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Summary

This paper deals with the plastic shear strength of non shear reinforced T-
beams.

The influence of an un-reinforced flange on the shear capacity is investigated
by considering a failure mechanism involving crack sliding in the web and a
kind of membrane action over an effective width of the flange.

The position of the crack in which sliding takes place is determined by the
crack sliding model developed by Jin-Ping Zhang [94.1].

The  theoretical calculations are compared with test results reported in the
literature. A good agreement has been found.

A simplified method to calculate the shear capacity of T-beams is presented.
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Resumé

Denne rapport behandler forskydningsbeereevnen af T-bjelker uden for-
skydningsarmering bestemt v.h.a. plasticitetsteorien.

Indflydelsen pa bareevnen af en uarmeret trykflange er undersegt ved at
betragte en brudfigur, hvor glidningsbrud indtreffer langs en revne i krop-
pen, og en art membranvirkning udvikles over en effektiv bredde af flangen.

Beliggenheden af revnen, hvori glidningsbruddet indtreffer, bestemmes
v.h.a. “crack sliding” modellen udviklet af Jin-Ping Zhang [94.1].

De teoretiske resultater sammenlignes med forsegsresultater fra litteraturen.
Der er fundet god overensstemmelse.

Der gives sidst i rapporten en simplificeret metode til at bestemme forskyd-
ningsbareevnen af T- bj@ﬂcer.

iii



Table of Contents

Preface
Summary
Notations

1. Introduction

1.1 The crack sliding model.............ccoevvevvivirerenrnnnne,

2. Shear capacity of T- beams

2.1 Failure mechanism for T- beams ............ccceevene..
2.2 Short shear Spans ...........cc.ceceeieecenircnencererennenens

3. Comparison with test results

4. Simplified calculation

4.1 Comparison of simplified method with test results

5. Conclusion
References

Appendix

v

ii



Notations

At
Acf,ef :

Ver

: Shear span

: Distance from the external load to the starting point of a yield line
: Shear span ratio

: Area of concrete cross section

: Area of the flange ( = tby)

Effective area of the flange (= tbgy)

.. Area of the web =(h-t) by
: Longitudinal reinforcement area
: Width of flange
: Effective width of flange
: Width of web
: Distance from the top face to the center of gravity of cross section
: Uniaxial compressive strength of concrete
: Effective plastic tensile strength of concrete
: Depth of beam
: Parameter taking into account the influence of the flange
: Size effect parameter
: Thickness of flange
: Relative displacement in yield line
: Reaction at support

. Cracking load



V. : Ultimate load/reaction

We : External work at failure

W : Internal work at failure

Wi flange - Internal work in the flange
Wiwes : Internal work in the web

x  : Horizontal projection of yield line (in case of rectangular cross
section) and horizontal projection of critical diagonal crack (in case of
T- beams)

xy . Horizontal projection of yield line formed in the web of T- beams
x¢ . Geometrical quantity
Yo : Geometrical quantity

z  : Geometrical quantity



Bef
Vo

Vm

Te

To

Tu
Ty,R

Tu,T

=AcfAcw

T =Adger Acw

: Effectiveness factor for uncracked concrete
: Effectiveness factor for membrane action

: Rotation angle

: Reinforcement ratio

: Shear stress

: =0.059vf,

: Shear capacity corresponding to a yield line formed in uncracked
__concrete

: Shear capacity (= Vy/byh)
: Shear capacity of beams with rectangular cross section
: Shear capacity of T- beams

=Vl Vo
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Chapter 1

Introduction

This paper deals with the shear capacity of T-beams without shear rein-
forcement. A study of the influence of an unreinforced flange on the shear
capacity is carried out by considering a failure mechanism featuring crack
sliding in the web and rotation in hinges in the flange.

Concerning the crack sliding failure in the web and the determination of the
critical crack along which sliding takes place, we will employ the crack
sliding model developed by Jin-Ping Zhang [94.1]. This model is originally
developed for analysing the shear strength of non shear reinforced, siniply
supported beams with rectangular cross section.

It has turned out that the model is rather general and may also be applied
when analysing statically indeterminate beams and prestressed hollow-core
slabs, see [97.2] and [97.3]. In this paper, we shall demonstrate how this
model may be applied to T-beams.

In what follows we shall briefly review the crack sliding model.



1.1 The crack sliding model

To determine the shear capacity of non shear reinforced concrete beams
with rectangular cross section, the crack sliding model has been developed
by Jin-Ping Zhang [94.1]. A detailed description of this model may be found
in [94.1] and [97.2]. In this paper we shall only summarise the basic features
of the model.

The crack sliding model is based upon the upper bound theorem of the theo-
ry of plasticity. According to the crack sliding model, the cracking of con-
crete introduces potential yield lines which, due to a reduced sliding resis-
tance, may be more dangerous than the yield lines predicted by the usual
plastic theory. In other words, shear failure in non shear reinforced concrete
beams takes place as sliding in cracks. It has been demonstrated by Jin-Ping
.Zhang [97 4] that the sliding resistance of a crack transformed into a yield
line is half of the sliding resistance of a similar yield line through uncracked
concrete.

The diagonal crack which is transformed into a yield line is called the criti-
cal diagonal crack. For an overreinforced simply supported beam subjected
to concentrated loading, the shear capacity and the position of the critical
diagonal crack are determined as follows:

Consider the beam shown in figure 1.1. We assume that sliding takes place
along a straight diagonal crack ending at the loading point and having the
horizontal projection x. By a vertically directed motion of the part I, the in-
ternal work done in the diagonal crack transformed into a yield line may be
determined by the following approximation to the correct dissipation for-
mula, see [97.1] and [97.2],

Wi=22A, u ' (1.1

h

P



Here A. = bh is the area of the cross section and 7 is given as
7. = 0059, 1,

f. being the uniaxial compressive strength of concrete and vq the effective-
ness factor which may be taken as, see [94.1] and [97.2],

1 1
Vo =088 (1 + ﬁ)(l +26p) (12)

Here f, must be inserted in MPa, 4 in meter and p is the reinforcement ratio.
In [94.1] and [97.2] some restrictions have been set on the range of f;,, # and
p. Extrapolations may, however, be done without any substantial change of
the formula.

v ¢

‘f Part I Part I1

Figure 1.1 Simply supported beam with a critical diagonal crack.
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Figure 1.2 Stress distribution along a developing crack.

By using the work equation with V' as the external work done by the reac-
tion, we find the following expression for the shear capacity

(1.3)

Ty

A
....A_c_2

>

To form a diagonal crack with the horizontal projection x, a certain load
level, here denoted as the cracking load Vi, is needed. The cracking load
may be found by assuming that the distribution of the normal stresses along
the crack, while it develops, is constant and equal to the effective plastic
tensile strength fir, see figure 1.2. By a rotation mechanism around point O,
the cracking load is found to be

b
Voo =4 fror = (x* + 1) (14)
The effective plastic tensile strength of concrete may be taken as, see [94.1],

ier =0156- 12 -s(h) (15)

s(h) being a parameter taking into account the size effect



03 .
()= (@ (his the depth of beam in meter) (1.6)

After the formation of the crack, further rotation around point O is prevented
by the longitudinal reinforcement. Sliding in the crack may now only take
place when the load needed to form the crack is equal to the sliding capacity
of the crack, i.e. the horizontal projection of the critical diagonal crack must
bring the following condition to fulfilment

Vo=V, (L7)

By inserting (1.3) and (1.4) into (1.7) we arrive at the following cubic equa-
tion to determine the horizontal projection of the critical diagonal crack

3
X X To d
— +_—4 C___=0 18
(h) h o feh (18)

The shear capacity of the beam may now be found by inserting the solution
of (1.8) into (1.3).

The basic content of the model is outlined in figure 1.3 where the variation
of V, and V., with x is shown. The point of intersection of the two curves
representing V, and V,; respectively determines both the position of the
yield line and the load carrying capacity.

Ve

Figure 1.3 The variation of V, and V,, with x.
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Chapter 2
Shear Capacity of T-Beams

The crack sliding model, as it has been outlined in the previous chapter, has
been successfully applied to beams with rectangular cross section. For such
beams the assumption of a sliding failure along the hole length of the critical
diagonal crack is reasonable and in good agreement with experimental ob-
servation, see [94.1].

If the model is used without modifications for T-beams it will lead to an
overestimation of the shear capacity.

The overestimation is especially high in the cases with relatively high ratios
of t/h and byb,, or in cases where the concentrated loading is not distributed
across the entire flange.

From experimental observations, it seems more likely that the sliding failure
in the web is accompanied by a rotation mechanism in the flange, see figure
2.1.



Figure 2.1 Shear failure mode in beams with compression flange [53.1].

However, if the flange is provided with sufficiently strong longitudinal rein-
forcement, it may happen that crack sliding also takes place in the flange. In
this case the sliding surface in the flange can by no means be considered as
being plane, but must rather be characterised as a three-dimensional surface
similar to what is met when punching failure takes place at the edge of a
slab.

In the following we shall examine the shear capacity of T-beams without
longitudinal reinforcement in the flange.




2.1 Failure mechanism for T-beams

We consider an overreinforced simply supported T-beam subjected to four
point bending as shown in figure 2.2. The shear failure mechanism to be
considered is shown in the figures 2.2 and 2.3. The mechanism consists of a
sliding failure along a crack in the web and rotation in hinges in the flange.
The mechanism in the flange is similar to the mechanism in J. F. Jensen’s
exact solution for a beam with rectangular cross section, see [78.1] and
[78.2].

T/ R —

g 1
w W

f/ —

Figure 2.2 Simply supported T-beam.

The crack transformed into a yield line is assumed to originate from point 4
at the distance a’ from the loading point, see figure 2.3. The angles FBC and
BCD are ©/2, the length of FB and CD is denoted as y, and the distance
from the top face to the hinges C and F is %t.

The failure mechanism may be described as follows:

Part II does not move, part II rotates around point C and the relative motion
between part I and part II is a rotation around point F. The two rotation an-
gles are equal and opposite, which results in a vertically directed motion of
part L

The yield lines BF and CD represent pure compression while BC and FE
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represent pure separation failure. Along the yield line AB with the horizontal
projection x,, we have both sliding and separation failure.

For beams provided with longitudinal reinforcement in the flange, the failure
mechanism considered will only be geometrically possible if the reinforce-

ment is yielding at failure or if the reinforcement is placed at the same level
as the points F and C.

Reinforcement in the flange will not be treated in this paper.

- X o
- zZ
E O
07 S — Vo
Vot T P L.
F 7 -
l/Zt e C /// II C De
B
I
Uu
I11
A - Xy —————— - x/ R
Vu — a’ L

Figure 2.3 Failure mechanism.

The geometrical quantities shown in figure 2.3 are found to be:

L G () | | @1

: 14
Z=Xf+zg (22)
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2,1,2
XS+t
yo=FB=CD=1, L 74"

xs
1£

U=0-2=0:| x5 4+-— 24
S/

In the formulas, x defines the horizontal projection of a straight line running
between the points A and B and ending at the top face. The relation between
x and x,, is given as

*w

=X
h-t h (2'5)
The work equation may be written in the form
WE = Wiweb + Wi flange (2:6)

where Wiyep and Wi gange are the contributions from the web and the flange,
respectively. W is the external work given as

WE=Vu'u

_ 1 @7
—"Vu '6'(xf ""'Z;J

The internal work done along the crack AB, which is transformed into a
yield line, may be written as, see (1.1),

T
WI,web =2 x; Acw-u
SENRT. &
c
"2y A “"(xf 45
h
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A,y is the area of the web
A, = bw(h - t) (2.9)

To arrive at the contribution W gane., an additional discussion on the mecha-
nism in the flange is needed.

The mechanism in the ﬂange simulates a kind of membrane action similar to
what is met in slabs with restrained supports. However, it can not be ex-
pected that the part of the flange acting as a membrane slab, i.e. the region
FBCD in figure 2.3, is sufficiently restrained across the whole width of the
flange. The stress distribution is therefore very complicated and by no means
uniaxial. The stresses are transferred from a narrow zone beneath the exter-
nal load to a narrow zone at point B. The flow of the stresses is qualitatively
illustrated in figure 2.4.

A

Figure 2.4 Transmission of stresses in the flange.
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To simplify the calculations, we will make the well-known approximation

that the stresses are distributed along a length which is varying linearly from

the narrow zones corresponding to an angle a given by tana = %. How to

simplify further the stress flow is visualised in a horizontal plane in figure

25.
D
s Case A
s —>i \’\
T2 2
T T pu—— %:— ———————————— o
by Vfe>! ® Ibw
e e
~. . - /4/
~2 D i
o \'\,_.)‘L_/’
D
- Xy >
D
-3
PRT RN Case B
- i
-2 -
e ﬁ;. ________ IR S
by Vil ®
S = e e _
[N ¢
Sl >
.~ o
~\.—>:
D
ot Xf

Figui'e 2.5 Assumed stress distribution in the flange.

In case A, the external load is distributed across the web width b,, (as indi-
cated by the loading plate). The lines, within which we assume the stresses

12
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to be distributed, intersect at the distance Yax.. This cross section defines an
effective flange width bz We assume that the stresses at this cross section

are equal to the effective compressive strength of concrete Vyf..

The effectiveness factor v, due to membrane action may be taken as, see
[86.1] or [91.1}],

V., =

A

The stresses at the narrow zones must of course attain such values, that the

(f; in MPa) (2.10)

resultants will be equal to bevpf.

In case B, the external load is distributed across the whole width of the
flange. The corresponding approximation to the stress distribution is shown
in the figure. For small values of xj, the effective flange width may be less
than by.

With the approximations introduced, we may now formulate the relation
between the effective flange width b.rand the length xy.

b =bw + 37 =by +%h%(lm§(l-%)) ,Case A
bﬁgf Sb/ (2.11)

a’ x t
bfef—bw+xf—bw+h7(1""c7(l—“ﬁ)) ,CaSCB

Now, by neglecting the tensile strength at failure, i.e. only the yield lines BF
and CD are considered, we find the internal work in the flange to be

Wi flange = 2(yo . bﬁzf ' mec -0 '%yo) - (212)

Inserting (2.3) into (2.12) we find

13



1¢

2 1 t2
W1 ftange =Z}‘f“(xf +Zx_f')'bfef'vmﬁ- -8 (2.13)

Finally, by inserting (2.1), (2.7), (2.8) and (2.13) into the work equation

(2.6), the shear capacity, expressed by the reaction V, at failure, is found to
be

t
_Anvof| 0118 O2%Pay

Vy = et =5 1_£(1_L) (2.14)
h a’ a'\' h
" Here we have introduced the ratios £ and B, defined as
Vm .
&= Ve (2.15)
Acf ef
= 2.16)
Bef Acw
Acceris the effective flange area given as
Acf,ef =t bfef (217)

Now, if we interpret the formula (2.11) as a condition that b, must fulfill
and not as a formula rendering b, then we may for any assumed value of a’
determine a value of x which minimizes the shear capacity given by (2.14).

By minimizing (2.14) with respect to x/a’, it turns out that the value of x/a’
rendering the minimum shear capacity is given as

x_B*+4A_B "
= JB 14 @.18)

14



The constants A and B are as follows

. 2
- o _(1-L
A =21198By h(l h) (1 h)
-9f1-L
B= 2(1 h)
For any assumed value of a’ the shear capacity may be found by inserting

(2.18) into (2.14). Any effective flange width bgr used in the calculation
must fulfil the requirement given by (2.11). Since x/a’ depends upon by, an

(2.19)

iterative procedure is required.

The remaining problem is to determine the starting point of the critical di-
agonal crack, i.e. to determine the length a’. According to the crack sliding
model, the position of the critical diagonal crack may be determined by
equalizing the crack sliding capacity and the cracking load.

The cracking load may be found, as outlined in chapter 1, by assuming a
constant distribution of the tensile stresses f,r along the crack. As in the case
of a rectangular cross section, we will assume that the critical diagonal crack
may run all the way to the top face, i.e. the horizontal projection of the crack
is equal to the length x shown in figure 2.3. It may be argued that this as-
sumption is not safe and a bit illogical because visible cracks mainly are ob-
served in the web and along the junction between the web and the flange.
However, by assuming the crack to end at the top face, the determination of
the cracking load may be related to a mechanism, which is consistent with
the upper bound theorem. Furthermore, the contribution from the flange will
not be significant due to the short lever arm.

By a rotation around the upper tip of the crack, see figure 2.6, the cracking
load may be found from the following relation

Ve - (@ = a'+x) = M (x) (2.20)

15
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Figure 2.6 Stress distribution along the critical diagonal crack.

Mc(x) is the cracking moment found by a moment equation around the up-
per tip of the crack for the stress distribution shown in figure 2.6. For any
shapes of cross section M(x) may be determined by

2
M (x) = .f;ef Age ((%) + l) 2.21)

Here A, is the area of the cross section and e is the distance from the top
face to the centre of gravity of the concrete cross section. In the case of a T-

section, e is given as

2 )2
e=; (51 +(‘Zfc bw)t) o)

Now, inserting (2.21) and (2.22) into (2.20), the cracking load is found to be

16



(2.23)

The ratio x/a’ is taken from (2.18).
Notice that the whole width of the flange is used to calculate V..

Introducing the quantities A, and B given by
Ay (2.24)

we may rewrite (2.23) as

FurAall+ B)%[(%)2(§)2 * 1)

V, = — (2.25)
ﬁ*"h"(rl)

By equalizing (2.14) and (2.25) we arrive at the following equation render-

ing the starting point of the critical diagonal crack determined by a /4

vofc( o118 0258 7 _(BH)%((%) 3(57)2+%] (2.26)
frefL x 1—32,(1-5) ) |
a a h

(5+4(2-9)

The equation is solved iteratively. First a value of byyis guessed, then (2.26)

is solved with respect to a /4 which is the only unknown quantity. Hereafter
the solution together with (2.18) is inserted into (2.11). If the guessed value
of by corresponds to the one calculated by (2.11), then the solution is valid.

Otherwise another value of b, must be chosen. When the iteration has
17



succeeded the shear capacity may be found by inserting the solution a4
into (2.14).

It turns out that convergence is obtained very fast when the calculated value
of byris used as the next guess.

When the correct solution to (2.26) is found, the shear capacity may of
course be rewritten to an average shear stress as follows

t
B 025EB.;
Vy _h-tvofe| 0118 ] (227)

b h a | x l_ﬁ(l_i)
h \a a\’ h

2.2 Short shear spans

For beams with short shear spans, i.e. a/h less than about 2, it may happen
that the equation (2.26) only has solutions corresponding to a7/ >a/h. In
such cases, a’ should be put equal to a.

Due to the fact that cracks are formed with finite distances, corresponding to
the cracking distance, it may happen that a crack originating from the sup-
port can not be formed. This is indeed the case if the distance between an
existing (not critical) crack and the support is less than the cracking dis-
tance. In this case, failure may take place along the existing crack or along a
yield line formed in uncracked concrete and originating from the support. In
both case, the shear capacity will be higher than the one found by solving
(2.26) and inserting the result into (2.27).

The influence of finite crack distances is described in detail by Jin-Ping
Zhang in [94.1]. )

The shear capacity corresponding to sliding in a yield line through un-
cracked concrete may be found by multiplying the web contribution Wyyep

18




by a factor 2 and by setting a /A = a/h. This solution, which is denoted as 1,,

may be expressed as follows

t
_h=tve/,| 0236 0258Bes

I 1_5(1._1)
h a a\' h.
Here x/a is given as

VB2 +4A -B

X
a 2A

The constants A and B are as follows

esmnip 3-2)-(-2)

5-1-3)

(2.28)

(2.29)

(2.30)

Of course the effective flange width by must also fulfil the requirement

@.11).
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Chapter 3

Comparison with Test Results

The shear capacity for a number of beams has been determined by the pro-
cedure outlined and the results will now be compared with test results found
in the references [53.1], [57.1] and [69.1].

The material collected consists of 40 test results, see appendix A. The
beams were simply supported and subjected to four point bending. All the
tests included in this paper were reported to fail in shear without any yield-
ing in the longitudinal reinforcement.

Only the tests done by Swamy [69.1] had a loading plate allowing the load
to be distributed across the whole flange width. For this particular test se-
ries, the guessed effective flange width was compared with case B of for-
mula (2.11). The compressive strength of concrete was about 30 MPa and
the reinforcement ratio (p=Ay/hb,,) was kept constant and equal 2.54 %. The
shear span ratio a/h varied from 0.96 to 5.69.

In figure 3.1 the test results are compared with the calculated shear capaci-
ties. The dark line represents equation (2.27) corresponding to sliding in
cracks. The dotted line represents the shear capacity corresponding to the
case with yield lines formed in uncracked concrete.

20



The agreement between theory and test results appears to be very good in
the case of a/h > 2.

For the short shear spans, the test results are restricted since only two tests
were done. The position of these test results comply well with the discussion
in section 2.2.

0.25

'Tu/Voﬁ;
I . —— Equation (2.27)

0.2 ;
] A R A Equation (2.28)
] VARERY

0.15 yAYY A\ Swamy [69.1]
1 .

0.1

0.051 N —

-05 7 = e A
o0
0 1 2 3 4 5 6

Figure 3.1 Comparison of calculations and tests by Swamy [69.1].

Due to differences in the concrete strengths, in the reinforcement ratios and
in the cross section dimensions, it is not possible to make a comparison
similar to the one in figure 3.1 for the test series reported by Ferguson et al.
[53.1] and Al-Alusi [57.1], respectively.

The comparison is done in figure 3.2 where the test results are depicted ver-
sus the shear capacity corresponding to equation (2.27). Also the tests done
by Swamy [69.1] have been included.

The agreement appears to be good. The mean value of the ratio Ty test/Tu theory
is 1.03 and the standard deviation is 0.22. For a few test results, significant

21




deviations are found (on the safe side though). Since these particular tests
stem from beams with short shear spans, the deviations are probably due to
the effect of the finite crack distances, see the discussion in section 2.2.

0.18
1tulvof (test) .
0.15 o A
0.12 ]
a [69.1]
E °
0.09 A
° s o [57.1]
0.06 x [53.1]
] ok 4
0.03 1
T./Vof (theory)
0 T et —— ——— e T
0 003 006 009 012 015 0.8

Figure 3.2 Comparison of shear capacity found by equation (2.27) and test
results.

By using an effective flange width ber in the model, the actual flange width
is of only little interest, especially for higher value of byby,. The main influ-
ence of the flange on the shear capacity is, according to the model, the
thickness ¢.

The shear resistance contributed by the flange is equal to the last term of
equation (2.27). Thus, when the valid values of b and a’/h are found, the
contribution by the flange may be written as '

22



Contribution by the flange = , 3.1

In figure 3.3, the contribution to the shear capacity by the flange is shown
for the 40 cases which have been calculated. It appears that the contribution
of the flange approximately varies linearly with the ratio ¢/4, even though the
expression (3.1) by no means is proportional to /4. The point corresponding
to t/h =0.33 deviates a little from the straight line. The explanation is that for
this particular test series, the external load was distributed across the whole

flange width.
45 1 , : ;
1 Contribution to the shear o x average of 8
40 7 capacity by the flange [%)] calculations
35 ] o average of 3
] / calculations
30 +

25 1 © average of 18
E C/ calculations

20
] ,/ & average of 3

calculations

15 1
10 D average of 8
] calculations
5 7
01 —th

0 0.05 0.1 0.15 0.2 0.25 0.3 0.35

Figure 3.3 Contribution to the shear capacity by the flange.
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For the calculations corresponding to the tests in [69.1] and [57.1], the ef-
fective flange widths bgs which satisfy the condition (2.11) are shown in fig-
ure 3.4. It appears that bg increases with increasing shear span.

Further, ber increases when the external load is distributed across the whole
flange width. In this case, we see from the figure that bggby, is limited to
2.51. This is due to the fact that bgr can not exceed the true flange width,
which in this particular case is equal to 2.515,,.

It is interesting to notice how little the flange is utilized when the external
load is distributed only across the web width.

1bter’by
] 0-0h0-0 * Load
28] © distributed
] across the web
5] °© width
i o
X
] X% K x
151 T T . s
] o Load
] ] distributed
1 across the hole
] flange width
0.5
o ] a’h
o] 1 2 3 4 5 6 7

Figure 3.4 Ratio of effective flange width over web width versus a/h.
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Chapter 4
Simplified Calculation

It appears from the preceding chapters that it is a tedious task to determine
the shear capacity of T-beams by the method outlined.

The investigations have shown that the effect of the compression flange is
mainly governed by the flange thickness ¢ whereas the entire flange width by,
according to the model, does not have any influence at all if it is larger than
the effective flange width by

One may therefore expect, that the shear capacity of a T-beam in a simple
way may be related to the shear capacity of a similar beam with rectangular
cross section. This indeed turns out to be true.

If we disregard the flange and consider the cross section as being rectangu-
lar with the dimension Ab,, then the crack sliding model, as it is outlined in
chapter 2, may be applied directly. The shear capacity obtained in this way

may conveniently be denoted as T, r.

Similarly we denote the shear capacity obtained by taking into account the

flange as 7y,T.
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Figure 4.1 Ratio t,1/tur versus t/h.

By depicting the ratio 7, 1/tur versus /4, an approximately linear depend-
ence is found, see figure 4.1.

By extrapolating the linear dependence, we find the interesting result that the
flange does not increase the shear capacity if /4 is less than about 0.13.

The consequence of the relation shown in figure 4.1 is, that the shear capaci-
ty of T-beams may be determined by the method used for rectangular sec-
tions. The influence of the flange may then be taken into account by multi-
plying the solution with a factor which only depends upon the ratio /4.

Schematically the analysis of T-beams therefore may be performed simply
as follows: :
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¢ Simplified calculation of the shear capacity of T-beams

1) First, the following equation is solved with respect to x/h, see also (1.8),

3
XY X 4t a_
(h) +3 4f,efh 0 @.1)

2) Then, the shear capacity T, = V,/hb,, is determined as

¢|.K (4.2)

Ty = 27
h

The factor K, taking into account the effect of the flange, may be determined
by the formula, see also figure 4.1,

K= 1.os%+ 086 ,K=1 4.3)

4.1 Comparison of the simplified method with test results

The shear capacity obtained by solving the simplified equations (4.1) and
(4.2) is compared with test results in figure 4.2.

The mean value of the ratio Ty test/Tumeory is 1.03 and the standard deviation is
0.22. These results are, not surprising, the same as those obtained in chapter
3 by using the more tedious method.
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Figure 4.2 Comparison of the simplified calculation with test results.
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Chapter 5

Conclusion

In this paper an investigation concerning the shear capacity of T-beams
without shear reinforcement has been carried out. The failure mechanism
considered involves crack sliding in the web and rotation in hinges in the
flange. Only beams without longitudinal reinforcement in the flange have
been treated. For these beams the effect of the flange is mainly governed by
the flange thickness.

The calculations were compared with 3 test series reported in the literature
and the agreement was found to be good.

It has been shown, that the shear capacity of a T-beam may be found by
multiplying a factor K on the shear capacity of a similar beam with a rectan-
gular cross section Ab,,. This factor, which only depends upon the ratio #/A,
takes into account the !effect of the flange.
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Appendix

Tests by Swamy [69.1]

No. ja/h |by be h |p(%) ife Vo Tutest/ Vofc
mm |mm |mm| m |Ay/bysh| MPa
TD1.5| 096 | 152 | 381 | 76 | 229 | 2.54 30 | 0.820 0.165
TD 2 139 152 | 381 | 76 | 229 2.54 30 0.820 0.146
TB10 1.82 | 152 | 381 | 76 | 229 2.54 30 0.820 0.093
TD3 |[225]| 152 | 381 ] 76 | 229 | 2.54 30 | 0.820 0.084
TD4 |311] 152 | 381 ] 76 | 229 | 2.54 30 | 0.820 0.049
TDS5 |397| 152 [ 381 76 | 229 | 2.54 30 | 0.820 0.055
TD6 |483| 152 | 381 | 76 | 220 | 2.54 30 | 0820 0.052
TD7 |[560] 152 | 381 | 76 | 229 | 2.54 30 | 0.820 0.046




Tests by Al-Alusi [57.1]

No.|  a/h by be t b |p (%) £ Vo | Tutest/ Vofe
mm [ mm [ mm | mm [A/bsh| MPa
6 1.739 76 330 32 146 1.288 | 27.132| 0.812 0.148
12 2.130 76 330 32 146 2.288 | 25.167 | 1.000 0.096
11 2.887 76 330 32 146 2.288 | 28.614 | 0.944 0.058
2 2,922 76 330 32 146 1.279 | 27.876 | 0.800 0.058
3 3.478 76 330 32 146 1.296 |27.201 | 0.812 0.058
10 3.478 76 330 32 146 2.349 | 28.614 ] 0.953 0.048
4 3.487 76 330 32 146 1.305 {26.546 | 0.823 0.057
13 | 3.496 76 330 32 146 2.366 |28.718 | 0.954 0.056
18 3.817 76 330 32 146 2.306 {26.891] 0.976 0.048
7 3.913 76 330 32 146 2.358 [ 25.443} 1.000 0.048
24 3.922 76 330 32 146 2.358 | 28.476| 0.957 0.051
17 4.661 76 330 32 146 | 2.306 | 29.580 | 0.931 0.045
8 4783 76 330 32 146 | 2.358 [26.270| 0.996 0.046
19 4.783 76 330 32 146 3.663 [30.614| 1.000 0.041
25 5.035 76 330 32 146 | 2.480 | 25.994 | 1.000 0.047
9 5.652 76 330 32 146 2.358 131.717| 0.907 0.044
20 5.687 76 330 32 146 3.663 {27270 1.000 0.049
23 6.748 76 330 32 146 3.828 28.201 1.000 0.045

A-2




Tests by Ferguson et al [53.1]

No. | a/h by be t h p(%) | f Vo  |Tutest/Vofc
mm | mm | mm | mm | A/bsh | MPa
Al 2.95 102 432 38 241 4.15 129.717] 1.000 0.040
A2 2.95 102 432 38 241 4.15 127.304| 1.000 0.040
A3 2.95 102 432 38 241 4,15 135.096| 0.932 0.042
A4 2.95 102 432 38 241 415 |34.958] 0.934 0.039
AS 2.95 102 432 38 241 415 |45.369{ 0.820 0.037
A6 2.95 102 432 38 241 4.15 |[38.681] 0.888 0.042
D1 2.95 178 330 38 241 2.38 |31.300} 0.769 0.047
D2 2.95 178 330 38 241 2.38 |[29.580( 0.791 0.052
N1 3.73 108 483 38 191 2.76 [20.685] 1.000 0.056
N2 3.73 108 483 38 191 2.76 |20.616|1.000| 0.056
N3 3.73 108 483 38 191 2,76 |17.513| 1.000 0.060
Gl 5.09 108 559 38 140 3.76 |22.890| 1.000 | 0.041
G2 5.09 108 559 38 140 3.76 |21.720] 1.000 | 0.048
G3 5.09 108 559 38 140 376 |21.860( 1.000| 0.053

A-3
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