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This report concerns determination of the moisture conversion factor for insulation materials.

The determination of the moisture conversion factor is performed of a number of insulation

materials, which is necessary as the insulation materials have different moisture properties and

different uses in the building constructions. In this report, the moisture conversion factors are

reported for mineral wool, expanded polystyrene, light weight aggregate concrete, cellular

concrete, cellulose fibre and flax. Other types of insulation materials exist, e.g. sheep’s wool and

straw, are also being used in some building envelopes. However, material properties for these

insulation materials are lacking and it is therefore impossible to perform the calculations which

are needed to determine the moisture conversion factor of the thermal conductivity.

Determination of the moisture conversion factor for insulation materials is based on calculation

of the moisture content of the insulation under in-use conditions. This requires that calculation

models of different building envelope constructions, including the insulation, are created and that

indoor and outdoor climatic boundary conditions are determined. Once these steps are completed,

the moisture content of the insulation may be determined.

Information regarding the moisture content combined with moisture conversion coefficients from

the international standard EN ISO 10456 makes it possible to determine the thermal conductivity

of the examined insulation materials under in-use conditions.

The end result is a table showing the moisture conversion factor, i.e. the design value divided by

the declared value, for each of the examined insulation materials.
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When mentioning the thermal conductivity of a material, or an insulation material in particular,

one should recognize the fact that several values are used to represent the thermal conductivity.

According to international standardisation, two thermal conductivities may be referred to: one

being the declared value of the thermal conductivity and the other being the design value of the

thermal conductivity. The two values are defined in EN ISO 10456 (1999) as:

Declared value: Expected value of a thermal property of a building material or product assessed

from measured data at reference conditions of temperature and humidity; given

for a stated fraction of confidence level; corresponding to a reasonable

expected service lifetime under normal conditions.

Design value: Value of thermal property of a building material or product under specific

external and internal conditions which can be considered as typical of the

performance of that material or product when incorporated in a building

component.

The declared value is only supplied by the manufacturer and it may be certified.

As mentioned in the definition of the design values of thermal properties, climate and building

constructions should be taken into account. As both climate and building construction differ from

country to country, or even within regions of countries, determination of the moisture conversion

factor for materials should be performed in each country.

Under some climatic conditions and for some building constructions the difference between the

declared and the design value may be large. However, it makes no sense to determine the

moisture conversion factor without assessing the moisture content of the insulation layer in the

specific construction under specific climatic conditions.
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)LJXUH���� Section of external wall with insulation between two brick layers
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A method is proposed to assess the moisture conditions for typical Danish building constructions

and their insulation layers and transforming this information into values of moisture conversion

factors. The proposed method uses calculation with a computational model to assess the moisture

conditions.

����&RQVWUXFWLRQ�RI�PRGHO
To determine the moisture conversion factor for insulation material, a calculation model of the

chosen construction is used. This calculation model is built up in a heat and moisture transfer

calculation tool. As heat and moisture transfer calculation tool, MATCH (Pedersen 1990) is used.

To illustrate the procedure when the design value is to be determined, a walk-through of a

calculation is provided by means of an example. The calculation is made for a Danish exterior

wall construction with an inner and an outer layer of brick with insulation material in between

the brick layers. The insulation material is not in direct contact with the outer brick leaf as there

is an air gap in between. The dimensions of the different layers defined from outside and in are:

108 mm brick work

10 mm air cavity

125 mm cellulose insulation

108 mm brick work

Output from the calculations are the amount and location of moisture in the insulation layer. The

tool provides an average moisture content for each layer in the model, so to determine a moisture

profile, subdivision of the layers are needed. Although an increase in material layers will

generally increase the level of precision, it will also increase the time spent on the calculations.

The subdivision of the model which is created to represent the specified construction is shown

in Figure 3.2 and in Figure 3.3.
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)LJXUH���� Subdivision of model representing an exterior wall with hammer milled
cellulose insulation

)LJXUH���� Subdivision of materials layers for exterior wall with cellulose insulation

The layers of the exterior wall construction as defined in MATCH is shown in Figure 3.2 with

the subdivision being shown in Figure 3.3.

Before the calculations may be initiated, definition of the interior and the exterior climatic

boundary conditions are needed. The indoor climate varies between 21EC and 23EC combined

with a moisture addition of +2 to +3 g/m3 compared with the vapour concentration of the external

climate.
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Detailing of the moisture addition is not performed at this stage. Later in the report, the effect of

different moisture addition rates are examined.

Further description of the variation of the indoor climate is performed in detail together with the

results of the calculation.

As the exterior climate, the Danish Test Reference Year (Commission of the European

Communities 1985) is used.

����'HWHUPLQLQJ�PRLVWXUH�FRQGLWLRQV�LQ�LQVXODWLRQ�PDWHULDO
The design vales are to be given as averages for a period of one year. To get the proper initial

distribution of the moisture in the constructions, a period of two years is included in the beginning

of the calculations. Only the results from the last year of the calculations are examined. In the

examination of the results, the daily average values are used.

The moisture content for the layers of the cellulose insulation is shown in Table 3.1.

7DEOH���� Daily averages of the moisture content given in weight-% for the different parts

of the cellulose-insulation

Outer layer Inner layer
Time

[days]

Moisture content

25 mm

Moisture content

37 mm

Moisture content

37 mm

Moisture content

25 mm
0.5 17.15 10.47 7.43 5.57
1.5 16.67 10.44 7.51 5.81
2.5 16.41 10.42 7.56 5.89
3.5 16.09 10.46 7.64 6.02

... ... ... ... ...
Two international standards dealing with methods and values used in transformation of moisture

content into thermal conductivity are referred to. These are EN ISO 10456 (1999) and EN 12524

(2000). In these two standards moisture content are linked to thermal conductivity by moisture

conversion coefficients. For some materials, the moisture conversion coefficient is related to the

moisture content in volume-% and for other materials it is related to the moisture content in

weight-%.

If needed, the moisture content of the insulation given in volume-% may be calculated using

Equation 1.

0& YROXPH
0& ZHLJKW

LQVXODWLRQ

ZDWHU

[ ]
[ %]

=
−

∗
100%

ρ
ρ ���

where

MC moisture content

density

����7UDQVIRUPDWLRQ�RI�PRLVWXUH�FRQGLWLRQV�WR�WKHUPDO�FRQGXFWLYLW\



6

To translate the calculated moisture conditions into an effect on the thermal conductivity,

equations from EN ISO 10456 (1999) are used. The linkage between the thermal conductivity

under two different conditions are given by equation 2 or equation 3.

λ λ2 1
2 1= ∗ −H I X X

X
( ) ���

λ λ ψ ψ ψ
2 1

2 1= ∗ −H I ( ) ���

In equation 2 and 3, 1 and 2 are the thermal conductivity in conditions 1 and 2, fu (or f ) is the

moisture content conversion coefficient and u1 and u2 (or 1 and 2) are the moisture content for

the first and second set of conditions. fu and f  can be found in EN 12524 (2000).

If condition 1 represent the state where the insulation is under standard conditions (23EC, 50%

relative humidity), u1=0.11 kg/kg according to EN 12524 (2000) and 1 equals the value of the

thermal conductivity under these conditions. In this instance the declared value is put at a value

of 0.039 W/mK. If other information regarding the declared value is available, this may be used.

Using the values from Table 3.1 as u2, combined with fu obtained from EN 12524 (2000), yields

the content of Table 3.2.

7DEOH���� Thermal conductivity of moist cellulose insulation material using moisture

conditions from Table 3.1.

Outer layer Inner layer
Time

[days]

Thermal conductivity

25 mm

Thermal conductivity

37 mm

Thermal conductivity

37 mm

Thermal conductivity

25 mm
0.5 0.040218 0.038897 0.03831 0.037955
1.5 0.040121 0.038891 0.038325 0.038001
2.5 0.040069 0.038887 0.038335 0.038016
3.5 0.040005 0.038895 0.03835 0.038041

... ... ... ... ...

As can be seen from the results in Table 3.2, the thermal conductivity of the insulation material

depends on the location of the insulation in the exterior wall. Having to use the entire content of

Table 3.2 each time the thermal performance of a component is to be evaluated would be very

cumbersome. Instead, the need is for a single number which adequately represents the data in

Table 3.2 and which is easily included in calculations. To condense the content of Table 3.2 into

one number, being the design value for the thermal conductivity for cellulose insulation in this

specific construction under these climatic conditions, an appropriate average must be made.

����'HWHUPLQDWLRQ�RI�GHVLJQ�YDOXH�RI�WKHUPDO�FRQGXFWLYLW\
The results of Table 3.2 are weighed with the temperature difference between inside and outside

to get the correct influence of the varying thermal conductivity especially during the winter
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months.

Table 3.3 shows the indoor and outdoor temperatures. The outdoor temperature is obtained from

(Commission of the European Communities 1985). The thermal conductivity of the moist

insulation material is obtained from Table 3.2. Coupling the thermal conductivity of the moist

insulation materials with knowledge regarding the dimensions of the different insulation layers

the heat transfer through the entire insulation layer, and temperature across the entire construc-

tion, is calculated with the results being shown in Table 3.3.

7DEOH���� Calculation of the average thermal conductivity of the insulation material weighed

by the temperature difference between inside and outside. Only some days have

been selected. heating is the total heat transfer during the heating season.
Temperature [EC] Thermal conductivity

Time

[days]

Indoor Outdoor Difference Outer layer

25 mm 37 mm 37 mm

inner layer

25 mm

Heat

t r a n s f e r

[W/m2]
0.5 20 2.1 17.9 0.040218 0.038897 0.03831 0.037955 5.59

30.5 20 -0.7 20.7 0.040107 0.038872 0.038312 0.037959 6.78
90.5 20 2.8 17.2 0.040025 0.038981 0.038499 0.038191 5.7

280.5 21 10.4 10.6 0.039296 0.039051 0.038811 0.038635 3.33

heating 3811 ... ... ... ... 1227

The heat transfer properties are only taken into account during the heating season. The heating

season in Denmark is used to denote the period from day 1 to day 133 (January 1st to April 13th

) and from day 267 to day 365 (September 13th to December 31th).

Having obtained both the accumulated temperature difference and the accumulated heat transfer

it is relatively easy to calculate the average thermal conductivity. Using T=3811 as the

accumulated temperature difference, H= 1227 W/m2 as the accumulated heat transfer and

d=0,124 m as the total insulation thickness the average thermal conductivity may be calculated

as design=(d* H/ T). Use of exact values yields design = 0.03885 W/mK which concludes the

example. Calculating Fm, being the design value divided by the declared value, a value of 0.996

is obtained.

The reason for the design value being lower than the declared value is that the moisture content,

as a weighed average, is below the average moisture conditions found at 23EC, 50% relative

humidity at which the declared value is given.

����/D\HULQJ�RI�WKH�FDOFXODWLRQ�PRGHO
Table 3.1 shows that the moisture content in the different layers of the insulation is very step-

wise. As the exact location of moisture may have an impact on the thermal performance of the

insulation material, the layering of the insulation in the calculation model has been investigated.

The investigation started by increasing the number of control-volumes (layers) in the model.

Because of limitations in the calculation tool, a maximum number of material layers could be
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)LJXUH���� Variation of the moisture content (in weight-%) in the insulation layer using
the maximum allowable number of layers.

assigned to the insulation material.

The thinnest layers are to be located at the boundaries with increases in layer thickness as they

distanced themselves from the outer boundary. The thickness of the first control volume was set

to 1 mm.

The variation of the moisture content in the insulation material in a construction identical to the

construction shown in Figure 3.2 and Figure 3.3 (although the number and dimensions of the

control volume is different), is shown in Figure 3.4.

Figure 3.4 shows that the moisture content varies across the insulation, with the highest values

found at the external boundary and the lowest values at the inner boundary. Most of the variation

in moisture content is found in the outermost 15 mm of the insulation. Therefore the control

volumes is concentrated in these outer 15 mm of the insulation layer. For the construction

illustrated in Figure 3.2, 3.3 and 3.4, the following thicknesses of the control volumes are (from

outside and in): 5 mm, 5 mm, 5 mm, 10 mm, 25 mm, 35 mm and 40 mm. For larger insulation

thicknesses, the thickness of the control volumes are scaled accordingly.
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7DEOH���� Thickness of control volumes as percentage of the total insulation thickness

Control volume number 1 2 3 4 5 6 7

Thickness [% of total thickness] 4 4 4 8 20 28 32

The values in Table 3.4 are used as a guideline for the setup of control volumes for all the

constructions where design values for the thermal conductivity is determinated.

Using this sub-division of the insulation layer in comparison with the original values, shown in

Figure 3.2 and 3.3 and utilized in Table 3.2 and Table 3.3, a more precise calculation can be

made. The improvement in the result of the calculation is noteworthy, however not very large.

����&OLPDWH�LQ�FUDZO�VSDFH
For most of the constructions, the external boundary conditions can be described by a collection

of reference weather data. Crawl spaces do not belong to this group of constructions. To

determine the heat and moisture conditions in a crawl space, a numerical calculation tool may be

used. One such calculation tool is CICS, Calculation in Crawl Space, by (Åberg 1997).

Based on information on the physical built-up of the crawl space, the exterior climate and the

micro-climate surrounding the building containing the crawl space, the tool makes it possible to

predict the temperature and moisture conditions in the crawl space.

The data describing the external climate originates from the city of Lund located in Southern

Sweden; a fair assumption is that the climate of Lund and the climate of Danish cities may be

treated as equal.

As typical for Danish constructions, the crawl space is naturally ventilated with outside air. 

The crawl space is treated as being uninsulated downwards, facing the soil, and the outer walls

of the crawl space, facing the exterior climate, is also treated as uninsulated. 

To get a proper examination of the moisture conditions in the crawl space it is important to

include the effect of evaporation of moisture from the soil. Exact figures for the evaporation from

the soil to the crawl space depends on the climate, the construction etc. and may therefore be hard

to come by. Figures by (Kurnitski 2001) estimate the evaporation from soil ground with a

polyethylene-membrane to be around 1.4 g/h@m2. Assuming the height of the crawl space to be

0.5 m the moisture flux from the soil to the crawl space is 2.8 g/h@m3.

By applying the tool by (Åberg 1997) on the data which has been provided, the temperature and

moisture conditions in the crawl space is calculated. The temperature and moisture conditions for

the crawl space are shown in Figure 3.5.
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)LJXUH���� Temperature and moisture conditions in a crawl space under Danish/Southern
Swedish climatic conditions

Figure 3.5 shows that the temperature in the considered crawl space varies between 2EC and

16EC in an sinusoidal-like variation. The relative humidity of the air in the crawl space varies

between 60% relative humidity and 95% relative humidity, with a single exception, with the

highest values found during summer. The single exception is found during spring where the

relative humidity in the crawl space experience a rapid decline following by an increase. This

variation in relative humidity exist because of a related decrease and increase in the outdoor

temperature.

The values of Figure 3.5 is used as input values in the heat- and moisture calculation tool.
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Once the general guidelines have been formulated regarding construction of the calculation

models and the later processing of the results of these models, it is time to construct the

calculation models themselves. The calculation models represent different building envelope

constructions.

In the following, a list of typical Danish building envelope constructions are given. All types of

constructions utilize some kind of insulation material where the thermal performance may be

affected by moisture. Although some of the constructions may also be used in other countries it

should be noted that the results cannot be used elsewhere but in Denmark as other climatic

conditions may be found at these locations.

For each of the constructions, calculations will be made with a variation in the use of insulation

material. The use of insulation material is limited to the types of materials that may be used under

the given circumstances. Building envelope types that are included in the calculations are shown

in Table 4.1.

7DEOH���� Building envelope construction types included in the calculations to determinate

the design values of the thermal conductivity for insulation materials

No. Building envelope construction type

1 Deck above crawl space

2 Slab on grade

3 Basement outer walls

4 Solid outer walls with exterior insulation

5 Solid outer wall with interior insulation

6 Cavity wall

7 Light-weight outer wall

8 Concrete sandwich elements

9 Unventilated roof

10 Ventilated roof

Although several designs exist for each of the building envelope constructions shown in Table

4.1, the designs often resemble each other from a moisture-related point of view. By modelling

a few designs for each construction type it is possible to cover the most traditional envelope

constructions.

In the following, each of the construction types are dealt with. For each of the construction types
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mentioned in Table 4.1, recommendations for designs which should be dealt with are given. The

result of these recommendations is a limited number of potential calculations model. This should

be obtained without neglecting parts of those constructions found in Denmark.

A number of different insulation materials are available on the market, but not all of them can be

used in all construction types. Furthermore, physical properties are scarce for some of the

materials making modelling and interpretation of results impossible.

Several materials which may be characterized as insulation materials exist, e.g. Mineral wool,

Expanded polystyrene, Extruded polystyrene, Light weight concrete, Light weight aggregate

concrete, Perlite (expanded stone material), Hammer milled cellulose fibres, Defibred cellulose

fibres, Virgin cellulose fibres, Flax, Hemp, Sheep’s wool, Straw and In-situ cellular concrete.

Regarding the three variants of cellulose-fibres, no moisture related material properties currently

exist that make it possible to distinguish between the variants. Therefore, only constructions

containing hammer milled cellulose fibres are considered as material data for this variant is

available. Further on in the report, the term cellulose fibres will refer to this variant of insulation

unless otherwise stated.

Material properties and moisture conversion factors for hemp, sheeps wool, straw and in-situ

cellular concrete are not currently available in the literature, so even though the materials may be

used in building envelope components, their implementation has not been shown. However, as

data on the material properties of these materials becomes available, assessment of construction

insulated with these materials should also be performed.

One by one, the construction types are described in the following sections. For each construction

type only a few variants are included in the descriptions.

For the same basic design, several different insulation thicknesses are normally possible. In all

calculations, the insulation level is determined by the current Danish Building Regulation (1995).

However, to see the influence of increasing the insulation thickness, calculations are also made

for an example of two constructions that are similar in all aspects except the insulation thickness.

Here, one construction just fulfills the current requirements in the Danish Building Regulations

whereas the other construction should at least fulfill the requirements of what is expected from

the next Danish Building Code in year 2005 - a 33% increase in insulation thickness.

����'HFN�DERYH�FUDZO�VSDFH
The thermal transmission coefficient for decks above crawl space must not exceed 0.2 W/m2K

according to the current building regulations. Generally this implies that the total thickness of

insulation material should be around 175 mm if the thermal conductivity of the insulation

material is 0.039 W/mK.

The floor construction, which is the upper part of the deck, may be a carpet on a concrete slab or

it may be wooden planks on joists. However, the influence of the floor construction may not be

noticeable on the U-value as the floor is placed above the insulation material. Instead, the major

influence will be from the light weight deck or heavy weight deck used in the construction as they
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have an influence on the ventilation rate of the crawl space. If organic materials are used in a

crawl space construction, the ventilation rate should be higher than for constructions using in-

organic building materials. As the boundary conditions for these two types of deck differ, both

types are included in the calculations.

Construction 1.1 Wooden planks on joists, 50 mm insulation, vapour retarder, 200 mm

light-weight aggregate concrete, 125 mm insulation

Construction 1.2 Wooden planks on joists, vapour retarder, 125 mm insulation between

joists, 75 mm structural mineral wool panels

Construction 1.1 is modelled with mineral wool as lower insulation layer. The upper insulation

layer may be mineral wool, perlite (expanded stone material), cellulose fibre or flax (the vapour

retarder should have a Z-value of 10 GPam2s/kg when cellulose fibre or flax is used (DBI 2000)).

If construction 1.2 is used, cellulose fibre insulation or flax insulation may be used. In this case,

the vapour retarder should have a Z-value around 10 GPam2s/kg (DBI 2000). Furthermore, the

insulation thickness should be increased to 150 mm to fulfill the thermal requirements. A vapour

retarder is to be used when mineral wool is used as insulation material, however, no specific

demands regarding its vapour permeability is given.

Several types of insulation materials are usable in both of these constructions. Table 4.1 and 4.2

give an overview of which types of insulation materials can be used in the constructions.

7DEOH���� Use of insulation types for construction: “Planks on joists and use of cellular

aggregate concrete”. Figure from (SBI 1995)

Construction 1.1

Construction details:

25 mm wooden planks

50 mm insulation (upper)

Vapour retarder

200 mm light weight aggregate concrete

125 mm insulation (lower)

M
in

er
al

 w
oo

l

E
PS

 a
nd

 X
PS

L
ig

ht
 w

ei
gh

t c
on

cr
et

e

L
ig

ht
 w

ei
gh

t a
gg

re
ga

te

E
xp

an
de

d 
st

on
e 

m
at

er
ia

l

C
el

lu
lo

se
 f

ib
re

F
la

x

Upper insulation layer T T T T

Lower insulation layer T



14

7DEOH���� Use of insulation types for construction: “Planks on joists with insulation between

joists”. Figures from (SBI 1995)

Construction 1.2

Construction details:

25 mm wooden planks

Vapour retarder

150 mm insulation (upper)

75 mm insulation (lower)
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����6ODE�RQ�JUDGH
The thermal transmission coefficient for slabs on grade must not exceed 0.2 W/m2K according

to the current building regulations. Such an U-value normally corresponds to 200 mm of

insulation material, but as other materials with insulation properties are also found in normal slab

on grade constructions, the thickness of traditional insulation materials is around 100-150 mm.

The floor construction, which is the upper part of the deck, may be a carpet on a concrete slab or

it may be wooden planks on joists. However, from the view of thermal and moisture performance,

slab on grade constructions can be divided into two types; those with a concrete deck on top of

the thermal insulation and those with a porous deck and a thick membrane to hinder transport of

radon through the construction.

Construction 2.1 Wooden planks on joists, 50 mm insulation between joists, vapour

retarder, 100 mm concrete, 75 mm structural insulation, 150 mm gravel

as capillary break

Construction 2.2 Wooden planks on joists, 50 mm insulation between joists, vapour

retarder, 100 mm light weight aggregate concrete, 150 mm loose fill

coated light weight aggregate

Construction 2.1 is modelled with structural mineral wool or EPS/XPS as the lower insulation

layer. The upper insulation layer may be cellulose, flax, mineral wool, perlite (expanded stone

material) or EPS/XPS. The Z-value of the vapour retarder should be at least 50 GPasm2/kg (DBI

2000)

Construction 2.2 is modelled with cellulose, flax, mineral wool, perlite (expanded stone material)
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or EPS/XPS as the insulation between the joists. The Z-value of the vapour retarder should be at

least 50 GPam2s/kg (SBI 2000).

Several types of insulation materials are usable in both of these constructions. Table 4.3 and 4.4

give an overview of which types of insulation materials to be used in the constructions.

7DEOH���� Use of insulation types for construction: “Concrete slab and planks on joists”.

Figure from (SBI 1995)

Construction 2.1

Construction details:

25 mm wooden planks

50 mm insulation (upper)

Vapour retarder

100 mm concrete

75 mm structural insulation (lower)

150 mm gravel (capillary break)
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7DEOH���� Use of insulation types for construction: “Light weight aggregate concrete slab

and planks on joists with insulation between joists”. Figure from (SBI 1995)

Construction 2.2

Construction details:

25 mm wooden planks

50 mm insulation (upper)

Vapour retarder

100 mm light weight aggregate concrete

150 mm loose fill coated light weight ag-

gregate (lower)
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����%DVHPHQW�RXWHU�ZDOOV
The thermal transmission coefficient for basement outer walls must not exceed 0.3 W/m2K

according to the current building regulations. Generally this implies that some insulation material

should be used. However, the amount of insulation material depends on what other materials that

are used in the construction.

The thermal insulation may either be placed on the inside or the outside of the construction. If the

insulation is placed on the outside, it is made with draining capabilities to drain soil water away

from the basement wall.

Besides thermal insulation, the walls are normally made of either concrete or light weight

aggregate concrete. The material layers (specified from outside and in) in basement outer walls

are:

Construction 3.1 permeable membrane, 125 mm insulation with draining capabilities, 300

mm concrete

Construction 3.2 drainage layer, rendering, asphalt impregnation, 300 mm concrete, 75 mm

insulation, 75 mm cellular concrete

Construction 3.1 is modelled with mineral wool or EPS as the insulation layer, both which should

have drainage capabilities. The water permeable membrane is omitted from the model as its

function is to keep the soil away from the drainage grooves.

In construction 3.2 mineral wool or EPS insulation may be used. as insulation material In the

model, the rendering is omitted as its impact on the thermal and moisture conditions is very low.

Several types of insulation materials are usable in both of these constructions. Table 4.5 and 4.6

give an overview of which types of insulations materials to be used in the constructions.
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7DEOH���� Use of insulation types for construction: “Basement concrete wall with exterior

insulation”. Figure from (SBI 1995)

Construction 3.1

Construction details:

125 mm insulation

300 mm concrete
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7DEOH���� Use of insulation types for construction: “basement concrete wall with interior

insulation”. Figure from (SBI 1995)

Construction 3.2

Construction details:

 Drainage layer

Asphalt impregnation

300 mm concrete

75 mm insulation

75 mm cellular concrete
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����6ROLG�RXWHU�ZDOOV�ZLWK�H[WHULRU�LQVXODWLRQ
The thermal transmission coefficient for outer walls must not exceed 0.2 W/m2K or 0.3 W/m2K

depending on the average density of the wall construction. Aiming at a thermal transmission

coefficient of 0.2 W/m2K, the demand can be fulfilled by using approximately 200 mm of
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insulation on the outside of the load bearing construction.

The solid outer wall can basically be constructed in two different ways, either with an outside

rendering or with a ventilated air gap and cladding. Besides these variation, the wall types can be

treated as almost similar from a hygro-thermal point of view.

A third variation is also examined here. This type of wall is made of a massive block of cellular

concrete. In the outer wall made out of cellular concrete, no extra thermal insulation is used as

the cellular concrete has sufficient thermal insulation properties if large thicknesses are used.

Construction 4.1 stucco, 200 mm structural insulation, 100 mm cellular concrete

Construction 4.2 cladding, ventilated air gap, wind tight vapour permeable layer, 200 mm

insulation placed between wooden posts, 100 mm cellular concrete

Construction 4.3 500 mm massive cellular concrete

Construction 4.1 is modelled with mineral wool as the insulation layer.

If construction 4.2 is used, cellulose fibre, flax or mineral wool may be used as insulation

material.

Several types of insulation materials are usable in both of these constructions. Table 4.7, 4.8 and

4.9 give an overview of which types of insulation materials to be used in the constructions.

7DEOH���� Use of insulation types for construction: “Solid wall with exterior insulation and

stucco”. Figure from (SBI 1995)

Construction 4.1

Construction details:

12 mm stucco

200 mm structural insulation

100 mm cellular concrete or light weight

aggregate concrete
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7DEOH���� Use of insulation types for construction: “Solid wall with exterior insulation and

cladding”. Figure from (SBI 1995)

Construction 4.2

Construction details:

Cladding

Ventilated air gap

Wind tight layer

200 mm insulation

100 mm cellular concrete or light weight

aggregate concrete
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7DEOH���� Use of insulation types for construction: “Massive cellular concrete”

Construction 4.3

Construction details:

500 mm cellular concrete
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����6ROLG�RXWHU�ZDOOV�ZLWK�LQWHULRU�LQVXODWLRQ
The thermal transmission coefficient for outer walls must not exceed 0.2 W/m2K or 0.3 W/m2K

depending on the average density of the wall construction. Aiming at a thermal transmission
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coefficient of 0.2 W/m2K, the demand can be fulfilled by using approximately 200 mm of

insulation on the inside of the load bearing construction.

The solid outer wall with interior insulation is constructed with an outside rain screen which may

consist of a brick wall, wooden sheeting, metal profiles or corrugated cementitious sheeting.

Behind the different types of cladding material, a ventilated air gap is established to facilitate

removal of rain which may penetrate the rain screen. Due to the ventilated air gap, the influence

from the rain screen on the thermal and moisture conditions in the insulation does not differ from

one type of rain screen to the other. Instead, a difference between the different types of walls with

interior insulation may be found in the location of the vapour retarder. In some designs, the

vapour retarder is placed behind the inner gypsum layer and in other designs the vapour retarder

is located inside the insulation layer.

Construction 5.1 brick wall, ventilated air gap, windtight layer, 200 mm insulation

supported by wooden beams and posts, vapour retarder, inner sheet

Construction 5.2 brick wall, ventilated air gap, windtight layer, 150 mm insulation

supported by beams and posts, vapour retarder, 50 mm insulation, inner

sheet

Construction 5.3 brick wall,100 mm internal insulation, vapour retarder, inner sheet (does

not fulfill thermal requirements, but is a typical example on retrofit of an

existing construction)

Construction 5.1 is modelled with mineral wool, cellulose or flax as the insulation layer. The Z-

value of the vapour retarder should be at least 10 GPa@s@m2/kg. (DBI 2000)

Construction 5.2 and 5.3 are modelled with mineral wool.

Several types of insulation materials are usable in both of these constructions. Table 4.10, 4.11

and 4.12 give an overview of which types of insulation materials to be used in the constructions.
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7DEOH����� Use of insulation types for construction: “Light weight wall with interior

insulation and interior vapour retarder”. Figure from (SBI 1995)

Construction 5.1

Construction details:

108 mm brick wall

Ventilated air gap

200 mm insulation

Vapour retarder

13 mm gypsum board
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7DEOH����� Use of insulation types for construction: “Light weight wall with interior

insulation and vapour retarder embedded in insulation”. Figure from (SBI 1995)

Construction 5.2

Construction details:

108 mm brick wall

Ventilated air gap

150 mm insulation (outer)

Vapour retarder

50 mm insulation (inner)

13 mm gypsum board
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7DEOH����� Use of insulation types for construction: “Brick wall with internal insulation”.

Figure from (SBI 1995)

Construction 5.3

Construction details:

230 mm brick wall

100 mm insulation

Vapour retarder

13 mm gypsum board fastened by steel

profiles
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����&DYLW\�ZDOOV
The thermal transmission coefficient for cavity walls must not exceed 0.3 W/m2K according to

the current building regulations. Generally this demand can be fulfilled if the cavity is filled with

insulation and if the width of the cavity exceeds 125-200 mm depending on the thermal

conductivity of the used insulation material.

The cavity wall is normally constructed with an outside leaf of brick and an inner leaf of brick,

concrete, light weight concrete, or light weight aggregate concrete. Thermal insulation is placed

between the inner and the outer leaf. To improve the structural properties of these types of

constructions, wall ties are used to connect the two leafs.

The insulation used in these types of constructions may either be structural insulation or loose-

filled insulation which fills either part or the whole of the cavity. All three designs are included

in the description.

Construction 6.1 108 mm brick, 200 mm structural insulation, 108 mm brick

Construction 6.2 108 mm brick, 200 mm loose fill insulation, 108 mm brick

Construction 6.3 108 mm brick, ventilated air cavity, wind-tight layer, 200 mm loose fill
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insulation, 108 mm brick

Construction 6.1 is modelled with mineral wool as the insulation material.

In construction 6.2, mineral wool or perlite (expanded stone material) as loose fill is used as the

insulation material. Organic insulation material may not be used here as water can be transported

through the porous outer brick leaf.

If construction 6.3 is used, mineral wool, cellulose fibre or flax as loose fill may be used as

insulation material.

Several types of insulation materials are usable in both of these constructions. Table 4.13, 4.1 and

4.15 give an overview of which types of insulation materials to be used in the constructions.

7DEOH����� Use of insulation types for construction: “Cavity wall insulated with structural

insulation”. Figure from (SBI 1995)

Construction 6.1

Construction details:

108 mm brick

200 mm structural insulation

108 mm brick wall
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7DEOH����� Use of insulation types for construction: “Cavity wall insulated with loose-fill

insulation material”. Figure from (SBI 1995)

Construction 6.2

Construction details:

108 mm brick

200 mm loose-fill insulation

108 mm brick wall
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7DEOH����� Use of insulation types for construction: “Cavity wall with loose-fill insulation

material (partly filled)”. Figure from (SBI 1995)

Construction 6.3

Construction details:

108 mm brick

Ventilated air gap

Wind-tight layer

200 mm loose-fill insulation

108 mm brick wall
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����/LJKW�ZHLJKW�RXWHU�ZDOOV
The thermal transmission coefficient for light-wight outer walls must not exceed 0.2 W/m2K

according to the current building regulations. Generally, this implies that the total thickness of

insulation material should be around 200 mm if the thermal conductivity of the insulation

material is 0.039 W/mK.

Light-weight outer walls may either be constructed using wooden beams and posts or steel

profiles as the load-bearing construction with thermal insulation in-between.

The insulation used in these types of constructions is applied in batts or as loose-fill material.

When batts are used, the insulation may be protected from the exterior climate by a light-weight

rain screen or a brick veneer both with a ventilated air gap between the rain screen and the

insulation.

Construction 7.1 light-weight rain screen, ventilated air gap, wind tight layer, 150 mm

insulation, vapour retarder (Z=10 GPa@m2s/kg), 50 mm insulation, inner

gypsum sheeting,

Construction 7.2 light-weight rain screen, ventilated air gap, wind tight layer, 150 mm

insulation, vapour barrier (Z=125 GPa@m2s/kg), 50 mm insulation, inner

gypsum sheeting

Construction 7.1 is modelled with mineral wool, cellulose fibre or flax as the insulation material.

Construction 7.2 is modelled with mineral wool as the insulation material.

Several types of insulation materials are usable in some of these construction. Table 4.16 and 4.17

give an overview of which types of insulation materials to be used in the constructions.
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7DEOH����� Use of insulation types for construction: “Light weight wall with vapour retarder

and a light weight rain screen”

Construction 7.1

Construction details:

Cladding

Ventilated air gap

150 mm insulation

Vapour retarder (Z=10 GPa@m2s/kg)

50 mm insulation

2 x 13 mm gypsum
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7DEOH����� Use of insulation types for construction: “Light weight wall with vapour barrier

and a light weight rain screen”

Construction 7.2

Construction details:

Cladding

Ventilated air gap

150 mm insulation

Vapour barrier (Z=125 GPa@m2s/kg)

50 mm insulation

2 x 13 mm gypsum
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����&RQFUHWH�VDQGZLFK�HOHPHQWV
The thermal transmission coefficient for concrete sandwich elements must not exceed 0.3

W/m2K, a demand that can be fulfilled using 200 mm of insulation.

In concrete sandwich elements, insulation is placed between two concrete layers. At the edge of

the elements, this insulation thickness is somewhat lower. However, here only the middle part of

the sandwich element utilizing the full insulation thickness is included here.

Construction 8.1 70 mm concrete, 200 mm insulation, 80 mm concrete

Two types of insulation are used in the concrete sandwich elements, mineral wool or EPS. This

is shown in Table 4.18.
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7DEOH����� Use of insulation types for construction: “Concrete sandwich element”

Construction 8.1

Construction details:

70 mm concrete

200 mm insulation

80 mm concrete
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The thermal transmission coefficient for unventilated (flat or sloped) roofs must not exceed 0.20

W/m2K according to the current building regulations. This can generally be fulfilled using

insulation with an average thickness of 200 mm.

The unventilated roof is normally constructed with a load bearing deck, a vapour retarder, an

insulation layer and a roofing membrane. Structural insulation is used on unventilated roofs as

it should be able to withstand physical loads without deformation.

Construction 9.1 roofing membrane, 200 mm insulation, vapour retarder, 200 mm concrete

deck

Construction 9.1 is modelled with either mineral wool or a combination of EPS and mineral wool

as insulation material. The combination of EPS and mineral wool is a standard solution to avoid

the risk of fire both during application of the roofing membrane and during use.

Table 4.19 provide an overview of the different types of insulation materials which are used in

the construction.



30

7DEOH����� Use of insulation types for construction: “Unventilated roof”

Construction 9.1

Construction details:

8 mm modified bitumen

200 mm insulation

Vapour retarder

200 mm concrete
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The thermal transmission coefficient for roofs must not exceed 0.15 W/m2K unless when so-

called parallel roofs are considered. In this case the thermal transmission coefficient must not

exceed 0.20 W/m2K. The demand is generally fulfilled if 200 mm or more of insulation is applied

in the constructions.

A ventilated roof may either be sloped or low-sloped.

A low-sloped ventilated roof is typically constructed with wooden trusses and the insulation

placed between the trusses. A vapour retarder is placed below the insulation or placed up to one

third into the insulation layer, and above the insulation layer a ventilated air gap is constructed.

The roof is sealed off with a roofing membrane on a wooden deck.

In a sloped roof construction the insulation is also placed between trusses. A vapour retarder is

placed in the insulation layer, at the warm side normally one-fourth into the layer. Above the

insulation layer, a 75 mm ventilated air gap is constructed and the roof is sealed of with e.g.

roofing tiles.

Construction 10.1 roofing membrane, wooden deck, 95 mm ventilated air gap, 150 mm

insulation, vapour retarder (Z=50 GPa@m2s/kg), 50 mm insulation, ceiling

Construction 10.2 roofing tiles, 75 mm ventilated air gap,150 mm insulation, vapour

retarder(Z=10 GPam2s/kg if organic insulation materials are used Z=50

GPa@m2s/kg if mineral wool is used), 50 mm insulation, ceiling
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Construction 10.1 or 10.2 is modelled with mineral wool, cellulose fibre or flax as insulation

material. The Z-value of the vapour retarder should be at least 10 GPa@m2s/kg if organic insulation

materials are used, otherwise at least 50 Gpa@m2s/kg (SBI 1995). Construction 10.1 and 10.2 may

also be insulated with perlite (expanded stone material). For construction 10.1 the lowest

insulation should be mineral wool according to (DBI 2000).

Several types of insulation materials are usable in both of these constructions. Table 4.20 and 2.21

give an overview of which types of insulation materials to be used in the constructions.

7DEOH����� Use of insulation types for construction: “Low-sloped ventilated roof”

Construction 10.1

Construction details:

8 mm modified bitumen

Wooden deck

95 mm ventilated air gap

150 mm insulation (upper)

Vapour retarder Z= 10 or 50 GPa@m2s/kg

50 mm insulation (lower)

2 x 13 mm gypsum
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7DEOH����� Use of insulation types for construction: “45E Sloped ventilated roof”

Construction 10.2

Construction details:

Roofing tiles

Diffusion tight underroof

75 mm ventilated air gap

150 mm insulation (upper)

Vapour retarder Z=10 or 50 GPa@m2s/kg

50 mm insulation (lower)

2 x 13 mm gypsum
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As seen in the previous chapter, calculation of moisture conditions and design value of the

thermal conductivity should be performed for a number of insulation materials. Besides

construction of models which represent the different building envelope constructions it is also

necessary to determine the moisture related material properties for each of the insulation materials

which are found in the constructions shown in the previous chapter.

The following insulation materials are found in the constructions of the previous chapter:

Mineral wool

Expanded Polystyrene

Light weight concrete

Light weight aggregate concrete

Perlite (expanded stone material)

Cellulose fibre

Flax

For each of the materials, a number of material properties of importance in this context, are

reported here. These material properties include:

Density

Sorption isotherm

Capillary suction

Vapour permeability

Moisture conversion coefficient (mass-by-mass or volume-by-volume).

Properties of the different materials are organized in Table 5.1 and Figure 5.1. Some important

comments regarding the use of some of the material parameters are given afterwards.
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Table 5.1 Density, vapour permeability, moisture conversion coefficient, moisture content at 
reference conditions and thermal conductivity for investigated insulation materials. 
(1) material library supplied with calculation tool (Pedersen 1990), (2) (Hansen et al. 
1999), (3) (EN 12524 2000), (4) (FIW 2000) 

 
Material 

 
Density 
[kg/m3] 

 
Vapour 
permeability 
[kg/m·s·Pa]·10-12 

 
Moisture 
conversion 
coefficient 

 
MC at 23°C, 
50% RH 

 
Thermal 
conductivity 
[W/mK] 

 
Mineral wool 

 
30 (1)

 
157 (1)

 
4 m3/m3 (3)

 
0 kg/kg (3) 

 
0.039

 
Mineral wool 
(structural) 

 
170 (1)

 
113 (1)

 
4 m3/m3 (3)

 
0 kg/kg (3) 

 
0.039

 
Expanded 
polystyrene 

 
20 (1)

 
5 (1)

 
4 m3/m3 (3)

 
0 kg/kg (3) 

 
0.039

 
Light weight 
concrete 

 
625 (1)

 
30 (1)

 
4 kg/kg (3)

 
0.026 kg/kg (3) 

 
0.17

 
Light weight 
aggregate con-
crete 

 
170 (1)

 
66 (1)

 
4 kg/kg (3)

 
0 kg/kg (3) 

 
0.075

 
Perlite 

 
85 (2)

 
100 (2)

 
3 kg/kg (3)

 
0.01 kg/kg (3) 

 
0.039

 
Cellulose fibre 

 
40 (2)

 
200 (2)

 
0.5 kg/kg (3)

 
0.11 kg/kg (3) 

 
0.039

 
Flax 

 
30 (2)

 
150 (2)

 
0.5 kg/kg (4)

 
0.06 kg/kg (4) 

 
0.039
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)LJXUH���� Sorption and desorption isotherms for investigated materials. Values for
mineral wool, expanded polystyrene, light weight concrete and light weight
aggregate concrete are reported in the material library supplied with the
calculation tool (Pedersen 1990). Values for perlite, cellulose fibre and flax are
from Hansen et al (1999).
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)LJXUH���� Extract of Figure 5.1 giving a better view of the region containing the lower
values of moisture content. References for material data are equal to Figure 5.1.
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The influence of choosing different values of the moisture content at reference conditions (23EC,

50% RH) will be examined in Chapter 7 following the results of the calculations.
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Models are simplified representations of reality, in this case of building constructions and

boundary conditions. During construction of the models, simplifications of construction and/or

boundary conditions are performed. The simplifications differ from construction to construction,

and there may therefore be a need for an overview showing the simplifications of the different

models, i.e. computerized representations of the different physical constructions. Such an

overview is provided in the following.

1. Most multi-dimensional effects are omitted from all the models, with the only exception

being the heat, air and moisture flow in the ventilated claddings of some of the

constructions. The reason for this simplification is that the heat and moisture transfer

model (Rode 1990) is only usable for solving one-dimensional problems. An exception

has been made in the case of ventilated cladding which is modelled using an add-on to the

model. This aspect is treated in issue no. 5 of this overview.

2. Slab on grade models are made with inclusion of the boundary conditions from the

ground. The ground is modelled as having a constant temperature of 10EC and a constant

relative humidity of 100%. Free water in the soil volume is omitted from the models for

construction 2.1 (Concrete slabs and planks on joists) as the gravel layer acts as a capillary

barrier which hinder the existence of a liquid water volume just below the lower

insulation layer.

In the models representing construction 2.2 (Light weight aggregate concrete slab and

planks on joists with insulation between joists), a layer acting as a capillary barrier is not

found, except the insulation layer which acts as a capillary barrier. It is therefore necessary

to include the effect of liquid water from the soil volume below the construction. In these

models, the soil is modelled as having a constant relative humidity of 100%.

As the moisture level at the interior surface cannot be expressed relative to the exterior

climate (the soil volume) as it was mentioned in section 3.1, another indoor reference

climate is specified. The indoor temperature is kept at 23EC during summer and 21EC

during winter. The indoor relative humidity is given as monthly values and has the

following values in the period from January to December: 42%, 40%, 43%, 51%, 56%,

56%, 59%, 62%, 66%, 61%, 52% and 46%.

3. Models representing the basement outer walls are made with the inclusion of boundary

conditions from the ground. The ground is modelled as having a constant temperature of

10EC and having a constant relative humidity of 95%. Free water is omitted from the soil

volume as the two types of basement outer wall constructions have sufficient water

drainage capabilities. The indoor climate is kept at a temperature between 21EC (winter)

and 23EC (summer) and a relative humidity of 40%.

If higher moisture levels are specified for the indoor climate, the result is a high internal



38

partial vapour pressure compared to the external conditions. The partial vapour pressure

will initiate a transport of water vapour through the construction. The end result of a

calculation where a high partial vapour pressure is maintained at the interior surface is

that the insulation will be totally water saturated. It must therefore be stressed that the

results which are obtained by using the model are very sensitive to changes in the

boundary conditions. If a continuous partial vapour pressure difference exists across the

construction, the inevitable result is a water saturated construction. This small continuous

partial vapour pressure difference requires just a small increase above the 40% relative

humidity for the internal boundary conditions (both summer and winter).

4. Models which represent either of the wall constructions, i.e. solid outer walls with

exterior or interior insulation, cavity walls, light-weight outer walls or concrete sandwich

elements are made to include the effect of driving rain on the moisture performance. Data

describing driving rain is made on basis of measured data from Danish Meteorological

Institute from 1991. The data is reported by Kragh (1998). Transformation of free rain,

which is reported in the measured data, into driving rain requires detailed information

regarding the topography of the surrounding landscape, design of the buildings and many

other factors. An amount of driving rain which is on the safe side (more than what may

actually be measured and therefore usable in a design situation) is obtained by multiplying

the amount of free rain by 0.5. The driving rain is added to the outermost material layer

in the construction.

5. Models which represent wall constructions with a ventilated air gap are made to include

the effect of the gap. Description of the parameters needed to include the effect of a

ventilated air gap in a model is described in an add-on to the documentation for the heat

and moisture calculation tool by Pedersen (1990).

6. Models which represent ventilated roof constructions are made to include the effect of a

ventilated air gap in the construction. Description of the parameters to include the effect

of the ventilated air gap is found in the literature according to item 5 of this overview.

7. The initial moisture conditions in the models of the unventilated low slope roofing

constructions are made to be in equilibrium with air having a relative humidity of 85%.

The initial moisture content is very important for this type of construction as the

insulation, and the moisture if present, is placed between two water- and vapour-tight

membranes making it almost impossible for the moisture to escape once it has entered the

construction.

It must therefore be stressed that the results of the later calculations are only valid for

constructions with the same moisture content. Having a higher initial moisture content

will result in a high moisture content throughout the life of the construction with a very

high thermal conductivity. Assessment of the level of moisture intrusion and the effect

on the thermal performance is outside the scope of this investigation.
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Based on the descriptions of the constructions (Chapter 4), the material data (Chapter 5) and a

combination of the modelling techniques and boundary conditions (Chapter 4 and 6), the

calculations of the design value of the thermal conductivity for insulation materials under climatic

specific conditions is performed.

Results are reported for different insulation materials in the different constructions. The results

are given both as absolute values of the design value of the thermal conductivity and as value

relative to the declared value.

The results are shown in Table 7.1, 7.2 and 7.3 on the following pages. The results are given in

a spreadsheet with the following information.

Construction Number linked to the construction according to the list in Chapter 4

Description A short description presenting the type of construction

Insulation material Type of insulation material

Fm Moisture conversion factor as defined in EN ISO 10456 (1999). The

design value of the thermal conductivity (taking into account moisture) is

the moisture conversion factor multiplied with the declared value

% Percent difference between declared and design value. A positive value is

stated when the design value is higher than the declared.

Secondary insulation In case there is more than one insulation material in the construction, the

type of insulation material is given
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7DEOH���� Moisture conversion factor and increase in thermal conductivity for insulation materials
Construction Description Insulation material Fm % Secondary insulation Fm %

1.1 Light weight aggregate concrete deck above

crawl space

Mineral wool 1.0007 0.1 Mineral wool 1.0007 0.1

Perlite (expanded stone material) 0.9749 -2.5 Mineral wool 1.0007 0.1

Cellulose fibre 0.9854 -1.5 Mineral wool 1.0007 0.1

Flax 1.0033 0.3 Mineral wool 1.0007 0.1

1.2 Insulation between joists above crawl space Mineral wool 1.0007 0.1 Mineral wool 1.0007 0.1

Cellulose fibre 0.9764 -2.4 Mineral wool 1.0007 0.1

Flax 0.9954 -0.5 Mineral wool 1.0007 0.1

2.1 Concrete slab on grade Mineral wool 1.0007 0.1 Mineral wool (structural) 1.0049 0.5

Expanded Polystyrene 1.0033 0.3 Mineral wool (structural) 1.0049 0.5

Perlite (expanded stone material) 0.9766 -2.3 Mineral wool (structural) 1.0049 0.5

Cellulose fibre 0.9956 -0.4 Mineral wool (structural) 1.0049 0.5

Flax 1.0134 1.3 Mineral wool (structural) 1.0049 0.5

Mineral wool 1.0008 0.1 Expanded Polystyrene 1.0041 0.4

Expanded Polystyrene 1.0033 0.3 Expanded Polystyrene 1.0041 0.4

Perlite (expanded stone material) 0.9763 -2.4 Expanded Polystyrene 1.0041 0.4

Cellulose fibre 0.9945 -0.5 Expanded Polystyrene 1.0041 0.4

Flax 1.0123 1.2 Expanded Polystyrene 1.0041 0.4

2.2 Light weight aggregate concrete slab on

grade

Mineral wool 1.0007 0.1 Light weight aggregate 1.0014 0.1

Expanded Polystyrene 1.0033 0.3 Light weight aggregate 1.0014 0.1

Perlite (expanded stone material) 0.9761 -2.4 Light weight aggregate 1.0014 0.1

Cellulose fibre 0.9940 -0.6 Light weight aggregate 1.0014 0.1

Flax 1.0121 1.2 Light weight aggregate 1.0014 0.1

3.1 Basement wall w. ext. insulation Mineral wool (structural) 1.0046 0.5

Expanded Polystyrene 1.004 0.4

3.2 Basement wall w. int. insulation Mineral wool (structural) 1.0043 0.4

Expanded Polystyrene 1.0036 0.4
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7DEOH���� Moisture conversion factor and increase in thermal conductivity for insulation materials
Construction Description Insulation material Fm % Secondary insulation Fm %

4.1 External insulation with stucco Mineral wool (structural) 1.0043 0.4

4.2 External wall insulation with cladding Mineral wool 1.0007 0.1

Cellulose fibre 0.9909 -0.9

Flax 1.0113 1.1

4.3 Massive cellular concrete wall Cellular concrete 1.0862 8.6

5.1 Internal insulation with interior vapour

retarder

Mineral wool 1.0007 0.1

Cellulose fibre 0.9860 -1.4

Flax 1.0058 0.6

5.2 Internal insulated wall with embedded va-

pour retarder

Mineral wool 1.0007 0.1

Cellulose fibre 0.9889 -1.1

Flax 1.0089 0.9

5.3 Wall with Internal insulation Mineral wool 1.0007 0.1

6.1 Cavity wall with HD insulation Mineral wool (structural) 1.0053 0.5

6.2 Cavity wall with loose-fill-insulation Mineral wool (structural) 1.0019 0.2

Perlite (expanded stone material) 0.9844 -1.6

6.3 Cavity wall with partly filled loose-fill

insulation

Mineral wool 1.0007 0.1

Cellulose fibre 0.9889 -1.1

Flax 1.0093 0.9

7.1 Light weight wall with vapour retarder and

light rain screen

Mineral wool 1.0007 0.1

Cellulose fibre 0.9889 -1.1

Flax 1.0084 0.8

7.2 As 7.1 with vapour barrier Mineral wool 1.0007 0.1

8.1 Concrete sandwich element Mineral wool 1.0017 0.2

Expanded Polystyrene 1.0034 0.3
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7DEOH���� Moisture conversion factor and increase in thermal conductivity for insulation materials
Construction Description Insulation material Fm % Secondary insulation Fm %

9.1 Unventilated roof Mineral wool (structural) 1.0077 0.8

Expanded Polystyrene 1.0032 0.3

10.1 Ventilated low-slope roof Mineral wool 1.0009 0.1

Perlite (expanded stone material) 0.9756 -2.4

Cellulose fibre 0.9926 -0.7

Flax 1.0120 1.2

10.2 Ventilated sloped roof Mineral wool 1.0007 0.1

Cellulose fibre 0.9769 -2.3

Flax 0.9955 -0.5
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As seen from Table 7.1 to 7.3, the effect of moisture levels above standard conditions (23EC, 50%

RH) is a change in thermal conductivity between -2.5% and +8.6%. The negative correction, i.e.

where the moisture content of the insulation is lower than that of the reference conditions, is

mainly found for perlite (expanded stone material) and most constructions with cellulose fibre

insulation. The positive corrections are generally found for the massive cellular concrete wall and,

with smaller corrections, for mineral wool, polystyrene and flax insulation.

����(IIHFW�RI�PRLVWXUH�FRQWHQW�DW�UHIHUHQFH�FRQGLWLRQV
The change in thermal conductivity depends on the moisture content of the insulation materials

at reference conditions (23EC and 50% relative humidity). In the literature it is possible to find

several different values for the moisture content at reference climatic conditions for the same type

of insulation material. As this moisture content has a large influence on the results of the

calculations, it was decided to search for alternative values reported in the literature. Two

materials were of special interest here, namely insulation materials based on cellulose fibre or

flax.

The search for literature resulted in the following values for the moisture content at reference

climatic conditions.

&HOOXORVH�ILEUH�LQVXODWLRQ
0.110 kg/kg is reported by EN 12524 (2000)

0.075 kg/kg is reported by Hansen et al (1999)

)OD[
0.060 kg/kg is reported by FIW (2000)

0.080 kg/kg is reported by Hansen et al (1999)

The results of the search for literature show that large differences exist for the moisture content

of cellulose insulation. The raw data which lies behind the value that is reported in EN 12524

(2000) is not referenced and it is therefore not possible to make a scientific comparison of the two

sets of raw data.  However, as the measurements which are reported by Hansen et al (1999) is

made on materials that are available and sold in Denmark, a series of calculations are also made

for this set of data.

The values of moisture content at reference conditions, which have been reported by Hansen et

al (1999) corresponds to the sorption isotherm which is used by the calculation tool during the

modelling of heat and moisture transfer. The sorption isotherm for cellulose fibre is shown in

Figure 7.1. Figure 7.1 also shows the moisture content at reference climatic conditions for

cellulose fibre as specified by EN 12524 (2000).
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)LJXUH���� Sorption curve and moisture content at reference climatic conditions for
cellulose fibre

Figure 7.1 shows that the sorption curve which is used by the calculation tool lies significantly

lower than the moisture content under reference climatic conditions which is reported in EN

12524 (2000). However, for other materials the situation might be the opposite with the value

from EN 12524 (2000) falling below the values of the sorption isotherm used in the calculation

tool. This situation is not shown in Figure 7.1.

An almost similar situation is seen when examining the results from the models containing perlite

as insulation materials. In EN 12524 (2000), perlite has a moisture content at reference conditions

of 0.01 kg/kg. However, the sorption curve which is used in the calculation tool shows perlite to

have a moisture content of below 0.001 kg/kg. This difference is the cause of the negative

corrections for perlite that are presented in Tables 7.1 to 7.3.

The results of the extra calculations are reported in Table 7.4, 7.5 and 7.6. Only values that have

been changed compared to the results in Table 7.1 to 7.3 are presented in Tables 7.4 to 7.6.
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7DEOH���� Moisture conversion factor and increase in thermal conductivity using material data provided by Hansen et al (1999)
Construction Description Insulation material Fm % Secondary insulation Fm %

1.1 Light weight aggregate concrete deck above

crawl space

Cellulose fibre 1.0028 0.3 Mineral wool 1.0007 0.1

Flax 0.9933 -0.7 Mineral wool 1.0007 0.1

1.2 Insulation between joists above crawl space Cellulose fibre 0.9937 -0.6 Mineral wool 1.0007 0.1

Flax 0.9855 -1.5 Mineral wool 1.0007 0.1

2.1 Concrete slab on grade Cellulose fibre 1.0132 1.3 Mineral wool (structural) 1.0049 0.5

Flax 1.0033 0.3 Mineral wool (structural) 1.0049 0.5

Cellulose fibre 1.0121 1.2 Expanded Polystyrene 1.0041 0.4

Flax 1.0022 0.2 Expanded Polystyrene 1.0041 0.4

2.2 Light weight aggregate concrete slab on

grade

Cellulose fibre 1.0116 1.2 Light weight aggregate 1.0014 0.1

Flax 1.0020 0.2 Light weight aggregate 1.0014 0.1
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7DEOH���� Moisture conversion factor and increase in thermal conductivity using material data provided by Hansen et al (1999)
Construction Description Insulation material Fm % Secondary insulation Fm %

4.2 External wall insulation with cladding Cellulose fibre 1.0084 0.9

Flax 1.0012 0.1

5.1 Internal insulation with interior vapour

retarder

Cellulose fibre 1.0034 0.3

Flax 0.9958 -0.4

5.2 Internal insulated wall with embedded va-

pour retarder

Cellulose fibre 1.0064 0.6

Flax 0.9988 -0.1

6.3 Cavity wall with partly filled loose-fill

insulation

Cellulose fibre 1.0064 0.6

Flax 0.9993 -0.1

7.1 Light weight wall with vapour retarder and

light rain screen

Cellulose fibre 1.0063 0.6

Flax 0.9984 -0.2
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7DEOH���� Moisture conversion factor and increase in thermal conductivity using material data provided by Hansen et al (1999)
Construction Description Insulation material Fm % Secondary insulation Fm %

10.1 Ventilated low-slope roof Cellulose fibre 1.0101 1.0

Flax 1.0020 0.2

10.2 Ventilated sloped roof Cellulose fibre 0.9942 -0.6

Flax 0.9860 -1.4
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Comparing the results reported in Tables 7.1 to 7.3 with the results in Tables 7.4 to 7.6, it is seen

that there are differences between the reported values for constructions using cellulose fibre or

flax as insulation material. These differences exist because of changes in the moisture content

under reference climatic conditions (23EC, 50% RH).

Besides the investigation of the influence of the moisture content at reference conditions, other

parameters are also to be examined. To see if there is an effect of changing some of the

parameters in the models, a variation of parameters and a sensitivity analysis is performed. The

sensitivity analysis and variation of parameters is performed for the following parameters.

• Internal boundary conditions

• External boundary conditions

• Sorption isotherm

The sensitivity analysis and variation of parameters is performed for construction 6.3 “Cavity wall

with partly filled loose-fill insulation” with cellulose fibre insulation using a declared value of

the thermal conductivity of 0.039 W/mK.

����,QWHUQDO�ERXQGDU\�FRQGLWLRQV
Besides the model which is already constructed, two more models are made. In the first model

the internal moisture addition (compared to the external climate) is lowered by 2 g/m3 compared

to the reference situation, i.e. that the moisture addition varies between 0 g/m3 and 1 g/m3 during

the year. No other parameters of the model is changed. In the second model the internal moisture

addition is increased by 2 g/m3 compared to the reference situation i.e. the moisture addition

varies between 4 g/m3 and 5 g/m3. The low moisture addition may be found in storage facilities

etc., the average moisture addition may be found in homes and the high moisture addition may

be found in some industrial buildings and swimming baths. 

The following design values of the thermal conductivity is obtained:

Design value for insulation using model with low moisture addition 0.03851 W/mK

Design value of insulation using model with average moisture addition 0.03857 W/mK

Design value of insulation using model with high moisture addition 0.03862 W/mK

From the design values it can be seen that the effect of the indoor climate on the thermal

performance using the given variation of moisture addition result in a change of the thermal

conductivity of approximately ±0.14%.

����([WHUQDO�ERXQGDU\�FRQGLWLRQV
To examine the effect of the external climate two more models are made, one without the effect

of driving rain and one model where the intensity of driving rain is doubled, i.e. the amount of
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driving rain corresponds to the amount of free falling rain.

The following design values of the thermal conductivity is obtained:

Design value for insulation using model with no driving rain 0.038552 W/mK

Design value of insulation using model with average driving rain 0.038568 W/mK

Design value of insulation using model with high driving rain 0.038571 W/mK

From the design values it can be seen that there is an effect of the driving rain on the thermal

performance of the insulation material.  Still, the effect is small (±0.04%) compared to e.g. the

effect of the indoor climate on the thermal performance.

����6RUSWLRQ�LVRWKHUP
The influence of the sorption isotherm on the results of the calculations is examined by varying

the relationship between the relative humidity and the resulting moisture content of the insulation

material.

One calculation is performed using the sorption isotherm with the values shown in Table 5.6. To

see the influence of changing the sorption isotherm, the moisture content was first decreased 10%

below and later increased 10% above the reference values. The two new sorption isotherms are

referenced to as “low sorption isotherm” and “high isotherm”.

The following design values of the thermal conductivity is obtained:

Design value for insulation using model with low sorption isotherm 0.038398 W/mK

Design value of insulation using model with average sorption isotherm 0.038568 W/mK

Design value of insulation using model with high sorption isotherm 0.038741 W/mK

The results of the calculations show that a change in the sorption isotherm have a small influence

on the thermal conductivity of the insulation material. In this instance, where the values of the

sorption isotherm is decreased or increased by 10%, the change in thermal conductivity for the

insulation material is ±0.44%.

����(YDOXDWLRQ�RI�UHVXOWV
The results in Table 7.1, 7.2 and 7.3 show that moisture conditions have an influence on the

thermal conductivity of insulation materials, in some instances the design value of the thermal

conductivity is lower than the declared value and in some instances the design value is higher

than the declared value.

Under the defined standard conditions, differences between the declared value and the design

value is mostly found for insulation based on perlite (expanded stone material), cellulose and flax.

The moisture levels which are found in the insulation materials changes the thermal conductivity

by up to 2.5% under specified climatic conditions and material properties.
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Although exact results are given for each insulation material in each construction, the thermal

conductivity may change if other climatic conditions and material properties are considered. A

sensitivity analysis for specific cases shows that the changes in thermal conductivity because of

changes in climatic conditions and material properties may amount to:

Indoor boundary conditions: ± 0.14%

Outdoor boundary conditions: ± 0.04%

Material properties: ± 0.44%

These values should be compared with the changes in thermal conductivity just because of the

inclusion of moisture in the calculations. As the thermal conductivity of insulation material may

be changed by between -2.5% and +8.6% when standard climatic conditions and material

properties are used, the above mentioned changes due to uncertainty regarding climate and

material properties may seem large. However, of the three aspects, only the first two have to be

addressed by a designer. The last of the three aspects should be minimized by performing series

of measurements on samples of the different materials.

If only the first two aspects are considered, the uncertainty seems relatively small compared with

the changes in thermal conductivity according to Table 7.1, 7.2 and 7.3.
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8. CONCLUSION 
 
A method has been developed that makes it possible to estimate both the moisture conversion 
factor and the design values of the thermal conductivity for a number of insulation materials - 
including both traditional and so-called alternative products. The method is based on 
information about the composition of the building envelope constructions and prescribed data 
regarding material properties and boundary conditions. 
Determination of the moisture conversion factor and the design value of the thermal 
conductivity are performed according to EN ISO 10456. A heat and moisture calculation 
model is used to calculate the moisture conditions used as input for the method in EN ISO 
10456. The moisture conditions in the insulation materials in typical Danish constructions 
coupled with EN ISO 10456 gives the thermal conductivity of the insulation materials where 
an average, weighed with the energy used for heating throughout the year, is obtained. 
The results of calculations for constructions and conditions chosen for analysis in this project 
are that, depending on the type of insulation material and its application, the influence from 
moisture on the thermal conductivity is somewhere between -2.5% and +1.3% for multi-
layered, insulated constructions, but +8.6% for a massive outer wall of cellular concrete. In 
this context it should be noted that the results are quite sensitive to values asserted for the 
moisture content of the insulation material at reference conditions (23°C, 50% relative 
humidity). A particular problem arises when the sorption data needed for the calculation 
model are not consistent with the reference data taken from EN 12524, since this alone will 
cause a deviation between the calculated moisture contents and the moisture content at 
reference conditions – and thus result in moisture conversion coefficients different from zero.  
For the method developed in this project to be applied in practice, it must strongly be 
recommended that as exact values as possible of the moisture content at reference conditions 
are determined for each of the examined insulation materials, and that sorption curves exist 
which are consistent with the reference conditions. Furthermore, it must be stressed that the 
results of the calculations can be very sensitive to the boundary conditions.  
Consequently, it must be emphasized that the results from the calculations reported in this 
work are under the assumption of the prescribed boundary conditions, material properties etc. 
There may exist cases where the prescribed values are not representative or appropriate, and 
in such cases, a thorough examination of the conditions and the results following calculations, 
is strongly recommended. 
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