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SUMMARY

This paper deals with the ultimate load-carrying capacity of
shear walls based on the plastic theory.

A theoretical model which is a strut or a diagonal compression
field combined with triangular homogeneous stress fields is
derived to predict accurately the ultimate load-carrying
capacity of reinforced concrete shear walls. The method
developed can be used together with simple standard
programs, e.g.optimization programs. This may used for the
design of earthquake resistant structures.

The walls with different height-width ratios and with
rectangular, barbell and flanged sections subjected to
vertical loads as well as lateral loads which may be applied
monotonicly, repeatedly or cyclically can be treated by the
method developed. The theory is valid for shear walls using
normal strength materials and ultra-high strength materials.

The theoretical results found by the method have been

compared with test results available in the literature. A
satisfactorily good agreement has been found.
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RESUME

Denne rapport behandler bestemmelse of baereevnen af vaegge af
armeret beton pavirket til forskydning v. h. a.
plasticitetsteorien.

En teoretisk model bestdende of tryksteenger kombineret med
trekantede omrader med homogene spaendingstilstande udvikles
med det formal at beregne baereevnen of veeggene.

Metoden kan kombineres med simple standard rutiner udviklet
til automatisk databehandling. Teorien vil have stor betydning
for beregning of jordskeelvspavirkede konstruktioner.

Vagge med forskellige hgjde-bredde forhold og med
rektanguleert tveersnit, segjleforsteerket tvaersnit og tveersnit
med flanger pavirket med lodrette sével som vandrette
belastninger behandles. Belastningen kan vaere enten monoton,
alternerende eller cyklisk.

Teorien desekker béde normalstyrkebeton og hgjstyrkebeton
ligesom armeringen kan have sédvel lav som meget hgj
flydespzending.

De teoretiske resultater er sammenlignet med et stort antal

forseg fra litteraturen. Der er fundet en tilfredsstillende
- overensstemmelse mellem teori og forseg.
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NOTATIONS
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Height of wall; distance

Gross area of section

Longitudinal reinforcement area in boundary element

Width of boundary element of wall

Cohesion parameter; concrete cover

Coefficient of variation

Resultant compressive force in boundary element

Effective width of section in bending calculations

Parameter determining the position of transverse load on the
wall

Seperation resistance of concrete

Uniaxial compressive strength of concrete

Plastic compressive strength of concrete, defined as fo*= v
Yield strength of reinforcement in boundary element

Yield strength of vertical web reinforcement

Yield strength of horizontal web reinforcement

Total width of wall

Effective width of wall in shear calculation, defined as h. =h-
2¢

Width of web

Distance between the centre of the boundary elements of wall
Bending Yield moment

P

td® f,

Dimensionless bending yield moment, defined as M=

Normal force
Normal direction; dimensionless normal force, defined asn
N
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thf,

Dimensionless effective normal force, defined as n* =

thvf,
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Px
Py

Transverse load

Thickness of web

Thickness of boundary element

Resultant force of tensile reinforcement

Total yield force of the tensile reinforcement in the
longitudinal direction of wall, defined as Ty =2A«fvr+ @<fyx tho
Relative velocity vector

External work

Internal work

Distance

Height of biaxial compression area corresponding to strut
Height of biaxial compression area corresponding to a
triangular area

Mean value

Height of compression zone in section for bending failure;
Width of biaxial compression area corresponding to strut
Thickness of strut ’

Width of biaxial compression area corresponding to
triangular area

Inclination of relative velocity to y-axis

Inclination of relative velocity to yield line

Inclination of yield line to x-axis

Principal strains

Inclinations of concrete compression to x-axis

Coefficient of friction

Concrete effectiveness factor

sl

Reinforcement ratio in boundary element, defined as ¢1 = h

Vertical reinforcement ratio in web

Stirrup reinforcement ratio in web

Nominal longitudinal reinforcement degree of wall,

defined as ®=2@ 1+ <+ n (for upper bound solutions) and
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(I)*

D

Cs

Ox

=@+ g;—"— +§ (for lower bound solutions )

Longitudinal reinforcement degree in boundary element,
A f
definedas @=L

]

Longitudinal reinforcement degree in web, defined as

f,
o =¢x Yx
f

c

Effective nomial longitudinal reinforcement degree of wall,
defined as @* e
v
Effective reinforcement degree in boundary element, defined
o)
as OF =—L
v

Effective longitudinal reinforcement degree in web, defined

]
as O =—=
v

Normal stress, Standard deviation

Normal stress at the bottom of a wall along the edge of the
strut

Normal stress in concrete at the bottom of a wall along the
edge of a triangular area

Tensile stress of reinforcement in boundary element

Tensile stress of vertical reinforcement in web

Tensile stress of stirrup reinforcement in web

Shear stress; Average shear stress

Shear stress at the bottom of a wall along the edge of the
strut

Shear stress along the edge of a triangular area of a wall

q)y fYy

Shear reinforcement degree in web, defined as y =

c
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CHAPTER I. INTRODUCTION

1.1 General

Reinforced concrete structural walls have been favored for the
design of multistory buildings in seismic zone areas because
they provide an efficient bracing system and offer a great
potential for lateral load resistance and drift control. Therefore,
in the world, there are many research projects regarding
reinforced concrete shear walls.

Denmark has a long history for developing failure theories.
These are also applicable in seismic design . Generally in
structural analysis, it is of great importance to be able to
calculate the ultimate load-carrying capacity and the
deformations of a structure. The theory of plasticity has been
used for concrete structures in Denmark for a long time,
and now it is becoming to be accepted in more and more
parts of the world. The plastic theory of concrete can lead to a
thorough understanding of the failure mechanisms, and can
determine the strength of structures in the ultimate limit
state in a simple manner by introducing a few experimental
parameters.

The stiffness of the structure will decrease when the
structure cracks and further when it reaches the stage of
plasticity, which makes it very complex and difficult to
_calculate the load-carrying capacity and the deformations of
the structure by common elastic-plastic methods. Therefore,
very often implementation of computer methods is not
practicable due to the huge amount of CPU-time required.

This paper deals with the theory of the ultimate capacity of
shear walls based on the plastic theory. The result of this
study proposes a simple method to predict accurately the



ultimate load-carrying capacity of shear walls. The method
developed can be implemented in simple standard programs,
e.g. optimization programs. This will be useful for the design
of earthquake resistant structures

The walls dealt with have rectangular, barbell and flanged
sections and are subjected to vertical loads as well as lateral
loads transmitted by the floors. Shear walls are therefore
subjected to axial compression, bending moment and shear
force.

The ultimate load-carrying capacity of shear walls may be
governed either by bending failure or shear failure. Special
attention is given to the shear failure mechanism that results
from a combination of a strut action and a diagonal
compression field. The theoretical results found on the basis
of the plastic theory of concrete have been compared with test
results performed in other countries. A satisfactorily good
agreement has been found.



1.2 Historical Survey

1.2.1 Overview

The theory of plasticity is a branch of mechanics of
materials. This theory deals with materials that can deform
plastically under constant load when the load has reached a
sufficiently high value. Such materials are called perfectly
plastic materials, and the theory dealing with the
determination of the load-carrying capacity of structures
made of such materials is called limit analysis. The
development of plastic theory of reinforced concrete
structures has gone through several stages: First, the yield
hinge method for beams and frames was developed; second,
the yield line theory for slabs; third, disk and shell theory.
During the development a consistent theory containing
upper- and lower-bound theorems has been established.

The use of the plastic properties of reinforced concrete
structures goes back to the turn of the century. In the
Danish code of reinforced concrete of 1908 we find the first
traces of a theory of plasticity in the principles given for
calculation of continuous beams.

The important development of the plastic theory for
reinforced concrete slabs was initiated by A. Ingerslev
[21,11 [28,1]. Ingerslev based the calculation of
.homogeneously reinforced slabs on the assumption of a
constant bending moment along certain lines, called yield
lines, and he gave several examples of the application of
the method.

Later, K. W. Johansen made an essential extension of
Ingerslev’s method. In his works [31,1] [32,1] [43,1] [62,1]
the yield lines, besides the statical, have a geometrical




significance as lines along which a plastic rotation is
taking place at the collapse load. Hereby it was made
possible to estimate yield line patterns by purely
geometrical considerations and to calculate upper bounds
for the load carrying-capacity by the work equation.

One of the most important improvements in the
development of the plastic theory was the establishment of
the so-called upper- and lower-bound theorems. The
general formulation of a complete theory for perfectly
plastic materials was given in 1936 by the Russian Gvozdev
[88,1] and independently by Drucker, 'Greenberg, and
Prager [52,1] [52,2], and has proved very valuable. These
important principles were also stated by Hill [51,1] [52,3].

Historically it is interesting to notice that Johansen proved
what is now called the upper bound theorem. The lower
bound theorem was considered evident by the early workers
of plasticity, so in Johansens mind there was probably
nothing new in the works of Gvozdev and Drucker,
Greenberg and Prager.

From 1960s there was growing interest in plastic theory for
reinforced concrete structures in the world. By the middle
1960s, the slab theory had obtained almost final form and
at that time it appeared as a special and useful case of the
general theory of perfectly plastic materials. The general
_theory of perfectly plastic materials for slabs was described
by Nielsen [62,2] [64,1], Wood [61,1] as well as Sawczuk and
Jaeger [63,1], and Massonnet and Save [63,2].

The theory of disks with a complete set of formulas for
orthogonal reinforcement was set up by Nielsen in 1963
[63,3] [64,2] and a complete set of formulas for skew
reinforcement in 1969 [69,1].



Within the 1970s, the plastic theory has been applied to a
number of nonstandard cases, principally shear in plain and
reinforced concrete by Nielsen [78,1], Braestrup [77,1], at
the Technical University of Denmark. Similar research has
been carried out at various other institutions. Most of the
results obtained during that period were collected in the
conference reports [78.2] [79.1][79.2] and [79.3].

From 1970s, the theory of plasticity began to be widely
accepted. In 1982, W. F. Chen published a general
description of concrete plasticity in his book [82.1]. Nielsen
presented an introduction to applications of plastic
theories for the design of concrete structures in the book “
Limit Analysis and Concrete Plasticity” [84.1].
Particularly useful results have been obtained regarding
the strength of slabs, beams and shear walls under shear,
torsion, and combined actions [73.1] [74.2] [78.3] [80.1]
[85.1] [95.1]. Rational models have been proposed which are
adequately accurate and sufficiently simple and general for
practical applications. These developments have had a big
influence on the formulation of European codes. In North
America, similar proposals for shear and torsion design
found wide attention mainly from contributions by Vecchio,
Collins [78.3][80.3] [81.2] [82.2] [86.2].

During this time, much research work based on the plastic
theory has been carried out with the objective of developing
an understanding of the behavior of shear walls. Firstly the
yield hinge method and elasto-plastic analysis were used to
analyze shear walls [68.1] [70.1]. Similarly Paulay has used
the plastic hinge method and the conception of ductility to
analyze and design shear walls [76.1] [82.3] [92.1].

s



Later on, plastic theories with slightly different models
were developed. The models used in shear wall analysis are
mostly extended from beam theory.

1.2.2 -Shear Wall Analysis

Shear walls can be defined as vertical cantilevers or squat shear
walls (according to the ratio between the height and the width),
with various cross sections such as rectangular, I (barbell and
flanged), box , and other elevator wall sections. The shear walls
support the vertical load, in addition to their function to stiffen
the structures by their resistance to lateral loads due to wind,
earthquake or blast. Although interior and exterior concrete
walls have been used to stiffen structures as long as reinforced
concrete itself has been in use, the modern concept of shear
walls designed as vertical slender cantilevers were first utilized
in 1948 in housing projects in New York City and in Chicago in
buildings designed for wind forces, to augment the lateral
resistance of the frames [74. 1].

Analysis for lateral loads on buildings containing shear walls
was carried out initially, in the 1950s, by assigning all the
lateral loads to the shear walls, since it was felt that the very
big difference in stiffness between the shear walls and the frame
would cause the shear walls to carry the total lateral loads.

Shear walls can be classified as (a) short shear walls ( a/h, less
than about 1), and (b) slender shear walls ( a’h, more than 2 ).
Short shear walls are mostly governed by their shear strength,
while slender shear walls are cantilever beams controlled by
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flexure. Another possible classification of shear walls is
according to the geometry of the section: rectangular sections,
and I-sections (barbell and flanged).

Several models are used in the analysis of shear walls. The
most common models used in the analysis of shear walls are
the strut-and-tie model and the truss model.

The strut and tie model is as old as reinforced concrete theory
and was normally called a truss model in the old days [22.1]
[28.1]. The load in this type of model is carried by concrete bars
subjected to compression and tensile bars made up by the
reinforcement bars. This model has played an important role
when the modern reinforcement theory started to develop [63.1]
[63.2] [69.1] and has also been extensively used in practical
design for many years [85.1] [86.5] [90.2] [93.1] [93.2].
Figurel.l illustrates the strut-and-tie model.

N

—— «———compression
+— — tension

Fig. 1.1 Strut-and-tie model of a shear wall

Aoyama and H. Shiohara [86.5] used the strut-and-tie
model to calculate the stress field and to predict the
ultimate shear load of some perticular shear walls and got

11



good correlation with experimental results. Also by using
this model, W.B. Siao found good agreement with test
results when predicting the shear capacity of reinforced
concrete walls with height-to-width ratios less than or equal
to 1[94.1].

The truss model is the most widely used model in shear
design and analysis. In its simplest form, a wall acts as a
statically determinate truss as illustrated in Fig. 1.2. The
concrete between the cracks forms the struts of the truss;
the longitudinal reinforcement becomes the longitudinal
chords of the truss. Finally the transverse reinforcement
makes the tensile ties. Although the truss analogy is a
relatively simple model, it is convenient and reasonable for
explaining the shear transfer mechanism in a thin web with
boundary elements.

Shear Reinforcement
ties

—

and

Boundary Element

. . —]
in Tension Boundary Element in
e

Compression

Compressive
Strut

AN
ANE 43\4;\

l by |

I 1
Fig. 1.2 Truss model for a reinforced concrete wall
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Oesterle et al [84.3] based on his experimentation and study
reported that the determination of the shear capacity and
the failure criteria may be found using the truss analogy
model.

Based on equilibrium and compatibility conditions, as well
as a stress-strain relationship for softened concrete which
was proposed by Vecchio and Collins [81.2], Hsu and Mo
developed a soften truss model to predict the strength,
behavior, shear design and analysis of low-rise reinforced
concrete shear walls [85.2] [86.3] [87.1].

The modified truss analogy model is developed from the
truss analogy model for reinforced beams and has been
used in the ACI building Code. The applicability of this
model for low-rise structural walls subjected to earthquake-
induced loads has been questioned in discussions around
the ACI building Code [83.1] [83.2] ([86.1] and was
evaluated by Sharon L.Wood [90.1].

The compressive force and path method was first
developed by Kotsovos [83.3] [84.2] [88.1]. Lefas applied it
to structural walls [88.2] (see Figure 1.3). According to this
method the wall strength is related to the strength of the
concrete in the region of the path in which the compressive
forces are transmitted to the wall base. It is believed that
the shear force are carried through the wall and can be
visualized as a flow of compressive stresses within a path of
varying cross-section. Failure is considered to be associated
with the development of tensile stresses within a path
region. This method generally is used in walls which may be
identified with cantilever beams.

13
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trajectories
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_—
- /.’-
e’

T l

Fig. 1.3 Compressive force and path method for walls

In this paper a theoretical model shown in Fig. 1.4 as well as
Fig. 1.5 is developed. The model is a strut in combination with
triangular homogeneous stress fields which is suitable for squat
walls as shown in Fig. 1.4 or a diagonal uniaxial compression
field in combination with triangular homogeneous stress fields
which is proper for slender walls as shown in Fig.1.5.

The model developed has been inspired by a beam model used by
Jensen [81.1].

The triangular areas consist of two diagonal compression fields
. . N . . 7
with different uniaxial compression concrete stresses o, and

o which are inclined to the vertical axis by angles 6. and 6,

respectively, and one biaxial stress field with concrete
compressive stresses f. and o2 < f;.



Diagonal
compression

field

Triangular 5 R —
stress field T { ! \4) C

Fig.1.5 Diagonal compression field combined with triangular
stress fields

In this model, the boundary elements are treated as stringers.
The strut and the diagonal stress field carry the uniaxial

15



compression stress f: and o. < f; , respectively. The strut and
triangular areas deliver to the top slab and bottom slab shear
stresses and compression stresses. The horizontal component of
the uniaxial compression stress in the diagonal stress field is
eqiulibrated by the stirrups in the web and the vertical one is
eqiulibrated by the stringer forces.

If standard computer optimization routines are used, a strut or
a diagonal stress field at failure can be determined
automatically.

A large number of shear wall tests have been treated using the

theory proposed in this paper and the results from theory
coincide well with the experimental results.
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Chapter II. BASIC THEORY AND ASSUMPTIONS

2.1 Extremum Principles for Rigid-Plastic Materials

A rigid-plastic material is defined as a material in which no
deformations occur ( at all ) for stresses up to a certain limit, the
yield point. For stresses at the yield point, arbitrarily large
deformations are possible without any change in the stresses. In
the uniaxial case, a tensile or compressive rod, this case
corresponds to a stress-strain curve as shown in Fig.2.1. The
stress, the yield stress, for which arbitrarily large strains are
possible, is denoted fy . In the figure the yield stresses for tensile
and compressive actions are assumed equal.

(¢

s

fr

—fy

Fig.2.1 Uniaxial stress-strain relation for a rigid-plastic
material

As long as the stresses in a body of a rigid-plastic material are
below the yield point, no deformations occur. This idealization
implies that we cannot determine the stress field in such a body
when the stresses are below the yield point. When the loading
increases to a point where it can be carried only by stresses at
the yield point, unlimited deformations are possible without
changing the load, if the strains (determined by the normality

17



condition ) correspond to a geometrically possible displacement
field. The body is then said to be subjected to collapse by
yielding. The corresponding load is called the collapse load or
the load-carrying capacity of the body. The terms yield load
and failure load will also be used. The theory of collapse by
yielding is termed limit analysis.

For determination of the load-carrying capacity of rigid-plastic
bodies the following extremum principles are very useful, see

[84.1] for a review.

The Lower-Bound Theorem

Any load corresponding to a safe and satically admissible stress
field is smaller than or equal to the yield load of the body.

A safe stress field is defined as a stress field correponding to
points within or on the yield surface, which is the surface
describing the combination of stresses giving rise to yielding.

A statically admissible stress field satisfies the equilibrium
equations including the statical boundary conditions.

The Upper-Bound Theorem

Any load found from the work equation for an arbitrary,
geometrically admissible failure mechanism is greater than or
_equal to the yield load of the body.

To determine the work absorbed by the body a flow rule is
needed. In plastic theory the strain increment as a vector is
assumed to be perpendicular to the yield surface. This condition
is termed the normality condition. In the work equation the
work done by the external force is equalised to the work
absorbed by the body.

18



The Unigueness Theorem

If the lowest upper bound and the highest lower bound coincide,
then an exact solution has been found, the coinciding upper and
lower bound being the yield load of the body.

2.2 The Solution of Plasticity Problems

Since the displacement and/or the stress field are often
discontinuous in plastic solutions, the governing equations are
different from those used in the elastic theory [84.1]. The
statical discontinuities can be illustrated as follows.

Consider a plane stress field which is devided into two parts I
and II by a curve I ( see Fig.2.2). According to the law of action
and reaction, only the following conditions have to be fulfilled
along I:

Therefore in a stress field satisfying the equilibrium conditions,
there might be a discontinuity in c; along ! which is called a line
of stress discontinuity. This is illustrated in Fig. 2.3.

19



Fig. 2.2 Coordinate system along a stress discontinuity line in a
disk

Fig. 2.3 Example of stress discontinuities in a disk

In plastic theory no analytical standard method can be used to
solve load-carrying capacity problems. Upper and lower bound
solutions can be found by the upper and lower bound theorems.
An upper bound solution is found by considering a geometrically
possible failure mechanism and by solving the work equation. A
lower bound solution is found by constructing a statically
admissible stress field corresponding to stresses within or on the
yield surface.

20



2.3. Modified Coulomb Material

For a large group of materials it appears that reasonable failure
conditions are attended by combining Coulomb’s frictional
hypothesis with a bound for the maximum tensile stress. The
resulting failure criterion makes it natural to distinguish
between two failure modes, sliding failure and separation
failure. In both cases the name refers to what we imagine the
relative motion between particles on each side of the failure
surface to be. At sliding failure there is motion parallel to the
failure surface, while motion at the separation failure is
perpendicular to the failure surface. By sliding failure in certain
materials, motion along the failure surface is combined with
motion off the failure surface.

Sliding failure is assumed to occur in a section when the
Coulomb frictional hypothesis is fulfilled; that is the shear
stress |t] in the section exceeds the sliding resistance, which, as
mentioned, can be determined by two contributions. One
contribution is cohesion, denoted c¢. The other contribution terms
from a kind of internal friction and equals a certain fraction p of
the normal stress ¢ in the section. The quantity p is called the
coefficient of friction. If ¢ is a compressive stress, it gives a
positive contribution to the sliding resistance; if ¢ is a tensile
stress, it gives a negative contribution.

The condition for sliding failure is therefore
|Tl:c-uc 2.1)
where c and p are positive constants and ¢ is counted positive

as a tensile stress. A material complying with this failure
condition is called a Coulomb material.
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Separation failure occurs when the tensile stress ¢ in a section
exceeds the separation resistance fa, that is, when the criterion

c =1 2.2)
is fulfilled.

A material complying with (2.1) and (2.2) is called a modified
Coulomb material .

As yield condition ( failure criterion ) for concrete we adopt the
hypothesis called the_modified Coulomb failure criterion which
is the hypothesis of Coulomb together with a limitation of the
tensile strength.

If conditions (2.1) and (2.2) are illustrated in a (o,t)-coordinate

system, we have the straight lines shown in Fig. 2.4 dividing the
plane into two regions.

Sliding Failure t=—c+ug

Saparation Failure o=fj

T__lfi%:l?{w o
P

Sliding Failure t=c—p¢

Figure 2.4 Rupture criterion for a modified Coulomb material.
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2.4 Assumptions

The yield condition for the composite material containing
concrete as well as reinforcement bars will be developed using
the rigid-plastic theory, and by using the failure criteria for
concrete as yield condition for concrete.

Concrete

The concrete is considered to be a rigid-plastic material obeying
the modified Coulomb failure criterion with zero tensile cutoff
(see Fig.2.5). The compressive strength is £* = v ., where £ is
the cylinder strength and v is an effectiveness factor.

_fc‘

. Figure 2.5 Yield condition for concrete in plane stress, the tensile
strength being put to zero.
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Reinforcement

We assume the reinforcement to be capable of carrying
longitudinal tensile and compressive stresses only. The
material is assumed to be rigid-plastic. In fig.2.6 the stress-
strain relation is shown. The yield strength of the reinforcement
is denoted f;. According to this assumption, the reinforcement
bars are unable to resist any lateral force, i.e., the dowel effects
are neglected.

fy

Figure 2.6 Uniaxial stress-strain relation for a reinforcement bar
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CHAPTER III UPPER BOUND SOLUTIONS FOR
SHEAR WALLS

In this chapter we will derive upper bound solutions for shear
walls which are subjected to a concentrated transverse load and
a vertical load both in the plane of the web.

The behavior of a structural wall within a storey of a
multistorey building may be idealized by an isolated wall as
shown in figure 3.1. The isolated wall comprises the boundary
elements (boundary columns or flanges) and central panel (web
). In practice, the central panel of a structural wall is usually
provided with uniform reinforcement, i.e. bars of same diameter
at equal spacing in both longitudinal and transverse direction.
The isolated wall is subjected to vertical and horizontal loads.

Vertical load

Transverse load
PR—

Top beam or slab

Web

Bottom beam or slab

I Reactions
Boundary elements

Fig.3.1 An isolated shear wall
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3.1 Basic Assumptions

Consider a shear wall as shown in Fig.3.1. The transverse load
P is transferred to the wall by means of a top beam or slab and
the wall transfers the force to the bottom beam or slab. The top
beam or slab might be subjected to normal stresses along the
horizontal face, which are statically equivalent to a normal force
N.

Besides the assumptions that we have made in section 2.4, we
further assume :

1) The wall is in a state of plane stress.

2) The boundary elements are treated as stringers, carrying
a force T positive as tension and a force C positive as
compression, respectively.

3) The normal stresses on the top beam or slab are assumed

to be statically equivalent to a compression force N acting
at the middle point of the top slab.
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3.2 Upper Bound Solutions

The upper bound solutions of beams, deep beams and corbels
without uniformly distributed reinforcement in longitudinal
direction were derived by Nielsen, Brastrup [77.1] , [78.1] and
[79.2] and Chen [88.3]. Based on these solutions, the author has
derived upper bound solutions of shear walls with uniformly
distributed reinforcements in two perpendicular directions and
with normal force.

Before starting to derive the formulae, we introduce the term
reinforcement degree, defined as being the ratio between the
force per unit of length that the reinforcement is able to carry
and the force per unit of length that the concrete is capable to
carry in pure compression. The reinforcement degree is denoted
@ for longitudinal steel ( in vertical direction ) and y for stirrup
steel ( horizontal direction ). So for the horizontal and vertical
directions, respectively, we have

_ Ay fri _ 01fn
T T L
P < Srx
®, = —= % (3.1)
N - (o}jff}'y

- The meaning of the notations is the following:

@y, Ag, f1, g1 ;. the reinforcement degree, the area, the yield
strength and the ratio of the longitudinal
reinforcement in the boundary elements,
respectively.

27



Oy, frs, Ox the reinforcement degree, the yield strength
and the ratio of reinforcement in wvertical

. direction of web, respectively;

v, fyy, @y the reinforcement degree, the yield strength
and the ratio of reinforcement in horizontal
direction of web, respectively;

: the uniaxial compression strength of concrete;

t : the thickness of the web;

174 : the thickness of the boundary element;
h . : the total width of the cross section.

A yield line is a kinematical discontinuity line separating the
body into two rigid parts. One part is moving relative to the
other with the velocity v inclined at the angle o* to the yield
line (Fig.3.2b). The discontinuity is a mathematical idealization
of a narrow deforming zone ( Fig. 3.2a).

SnA
o*
(PntA v
n
(a) (b)

Fig 8. 2 Yield line in plain concrete

On the basis of the flow rule of perfectly plastic materials, the
normality condition, only the stress state (61, o2) = ( 0, — £%),
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corresponding to the lower right corner of the yield locus
(Fig.3.3) can produce the strain rate state in the zone.

G2, &

h

-+ GC1,€1

B ER) = (v, —vE) | )

Fig. 3. 3 Square yield locus for concrete in plane stress.

Hence the rate of internal work dissipated per unit area of the
yield line is given by ([79.2]) :

Wi = %vfc*( 1-sin’)  for w2 < o < W2 (3.2)

Here £*= vf. is the effective concrete compression strength.

The  principal directions of stresses and strain rates are
indicated on Fig. 3.2b. The first principal axis bisects the angle
between the relative velocity vector and the yield line normal.

" Fig 3.4 shows a shear wall subjected to the shear force P and the
normal force N. It is assumed that the failure mechanism
consists of a single yield line inclined at the angle B to the x-axis.
The relative velocity is v at an angle a to the y-axis.
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l h .
xT 1 N
P— ] —
\ vV oy
— 5 N&Y !
Ty \\
| F—0p — y

Fig.3.4 Failure mechanism of a shear wall with horizontal
stirrups subjected to transverse loading

The rate of internal work dissipated in the mechanism is :

th

th .
-_— * - -
VCOSOL+2 v £*[ 1- cos (B-o) ] sin,B+

Wi = @y fyy cosp sin
+Ty sina 3.3)

where equation (3.2) has been used.

In (3.3), Tv =2Aafu+ pufire th is the total yield force of the tensile
reinforcement in the longitudinal direction.

_The ranges of the variables o and B are:
a =20 and 0 < cotP <A (3.4)

where A = a/h is the shear span ratio.

30



The geometry of the wall imposes the upper limit on cotf. The
lower limit and the bound on o ensure that the stirrups and the
longitudinal bars are yielding in tension, respectively.

The rate of external work done by the loading is

W = vP cosa (3.5
If a normal force N is acting, the external work is

Wg = v P coso— v N sina ' (3.6)

Then the work equation Wg = Wi yields the upper bound
solution:

T 2ycosacos f+u] 1-cos(a— f)]+2Psinasin
f. 2sinfcose

3.7

Here T = P/th is the average ultimate shear stress, v is the
concrete effectiveness factor for shear, and we have introduced
the shear reinforcement degrees

@, fr
¥ o= 3.8
- - (3.9
and the nominal longitudinal reinforcement degrees
24
_ st fyi - @ frx + N 3.9)

th f, f. th f,

We may find the lowest upper bound by minimizing equation
(3.7) with respect to the variables o and B. The necessary
conditions are:
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. v-20
sina -

sinf = 0 (ot/00=0)

v-2¥

cosP - cosaa =0

(0t/3B=0)
which were derived by M.W. Braestrup [79.1].

The lowest upper bound solutions are found to be:

1 . . , a a ¥ o< ¥
e T

h T < 05

1 a a ¥ < ¥
-/1 i g P s '
2[ +(;) hj+ h {qw > 05

' ¥ o< ¥ <05

2/ (1-P)V(1-¥ i

‘f( ¥( ) {CI>‘<0.5

T

=]

&h
—
w
—
N

¥ <¥<05
JYO-F '

(-%) {qs > 05

¥ > 05

JO(-®

( ) {(D < 05

1 ¥ > 05
12 T > 05

Here
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o = 2
19)
. 4
o= g (3.11)
a
v o= Lo h
2

ﬁ@*(1—¢*)+(%)2

Since the formulae are based on upper bound solutions the
estimates for the ultimate shear stress 7 are greater than or
equal to the theoretical load-carrying capacity. Corresponding
lower bound solutions are determined by the construction of
statically admissible stress distributions, see Chapter IV. Only
for shear walls with strong main reinforcement or with very low
height/width ratio a/h (a/h < 0.5) the lowest upper bound
solutions coincide with the highest lower bound solutions.

b— b —

P
—_—
v
ok
B
(a) Failure mechanism (b) Stress distribution

Fig. 3.5 Shear wall without stirrup reinforcement

For shear walls without web reinforcement (w = 0) , the upper
bound solution is given by (3.10)1 with yv = 0. The failure

33



mechanism is shown in Fig.3.5a and the stress distribution is
sketched in Fig. 3.5b, consisting of a single strut between top
and bottom plate.

It should be noted that in the analysis the compression stringer
is yielding in tension. This means that longitudinal steel in both
boundary elements and web have to be taken into account when
the nominal longitudinal reinforcement degree @ is calculated

3.3 The Theoretical Curves of Upper Bound Solutions
for Shear Walls

Fig.3.6 shows the upper bound solutions for shear walls
subjected to a concentrated transverse loading versus the
longitudinal reinforcement degree and the shear reinforcement
degree. Here we have set v=1.

From Fig. 3.6, we see that the upper bound load-carrying
capacity is dependent on the different parameters in the
following way:

a. The load-carrying capacity is heavily dependent on the
height/width ratio a/h. The smaller the shear span ratio the
higher the load-carrying capacity.

'b. The load-carrying capacity is much influenced by the
longitudinal reinforcement degree ® when the value of @ is
small ( approximately ® < 0.3 ). With increasing ®-value, the
influence of @ on the load-carrying capacity is diminished. A
value of @ higher than 0.5 does not increase the load-carrying
capacity.
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c. Increasing y-values from y = 0 gives a fast enhancement of
the load-carrying capacity. The increasing t/vf-value for
increasing y-value is valid for y-values up to 0.5. Higher values
of ythan 0.5 do not increase the load-carrying capacity.

/6 a/h =0.25
0.5
©=0.5
=0.3
0.4
03
©=0,1
0.2
0.
v
V]
0 0 0.2 03 04 0.5 0.6 0.7 0.8 0.9 1

Fig. 3.6 Upper bound shear capacity of a shear wall loaded by
a concentrated transverse force versus the longitudinal
reinforcement degree and the shear reinforcement degree
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03

02
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0.0 0.1 0.2 0.3 0.4 05 08 07 08 0.8 1.0

Fig. 8. 6 (continued )

o/t alh=1
0.60

0.50

0.40

030

0.1

0.00
0.00 0.1 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 1.0

Fig. 8. 6 (continued )
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0.0 0.1 02 a3 04 0.5 0.6 0.7 08

Fig. 3. 6 ( continued )

1/fe a/h=3
06
05

®=05

04

iy

0.1

0.00 0.05 0.10 0.15 0.20 025 0.30 0.35 0.40 045 0.50

Fig. 3. 6 (continued )
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CHAPTER IV LOWER BOUND SOLUTIONS FOR SHEAR
WALLS

A solution which satisfies the equilibrium conditions and the
statical boundary and which is based on a safe stress
distribution is a lower bound solution for the load-carrying
capacity. In this chapter, lower bound solutions of shear walls
will be determined.

4.1 Lower Bound Solution for Shear Walls without
Stirrup Reinforcement

In this section we will derive a lower bound solution for
shear walls without stirrup reinforcement by using the
strut-and-tie model.

The concept of utilizing concrete to resist compression and
reinforcement to carry tension gives rise to the strut-and-
tie model. In this model, a concrete compression strut and
a steel tension tie form a truss that is capable of resisting
the load.

The strut and tie model will be used in this paper to calculate
the load-carrying capacity of shear walls. We will start by
treating the single strut.

Consider a wall with reinforced boundary elements on both
sides loaded by a transverse force P. Based on the assumptions
in section 3.1, the boundary elements can be treated as stringers
(see Fig.4.1).

The strut in Fig. 4.1 carries the uniaxial compression strength f.
of concrete [84.1]. The strut is loaded by the shaded area shown
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in Fig.4.1. This area is in biaxial hydrostatic pressure f.. The
shear span is a. The horizontal width of the strut is h.

P ?—’ L__YQ__,l Top Slab

Bottom Slab
\ /
Stringers Yo
— & ——

Fig. 4.1 Strut action in a wall.

Assuming the strut to be inclined to the vertical axis by the
angle 6, we have

tang = ~o = —_ Yo (4.1)

_If the strut carries the horizontal load P, the shear force along
the shear span a is

P=fxot (4.2)
t being the thickness of the web.

From formula (4. 2), we get
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P X,
Xy = = =

X _ P
tf, h o thf,

£
7 (4.3)

Here 1 is the average shear stress along the width h.

fes
I

Fig. 4.2 Stress distribution in a wall without stirrups
The strut delivers to the top slab and to the bottom slab a shear
stress 1s and a compression stress os both uniformly distributed
along yo' (see Fig. 4.2). These stresses are

1s = f. cosO sinb 4.4)

os = f: cos?0 4.5)

From Fig.4.1, the length y, ' is found to be
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1 — yO
Yo cos’ @ (4.6)

By equilibrium equation of the wall shown in Fig.4.2, the load
carried by the wall is

P=1y."t =1f y, t sinb cosb =£: y, t tand @7

Then the shear capacity is

_'_C._: i— o X_o_tana ) (4.8)
f  thf

3

Inserting (4.1) into (4.8) and using (4.3), we get a second degree

. . T
equation with respect to — :

(——)2+Z—f SR AS W A Ry R 4.9)

Solving equation (4.9), we find that the load carrying capacity of
a wall without stirrups is determined by

.. 1 o 2
Lz.z_{\/4-§z—(1—yh—°)+(%) —%} (4.10)

The maximum shear capacity of a wall without stirrups may be

determined by maximizing (4.10) with respect to y—};’ It appears

Yo =

that the highest lower bound is obtained when o 0.5,1ie.
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r_1 a, _3a
E_z[ fo 2y -2 ] @11

For a given value of the force or the stress in the tensile stringer
we need one more equation to determine the two unknowns, the
shear stress T and yo.

The force T in the tensile stringer may be expressed as

Gsl
Ti=Aq ca=D1

th (4.12)

Y1

where @ is the reinforcement degree, cq and fn are the tensile
stress at the bottom of the stringer and the yield strength of the
stringer reinforcement, respectively.

Taking moment about A in the bottom section (see Fig.4.2) :

Tlh—%o‘syo’zt= P(a+e) (4.13)

Here the parameter e determines the position of P on the top
slab. This moment equation leads to

T 3 a+e T Yo 2 051
(Tc) +2Tf—c+(—h—) —Z(leYI—O (414)

if equations (4.4) to (4.6) are used.

Combining equation (4.14) with (4.10), we may get the value of
—y—°—. Furthermore, the shear capacity of the wall can be

determined by the equation (4.10).
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If there is a uniform longitudinal reinforcement corresponding
to the reinforcement ratio ¢« in the web and a normal force N is
acting on the wall as shown in Fig. 4.8, the corresponding
subsidiary condition is found to be

lN

TOT P —5> X
i]k v Co
y
9 £
Tension a \O\ " | Compression
stringer stringer
Yo
T T ] 4
: 1 E T l C E Ci
i l (pxcsxht Cs :
—n 4

Fig. 4.3 Shear wall with longitudinal reinforcement in the web
loaded by transverse as well as normal forces

ate T

PRI R0 T, =0 )

Here @ is the longitudinal reinforcement degree in the web, osx
-and fyx are the corresponding stress and yield strength,
respectively.

The stringer force C; is determined by projection in x-direction
in Fig. 4.3 :

01:T1+Gsx(px th'*'N"'CSYO't
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9 4 %= p——_Yoygpt (4.16)
le xf}'x thfc h )

= (q)l

Since there are no stirrups in the wall, the stringer forces are
constant :

To=T 4.17)

Co=C1 (4.18)

If we assume all reinforcement to be yielding in tension, i.e. os=
fn and osx = fyx, we find the corresponding subsidiary condition :

T, ~8+€7T Voo
— P 42—+ () -2 =0 4.19
(2 (4.19)
Here
D n
O =@ x4 —
:t > +2 (4.20)

is the nominal longitudinal reinforcement degree for the lower

bound solution and n = is the dimensionless normal

<

force. It should be noticed that the value of the nominal
longitudinal reinforcement degree ® for the lower bound
solution is only half of that for the upper bound solution (see
. section 3.2)

If the load P is known, the necessary longitudinal reinforcement

degree can be determined by formula (4.19) combined with
formula (4.10).
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A result, T > 0 means a tensile force is in the boundary element
and C > 0 means a compression force in the boundary element.
Since only the stresses in the wall have been dealt with it has
been tacitly assumed that the top slab is able to carry the forces
acting on it. The solution obtained is also only a true lower
bound solution if the stringer force C is not decisive for the load-
carrying capacity.

The anchorage of the reinforcement and the whole design of the
support regions and the regions around the concentrated forces

are extremely important and may be decisive for the load
carrying capacity. The problem was described in detail in [81.1]

and [84.1].
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4.2 Shear Capacity of Shear Walls with Stirrup
Reinforcement

In this section we will treat shear walls with horizontal stirrup
reinfocement subjected to concentrated transverse loading as
well as normal forces .

Generally, a uniform minimum reinforcement in both vertical
and horizontal directions should be supplied in a shear wall. The
reinforcement in the horizontal direction (see Fig. 4.3) may be
taken into account by using a combination of strut action and
homogeneous stress fields. ‘

r—%‘-f,LH

Dx

Py

Fig. 4.4 Shear wall with web reinforcement loaded by transverse
as well as normal forces
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4.2.1 Strut_Solution Combined with Triangular Stress
Fields

When there is a uniform stirrup reinforcement in the web, we
suppose that there are two triangular homogeneous stress fields
each consisting of three parts in the area outside the strut. The
stress distribution in the wall is as shown in Fig. 4.5 (a).

The strut is inclined to the vertical axis by an angle 6 matching
yo. In the triangular area DA'D’ there are three different
homogeneous stress fields. The area I and the area II are
diagonal compression fields with uniaxial concrete stresses o,

and o}, respectively. The stress o} is inclined to the vertical
axis by angle 6 and must satisfy the following condition:

I

ol < f 4.21)

c

The stress o*f is inclined to the vertical axis by angle 6, which

satisfies the condition:
620 (4.22)

The area III is a biaxial stress field with principal concrete
compression stresses f; and o2 < ..

Both the strut and the triangular tress field are loaded by the
shaded area which is a biaxial stress field with concrete

- stresses f; (see Fig. 4.5 (2)) .

The part BB'D'D as well as the triangular part DA'D’ are shown
isolated in Fig.4.5 (b) and (c) .

In Fig.4.5 (b), by projection in the y-direction, we find that
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Fig. 4. 5 Shear wall with strut and homogeneous stress fields in
triangular areas
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xo*f, = QyOsy A =

Xo*=a y o5 (4.23)
fy,
Here
f
w = (pr vy (4.24)

is the reinforcement degree of the stirrups, ¢y , o5y and fyy are
the reinforcement ratio, the stress and the yield stress of the
stirrups, respectively.

Taking moment about the point O, the mid point of DD, we get

g, g,
y;:h—~y0—\/(h—yn)2 ~aw}i[a(l+w%—si)+2yotm9:l (4.25)
Yy

Yy

The concrete stresses in a diagonal compression field with
uniaxial concrete stress o., referred to the x,y- system shown in
Fig. 4.5, are

2 A
Ox =-0¢ cos” @=—-17,coth
- n? g = o
O'y = - 0 Sin = -7y tan f (4.26)
Ty =’Txy I:O'c sin @ cos @

Using the boundary conditions along D-D’
Oy + @yosy =0 .27
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and inserting it into (4.26), we obtain
T, =@p,0, cotl
(4.28)
Ty =@,0,, cotl,
I ¢7y O-sy 2
o, = ———= o . (l+cot”8
sinre 7y o /

(4.29)
I o ¢Y g sy -

4 = 1+ cot®@
c Sinzgl wyasy( l)-

The angle 6; may be determined by the following equation:

tang, = 1= Yo~ Yo (4.30)
X, + X,
or

tan @, = h_y"—y"o_ (4.31)

yotanf +ay —2

fy,

Since 61 > 6, it is obvious that o7 <o .

By an equilibrium condition in the x-direction in Fig. 4.5 (b)
7 (a-x)+7ix =y f (4.32)

we find
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v’ cotd—v"
v cotf-y,
Ty

¥ c., (4.33)

y(cotf—cotd,)

Yy
Here the equation (4.28) has been used.

The following geometrical relations may be found from Fig.4.5

®) :

I h-y,- ¥,

Oy
x+yotan€+y/af—
Y

Y

mo_ X(h"”YD)_ i

X+y,tand ( (434)

I 111

YO 1
= h—-—J0 _
y cos* @ y y

By projection in the y-direction in Fig.4.5 (c), we have :
Ly eyt eyt =9,0,a (4.35)
Thus the load carried by the wall is found by combining the

~strut with the triangular homogeneous stress fields as shown in
Fig. 4.6:

P=f ty, sinfcosf+t %7,y =ty f, tand+ ¢, o at (4.36)

=111

Here the equations (4.7) and (4.35) have been used.
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By means of equation (4.36) and using equation (4.10), the shear
capacity of the wall with stirrups may be determined by the
following equation :

f h f

c Yy

£ Yorq Yoy o2 2 _ 2 80y
{\/411(1 h)+(h) h]+t// (4.37)

P
ex—
o1 I
6
I
a Tension \<>\ Compression
stringer I f, stringer
- 5)
A 4 m A
- ool = 44— —
’I:en ‘ttm Tt Ts
Y
T G
tood ol ol fcos’®
A ! v 4 ¥ 'L Yo'
g h

Fig. 4.6 Stress distribution on the wall with stirrups

- In equation (4.37), the first term on the right hand side is the
contribution from the strut and the second one is the
contribution from the triangular homogeneous stress fields. The
stresses delivered to the bottom slab from the left triangular
area is shown in Fig. 4.5 (c) .
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Next we look for the subsidiary conditions for this case. Using
equations (4.26) and (4.29), it is easy to find that :

oc,=9¢,0,co0t’f
(4.38)
oy =9¢,0,cot’0,
By projection in x-direction in Fig.4.5 (c), we get
fyi—p o, (ycot’?8+y"cot’d
O,iII —_ OYO ¢y sy(y = y 1) (439)

y
Here (4.32) has been used.

Similarly, taking moment about point A in Fig. 4.6, we get

ar

I
Agouh-olty" (h-2) ol ty" (h-y" - L)~

yo

1
O'f‘tyl(y? =P(a+e) (4.40)

Yo
) Yotf °2cos* 0

Inserting equations (4.38) and (4.39) into (4.40), the following
subsidiary condition may be found :

)i I
T 20 Y Y 2 Y Y
T (h - <I>1Yl 2fv [cotelh(h Yy cot?e¥- ( h)]+
* 1 111
Yo, Y ¥ 1, Yo 2 4.41
h(1 h 2h) Z(hcose) (4.41)

For the case where there is a uniform longitudinal
reinforcement with reinforcement ratio @x in the web and where
a normal force N is acting on the wall as shown in Fig. 4.7, the
subsidiary condition is found to be:
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= Er - IEI___I_ xcsx AN WOy %0, v RANA A
£ h h fy 2 “fy 2thf, 2fy h h h
tze y y +30 y y Yo 2 4.42
-0 h(h h)] 3 W Z(hmse) (4.42)
lN
P
T, _? Co
1 el
a-x T‘Ctl l
P |
T ft]l a-x
X )i
= 1 % i
| A i »
T / ) Tt ‘_‘.t?i_ X ‘7'55‘7“ G
o e Tttt e
Tension stringer T, Ox ol ol ficos®™® ' Compression stringer
P)xcsxht
VA e
e h >

Fig. 4.7 Shear wall with uniform reinforcement in both vertical
and horizontal direction in the web loaded by
transverse as well as normal forces
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Having constant shear stress along each particular length, the
stringer forces vary linearly (see Fig. 4.7 ). The stringer forces
are as follows :

sl

(o]
Tl =Aslcsl= (I)l__—fc.ht
fYI

C, =T +o,0,th+N-c_y,'t- (0' y +GHyH+GIII vyt
1 1 X Vsx 0

*4n- (y° y")]f ht

le x fo

T, =T, —-1i(a-X)t—1rxt s (4.43)

Sa Yo
= ——=)f ht
(¢ 7 h) e

Y1
Co =C-1i(a-x)t-tlxt

2Y0

=[(I)l§l+q) (

le * fo

*

Here —yﬂ°— is determined by equation (4.25)

“When oq= fy1, 6sx=frx and osy= fyy, we obtain the following shear
capacity of the wall with stirrups :

SR A DE EECURTENCEE | T ST

Correspondingly, the subsidiary condition may be written :
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non I 11 I
T2, e y 29 ¥ (Y y 20 (Y Y
A o+ Yeot®e, LI+ L) -cotto (L +I—
£ (h+h) +2[co lh(h+h) coteh(h+h )]
. I
Yo ¥ ¥y 3. 1. Yo yo_ 4.4
R T 2 T (4.45)

Here ® is the nominal longitudinal reinforcement degree (see
section 4.1) and

yo=h-y,—(h-y, ) —ay]a(l+y ) +2y,1an6 | (4.46)

If (4.44) is maximized with respect to %" , we may get the

maximum average shear stress, which can be carried by the
shear wall with strut and triangular homogeneous stress fields
corresponding to yo/h = 0.5,

T _ 1 a2 _ a a_
—f—c—_—Z—-[,/1+(h—) h]+\|l a (4.47)

For this case, the stringer forces are :

Tl =(lecht ]
£ ht| @+ 0, +n-(os0 .
C, £, t[ TPt (h+h)] L .
* (4.48)
T, = £ ht(® -22)
h
Co =fcht[d)l+®x+n—(yT°+2XhQ)]

Formulas (4.44) through (4.48) may be used to design a shear
wall.
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4.2.2 The Uniaxial Diagonal Compression Field
Combined with Triangular Stress Fields

In this section we consider the case where there is no strut in
the wall. When the angle, by which the strut is inclined to the
vertical axis,

0 = Arctan(g)
a

the strut does not exist in the wall. In this case there is a
diagonal unaxial compression field between the two triangular
stress fields.

Consider a homogeneous stress field in the wall consisting of a
uniaxial compressive stress c. in the concrete [84.1] as shown in
Fig.4.8. This diagonal compression stress forms an angle 6 with
the vertical x-axis. The stress field referred to the (x,y)-system
may be found by the equation (4.26).

For the areas connecting the top as well as the bottom slab, we
suppose there are homogeneous stress fields in each triangular
area, which are the same as those described in section 4.2.1.

The height a* of the triangular area has the following relation
with the width h of the triangular area :

a* =h cotd (4.49)
The procedure in section 4.2.1 is used to find all the parameters,
stresses, forces and shear capacity of the wall. Thus they will

be given without derivation in details.

For the wall with a diagonal compression field, we have :
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" Fig. 4.8 Shear wall with diagonal compression field

of =a* y —- Gsy =hvy cot(-) (4.50)
Yy Yy
y, = h- \/h —h’ycor® 6’ y(1+;z/ ) (4.51)
fYy Yy
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or

or

Yy fYy

" o, o,
ﬁ: = I—Jl—cotzel//?si(1+w——i)

tan@, = b=y, —*y"
XO
Yo
1 - 2o
tan @, = b
v —Xcotd
Yy

ri(a’ —x)+7lx=y; f.

*

G *
a"y f—sycote ~ Yo

X = Ty
= oo
w(cotl —cotf,)
Yy
vy = x h -y,
no-sy
X+ya ——
fy,
\
h-y;
ur _ _ gl - X ——
y o = h-y h-x oL
X+ ya —=
fy, )
oy = ¢,0 cot’d,
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The load carried by the wall is found to be (see Fig.4.8 (c))
_ L n_u W Hl »
P=ry+7,y = ¢p,0.at (4.59)
The shear capacity of the wall is found from (4.59) :

T o
— = —ZX.cot @ 4.60
- v (4.60)

The subsidiary condition is

v,y
T ,8 € y 2 0y~
£ (h h) h %ts h h 0 (4.61)

")) .._S.Y_
1fYy < fSY

To Co

H

.

Tension stringer, Compression stringer

2
*
ey r——————y

— e e e e — f——
Qo
>

T1 Cl

Fig. 4.9 Forces in flanges

"For the case where there is a uniform longitudinal
reinforcement with reinforcement ratio ¢x in the web and a
normal force N is acting on the wall, the subsidiary condition is

G 1 N  yoy .
e 0T g 100T
T0H U 2 “fy 2thf 2L h ' 2h h

=0 (4.62)
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The stringer forces are as follows (see Fig.4.9)

Gsl
f,

Y1

T =A,0,=9,

f ht

C, =T +g¢, 0, ht+N-(o y"+o7y" )t

X

O-sl Gsx N y‘
=[®—=+®, = +——-2L|f ht
[ "f, *f, thf h It

Yi Yx

T;

0

=T -7(a-x)t—7,xt (4.63)

Oy

£y

0,
=[(Dl sl_!//

a Ve
tO(——cot@)—==2 |f ht
E e O e 0) |,

h

Yy
C, =C, -7 (a—x)t—7'xt

o, c N o,
P S ——
£, "f, thf, ' %,

h

7

=[<1)l

cot@(%—cot@)—

Assuming all the reinforcement to be yielding, the shear
capacity of the wall is determined by (4.60) :

-fT— = v cotd (4.64)
Setting
Ge = Qy fYy (1+COt26 ) =f (465)

the web crushing criterion, we get by solving the above two
equations for t and 6

=W (-v) (4.66)

<
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tan9=_| — (4.67)

Obviously, when y =0.5 the shear capacity is at the maximum
value © = 0.5f.. It is easily verified that the conditions os = fy
and o, = f; give the highest lower bound. Further it is clear that
for y > 0.5 the stirrup reinforcement does not yield and the
shear capacity will be constant at

0.5 (4.68)

h

and the 0-value is constant at 45°.

This means that when the tensile reinforcement and the
compression stringer are sufficiently strong, i.e. the subsidiary
condition

hid *
RS0+ Y cora + 1YY o (4.69)
£ 'n h 2 h 2h h

]

is satisfied, the shear capacity of a shear wall as a function of v
is determined by (4.66) and the formula for the maximum shear
capacity (4.68) .

" In equation (4.69)

Xhi = 1-1-cot 0y (1+y) (4.70)

of course, it must be assumed that the top and bottom slabs are
able to carry the forces acting on them.
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Correspondingly, the stringer forces are as follows :

T, = @f ht

CI

(O, +D, +n-

Yo

£ ht
h) .
L @71
T,

[, —y/cotﬁ(?;——cotﬁ)—};l—" ]£.ht

2

C, =[d),+d>x+n—1//c010(%—cot0)~ Z"

Jt.nt

Formulae (4.66) through (4.71) are available for the design of
shear walls.
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4.3 The Effectiveness Factor for Shear

A fair accordance between theory and test results is obtained
only if the theory is modified by the introduction of an effective
compressive strength of the concrete. This means that in
applications f. is replaced by f.*= vf.. At the present stage of the
development it is impossible to give more than a qualitative
explanation of the strength reduction in reinforced concrete. We
must rely on empirical formulas derived from tests.

The value of the effectiveness factor is not known very well in
the case of shear walls with both longitudihal and transverse
web reinforcement. For pure shear in disks with normal
strength concrete, i.e., f: < 50 MPa, it seems that the simple
formula for the effectiveness factor

v= 07-Je (£, in MPa) (4.72)

gives reasonable agreement with tests. The formula was
originally suggested for shear in beams, but it has turned out to
be more generally applicable [84.1].

The v-formula (4.72) is not very accurate for high strength
concrete. According to Japanese tests, the following formula was
suggested by Japanese researchers [91.1 ],

v = f 0.34 <1 (fc in MPa) (473)

The theory developed in this thesis has been compared with a
large number of tests, ¢f. Chapter 6. The comparison shows that
the following simple formulas may be used:
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fe N
0.8—m+ 0.725A T fo < 7T0MPa
v = (4.74)
’ 1.9 N
RED + 0.725 T fe = 70MPa

The second term on the right hand side of the formula (4.74) is
added to take into account the enhancement of v due to
compressive normal stresses induced by the normal force N. A is
the total area of the cross section of the wall. From (4.74), it is
can be seen that f; = 70 MPa has been chosen as the transitional
point between normal strength concrete and high strength
concrete instead of the usual value f. = 50 MPa. The coefficient
of variation is improved a little in this way.

The test cover height/width ratios up to 2.4. The formula (4.74)
is remarkable because it has not been found necessary to
include a dependence on the height/width ratio as has been the
case for beams [78.1] [88.3].

According to the present understanding the dependence on the
height/width ratio is due to sliding in initial cracks. Thus we
may conclude that the shear walls in the tests have not
developed a crack system giving rise to sliding in cracks. It is
believed that this is due partly to the presence of a uniform
reinforcement in the web. In the case of shear walls with
boundary elements, crack sliding may have been prevented by
the strong stringers.

65



4.4 The Theoretical Curves for Lower Bound Solutions
of Shear Walls

The theoretical curves for the lower bound solution of shear
walls obtained by the theory developed are depicted in Fig. 4.10.
They have been found by standard computer optimization
routines, see Chapter 6.

The curves are valid in the case where there is no normal force
N and no vertical web reinforcement ¢x. Further the parameter
e=0.

From Fig.4.10, we can see that the lower bound solution is very
different from the upper bound solution for a/h > 0.5. The load-
carrying capacity corresponding to the lower bound solution is
much lower than that of the upper bound solution for this case.

The curves in Fig. 4.10 illustrate that:

a. The load carrying capacity is heavily dependent on the
depth/width ratio a/h, which is as same as we found for the
upper bound solution.

b. For a/h < 0.5 , the higher longitudinal reinforcement
degrees,i.e. ® > 0.5, do not lead to higher load carrying capacity
than obtained for ® =0.5.

_C. The influence of the y-value on the load carrying capacity is
diminished with increasing depth/width ratio a/h and decreasing
d-value. Especially when a/h > 0.3 as well as ® < 0.1, there is
almost no contribution from the horizontal reinforcement to the
load-carrying capacity of the walls.

66




os’t/fc a’h=0.25

04

03

0.2

0.1

Fig. 4.10 The shear capacity of shear walls loaded by a
concentrated transverse force versus longitudinal reinforcement
degree and shear reinforcement degree.
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Fig. 4.10 ( Continued )

67



t/fe a/h =1
05

045 ¢-n/
/

0.4
/ ¢=0
035 /

03

=03
025 ///, S 03 :
°'2v / $=02 ;
015 -
o1 ©=0.1 :
e :
005
0 ; ; " + ; S | 1\
0 01 02 03 04 05 06 07 08 09
Fig. 4.10 ( Continued )
of / ff‘
04
©=07
03 Lo
©=05
0.2
01
®=0.1
0
] 01 0.2 0.3 04 05 06 0.7 0.8 0.9

Fig. 4.10 ( Continued )

68




1/t a/h=3

06
05 ®=18
®=15
04
=1
03
©=038
=05
01 / =03
=0,
y
0 + :
0 01 02 03 04 05 06 o7 08 09

Fig. 4.10 ( Continued )

69



CHAPTER V. BENDING CAPACITY OF SHEAR WALLS

This chapter deals briefly with the bending capacity of
reinforced concrete shear walls. Since it has been shown that
the determination of the bending capacity of reinforced concrete
beams can be solved by the plastic theory, see [84.1] and [84.4] , it
is natural to extend this method to determine the bending
capacity of reinforced concrete shear walls.

This chapter gives an analytical model to predict the strength of
an isolated structural wall with or without boundary elements
failing in bending.

Vertical load

Horizontal load
—p

Top beam or slab

Web

—

Flange

Bottom beam or slab

1 Reactions

Fig.5.1 An isolated wall
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5.1 Pure Bending

The shear walls treated in this section are assumed to be loaded
in pure bending.

The vertical reinforcement and the horizontal reinforcement
- with the same tensile and compressive yield strength fx and fry
respectively are assumed to be uniformly distributed in the web.

Because the horizontal reinforcement gives no contribution to
the bending capacity of the wall, we will only discuss the
influence of the vertical reinforcement .

The concrete is assumed to be perfectly plastic with the
compressive strength f.* = w, £, . Here w, is an effectiveness
factor for bending and f;is the compressive cylinder strength of
concrete.
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5.1.1 Shear Walls with Rectangular Section

A shear wall with rectangular section ( without boundary
elements ) subjected to a horizontal force is shown in Fig. 5.1.
Only uniform reinforcement is assumed, ie. there is no
concentrated reinforcement at both ends of the section.

h
Horizontal ﬁad
=
a
Evaluation
Lc%itudinal Reinf.
110N
/
Transverse reinf. d R

Cross-section

Fig. 5.1 Wall with rectangular section

When a flexural failure occurs, the stress distribution in the
cross section will be as shown in fig. 5.2.

72




Projection gives

Yo_ 9D

d v, +20, 6.1

Here wy is the effectiveness factor for bending and d is the
distance from the center of the first row reinforcement on one
side to the face of the other one (see Fig. 5.1).

The yield moment of the section is found to be
d ,
Mp=(I>xtfc(d-yo)? (5.2)

or by using equation (5.1)

td’
MP:chcI)x(vb+(Dx)l(vb+2CDx) (5.3)

In (5.2), yo is the depth of the compression zone in the section.

—— ——— X
L.,
(Oxsvithe
Ot }
M, Yo
’ d
h

Fig.5.2 The stress distribution in the section
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Then we can obtain the dimensionless yield moment m; as
follows

1
mp, = '2—(vb+d)x)/(vb+2®x) B. 9D

Here the dimensionless yield moment m; is defined by

M

. P
Wp = —53 7

td*f,
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5.1.2 Shear Walls with Boundary Elements

A shear wall with boundary elements is shown in Fig. 5.3.

Elevation
Longitudinal riinf. I[——-
Y b
l;l——‘L
¢ ke

Cross Section

Fig. 5.3 A wall with boundary elements

The reinforcement with the same tensile and compressive yield
strength f; and the areas Ag in both boundary elements is
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assumed to be concentrated in a stringer at a distance d from
the other end of the cross section as shown in Fig. 5.3. All data
and assumptions are as same as those mentioned before.

The stress distribution of the section is shown in Fig. 5.4. The
same procedure as in section 5.1.1 is used to derive the yield
moment formulas. Thus the complete solution will be given
without derivation. The dimensionless yield moment is found to
be

h L
| hy y

o, SEN

(‘Dxﬂlb)tfc

Ti=A. f 4
1 sHY1 Yo C =A51fY1

Fig. 5.4 Stress distribution on the section
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Q,

2o+ 2% g —-2‘:)—3(2(11@, +a, @)
b

2a
Jor —(20,®, +a,® ) <v,
@y

a 1o
ey -a) 2D, + 2 0) o,
2 a, 8a,
20 2
for 2% <o, <5 0a®, +a,)
a, o,

m, = —a—l[ A, - )P, +a,d, ]——I—a§a3®i (55)
2 2v, .

Q.o 2a,a
Jor 220 <v, <22,
a, o,

1 al 1
aa, —a,) @, +=(a& ~2a,0, +20% )P, +—2(1-—) v,
2 2 Q;

11 1 2
—— e, ® +a,(1-—)
2 2c1>,+ub[ 1Pty aa) ;]

a0
Jor 220, > u,
a,

Here

>
~

S .

ar = —; o2 (X4=7,

Q
]
|
g
]
e~

‘d=h- %tf : the distance from the center of one boundary

element to the face of the other one ;

ho : the width of the web ;

77



mp = : the dimensionless yield moment .

T
td*f,

Since the wall is symmetrically reinforced, the reinforcement
degrees are same in the two flanges.
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5.2 Bending with Normal Force

The bending moment and the normal force, positive as
compression, will be referred to the middle point of the section
as shown in fig. 5.5. All the data and assumptions are in
agreement with those mentioned in section 5.1 .

As in section 5.1.2 , the derivation of the formulas will not be
given, because the procedure is the same as before. Here, only
the case of bending moments and positive normal force will be
considered.

Normal Force N
h/2 .L h/2

)

Transverse Load
——p]

Fig. 5.5 Shear wall with normal force
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5.2.1 Shear Walls with Rectangular Section

The stress distribution in the section is shown in Fig. 5.6.
Introducing the dimensionless normal force by n = % the
following expression are found for the dimensionless yield
moment as a function of the normal force:

n+®, O, +u,-n
2 20, +u,

mp = (5.6)

X

L.,
[TI1T] oamts

U %

Fig. 5.6 The stress distribution in the section
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5.2.2 Shear Walls with Boundary Elements

The stress distribution in the section is shown in Fig. 5.7.

« b 7
L by b
- - I 1 T
CILLLLLELATTTITTI
Otfe (Peevete
Ti=Aafvi Mp\) Yo Cr=Asfy
d

Fig. 5.7 The stress distribution in the section

The complete solution for the bending moment for shear walls
with boundary elements is given by
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B o, (20, +1)+ 0, ®, |-~ @, (20, +n)+a,®, |
2 2v,

a a
for n<——p, 2@, 2P,
2a,0, o,

2
% (g -a,) (20, +n+ 220 )+ 1%y,
2 a, 8a,

for i(%u—zalda,—ach,) <n

1 2

n< —L(ﬁ‘i— v-a,P,)
al 3

%[Z(a1 -a,)®, +an+a,d, ]—%[ ap+a,®, |

1 e, 1 o
or —(—+v, —a,®P.) <n<—(—v-a,d
Por g =) <m < (o=

2 2

1 [24 1 o
a,(a, —a,)P, +E(azloz2 +203)D, +7‘(1—;3—) U, +7‘n— (5.7),
1 1 1 2
———| (D, +n)+a,(1-—),
2 2®x+vb[ l( x ) 4( a3) b ]

for —(Ctv,-a,®) <n
1 3

n<l[ a, @, +(a, +ﬁ)v,, ]
@, 25}

2
a. a, o, 1
a (e, ~a,)®, +72(a1 n_azd)x)"‘{ (o _a4)“a“;‘+‘i£(;:—l) ]Ub -

1
—;—3—— an-a,®, +a(—-Dy, |
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Jor —1—[ (—Of‘—+a2) v, +,®, |<n
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o 2 o

82



1
U

| M,
Here mp = t_ﬁ

+———_—...__
(e -a,)a,

Da, ) 20, -n+ 220 )+ 2] (o) -, ) (14 e, )+
2 [ 20,

+a, (2 +%a4)—2a§ -1]

1 1 [2
Jor —[ a,®, +——(a, ~2a, +a,0,) v, |sn<2@,+20,
a a,a, o

1
[ (@ -a)(1+a,0)+a,Qe, +Ea4)—2a§ -1]

is the dimensionless yield moment .
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5.3 The Effectiveness Factor for Bending

For pure bending of a rectangular section with tensile
reinforcement only, the effectiveness factor vv has been
analytically determined by Exner [79.3], using stress-strain
curves measured by P.T. Wang et al. [78.4]. It turns out that w
is a function of the unaxial compressive strength f., the yield
stress of the reinforcement fy and the reinforcement ratio @s.

For practical purposes, v» can be calculated approximately by
the simple empirical formula

(58)

v, =097

5 £ fy < 900MPa
5000 300 "1 f < 60MPa

For most practical cases fy will be less than 600 MPa, and
conservatively we get

Je or{ Jr < 600 MPa (59)

=085-=2
“ 300 f < 60 MPa
The effectiveness factor for rectangular sections with

compressive reinforcement and normal force can also be
calculated by the equations (5.8) and (5.9), see [84.1].

For shear walls, the vi—formula (5.9) can be used without the
limitations of f. and fy. Thus we have generally

f
=085 - 2 )
Ve 300 (5.10)

Comparison between the theory using the vi- formula (5.10) and
tests shows very good agreement, see Fig. 5.8.
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5.4 Experimental Verification

Comparison between 45 shear wall tests from different test
series and the formulas derived using the vo-formula (5.10), can
be found in Fig. 5.8. The dimensions, material properties and
measured ultimate loads are listed in Appendix A. The
statistical values for the ratios of test to theory by using (5.4)
through (5.7) and the vp-value of (5.10) are shown in table 5.1.

Table 5.1
number mean standard coeff. of
item deviation variation
n x c Cv
statistical
values 46 0.954 0.113 0.118

The agreement is thus very good which may also be seen in Fig.
5.8. In this figure the measured ultimate loads are compared

with the theoretical ones.
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Fig. 5.8 Theoretical bending capacity compared with test results.
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CHAPTER VI _COMPARISON OF THEORY WITH TESTS

We have now derived the equations for the ultimate load-
carrying capacity of shear walls, chapter III and chapter IV. In
this chapter, 184 tests with shear wall specimens have been
treated using the theory. The effectiveness factor v is taken as
(5.10) or (4.72) according to the different failure modes as
explained before.

6.1 Determining the Shear Capacity by Optimization

Routines

The equations derived in chapter 4 show that the design of
shear walls using lower bound solutions is a rather simple task.
To find the load-carrying capacity in shear of a prescribed shear
wall is more complicated. The load-carrying capacity of a shear
wall with specified geometry and reinforcement may be
determined by standard computer optimization routines. The
effectiveness factor v is taken as (4.72).

Consider a shear wall composed of web and boundary elements.
The vertical boundary elements are at both sides of the web as
illustrated in Fig. 6.1. The transverse load P is transferred to
the wall by means of a top beam or slab and the wall transfers
the force to the bottom beam or slab. The top beam or slab
- might be subjected to normal stresses along the horizontal face,
which are statically equivalent to a normal force N.

Generally, the reinforcement in boundary elements is assumed

to be symmetrical and constant and the web reinforcement is
uniform. ‘
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Fig. 6.1 Siress distribution in the wall

The stress distribution of the wall is shown in Fig. 6.1.

. The optimization problem may be formulated in the following

way:
Maximize:

O- !
BN (3 cos9s1n0+h (1_2’0_) cotf
vf, vf, h
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under the subsidiary conditions:

S 4 1 o,h, 1 1
(D‘ sl _q)‘ SX 0 4 Tt - h _2 1 _ . m
TR S e (b + B -2y" —y")
-y :—" [ y'cos’d(y™ +y')~y"cos’, (y" +y") ] 6.2)
Yy
T a+e
.- '~h,+h')}-—— =0
YD(yO € )} Ufc hh,
_fYI = o, = in
- fo = Gsx = fo (63)
-, £ o, < £,
0 < 0 < ’2’— (6.4)
0 < Gec — Qy Gsy( 1+ cot26) < v (65)
Yo' o
0 =< A~ cos?é@ ©.6)

In the equation (6.1),  on the left hand side is the average shear

" stress as defined in section 4.1; the first term on the right hand
side is the contribution from the strut which is zero when yo'= 0;
the second term is the contribution from the triangular
homogenous stress fields ( see Fig 6.1).

The physical meaning of equation (6.2) is as same as (4.41).
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By means of the equations derived in Chapter 4 and Fig. 6.1, all
the parameters in the above equations are determined as
follows:

2 * USY ' 2 2
(he—YD) 4 T(he ~Yo )COt 6[(11: —Yo )
* Y
Yo =(h. -y, )~ ’ (6.7)

O.S
+ 2y tan’ @ +y’ y(he"}'o')]
Yy
tan @, = he_y°“j° : (6.8)
yotan8 + y ° *Ycot @
fy,

12 . O-SY 2 *
(h, -y, )y cot® 8 -y,

x = _ fvsy 6.9)

v’ 2 (cot@ — cotb )
fy,

gy = x he‘Yo—;’;

X+y,tan@ +y* ' —Lcort’ 0
. v L 10

x(h, -

yu = (h,-vy,) _ y U
X+ y,tan@

y' = h, -y, - y'- y"

In these equations :

3

e= 3 . the parameter determining the position of P on

the top slab;
as : the thickness of the top slab;
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c : the concrete cover measured to the center of the
first row of reinforcement bars in the boundary

- element

h : the total width of the wall ;

he =h — 2¢ : the effective width of the wall ;

h'=h-tr : the distance between the centers of two boundary
elements ;

ho =h - 2t¢: the width of the web;

D= @+ ZL(cp; +nty.
Notation otherwise as in Chapter IV.

The forces in the boundary elements are as shown in Fig. 6.2. By
means of equation (4.43) and (4.63) the forces may be found as
follows :

-3
~ - o] me—)
=3
o
@]
| —

P
+—

i
! Al
X I Ttn JL:
| ol Wi
T o2 4
1 t6/2 T £ tf/2_ IT te/2 C
1
Tension boundary Compression boundary
element element

Fig. 6.2 Forces in the boundary elements

91



tasl
T, =A,0,=d —f ht
1 sl ™ sl lf c
Y1

C, =T, +¢.0, ht+N-(fy ' cos’ 0+oly" +or y" )t

O-S .O-th ¢ ?
=[<D;—f—1+d> 0, N Yo

T ]ufcht
- f,, h thf h

T, =T, -7 (a—x)t—r xt

o, ey :
=[ o ! —w*—icoté(-g—cote)—zhg Jof ht

le Yy

C, =C,—ri(a—x)t—7; xt
O, (e} *
sl+ ; sx&_{_ N _[

f,, f,. b thf

o,
ZE+l//’——s’icotg(—g—cot&)+

\(6.11)

2—;’1‘1 vt ht}

For a shear wall without stirrups, we set the effective width he

of the wall equal to the total width h, i.e

h.=h

92



6.2 Comparison with Tests Results

In this section, seventeen groups of altogether 184 test
specimens of reinforced concrete shear walls described in the
literature are compared with the theoretical solutions. The
specimens consist of 52 specimens with rectangular section and
92 specimens with column boundaries (barbell) and 40
specimens with flange boundaries.

For all specimens we set ¢ = 25mm and e = %' Here a; is the

thickness of the top slab. In cases of a large difference between
the yield strength and the ultimate strength of the
reinforcement a mean value has been used.

The comparison correponding to different height-width ratios
and different geometry of sections is shown in sections 6.2.1 and
6.2.2, respectively. The comparison reveals that for squat shear
walls (a/h<1) as well as moderate walls (1<a/h<2) with strong
flexible reinforcement the failure is mainly controlled by shear
and for moderate walls with week flexible reinforcement as well
as slender walls (a/h >2) the failure is mainly controlled by
bending.

The comparison tables as well as figures for each group are
shown in sections 6.2.3 through 6.2.14. The details of the test
specimens and the calculation results are given in the appendix.

The data of all specimens are presented in table 6.1 and the
comparison between test results and theory is shown in Fig 6.3.
The comparison of the results of the theory and the tests
demonstrates that the theoretical results coincide very well
with the test results.

93



6.2.1 Comparison for Shear Walls Corresponding to
Different Height-Width Ratios

Fig. 6.4 through Fig. 6.6 show the comparison between test
results and theory corresponding to different height-width
ratios, respectively.

2500 -

g

Theory (KN)
g

Test (BKN)

Fig. 6.4. Comparison between test results and theory for low-

rise shear walls (a/h<=1)
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1600

1200
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Theory (KN)

400

° 400 800 1200 1600 2000
Test (KN)

Fig. 6.5 Comparison between test results and theory for shear

walls (1<a/h<2)

1200 -

1000

g

Theoty (KN)
3

8
S

# Shear failure
| aBending failure

0 200 400 600 800 1000 1200

Test (KN)

Fig. 6.6 Comparison between test results and theory for slender
shear walls (a/h >=2)
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6.2.2 Comparison for Shear Walls Corresponding to

Different Geometry of Sections

6.2.2.1 Comparison for Shear Walls with Rectangular

Section

The range of the various parameters for shear walls with

rectangular section is
a
031<—-—<24
h

13MPa < f. < 66 MPa

300 MPa < fy1 < 690 MPa

300 MPa < fyx< 670 MPa

380 MPa < fyy < 670 MPa

0.08% <@ < 1.16%

022% < @x < 2.9% (excluding ¢=0)
0.25% < @y < 1.6% (excluding @,=0)

0.0062 < @y = 5”’% < 0375

(]

0.058 < @y = ?i*ffi < 0.662

c

£
0044 < y = %ﬂ < 034

c

Fig 6.7 shows a comparison between test results and theory for

shear walls with rectangular section.

98



Rectangular

1000

800

8

400 4oceiannnnnn eeeeneeen :

..................................

Theory (KN)

200 t-av-neans At FOTCTPEESPRS +-{ a Bending failure

o 200 400 600 800 1000

Test (KN)

Fig. 6.7 Comparison between test results and theory for shear

walls with rectangular section

6.2.2.2 Comparison for Shear Walls with Boundary
Elements

Fig. 6.8 and 6.9 show the comparison between test results and
theory for shear walls with column boundaries (barbell) and

flange boundaries (flanged), respectively.
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Barbell
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1 :

‘ : : @ Shear failure
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0 : H H : H
0 500 1000 1500 2000 2500
Test (KN)

Fig. 6.8 Comparison between test results and theory for shear
walls with column boundaries (barbell)

1800

1500

8

The(;ry (KN)
8

3

@ Shear failure
A Bending failure

0 300 6(.1) 9&) 12‘(KJ 150 18’(1)
Test (KN)
Fig. 6.9 Comparison between test results and theory for shear

walls with flange boundaries
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6.2.3 Reinforced Concrete Shear Walls Tested by Gupta
and Rangan

In [93.4] and [94.2] eight high strength concrete shear walls
were tested under inplane axial and transverse loads. All
specimens had the same geometry and the same height/width
ratio a’/h = 1. The boundary elments of the walls are flanged.
The full value of of the axial load was applied first and then the
transverse load was applied in several increments until failure
occured. These tests mainly gave rise to shear failures.

Table 6.2 Test specimens by Gupta and Rangaﬁ [93.4]/94.2]

Specimen Concrete| Reinforcement Norml Load capacity Foilure Ratio
strength|  degree fove | Test | Theary | mode (Theory!
No. f. (MPa) @ v &N (o] BN | Test |Theay| Tesh
SF 605 0204 0.095 310 487 A3 B S 0.7053
$1 793 0224 0.089 0 428 401 S S 0.9367
s2 65.1 0416 0089 610 70 637 S ) 08853
S$3 690 05642 0.080 1230 851 765 ) S 0.89%1
S4 %2 0356 0.092 0 600 553 S S [tk 774]
S5 731 0507 0.085 610 790 714 S S 09042
S6 705 0614 0.079 1230 970 %9 S s 0.7930
S7 2 0406 0.164 610 800 690 S S 0.8623

Mean value X = 0.8635
" B: Bending failure
S: Shear failure
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1000 oeemsmammennenn gremanemonaans R LR RS

Theory (KN)

0 200 400 600 800 1000
Test (KN)

Fig. 6.10 Comparison of theoretical load carrying capacity with
test results by Gupta and Rangan [93.4] [94.2]

6.2.4 Low-rise Shear Wall Tests by Felix Barda '
In [76.2] eight low-rise shear walls with boundary elements

were tested under inplane transverse load reversals. The section

geometry of all specimens is flanged. These tests were governed

by shear failures.

102



Table 6.3 Test specimens by Felix Barda [76.2]

Specimen Reinforcement | Reinforcement Normal| 10ad capacity Failure mode | Ratio
a/h |ratio (in web)(%) degree force | Test |Theory (Theory/
No. Ox @y )] \'4 KNy EN) EN) | Test jTheory{ Test)
B1-1 05 05 0.5 0231 § 0.13%1 0 1276 1025 S S 0.803
B2-1 05 05 0.5 0.967 | 0213 0 969 917 S S 0.946
B3-2 05 05 0.5 0.378 | 0.143 0 1113 1237 S S 1111
B4-3 05 05 0 0616 | 0.000 0 1023 802 S S 0.784
BS54 05 0 05 0.365 | 0.131 0 680 1271 S S 1.869
B6-4 05 05 05 0513 | 0.168 0 867 1088 S S 1.256
B75 1025 05 0.5 0487 | 0145 0 1145 1383 S S 1.208
B85 1 05 05 0483 | 0155 0 888 959 S S 1.078

Mean value X = 1.132

Theory (KN)

300 fenravennnncens :..: ............................ { « Shear failure

Test (KN)

Fig. 6.11 Comparison of theoretical load carrying capacity with
test results by Felix Barda [76.2]

6.2.5 Shear Wall Tests by Maier and Thurlimann

Nine shear wall tests were carried out by Maier and
Thiivlimann in Ziirich [85.3]. The height/width ratio of all
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specimens was a/h = 1.02. The mean value of the yield strength
and the ultimate strength of the reinforcement has been used.

Table 6.4 Test specimens by Maier and Thirlimann [85.3]

104

Specimen Reinforoement Nmml] Load caparity Falwe | Ratio
Geonety]  degiee Test | Theary| method| mode (Dheory!
. o v | &Y Y| &Y Test | Theay| Tesh
Si. | Flanged | 0341 | 0281 | 433 630 681 |Momotomic| Drctile] S 1001
S2 Hanged | 0469 | 0239 | 1653 8 1016 | Morotonic| Brittle| B 104
3 Fanged | 0611 | 0283 | 44 an 1036 | Mbrotonic} Britle| S 1060
S5 Fanged | 0337 | 0280 | 416 63 6% Gnlic |Ductile] S 0989
4] Flanged | 0333 | 0149 | 416 66 644 |Momotomic] Ductile] S 0982
S7 Panged | 0474 | 0239 | 1657 8% 9093 Gyelic | Brittle] B 1161
S10 Bectangula{ 050 | 026 | 262 60 768 |Mbrotonic) Ductile] S 1146
7] Rectarg\ﬂa{ 022 | 0306 | 262 32 30 |Momtonic| Ductile] B 094
Y Pectar@ﬂaJ 0238 | 0000 | 200 42 6 | Momotoric| Ductile] B 1012
Mean value X = 1.043
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Fig. 6.12 Comparison of theoretical load carrying capacity with
test results by Maier and Thiirlimann [85.3]

6.2.6 Shear Walls Tests by Lefas, Micheal and Nicholas

Twenty large-scale wall models were tested by Lefas, Micheal
and Nicholas [90.3] [90.4] under the combined action of a
constant axial and a horizontal load monotonically increasing to
failure. The section shape of all specimens is rectangular. For
the longitudinal reinforcement the mean value of the yield
strength and the ultimate strength has been used. These tests
" were governed by bending failures.
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Table 6.5 Test specimens by Lefas [90.3] [90.4]
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Specimen Reinforcement Normal Load capacity Failure mode Ratio
alh degree force Test | Theory (Theory/
No. 0] y &N XN) &N Test Theory Tesf)
SWii 1 0.327 0.221 0 260 261 B B 1.006
SWi12 1 0.360 0.19%6 230 340 316 B B 0.931
SWi13 1 0432 0.213 355 330 321 B B 0.973
SWi14 1 0.371 0.250 0 265 255 B B 0.964
SW15 1 0.3%4 0.223 185 320 297 B B 0.928
SW16 1 0.396 0.167 460 355 353 B B 0.994
SW17 1 0.341 0.077 0 247 259 B B 1.050
SW21 2 0.405 0.180 g 127 113 B B 0.893
SW22 2 0.399 0.147 182 150 137 B B 0.913
SW23 2 0.434 0.138 343 180 149 B B 0.828
SW24 2 0.376 0.168 0 120 115 B B 0.958
SW25 2 0.445 0.144 325 150 146 B B 0.973
SW26 2 0.519 0.116 0 123 109 B B 0.883
SW30 2 0.387 0.101 0 118 93 B B 0.791
SWa1 2 0.344 0.080 0 116 94 B B 0.813
Sw32 2 0.265 0.069 0 hkil 9% B B 0.868
SW33 2 0.277 0.073 0 112 9% B B 0.861
SW31IR" 2 0.346 0.091 0 140 94 B B 0.674
SW32R* 2 0.325 0.085 0 83 95 B B 1.144
m 2 0.326 0.085 0 94 95 B B 1.008

Mean value X = 0.923




Theory (KN)
8

Test (KN)

Fig.6.13 Comparison of theoretical load carrying capacity with
test results by Lefas [90.3] [90.4]

6.2.7 Slender Shear Wall Tests by Oesterle

Twenty large-scale wall models were tested by Oesterle [84.3]

undeér the combined action of a constant axial and a horizontal

load monotonically increasing to failure. The section shape of all

specimens was rectangular and the value of a/h is 2.4. . The

mean value of the yield strength and the ultimate strength of
" the reinforcement has been used.

From the table 6.5 it can be seen that the theoretical load
carrying capacities obtained from optimized lower bound
solutions are almost as same as those obtained for bending
solutions.
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Table 6.6 Test specimens by Qesterle [84.3]

Specimen | Section | Feinforement | x| Loadopadty &N | pyijemode | Ratio
geomety|  degree force | Test Theary (Theory/
No. ] \j &N (KN |Bending| Shear | Test | Theory | Tesh)
RA Rec. 447 | o088 | 0073 | 118 143 145 B | Bending | 1200
R2 Rec. 464 | 0160 | o072 | 217 201 290 Ic Shear | 1.340
R3 Rec. 244 | 0447 | 0113 | 568 520 507 B Shear | 0893
R4 Rec. 27 | 020 | o | 2% 308 310 B | Bending| 1083
F1 Flanged [ 384 | 04% | 0187 | 8% 874 830 WC | Shear | 0993
F2 Flanged | 456 0.5% 0.119 887 1195 1100 we Shear 1.240
F3 Flanged | 279 | 0463 | 0088 | 42 681 6% WC | Shear | 1512
B1 Barbell 830 0.129 0.066 21 258 %7 B Shear 0.947
82 Barbell 536 0.371 0137 680 724 7% WCSIB | Bending | 1.065
B3 Barbell 473 0.144 0.066 276 270 270 B Shear 0.978
B4 Barbell 450 0.152 0.07 334 275 276 B Bending | 0.823
B5 Barbell 453 0430 0.142 762 7680 773 WwWC Bending{ 0998
B Barbell 218 0.787 0218 85 o004 838 WC Shear 1.089
B7 Barbell 493 0483 0.124 986 Qg7 wWC Bending { 1.005
B8 Barbell 420 0.521 0.304 978 970 987 WC Bending [ 0.992
Barbell 441 0497 0.120 77 94 962 we Bending [ 0.976
B10 Barbell 456 0.329 0.121 707 649 663 B Bending | 0.917
B11 Barbell 538 0283 0113 7% 558 566 we Bendng | 0.768
B12 Barbell M7 0438 0128 72 735 746 we Bendng | 0.928
Mean value X = 1.040

1B : Bar fracture precipated by inelastic bar buckling

IC : Bar fracture precipated by instability of compression zone

F : Flexural bar fracture

WC . :Web crushing

BC : Boundary region crushing

SC : Shear compression
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Fig. 6.14 Comparison of theoretical load carrying capacity with
test results by QOesterle [84.3]

6.2.8 High Strenth Shear Wall Tests by Toshimi

Twentyone high strength reinforced concrete shear walls were
tested by Toshimi and others in Japan from 1989 to 1992 [93.3].
- The concrete strength of the specimens varied from 50MPa up
to 140MPa and the main reinforcement yield strength was as
high as 1400MPa. All the specimens had the same sectional
geomety with boundary columns.

109



Table 6.7 Test spectimens by Toshimi [93.3]

Specimen Concrete | Reinforcement |y | Loadcapadty | pgipe model  Ratio
ah | strength | degree force | Test | Thoery (Theary!

No tea | o | oy | & | & | @ | Tet |Theay| Tes
W8 059 1033 0.3 Q107 1764 1670 1714 S S 1.026
Wi2 059 1375 0281 0.088 213 1719 1988 S S 1156
N1 1.76 876 038 0.109 1764 10682 826 B S 0778
NA3 1.76 %5 0342 002 1372 714 62 S S 097
NA4 176 546 0412 0,051 1568 784 778 S S 093
NW-S 176 60.3 0411 0100 1372 00 88 S S 0920
NALS 176 65.2 0433 0.056 1568 1056 a2 S S 0.84
No.5 1.76 .7 052 0034 1568 1158 1218 S S 1.082
N2 1.18 B6 0316 0106 1764 1468 1116 S S 07680
No1 1.18 65.1 0.59 0.038 1568 1100 1103 S S 1.008
No2 1.18 70.8 0602 0.064 1568 1254 1284 S S 1.024
No3 1.18 71.8 0614 0.028 1568 1378 1444 S S 1.048
No4 1.18 1034 0836 0073 217 1656 1735 S ‘ S 1.023
No6 1.18 741 0662 0212 1568 1411 1757 S S 1.245
No.7 1.18 7.5 0659 0184 1568 1498 1681 S S 1122
No.8 118 76.1 0677 020 1568 1638 1855 S S 1132
W3BX 1.18 626 0407 0.153 1764 1049 o B8 B 0.897
W35H 1.18 60.8 0419 0.1 1921 1064 B1 B B 0912
W30H 1.18 57.7 0423 015 1862 68 45 B B 0.987
P35H 1.18 02 0.31 0,158 1470 1020 833 B8 S 0.86
NWESH 1.18 59,7 0407 Q157 1656 1011 a1 B B 0.911

Mean value X = 0.983
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Fig. 6.15 Comparison of theoretical load carrying capacity with
test results by Toshimi [93.3]

6.2.9 Shear Walls Tested by Hirosawa

The following twentyone shear wall tests were carried out by
Hirosawa [75.1]. There was concentrated reinforcement in both
sides of the specimens which had rectangular section.
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Table 6.8 Test specimens by Hirosawa [75.1]

Specimen Reinforcersent, | o | Loadcapacity | Loading |puy e mode | Ratio
ah degree force Test | Thoery | method (Theory/

No. o] v | & | @ | & Test | Theory] Tes)

Bartell

owi03 | 033 | 0137 | 0047 | 38 | 5% | 40 |Reesal| S | S | 082
5wri0s | 033 | 0306 | 0254 | 38 | w8 | 78 [Revesal| B | S | 10
owal | os2 | 02| 00| o | 8B | 7@ |Mowtond S | S | 0914
qowaz | os2 | 025 ] 00| o | 84 | 70 |Momtmd S | S | 0919
%2 | o7 | o025 | 0000 | o © | 47 [Mooond S | s | 120

o5 | om | o6 | 000 | 0 5 | 4 [Mwoid S | S | 1m

%6 | om | o1 | 000 | 0 29 | 5 |Mootoid S | S | 138

97 | om | o] o0 | 0 59 | 58 [Mootond s | s | omr

6owi-l | 104 | 0202 | 008 | 0 © | %7 |Reest| B | 5 | om
94owl-1| 104 | 0335 | 0081 | 15 | 8% | 67 |Revesl| S [ S | om0
oowi2| 104 | 029 ] oo | 63 | | % |Rvesa| B | S | oo

Fectangular

o8| 094 ] 0305 | 0077 | 59 | 80 | 81 |Revesl| B | S | 10m
721088 094 | 0200 | oo | 58 | ™ | 81 |Revesl| B | S | 1146
7a1068] 091 | 0961 | o208 | 58 | 83 | 81 |Revesal| B | S | 1009
A1) 09t | 0987 | o164 | 58 | on | 82 |Revesal| B | S | 095
7Bl | 094 | 0258 | 024 | 58 | 67 | 585 |Revesi| B | B | 0947
818 | 094 | 0205 | ove | 58 | 70 | 611 |Reversl| B | B | 08%
961 | om | o] oo | o 5 | 5 |Mootnd S | S | 108

s3] 188 | 0394 | oo | 27 | 38 | 317 |Revesl| B | B | 0953
ssEm| 183 | 0313 | os | 27 | 8 | w1 |Rees| B | B | 0mH

Mean value X = 0.994
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Fig. 6.16 Comparison of theoretical load carrying capacity with
test results by Hirosawa [75.1]
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Fig. 6.16 (Continued)
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6.2.10 Shear Wall Tests by Yoshzaki

Nine reinforced concrete shear walls tested by Yoshzaki [75.1]
were selected in the calculation. All the specimens had
rectangular section. The transverse load was alternating.

Table 6.9 Test specimens by Yoshzaki [75.1]

Specimen Reinforcement d (.1 | Loadcapacity | pojppe mode Ratio
a/h force Test | Thoery (Theory/
No. 0] 1 &N KN &N Test Theory Test)
16918812 | 1.00 | 0349 | 0316 0 174 187 S s 1.075
171213368 | 067 | 0183 | 0214 0 235 24 S S 0952
17223524 | 067 | 0171 { 0107 0 20 213 s s 0.969
17323528 | 067 | 0225 | 0214 0 260 268 S s 1.030
174-2/352-12 | 067 0.276 0.305 0 274 316 S S 1.150
176212278 | 050 | 0160 | 0207 0 k2] 337 S S 1.049
17712424 | 050 | 0135 | 0104 0 319 290 S S 0.937
178-1/2428 | 050 | 0191 | 0207 0 33 3% S S 1.019
179124212 | 050 | 0245 | 02% 0 42 471 S S 1117
Mean value X = 1.033
500 wosssecncnnsanmunsarromanane
.
400 e
N L)
g 300 e
S 4
ﬁ 200 S SNt
100 S S
‘@ Shear failure
o b
0 100 200 aco 400 500
Test (KN)

Fig. 6.17 Comparison of theoretical load carrying capacity with
test results by Yoshizaki [75.1]
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6.2.11_Shear Wall Tests by Tanabe

Sixteen reinforced concrete shear walls were tested by Tanabe
[75.1]. All the specimens had column boundaries. The
transverse load was monotonic.

Table 6.10 Test specimens by Tanabe [75.1]

Specimen Reinforcement Normal Load capacity Failure mode Ratio
ah degree force Test Thoexy (Theory/

No. [ \ &N ®N) (KN) Test | Theory Test)
101-9 079 | 0373 | 0.241 0 63 72 S S 1.142
102-10 | 079 | 0412 | 0.266 0 75 70 S S 0.936
11242 079 | 0280 ]| 0214 0 68 67 S S 0.979
11344 | 079 | 0.260 | 0.199 0 71 68 S S - 0.960
104-12 078 | 0243 | 0.157 0 94 78 S S 0.829
10513 | 0.79 | 0249 | 0.161 0 90 78 S S 0.867
106-14 0.79 | 0251 | 0.168 0 86 78 S S 0.903
1144M | 079 | 0.196 | 0.150 0 ¥ 71 S S 1.002
11549 079 | 0179 1 0.137 0 77 72 S S 0.937
107-15 | 0.79 | 0.193 | 0.125 0 98 81 S S 0.830
108-16 | 0.79 | 0.183 | 0.119 0 97 82 S S 0.843
10917 | 079 | 0182 | 0.118 0 102 82 S S 0.804
11652 | 0.79 | 0.136 | 0.104 0 78 74 S S 0.945
117-54 | 079 | 0.141 | 0.108 0 77 74 S S 0.953
110-36 | 0.79 | 0436 | 0.206 0 43 47 S S 1.101
111-39 [ 079 | 0450 | 0.213 0 44 47 S S 1.056

Mean value X = 0.943
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Fig.6.18 Comparison of theoretical load carrying capacity with
test results by Tanabe [75.1]

6.2.12 Shear Wall Tests by NUPEC, Cardenas,
Kebeyasawa, Wiradinata , Aoyagi and Paulay

The comparison between theoretical results and tests by
NUPEC [94.3], Cardenas [80.2], Kebeyasawa [84.5] [85.4],
Wiradinata [86.6], Aoyagi [90.1] and Paulay [80.1] is shown in
table 6.10 and Fig. 6.12.
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Table 6.11 Test specimens by NUPEC [94.3], Cardenas [80.2],
Kebeyasawa [84.5] [85.4], Wiradinata [86.6], Aoyagi [90.1] and
Paulay /80.1]

Specimen| Section Reinforcement | o -y Load capacity | Loading | oo | Ratio

geometry] ah degree force | Test |Thoery] method mode | (Theory/

No. @ v BN EN RN Test |Theon|  Test)

NUPEC | Flanged | 0.65 | 0.383 | 0.264 | 11956 | 1627 | 1599 | Dynamic | S S 0.983

Cardenas
SW-7 Rect. 105 } 0.225 | 0.044 125 519 577 | Monotonic| S S 1113
SW-8 Rect. 105 | 0.281 | 0050 123 570 672 | Monotonic| S B 1180
SW-9 Rect. 105 | 0279 | 0164 | 125 679 673 | Monotonic| S B 0.991
SW-13 Rect. 105§ 0277 { 0179 | 126 632 674 | Monotonic| S B 1087
Kabeyasawa
K1 Barbell | 075 | 0.163 | 0070 | 3965 | 439 872 | Reversal [ S S 0.847

K2 Barbell { 075 | 0.250 | 0141 | 3998 | 471 522 | Reversal | S S 1108

K4 Barbell | 075 | 0.177 | 0125 | 3984 | 508 592 | Reversal | S S 1165

Wiradinaty  Rect. 055 | 0.1116] 0.0631 | 149 | 5738 | 519.0 Altemabingl

S S 0.904
Wiradinatg  Rect. 031 | 0122 | 0070 88 680.5 | 675.8 Alterrmtingl S s 0.993
Aoyagi | Barbell |0.5147| 0.1284 | 0.1094 0 1555 | 1394 Altemasingl S S 0.897
Aoyagi | Barbell | 0.51 | 0.269 | 0110 0 2309 | 2430 Altematingl S S 1.052

Paulay Rect. 05 | 0093 | 0339 0 '810 01 Albemati.ngl S S 0.874

Paulay | Flanged | 0.5 | 0086 | 0351 0 86 674 Altematingl S S 0.857

Mean value X = 1.002
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Fig. 6.19 Comparison of theoretical load carrying capacity
with test results by NUPEC [94.3], Cardenas [80.2],
Kebeyasawa [84.5]/85.4] Wiradinata[86.6], Aoyagi/90.5]
and Paulay [80.1]

6.2.13 Shear Walls Tests by Kokusho

Eleven reinforced concrete shear walls were tested by Kokusho
[75.1]. All the specimens  had flange boundaries and the
transverse load was alternating .
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Table 6.12 Test specimens by Kokusho [75.1]

Soecimen Reinforcement | | Loadeapadty | gy vde | Ratio
ah degree force | Test | Thoery (Theory/
No. [1:] v B | BN | BN | Test | Theory Test)
St 047 0171 0.169 0 24 309 S S 1.053
2 047 0174 | 0172 0 276 308 S S 1116
3 0.70 0303 | 0.147 053 245 27 S S 1212
S4 0.70 0324 | 0134 0.50 236 273 S S 1.159
6 0.70 0.501 0211 040 196 235 S S 1.200
S7 0.70 0.317 0.183 030 249 31.1 S S 1.249
S8 0.70 0.338 0.194 056 258 30.7 S S 1.191
S8 0.70 0.206 0.089 042 67 304 S S 1.141
S10 0.70 0.310 0.134 054 2.7 279 S S 1.045
S11 0.70 0310 | 0134 054 258 279 S S 1.081
S12 0.70 0.328 0.140 054 245 275 S S 1.124

Mean value X = 1,143

= : : : :
g ; * : s
g P R Freseemorennas ZRRCRIORIPREY ALPEPTORPPITRY :
= : : : :
T S, OO LR .
: : o Shear failure
0 H H H H
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Test (KN)

Fig.6.20 Comparison of theoretical load carrying capacity with
test results by Kokusho [75.1]
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6.2.14 Shear Walls Tests by Benjamin

Twenty-nine reinforced concrete shear walls were tested by
Benjamin [53.1] [65.1] [56.1] [56.2] [57.1]. All the specimens
had column boundaries and the transverse load was monotonic.
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Table 6.13 Test specimens by Benjamin [53.1] [55.1] [66.1] [56.2]

/67.1]
Specimen Reinforcement | oy | Loadcapadity | pape moge Ratio
ah degree force Test | Thoery (Theory/
No. o) v ftie) fiia)) &N Test | Theary | 'Test)
4BIL1 | 098 | 0266 | 0122 0 89 75 S S 0848
4BI-2 | 061 | 0187 | 0115 0 155 134 s S 0.864
4813 | 044 | 0169 | 012 0 201 192 s S 0.954
4BI-4 | 029 | o104 | 0097 0 334 s S 1137
1BIL1 | 053 | 0159 | 0061 0 249 248 5 s 0.994
3AIL1 066 | 0246 | 0102 0 ] 162 S S 0.793
3ATL2 | 060 | 0273 | 0063 0 138 140 5 s 1014
NV-1 048 | 0107 | 0095 0 301 240 s s 0.795
NV-II | 096 | 0307 | 0102 0 222 214 S 5 0.963
Nv-18 | 031 | 0121 | o118 0 374 332 s S 0.889
VR-3 055 | 0179 | 0115 0 302 288 s S 0.953
R-1 055 | 0161 | 0062 0 316 257 s S 0.813
Al-A 031 [ 0185 | 0228 0 311 368 S s 1181
ALB 031 [ 0179 | 0220 0 367 37 S S 1016
A2B 031 | 0255 | 0359 0 329 421 5 S 1.296
M-1 054 | 0167 | 0059 0 214 252 s S 1178
MR-1 040 | 0167 | 0055 0 317 283 s S 0.892
MR-3 040 | 0241 | 0079 0 318 243 s s 0.764
MR-2 030 | 019 | 0064 0 245 287 s S 1173
MR4 | 030 | 0261 | 0085 0 245 250 S S 1.022
VRR1 | 049 | 0162 | 00% 0 32 288 s S 0.874
MS1 047 | 0220 | 0049 0 - 274 306 S s 1114
MS-2 047 | 0177 | 0043 0 368 335 S S 0.909
MS22 | 047 | 0202 | 0049 0 359 319 S S 0.889
MS5 024 | 0139 | 0047 0 380 509 S s 1.338
Sp1A | 053 | 0179 | 012 0 178 158 S s 0.886
SDiC | 053 | 0179 | 0126 0 160 158 s s 0.984
3BI-3 053 | 0170 | 0109 0 204 29 s S 0.995
1BI3 | 054 | 0179 | o118 0 685 634 S S 0.926
Mean value x = 0,981
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Fig.6.21 Comparison of theoretical load carrying capacity with
test results by Benjamin [53.1] [65.1] [56.1] [56.2] [67.1].
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CHAPTER VII _CONCLUSION

In this report a theoretical model which is composed of a strut
or a diagonal compression field combined with triangular
homogenous stress fields has been developed for shear walls in
shear. The solution satisfies the equilibrium conditions and
statical boundary conditions and is based on a safe stress
distribution. It is thus a lower bound solution. The theory is
capable of predicting the load-carrying capacity of reinforced
concrete structural walls as well as available for designing the
walls.

Some of the capabilities of the theory are listed below :

1.  The theory can be applied to shear walls with different
height-width ratios ( normally a/h < 3 ) and with rectangular,
barbell and flanged cross sections.

2.  The theory is applicable to shear walls subjected to a
normal force as well as a concentrated transverse load which
can be applied monotonicly or cyclicly.

3.  The theory is applicable to shear walls with normal
strength materials as well as ultra-high strength materials such
as concrete strength up to about 140 MPa and steel yield
stresses up to 1420 MPa.

4. By means of optimizing routines, by which the shear
capacity of shear walls may be found easily, the theory predicts
the balanced reinforcement ratios beyond which the steel will
not yield at failure or the concrete will not reach its limit
strength.
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A large number of shear wall tests are available in the
literature. A number of 184 typical test specimens have been
treated using the theory proposed in this report. The agreement
between theory and experiment is good.
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APPENDIX A Test Data and Calculation Results of Shear
Wall Tests by Gupta and Rangan [93.4] [94.2]

Table A

Specimen No. | S-F S-1 S-2 S-3 S-4 S-5 S-6 S-7
a(mm) 1000 1000 1000 1000 1000 1000 1000 1000
h(mm) 1000 1000 1000 1000 1000 1000 1000 1000

a/h 1 1 1 1 1 1 1 1

a: (mm) 200 200 200 200 200 200 200 200

tr (mm) 100 100 100 100 100 100 100 100

b (mm) 375 375 375 375 375 375 375 375

t (mm) 75 75 75 75 75 75 75 75

ho (mm) 800 800 800 800 800 800 800 800
@ 0.002 | 0.008 | 0013 | 0.017 | 0.013 | 0.017 | 0.020 | 0.013
Px 0.012 | 0012 | 0.012 | 0.012 | 0.018 | 0.018 | 0.018 | 0.012
L4 0.005 | 0.005 | 0.005 | 0.005 | 0.005 | 0.006 | 0.005 | 0.011

fn (MPa) 578 529 531 531 531 531 581 531
frx (MPa) 545 545 545 545 533 533 533 545
fyy (MPa) 578 578 578 578 578 578 578 545
£ (MPa) 60.5 79.8 65.1 69.0 75.2 73.1 70.5 71.2

N EN) 310 0 610 1230 0 610 1230 610

P KN) 487 720 851 600 790 970 800 428
v 0525 | 0.430 | 0525 | 0.551 | 0.437 | 0.486 | 0.541 | 0.492
@ 0.107 | 0.072 | 0.147 | 0.164 | 0.106 | 0.144 | 0.183 [ 0.150
O 0.076 | 0.067 | 0.130 | 0.148 | 0.098 | 0.130 | 0.145 | 0.129
v 0.107 | 0.072 | 0.147 | 0.164 | 0.106 | 0.144 { 0.183 | 0.150

Trest/ Vi 0.107 | 0.072 | 0.147 | 0.164 | 0.106 | 0.144 | 0.183 | 0.150
Tiheory/ Vi 0.076 | 0.067 | 0.130 | 0.148 | 0.098 | 0.130 | 0.145 | 0.129
Timeory | Trest 0.705 | 0.937 | 0.885 | 0.899 | 0.922 | 0.904 | 0.793 | 0.862

T1RN) 91 333 522 689 522 689 696 522
CKN) 782 714 1512 2297 1091 1866 2466 1510
Failure mode S S S S S S S S
6 (rad) 0.705 | 0.681 0.527 | 0.406 0.585 | 0.450 | 0.380 | 0.640
0, (rad) 1.398 1.377 1.163 | 0.957 1.244 1.035 | 0.889 1.196
yorhe 0.104 | 0.146 | 0.388 | 0.548 | 0.303 | 0.491 0.580 | 0.216
AR A 0.227 | 0.224 | 0.350 | 0.511 0.302 | 0.449 | 0577 | 0.461
g/ fn 1 1 1 1 1 1 1 1
O/ fix 1 1 1 1 1 1 1 1
oy fuy 1 1 1 1 1 1 1 1
x/a* 0.481 0.480 0.460 0.427 0.469 0.441 0.411 0.449

¥ a 1 1 1 1 1 1 1 1
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APPENDIX B Test Data and Calculation Results of Shear
Wall Tests by Felix Barda [76.2]

Table B
SpecimenNo. | Bl-1 | B2-1 | B32 | B43 | B54 | B64 | B7-5 | B85
a(mm) 953 953 953 953 953 953 476 1905
h(mm) 1905 | 1905 | 1905 | 1905 | 1905 | 1905 | 1905 | 1905
al’h 1 1 1 1 1 1 0 1
a; (mm) 152 152 152 152 152 152 152 152
te (mm) 102 102 102 102 102 102 102 102
b (mm) 610 610 610 610 610 610 610 610
t (mm) 102 102 102 102 102 102 102 102
ho (mm) 1702 | 1702 | 1702 | 1702 | 1702 | 1702 | 1702 | 1702 .
@ 0.006 | 0020 | 0.013 { 0013 | 0013 | 0.013 | 0.013 | 0.013
Px 0.005 | 0.005 | 0.005 | 0005 | 0.000 | 0.003 [ 0.005 | 0.005
N 0.005 | 0.005 | 0.005 | 0.000 | 0.005 | 0.006 | 0.005 | 0.005
fn (MPa) 525 487 414 527 527 529 539 489
fyx (MPa) 543 552 545 535 0 496 531 527
fyy MPa) 496 499 513 0 495 496 501 496
f: (MPa) 29.0 16.3 217.0 19.0 28.9 21.2 25.7 23.4
N E&N) 0 0 0 0 0 0 0 0
P KN 1276 969 1113 | 1023 680 867 1145 889
v 0655 | 0.718 | 0.665 | 0.705 | 0.656 | 0.694 | 0.671 | 0.683
O, 0.159 | 0.849 | 0.302 | 0.516 | 0.865 | 0.471 | 0.410 | 0.401
@y 0.143 | 0.235 | 0.162 | 0.199 0 0.084 | 0.154 | 0.165
v 0.131 | 0213 | 0.143 0 0.131 | 0.168 | 0.145 | 0.155

Trest! Ve 0.347 | 0.427 | 0.320 | 0.394 | 0.185 | 0.304 | 0.342 | 0.287
Tineory/ Vic 0.279 | 0.404 | 0.356 | 0.309 | 0.347 | 0.382 | 0414 | 0.309

Tineory ! Ttest 0.803 | 0.946 | 1111 | 0.784.| 1.869 | 1.256 | 1208 | 1.078 .
T1 BN) 586 959 1026 694 1274 1261 951 1241 "
Ci1KN) 1054 1401 1486 1108 1272 1450 1357 1692

Faijlure mode S S S S S S S S

0 (rad) 0.828 | 0.548 | 0.658 | 0.554 | 0.670 | 0.548 | 0.673 | 0.563
0, (rad) 1208 | 0686 | 0.984 | 1017 | 1.013 | 0.772 | 0.839 | 1060
o /he 0.441 | 0.686 | 0603 | 0.691 | 0594 | 0.686 | 0.795 | 0.352

ol I, 0.241 | 0.783 | 0.382 0 0.339 | 0.620 | 0.374 | 0.543
ool fa 1 0 1 1 1 1 1 1
osc! Fux 1 1 1 1 0 1 1 1
g/ fry 1 1 1 0 1 1 1 1
</ a* 0.486 | 0.404 | 0.469 0 0473 | 0.433 | 0.480 | 0.431
a* a 1 1 1 1 1 1 1 1
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APPENDIX C Test Data and Calculation Results of Shear
Wall Tests by Maier and Thurlimann [85.3]

Table C
Specimen No. |  S1 s2 S3 S5 S6 87 s10 s4 s9

a(mm) 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200 | 1200
h(mm) 1180 | 1180 | 1180 | 1180 | 1180 | 1180 | 1180 | 1180 | 1180

a/h 1 1 1 1 1 1 1 1 1
a: (mm) 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240 | 240
t (mm) 100 | 100 [ 100 | 100 | 100 | 100 | 240 | 100 100
b (mm) 400 400 400 400 400 400 100 100 100
t (mm) 100 100 100 100 100 100 100 100 100
ho (mm) 980 | o980 | 980 | o980 | o9s0 | 980 | 700 | 980 | 980

@ 0.004 | 0.004 | 0.008 | 0.004 | 0.004 | 0004 | 0.012 | 0.001 0

% 0012 | 0012 | 0025 | 0012 | 0013 | 0011 | 0.010 | 0011
P 0010 | 0010 | 0010 | 0.010 | 0.006 | 0010 | 0010 | 0010 0

fyn (MPa) 669 669 634 669 622 669 629 669 661
frx (MPa) 669 669 634 669 622 669 606 669 661

fry MPa) 669 669 669 669 641 669 | 606 669 0
£ MPa) 369 | 354 | 867 | 373 | 373 | 841 | 310 | 329 29
N EN) 433 1653 424 416 416 1657 | 262 262 260
P EN) 680 928 977 683 656 855 670 392 342
v 0663 | 0.813 | 0664 | 0.659 | 0659 | 0.827 | 0697 | 0684 | 0.709
@ 0.107 | 0091 | 0.217 | 0.107 | 0.097 | 0.091 | 0.338 | 0026 | 0.027
.y 0317 | 0.269 | 0641 | 0.316 | 0329 | 0268 | 0281 | 0312 | 0316
v 0281 | 0239 | 0.283 | 0280 | 0.149 | 0.239 | 0.275 | 0.306 0

Trest! Ve 0.235 | 0273 | 0340 | 0.236 | 0.226 | 0.257 | 0.263 | 0.148 | 0.140
Theory/ Ve 0236 | 0.299 | 0.360 | 0.233 | 0.222 | 0.298 | 0301 | 0.139 | 0.142
Tiheory! Thest 1001 | 1.094 | 1.060 | 0989 | 0982 | 1.161 | 1.146 | 0.944 | 1.012

T: (KN) 310 310 624 310 281 302 862 70 65
C1 (KN) 1499 2475 2306 1482 1228 2448 1482 1019 398
Failure mode S B S S S B S B B
0 (rad) 0.852 0672 | 0856 | 0.674 0.732
6, (rad) 1.289 1.012 1.293 1.282 1.167
Yo/he 0.000 0.156 | 0.000 | 0.152 0.045
oo /1. 0.497 0.731 0 0.382 0.615
g/ fn 1 1 1 1 1
O/ frx 1 1 1 1 1
ogy/ fry 1 1 1 1 1
x/a* 0.460 0.400 0 0.462 0.430
a*/ a 1 1 1 1 1
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APPENDIX D Test Data and Calculation Results of Shear
Wall Tests by Lefas, Micheal and Nicholas

[90.3] [90.4]
Table D

SpcimenMb | SWIT | SWI2 | SWI3 | SWi4 | SWI5 | SWie | SWI7 | SWa1 | Swe2 | SW3
almmg) 0 = | W | ™| ®m| W | | 80| 80 | 180
hm) 0 ™ | ® | ™| W] W | W | 60 | 60 [ 60
a/h 1 1 1 1 1 1 1 2 2 2
a@m §51) B | 1| B | | B | B | 15| 15| 1
tr(om) 140 W | w| w| Ww{ Ww| W| W| W,| W
bEm) k) ) ) | | ® ] 3t & 6
t@m o o ) | 0| D ] & 6 &
to Gy 40 | | m| | 0| 0| 30 30
) 0006 | 0005 | 0008 | 0006 | Oops | Q006 | 006 | 0007 | 0007 | 0007

% o4 | oo | o4 | oo | oo | 0024 | 002 | 05 | 005 | 005

@ oonn | oom | oom | oom | oom | 00U | 0004 | 00B | 0B | 00

fa V) 517 517 517 517 517 517 517 517 517 517
) 517 517 | 51 | s; | &7 | SW | S | S | 517 | 517
fiy (MP2) 55 55 | 55 | 55 | s | O | % | K | B | BB
L0/ 523 536 | 406 | 421 | 433 | = 8 8 51 d
NENy 0 2 | ¥ 0 1B | ¥ 0 0 | 8
PEN 20 0 | 80 | o | s | BB | W | = | 10| B
v 05% | 0591 | O7I8 | 050 | 0643 | 0664 | 05 | 05% | 06 | 0634
Q 0106 | 0094 | 0108 | 0120 [ 0108 | Q087 [ 01U | 0147 | O19 | OLR2
@Q 0441 | 032 | 0425 | 0500 [ 046 | 03® | 0460 | 0516 | 0420 | 03%
v o1 | 01% | 023 | az0 | 028 | 0w | 00w | 01 | Q17 | 018
Tl ors | 020t | 026 | o208 | 0219 | 0197 | 017 | 01D | OB | 01D
TV | 0177 | 0190 | 0210 | 015 | 028 | 01% | OIS | 0107 | 006 | 018
Tyl | 1008 | 0981 | 097 | 0964 | 099 | 0994 | 1050 | 08® | 0913 | 08B
T, 157 w | s | s | ® | | 1B | 1B | 15
GEN 32 4 | w0 | 3 | 42 | 8 | 20 | . | =8 | D
Filuensde| B B B B B B B B B B
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Table D (continued)

SpecinenNo | SWR4 | SWR5 | SWRS | SWBD | SWBL | SWR2 | SWR3 | SWBIR| SWRR | SWB3R
afmm) 130 | 1300 | 100 | 1300 [ 1300 | 1900 | 130 | 130 | 100 | 1300
b 60 | 60 | 60 | e | &0 | &0 | &0 | &0 | &0 | 60
a/h 2 2 2 2 2 2 2 2 2 2

2 (o) 0 | 10 | B0 B | B | 1m0 | 130 150
tr(omg) “ | 40 | 0 | 0 | 140 | 140 | 40 | 0 | w0 | 0
b & 6 & & & & & & 6
tGm) & 65 & & & & & & & 6
o () 30 [ 30 | 30 | sw | 30 | 30 | 30 | 30 | 0 | 3w

@ 0007 | 0007 | 0007 | 0007 | Q007 | aco7 | 0007 | o007 | 0007 | o007

& 005 | 0025 | Q025 | 0015 | 0015 | 0015 | 0015 | 0015 | 0015 | 0015

@ 0008 | 0008 | 0004 | 0004 | 0004 | 0004 | OcOt | 0004 | 0004 | 0O0M4

f (VB 517 | s17 | s | s | si7 | s | os17 | s | 1T | 517
faMPd | 517 | 517 | 517 | s | s17 | s17 | s17 | B17 | 517 | 517
f,0MP) | 565 | 565 | S5 | 565 | 5 | 565 | 55 | 565 | 565 | 565
A ) 48 &5 0 0 % 54 9 % 3 )
NEN 0 25 0 0 0 0 0 0 0 0
PEN 2 | B0 | 128 ] m8 | me | m | 12 | M0 o

v 0559 | 06% | 0650 | 0650 | 0624 | 05%2 | 0554 | 0626 | 069 | 0610

@ 01% | 0117 | 0188 | 018 | 0167 | 0120 | 0135 | 0168 | 0158 | Q158

@ 0480 | 0411 | 0652 | 0397 | 0353 | 022 | 0285 | 03% | 0334 | 0334

v 0163 | 0144 | 0116 | 0101 | 0090 | 0089 | 0073 | 0001 | 0085 | QoS

t/vE | 0106 | 0113 | 0149 | 012 | 0125 | Q0% | 0097 | Qi51 | 0084 | Q0%

Tm/ve | 0101 | 0110 | 0132 | 0113 | 012 | 00e0 | Q083 | 0102 | 0 | 0097

Tooy/ T | 0958 | 0973 | 0833 | 071 | 0813 | 088 | 0861 | 0674 | 1144 | 1008
T &N B | BB | B | B B 1B | B | 1B | 1B | 15
QRN B | 6w | o7 | 2u1 | a2 | 23 | w2 | 22 | 2 | 2
Falwernde | B B B B B B B B B B
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APPENDIX E Test Data and Calculation Results of Shear
Wall Tests by Oesterle [84.3]

Table E
Specimen No. | Rl R2 R3 | R4 F1 F2 F3 Bl B
afmm) 4570 | 4570 | 4570 | 4500 | 45 | 4570 | 4570 | 4570 | 4570

h(om) 1910 1910 1910 1910 1910 1910 1910 1910 1910

a/h 2393 | 2393 | 23093 | 2803 | 2393 | 2393 | 2893 | 2393 | 2393

2 (o) 203 203 203 203 203 203 203 203 203
t (o) 305 305 305 305 102 102 102 305 305
b () 102 102 102 102 910 910 910 305 305
t (o) 102 102 102 102 102 102 102 102 102
bo (oEm) 1300 1300 180 | 1800 | 1706 | 1708 1706 1528 1528

@ 0002 | 0006 | 0010 | 0006 | 0019 | 0021 | 0011 | 0005 | 0018

% 0003 | 0008 | 0002 | 0003 | o003 | 0003 | 0003 | 0003 | 0003

@ 0003 | 0003 | 0004 | 0003 | o007 | 0006 | 0003 | 0003 | 0006
fa (MP2) 639 579 690 597 576 576 630 579 553
fix (MP2) 611 610 473 507 615 536 618 608 620
fry (MPa) 611 610 473 507 615 536 618 608 620
£ (MP3) 447 464 244 217 384 46 28 53 54
NEN 0 0 296 296 0 1190 546 0 0
PEN 118 217 568 282 836 887 21 271 680

v 057 | 0568 | 0728 | 0735 | 0608 | 0625 | 0700 | 0535 | 0532

) 0058 | 0140 | 0375 | 0200 | 0457 | 0420 | 0351 | 0098 | 0340

oy 0059 | 0058 | 0059 | 0085 | 0079 | 0058 | 0079 | 0062 | 0063

v 0073 | 0072 | 0113 | 0094 | 0187 | 0119 [ 0098 | 0066 | 0137

Tt/ Vie 0024 | 0042 | 0165 | 0087 | 0I84 | 0160 | 0111 | 0049 | 0122

Toemy/Me | 0028 | 0056 | 0148 | 0095 | 0182 | 0198 | 0167 | 0047 | 0130
Touoy/ o | 1209 | 1340 | 0803 | 1093 | 0993 | 1240 | 1512 | 0947 | 1065
T KN 292 | 721 | 1288 | es0 | 2080 | 2327 | 1338 | 539 | 1887
CEN 208 | o919 | 1m7 | 1 | 239 | 315 | 2146 | M2 | 2182
Failwenode | B s S B s ) S s B
0 Gad) 0387 | 0639 | 0784 | 0527 | 0519 | 0381
) 1508 | 1400 1361 | 1315 | 1364 | 1520
Yorhe 0 0 0 0 0 0015
&It 0165 | 0317 0375 | 0468 | 038 | 0125
o/t 1 1 1 1 1 1
Gl s 1 1 1 1 1 1
oy Iy 0 1 1 1 1 0261
x/a* 0480 | 0468 0469 | 0438 | 0450 | 0485
a¥a 1000 | 0548 0408 | 069 | 0712 | Looo
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Table E (continued)

Specimen No. B3 B4 B5 B B B3 Bo B10 Bl Bi2
afmm) 4570 4570 4570 4570 | 4570 4570 4570 4570 4570 4570
'hipom) 1910 1810 1910 1910 1910 1910 1810 1910 1910 1910

a/h 2393 2338 2338 233 233 238 2393 2393 239 233
2 (mm) 203 203 203 208 208 203 203 208 203 208
te (om) 305 305 305 305 305 305 305 305 305 305
b (m) 305 305 305 305 805 305 305 305 305 305
t (mm) 102 102 102 102 102 102 102 102 102 102
o (mm) 1528 1528 1528 1528 1528 1528 1528 1528 1528 1528

o} 0.005 0005 0.018 0018 0018 | 0018 0.018 0.009 0.013 0.018

P 0.008 0003 0.008 0.003 0.003 0.003 0.003 0.003 0.003 0.003

@ 0.003 0.0m 0.008 0.006 0.008 0.014 0.006 0.006 0.006 0.006
fa (MP2) 567 579 589 587 604 597 582 597 575 574
fix (MP2) 568 593 587 54 533 534 537 553 512 503
fy (MP2) 568 538 587 594 538 605 537 563 512 503
£ (MPa) 47 45 45 2 49 42 4 46 5 42
NEN 0 0 0 B4 1197 197 1197 1197 0 0
PEN 216 |334.489%6) 762 8% 980 978 a7 o7 2 792

v 0564 | o575 | 0573 | 0788 | 0609 | 0655 | 0641 | 0632 | 0581 | 0592

o 0113 | oug | 0897 | 0598 | 0352 | 0381 | 0361 | 0195 | 0257 | 0408
oY 0082 | 0066 0066 | 0100 | 0057 | 0056 | 0055 | 00%6 | 0052 | 0059

" 0066 | oom 0142 | 0218 | 0124 | 0304 | 0120 | Ol21 | 0113 | 0128
Test! Vic 0053 | poge | 0151 | 0246 | 0168 | 018 | 0177 | 0126 | 0181 | 0165
Treay/ Vic 0052 | opos5 | 0180 | 0268 | 0169 | 0181 | C178 | 0116 | 0100 [ 0153
Treay/ Test 0978 | o823 | 0938 1089 | L005 | 0992 | 0976 | 0917 | 0768 ( 0928
T KN 585 597 2010 2004 2062 | 2088 1987 1094 1428 1960
QEN 839 862 2270 3198 3519 3473 3419 2638 165 2182

Failure mode S B B S B B B B B B
0 (rad) 0391 0669
o1 (rad) 1514 1223
Yohs 0 0o |
o e 0.152 0.566
oulfa 1 1
oscd frx 1 1
Oyl fy 0332 1
xla* 0482 0431

Ha 0988 0515
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APPENDIX F Test Data and Calculation Results of Shear

Wall Tests by Toshimi [93.3]

Table F
SpedrenNo | NWI | NWS | NW4 | NWs | NW6 | No5 | NW2 | Dol | No2 | N3 | Ned
afon) 3000 | 300 | 3000 3000 | 3000 300 | 2000 | 2000 | 2000 { 2000 | 2000
h(y 1700 170 1700 10 1700 1700 0 1700 1700 170 00
a’h 1% | 17| 1T | 17| 176 | 176 | 116 | 118 | 118 | 1156 | 11%6
a () a0 &0 60 amn 60 a0 a0 a0 an 0 60
tr (oom) 20 20 20 20 20 20 20 20 20 20 20
b (om) a0 | 20| 20| 20 | 20| 20| w0 | 20} W0 | 20| 2
t ) 0 0 O 8 0 & &0 0 &0 0 0
Tooy | 1500 | 1300 | 1300 | 1900 | 1300 | 1500 | 1300 | 1300 | 1300 | 130 | 180
@ 0007 | 0007 | Qoo | aooe | qoiz | Q016 | Q007 | Q06 | 0016 | QOI6 | 00l6
@ 0005 | oo | oo | aoos | aoos | Q05 | Q005 | QO2 | QOB | Q0B | 005
@ 00 | oo | oo | 0006 | aoos | 0005 | Q005 | QOZ | Q008 | QOOG | Q05
fa (V) 716 840 80 80 % 00 | 6 1000 | 100 | 109 | 100
faOMP) | 1000 | 3 3 =3 3 @ | 1001 | 72 R ] ]
f50M%) | 1000 | w8 | W3 | W3 | W3 | TR | 1Ol | TR | A2 | MR | ™R
M) | gie | %5 | a6 | 03 | &2 | T A 6 7L 2 108
NEY | 174 | 132 | 168 | 13 | 15 | 1668 | M4 | 158 | 168 | 158 | &7
PEN 1062 T4 2% 90 56 | US8 | 1468 | 100 | 1254 [ 1378 | 166
v Q4% | 060 | 0640 | 0588 | 0560 | 0515 | 0480 | 0560 | 0534 | 0530 | o4n
Q Q124 | 0169 | 022 | 0219 | 020 | 030 | 010 | 045 | 0417 | 0414 | 0310
& Ql® | QB2 | 0061 | Q100 | Q0% | Q0S4 | Q105 | 0083 | 0064 | 008 | 0073
v 0109 | 0062 | 0061 | 0100 | Q096 | QO%4 | Q105 | 0038 | 0064 | QOB | O0B
Te/V | QIS0 | Q153 | 0165 | 0187 | Q20 | 0216 [ 0240 | 0218 | 0244 | 0265 | Q265
Teay/ Ve Q40 | QM1 | 0164 | 0172 | QI | 0227 | QI8 | 0219 | 020 | 02 | 0Bl
Ty T | 078 | 0927 | 0S8 | 090 | Q854 | 1062 | 0760 | 1008 | 1024 | 108 | 13
TIERN 1 ™ 1056 1086 156 2143 (s 1= 2143 | 2143 | 243
GEN 2978 186 1991 215 288 3B | UD 87 B2 | 25 2630
Filwerodke| S S S S S S S S ] S S
0 cad) 0646 | 0445 | 0410 | Q515 | 042 | 0482 | 0623 | 036 0 040 | 046
Gfad | 140 | 1356 | 1334 | 136 | 130 | 1212 | 132 | 108 | 0%8 | 100 | 102
Yo/he 0 0134 ] 020 | 0000 | Q0% | 0163 | Q120 | 0565 | 0509 | Q46 | 0450
o7 | 01 | o2 | o039 [ 043 | 048 | 050 | 038 | 030 | 0™ | 057 | oaw
alfy 1 1 1 1 1 1 1 1 1 1 1
ol by 1 1 1 1 1 1 1 1 1 1 1
ol 1 1 1 1 1 1 1 1 1 1 1
x/a* Q470 | 0468 | 0439 | Q448 | 0444 | 0418 | Q460 | 0456 | 0410 | 0415 | o442
aa 1 1 1 1 1 1 1 1 1 1 1
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Table F (continued)

SedmenNa| No6 | Na7 | N8 | VOB | W2 | WK | Ve | VROH | PR | B
am) | 200 [ 200 | 2000 [ 1000 [ 1000 | 200 | 200 | a0 | 20 [ 20
o) | @0 | 10 | mo | 1o | 1m0 | 1o | e | 1o | mo | 1o
a’lh | 118 | LIB| 1B | 058 | 058 | 118 | LB | 118 | 1 1
a@m | 60 60 | en | 60 | 200 | 200 | 200 | w0 | 00
) | 20 | 20 | 20 | w0 | w [ 2w [ | 2w | w0 [
by | 20 | 20 | 20 [ W | w | a0 | w | o | w0 | 20
t 6o ! 0| 0| o] o o] o] vl v @
o) | 1300 | 1300 | 1300 [ 1300 | 1900 | 1200 | 130 | =0 | 180 | =0
@ Q06 | QOI6 | 0016 [ Qo07 | Qoo7 | 0007 | aoo7 | aoor | o7 | ooor
@ 0005 | a0 | oo3 | aos | aos | acor | acor | acor | ooor | aoor
@ oo | 0o | 003 | aoos | aos | aoor | aoor | awr | aoor | ocor
faPD | 00| 100 | 100 | W | W | 8 | 8 | 88 | &8 | eB
@) | W0 | | = | om ] o] s0 | s0 | a0 | s0 | a0
o) | 0| | = | o | wn | s0 | s0 | so | s0 | so

£ (VP 4 2 B 108 13 63 61 58 & Y
NEN 1568 | 1568 | 1588 | I1B4 | 2813 | 184 | IRV1 | 182 | 40 | 168

PEN Mil | 498 | 1639 | 160 | 1719 | 1009 | 1064 | 98 1020 | 1011
v 0523 | 0531 | Q517 | 0460 | 0423 | Q5B | 06D | 063 | 052 | Q611
@Q 0407 | 0415 | Q401 | Q111 | QOO1 | Q157 | Q156 | Q1O | 012 | Q6L
) 0212 | 0184 | 020 | 0107 | QOB | Q13 | QIR | Q1% | QI8 | Q57
W 0212 | Q184 | Q20 | Q107 | Q08B | Q153 | 012 | Q155 | 0158 | QI57
T/ Vi 0268 | 020 | 036 | 028 | Q218 | 0206 | 0205 | 0191 | Q27 | 024
Teny/Ve | 033 | 035 | Q347 | 0265 | Q2R | 018 | Q187 | QI | 01D | 0%
T/t | 126 ) 112 | 112 | 1026 | 1156 | 0897 | Q912 | 0%7 | 086 | 0911
TERN 243 | 243 | 243 | 77 n7 ;3 0 0 0 ;3

GERN BN | BIB | 447 | 1648 | 14| 3111 | 37 | 318 | BT | P

0Gay | 0L | 054 | 064 | 06 | Q70 a8
G | 1087 | 11 | 106 | 1216 | 128 131
Yohe | QI8 | 020 | 0001 | 0417 | 0413 0
/i | 063 | 06 | a79 | 023 | Qs 0374
alfy 1 1 1 1 1 1
alfs 1 1 1 1 1 1
/%, 1 1 1 1 1 1
xiat | 040 | 0401 | 036 | 0485 | 04 0464
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APPENDIX G Test Data and Calculation Results of Shear

Wall Tests by Hirosawa [75.1]

Table G
SpecinenNa | 3w7108 | 5wT105| 60w1-1 | 94011/ 1220wl-d TOWAL | 71-WA2 | T2A1084] 73-A108H) 75.A106H 77-A1125
afm) 7w | m | &5 | 65 | 65 | @0 | 20 | 1600 { 1600 | 160 | 160
by 20 | 250 | 60 | 60 | 60 | 20 | 20 | Mo | w0 | W0 | IW0
a/h 0333 | 0333 | 1002 | 1042 | 102 | 052 | 052 | 0941 | 084l | 094 | 0941
a@m | 20| 20 | 1m0 | 1m0 | 1m0 | 50 | 50 | 20 [ 20 | 20 | 20
t (o)) 20 | 20 | 100 | 100 | 100 | 20| 20 | w | m ]| @ | ™
b () %0 | 20 10 | 100 | 10 20 | 160 | 180 | 180 | 160
t (o) 0 50 0 0 0 4 & 0 | 160 | 160 | 160
oGy | 170 | 170 | 400 | 400 | 400 | 180 | 180 | 1360 | 1360 | 1360 | 1360
Q 0008 | 0005 | 0014 | 0014 | oor4 | Q000 | 0008 | 0006 | 0006 | 0006 | 00
@ ooz | oo | oo | oo | acoe | 0002 | 0O00L | QOG5 | GO05 | 0005 | 0005
@ o000l | oo | aoo2 | ooz | ooz | 002 | 0Q0OL | 0O | 0008 | 0006 | 00%
fa (MPD) 350 A9 A9 29 48 | 48 3% 3% 3% 3%
£ (MPD) 623 [4] 28 28 28 509 461 419 47 A7 07
0P | &3 623 2B 293 o | 509 | 41 | 47 | 49 419 45
£0) | 950 | %0 | W5 | 7 | w9 | A 5 7 21 1 18
NERN 38 368 0 1% (5] 0 0 53 583 | 5812
PERN 524 3 9 % 50 83 04 o} 2 813 | 9114
v 0709 | o718 | o6 | 072 | 06 | 06T | 0674 | 0709 [ Q%5 | 085 | o7
q 005 | 0087 | 0181 | 0145 | 0140 | 0238 | 025 | 0155 | Q135 | 0187 | 01
& 0054 | 024 | oof2 | o34 | as2 | 0060 | 0019 | OIR [ 018 | IB | 01
v 007 | o4 | oo | a1 | oo | 000 | 0019 | 0077 | Q06 | 0B | i
/v, | 0158 | 03 | 010 | 0239 | 0157 | 0299 | 0248 | 0216 | 0168 | 0261 | 023
TV | 0133 | Q380 | Q129 | 0186 | 0147 | 023 | 028 | 0217 | 0I% | 023 | 0218
Tyl e | 0842 | 1020 | Q762 | 0780 | 0942 | 094 | 0919 | 10 | 1146 | 1009 | 095
TERY 2 | 1R ) 52 52 65 | 64 | s | 2 | s | s
GERNY o | 45 3B B B 8 8 819 | 88 | 119 | 12B
Filwerode| S S S S s s s s s S s
OGad | L115 | 082 | 0600 | 0477 | 0563 | 078 | 0804 | 0615 | 062 | 076 | OBl
o) | 14% | 106 | 142 | 1261 | 1364 | 119 | 1280 | 122 | 1319 | 1230 | 13®
Yoo | 0304 | 0610 [ 0207 | 0412 | 0282 | 04%5 | 044 | 0316 | 025 | Q139 | 0131
QI 000 | 0448 | 0117 | 0145 | 0108 | 0128 | 0087 | 0231 | 0191 | 04 | 036
alfy 1 1 1 1 1 1 1 1 1 1 1
ax /g 1 1 1 1 1 1 1 1 1 1 1
&/ 1 1 1 1 1 1 1 1 1 1 1
x/a* | 04985 | 04774 | 0485 | 04847 | 04908 | 04919 | 04080 | 04782 | 048X | 04535 | 0468
a¥a 1 1 1 1 1 1 1 1 1 1 1
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Table G (continued)

Specinen No | 79B106h| 81-B112h| S3E0M| SSRID| IV2 | B2 | 975 | 86 | 97 | 81
am) | 1600 | 1600 [ 1600 | 600 | 200 | 30 | 40 | 40 | 40 | a0
be) | 1RO 10| &0 | &0 | B0 | @ | 50 | 5 | 50 | 4@
a/h | Qom [ oou | 182 | 18R | 052 | 074 | 0T | 07 | amO | o4
a@y | 20 | 20 | A0 | W | O | @ & &0 o 60
tr g W | & s | 20| @ & & & Q
b W | | | 8| 2| D ) 0 o )
@ | | | | 8 0 ) 0 0 0
hhm | 130 ] 1330 | 60 | 60 | 80| 0 | 40 | 40 | 40 | 3B

Q Q0B | Q008 | 0010 | Q008 | Q0B | Q2D | Q0I5 | QOI0 | Q007 | QoI
I Q005 | Q005 | Qoos | qoot | Qool | O 0 0 0 0
@ Qo6 | aoos | 0oos | aom | ooow | o 0 0 0 0
ROBR) | 3 | | | 3| 48| 3| W | WW | W | 386
faP) | 47 | 47 | 07 | 47 | 41 | 45 | sm | 3 | 3 | 45
0P | 40 | a5 | 4 | 45 | 41 | 47 | a1 | 3m | 3m | 487
£OR) 14 18 21 % & £ 2 8 &
NRY | 58 | 58 | %7 | %7 0 0 0 0 0 0
PRN | 617 | W0 | 3B | 3 | o | D 3 k3] 5 50
v 08% | 06 | QB0 | 0% | 067 | 0474 | 060 | 06H | 063 | 041
@ Q084 | Q067 | Q27 | Q1 | Q5 | 025 | 0B | Q177 | Q1D | Q1@
@ 0B | o [ aus | aie | ao9 | o 0 0 0 0
v 024 | 1B | o0 | oz [ oo | 0 0 0 0
T/V, | Q18 | 0194 | Q1% [ 010 | 028 | QM9 | Q14 | Qu2 | 012 | Qo7
Tay/Vi | 0188 | QI | 0165 | 012 | 028 | 010 | 018 | 0154 | 0121 | QI4

T/ T | 0947 | 0806 | Q93 | Q774 | 0919 | 1200 | 1474 | 1383 | Q%7 | 108
TN | %1 | 1 | 52 | 48 | ea .| 8 57 61 () 53
GRN | 24| 2% | % | 8B 8 1 5 -1 2 5

Falremd| B B B B S S S S S S
0¢ad) 080t | 070 | 069 | am7 | ams | a8
6 (=) 1280
Yohe 046 | 032 | Q413 | 0312 | o241 | 028
q/t awr | © 0 0 0 0
w/fy 1 1 1 1 1 1
ol fi 1 0 0 0 0 0
o/t 1 0 0 0 0 0
x/a* Q4980 0 0 0 0 0
Ma 1 1 1 1 1 1
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APPENDIX H Test Data and Calculation Results of Shear
Wall Tests by Yoshzaki [75.1]

Table H
Seinenl] DISBL | 112358] 122304] Teosms| azsmy] w2228 1711204] 1B1008] IBRL )
) 0 a0 0 0 a0 am &0 a0 D
b a0 ) 0 20 20 B B BD BD
a/h 10 087 87 %, 067 ox 0 o QD
am) W W o W ) W m 0 o
o) D 0 W w » B » w w
b @ o @ 0 & © @ @ &
). @ o @ © Y © @ ® ®
hb@m | 6D D @0 @ P50 0 120 250 %)
@ m | oo 00B | OW6 | 0OB | OWMB | Q04 o | 0o®
@ Qo2 a8 oot | ooB | oo | oo | owmt | ooB | oom
@ Q012 Q0B ot | ooB | eo2 | oms | omt | oo® | aom
&OB | 36 B Yy %5 35 s 35 36 1
0B | ot e s B I s B S Bt
0B | M o e B84 s 1 s oL e
£0B) % 5 5 P > P 3 » %
NRY 0 0 0 0 0 0 0 0 0
PEY ™ % 2 B o B 30 B @
v Qe 677 o6 | oem | oem | oe2 | 6w 062 | 062
@ el 081 a4 | o | 0B | e | om® w® | oo
Q 036 | 028 as | oxs | oIs | ox | oml o2 028
v 036 | 024 | QK7 | 024 | 03B | 0A7 | QB 07 | 028
wWht | 028 | a1 Bt | o7 | o | od | 0Bt 22 | 028
Tye | 028 | a7 o8 | o024 | o® | 06 | 0B s | 0%
Tl | 106 | Q2 0% 100 10 | 100 | owr 1019 17 .
TEY w 97 1% u w 9 w w ®
GEY Er 20 18 2 0 =1 m 28 3D .
Pilemk| S ) s ) s ) ) s )
oy | 08t | 095 0sp | 082 | osw | am | qom w8 | w8
6 124 1% 138 191 120 135 1%L 129 121
Jorhe 0 Q0B ozt | o2 | a® | 0B | o 02 020
QI e | osm o8 | 0% | oI | o | o 37 | 0B
alk 1 1 1 1 1 1 1 1 1
ol 1 1 1 1 1 1 1 1 1
affy 1 1 1 1 1 1 1 1 1
W& | oED | ofor | 04FL | 040 | 0B | Oe% | 080 | 088 | 04
&2 | 08B 1 1 1 1 1 1 1 1
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APPENDIX T Test Data and Calculation Results of Shear

Wall Tests by Tanabe [75.1]

Table 1 :

SpecimenNo.| 1019 | 102-10 | 11242 | 113-44 | 10412 | 10513 | 106-14 | 114-4M
a(mm) 450 450 450 450 450 450 450 450
h(mm) 570 570 570 570 570 570 570 570

a/h 0.79 0.79 0.79 0.79 0.79 0.79 0.79 0.79
a, (mm) 60 60 60 60 60 60 60 60
tr (mm) 60 60 60 60 60 60 60 60
b (mm) 60 60 60 60 60 60 60 60
t (mm) 20 20 20 20 30 30 30 30
ho (mm) 450 450 450 450 450 450 450 450
Q@ 0.015 0.015 0.015 0.015 0.010 0.010 0.010 0.010
oW 0.018 0.018 0.018 0.018 0.012 0.012 0.012 0.012
@y 0.018 0.018 0.018 0.018 0.012 0.012 0.012 0.012
fy (MPa) 368 368 293 293 368 368 368 293
e (MP2) 284 284 294 294 284 284 284 294
fyy (MPa) 284 284 294 294 284 284 294 294
£ (MPa) 34 30 43 49 36 34 34 40
NEN) 0 0 0 0 0 0 0 0
PEN) 63 75 68 n 94 90 86 71
v 0.628 0.649 0.585 0.556 0.622 0.628 0.631 0.600
[0} 0.253 0.279 0.173 0.160 0.164 0.169 0.170 0.121
[0} 0.241 0.266 0.214 0.199 0.157 0.161 0.162 0.150
W 0.241 0.266 0.214 0.199 0.157 0.161 0.168 0.150
Tt/ Vi 0.255 0.335 0.239 0.229 0.249 0.244 0.236 0.172
Tﬁﬁ,l A 0.291 0.314 0.234 0.220 0.207 0.211 0.213 0.173
Tiheon  Thest 1.142 0.936 0.979 0960 | 0.829 0.867 0.903 1.002
Ty KN) 62 62 50 50 62 62 62 50
G EKN) 79 81 8 77 75 75 7 75
Failure mode S S S S S S S S
0 (rad) 0.732 0.728 0.781 0.784 0.757 0.755 0.760 0.794
04 (rad) 1.146 1.100 1.261 1.283 1.298 1.291 1.289 1354
yo/he 0 0.229 0.142 0.138 0.182 0.185 0.177 0.119
o /1, 0.540 0.600 0.432 0.399 0.332 0.342 0.354 0.294
oyl 1 1 1 1 1 1 1 1
sl fux 1 1 1 1 1 1 1 1
LA 1 1 1 1 1 1 1 1
x/a* 0.4461 0.4365 0.4630 0.4669 0.4727 0.4716 0.4706 0.4778
a*/ a 1 1 1 1 1 1 1 1
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Table I(continued
SpecimenNo. | 11549 | 10715 | 10816 | 10917 | 11652 | u7-54 | 11036 | 111-39

a(mm) 450 450 450 450 450 450 450
h(mm) 570 570 570 570 570 570 570 570

a’h 0.79 0.79 0.7 0.7 0.79 073 0.79 079
a: (mm) 60 60 60 60 60 60 60 60
te (mm) 60 60 60 60 60 60 60 60
b (mm) 60 60 60 60 60 60 60 60
t (mm) 30 40 40 40 0 40 10 10
ho (mm) 450 450 450 450 450 450 450 450

] 0010 | 0007 | 0007 0.007 0.007 0007 | 0030 | 0030

oY 0012 | 0009 | 0009 0.009 0.009 0009 | 0018 | 0018

@ 0012 | 0009 | 0009 0.009 0.009 0.009 0018 | 0018

fa (MPa) 293 368 368 368 293 203 293 293
fox (MPa) 294 284 284 284 294 294 294 294
foy MPa) 294 284 284 284 294 294 204 294
f. MPa) 46 33 35 36 45 43 46 43

NEN 0 0 0 0 0 0 0 0

PEN) 77 B 97 102 8 7 43 4

v 0569 { 0636 | 0623 0.621 0.573 0.587 | 0.571 0.583

[0} 0110 | 0180 | 0124 0.123 0.084 0087 | 0333 | 0344

[0 0137 | 0125 | 0119 0118 0.104 0.108 0206 | 0213

% 0137 | 0125 | 0119 0.118 0.104 0.108 0206 | 0213

Thest! Vi 0170 | 0205 | 0193 0201 0.132 0136 | 0287 | 0.305
Treory!/ Vi 0160 | 0170 | 0163 0.162 0.125 0120 | 0316 | 0322

Tireory/ Tiest 0937 | 0830 | 0843 0.804 0945 0.953 1101 1.056

T KN 50 62 62 62 50 50 50 50
CEN 74 73 73 B m 74 4 2
Failure mode S S S S S S S S

0 (rad 078 | 0772 0.775 0.776 0.809 0.807 0645 | 0642

6 (rad) 1.373 1.365 1.366 1.368 1421 1415 1.047 1.028

Yo/he. 0113 | 0157 | 012 | 0151 | 0004 | 009% | 0348 | 0353
o 0267 | 0957 | 0242 | 0240 | 0199 | 0208 | 0570 | 0593
ulfy 1 1 1 1 1 1 1 1
! 1 1 1 1 1 1 1 1
oy 1 1 1 1 1 1 1 1
x/a* 04804 | 04805 | 04819 | 04821 | 04863 | 04856 | 0.4352 | 0.4309
aa 1 1 1 1 1 1 1 1
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APPENDIX J Test Data and Calculation Resulis of Shear
Walls Tests by NUPEC[94.3], Cardenas [80.2],

and Kebeyasawa [84.51[85.4]

Table J Cardenas Kebeyasawa
Specimen Nb. | NUPRC SW7 | SW8 | Sw9 | swi3 Kl K K4
af) 2A20 200 | 2000 | 2000 [ 2000 1500 1500 1500
hm) 3100 1905 | 19065 | 1905 | 1905 2000 2000 2000
a/h 065 106 | 15 | 165 | 105 075 07 07
2 (o) 760 115 15 15 115 381 331 331
¢ () 100 91 6 7 % 20 260 200
b ) 2080 (G 76 7 76 20 20 20
t o) i3 6 76 (] 6 0 0 0
h@m | 200 524 | ™8 | 178 | 178 1600 1600 1600
Q@ 0.006 0008 0 0 0 0002 0004 0004
& 0011 0009 | 0029 | 000 | 002 0.003 0.005 0.008
@ 0012 0003 | oom | 0010 | 0010 0003 0005 0.008
fa (MPa) 43 “8 4“8 48 “8 32 3% 3%
fo(MPD) | 483 “3 “8 448 4“8 3% 3% 3%
fiy (MP9) 43 414 465 414 45 3% 3% 3%
£ (MPa) 29 43 2 43 0 19 2t
NEN 119 12 12 12 13 3% 400 3%
PERN 1627 519 50 ) 632 439 471 508
v 060 058 | 058 | 05% | 0584 0.772 0.778 0.764
Q 0132 0M7 | 0021 | ol | 00 0.046 00%5 0089
Y 0247 0153 | 0518 | 0513 | 0510 0070 0141 0201
v 0264 004 | 0050 | Ol64 | 0179 0.070 0141 0201
TlVh | 0347 0142 | 0157 | 0185 | 0172 0.181 019 0.201
Toeoy/ Vi | 0341 0158 | 0185 | 0184 | 0183 0153 0220 0235
Toay/ T | 083 113 | 1180 | 0% | 1067 0.847 1108 1165
TEY 617 538 k6] B | B m 2% 224
GEN A6 46 | 1020 | 1684 | 1734 407 618 &
Falwerode| S s B B B S s s
0 d) 0732 0728 0.755 0.760 0794
8 (rd) 1146 1100 ) 1291 1289 1354
Yo/he 0 0229 0.185 0177 o9
e/t 0540 0,600 0.342 0.354 024
oulfy 1 1 1 1 1
el Fi 1 1 1 1 1
o/ fy 1 1 1 1 1
x/a* 0.4461 0.4365 04716 04706 04718
a¥a 1 1 1 1 1
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APPENDIX K Test Data and Calculation Results of Shear
Wall Tests by Wiradinata [86.6], Aoyagi[90.5]

and Pauley [80.1]
Table K
Specimen No. | Wiradinata | Wiradinata Aoyagi | Aoyagi Paulay | Paulay
a(mm) 1100 620 1400 1400 1500 1500
h(mm) 2000 2000 2720 2720 3000 3000
a/h 0.55 031 051 051 0.50 0.50
2, (oom) 80 80 246 246 400 400
tr () 60 60 320 320 200 100
b (ram) 100 100 320 320 100 500
£ (mm) 100 100 160 160 100 100
o (rom) 1880 1880 2080 2080 2600 2800
@ 0 0 0.004 0.015 0.001 0.003
@ 0.008 0.008 0.006 0.006 0.008 0.004
@ 0.003 0.003 0.006 0.006 0.016 0.016
fn (MPa) 434 434 363 272 308 308
fyx (MPa) 434 434 339 339 308 308
fry (MPa) 425 425 339 339 380 380
f. (MPa) 25 22 29 29 27 26
NEN 15 9 0 0 0 0
P EN) 574 681 1555 2309 810 786
v 0.678 0.691 0.653 0.654 0.664 0670
oY 0.008 0.007 0077 0217 0.024 0.051
oY 0.206 0.228 0.102 0.103 0.138 0.069
v 0.063 0.070 0.109 0.110 0.339 0.351
Tt/ Vic 0.170 0.223 0.186 0.278 0.149 0.150
Tipeary! Vic 0.154 0.222 0.167 0.292 0.131 0.129
Tinoory/ Tiest 0.904 0.993 0.897 1.052 0874 0.857 °
T N 21 21 646 1807 130 266
C:EN) 384 261 663 486 ki) 603
Failure mode S S S S S S
0 rad) 0.798 0.772 0775 | 0776 0809 | 0807
0 (rad) 1.373 1.355 1.366 1.368 1421 1415
Yolhe 0113 0.157 0152 | 0.151 0094 | 009
oo lf, 0.267 0.257 0242 0.240 0.199 0.208
o/ 1 1 1 1 1 1
o/ 1 1 1 1 1 1
og/ fyy 1 1 1 1 1 1
x/a* 0.4804 0.4805 04819 | 04821 0.4863 | 0.4856
a*/a 1 1 1 1 1 1
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APPENDIX L. Test Data and Calculation Results of Shear

Wall Tests by KoKusho [75.1]

Table L

a8|e|s|a|=|2|=|e|5|5|5|s|s|s|<| 3|2 2|82 2|55 2|5 | 8|~ 2|2 8|8 || -|8|-
a|a|e|g|a|= 5 |a|s|5|5|5|s|s|s|«|25|5|8|5 2|5 5| 2 |2 |8~ |2 | 2| 5|8 |- | -|-{8)-
n|8|3|g|a|x|s|s|s|5|5|5|5|s|s|s| - |5|2|2|| 52| 2|2 | 2|~ |2 |2|s|| | -|-{8|-
s|s|e|s|e|s|s|x|s|5|s|5|s|s|s|= |2 2|5|e|2|s|s |7 |5 |- |2|2]e|2| |- |]-|g|-
n(s|s|s|a|=|a|a|s|5|5|5|s|s|n|=|- |7 c|5|8|5|5|8 8|7 4|~ |0 |2 |8 |8 || -|-I5|-
s|3|s|s|a|=|e|<(s|8|5|5|s|s|a |- |5|2|5|9|5|2|5|8| & |2 |~ ||2|3|8| | -|-{g|-
28|8|8|a|a|a|a|8|8|8|8 5|88 =||B|E(8|2|5|B|8|B|B|4]~|8|5B|58|8|~|~|~|g-
% 8|8|8|8|a|e|x8|8|8|5|5|9|9 =||3|8|5|5|5(8|8|8|8|8|~|B|8|8|8]~|~ |8~
a8 |e|s|e|e|2|s|5|5|5|e|s|s|a |- |8 |5 |2 |8 |x (8|5 |8 |5 | 8|~ | 5| u |2 |5 || - |-|8|-
2 8(8|%|=|al4/x|R)8|8 5| 8|8\~ |8|E(8I2|8|8|8|B|3|E|~|B|8|=|8|~|~|~|8-
11882\ 2|2(2(2(8 o| | =252 \2|B[E| [+|<| o33 2[5 1|38 415|333
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APPENDIXM Test Data and Calculation Results of Shear
Wall Tests by Benjamin [53.1] [55.1] [56.1]

[566.2] [57.1]

Table M
SpecimenlNo. | 4BIL1 | 4BI2 | B3 | 4804 | 1BO1 | 3AI | A2 | NV | NVI1 | NVI8
agm) 600 | 50 | 560 | 50 | 90 | 60 | 50 | 80 | 100 | 60
= 610 | o | 1209 | 17 | w2 | 914 | 9u | w1 | 143 | 1956
alh 0% | 061 | 044 | 029 | 053 | 066 | 060 | 048 | 0% | 031

a @) 140 142 140 134 137 62 162 51 86 91
tr Goam) 102 102 102 102 127 102 102 127 127 127
b () @ 7 127 27 ¥ |17 27 27 127 27
t (o) 51 51 51 51 51 4 “ 51 51 51
ho () 406 kges 1016 1575 1473 1 71 1397 889 1702
Q 0003 | 0006 [ 0005 | 0003 [ 0006 | 0011 | 001l | 0003 0.014 0.003
(0% 0005 | 0005 [ 0005 | 0006 [ 0003 | 0005 | 0008 | 0005 0.005 0.005
o 0005 { 0003 | 0005 | 0005 | 0008 | 0005 | 0008 | 0005 0.006 0.005
fn MPa) 312 312 312 312 312 312 312 312 312 312
Ty (MPa) 341 341 341 341 341 341 341 341 34 341
fyy (MPa) 341 3 341 341 341 341 341 341 341 341
f. (P9 200 | 2137 1931 | 2641 | 2000 | 2482 | 1931 | 2689 24.82 2069
NEN 0 0 0 0 0 0 0 0 0 0
PERN) 88.96 155 201 294 249 205 138 301 222 374
v 0700 | 0693 | 0708 | 0668 | 0700 | 0676 | 0708 | 0666 0676 0.697
qQ 0205 | 0129 | 0106 | 0056 | 0120 | 019 | 0242 | 0059 0.257 0.062
o} 0122 [ 0115 | 0126 | 0097 | 0061 | 0102 | 0063 | 00% 0102 0118
v 012 | 0115 | 0126 | 0097 [ 0061 | 0102 | 00683 | 0095 0.102 0118

Tt/ Vig 0205 | 0225 | 0240 | 0184 | 0208 | 0300 | 0250 | 0201 0.228 0.261
| Ty Ve 0174 | 0184 | 022 | 0210 [ 0202 | 0238 | 0238 | 0160 0.220 0232
Ty Teg | 0848 | 0864 | 0954 | 1137 | 0934 | 078 1014 | 0795 0.963 0.889
TN 8007 | 8907 | 807 | 807 158 133 133 8867 250 8867
GEN B0 | 24 | 6892 | 6861 | 4519 | 5934 | 1936 | 935 162 7198
Failure rode S S S ) S S S S S ]
0 Grad) 0687 | 0849 | 0933 | 1074 | 087 | 0742 | 0702 | 0981 0629 1042
6, (rad) 1346 | 1331 1293 | 1332 | 1327 | 1248 | 1205 | 13%0 1268 1308

Yoho 0 | o024 | 0377 | 04s5 | 033 [ 0363 | o462 | 023 | 0268 | 0461
/i, | 0308 | 0204 | 019 | 0125 | 0105 | 0223 | 0151 | 0138 | 0294 | 01
aulfy 1 1 1 1 1 1 1 1 1 1
Gl fe 1 1 1 1 1 1 1 1 1 1
ol 1 1 1 1 1 1 1 1 1 1
x/at | 0471 | 04877 | 04912 | 04968 | 04045 | 04835 | 04889 | 04944 | 04713 | 04954
aa 1 1 1 1 1 1 1 1 1 1
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Table M (continued)

Specimen™a|] VR8 | R1I | AtA [ aB| B | M1 | MR1| MR3 | MR2 | MR4
am) o | 90 | 50 | 0| =0 | &0 | 60 | &0 | 50 | 50
b e | e | B B | 55| w5 | 185 | 185 | 165

a’h 0555 085 031 031 | 03t | 0% | 040 040 00 Q30
2 () 0 [£Y 7 “ ! 7 & 14 58 5
t () 127 27 1] 12 @2 21 127 127 1z7 27
b 191 101 27 127 127 191 27 127 127 27
() 51 51 4 4 4“4 51 4“4 4 4
o (o) uB | 4B 15% 155 | 156 | 1334 | 131 [ 1301 | 1391 | 181

[} Q006 | Q006 | Q004 | QOO4 | QO | QO06 | QOO7 | QOO7 | Q007 | QOO7

[ Q005 | QOB | 0010 | GOI0 | Q015 | QO3 | QOOB | QOOB | QO3 | QOB

@ 0005 | Q003 | Q010 | 0010 | Q015 | QO3 | QOB | QO3 | Q008 | QOB
fa (VP 312 A 26 2% B 34
fo (VP At 30 A 4 34 30 30 30 30 39
fy (VP 1 39 A A 30
£ QP 2137 | N6 | 2165 | 262 | 041 | 206 | U1B | BV | 198 | 44
NEN 0 0 0 0 0 0 0 0 0 0

PEN B1A 316 31 X7 32 214 317 318 245 245
v 068 | G697 | Q62 | 0687 | Q6B | 60 | 06 | Q21 | QA0 | OB

Q 0121 | Q10 | Q071 | QO | QOB | QI8 | 010 [ Q2R | Q164 | Q218

@ Q5 | Q02 | 028 | 020 | Q3D | Q0P | 005 | QO | 0064 | QOB

v Q5 | Q02 | 028 | 020 | Q30 | 000 | 005 | 00D | 0064 | Q0B
T/ Vi 023 | 020 | 0263 | 029 | Q2R | QI | 0265 | 0384 | 0240 | Q31
Tey/V | 022 | 028 | 0311 [ 034 | 03 | QA7 | 0236 | 028 | 0281 | 03B
Tremy/Tee | 093 | Q813 | 1181 | 1016 | 1206 | 1IB | 082 | O®4 | 11 | 102

GEN 10 | 406 120 129 216 | 416 | 980 | 604 | 947 -14
Filuenode| S S S S S S S S S S

Oad) 088 | 083 | Q97 | OMBL | QXD | 081 | 04 | 0842 | 0943 | Q8D

Gy | L1 | 123 | L1187 | 119 | 10m | 1317 | 1283 | 1182 | 120 | 1135

Jome | 0331 | a1 | o5 | ass | osm | 0%t | 040 [ asu | oss | oeB

«/E 018 | Q110 | 0338 | 0318 { 050 | 0104 | 0086 | Q42 | QOB | QM6

/s 1 1 1 1 1 1 1 1 1 1
alfs 1 1 1 1 1 1 1 1 1 1
o /g 1 1 1 1 1 1 1 1 1 1

x/a* 0480 | 0490 | 0487 | 0485 | 0474 | 0494 | 04964 | 04%9 | 04965 | 0490

a¥a 1 1 1 1 1 1 1 1 1 1
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Table M (continued)

Speciceno.| VRR1 | M51 | M2 [ Ms22| MBS | SDIA | SDIC | 33 | 13
afm) 80 | M0 | W0 | w0 | 50 | 60 | 60 | 90 | 140
hieom) 1727 | 1600 | 1600 | 1600 | 2337 | 1219 | 1219 | 1®™7 | 291

alh 049 | 047 | 047 | 047 | 024 | 053 | 053 | 058 | OM

2 (rm) 181 &0 &0 0 i3] 0 €0 187 | 13
() 2 ] ower | o | o | o] 1 | e | 1 | 19
b (o) 1B | 1z | i | i | o | w2 | 1@ | 3 | 2%
t (oom) 51 51 51 51 51 51 51 51 7

Em | 47 | 1346 | 136 | 1346 | 2083 | 1016 | 016 | 4B | 20

Q 0006 | 0010 | 0010 | 0010 | 0007 | 005 | 0005 | 0006 | 0006

% 0005 | 0003 | 0008 | 0008 | 0008 | 0005 | 0005 | 0005 | 0005

@ 0005 | 0008 | 0003 | 0003 | 0008 | 0005 | 0005 | 0005 | 0005
faMP) | 23 | 23 | 28 | 293 | 2 | 28 | 28 | 822 | s
faMP) | 23 | 208 | 28 | 28 | 28 | 28 | 28 | 1 | 34
fyMP) | 23 | 298 | 28 | 28 | 28 | 23 | 28 | s | 3

EQMP) | 208 | 2158 | VI3 | 88 | BU | 1613 | 1613 | 275 | DO
NEN 0 0 0 0 0 0 0
PEN 300 | 274 | 38 | 3 | 30 | W | 60 | 2 | 6%

v 0690 | 0692 | 065 | 0681 | 0674 | 0719 | 0719 | 068% | 0697

Q 0113 | 0198 | 015 | 0178 | 0116 | o116 | 0116 | 0116 | 010

@ 0096 | 0053 | 0043 | 0049 | 0047 | 0126 | 0326 | 0109 | 0118

v 0096 | 0049 | 0043 | 0049 | 0047 | 016 | 016 | 0109 | 0118

TelV | 0247 | 0226 | 0244 | 022 | 0188 | 0248 | 0223 | 0214 | 0241

T/ | 0215 | 0252 | 0222 | 0241 | 0252 | 0219 | 0219 | 0213 | 023

Trway/Tex | 0874 | 1114 | 0909 | 0889 | 1338 | 08% | 09834 | 09% | 098
TEKN 1w | 26 | 23 | 210 | 16 | 318 | 8318 | 158 | 30
GENY 8 | 057 | 8% | 487 | 192 | 6362 | €862 | 12 | 254

Filwenode| S S S S S S S S S
BGad) | 0904 | 0821 | 0867 | 0800 | 1056 | 0883 | 0883 | 0888 | 082
G | 1312 | 1243 | 1205 | 1263 | 1278 | 1302 | 132 | 134 | 13%4
Yo | 03% | 0473 | 0422 | 0453 | 0575 | 0323 | 0328 | 03% | 030
alf 0156 | 0092 | 0073 | 0088 | 0061 | 0211 | 0211 | 018 | 019
ol fy 1 1 1 1 1 1 1 1 1
ol 1 1 1 1 1 1 1 1 1
o/ fy 1 1 1 1 1 1 1 1 1
x/at | 04924 | 04950 | 04964 | 04954 | 04986 | 04886 | 04886 | 04905 | 0488
ava 1 1 1 1 1 1 1 1 1
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