m³/h</td>
</tr>
<tr>
<td>Anslået nyttiggjort varmeindhold som sæsonvarmelager:</td>
<td>80 kWh/m³</td>
<td>2014 MWh</td>
</tr>
</tbody>
</table>

MÆNGDER

<table>
<thead>
<tr>
<th>Lermembran, tykkelse, t:</th>
<th>0.85 m</th>
<th>0.85 m²</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lermembran, vandret bredde i sider:</td>
<td>1.80 m</td>
<td>1.90 m</td>
</tr>
<tr>
<td>Lermembran, lodret højde i sider:</td>
<td>0.95 m</td>
<td>0.95 m</td>
</tr>
<tr>
<td>Udgravningsdybde ved jordbalance, d = 0,6/(D+4):</td>
<td>6.18 m</td>
<td>6.31 m²</td>
</tr>
<tr>
<td>Udgravningsbrede, U:</td>
<td>56.65 m</td>
<td>57.15 m</td>
</tr>
<tr>
<td>Udgravningsbund, bredde (delta u), u:</td>
<td>31.92 m</td>
<td>31.92 m</td>
</tr>
<tr>
<td>Udgravningsvolumen, V=(\pi d^2/4)+(u²+u²+Lu²):</td>
<td>11937 m³</td>
<td>12339 m³</td>
</tr>
<tr>
<td>Jordvoldre, hejde over terræn, h:</td>
<td>4.12 m</td>
<td>4.21 m</td>
</tr>
<tr>
<td>Jordvoldre, toppredde:</td>
<td>3.00 m</td>
<td>3.00 m²</td>
</tr>
<tr>
<td>Jordvoldre, skråningsbrede (anlæg som i bassin):</td>
<td>8.24 m</td>
<td>8.41 m</td>
</tr>
<tr>
<td>Jordvoldre, skråningslængde:</td>
<td>9.22 m</td>
<td>9.40 m</td>
</tr>
<tr>
<td>Jordvoldre, bundbrede:</td>
<td>17.59 m</td>
<td>17.32 m</td>
</tr>
<tr>
<td>Jordvoldre, totalbrede incl. bassin:</td>
<td>91.82 m</td>
<td>91.80 m</td>
</tr>
<tr>
<td>Jordvoldre, volume</td>
<td>11691 m³</td>
<td>11424 m³</td>
</tr>
<tr>
<td>Multiafremmning, indtil 4 m ud fra skråningsfod:</td>
<td>9965 m²</td>
<td>9960 m²</td>
</tr>
<tr>
<td>Multiafremning. gennemsnitlige tykkelse:</td>
<td>0.25 m</td>
<td>0.25 m</td>
</tr>
<tr>
<td>Multiafremming:</td>
<td>2491 m³</td>
<td>2490 m³</td>
</tr>
<tr>
<td>Terrænregulering indtil 20 m ud fra skråningsfod:</td>
<td>12895 m²</td>
<td>12778 m²</td>
</tr>
<tr>
<td>Lågareal, flydende låg</td>
<td>4807 m²</td>
<td>4925 m²</td>
</tr>
<tr>
<td>Lågareal, inklusiv kantådækning bred:</td>
<td>5089 m²</td>
<td>5209 m²</td>
</tr>
<tr>
<td>Jordbalancemed overskud. - underskud</td>
<td>1.00 m</td>
<td>246 m³</td>
</tr>
</tbody>
</table>

Ekskl. udgifter til tilslutningsanlæg, grund, byggeomodning, instrumentering og manøvrearrangement.
<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MENGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT.</th>
<th>%del</th>
<th>BEMÆRKERINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYGGEPLADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TØRREMASSER AF BYGGEGRUBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UDGRANVING OG FÆLERMONTERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TÆTNINGSMEMBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BASSINKANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IND- OG UDLØB M.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FLYDENDE LÅGKONSTRUKTION, SYNEKFI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TÆTNINGSREGULERING OG RETABELERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DIVERSE OG UFORUDSIGELIGE UDGIFTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Prisregler (2001 kr excl. moms):

DTU Lågprojekt BILAG

LETRÆTNET

NYT KONCEPT

VANDVOLUMEN: 50338 m³

PRISOverslag

NIRAS

(2001 kr excl. moms)

Dato: 20.11.01

Overslag baseret på Ottrupgaard pilotprojekt (1.528 m³) 18.12.1995, DTU-lågprojekt ultimo 2001, LERTÆTNET NYT KONCEPT

Prisberegninger (CW) 5/24/023:21 PM
ANLÆGSDEDEL

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSARBEJDER IALT:</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td></td>
</tr>
</tbody>
</table>

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

<table>
<thead>
<tr>
<th></th>
<th>1std.</th>
<th>2nd.</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Geotekniske undersøgelser, deltagelse i byggeomærke m.v., GEO + NIRAS</th>
<th>3 stk</th>
<th>500.000 kr/stk</th>
<th>150000 kr</th>
</tr>
</thead>
<tbody>
<tr>
<td>Geotekniske detailundersøgelser, GEO Boringier</td>
<td>6 stk</td>
<td>150000 kr/stk</td>
<td>90000 kr</td>
</tr>
<tr>
<td>Dateb.</td>
<td>1 stk</td>
<td>250000 kr</td>
<td>25000 kr</td>
</tr>
</tbody>
</table>

Projektering og udbud i fagprem.

| Projektering.m.v. | 14623694 kr | 10.00 % | 1462369 kr |
| Byggeledelse, tilsyn, adrn. m.v. | 16086063 kr | 2.50 % | 402152 kr |

PRISOVERSLAG NIRAS VANDVOLUMEN: 50338 m³ (2001-kr excl. moms) Dato: 20.11.01

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos.</td>
<td>ANLÆGSDEL</td>
<td>MÆNGDE</td>
</tr>
<tr>
<td></td>
<td>MÆNGDE</td>
<td>ENHEDSPRIS</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>A</td>
<td></td>
<td>Anlægsarbejder ialt:</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

B Etableringsomkostninger DAMVARMELAGER (kr/m³ tank og kr ialt):

| | | 352.12 kr/m³ | 17724831 kr |

GEOMETRI, ENERGI, MÆNGDER M.V.

<table>
<thead>
<tr>
<th>VOLUMEN:</th>
<th>50000 m³ (valgt vandvolumen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassinvolumen:</td>
<td>51956 m³</td>
</tr>
</tbody>
</table>

Dimensioner, Vandvolumen

<table>
<thead>
<tr>
<th>DIMENSIONER, VANDVOLUMEN</th>
<th>VANDVOLUMEN</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date: 20.11.01</td>
<td>Niras</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Skråningslængde (skrå mål):</th>
<th>26.6 m</th>
<th>27.1 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Topbredde (henholdsvis i vandoverflade og ved overkant betonelementer):</td>
<td>87.4 m</td>
<td>88.2 m</td>
</tr>
<tr>
<td>Topbredde (henholdsvis i vandoverflade og ved overkant betonelementer):</td>
<td>87.4 m</td>
<td>88.2 m</td>
</tr>
</tbody>
</table>

Energimængder

<table>
<thead>
<tr>
<th>ENERGI M.V.</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

| | | |

Volumen (kontrol ud fra ovenstående data)

<table>
<thead>
<tr>
<th>Volumen (netto)</th>
</tr>
</thead>
<tbody>
<tr>
<td>50338 m³</td>
</tr>
</tbody>
</table>

Energimængder (Indbyggede mængder)

<table>
<thead>
<tr>
<th>MÆNGDER (Indbyggede mængder)</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jordvoldemængder

<table>
<thead>
<tr>
<th>Jordvoldemængder</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Jordvoldemængder (Indbyggede mængder)
<table>
<thead>
<tr>
<th>ANLÆG/PLADS</th>
<th>MENGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BYGGEPLADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggepladsdrift</td>
<td>15772878 kr</td>
<td>4.00 %</td>
<td>630915 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Drift af byggeplads-/vej</td>
<td>1835 m²</td>
<td>100.00 kr/m²</td>
<td>183460 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>2 TØRHOLELSKE AF BYGGEGRUBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstilling af lænsespumper</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
<td>6000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Lejedrift af lænsespumper og sagespidsanlæg</td>
<td>12 stk</td>
<td>4000.00 kr/stk</td>
<td>48000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>I 3 måneder samt etablering af filterboring m/dk sagespidsanlæg</td>
<td>1 stk</td>
<td>7475.00 kr/m²</td>
<td>7475 kr</td>
<td>1994-overslag +15%</td>
<td></td>
</tr>
<tr>
<td>D&V, sugesp. anl.</td>
<td>13 uger</td>
<td>1753.75 kr/uge</td>
<td>22623 kr</td>
<td>1994-overslag +15%</td>
<td></td>
</tr>
<tr>
<td>3 UDGRAVNING OG FØLERMONTERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muldmærføring</td>
<td>18811 m²</td>
<td>10.00 kr/m²</td>
<td>188113 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Udgravning, transport og deponering</td>
<td>1 stk</td>
<td>8000.00 kr/stk</td>
<td>8000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>af råd på grunden, inkl.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udr. bassin</td>
<td>35427 m³</td>
<td>27.00 kr/m³</td>
<td>956518 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>aftenæring og montering af følere.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Førermontering</td>
<td>1 stk</td>
<td>4600.00 kr/stk</td>
<td>4600 kr</td>
<td>1994-overslag +15%</td>
<td></td>
</tr>
<tr>
<td>4 TÆTNINGSMEMBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bageisdemembran</td>
<td>12317 m²</td>
<td>66.03 kr/m²</td>
<td>813303 kr</td>
<td>Pilotanlæg +15%</td>
<td></td>
</tr>
<tr>
<td>Levering og indbygning af 0,75 mm EPDM-membran</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>lagt m. 1,2 m overfl. samt transport og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Leverpris</td>
<td>9456 m³</td>
<td>0.00 kr/m³</td>
<td>0 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>transport</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>indbygning af læs fra depot x,15 km fra</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>damværmelager (lagtykkelse 0,85 m)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tradefast belægning af RIO-net</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>på geotextil.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Kvalitetsovervægt, GEO</td>
<td>9456 m³</td>
<td>14.95 kr/m³</td>
<td>141372 kr</td>
<td>Pilotanlæg +15%</td>
<td></td>
</tr>
<tr>
<td>Bøsningsvær</td>
<td>3 stk</td>
<td>7500.00 kr/stk</td>
<td>22500 kr</td>
<td>Pilotanlæg +15%</td>
<td></td>
</tr>
<tr>
<td>Bolingsvær</td>
<td>9059 m³</td>
<td>70.00 kr/m³</td>
<td>634128 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Bund, in-su stæbt</td>
<td>124 m³</td>
<td>1178.75 kr/m³</td>
<td>146126 kr</td>
<td>Pilotanlæg +15%</td>
<td></td>
</tr>
<tr>
<td>5 BASSINKANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afretning i 2,4 m bredde</td>
<td>991 m²</td>
<td>10.00 kr/m²</td>
<td>9911 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningskroner afrettes med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotextil + udlægning</td>
<td>1510 m²</td>
<td>15.00 kr/m²</td>
<td>22646 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>afdækket med geotextil,</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Boltenemulerne</td>
<td>490 m²</td>
<td>390.00 kr/m²</td>
<td>191019 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>betonenemuler og singles/fiser.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drænnende</td>
<td>418 m²</td>
<td>600.00 kr/m²</td>
<td>250656 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Til opsamling og regnveder i læs</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tætning af regnvand kan etableres</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Singles</td>
<td>25 m²</td>
<td>250.00 kr/m²</td>
<td>6194 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Fliser udlagt</td>
<td>421 m²</td>
<td>100.00 kr/m²</td>
<td>40816 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Aflebslægning</td>
<td>1 stk</td>
<td>2500.00 kr</td>
<td>2500 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>6 IND- OG UDLØB M.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indluftes</td>
<td>82 m</td>
<td>2500.00 kr/m³</td>
<td>204807 kr</td>
<td>Overslag, CONSWEDE</td>
<td></td>
</tr>
<tr>
<td>Ind- og udløber i rustfrit stål</td>
<td>3 stk</td>
<td>15000.00 kr/stk</td>
<td>45000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>7 FLYDÆNGE LÅGKONSTRUKTION, SYNEKFRIT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstilling, spil m.</td>
<td>5 % af</td>
<td>745525 kr</td>
<td>372762 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>Levering og montering af låg bestående af:</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Form, flydende kant m.v.</td>
<td>101 m</td>
<td>2333.00 kr/m³</td>
<td>235260 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>0,4 mm syrefast, rustfri stålliner (RS-liner) samt m.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>tæthedskontrollerede søringsværks</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 mm RS-liner + stropper</td>
<td>5945 m²</td>
<td>43.00 kr/m²</td>
<td>2554397 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>2 x 150 mm Rockwool terrænbatts (lagt i forbandt)</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,6 m bred kantisolering af 150 mm terrænbatts og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 mm syrefast, rustfri stålliner (RS-liner) samlet m/</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 mm RS-liner + stropper</td>
<td>9945 m²</td>
<td>229.20 kr/m²</td>
<td>2279322 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>8 TERRÆNREGULERING OG RETABLERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Afretning</td>
<td>12132 m²</td>
<td>4.60 kr/m²</td>
<td>55914 kr</td>
<td>Pilotslaeg +15%</td>
<td></td>
</tr>
<tr>
<td>9 DIVERSE OG UFORUDSIGELIGE UDgifTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Svejsekontrol (FORCE m.v.)</td>
<td>30670 m³</td>
<td>5.00 kr/m³</td>
<td>1533520 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>10 DIVERSE OG UFORUDSIGELIGE UDgifTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tæthedsprøvning</td>
<td>75507 m³</td>
<td>5.00 kr/m³</td>
<td>377536 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Udgifter til tæthedsprøvning (excl. vand) m.v.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
DAMVARMELAGER MED FLYDENDE LÅG

<table>
<thead>
<tr>
<th>Pos. ANLÆGSDEDEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ANLÆGSARBEJDER IALT:</td>
<td></td>
<td></td>
<td>18623514 kr</td>
</tr>
</tbody>
</table>

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

Geotekniske undersøgelser, deltagelse i byggeri m.v., GEO + NIRAS	3 stk	50000.00 kr/stk	150000 kr
Boringer	6 stk	150000.00 kr/stk	90000 kr
Databeh.	1 stk	25000.00 kr	25000 kr

Projektering og udbud i fagetrepr.:

| Projektering m.v. | 18888514 kr | 10.00 % | 1888851 kr |
| Byggeledelse, tilsyn, adm. m.v. | 2077365 kr | 2.50 % | 519434 kr |

11 Byggelånsrenter, stempeludgifter o.l.:

| 21296800 kr | 7.50 % | 1597260 kr |

B ETABLIERINGSOMKOSTNINGER DAMVARMELAGER (kr/m³ tank og kr ialt):

| 303.20 kr/m³ | 22894060 kr |

Ekskl. udgifter til tilslutningsanlæg, grund, byggeomodning, instrumentering og manifold arrangement.

GEOMETRIS, ENERGIS, MÆNGDERS M.V.

VOLUMEN: 75000 m³ (valgt vandvolumen)

Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade.

<table>
<thead>
<tr>
<th>GEOMETRIS, ENERGIS, MÆNGDER M.V.</th>
<th>VOLUMEN: 75000 m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>NJARAS</td>
<td>VANDVOLUMEN: 75507 m³</td>
</tr>
</tbody>
</table>

DIMENSIONER, VANDVOLUMEN

<table>
<thead>
<tr>
<th>Pos.</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skråningsanlæg, 1:1 :</td>
<td>2.0</td>
<td>2.0 *</td>
</tr>
<tr>
<td>Afstand fra vandoverflade til overkant betonemelapper:</td>
<td>0.00 m</td>
<td>0.21 m</td>
</tr>
<tr>
<td>Topbredde (henholdsvis i vandoverflade og ved overkant betonemelapper):</td>
<td>100.00 m</td>
<td>100.80 m</td>
</tr>
<tr>
<td>Dybde (henholdsvis i vand og til overkant betonemelapper):</td>
<td>13.60 m</td>
<td>13.80 m</td>
</tr>
<tr>
<td>Bundbredde:</td>
<td>45.50 m</td>
<td>45.50 m</td>
</tr>
<tr>
<td>Skråningsbredde (vandret mål):</td>
<td>27.30 m</td>
<td>27.70 m</td>
</tr>
<tr>
<td>Skråningslængde (skrå mål):</td>
<td>30.50 m</td>
<td>31.00 m</td>
</tr>
<tr>
<td>Omkreds top:</td>
<td>400.00 m</td>
<td>403.40 m</td>
</tr>
<tr>
<td>Topareal:</td>
<td>10000 m²</td>
<td>10169 m²</td>
</tr>
<tr>
<td>Skråningsareal (4 skråningsflader, ialt):</td>
<td>8870 m²</td>
<td>9059 m²</td>
</tr>
<tr>
<td>Bundareal, vandret bund:</td>
<td>2066 m²</td>
<td>2066 m²</td>
</tr>
<tr>
<td>Bundmembranareal ialt:</td>
<td>10936 m²</td>
<td>11125 m²</td>
</tr>
<tr>
<td>Volumen (kontrol ud fra ovenstående data):</td>
<td>75507 m³</td>
<td>77625 m³</td>
</tr>
</tbody>
</table>

ENERGI M.V.

<table>
<thead>
<tr>
<th>STANDARDFORM 1</th>
<th>**VALGT FORM: ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflade / volumenforhold:</td>
<td>0.28 m²/m³</td>
</tr>
<tr>
<td>Overflade i forhold til 1 m³ kugletank (1,86 m²/m³):</td>
<td>15%</td>
</tr>
<tr>
<td>Varmelagerkapacitet med maksimal afkøling:</td>
<td>55 °C</td>
</tr>
<tr>
<td>Anslået maksimal effekt (17 MW v/78.000 m³ DMVL):</td>
<td>3.4 kWh/MWh</td>
</tr>
<tr>
<td>Indløb-/udløb ved maksimal effekt og temp. diff.:</td>
<td>20 °C</td>
</tr>
<tr>
<td>Anslået nyttiggjort varmeindhold som sæsonvarmelager:</td>
<td>80 kWh/m³</td>
</tr>
</tbody>
</table>

MÆNGDER (Indbyggede mængder)

<table>
<thead>
<tr>
<th>STANDARDFORM 1</th>
<th>**VALGT FORM: ***</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lermembran, tykkelse, t:</td>
<td>0.85 m</td>
</tr>
<tr>
<td>Lermembran, vandret bredde i sider:</td>
<td>1.90 m</td>
</tr>
<tr>
<td>Lermembran, lodret højde i sider:</td>
<td>0.95 m</td>
</tr>
<tr>
<td>Udgravningsdybde ved jordbalance, d = 0.6[(D+t):]</td>
<td>8.69 m</td>
</tr>
<tr>
<td>Udgravningsbrede, U:</td>
<td>80.62 m</td>
</tr>
<tr>
<td>Udgravningsbund, bredde (delta u), u:</td>
<td>45.86 m</td>
</tr>
<tr>
<td>Udgravningsvolumen, V=\frac{d}{3}\left(\frac{U^2+u^2+U*u}{2}\right):</td>
<td>34611 m³</td>
</tr>
<tr>
<td>Jordvælde, højde over terræn, h:</td>
<td>5.79 m</td>
</tr>
<tr>
<td>Jordvælde, topbredde:</td>
<td>3.00 m</td>
</tr>
<tr>
<td>Jordvælde, skråningsbrede (anlæg som i bassin):</td>
<td>11.59 m</td>
</tr>
<tr>
<td>Jordvælde, skråningslængde:</td>
<td>12.96 m</td>
</tr>
<tr>
<td>Jordvælde, bundbredde:</td>
<td>24.28 m</td>
</tr>
<tr>
<td>Jordvælde, totalbredde incl. bassin:</td>
<td>129.18 m</td>
</tr>
<tr>
<td>Jordvælde, volumen:</td>
<td>31217 m³</td>
</tr>
<tr>
<td>Muldudlægning:</td>
<td>4704 m³</td>
</tr>
<tr>
<td>Terrænregulering indtil 4 m ud fra skråningsfod:</td>
<td>18818 m²</td>
</tr>
<tr>
<td>Jordvælde, flydende låg:</td>
<td>10000 m²</td>
</tr>
<tr>
<td>Jordvælde, inklusiv kontantafkøling bred:</td>
<td>1.00 m</td>
</tr>
</tbody>
</table>

5/24/023:21 PM

Prisberegninger(CW)
Pos ANLÆGSDEL

<table>
<thead>
<tr>
<th>MENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>% af</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BYGGEPLADS</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggepladsdrift</td>
<td>1903586 kr</td>
<td>4.00 %</td>
<td>761435 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Drift af byggeplads- veje</td>
<td>1986 kr</td>
<td>100.00 kr/m²</td>
<td>198556 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>959992 kr</td>
<td>4.3%</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>9.54 kr/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2 TØRHOLDELSE AF BYGGEGRUBE</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstilling af lænsespumper</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
<td>6000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>D&V, sugesp.ansl.</td>
<td>13 uger</td>
<td>1753.75 kr/gang</td>
<td>22623 kr</td>
<td>1994-overslag +15%</td>
</tr>
<tr>
<td>Vandforsyningsanlæg m.r.</td>
<td>1 stk</td>
<td>1950.00 kr/stk</td>
<td>78000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Råvand-forsyning m/boring</td>
<td>1 stk</td>
<td>8500.00 kr</td>
<td>85000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>247998 kr</td>
<td>1.1%</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>2.45 kr/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3 UDGRAVNING OG FØLERMONTERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muldmøring</td>
<td>22325 m²</td>
<td>10.00 kr/m²</td>
<td>223246 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Udgivning, transport og deponering</td>
<td>1 stk</td>
<td>8000.00 kr/stk</td>
<td>8000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>fra rej og grund</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Føléreremontering</td>
<td>1 stk</td>
<td>46805 m³</td>
<td>2700.00 kr/m³</td>
<td>1263723 kr</td>
</tr>
<tr>
<td>Afretning</td>
<td>1 stk</td>
<td>46805 m³</td>
<td>4600.00 kr/m³</td>
<td>220000 kr</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>1566569 kr</td>
<td>7.0%</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>15.56 kr/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4 TÆTNINGSMEMBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Bagsidemembran</td>
<td>14828 m²</td>
<td>66.03 kr/m²</td>
<td>979112 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Membranduglægning</td>
<td>14828 m²</td>
<td>6.61 kr/m²</td>
<td>98048 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Lepris</td>
<td>11438 m²</td>
<td>0.00 kr/m²</td>
<td>0 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Transport + indbygning, but</td>
<td>1 stk</td>
<td>149.80 kr/m³</td>
<td>316959 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Damvarmelager (lagtykkelse 0,85 m)</td>
<td>9310 m³</td>
<td>149.50 kr/m³</td>
<td>1391876 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Trædestof belægning af RIO-net</td>
<td>11438 m³</td>
<td>14.95 kr/m³</td>
<td>170994 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>TROXLER-kontrol</td>
<td>11438 m³</td>
<td>14.95 kr/m³</td>
<td>170994 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Bassinkant</td>
<td>11438 m³</td>
<td>6.61 kr/m³</td>
<td>98048 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Bøsningsmærke m.v.</td>
<td>3 stk</td>
<td>7500.00 kr/stk</td>
<td>22500 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Bøsningsmærke m.v.</td>
<td>3 stk</td>
<td>7500.00 kr/stk</td>
<td>22500 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Boltagning</td>
<td>10953 m³</td>
<td>70.00 kr/m³</td>
<td>766723 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Bind, in-situ stabl</td>
<td>150 m³</td>
<td>1178.75 kr/m³</td>
<td>177019 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>3114.41 kr/m³</td>
<td>4190828 kr</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>41.63 kr/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5 BASSINKANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Abretning</td>
<td>2 x 4,5 m bred</td>
<td>1088 m²</td>
<td>10.00 kr/m²</td>
<td>10877 kr</td>
</tr>
<tr>
<td>Dæmningstørre</td>
<td>1 stk</td>
<td>1565.00 kr/stk</td>
<td>15650 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>afretning og montering</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>plastafslutning</td>
<td>1 stk</td>
<td>461 m</td>
<td>100.00 kr/m²</td>
<td>44842 kr</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>444 m</td>
<td>1345.63 kr/m²</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>5.93 kr/m³</td>
<td>550943.2783</td>
<td></td>
</tr>
<tr>
<td>6 IND- OG UDLOBB M.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind-udløber</td>
<td>88 m²</td>
<td>2500.00 kr/m²</td>
<td>220151 kr</td>
<td>Overslag, CONSWEDE</td>
</tr>
<tr>
<td>Dfølægning</td>
<td>3 stk</td>
<td>15000.00 kr/stk</td>
<td>45000 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>625151 kr</td>
<td>1.2%</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>2.63 kr/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7 FYLYDENE LÅGKONSTRUKTION, SYNFRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstilling, spil m.v.</td>
<td>111 m</td>
<td>2333.00 kr/m³</td>
<td>258740 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td>Form, flydende kant m.v.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>0,4 mm syrefast, rørstet støber (RS-liner) samt m.</td>
<td>12054 m²</td>
<td>229.20 kr/m³</td>
<td>2762864 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td>1,2 mm bred formbukket kant</td>
<td>1 stk</td>
<td>1178.75 kr/m³</td>
<td>177019 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td>0,4 mm RS-liner + kant</td>
<td>1 stk</td>
<td>1178.75 kr/m³</td>
<td>177019 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td>Støber (FORCE m.v.</td>
<td>1 stk</td>
<td>12747 m²</td>
<td>43.00 kr/m²</td>
<td>58117 kr</td>
</tr>
<tr>
<td>1,0 mm PP-liner + kontrol</td>
<td>1 stk</td>
<td>12747 m²</td>
<td>43.00 kr/m²</td>
<td>58117 kr</td>
</tr>
<tr>
<td>Tæthedskontrollerede sømsvejsninger</td>
<td>1 stk</td>
<td>12747 m²</td>
<td>43.00 kr/m²</td>
<td>58117 kr</td>
</tr>
<tr>
<td>Udløbnings- og afslutningsarbejder</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Gullfølér, fastgørelse</td>
<td>1 stk</td>
<td>12747 m²</td>
<td>43.00 kr/m²</td>
<td>58117 kr</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>12300 m²</td>
<td>761.97 kr/m²</td>
</tr>
<tr>
<td></td>
<td>kr/m³ tank:</td>
<td>93.09 kr/m³</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8 TERRÆNREGULERING OG RETABLERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indbygning af råjord i jordvolde</td>
<td>39960 m³</td>
<td>50.00 kr/m³</td>
<td>1997987 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Terrænregulering</td>
<td>21392 m²</td>
<td>1.73 kr/m²</td>
<td>36901 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Muldmøring</td>
<td>5581 m²</td>
<td>37.70 kr/m²</td>
<td>201933 kr</td>
<td>Jacobsen&Blindkilde A/S</td>
</tr>
<tr>
<td>Sømvejsuger</td>
<td>21392 m²</td>
<td>3.45 kr/m²</td>
<td>73801 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Hnng eller sten</td>
<td>456 m</td>
<td>69.00 kr/m³</td>
<td>31438 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>Tællevandtransport</td>
<td>12762 m³</td>
<td>35.00 kr/m³</td>
<td>446878 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>12762 m³</td>
<td>761.97 kr/m²</td>
</tr>
<tr>
<td>9 DIVERSE OG UTFORDRIGELIGE UDGIFTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tæthedshøvdring</td>
<td>100676 m³</td>
<td>5.00 kr/m³</td>
<td>503381 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>Udgifter til tæthedshøvdring (excl. vand) m.v.</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Udgifter til vandoverslag</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Talt</td>
<td></td>
<td></td>
<td>124.86 kr/m³</td>
<td>25029896 kr</td>
</tr>
</tbody>
</table>

Prisberegninger(CW)
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG
(V2001-kr excl. moms)

Pos. ANLÆGSDEL MÆNGDE ENHÆDSPRIS PRIS IALT

A. ANLÆGSARBEJDER IALT: 22498847 kr

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

- Geotekniske undersøgelser, deltagelse i byggemøder m.v., GEO + NIRAS 3 stk 50000.00 kr/stk 150000 kr
- Geotekniske detailundersøgelser, GEO Boringer 6 stk 150000.00 kr/stk 90000 kr
- Databeh. 1 stk 25000.00 kr 25000 kr

Projektering og udbud i fagentrepr. Projektering m.v. 22763847 kr 10.00 % 2276385 kr

Byggeledelse, tilsyn, adm. m.v. Byggeledelse m.v. 25040232 kr 2.50 % 626006 kr

11 Byggelånsrenter, stempeludgifter o.l. 25666237 kr 7.50 % 1924968 kr

B. BETABLERINGSOMKOSTNINGER DAMVARMELAGER (km3 tank og kr i alt):

- Ekskl. udgifter til tilslutningsanlæg, grund, byggemodning, instrumentering og manøvrearrangement.

GEOMETRI, ENERGI, MÆNGDER M.V.

VOLUMEN: 100000 m3 (valgt vandvolumen)

- Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade. Bassinvolumen: 103240 m3 103%

DIMENSIONER, VANDVOLUMEN

- Skråningsanlæg, 1:1:2:0.21 m 0.85 m
- Topbredde (henholdsvis i vandoverflade og ved overkant betonelementer): 110.1 m 110.9 m
- Bundbredder: 50.0 m 50.0 m
- Skråningsbredder (vandet mål): 30.4 m 30.4 m
- Omkreds top: 440.3 m 443.6 m
- Toparealet: 12114 m2 12300 m2

ENERGI M.V.

- Overflade / volumenforhold: 0.25 m²/m³
- Varmelagerkapacitet med maksimal afkøling: 55 °C 6423 MWh 6423 MWh
- Anslået effekt (17 MW v/78.000 m3 DMVL): 21.8 MW 21.8 MW
- Indløb-/udløb ved maks. effekt og temp. diff.: 20 °C 941 m³/h 941 m³/h
- Anslået nyttiggjort varmeindhold som sæsonvarmelager: 80 kWh/m³ 8054 MWh 8054 MWh

MÆNGDER (Indbyggede mængder)

- Lermembran, tykkelse, t: 0.85 m
- Lermembran, vandret bredde i sider: 1.90 m
- Udgravningsdybde ved jordbalance, d = 0,6*(D+t): 9.52 m
- Udgravningsbredder, U: 88.49 m
- Udgravningsbund, bredde (delta u): 50.43 m
- Udgravningsvolumen, Vu=d^3/2(U^2+2+LU^2): 45822 m³ 46805 m³
- Jordvold, hejde over terræn, h: 6.34 m
- Jordvold, topbredde: 3.00 m
- Jordvold, skråningsbredder (anlæg som i bassin): 12.69 m
- Jordvold, skråningslængde: 14.81 m 14.37 m
- Jordvold, bundbredder: 26.47 m 26.21 m
- Jordvold, totalbredder incl. bassin: 141.44 m 141.41 m
- Jordvold, volumen: 40619 m³ 39960 m³
- Multiafremning, indtil 4 m ud fra skråningsfod: 22332 m³ 22325 m³
- Multiafgangs gennemsnitlige tykkelse: 0.25 m
- Multiafgangsudløb: 5583 m³ 5581 m³
- Terrænregulering indtil 20 m ud fra skråningsfod: 21577 m³ 21392 m³
- Lågareal, flydende læg: 12114 m² 12300 m²
- Lågareal, inklusiv kantafdekning bred: 15558 m² 12747 m²
- Jordvold (overvirket, - underskuel): 5203 m³ 6845 m³

Ekstr. udgifter til tilslutningsanlæg, grund, byggemodning, instrumentering og manøvrearrangement.
Pos ANLÆGSDEL

<table>
<thead>
<tr>
<th>MENGENDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>% del</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BYGGEPLADS</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Drift af byggeplads-væjr</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Byggepladsdrift</td>
<td>21518879 kr</td>
<td>4.00%</td>
<td>860723 kr</td>
</tr>
<tr>
<td>Drift af byggeplads-væjr</td>
<td>1986 m²</td>
<td>100.00 kr/m²</td>
<td>195856 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1059209 kr</td>
</tr>
<tr>
<td>2 TØRKHOLDELSE AF BYGGEGRUBE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anstilling af lænsespumper</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
<td>6000 kr</td>
</tr>
<tr>
<td>Anlæg, tørringsanlæg i fa.</td>
<td>1 anl</td>
<td>7475.00 kr/stk</td>
<td>7475 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1994-overslag +15%</td>
</tr>
<tr>
<td>Vandforsyning anlæg</td>
<td>14129 m²</td>
<td>15.00 kr/m²</td>
<td>211934 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1994-overslag +15%</td>
</tr>
<tr>
<td>3 UDGRÆVNING OG FØLERMONTERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muldramføring</td>
<td>21920 m²</td>
<td>10.00 kr/m²</td>
<td>219201 kr</td>
</tr>
<tr>
<td>Drønning, transport og deponering</td>
<td>1 stk</td>
<td>8000.00 kr/stk</td>
<td>8000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1144999 kr</td>
</tr>
<tr>
<td>af råjord på grunden, inkl.</td>
<td>3 stk</td>
<td>27.00 kr/m²</td>
<td>1144999 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14565 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73134 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>443800 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>13456 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6813411 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.9%</td>
</tr>
<tr>
<td>5 BASSINKANT</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlægning af put m kind</td>
<td>10592 m²</td>
<td>761.97 kr/m²</td>
<td>9372097 kr</td>
</tr>
<tr>
<td>Råvand-forsyning m/boring</td>
<td>1 stk</td>
<td>85000.00 kr</td>
<td>85000 kr</td>
</tr>
<tr>
<td>Betonelementer og singles/fliser</td>
<td>3 stk</td>
<td>100.00 kr/m²</td>
<td>44842 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>444 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31438 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 m3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250.00 kr/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6938 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2257737 kr</td>
</tr>
<tr>
<td>7 FLYDENDE LÆGKONSTRUKTION, SYNEKRI</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Anlægning af put m kind</td>
<td>111 m</td>
<td>2333.00 kr/m</td>
<td>258740 kr</td>
</tr>
<tr>
<td>Råvand-forsyning m/boring</td>
<td>1 stk</td>
<td>85000.00 kr</td>
<td>85000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>14565 m²</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>73134 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>26.9%</td>
</tr>
<tr>
<td>8 TÆTNINGSMEMBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Geotextil fastgørt i åsæren</td>
<td>14129 m²</td>
<td>15.00 kr/m²</td>
<td>211934 kr</td>
</tr>
<tr>
<td>Dækningskrone afrettes med fald og</td>
<td>155 m</td>
<td>150.00 kr/m²</td>
<td>22500 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>8000.00 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1144999 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>444 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31438 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 m3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250.00 kr/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6938 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2257737 kr</td>
</tr>
<tr>
<td>9 DIVERSE OG UFØRUDSIGELSE UDGIFTER</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tændings- og ventilationsanlæg</td>
<td>0,6 m bred kantisolering af 150 mm terrænbatts og</td>
<td>3 stk</td>
<td>5000.00 kr/stk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>0,6 m bred kantisolering af 150 mm terrænbatts og</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>60 mm PU-skumplader (lagt i forbandt)</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>247098 kr</td>
</tr>
<tr>
<td>10 PÅVÆRELSE</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>25000 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>444 m</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>31438 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>27 m3</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>250.00 kr/m³</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>6938 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>2257737 kr</td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td>10.9%</td>
</tr>
</tbody>
</table>

NIRAS

PRISOVERSLAG

Date: 20.11.01

VANDVOLUMEN: 100676 m³

UTDIBLER

- **ANGERSER**
- **MARSTAL VVS**
- **JACOBSEN & BLINDKILDE A/S**

BEMÆRKENS

- **Kunl**
- **20 stk.**
- **12300 m²**
- **31.00 kr/m²**
- **381292 kr**

OVERSLAG

- **14612 m²**
- **15.00 kr/m²**
- **211934 kr**

MARSTAL VVS

- **535 m²**
- **837.50 kr/m²**
- **448247 kr**

JACOBSEN & BLINDKILDE A/S

- **14663 m²**
- **50.00 kr/m²**
- **733134 kr**

UDTRÆKNING PÅ VANDOVERFLADE

- **Fastgørelse, teleskopskruer**
- **Geotextil fastgjort i låserende**
- **Svejsekontrol (FORCE m.v.)**

DANMARK MED FLYDENDE LÅG

BILAG

- **RUSTFRI TYNDPADELINER**
- **NYT KONCEPT**

Prisberegninger(CW) 5/24/023:21 PM
DAMVARMELAGER MED FLYDENE LÅG

PRISOVERSLAG
(2001 kr excl. moms)

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A</td>
<td>ANLÆGSARBEJDER IALT:</td>
<td>25338485 kr</td>
<td>100676 m3</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>GEOTENK, PROJEKTERING, ADMINISTRATION M.V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Geotekniske undersøgelser, deltagelse i byggedamer m.v., GEO + NIRAS</td>
<td>3 stk</td>
<td>500.000 kr/stk</td>
<td>150000 kr</td>
</tr>
<tr>
<td></td>
<td>Geotekniske detailundersøgelser, GEO Boring</td>
<td>6 stk</td>
<td>150000 kr/stk</td>
<td>90000 kr</td>
</tr>
<tr>
<td></td>
<td>Byggedeles, tilsyn. adm. m.v.</td>
<td>1 stk</td>
<td>250000 kr</td>
<td>25000 kr</td>
</tr>
<tr>
<td></td>
<td>Projektioner og udbud i fagentrepr.</td>
<td>Projektioner m.v.</td>
<td>25603485 kr</td>
<td>10.00 %</td>
</tr>
<tr>
<td></td>
<td>Byggeledelse, tilsyn, adm. m.v.</td>
<td>Byggeledelse m.v.</td>
<td>28163833 kr</td>
<td>2.50 %</td>
</tr>
<tr>
<td>11</td>
<td>Byggetilstander, planområde og tekniske detaljer</td>
<td>28967929 kr</td>
<td>7.50 %</td>
<td></td>
</tr>
</tbody>
</table>

| B | ETABLERINGSMØKKOMKOSTNINGER DAMVARMELAGER (kr/m3 tank og kr i alt): | 308.25 kr/m3 | 31033024 kr |

<table>
<thead>
<tr>
<th>GEOMETRI, ENERGI, MÆNGDER M.V.</th>
<th>VOLUMEN: 100000 m3 (valgt vandvolumen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade.</td>
<td>Bassinvolumen: 103240 m3</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>DIMENSIONER, VANDVOLUMEN</th>
<th>NIRS</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skåningsanlæg, 1.0:</td>
<td>2.0</td>
<td>2.0</td>
<td>*</td>
</tr>
<tr>
<td>Afstand fra vandoverflade til overstående betonemlere:</td>
<td>0.00 m</td>
<td>0.00 m</td>
<td></td>
</tr>
<tr>
<td>Topbredde (hensidesvis i vandoverflade og ved overstående betonelementer):</td>
<td>11.0 m</td>
<td>110.9 m</td>
<td></td>
</tr>
<tr>
<td>Dybde (hensidesvis i vand og ved overstående betonelementer):</td>
<td>15.0 m</td>
<td>15.2 m</td>
<td></td>
</tr>
<tr>
<td>Bundbredd:</td>
<td>50.0 m</td>
<td>50.0 m</td>
<td></td>
</tr>
<tr>
<td>Skråningsbredd: (vandret mål):</td>
<td>30.4 m</td>
<td>30.4 m</td>
<td></td>
</tr>
<tr>
<td>Skråningslængde (skrå mål):</td>
<td>33.6 m</td>
<td>34.0 m</td>
<td></td>
</tr>
<tr>
<td>Omkreds top:</td>
<td>440.3 m</td>
<td>443.6 m</td>
<td></td>
</tr>
<tr>
<td>Topareal:</td>
<td>12114 m2</td>
<td>12300 m2</td>
<td></td>
</tr>
<tr>
<td>Skråningsareal (4 skråningsflader, i alt):</td>
<td>10746 m2</td>
<td>10953 m2</td>
<td></td>
</tr>
<tr>
<td>Bundareal, vandret bund:</td>
<td>2503 m2</td>
<td>2503 m2</td>
<td></td>
</tr>
<tr>
<td>Bundmembranareal i alt:</td>
<td>13249 m2</td>
<td>13456 m2</td>
<td></td>
</tr>
<tr>
<td>Volumen (kontrol ud fra ovenstående data):</td>
<td>100676 m3</td>
<td>103240 m3</td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>ENERGI M.V.</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflade / volumenforhold:</td>
<td>0.25 m2/m3</td>
<td>0.26 m2/m3</td>
</tr>
<tr>
<td>Overflade i forhold til 1 m3 kugletank (1,86 m2/m3):</td>
<td>14%</td>
<td>14%</td>
</tr>
<tr>
<td>Varmelagerkapacitet med maksimal afkøling:</td>
<td>55 °C</td>
<td>6423 MWh</td>
</tr>
<tr>
<td>Anslået maksimalmængde:</td>
<td>3.4 kW/MWh</td>
<td>21.8 MW</td>
</tr>
<tr>
<td>Indløb-udløb ved maksimalmængde og temp. diff.:</td>
<td>20 °C</td>
<td>941 m3/h</td>
</tr>
<tr>
<td>Anslået nyttiggjort varmeindhold som sæsonvarmelager:</td>
<td>80 kWh/m3</td>
<td>8054 MWh</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>MÆNGDER (Indbyggede mængder)</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM:*</th>
</tr>
</thead>
<tbody>
<tr>
<td>Løremembran, tykkelse incl. 6 cm belægning, t:</td>
<td>0.85 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Løremembran, bredde i sider:</td>
<td>1.90 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Løremembran, broede højde i sider:</td>
<td>0.95 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Udgravningsdybde ved jordbalancen, d = 0.64/D+4:</td>
<td>9.52 m</td>
<td>9.13 m</td>
</tr>
<tr>
<td>Udgravningsbrede, U:</td>
<td>88.49 m</td>
<td>86.55 m</td>
</tr>
<tr>
<td>Udgravningsbund, bredde (deltoide U, u):</td>
<td>50.43 m</td>
<td>50.03 m</td>
</tr>
<tr>
<td>Udgravningsvolumen, Vu=d^2/4(U+2U+2U^2):</td>
<td>45822 m3</td>
<td>42407 m3</td>
</tr>
<tr>
<td>Jordvold, højde over terræn, h:</td>
<td>6.34 m</td>
<td>6.09 m</td>
</tr>
<tr>
<td>Jordvold, topbredde:</td>
<td>3.00 m</td>
<td>2.40 m</td>
</tr>
<tr>
<td>Jordvold, skråningsbredd: (anlæg som i bassin):</td>
<td>12.69 m</td>
<td>12.18 m</td>
</tr>
<tr>
<td>Jordvold, skråningslængde:</td>
<td>14.18 m</td>
<td>13.61 m</td>
</tr>
<tr>
<td>Jordvold, bundbredd:</td>
<td>26.47 m</td>
<td>26.75 m</td>
</tr>
<tr>
<td>Jordvold, totalbredde incl. bassin:</td>
<td>141.44 m</td>
<td>140.05 m</td>
</tr>
<tr>
<td>Jordvold, volumen</td>
<td>40619 m³</td>
<td>40212 m³</td>
</tr>
<tr>
<td>Multiafremning, indtil 4 m ud fra skråningsfod:</td>
<td>22332 m³</td>
<td>21920 m³</td>
</tr>
<tr>
<td>Multigets nemmantlige tilføjelse:</td>
<td>0.25 m</td>
<td>0.25 m</td>
</tr>
<tr>
<td>Multiafremning, indtil 3 m ud fra skråningsfod:</td>
<td>5583 m³</td>
<td>5480 m³</td>
</tr>
<tr>
<td>Terrænregulering indtil 20 m ud fra skråningsfod:</td>
<td>21577 m³</td>
<td>20855 m³</td>
</tr>
<tr>
<td>Lågerel, flydende låg</td>
<td>12114 m³</td>
<td>12300 m³</td>
</tr>
<tr>
<td>Lågareal, inklusiv kantafdekning bred:</td>
<td>12747 m²</td>
<td>12558 m²</td>
</tr>
<tr>
<td>Jordvold med skråningslængde:</td>
<td>1.00 m</td>
<td></td>
</tr>
<tr>
<td>Jordvold med skråningslængde:</td>
<td>5203 m³</td>
<td>2196 m³</td>
</tr>
<tr>
<td>Position</td>
<td>Beskrivelse</td>
<td>Mængde (m³)</td>
</tr>
<tr>
<td>----------</td>
<td>--</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>Byggeplads</td>
<td>1784063</td>
</tr>
<tr>
<td></td>
<td>Drift af byggeplads/vej</td>
<td>1835</td>
</tr>
<tr>
<td></td>
<td>Tolvolumen</td>
<td>11.88</td>
</tr>
<tr>
<td>2</td>
<td>Tørrholdelse af byggegrube</td>
<td>4 stkr</td>
</tr>
<tr>
<td></td>
<td>Leje/drift af lænseumper og sugespidsanlæg</td>
<td>12 mdr</td>
</tr>
<tr>
<td></td>
<td>i 3 måneder samt etablering af filterboring m/lydkærpræventor</td>
<td>1 anl</td>
</tr>
<tr>
<td></td>
<td>D&V, sugesp.antal.</td>
<td>13 uger</td>
</tr>
<tr>
<td></td>
<td>Vandforsyningsanlæg m/ravand fra filterboring</td>
<td>4 stk</td>
</tr>
<tr>
<td></td>
<td>Råvand-forsyning m/boring</td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td>Tolvolumen</td>
<td>3.27</td>
</tr>
<tr>
<td>3</td>
<td>Udvgravnings og følermontering</td>
<td>18440</td>
</tr>
<tr>
<td></td>
<td>Udvgravnings, transport og deponering</td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td>af råvand på grundet, inkl.</td>
<td>31786 m²</td>
</tr>
<tr>
<td></td>
<td>atførsel og montering af følere</td>
<td>1 stk</td>
</tr>
<tr>
<td></td>
<td>Atførsel</td>
<td>12132</td>
</tr>
<tr>
<td></td>
<td>Tolvolumen</td>
<td>17.41</td>
</tr>
<tr>
<td>4</td>
<td>Tætningsmembran og kontrol</td>
<td>11681 m²</td>
</tr>
<tr>
<td></td>
<td>Levering og indbygning af geotextil og tyndpladeliner</td>
<td>12183 m²</td>
</tr>
<tr>
<td></td>
<td>0.4 mm rustfri stål</td>
<td>12183 m²</td>
</tr>
<tr>
<td></td>
<td>bestående af 0.4 mm syrefast rustfri stål samlet</td>
<td>12183 m²</td>
</tr>
<tr>
<td></td>
<td>samt montering af tyndpladeliner i bassin.</td>
<td>12183 m²</td>
</tr>
<tr>
<td></td>
<td>Ind-/udløbsrør i rustfrit stål</td>
<td>3 stk</td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>11125</td>
</tr>
<tr>
<td></td>
<td>Tolvolumen</td>
<td>14.71</td>
</tr>
<tr>
<td>5</td>
<td>Bassinkant</td>
<td>991 m³</td>
</tr>
<tr>
<td></td>
<td>Dæmning/kant af tørrholdelse med fald og</td>
<td>1510 m²</td>
</tr>
<tr>
<td></td>
<td>afdækket med geotextil</td>
<td>490 m²</td>
</tr>
<tr>
<td></td>
<td>Betonelementer og singles/fiser</td>
<td>418 m³</td>
</tr>
<tr>
<td></td>
<td>til opsamling af regnvand kan etableres</td>
<td>25 m³</td>
</tr>
<tr>
<td></td>
<td>plastafsluttes afslutet i 4 brønde</td>
<td>421 m³</td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>403 m³</td>
</tr>
<tr>
<td></td>
<td>Tolvolumen</td>
<td>7.23</td>
</tr>
<tr>
<td>6</td>
<td>Ind- og udloeb m.v.</td>
<td>82 m³</td>
</tr>
<tr>
<td></td>
<td>Ind- og udloeb i råvand stall</td>
<td>3 stk</td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>1043 m³</td>
</tr>
<tr>
<td>7</td>
<td>Flydende lagkonstruktion, synergie</td>
<td>5 % af</td>
</tr>
<tr>
<td></td>
<td>Levering og montering af lag bestående af:</td>
<td>101 m³</td>
</tr>
<tr>
<td></td>
<td>Form, flydende kant m.v.</td>
<td>9945 m³</td>
</tr>
<tr>
<td></td>
<td>0.4 mm RS-riiser + stopper</td>
<td>487 m³</td>
</tr>
<tr>
<td></td>
<td>tætningskontrollerede samsvingninger</td>
<td>10432 m³</td>
</tr>
<tr>
<td></td>
<td>1,2 m bred formbukket kant af 1,2 mm RS-riiser</td>
<td>60 m³</td>
</tr>
<tr>
<td></td>
<td>inkl. 20% avance, stopper</td>
<td>10024 m³</td>
</tr>
<tr>
<td></td>
<td>60 mm P1-skumplader (1 x 2,4 x 4)</td>
<td>13661 m³</td>
</tr>
<tr>
<td></td>
<td>1,0 mm PL-riiser m.</td>
<td>10576 m³</td>
</tr>
<tr>
<td></td>
<td>0,4 m bred kant-isolation af 150 mm tørrholdnings og</td>
<td>12519 m³</td>
</tr>
<tr>
<td></td>
<td>1,0 mm plastoptiler af PP (isolation)</td>
<td>408 m³</td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>10169 m³</td>
</tr>
<tr>
<td></td>
<td>Tolvolumen</td>
<td>103.67</td>
</tr>
<tr>
<td>8</td>
<td>Terrænregulering og retablering</td>
<td>30825 m³</td>
</tr>
<tr>
<td></td>
<td>Terrænregulering m.v.</td>
<td>18597 m²</td>
</tr>
<tr>
<td></td>
<td>Multidæmping, grasning og atførsel.</td>
<td>4610 m²</td>
</tr>
<tr>
<td></td>
<td>(fundset ordregning)</td>
<td>18597 m²</td>
</tr>
<tr>
<td></td>
<td>Hæng eller sten</td>
<td>415 m³</td>
</tr>
<tr>
<td></td>
<td>Indbygning af råvand i øvrigt</td>
<td>10161 m²</td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>2195555 kr</td>
</tr>
<tr>
<td>9</td>
<td>Diverse og uførdesigelige udgifter</td>
<td>75507 m³</td>
</tr>
<tr>
<td></td>
<td>Udgifter til tætningsprøvning (ексl. rand m.v.)</td>
<td>1873773 kr</td>
</tr>
<tr>
<td></td>
<td>I alt</td>
<td>29.82 kr/m³</td>
</tr>
</tbody>
</table>

PRISOVERSLAG

VANDVOLUMEN: 75507 m³

NIRAS

2001 (excl. moms)

Datato: 20.11.01

BEMÆRK

A ANLÆGESARBEJDER IALT: (kr/m³ tank og kr i alt): 277.97 kr/m³ 20989037 kr 100.0%
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

<table>
<thead>
<tr>
<th>Niras</th>
<th>Vandvolumen: 75507 m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Pos. ANLÆGSDEL</td>
<td>MÆNGDE</td>
</tr>
<tr>
<td>A</td>
<td>ANLÆGSARBEJDER IALT:</td>
</tr>
</tbody>
</table>

10 GEOTENK, PROJEKTERING, ADMINISTRATION M.V.

Geoteknisk undersøgelser, deltagelse i byggeundersøgelser m.v., GEO + NIRAS	3 stk	500.00 kr/stk	15000 kr
Geoteknisk undersøgelser, GEO Boring	6 stk	1550.00 kr/stk	9000 kr
Database	1 stk	2500.00 kr	2500 kr
Projektion og udbud i fagaretr. Projektion m.v.	21254037 kr	10.00%	2125404 kr
Byggeledelse, tilsyn, adm. m.v.	23379441 kr	2.50%	58486 kr

B ETABLERINGSMKOSTNINGER DAMVARMELAGER (kr/m3 tank og kr ialt):

341.18 kr/m3 25761221 kr

Ekskl. udgifter til tilslutningsanlæg, grund, byggemodning, instrumentering og maneoverregulering.

GEOMETRI, ENERGI, MÆNGDER M.V.

<table>
<thead>
<tr>
<th>VOLUMEN:</th>
<th>75000 m3 (valgt vandvolumen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade. Bassinvolumen: 77625 m3 103%</td>
<td></td>
</tr>
</tbody>
</table>

DIMENSIONER, VANDVOLUMEN

<table>
<thead>
<tr>
<th>Skråningsanlæg, 1 til :</th>
<th>2.0</th>
</tr>
</thead>
<tbody>
<tr>
<td>Afstand fra vandoverflade til overkant betonelementer:</td>
<td>0.00 m 0.00 m</td>
</tr>
<tr>
<td>Topbredde (henvendt til overvandet betonelementer):</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Dybde (henvendt til vand og til overkant betonelementer):</td>
<td>100.0 m</td>
</tr>
<tr>
<td>Bundbredd:</td>
<td>45.5 m</td>
</tr>
<tr>
<td>Skåningsbredd (vandet mål):</td>
<td>27.3 m</td>
</tr>
<tr>
<td>Skråningslængde (skrå mål):</td>
<td>30.5 m</td>
</tr>
<tr>
<td>Omkreds top:</td>
<td>400.0 m</td>
</tr>
<tr>
<td>Topareal:</td>
<td>10000 m2</td>
</tr>
<tr>
<td>Skråningsareal (4 skråningsflader, ialt):</td>
<td>8870 m2</td>
</tr>
<tr>
<td>Bundmembranarealet ialt:</td>
<td>10396 m2</td>
</tr>
<tr>
<td>Volumen (kontrol ud fra ovenstående data)</td>
<td>75507 m3</td>
</tr>
<tr>
<td>1) Standardform: D/B-forhold: 15/100000, anlæg 1:2,00 og V = 0,075*B^3</td>
<td></td>
</tr>
<tr>
<td>Vandvolumen (netto):</td>
<td>75507 m3</td>
</tr>
</tbody>
</table>

ENERGI M.V.

<table>
<thead>
<tr>
<th>Overflade / volumenforhold:</th>
<th>0.28 m2/m3 0.28 m2/m3</th>
</tr>
</thead>
<tbody>
<tr>
<td>Varmelagerkapacitet med maksimal afkøling:</td>
<td>55 °C 4817 MWh 4817 MWh</td>
</tr>
<tr>
<td>Anslået maksimal effekt (17 MW v/78.000 m3 DMVL):</td>
<td>3.4 kW/MWh 16.4 MW</td>
</tr>
<tr>
<td>Anslået nyttiggjort varmeindhold som sæsonvarmelager:</td>
<td>80 kWh/m3 6041 MWh</td>
</tr>
</tbody>
</table>

MÆNGDER (Indbyggede mængder)

<table>
<thead>
<tr>
<th>Lermembran, tykkelse incl. 6 cm belægning, t:</th>
<th>0.85 m 0.00 m</th>
</tr>
</thead>
<tbody>
<tr>
<td>Lermembran, vandret bredte i sider:</td>
<td>1.90 m 0.00 m</td>
</tr>
<tr>
<td>Lermembran, lodret højde i sider:</td>
<td>0.95 m 0.00 m</td>
</tr>
<tr>
<td>Udgravningsdybde ved jordbalance, d = 0.6*(D+4):</td>
<td>8.69 m 8.31 m</td>
</tr>
<tr>
<td>Udgravningsbrede, U:</td>
<td>80.62 m 78.69 m</td>
</tr>
<tr>
<td>Udgravningsvolumen, U=4/3*(U^2+u^2+U*u):</td>
<td>34611 m3 31786 m3</td>
</tr>
<tr>
<td>Jordvold, hejde over terræn, h:</td>
<td>5.79 m 5.54 m</td>
</tr>
<tr>
<td>Jordvold, topbredde:</td>
<td>3.00 m 2.40 m</td>
</tr>
<tr>
<td>Jordvold, skråningsbredd (anlæg som i bassin):</td>
<td>11.59 m 11.08 m</td>
</tr>
<tr>
<td>Jordvold, skråningslængde:</td>
<td>12.96 m 12.38 m</td>
</tr>
<tr>
<td>Jordvold, bundbredd:</td>
<td>24.28 m 24.55 m</td>
</tr>
<tr>
<td>Jordvold, totalbredd incl. bassin:</td>
<td>129.18 m 127.79 m</td>
</tr>
<tr>
<td>Jordvold, volumen</td>
<td>31217 m3 30825 m3</td>
</tr>
<tr>
<td>Mulludlægning, indtil 4 m ud fra skråningsfod:</td>
<td>18818 m3 18440 m3</td>
</tr>
<tr>
<td>Mulludlægnings gennemsnitlige tykkelse:</td>
<td>0.25 m 0.25 m</td>
</tr>
<tr>
<td>Mulludlægnings volumen:</td>
<td>4704 m3 4610 m3</td>
</tr>
<tr>
<td>Terrænregulering indtil 20 m ud fra skråningsfod:</td>
<td>19265 m3 18597 m3</td>
</tr>
<tr>
<td>Lågareaal, flydende låg:</td>
<td>10000 m2 10169 m2</td>
</tr>
<tr>
<td>Lågareaal, inklusiv kontantfælknings bred:</td>
<td>10404 m2 10576 m2</td>
</tr>
<tr>
<td>Jordvold (skråningsortal) + overskud, - underskud</td>
<td>3395 m3 961 m3</td>
</tr>
</tbody>
</table>

Prisberegning(CW) 5/24/023:22 PM
<table>
<thead>
<tr>
<th>ANLÆGSDEL</th>
<th>MENGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
<th>% del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 BYGGEPLADS</td>
<td>1377382 m²</td>
<td>4.00 kr/m²</td>
<td>550943 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Drift af byggeplads/voje</td>
<td>1645 m²</td>
<td>100.00 kr/m²</td>
<td>164497 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>4.4%</td>
</tr>
<tr>
<td>2 TÆTningsMÆBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftretning i 2,4 m bredde</td>
<td>870 m²</td>
<td>10.00 kr/m²</td>
<td>8697 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningskrone afrettes med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afretning og montering af følere. Følere</td>
<td>2 stk</td>
<td>8000 kr</td>
<td>16000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Bøsningsrør m.v.</td>
<td>3 stk</td>
<td>4600 kr</td>
<td>13800 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningskrone afrettes med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afretning og montering af følere. Følere</td>
<td>2 stk</td>
<td>8000 kr</td>
<td>16000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Bøsningsrør m.v.</td>
<td>3 stk</td>
<td>4600 kr</td>
<td>13800 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>3 UDGRANVING OG FØLERMONTERING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Muldudlægning, græssåning og afhegning. Muldudlægning</td>
<td>3624 m³</td>
<td>37.70 kr/m³</td>
<td>136602 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.6%</td>
</tr>
<tr>
<td>4 TÆTningsMÆBRAN OG KONTROL</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftretning i 2,4 m bredde</td>
<td>870 m²</td>
<td>10.00 kr/m²</td>
<td>8697 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningskrone afrettes med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afretning og montering af følere. Følere</td>
<td>2 stk</td>
<td>8000 kr</td>
<td>16000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Bøsningsrør m.v.</td>
<td>3 stk</td>
<td>4600 kr</td>
<td>13800 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>5 BASSINKANT</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftretning i 2,4 m bredde</td>
<td>870 m²</td>
<td>10.00 kr/m²</td>
<td>8697 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningskrone afrettes med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afretning og montering af følere. Følere</td>
<td>2 stk</td>
<td>8000 kr</td>
<td>16000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Bøsningsrør m.v.</td>
<td>3 stk</td>
<td>4600 kr</td>
<td>13800 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>6 IND- OG UDLØB M.V.</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Ind- og udleder i rustfrit stål</td>
<td>74 m</td>
<td>2500 kr</td>
<td>185533 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>27.0%</td>
</tr>
<tr>
<td>7 FLYDENDE LÆGKONSTRUKTION, SYNKEFRI</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Aftretning i 2,4 m bredde</td>
<td>870 m²</td>
<td>10.00 kr/m²</td>
<td>8697 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmningskrone afrettes med fald og</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>afretning og montering af følere. Følere</td>
<td>2 stk</td>
<td>8000 kr</td>
<td>16000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Bøsningsrør m.v.</td>
<td>3 stk</td>
<td>4600 kr</td>
<td>13800 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>8 TÆRRENREGULERING OG RETABELLING</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Indbygning af råjord i øvrigt</td>
<td>7779 m²</td>
<td>782.38 kr/m²</td>
<td>6086067 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.6%</td>
</tr>
<tr>
<td>9 DIVERSE OG UFORUDSIGELSE UDGIFTER</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tæthedskontrol</td>
<td>50338 m³</td>
<td>5.00 kr/m³</td>
<td>251690 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
<td>37.6%</td>
</tr>
</tbody>
</table>

Totalt: 7779 m² 782.38 kr/m² 6086067 kr 37.6%
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG
(2001-kr excl. moms)

| VANDVOLUMEN: | 50338 M³ |

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

<table>
<thead>
<tr>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ANLÆGSARBEJDER IALT:</td>
<td></td>
<td>16189615 kr</td>
</tr>
<tr>
<td>B ETABLERINGSMØKKOSTNINGER DAMVARMELAGER (kr/m³ tank og kr ialt):</td>
<td></td>
<td>396.20 kr/m³ 19944022 kr</td>
</tr>
</tbody>
</table>

DIMENSIONER, VANDVOLUME

<table>
<thead>
<tr>
<th>VOLUMEN:</th>
<th>50000 m³ (valgt vandvolumen)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Bassinvolumen:</td>
<td>51956 m³ 104%</td>
</tr>
</tbody>
</table>

ENERGI M.V. STANDARDFORM 1)

<table>
<thead>
<tr>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Overflade / volumenforhold:</td>
</tr>
<tr>
<td>Varmelagerkapacitet med maksimal afkøling:</td>
</tr>
</tbody>
</table>

MÆNGDER (Indbyggede mængder) STANDARDFORM 1)

<table>
<thead>
<tr>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Jordvolde, topbredde:</td>
</tr>
<tr>
<td>Jordvolde, skråningsbredde:</td>
</tr>
<tr>
<td>Jordvolde, skråningslængde:</td>
</tr>
<tr>
<td>Jordvolde, bundbredde:</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>Toparealet:</td>
</tr>
<tr>
<td>Jordvolde, volumen:</td>
</tr>
</tbody>
</table>

Eckl., udgifter til tilslutningsanlæg, grund, byggeomodning, instrumentering og manøverarangement.
<table>
<thead>
<tr>
<th>Pos.</th>
<th>Anlægsdel</th>
<th>Mængde</th>
<th>Enhedspris</th>
<th>Pris I alt</th>
<th>% del</th>
<th>Bemærkninger</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>BYGGEPLADS</td>
<td>767615 kr</td>
<td>4.00 %</td>
<td>315046 kr</td>
<td>4.6%</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>TØRHLDELSE AF BYGGEGRUBE</td>
<td>1500.00 kr/stk</td>
<td></td>
<td>600 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>UDGRAVNING OG FØLERMONTERING</td>
<td>8535 m2</td>
<td>10.00 kr/m2</td>
<td>85351 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>TÆTNINGSMEMBRAN OG KONTROL</td>
<td>4885 m2</td>
<td>15.00 kr/m2</td>
<td>73279 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>5</td>
<td>BASSINKANT</td>
<td>649 m2</td>
<td>10.00 kr/m2</td>
<td>6490 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>6</td>
<td>IND- OG UDLØB M.V.</td>
<td>261 m</td>
<td>1406.00 kr/m</td>
<td>366718 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>7</td>
<td>FLYDENDE LÅGKONSTRUKTION, SYNKEFRI</td>
<td>3161 m2</td>
<td>837.50 kr/m2</td>
<td>264540 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>TERRÆNREGULERING OG RETABLERING</td>
<td>4158 m2</td>
<td>115.00 kr/m2</td>
<td>48000 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>9</td>
<td>DIVERSE OG UFORUDSIGELIGE UDGIFTER</td>
<td>60 m</td>
<td>250.00 kr/m</td>
<td>150400 kr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Overslag

<table>
<thead>
<tr>
<th></th>
<th>Prisberegninger(CW) 5/24/023:22 PM</th>
</tr>
</thead>
<tbody>
<tr>
<td>(kr/m3 tank)</td>
<td>4.5%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>4.6%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>3.8%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>2.7%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>2.4%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>1.5%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>1.8%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>2.1%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>2.1%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>2.7%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>2.6%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>3.7%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>3.6%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>3.6%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>5.0%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>7.9%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>8.5%</td>
</tr>
<tr>
<td>(kr/m3 tank)</td>
<td>10.1%</td>
</tr>
</tbody>
</table>

Bemærkninger

- **DTU Lågprojekt**
- **RUSTFRI TYNDPLADELINER**
- **NKT CONCEPT**
- **NIRAS**
- **VANDVOLUMEN: 20135 m³**
- **(2001-kr excl. moms)**
- **Dato: 20.11.01**
- **Prisberegninger(CW) 5/24/023:22 PM**

Overslag

- **Anlægsarbejder Ialt:**
- **(kr/m3 tank og kr ialt):**
- **(forudsat jordbalance) Græssåning 11482 m2 3.45 kr/m2 39613 kr Pilotanlæg +15%**
- **Terrænregulering og øvrig retablering. Terrænregulering 8444 m2 2.00 kr/m2 16888 kr Pilotanlæg +20%**
- **Indbygning, inkl. hjørner 5249 m2 117.00 kr/m2 62219 kr Jacobsen&Blindkilde A/S**
- **Levering og indbygning af geotextil og tyndpladeliner 0,4 mm rustfri stålliner 5249 m2 117.00 kr/m2 62219 kr Jacobsen&Blindkilde A/S**
- **Indbygning, inkl. hjørner 5249 m2 117.00 kr/m2 62219 kr Jacobsen&Blindkilde A/S**
- **Afretning i 2,4 m bredde 649 m2 10.00 kr/m2 6490 kr Overslag**
- **Dæmpningskroner aftrættet med fald og geotextil + udtagning 1011 m2 15.00 kr/m2 15163 kr Overslag**
- **Afretning i 2,4 m bredde 649 m2 10.00 kr/m2 6490 kr Overslag**
- **Levering og indbygning af geotextil og tyndpladeliner 0,4 mm rustfri stålliner 5249 m2 115.00 kr/m2 60467 kr MARSTAL VVS**
- **Bestående af 0,4 mm syrefast rustfri stålliner samt m/4tæthedskontrollerede sømsvejsninger på formbord samt montering af tyndpladeliner i bassin.**
- **Indbygning, inkl. hjørner 5249 m2 117.00 kr/m2 62219 kr Jacobsen&Blindkilde A/S**
- **Bestående af 0,4 mm syrefast rustfri stålliner (RS-liner) samlet m/0,4 mm RS-liner + stropper 4107 m2 229.90 kr/m2 94338 kr MARSTAL VVS**
- **Levering og indbygning af geotextil og tyndpladeliner 0,4 mm rustfri stålliner 5249 m2 115.00 kr/m2 60467 kr MARSTAL VVS**
- **Bestående af 0,4 mm syrefast rustfri stålliner (RS-liner) samlet m/0,4 mm RS-liner + stropper 4107 m2 229.90 kr/m2 94338 kr MARSTAL VVS**
- **Bestående af 0,4 mm syrefast rustfri stålliner (RS-liner) samlet m/0,4 mm RS-liner + stropper 4107 m2 229.90 kr/m2 94338 kr MARSTAL VVS**
- **Bestående af 0,4 mm syrefast rustfri stålliner (RS-liner) samlet m/0,4 mm RS-liner + stropper 4107 m2 229.90 kr/m2 94338 kr MARSTAL VVS**

Ekskl. udgifter til tilslutningsanlæg, grund, byggemodning, geotekniske undersøgelser, instrumentering og projektering.

ANLÆGSARBEJDER IALT:

| (kr/m3 tank og kr ialt) | 459.59 kr/m³ | 9254012 kr | 100.0% |

Ekskl. udgifter til tilslutningsanlæg, grund, byggemodning, geotekniske undersøgelser, instrumentering og projektering.
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

<table>
<thead>
<tr>
<th>VANDVOLUMEN:</th>
<th>20135 M³</th>
</tr>
</thead>
</table>

(Dato: 20.11.01)

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

<table>
<thead>
<tr>
<th>ANLÆGSDEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>A ANLÆGSARBEJDER IALT:</td>
<td>9254012 kr</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>GEOTEKNIK, PROJEKTERING</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
1. **BYGGEPLAADS**
 - Byggepladsdrift: 666366 kr, 4.00 %, 265253 kr, Overslag
 - Drift af byggeplads/vej: 1212 m², 100.00 kr/m², 121181 kr, Overslag
 - **Talt:** 387703 kr, 5.0 %

2. **TØRHLØSELSE AF BYGGEGRUBE**
 - Anstilling af lænsepumper: 4 stk, 1500.00 kr/stk, 6000 kr, Overslag
 - **Talt:** 387703 kr, 5.0 %

3. **UDGRAVNING OG FØLTERMONTERING**
 - Muldudlægning: 7262 m², 10.00 kr/m², 72617 kr, Overslag
 - **Talt:** 247398 kr, 3.2 %

4. **TÆTNINGSMEMBRAN OG KONTROL**
 - Geotextil fastgjort i låserende: 3519 m², 5.00 kr/m², 17595 kr, Jacobsen & Blindkilde A/S
 - D&V, sugesp.anl.: 1 stk, 1753.75 kr, 22623 kr, 1994-overslag +15 %
 - **Talt:** 247398 kr, 3.2 %

5. **BASSINKANT**
 - Afreming: 3519 m², 31.00 kr/m², 109086 kr, Overslag
 - **Talt:** 247398 kr, 3.2 %

6. **IND- OG UDØLB M. B.V.**
 - Ind & udløb: 57 m, 2500.00 kr/m³, 141507 kr, Overslag, CONSWEDE
 - **Talt:** 247398 kr, 3.2 %

7. **FLYDende LÅGKONSTRUKTION, SYNKEFRI**
 - Anstilling, spl.m.v.: 5 % af 2792943 kr, 139642 kr, Jacobsen & Blindkilde A/S
 - **Talt:** 186507 kr, 2.4 %

8. **TÆRRENBORREGULERING OG RETABELLING**
 - Indbygning af råjord i øvrigt: 3967 m³, 35.00 kr/m³, 138854 kr, Overslag
 - **Talt:** 186507 kr, 2.4 %

9. **DIVERGTE OG UFORMSIGELIGE UDGIFTER**
 - Tæthedskontrol: 15101 m³, 5.00 kr/m³, 75507 kr, Overslag
 - **Talt:** 186507 kr, 2.4 %

BEMÆRKNINGER

- **MÆNGDE**
 - **ENHEDSPRIS**
 - **PRIS I ALT % del**
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG
(NIRAS)
VANDVOLUMEN: 15101 M³
(2001-kr excl. moms)

Pos. ANLÆGSDEL MÆNGDE ENHEDSPRIS PRIS IALT

A ANLÆGSARBEJDER IALT: 7831353 kr

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

<table>
<thead>
<tr>
<th>Pos.</th>
<th>ANLÆGSDEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>10</td>
<td>GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>Geotekniske undersøgelser, deltagelse i byggeområder m.v., GEO + NIRAS</td>
<td>3 stk</td>
<td>500.000 kr/stk</td>
<td>1500000 kr</td>
</tr>
<tr>
<td>10</td>
<td>Geotekniske detaljundersøgelser, GEO Boringør</td>
<td>6 stk</td>
<td>1500000 kr/stk</td>
<td>9000000 kr</td>
</tr>
<tr>
<td>10</td>
<td>Databeh.</td>
<td>1 stk</td>
<td>2500000 kr</td>
<td>2500000 kr</td>
</tr>
<tr>
<td>10</td>
<td>Projektering og udbud i fagetrepr.</td>
<td></td>
<td>809635 kr</td>
<td>809635 kr</td>
</tr>
<tr>
<td>10</td>
<td>Byggeledelse, tilsyn, adm. m.v.</td>
<td></td>
<td>8905988 kr</td>
<td>222650 kr</td>
</tr>
<tr>
<td>11</td>
<td>Byggepladsrenter, stempeludgifter o.l.</td>
<td></td>
<td>9128638 kr</td>
<td>684648 kr</td>
</tr>
</tbody>
</table>

B TABELRINGSOMKOSTNINGER DAMVARMELAGE (kr/m³ tank og kr ialt):

Ekskl. udgifter til tilslutningsanlæg, grund, byggeomodning, instrumentering og manoevrearrangement.

GEOMETRI, ENERGI, MÆNGDER M.V.

VOLUMEN: 15000 m³ (valgt vandvolumen)

Bassin udført som en omvendt pyramidestub m/kvadratisk grundflade. Bassinvolumen: 15830 m³

DIMENSIONER, VANDVOLUMEN

<table>
<thead>
<tr>
<th>Data: 20.11.01</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Skråningsanlæg, 1 til 3:</td>
<td>2.0</td>
<td>2.0 *</td>
</tr>
<tr>
<td>Afstand fra vandoverflade til overstribede betonelementer:</td>
<td>0.80 m</td>
<td>0.21 m</td>
</tr>
<tr>
<td>Topbredde (henholdsvis i vandoverflade og ved overstribede betonelementer):</td>
<td>58.5 m</td>
<td>59.3 m</td>
</tr>
<tr>
<td>Dybde (henholdsvis i vand og til overstribede betonelementer):</td>
<td>8.0 m</td>
<td>8.2 m</td>
</tr>
<tr>
<td>Bundbredde:</td>
<td>15.9 m</td>
<td>16.4 m</td>
</tr>
<tr>
<td>Skråningslængde (skrå mål):</td>
<td>17.8 m</td>
<td>18.3 m</td>
</tr>
<tr>
<td>Omkreds top:</td>
<td>233.9 m</td>
<td>237.3 m</td>
</tr>
<tr>
<td>Topareal:</td>
<td>3420 m²</td>
<td>3519 m²</td>
</tr>
<tr>
<td>Skråningsareal (4 skråningsflader, i alt):</td>
<td>3034 m²</td>
<td>3144 m²</td>
</tr>
<tr>
<td>Bundareal, vandret bund:</td>
<td>707 m²</td>
<td>707 m²</td>
</tr>
<tr>
<td>Bundmembranarealet i alt:</td>
<td>3740 m²</td>
<td>3851 m²</td>
</tr>
<tr>
<td>Volumen (kontrol ud fra ovenstående data):</td>
<td>15101 m³</td>
<td>15830 m³</td>
</tr>
</tbody>
</table>

ENERGI M.V.

Vandvolumen (netto): 15101 m³

MÆNGDER (Indbyggede mængder)

<table>
<thead>
<tr>
<th>Data: 20.11.01</th>
<th>STANDARDFORM 1</th>
<th>VALGT FORM: *</th>
</tr>
</thead>
<tbody>
<tr>
<td>Løsemembran, tykkelse incl. 6 cm belægning, t:</td>
<td>0.85 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Løsemembran, vandret bredde i sider:</td>
<td>1.90 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Løsemembran, lodret højde i sider:</td>
<td>0.95 m</td>
<td>0.00 m</td>
</tr>
<tr>
<td>Udgravningsdybde ved jordbalance, d = 0,6*(D+H):</td>
<td>5.29 m</td>
<td>4.91 m</td>
</tr>
<tr>
<td>Udgravningsbrede, U:</td>
<td>48.16 m</td>
<td>46.23 m</td>
</tr>
<tr>
<td>Udgravningsbund, brede (delta u, u):</td>
<td>26.98 m</td>
<td>26.58 m</td>
</tr>
<tr>
<td>Udgravningsvolumen, V = d/3*(U²+u²+U*u):</td>
<td>7310 m³</td>
<td>6326 m³</td>
</tr>
<tr>
<td>Jordvoldde, højde over terræn, h:</td>
<td>3.53 m</td>
<td>3.27 m</td>
</tr>
<tr>
<td>Jordvoldde, topbredde:</td>
<td>3.00 m</td>
<td>2.40 m</td>
</tr>
<tr>
<td>Jordvoldde, skråningsbrede (anlæg som i bassin):</td>
<td>7.06 m</td>
<td>6.55 m</td>
</tr>
<tr>
<td>Jordvoldde, skråningslængde:</td>
<td>7.89 m</td>
<td>7.32 m</td>
</tr>
<tr>
<td>Jordvoldde, bundbredde:</td>
<td>15.22 m</td>
<td>15.50 m</td>
</tr>
<tr>
<td>Jordvoldde, totalbreddede incl. bassin:</td>
<td>78.60 m</td>
<td>77.22 m</td>
</tr>
<tr>
<td>Jordvoldde, volumen</td>
<td>7517 m³</td>
<td>7232 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
<tr>
<td>Muldudlægning, indtil 4 m ud fra skråningsfod:</td>
<td>7500 m³</td>
<td>7262 m³</td>
</tr>
</tbody>
</table>

MÆNGDER (Indbyggede mængder)
<table>
<thead>
<tr>
<th>ANLÆGSDEL</th>
<th>MENGEN</th>
<th>ENHEDSPRIS</th>
<th>PRIS I ALT</th>
<th>% i del</th>
<th>BEMÆRKNINGER</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Byggeplads</td>
<td>503242 stk</td>
<td>4.00 kr/stk</td>
<td>212130 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Drift af byggeplads-veje</td>
<td>1101 m²</td>
<td>100.00 kr/m²</td>
<td>110091 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Tæthedskontrol</td>
<td>213 m</td>
<td>255.00 kr/m</td>
<td>54190 kr</td>
<td>Jacobsen & Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>2 Tørrelade af byggegrunde</td>
<td>4 stk</td>
<td>1500.00 kr/stk</td>
<td>6000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Anbringning af lænsepumper</td>
<td>1 stk</td>
<td>4000.00 kr/mø</td>
<td>4800 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>3 Udgravning og Følere</td>
<td>5808 m²</td>
<td>10.00 kr/m²</td>
<td>58079 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Møleudgravning</td>
<td>1 stk</td>
<td>8000.00 kr/mø</td>
<td>8000 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Følere</td>
<td>1 stk</td>
<td>4010 m²</td>
<td>27.00 kr/m²</td>
<td>113678 kr</td>
<td>Overslag</td>
</tr>
<tr>
<td>4 Tæthedskontrol</td>
<td>2951 m²</td>
<td>538.47 kr/m²</td>
<td>1589076 kr</td>
<td>25.5%</td>
<td>Jacobsen & Blindkilde A/S</td>
</tr>
<tr>
<td>5 Bassinkant</td>
<td>225 m</td>
<td>100.00 kr/m²</td>
<td>21251 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>Dæmning</td>
<td>1 stk</td>
<td>4210 m³</td>
<td>37.70 kr/m³</td>
<td>54735 kr</td>
<td>Pilotanlæg +15%</td>
</tr>
<tr>
<td>6 Ind- og udlobehv.</td>
<td>52 m</td>
<td>2500.00 kr/m³</td>
<td>130235 kr</td>
<td>Overslag</td>
<td></td>
</tr>
<tr>
<td>7 Flydende Lågkonstruktion, synkepå</td>
<td>2808 m²</td>
<td>50.00 kr/m²</td>
<td>125051 kr</td>
<td>Jacobsen & Blindkilde A/S</td>
<td></td>
</tr>
<tr>
<td>8 Terrænregulering og retablering</td>
<td>760 m²</td>
<td>157.84 kr/m²</td>
<td>119502 kr</td>
<td>2.0%</td>
<td>Jacobsen & Blindkilde A/S</td>
</tr>
<tr>
<td>9 Diverse og uforudsigelige udgifter</td>
<td>2696 m²</td>
<td>856.59 kr/m²</td>
<td>2309746 kr</td>
<td>37.0%</td>
<td>Jacobsen & Blindkilde A/S</td>
</tr>
</tbody>
</table>
DAMVARMELAGER MED FLYDENDE LÅG

PRISOVERSLAG

<table>
<thead>
<tr>
<th>Pos. ANLÆGSDEEL</th>
<th>MÆNGDE</th>
<th>ENHEDSPRIS</th>
<th>PRIS IALT</th>
</tr>
</thead>
<tbody>
<tr>
<td>PRISOVERSLAG NIRAS VANDVOLUMEN: 10068 m³</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>DMVL 20.11.01</td>
<td>6238347 kr</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------------</td>
<td>----------</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

10 GEOTEKNIK, PROJEKTERING, ADMINISTRATION M.V.

Geotekniske undersøgelser, deltagelse i byggemøder m.v., GEO + NIRAS	3 stk	50000.00 kr/stk	150000 kr
Geotekniske detaliorundersøgelser, GEO Boring	6 stk	150000.00 kr/stk	90000 kr
Databeh.	1 stk	25000.00 kr	25000 kr

Projektering og udbud i fagenterpr. Projektering m.v. 6503347 kr 10.00 % 650335 kr

Byggeledelse, tilsyn, adm. m.v. Byggeledelse m.v. 7153682 kr 2.50 % 178842 kr

Byggelånsrenter, stempeludgifter o.l. 7332524 kr 7.50 % 549939 kr

B ETABLERVERNIKOSTNINGER DAMVARMELAGER (kr/m³ tank og kr ialt):

| | | | |
|-----------------|----------|
| Skråningsanlæg, 1 til : 2.0 2.0 | **| | |
| Afstand fra vandoverflade til overkant betonelementer: | 0.00 m 0.21 m* |
| Topbredde (henholdsvis i vandoverflade og ved overkant betonelementer): | 51.1 m 51.9 m* |
| Dybde (henholdsvis i vand og til overkant betonelementer): | 7.0 m 7.2 m* |
| Bundbredder: | 23.2 m 23.2 m |
| Skråningsbredde (vandret mål): | 13.9 m 14.4 m |
| Skråningslængde (skrå mål): | 15.6 m 16.0 m |
| Omkreds top: | 204.3 m 207.7 m |
| Toparealet: | 2610 m² 2696 m² |
| Skråningsareal (4 skråningsflader, ialt): | 2315 m² 2412 m² |
| Bundmembranareal ialt: | 2854 m² 2951 m² |
| Volumen (kontrol ud fra ovenstående data) | 10068 m³ 10625 m³ |

ENERGI M.V.

| | | | |
|-----------------|----------|
| Skråningsanlæg, 1 til : 2.0 2.0 | **| | |
| Skråningsanlæg, 1 til : 2.0 2.0 | **| | |
| Overflade / volumenforhold: | 0.54 m²/m³ 0.56 m²/m³ |
| Overflade i forhold til 1 m³ kugletank (1,86 m²/m³): 55 °C 642 MWh 642 MWh |
| Anslået maksimal effekt (17 MW v/78.000 m³ DMVL): 3.4 kW/MWh 2.2 MW |
| Indløb-/udløb ved maksimal effekt og temp. diff.: 20 °C 94 m³/h 94 m³/h |
| Anslået nyttiggjort varmeindhold som sæsonvarmelager: 80 kWh/m³ 805 MWh 805 MWh |

MÆNGDER (Indbyggede mængder)

| | | | |
|-----------------|----------|
| Lermembran, tykkelse inkl. 6 cm belægning, t: | 0.85 m 0.00 m |
| Lermembran, vendret bredde i sider: | 1.90 m 0.00 m |
| Lermembran, lidt højere i sider: | 0.95 m 0.00 m |
| Udgravningsdybde ved jordbalance, d = 0,6*(D+t): | 4.69 m 4.31 m* |
| Udgravningsbrede, U: | 42.38 m 40.44 m |
| Udgravningsbund, bredde (delta u), u: | 23.62 m 23.22 m |
| Udgravningsvolumen, Vu=d^3*(U^2+u^2+U*u): | 4966 m³ 4210 m³ |
| Jordvold, højde over terræn, h: | 3.13 m 2.87 m |
| Jordvold, topbredde: | 3.00 m 2.40 m |
| Jordvold, skråningsbredde (anlæg som i bassin): | 6.25 m 5.74 m |
| Jordvold, skråningslængde: | 6.99 m 6.42 m |
| Jordvold, bundbredde: | 13.61 m 13.88 m |
| Jordvold, volumen | 5337 m³ 5078 m³ |
| Multiafreming, indtil 4 m ud fra skråningsfod: | 6021 m² 5808 m² |
| Multiafremings gennemsnitlige tykkelse: | 0.25 m 0.25 m |
| Multiafreming | 1505 m³ 1452 m³ |
| Terrænregulering indtil 20 m ud fra skråningsfod: | 9588 m² 9182 m² |
| Lågareal, flydende låg | 2610 m² 2696 m² |
| Lågareal, inklusiv kantafdekning bred: 1.00 m | -371 m³ -868 m³ |

Eks. udgifter til tilslutningsanlæg, grund, byggeomronding, instrumentering og manøvrearrangement:

Prisberegninger(CW) 5/24/023:22 PM
Anlægspri ster, sæsonvarmelandre

2001-priser ekskl. moms

Diagram

- **Lertætnede**
- **Rustfri tyndpladeliner**

Tabel

<table>
<thead>
<tr>
<th>Størrelse m³</th>
<th>Tætning</th>
<th>ANLÆGSPRIS mio kr</th>
<th>HERAF LÅG kr/m³</th>
<th>PROJ. M.V. mio kr</th>
<th>PRIS I ALT mio kr</th>
<th>kr/m³</th>
</tr>
</thead>
<tbody>
<tr>
<td>10000</td>
<td>LERMEMBRAN</td>
<td>5.6</td>
<td>556</td>
<td>2.3</td>
<td>42%</td>
<td>1.5</td>
</tr>
<tr>
<td>15000</td>
<td>LERMEMBRAN</td>
<td>7.0</td>
<td>464</td>
<td>2.9</td>
<td>42%</td>
<td>1.8</td>
</tr>
<tr>
<td>20000</td>
<td>LERMEMBRAN</td>
<td>8.2</td>
<td>411</td>
<td>3.5</td>
<td>42%</td>
<td>2.1</td>
</tr>
<tr>
<td>50000</td>
<td>LERMEMBRAN</td>
<td>14.4</td>
<td>287</td>
<td>6.1</td>
<td>42%</td>
<td>3.4</td>
</tr>
<tr>
<td>75000</td>
<td>LERMEMBRAN</td>
<td>18.6</td>
<td>248</td>
<td>7.8</td>
<td>42%</td>
<td>4.3</td>
</tr>
<tr>
<td>100000</td>
<td>LERMEMBRAN</td>
<td>22.5</td>
<td>225</td>
<td>9.4</td>
<td>42%</td>
<td>5.1</td>
</tr>
<tr>
<td>10000</td>
<td>RUSTFRI STÅLLINE</td>
<td>6.2</td>
<td>624</td>
<td>2.3</td>
<td>37%</td>
<td>1.6</td>
</tr>
<tr>
<td>15000</td>
<td>RUSTFRI STÅLLINE</td>
<td>7.8</td>
<td>522</td>
<td>2.9</td>
<td>37%</td>
<td>2.0</td>
</tr>
<tr>
<td>20000</td>
<td>RUSTFRI STÅLLINE</td>
<td>9.3</td>
<td>463</td>
<td>3.5</td>
<td>38%</td>
<td>2.3</td>
</tr>
<tr>
<td>50000</td>
<td>RUSTFRI STÅLLINE</td>
<td>16.2</td>
<td>324</td>
<td>6.1</td>
<td>38%</td>
<td>3.8</td>
</tr>
<tr>
<td>75000</td>
<td>RUSTFRI STÅLLINE</td>
<td>21.0</td>
<td>280</td>
<td>7.8</td>
<td>37%</td>
<td>4.8</td>
</tr>
<tr>
<td>100000</td>
<td>RUSTFRI STÅLLINE</td>
<td>25.3</td>
<td>253</td>
<td>9.4</td>
<td>37%</td>
<td>5.7</td>
</tr>
</tbody>
</table>

DAMVARMELAGRE MED FLYDENDE LÅG

NIRAS

Dato: 20.11.01