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A FRICTION DAMPING SYSTEM
LOW ORDER BEHAVIOUR AND DESIGN

Leif O. Nielsen and Imad H. Muallaa

Department of Civil Engineering,
Technical University of Denmark, 2800 Lyngby, Denmark

a DampTech ApS, 2800 Lyngby, Denmark

SUMMARY
A friction damping system for reduction of the response of dynamic loaded structures is studied, the

key parameters are identified and the design is discussed.

1. INTRODUCTION
A typical building structure as the n-storey frame on Figure 1 is sensitive to horizontal
vibration from wind, earthquakes etc. Damping the horizontal displacement difference
between neighbouring floors reduce the horizontal vibrations. A damping system,
Mualla [1], with this property is considered in the following and the structural
behaviour and design is investigated. The nearly bilinear force-displacement
behaviour of some versions of the system is an important property from a practical
earthquake design point of view, Skinner et al [2]. An optimum design idea is here
related to the resonance case, which is preferred for the more complicated earthquake
load case Filiatrault and Cherry [3].

Figure 1. n-storey frame with a damping system in storey 1 and 2.

2. DAMPING SYSTEM
The damping system is investigated in a one-storey frame as shown in Figure 2. This
plane frame structure with rigid horizontal beam DAE of length S and the bending
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flexible vertical columns DF and EG of length H is upgraded with a frictional
damping system consisting of a friction damper and a bracing system. The friction
damper comprises the rigid beam AC of length ha and the rigid beam C1CC2 of length
2r connected by a frictional hinge in C with the frictional moment Mf and an energy
dissipation ||θ&fM , whereθ& is the time derivative of the angle θ between the rigid

beams AC and C1CC2. The bracing system comprises the bars FC1(bar 1) and GC2(bar
2) of length l pretensioned with the force Fp>0. The friction damper and the bracing
system are connected through hinges in the points C1 and C2. The damping system is
connected to the frame through hinges in point A, F and G. The upgraded frame is
symmetric in regard to the vertical line AB. Here is considered that case, where the
bar lines go through the hinge A, i.e. the damping system is central, and then

2/
tan

S

H

r

h
v a == (2.1)

where the bar slope angle v is defined on Figure 2.

Figure 2. Frame upgraded with friction damping system.

3. ¼ LOAD CYCLE
Important information about the behaviour of the upgraded frame is obtained by
loading the frame with a slowly increasing horizontal load FA in point A. Using a
geometric linear structural theory, the antimetrical load FA gives an antimetrical
displacement uA of point A, i.e. a horizontal displacement.

The section forces in the damping system from the pretension in the bars and from
the antimetrical load are shown in Figure 3a respectively 3b using undeformed
equilibrium.

.
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Figure 3. Section forces in damping system.

The frictional moment Mf limits the moment M in the frictional hinge C. For

fMM = is obtained from Figure 3b the antimetrical load contribution to the force in

the bars

vh

M
F

a

f
a cos2

= (3.1)

To avoid compression in the bars, they are pretensioned with the same force, i.e.

ap FF = (3.2)

and the maximum force in a bar is then

aFF 2max = (3.3)

giving a necessary cross-sectional area of a bar
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vh

M
A

ay

f
b cosσ

= (3.4)

where σy is the yield stress of the bar material.
The hinges should not be the weak point in the damping system and especially not

the frictional hinge. Then the bolt in the frictional hinge C should be able to transfer a
shear force

vAF ybshear sin2 σ= (3.5)

corresponding to a worst case, where both bars yield in tension.

4. RESONANCE LOAD
Here is considered the behaviour of the upgraded frame for a harmonic horizontal
load in point A, i.e.

tFtF AA ωcos)( 0= (4.1)

where t is time, FA0 the load amplitude and ω the circular load frequency. The
structure is considered in the worst case – the resonance case -, where structural
stiffness and mass counterbalance each other, such that work done on the structure by
the external load must be absorbed by energy dissipation in the structure.

Typically the mass of the damping system is small compared with the mass of the
frame and typically the elastic deformations in the damping system are small
compared with the deformations from sliding in the frictional hinge of the damping
system. Then it is relevant - as done here - to consider the case, where the mass and
the elastic deformations of the damping system are neglected. A geometric linear
structural theory with undeformed equilibrium is used.

It is assumed that a load cycle causes a displacement cycle, i.e.
)()( tuTtu AA =+ (4.2)

where T is the load period ( πω 2=T ).
Now the horizontal force Fh in the damping system in point A, see Figure 3b, and

the work conjugated displacement uA can characterize the state in the frictional hinge
as shown on Figure 4. Obviously the energy dissipated in the frictional hinge in one
cycle is

a

Af
f h

uM
E 04

= (4.3)

where uA0 is the displacement amplitude.
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Figure 4. Frictional damping system behaviour.

The work done on the structure by the load FA is

∫=
T

AA dutFW
0

)( (4.4)

Approximating )cos()( 0 ϕω +≅ tutu AA , where φ is the phase, the work W is

maximized by φ = -π/2, giving

∫ ==
T

AAAA uFdttutFW
0 0000 coscos πωωω (4.5)

Now the energy balance WE f = gives

valuearbitraryuandF
h

M
AA

a

f == 004

π
(4.6)

Obviously this can be interpreted as: To avoid unlimited response, Mf must be greater
than the value determined by (4.6).

5. ELASTIC DEFORMATIONS IN FRICTION DAMPER
The elastic deformations in the friction damping system give a behaviour as indicated
in Figure 5, and it is clear from this that these elastic deformations may eliminate the
energy dissipation in the damping system.
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Figure 5. Frictional damping system behaviour.

In order to determine the importance of the elastic deformations in the frictional
damping system, the elastic bar deformations are included in the analysis. As in
section 3 we consider the behaviour of the upgraded frame loaded by a horizontal load
in point A increasing slowly from 0 to FA0. A full geometric linear structural theory is
used, i.e. because of the pretension forces, the equilibrium contribution from these has
to be established in the deformed state.

Moving point A uA horizontally and rotating beam AC a and beam C1CC2 b as
shown on Figure 6 gives the displacements uC1 and wC1 of point C1 determined by

brwahuu CaAC =−= 11 (5.1)

from which the elongation ∆l and the slope decrease ∆v of bar 1 is determined to
vbrvahullvbrvahuv aAaA sincos)(/)cossin)(( −−=∆+−=∆ (5.2)

In (5.1-2) is obviously utilized the assumption of linearity implying restrictions as
1|| <<a and 1|| <<b .

Further, the rotation θ in the frictional hinge C is determined by
ba +=θ (5.3)
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Figure 6. Antimetric deformations in damping system.

Now, because the deformation state characterized by uA, a and b is antimetric, all
other deformation quantities must be antimetric. Then the elongation ∆li of the two
bars (i = 1,2) must be opposite and the slope increases ∆vi too, i.e.

vvvlll ∆−=∆−=∆∆=∆−=∆ 2121 (5.4)
Moreover the antimetry implies that the intersection point between the bar lines A’

moves horizontally. Taking the moment about A of the bar forces on the damper, see
Figure 6, shows that H must coincide with A. This means that uA determines the bar
slope changes, i.e

L

vu
v A sin=∆ (5.5)

where allL += , see Figure 2. The two expressions (5.2) and (5.5) for ∆v gives a

deformation constraint between uA, a and b.
From force equilibrium the horizontal force Fh and the vertical force Fv on the

damper in point A are determined by the bar forces F1 and F2, see Figure 6

)cos()cos(

)sin()sin(

21

21

vvFvvFF

vvFvvFF

h

v

∆+−∆−=
∆++∆−=

(5.6)

The bar force change ∆F from the pretension force is determined by the bar
elongation

l

l
EAF b

∆=∆ (5.7)

where E is the Young’s modulus for the bar material. Then the bar forces can be
written as FFF p ∆+=1 and FFF p ∆−=2 (pretension + antimetric contribution) and

the following 1.order approximation for (5.6) is obtained
vvFvFFvFF phpv sin2cos2sin2 ∆+∆== (5.8)

The final equilibrium condition is the internal moment equilibrium in the damper,
e.g. moment about C of AC

avah ahFhFM −= (5.9)
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The equations (5.2,3,5,7,8,9) represent 8 equations with the 9 unknowns a, b, ∆v,
∆l, θ, Fv, Fh, M and ∆F for specified uA. The missing equation is dependent on the
behaviour in the frictional hinge. In the sticking phase

0=θ& (5.10a)
and in the sliding phase

fMM = (5.10b)

From (5.2) can a and b be isolated and after elimination of ∆v by (5.5) is obtained

vlvv
L

l
ubr

vlv
L

l
uah

A

Aa

sincossin

cos)sin1( 2

∆−=

∆−−=
(5.11)

Moreover is obtained from (5.22)
vhuvbahul aAaA cos)(cos))(( θ−=+−=∆ (5.12)

Also the static/geometric relation between M, θ and uA is useful. Inserting (5.8), (5.7),
(5.5) and (5.12) in (5.9) gives

)sin22(coscos2

)sin22(cos

)))sin1(sinsincos(sin2cos2(

))sin1(sin2sin2()cossin2cos2(

)cos)sin1((sin2)sin
sin

2cos2(

sin2)sin2cos2(

22

2

2222

22

2

vF
l

h
EAvhv

l

h
EAu

vF
l

h
EAvh

v
L

l
vv

L

h
vvFv

l

h
EAu

v
L

l
vv

L

h
FuvvFv

l

h
EAl

vlv
L

l
uvFhvF

L

vu
v

l

l
EA

vahFhvvFvF

ahFhF

M

p
a

ba
a

bA

p
a

ba

a
p

a
bA

a
pAp

a
b

Apap
A

b

apap

avah

+−

=+

−−−++

=−−++∆

=∆−−−+∆

=−∆+∆
=−

=

θ

θ

(5.13)
This expression for θ is compared on Figure 7 with the geometrical exact θ from [1]
and the results indicate that the accuracy of the geometric linear theory is high.
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Figure 7. θ(uA) based on geometrical linear respectively exact theory for a frame with damping system
defined by tanv=4/3, Fp/EAb=1’-3, Mf/haEAb= 1.2’-3 and ha/H=1/20.

Sticking phase
Up to a certain load level no sliding occurs in the frictional hinge. In this sticking

phase θ = 0 and then (5.12) gives
vul A cos=∆

(5.11) and (5.5) then gives
vba ∆=−= (5.14)

The horizontal stiffness Kbd of the damping system in the sticking phase defined by

Abdh uKF = (5.15)

is easily obtained from (5.82)

v
L

F
v

l

EA
K pb

bd
22 sin

2
cos

2
+= (5.16)

Typically the last term - the geometric term - in (5.16) is small compared with the first
term – the stiffness term. This is easily seen using the design from section 3

3'2tan
2

/ 2 −≈= v
L

l

E
termfirsttermlast yσ

because 12/tan 2 ≈Lvl for typical frame geometries and 002.0/ ≈Eyσ for typical

bar materials.
The sticking phase finishes, when the moment in the frictional hinge reaches the

frictional moment. From (5.9) is obtained the value uAf for uA for which sticking
finishes

vEAh

lM
u

ba

f
Af 2cos2

= (5.17)
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Obviously uAf/uA0 represents the relative reduction in energy dissipation in the
frictional hinge, see Figure 5. In order to be specific the design from section 3 is used.
Then

H
vH

l
H

E
u y

Af 3'2
cos2

−≈=
σ

(5.18)

for typical frame geometries and for typical bar materials. Because typical design
values are HHu A 01.0005.00 −≈ , (5.18) shows that the elastic deformations in the

bars give only a minor reduction of the energy dissipation in the friction damping
system. However, if the elastic deformations in the bars are too large in other cases,
the bar cross sectional area Ab must be increased.

Sliding phase
In the sliding phase following the initial sticking phase M = Mf and then (5.9) after
some manipulations gives an expression for determination of a

)sin)1(1(
2

)sin( 2 v
L

l

EA

F

l

u

hEA

M
v

EA

F

l

h
a

b

pA

ab

f

b

pa −−+−=+ (5.19)

For changes in the sliding phase, (5.9) gives
dahFdFh avha −=0

i.e.

A
v

A

h

A

h
bd du

da
F

du

da

da

dF

du

dF
K ===

Combining this with (5.19), is obtained for Kbd in the sliding phase

v
EA

F

l

h

v
L

l

EA

F

v
l

F
K

b

pa

b

p

p
bd

sin

sin)1(1

sin
2

2

+

−−
= (5.20)

Comparing this expression for the stiffness Kbd with the sticking phase expression
(5.16) shows that the stiffness in sliding phase typically is much smaller than in the

sticking phase. With the non-dimensional horizontal force
af

h
h hM

F
F

/
* = in the

damping system, the nearly bilinear behavior of the damping system in the typical
displacement domain uA < 0.01H is illustrated on Figure 8.
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Figure 8. Fh
*(uA) based on geometrical linear respectively exact theory for a frame with damping

system defined by tanv=4/3, Fp/EAb=1’-3, Mf/haEAb= 1.2’-3 and ha/H=1/20.

Key parameters
Typically

1<<
b

p

EA

F
(5.22)

Then (5.15), (5.16) and (5.20) give





=
sliding

stickingu
F A

h
1

*
* (5.23)

where the non-dimensional displacement is defined by AfAA uuu /* = . The behavior of

the frictional damping system is then of elastic, perfectly plastic type. Moreover is
seen from (5.23) that the parameters, which determine the action from the damping
system on the frame, are the force scale Mf/ha and the displacement scale uAf of the
damping system.

Energy dissipation
Neglecting the small horizontal stiffness of the damping system in the sliding phase,
the energy dissipation per cycle in the frictional hinge can with Afbdhf uKF = be

written as, see Figure 5
)(4)(4 00 AfAAfbdAfAhff uuuKuuFE −=−= (5.24)

which for constant Kbd is maximized by 02
1

AAf uu = . Because Kbd is independent of

Mf, this result and (5.17) allow introduction of an energy dissipation optimized
frictional moment Mfopt determined by
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v
l

u

EAh

M
A

ba

fopt 20 cos= (5.25)

The energy dissipation optimized design defined by (5.25) may correspond to bars of
insufficient strength. If this is the case, the bar cross sectional area Ab has to be
increased to a sufficient value as indicated in section 3. This Ab-increase has nearly no
influence on Fhf, see (5.16-17), and decreases uAf, see (5.17), i.e. Ef is increased, see
(5.24), but of course not so much as for an energy dissipation optimized design.

Design
As an example, the design procedure is indicated for the resonance problem, see
section 4.

a. The frame geometry, the bar material and the load is given, i.e. 0,,, AFESH .

b. uA0 is given, e.g. 0.01H.
c. The damper is assumed small, i.e. Ll ≅ .
d. (4.6) determines a value for Mf/ha and with this value for Mfopt/ha, (5.25) gives

a value for Ab. Also (3.4) gives a value for Ab and the larger of these two
(typically the latter) must be used.

The above procedure determines only the ratio Mf/ha and not both Mf and ha. Of
course a small damper is advantageous in regard to material consumption, extra load
on the structure and damper installation. However, the damper has to be so large that
it is possible to produce it with nearly rigid beams and space for the connection holes.
Moreover, the rotation θ in the frictional hinge should be limited in order to reduce
wear and temperature increases in the hinge. An upper bound for θ gives a lower
bound for the damper size. Then, with a reasonable value for ha, Mf is determined.

The above theory is not valid for large rotations in the damper.

6. NON-CENTRAL DAMPING SYSTEM
Here is considered the case, where the intersection point H between the bar lines, see
Figure 9, is not coincident with the connection point A, i.e. the damping system is
non-central. Still defining the frame geometry by H and S and the damper geometry
by ha and r, suitable auxiliary geometric quantities are defined as follows. The bar
slope angle v

rS

hH
v a

−
−

=
2/

tan (6.1)

, the bar length
22 )()2/( ahHrSl −+−= (6.2)

, the eccentricity of the bar lines intersection point

Hv
S

hh −= tan
2

(6.3)

, the length of the bar line from support to intersection point
22 )()2/( hhHSL ++= (6.4)

and the length of the damper projection perpendicular on a bar
vhvrd a cossin −= (6.5)

hh and d are positive, if the intersection point H is above the connection point A, and
negative, if the intersection point is below the connection point.



13

Figure 9. Frame with non-central damping system.

As in section 5 a full geometric linear structural theory is used. The behavior is
still antimetric and the damper behavior is still as shown on Figure 6. Then the
equations (5.2), (5.3), (5.4), (5.7), (5.8), (5.9) (5.10a,b) are still valid, but (5.5) must
be replaced by

L

vu
v H sin=∆ (6.6)

and the moment equation about the connection point A in the deformed state, see
Figure 10, now gives

0)( =+− hhHAv hFuuF (6.7)

Applying (5.8), (6.6) and (5.7), (6.7) is transformed to an equation in ∆v and ∆l

0)sincos()
sin

(sin =∆+∆+∆− vvFvl
l

EA
h

v

vL
uvF p

b
hAp (6.8)

From (5.2) are obtained expressions for a and b
vlvvlbrvlvvluah Aa sincoscossin ∆−∆=∆−∆−= (6.9)

and then
rvlvvlhvlvvluba aA /)sincos(/)cossin( ∆−∆+∆−∆−=+=θ (6.10)

Now the initial sticking phase is analyzed in the typical case

pb FEA >> (6.11)

and it is assumed that the damping system is not nearly central, i.e. hh and d not very
close to 0.
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Figure 10. The bar forces F1 and F2 are referred to the intersection point H and then expressed by Fh

and Fv.

Because of the assumption (6.11), (6.8) gives ∆l/l << ∆v. Then (6.10) gives

r

ld
vu A ∆= (6.12)

Eliminating uH from (6.7) with (6.6) and next ∆v with (6.12), we obtain

)
sin

1(
sin2

vld

rL
u

h

vF
F A

h

p
h +−=

which determines the damper system stiffness in the sticking phase to

)
sin

1(
sin2

vld

rL

h

vF
K

h

p
bd +−= (6.13)

If the damping system is under-central, then hh<0 and d<0 and (6.13) gives a positive
value for Kbd. For an over-central system r>d>0 and L>l. Then the parenthesis in
(6.13) is positive and because hh now is positive, Kbd is positive too.

Comparing (6.13) with a Fp factor and (5.16) with a EAb factor shows that in the
sticking phase is Kbd typically much smaller for the non-central damping system than
for the central.

The expression for Kbd in the sticking phase (6.13) is compared with the geometric
exact solution on Figure 11. One sees that a geometric linear theory is insufficient
already in the sticking phase.
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Figure 11. Fh
*(uA) based on geometrical linear respectively exact theory for a frame with non-central

damping system defined by H/(S/2)=4/3, ha/r=2/3, Fp/EAb=1’-3, Mf/haEAb= 1.2’-3 and ha/H=1/20.

7. CONCLUSIONS
It is shown that the damping system can be designed such that it is able to dissipate
energy efficiently in dynamic loaded building structure in spite of severe
displacement limitations for such structures.

An energy dissipation optimized design is introduced. This determines the
frictional moment, but gives typically unsafe values for some other design variables.
It is specified how these must be modified.

A rather accurate bilinear approximation for the behavior of the central damping
system is determined. Utilizing this and not the full non-linear behavior of the
damping system for numerical computations can highly improve the efficiency of
such computations.

Typically the non-central damping system has a stiffness much smaller than the
central damping system and moreover it cannot be modeled accurately as a bilinear
system.
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