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IIT Abstract

The main purpose of this paper is to test a new theory of crack propagation by
comparing it’s results with test results from welded connections. The advantage
of the new theory is that crack propagation may be predicted on the basis of
knowledge of well-known material parameters, contrary to the empirical formulas,
the parameters of which must be determined by time consuming fatigue tests.

The paper is divided into four main parts:

-Presentation of the new theory (chapter 2)

-Basic concepts concerning welded connections (chapter 3)

-Presentation of test results (chapter 4)

-Predicting crack propagation using the new theory, and comparing the theory
with test results {chapter 35)

The theory is compared with two types of tests, using the da/dN-AK and the S-N
concept respectively.

Firstly a tests series performed by Glinka [79.1] is chosen because it very clearly
shows how the crack velocity da/dN depends on the type of weld in the plates.
The test specimen is a standard Welded Center Cracked Test specimens (WCCT)
welded together in different directions compared to the crack propagation direc-
tion. This results in different residual stress fields in the specimens and the capa-
bility of the Crack Propagation Formula to predict the effect from this is exam-
ined. Secondly a test series with welded joints (WJT) performed by Ibse [92.1]
is investigated. The test series has been chosen because the welded joint plates are
very similar to those used in real structures, as for example off shore structures.
It is examined whether the Crack Propagation Formula is able to predict the crack
propagation and determine the fatigue life of the specimens.

The report touches upon subjects like residual stresses, the so-called R ratio and
crack closure when evaluating the new theory.
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IV Resume

Hovedformélet med denne afhandling er at eftervise en nyudviklet revnevakst-
teori ved at sammenholde dens resultater med forseg i svejste samlinger. Fordelen
ved den nye teori er, at den er baseret pa velkendte materialeparametre, ikke pa
empiriske konstanter udledt ved tidskraevende udmattelsesforsog.

Afhandlingen er inddelt i fire hoveddele:

-Preesentation af den nye teori (kap.2)

-Grundlzggende koncepter for svejste samlinger (kap.3)
-Prazsentation af forspgsresultater (kap.4)

-Beregning af revnevzekst vha den ny teori og
sammenligning af teori med forseg (kap.5)

Teorien er sammenlignet med to forsogsserier, ved at benytte henholdsvis da/dN-
AK; og S-N kurve koncepterne,

Forst behandles en forspgsserie udfort af Glinka [79.1]. Den er valgt fordi den
meget tydeligt viser, hvordan revnevekstendringen da/dN athenger af typen af
svejste samlinger i plader. Forsggspraveemnerne er af typen Welded Center Crac-
ked Test specimens (WCCT) svejst sammen i forskellige retninger i forhold til
revnevekstretningen. Dette resulterer i forskellige egenspandingsfelter i prove-
emnerne og det vil blive undersegt om revnevakstformlen er i stand il at forud-
sige denne effekt.

Dernast underseges en forsegsserie med svejste samlinger (WIT) udfert af Ibsg
[92.1]. Denne forsogsserie er valgt fordi forsegsemnerne ligner svejste samlinger
I virkelige konstruktioner, som for eksempel off-shore konstruktioner. Det er
undersegt om revnevakstformlen er i stand 4] at forudsige revneveksten og
fastlzgge provemnernes udmattelseslevetid.

Generelt vil emner som egenspandinger, R forholdet og revnelukning blive be-
handlet i athandlingen.



V Notations

a Crack length

a; Initial crack length

a; Crack length at failure
a, Fracture zone length
a, Plastic zone length

1, Crack length correction
A Effective crack length
B Thickness

W Width, Elastic enérgy
L Length

H Height

D Diameter

r Radius, Length

A Area

v Volume

N Number of cyclic load steps
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min

mnax

Ao

Number of cycles to initation

Number of cycles in the crack propagation phase

Number of cycles to failure
Crack growth rate

Force

Minimum Force

Maximum Force

Force increment under dynamic load (P, -P,.)

Stress ratio 0,,,/0,.,
Normal stress
Minimum stress

Maximum stress

Stress increment under dynamic load (o -0

Residual stress
Stress

Crack opening stress
Ultimate stress

Yield stress
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Tensile strength or true fracture strength
Displacement

Longitudinal strain

Modulus of Elasticity (Youngs modulus)
Stress intensity factor

Stress intensity factor at minimum stress
Stress intensity factor at maximum stress
Stress intensity factor in a residual stress field
Stress intensity factor from external load
Stress intensity factor increment under dynamic load Ko K
Crack opening stress intensity factor
Effective stress intensity factor

Threshold value of stress intensity factor
Critical stress intensity factor

Elastic stress intensity factor at the weld toe
Weight function

Fracture energy

Energy release rate
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C,m Empirical constants in Paris equation

d,q Empirical constants, related to the geometrical correction factor F
c,n Empirical constants, Weibull size effect parameters

M’,n’ Empirical constants, K. - K, relation

7 R-ratio correction factor

B Stress intensity correction factor

F,Fg,Fr,Fg  Stress intensity correction factors
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Chapter 1

Introduction

Over several decades it has been known that many metal components and struc-
tures fail in service, even though they are capable of withstanding considerably
higher loads if the loads are of a static nature. The failure type involved is gov-
erned by crack propagation caused by fatigue loading.

Crack formation needs a void or notch in the structure for starting propagate. In
welded connections this void, also called the initial crack, is often due to the
heating of the base material before welding. Welded connections in structures are
almost inevitable. Therefore it is obvious that most structures fail from fatigue. In
fact the service life of metal structures in about 90% of the cases is terminated due
to fatigue failure.

Normally fatigue failure is studied by using empirical formulas, as for instance the
well-known Paris equation [63.1]. To use this formula it is necessary to determine
crack growth parameters by time demanding and expensive tests. Since fatigue
failure indeed is a serious problem, it is of vital interest for the society to have a
simple tool to determine the service life of structures. At the Department of Struc-
tural Engineering, an energy balance crack propagation formula has been developed
[96.1]. This formula can be used to predict crack propagation arising both from
static load and from fatigue loading. The potential power of a theoretical formula
is that it is not necessary to determine crack growth parameters by time demanding
and expensive tests, as is the case when empirical formulas are used. The formula
will be described shortly in the next chapter.

The main purpose of this paper is to examine the capability of the new formula to
predict crack propagation in welded connections. A comparison with two kinds of
welded connections will be carried out. Firstly a comparison with a test series of
the type Welded Center Cracked Test specimens ( WCCT) will be performed using
the da/dN-AK, curve approach to compare the test results with the theory. Secondly
a comparison with tests with Fillet Welded Joint Test specimens (WJT) will be
performed using the S-N-diagram approach when comparing with theory.



Chapter 2

The energy balance crack propagation formula

2.1 Introduction

This chapter contains a short introduction to the energy balance crack propagation
formula. A more detailed description may be found in [90.1]. The formula is based
upon an energy criterion and modified linear elastic fracture mechanics (LEFM).
This leads to a differential equation of first order, which is difficult to solve
analytically. Instead it may be solved by use of numerical methods.

2.2 Irwins crack length correction

As well known from linear elastic fracture mechanics, the normal stress o, along
the axis of a sharp crack is governed by the term:

K,
g = @2.1)

J2nr

Here K, is the stress intensity factor and r is the distance from the crack.
If at some distance r=a, from the crack tip the stress o, equals the yield stress f,
we have according to (2.1)



g = L1 2.2)

The stress resultant of the G,-stresses per unit thickness along the distance a, is

YK 2 1 Kf
dl': __K = e ——— (2‘3)
f T 1\/51: T fy

0 Y2Tr

This is twice the value of the resultant of the constant stress f, along a,.

This led Irwin [60.2] to suggest, that a plastic zone in the crack tip must have a
length of 2a,. Half this length he considered as an additional crack length, which
must be added to the real crack length a.

The additional term:

K2
1, = a = 5L o (2.4)
LT f; *
is called the effective crack length term. The effective crack length then is:
—a 1 (2.5)

& f'/e :&y Gy

Figure 2.1 Effective crack lehgth at a crack tip with plastic yielding



In [90.1] I, has been determined in an alternative way by some approximate energy
considerations.

For a material with yield strength f, and tensile strength f, it was shown that 1, may
be put equal to:

(2.6)

il
o
]

2
1 A s S
T fyft

where a is the length of the fracture zone, see figure 2.2. The length of the plastic
zone a, may be calculated by formula (2.2).

& &;):"- ge ay

Figure 2.2 Stresses ar a crack tip



2.3 The crack propagation formula

In this section the energy crack propagation formula will be presented. The formu-
la is based on an energy criterion, which was introduced into the theory of cracks

by Griffith [21.1].
For a load controlled test, where the crack length a and the load P are the indepen-
dent variables, the energy balance equation may be written, see [90.1]:

W - P2da + Gbda = 0 @.7)

oa oa

Here W is the elastic energy, u is the displacement in the direction of the load, Gg
is the fracture energy and b is the thickness.

Taking the correction of the crack length 1, into account we get:

Waa + W - pPda - Pd1, + Gbda = 0 (2.8)
da oa da oa
which can be rearranged into:
(Gpb + §;W; - Pé}i)da = - (ﬂ ~ pﬁjﬁ)cﬁe (2.9)
da da da da” °



By isolating da in (2.9) we get:

- % (W-Puyd,
Oa
da=

d
GFb+£(W—Pu)

(2.10)

For a linear elastic body the potential energy W-Pu equals the elastic energy W

with opposite sign in an equilibrium situation. Therefore:

oW _ 9(Pu-W)
Oa Oa
Using this we get:
%W;dze
da:__iﬁ
Geb-——
da

In the symmetrical case, meaning a crack with two tips and the

defined as 2a, we have:

Wi

da=__9%
26,5V

-~

oa

W still being the total elastic energy.

cr

(2.11)

(2.12)

ack length

(2.13)

Since the crack length correction 1, depends on a as well as P we have:

s S
dl = —2dP+—%da
° 6P Jda

(2.14)



which inserted into (2.12) gives:

ol al
E_W.(__EdP +___eda)
da= da JP oa (2.15)
Gp-2V
Oa

With a few rearrangements this leads to:
ow Il
- Ga op (2.16)

ow . ol
G.b-212(1+—=2
F aa( aa)

da
dP

The derivative d0W/da should be taken at a+l,, while dl/0P and 0l/da may be
taken in a. The term 1+0l/0a is normally close to 1, whereby we get:

W 49 Ol
g;: G2 - op (2.17)
: ow,
Gpb-
Ja
The change in the elastic energy may be expressed by the stress intensity factor K,
as (see [86.11):
2
w K, @18
da E



and the fracture energy is defined as:

o - B 2.19)

K¢ being the critical value of the stress intensity factor.
In the symmetrical case we get:

K2
aw LK (2.20
Oa E

If (2.18) and (2.19) is inserted in (2.17) we get a formula using stress intensity
factors:
K2 Gle(a)
I(a+1)
da _ P (2.21)

2 2
KIC _Kl(a+le)

In the symmetrical case we have, according to (2.13) and (2.20):

, dl

K}'(a+1 ) o) N
da__ v P (2.22)
2 42
P RG-K 1a+ly)

Notice that the formulas for the non-symmetrical and the symmetrical case are
identical, when expressed by stress intensity factors.

By inserting the expression for 1, (2.6), we get:
2
K2 8| Ky
1) Al ST _
e ap| 2nf 1, (2.23)
dp 2 2
KoKy,

This expression is called the energy crack propagation formula and by integration
over one cycle the crack-velocity da/dN may be found as a function of P.



In a displacement controlled test we take the displacement u and the crack length
a as the independent parameters. The energy criterion will then be:

%V—Vda + Gbda = 0 (2.24)
a

By using the same procedure as above we find the crack growth formula:

ow O,

da da Ou (2.25)

ow . oL
Gb+ 2 (1+—2
F aa( aa)

W is still the elastic strain energy, now being a function of a and u. It may be
shown that:

{ ) GW\} _ (oW (2.26)

R
P=const N S u=gonst

so in this case, (2.18) is replaced by:

ow _ Ko 2.27)
Oa E
Hereby a formula corresponding to (2.23) may easily be writien down:
)
> 3| K
i) 5 Ar e ’
da Y ou|2nff, (2.28)

2 2
dn K "’KI.(a 1)

In this case the stress intensity factors must be determined as a function
of u and a.



As shown in [94.1] the critical value of the stress intensity factor K, is not a
constant, but very dependent of the stress intensity level K. The physical expla-
nation is not yet fully understood, but tests have often shown increasing K. for
increasing K;, see i.e. [70.1]. The relation between K. and K, may be written:

KIC - M/Kln/ (229)

where M’ and n’ are empirical constants. This expression is inserted in formula
(2.23) and (2.28) respectively.

M’ and n’ can be determined by tests as done in [94.1] or they can be estimated
by the following equations:

n' =2-Ln
g (2.30)
K .
A (¢

M’ = =

Kic
Here m is the exponent in the Paris equation:
da _ cagn (2.31)
dN

and Ky is the critical stress intensity factor. For more details about the K. depen-
dency on K,, see [90.1] or [94.1].

It is well known that the crack growth rate depends upon the stress ratio R =
O i/ Ouan- 1he dependency is very clear close to the threshold value K, where
crack propagation may start, and close to failure. In the middle region ( Paris
region 1) the effect 1s most clear for a stress ratio R<(). When the stress ratio is
larger than zero. meaning the specimen being in pure tension, the stress ratio effect
is not very pronounced. In fact for steel it is often found that the crack growth rate
is almost independent of R when depicted as a function of AK,, see e.g. [89.2].
We define the stress range as AK, = K., - K. = K, .(1-R). The influence from
the R-ratio is illustrated in figure 2.3 for R > 0, showing the crack growth as a
tunction of K,,, and AK| respectively.

10



R= Omin Omax >0

da

da

Il

s v l=vii=s

ol

©oooo
O

/

log Kln;x
Figure 2.3 R-ratio influence on crack growth rate.

Several attempts to estimate the influence from the stress ratio, R, may be found
in the literature.

Forman [67.1] suggested a correction of the order ( 1-R)! related to AK,, which
corresponds to N=(1-R)’ for Paris m=4 when related t0 K, Forman's formula 10
determine the crack growth rate may be writien:

da _ CAK (2.32)
AN (I-R)K.-AK,

Nielsen [90.1] suggested a correction factor 1, on the crack growth rate as a
function of K. defined by

4 1

Do -drdge

. d:» 3 (2.33)
. . a

E‘I\{—(R’K“Imax) il z&(Klmax)

Both corrections seem to give good results, when compared with some test resulis,
but not in all cases, see [89.2]. The reason may be that the crack growth rate i$
almost independent of the stress ratio for R>0, when depicted as a function of Ak,
In the following a more accurate stress ratio correction factor will be derived.

11



Assuming the stress intensity factor K, being far below the critical stress intensity
factor, i.e K; << Ky, the term K;* in the denominator in formula (2.23) may be
neglected. Then we get:

2 J KI%a)
@\ 2nff, (2.34)
dp Kie

having further taken K| in a instead of in a + 1, which is reasonable because a>>l,.
Substituting the relation (2.29) into (2.34) it may be shown (see [90.1,p50-52]),
that this equation may be written:

_ n/
da _ ———I—K{‘ 2 (2.35)

dN 4nf f (M)

where K, is equal to K, ., for R=0.
Transforming this result from a function of K, . to a function of AK,, demanding
that the crack growth rate must be independent of R we get the equation:

1 ARAD . 1 4-2n
AnffMA? dmfEMA? T
4-2n’ ﬁ 4-2n/ (2.36)
‘ﬁKi h T}Klmzzx‘
i
n = (1-R*

This correction factor 1 ensures independence of R. For a material with a Paris m
value of 3, meaning n’=0.5 see formula (2.30), we get the same result as Forman s
formula. For crack growth rates with m # 3 we get another dependency, which still
ensures independence of R. when da/dN is depicted as a function of AK,.

It will be shown later in this paper that this correction factor gives extremely good
results in comparison with the Forman equation for the materials treated. However,
much more work must be carried out, before it can be concluded, that this is the
correct way to take the stress ratio R into account,

12



When solving the crack propagation formula for R # 0, we integrate from K, to

K The influence from K, is very small, due to the fact that for instance for

Paris m=4 we have K{ . >>Ki... .

Imax*

A phenomenon which may be of value when explaining the R-dependency on the
crack growth rate is crack closure. Crack closure is illustrated in figure 2.4. Be-
cause of the plastic deformations the crack will close during unloading before the
specimen is totally unloaded. Since the crack is open only for a part of the loading
sequence an effective stress intensity factor range AK,¢ = Ky, - K, is governing
the crack growth, K, being the stress intensity factor when the crack starts to open
and the crack starts to propagate. This explains the delay of crack propagation
caused by overloading. Furthermore the crack propagation is delayed in general and
should to some degree be a function of AK, instead of AK,. If the R ratio is high
the effect will be reduced, because K, ;, approaches K, and the effective stress
range AK,, equals AK,.

i
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’ e
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© LRALK-TIP TRACK-TIP STARTS CRALK €Lo5URE cqa TART
: K % Ra(K- H
OPEN 10 CLosE EXTENDS BALX ('IQUC{:pégAR‘S

Figure 2.4 Crack opening and crack closure
Elber [71.2] was the first to observe this phenomenon. He suggested the simple

relation:

AK, = (0.5+04R)AK, (2.37)

13



where AK; should be used in the crack propagation formulas, like the Paris
formula, i.e.

da m
— = CAK (2.38)
dN eff

In [71.2] it was shown that for Al2024-T3 similar curves were obtained when
applying (2.38) for different R ratios and depicting the result in a AK;-da/dN dia-
gram. However it is known that for many materials, especially steel, the same AK -
da/dN curve is obtained for different values of R, see figure 2.3. This is valid for
both of the test series treated in this paper. Therefore equation (2.36) can not be
applied for steel in general. A more accurate equation must be developed, probably
depending on the shape and size of the plastic zone, and based on actual measure-
ments of the crack closure behaviour for the actual material treated.

A large investigation of crack closure has been carried out by Ibsg [95.1] on the
specimens investigated in this paper. The model to determine the effect of crack
closure was based on the determination of a crack opening stress S,. The crack
opening stress intensity factor K then was determined by

K, = BS,yna (2.39)

Neglecting the influence from the residual stresses in the specimens, it was found
that the crack opening stress S, equals about 0.3-G,, for R=0. A plane strain
constraint factor of about 2.4 was used. This factor takes into account the increased
yield strength at the crack tip in plane strain conditions. In plane stress S, =
0.50,,,.
The residual stress field will increase the crack opening stress S,. The residual
stress field may be considered as an increase in the relative stress level, which
means that the actual maximum stress equals ©,,+G",, where 6%, is the value of
the residual stress. Applying this assumption the crack opening stress may be
approximately determined by the equation:

S, =03 o’y (2.40)

G - '{Omaqu T/
The equation (2.40) will be used in section 5.3 to determine the effect of crack
closure including the effect from the residual stress field.

14



Chapter 3

Basic problems and concepts

3.1 Introduction

In this chapter some basic problems in fatigue of welded structures will be shortly
presented. This includes a discussion of stress intensity factors for welded connec-
tions, crack growth in welded connections, the S-N diagram (Wahler curve) and
some discussion of residual stresses. The subjects mentioned will be presented n
section 3.2. In section 3.3 the crack propagation formula will be further developed,
so it can be used to calculate the S-N diagram for welded connections.

3.2 Welded connections in general

ATl structures have defects, either built in during fabrication or initiated by the
service conditions of the structure. These defects will develop to cracks and if the
structure is subjected to fatigue loading, the cracks will propagate. Welded connec-
tions normally have manufactured defects in the material. which under the right
loading conditions lead to fatigue crack propagation. A measure of the severity of
the crack propagation is given by the stress intensity factor, K,, which describes the
intensity of the stress field in a small region surrounding the crack tip, cf section
2.2 The rate of crack propagation is a function of the range of the stress intensity
factor, AK,. It is therefore necessary to compute the siress intensity factor. In this
report two cases will be of special interest and will be introduced in the following.
In the case of welded joints, see figure 3.1, the stress intensity factor is determined
by the general equation (3.1), see for instance [77.2] and [85.1].

15



Figure 3.1 Welded Joint Test specimen.

K, = Fg'FpFy By o/na (3.1)

where F Correction factor for free surface.
Fe Correction factor for crack shape.
Fy Correction factor for finite thickness or finite width.
Fq Geometry correction factor accounting for the effect of stress

concentration due to geometrical discontinuity.

The correction factors in formula (3.1) can be expressed as follows:

F, = 1.12-0.122
b
/o NL6S (3.2)
F, = 51-—4.5945{."._%,) } 2
F, = ;/sec(vca/ 2t

The crack, see figure 3.1, is assumed to have elliptical shape.

16



The elliptical crack shape ratio a/b is normally in the range 0.2 to 0.5. In section
4.3 it is observed that the specimens examined in this work have an elliptical shape
ratio of about a/b = 0.25.

The geometrical correction factor Fg has been approximatly determined in [90.2]
by using a method suggested by Albrecht [77.2]. The values are listed in appendix
B. An approximate analytical expression suggested in [85.1,pp.119] for non-load
carrying fillet welded joints will be used:

F = SCF
6 1(a\d (3.3)
I+=|—
i)

where:
F, = the geometrical stress gradient correction factor
SCFE = elastic stress concentration factor at the weld toe
a = crack length.
{ = thickness.
d = stress gradient correction factor decay coefficient.
q = stress gradient correction factor decay exponent.

The elastic stress concentration factor SCF can approximately be determ ined by the
formula:

e

SCF = 1.621-log] %\;39@3 (3.4)

V4

for a non-load carrying fillet weld connection, 1 being the width of the weld e,
see figure 3.1

The constants d and g in formula (3.3) will be estimated on the basis of a FEM
calculation, see appendix B, and compared with values normally used, see section

o~

3.3,

17



In the case of welded CCT specimen, see figure 3.2, the stress intensity factor is
determined by the general equation (3.5), see [79.1] or [66.1].

K, =o0/a {1.77+0.277(-2V—3)

] / (3.5)
—0.51(§) +2.7(§)J
W W

Figure 3.2 Center Cracked Test specimen.

Normally two methods are used to present crack propagation results. These are the
da/dN-AK, curve and the S-N curve. The da/dN-AK~curve shows the whole range
of the crack propagation rate from region I: threshold (initiation of crack) through
region II: the Paris area (stable crack growth) to region III: critical stress intensity
range (unstable crack growth), see figure 3.3.

18



In some tests it is not possible to measure
the crack length with sufficient accuracy
during crack growth. In such cases it will
not be possible to determine the AK| and
the da/dN curve can not be produced.
This is normally the case for welded
joints, due to the fact that the crack prop-
agates elliptically into the material as
shown in figure 3.1. In this case only the
number of cycles to failure N; is mea-
sured for varying stress levels Ao.

The total number of cycles to failure is
subdivided into two phases. The first
phase is the initiation period with no

log %%

A
REGION| REGION |
I | II
INITIATION, | REI(I}IION
OF CRACK, m,
| T
| STABLE | UNSTABLE
: CRACK } CRACK
| GROWTH, GROWTH
. ! } log AKg
Kth Kic

Figure 3.3 da/dN-AK, - curve.

crack growth, the second one the crack propagation phase, se figure 3.3. The
number of cycles in the two phases are denoted N; and N, respectively.

loghAS
4

e Smax:fy

THRESHOLD AREA

IGng

Figure 3.4 S5-N diagram.
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If we depict the stress range AS as a
function of the number of cycles N, in
a double logarithmic diagram we get
the S-N curve shown in figure 3.4.

If the stress level 1s lower than a cer-
tai value the crack will never initiate.
meaning that the stress intensity is
lower than the threshold value. This
results in a horizontal line 1n the 5-N
curve. Likewise an upper limit exists
which equals the stress level for a pure
statical yield failure of the material, see
figure 3.4. The S-N curve is often used
in practice to estimate the fatigue ser-
vice failure of a structure.



In the following the effect of residual stresses on crack growth will be discussed.
Residual stresses may be defined as a selfequilibrated stress field existing in a body
without any externally applied load. Residual stresses may be produced by a
previous overload in a fatigue process producing plastic strains or by a heating
process, for instance from welding, where the temperature distribution in the body
1s far from uniform, and the thermal stresses produce plastic deformations. After
cooling, the plastic deformations remains and a residual stress field is formed. A
third example of residual stresses may be due to pure compression on a certain
area of the body produced by peening, a cold-working process, where compressive
residual stresses are introduced in the surface layer by battering the specimen with
a high velocity stream of metal particles.

When treating welded joints we have to take into account the effect of residual
stresses introduced in the specimens.

A residual stress field in a cracked body will normally be of the form shown in

figure 3.5:

Figure 3.5 Residual stress field.
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Most frequently the method used to take into account the effect of residual stresses
on crack growth utilizes the superposition principle of the stress intensity factor,
i.e superposition of the stress intensity factors of the applied load and the residual
stresses respectively, see e.g. [89.1].

Compressive External loading External load
Plane of stress tractions and residual
potential crack on crack face S stress field

Residual
stresses
<

b) K=K, c) K=Kj d) K=K +Ks
Figure 3.6 Superposition of stress intensity factors.

When a crack is introduced in a body, there will be a redistribution of the stresses
and the stress intensity factors may be calculated using the superposition principle
illustrated in figure 3.6.

The stress intensity factor K, due to the residual stress fields may be computed by
using e.g. the weight function approach given by Bileckner {71.1], Greens function
[82.1] or existing numerical methods. Several solutions have been developed for
practical applications, see e.g. [73.1] or {76.11.

In general, the siress intensity factor K is determined by the expression shown in
formula (3.6):

a

K = [ o7 (x) h(x)dx (3.6)

T

where 62 is the residual stress field, h(x) the weight function describing the influ-
ence of the crack, and a is half the crack length in a symmetrically cracked body.
If we as an example consider an infinite body with a center crack as shown in
figure 3.5 the weight function will be. see e.g. [86.11:
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h(x) = —,| == 3.7)

Inserting into formula 3.6 we get:

Kr = _Lfgzy(x) .a_—_.)_(_dx (3‘8)
J a “a at+x

which in the case of a symmetrical stress distribution can be rearranged to:

S r=N PN
a 0 at+x a—Xx

From this formula we find the following stress intensity factor which takes into
account the residual stress field ¢

o ;m"’"}

f w® (3.10)
]

ya ~x?

In the special case where the residual stress field is constant, i.e ¢/"=0=const, we
get the solution:

K = ofma (3.11)

T

This formula will be used here when determining the effect of residual stresses on
crack growth.
In practice the body is a finite plate. General solutions of weight functions may be
derived from the infinite case using the superposition principle, leading to a formu-
la of the type:

K, = poyma (3.12)

where 3 is a geometrical correction factor taking into account the finite dimensions.
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By superposition the final value of K; is determined by the stress intensity factor
from the external load, K, and the stress intensity factor K, accounting for the
residual stresses:

K, = K+Y K, (3.13)

2;=a,

Here K, is from the external load, K, is determined by formula (3.10), for a number
of constant residual stress fields along the crack length intervals a; and P is the
correction factor, see formulas (3.1), (3.5) and (3.12). This procedure rests on the
assumption that a residual stress field may be approximated by a series of constant
stress fields satisfying the equilibrium conditions as iltustrated with the dashed line
in figure 3.5. The error by doing this is normally negligible if the specimen is in
pure tension, but in the case of compression it is necessary to use the original
residual stress field and solve equation (3.8).

The residual stress field ¢ from weld- logAaS
ing or introduced by peening etc. can ]
be determined experimentally by sever- yvielding
al methods, e.g. the hole-drilling tech-
nique, X-ray measarements or strain
measurements, see [89.2]. Normally
strain measurements using strain gaug-
es are used. In chapter 4 the residual
stress fields measured in the two test

normal specimen
/ without residual
N Stresses

series treated 1o this work are present- \
ed. residual 7
. q stresses
Local residual stresses will in general ;
: e , introduced logN
be relaxed by cyclic loading if the total S0P

stress - applied plus residual - exceeds Figure 3.7 Effect from residual stresses.
the vyield stress. Residual stresses are

therefore insignificant in the low life range of the S-N curves. In the long life
range the residual stresses lead to 4 rotation of the S-N curve as illustrated in figure
3.7. In practice this rotation is rather small and may be considered as a material
property, which is taken into account by the Paris m value, see formula (2.31).

23



3.3 Crack propagation formula applied to welded joints

The energy crack propagation formula gives the crack propagation velocity da/dP
as a function of the actual crack length a and the stress intensity factor K;, which

in general form may be written:

K, = B-oy/na (3.19)

The parameter 3 depends on the geometry of the specimen, and is typically a func-
tion of the crack length a and the width (or thickness) W. If the crack propagation
formula is solved by integrating over one cycle, having P as the controlling param-
eter, the crack propagation for one cycle, denoted da/dN, is found. Calculating the
related stress intensity factor range AK;, the da/dN-AK, curve can easily be pro-
duced.

Thus the crack propagation formula gives the da/dN curve as a result. This can be
used to calculate the S-N curve as will be demonstrated in the following. As men-
tioned in section 3.2, the S-N curve must be used when comparing with experi-
ments on Welded Joint Test specimens if the crack length has not been measured.
If the well-known Paris equation is used, we have

L OIN & (3.15)

dN

Inserting formula (3.14) and solving the simple differential equation we get the
number of cycles to failure
e
N, = [ 1 da (3.16)
» C(BAG/7a)”

where g, i1s the crack length at initiation and a, is the crack length at failore.
For constant amphitude loading the result snmplifies to:

&g

N, = S 3.17)
C(Ao)"n™? , pma™?

3
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which can be rearranged to:

a; 1 1
Ao = |1 [ I gl Nm™ (3.18)
Cn™?2 ; pma™ g

Since the S-N curve gives the stress range AC as a function of the number of
cycles, it appears that the slope of the S-N curve may be used to estimate the m-
value in Paris’ equation.

When the energy crack propagation formula is used to predict the S-N curve a
similar procedure may be used. If we write the result of the energy crack propaga-
tion formula in the form: f(AK,)=da/dN determined by integrating equation (2.23)
over one cycle, then by integrating numerically over the range a, to a, we may
determine the number of cycles to failure by formula (3.19):

A
1
N = [—1 da (3.19)
P f f(AK)

The procedure used to solve the crack propagation problem consists of two numeri-
cal procedures. The crack propagation formula, see (2.23), can be solved for
instance by using a fourth order Runge Kutta method. To solve equation (3.19) a
simple numerical integration formula like the trapezoid formula can be used. In
appendix C a pascal program to solve the routines is listed.

The parameter a, is the critical crack length, which may be determined by means
of K. The results of equations (3.17) and (3.19) depends on the crack geometry.
However the influence of a, fortunately is insignificant if a>>a,. Therefore a; may
be chosen arbitrarily to half the thickness of the specimen. This crack length
corresponds to the final critical crack length observed in many fatigue fests, se¢
[95.1]. It will be shown in chapter 5 that the effect of a change in a; in this range
is negligible.

On the contrary the initial crack length a; has a large influence on the result.
Therefore it is necessary to determine the initial crack length quite accurately.
When manufacturing welded joint connections the base metal melts in the welding
zone. This results in a small void between the weld metal and the base metal, see
figure 3.8. This void represents the notch or the initial crack length a;, which leads
to crack propagation. The size of the initial crack length may be determined using
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microscopic analysis of the tests specimens. A series of investigations have been
performed and the conclusion is that the length is in the order of a, = 0.075 mm
to a, = 0.4 mm, see [89.1]. The lower bound takes into account the fact that some
irregularities at the weld toes will always exist. The upper bound is likely to be a
limit of what is accepted before repairing of the weld toe is considered. In chapter
5 some parameter studies will be performed to illustrate the effect of the initial
crack length. When comparing with test results the initial crack length will be put
equal to a; = 0.2 mm as a reasonable average value, which has often been used
when analyzing non-load-carrying fillet welded joints.

Figure 3.8 Initial crack ar weld toe.
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Chapter 4

Presentation of two test series on
welded connections

4.1 Introduction

In this chapter two test series with welded connections are presented. In the next
chapter the test results will be used to evaluate the crack propagation formula.
The first test series (see section 4.2) is chosen because it very clearly shows how
the crack velocity da/dN depends upon different types of welding connections n
the plates. The test specimen is a standard Center Cracked Test specimen (CCT)
welded together in different directions compared to the crack propagation direction.
Only tests with constant amplitude loading will be examined. The tests were per-
formed by Glinka [79.1].

The second test series (see section 4.3) consists of a test series with welded joints
between to plates. The test series has been chosen because such welded joint plates
are very similar to those used in real structures, as for example off-shore structures.
These connections are often suffering from severe fatigue fracture due to the lack
of knowledge in fracture mechanics behaviour of welded connections. The crack
propagates elliptically, starting at the weld toe and developing into the plate
material. Therefore the crack propagation is very difficult to measure exactly. So
in this case the purpose will be to predict the S-N curve using the crack propaga-
tion formula. The tests were performed by Ibsg [92.1]
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4.2 Welded Center Cracked T est Specimens (WCCT)

These tests were made with the purpose to investigate the effect of residual stresses
arising in welded connections. The problem will be discussed further in chapter 5.
In the following the test results will be presented.

The tests were performed under constant and variable amplitude loading. However
only the tests with constant amplitude loading will be presented in this paper.
All specimens, see figure 4.1, were made of one metal sheet 4 mm thick. The
material was a low alloyed hot-rolled medium strength steel 18G2AV. The me-
chanical properties are shown in table 4.1. The tests were, as mentioned, performed
by Glinka [79.1].
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Figure 4.1 Welded Center Cracked Test specimens (WCCT).
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625 784

Table 4.1 Mechanical properties
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The critical stress intensity factor K, was not measured. On the basis of the yield
strength, and knowing that we are dealing with a normal graded steel, the critical
stress intensity factor can be estimated to be about K. = 120 MN/m*?, see [86.1].
Furthermore AK, at failure equals about 50 MN/m** for a stress ratio of R=0.5
which corresponds to a K. value higher than 100 MN/m*?, see figure 4.3.

The residual stress field due to the welding has to be taken into account when
analyzing the data. In general we will always observe tension stresses close to the
welded joint and compression in some distance from the joint.

The tensile residual stress field near the joint is mainly due to cooling of the weld
attachment. When it cools down it will try to shorten leading to tension. Since
residual stresses are selfequilibrating, we will get compression in some distance
from the weld toe.

The residual stress field obtained by strain gauge measurements for specimen P,
perpendicular welds, and for specimen L, longitudinal welds, is shown in figure
4.2, [79.1]. Due to symmetry only one half of the specimen is shown.

Specimens p Specimens L
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Figure 4.2 Residual stress distribution in the plane of fatigue crack growth, [79.1}.
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As shown in figure 4.2, dashed lines, the residual stress field is approximated with
two intervals of constant stress for each specimen, which is sufficiently accurate,
when the specimens are loaded in pure tension, i.e. R = 0, /0., = 0, see section
3.3. With the stresses shown in table 4.2 equilibrium is obtained.

Specimen P Specimen L

crack interval | a=0-44 mm a=44-75 mm a=0-20 mm | a=20-75 mm

o 62 MPa -88 MPa 118 MPa -43 MPa
Table 4.0 Residual stress distribution in specimens P and L.

The specimens were cut out parallel to the rolling direction. In order to obtain
similar residual stress distributions in each welded specimen, the specimens were
welded after complete preparation of separate details.

Three different test specimens were made, see figure 4.1. The da/dN - AK; relation
is shown in the figures 4.3 to 4.5. The tests were performed with varying R ratio
(0/Oma)- The variation is small and does only effect the da/dN - AK, behaviour
very little, as shown in the figures. The small influence of the siress ratio R on the
da/dN - AK, curve is discussed in section 2.3.
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It is observed that the crack propagating rate depends on the type of the welded
connection. If we combine the three curves, the effect is more clear. In figures 4.6
and 4.7 it is seen that the crack propagation rate is faster for specimens P (welded
parallel to the crack direction) than for specimen U (not welded). For specimen L
(welded perpendicular to the crack direction) it is observed that the crack propaga-
tion in the beginning follows specimen L, and in the end follows specimen U. In
between there is a transition with a very slow crack propagation. In [79.1] the
phenomenon is explained as an effect of residual stresses. In chapter 5 a method
to model this will be presented.

The specimen U is considered as a reference specimen to the residual stress effect.
In figure 4.3 it is observed that the Paris m value is equal to m=4.3. This value
will be used when predicting the crack propagation in chapter 5.
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Figure 4.7

4.3 Welded Joint Test Specimens (WJT)

In this section the test results from the welded plates, shown in figure 4.8, will be
presented. The tests were performed under constant amplitude loading.

Two specimen types were made, one metal plate 8 mm thick and one metal plate
16 mm thick. They were made by steel St. 52-3 (Fe 510C) according to DIN
17100. The tests were performed by Ibsg [92.1].

Figure 4.8 Welded Joint Test specimens (WJT), [92.1].
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The measured mechanical properties for the steels used are listed in table 4.3:

plate 16 409 575 25.9

plate 8 400 537 30
Table 4.3 Mechanical properties from tensile tests

In the test series with the welded joints, the critical stress intensity factor K. was
not measured. In stead Charpy V-Notch (CVN) tests were performed, which may
be used to estimate K.

In table 4.4 the results from the CVN tests are shown.

Range [Nm] Mean {Nm]
Plate 16 102-106 104
Plate & 103-118 108

Table 4.4 Charpy V-Notch test resulis.

We observe from table 4.4 that CVN can be put equal to approximately 106 Nm.
To estimate K two methods will be used. In Barsom and Rolfe [77.1, pp 177] the
empirical expression (4.1) is derived on the basis of tests with 11 different alloy
steels with a vield strength in the range 760 to 170G MPa (expression (4.1) is
transformed from American units into SI units with f, in MPa and K. in MN/m™”.)

K \7 7 N
(ﬁl?; = (0.646 CVN _ 1 (4.1
L fy fy 10(}_

Having the yield strength f, = 405 MPa and CVN = 106 Nm we get from formula
(4.1): Ko = 163 MN/m™,

Another method has been described in Broek [86.1, pp 322] where the relation
between K, and CVN is related to the modulus of elasticity. The empirical formu-
la is based on tests with 9 different alloy steels. There is a larger scatter in these
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results, but they can still be used to give a good estimate of the K. value. A linear
fit gives the expression (4.2):

K2
_é-c- = 1.722-1073-CVN 4.2)

Having the modulus of elasticity B = 210000 MPa and CVN = 106 Nm we get K¢
= 195 MN/m”*.

On basis of these two calculations the critical stress intensity factor may be esti-
mated to be about K, = 180 MN/m*?, a quite realistic value for medium strength
steel.

In figure 4.9 a fractured specimen is shown. We observe that the elliptically shaped
crack front have a shape ratio of about a/b = 0.2. All test specimens had shape
ratios within a/b = 0.2 and 0.3, see [95.1]. An average value of a/b=0.25 will be
used in the calculations in section 5.3.

Figure 4.9 WJT specimen at failure.
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The residual stress field due to the welding has to be taken into account when ana-
lyzing the data. In figure 4.10 and 4.11 the residual stresses measured with strain
gauges are shown, [95.1].
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Figure 4.10 Residual stress distribution in the plane
of farigue crack growth, plate 8 mum.
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The crack propagates from x=0 to half the specimen width. The specimen 18
pretensioned due to the residual stresses in the first part of the crack propagtion.
After some crack growth the crack reaches the compression zone and the effect

from the residual stresses will be reduced.

The test specimens were subjected to constant amplitude fatigue loading until
failure. The results are presented in S-N diagrams, see figures 4.12 and 4.13.
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Chapter 5

Comparison of test results with theory

5.1 Introduction

In this chapter the tests results presented in chapter 4 will be compared with the
results from the crack propagation formula. A comparison with two kinds of
welded connections will be carried out.

Firstly a comparison with a test series of Welded Center Cracked Test specimen
(WCCT) will be treated using the da/dN-AK, curve approach. The specimens in
this test series are welded in different directions compared to the crack growth
direction. The purpose is to observe the effect of residual stresses upon the crack
growth rate, and to examine whether the crack propagation formula can predict this
effect.

Secondly a comparison with Fillet Welded Joint Test specimens is carried out. This
type of welded connection is very often used in structures. It is the aim to investi-
gate how exact the crack propagation formula can predict the service life of the
fillet welded joint by using the S-N-diagram approach. The method used will be
to predict the number of cycles at failure N, for different stress levels.

5.2 Welded Center Cracked Test specimen (WCCT)

In this section the test results from the Welded Center Cracked Test specimens will
be compared with results from the crack propagation formula. Firstly a reference
calculation will be performed. This will be compared with the test specimen U,
which is not welded. Secondly the residual stresses will be taken into account in
the formula to predict the crack propagation in the Welded Center Crack Test
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specimens P and L. The specimen L is welded perpendicular to the crack growth
direction, and it is therefore expected that the residual stresses only will have
influence in the early state of crack propagation. On the contrary the specimen P
is welded longitudinally along the crack growth direction, and it is therefore
expected that the residual stresses will have full influence in the whole fatigue life
of the specimen.

As described in section 2.3, K, depends on the stress intensity factor K. Therefore
it is necessary to determine the parameters M’ and n’. In section 4.2 we observed
that the test results had a slope corresponding to the Paris m value about 4.3, see
figure 4.3. This is in the range of what is normally observed for medium strength
steels.

From equation (2.30) we hereby get:

n/ = 2~%-4.3 - 015 (5.1)

In section 4.2 K, was estimated to be Kic=120 MN/m>* which gives:

M= 220 s (5.2)

120~O.15
These values will be used in the following.

We also need the ultimate strength of the material. The ultimate strength is highly
dependent on size effects due to the very small plastic zone in front of the crack
tip which leads to higher strength in the plastic zone than that measured in labora-
tory tests. The phenomenon is described in detail in the earlier work by the author
194,11, and will only be summarized here.
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The size effect is taken into account using Weibull’s size effect law, [39.1] and
[39.2], together with information on the atomic strength of the material. Weibull’s

size effect law may be written:

3 (5.3)

where the empirical parameters ¢ and n may be determined on the basis of the
atomic strength and the usual laboratory strength by the following formulas, see

[94.1]:
19.8
f atomic

log £ laboratory (5°4)

u

3

laborato: n
f Jaboratonyp

cC =1,

Here f, is the ultimate strength. The formula is used both for the yield strength 1,
and the fracture strength f. The length L is the length of a standard laboratory test
specimen which is put to 107 m when determining the yield strength. The length
is reduced with 30% to Ly=7-10"m due to the necked area when determining the
fracture strength 1.

The atomic fracture strength for steel 1s, see [94.1]:

£7M = 32000MPa (5.5)

The atomic yield strength may be put equal to:

galomic . 8300MPa (5.6)

¥

The laboratory yield strength and fracture strength have already been given in
section 4.3.
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The laboratory fracture strength £ has to be increased with about 20% due
to the fact that in a test we often get a combination of sliding failure along the
edge and a separation failure in the necked area, and the cleavage strength there-
fore will be higher than the average stress measured over the necked area. Thus we

have

ft =12 ftruefractuxestrength G.7
The laboratory yield strength £, has to be increased by a factor 2.4 due

to the fact that in plane strain the yield strength exceeds the uniaxial yield strength
considerably. If the linear elastic stress distribution around a sharp crack is taken
as the basis, the yield strength in plane strain is found to be 3 times the uniaxial
yield strength [86.1,p 115]. Irwin suggested to use a factor of 1.68,[60.2]. In [90.1]
the factor used was 2.4, a value which has been determined on the basis of finite
element calculations. Since this is probably the best estimate, we will use it here,

1e.,

f = 24f (5.8)

yplanestrain T Ty undaxial

This factor does not affect the determination of the Weibull parameter n, because
n is determined on the basis of the actual uniaxial strength, but it does effect the
determination of ¢ which describes the actual stress condition in the actual case.
According to formula (5.4) we get the following Weibull parameters for the
fracture strength:

19.8 - 126

n et s et
g/ 32000 »
*l 12784 (5.9)

3

c = 1.2784-(7-107%) ¢ = 296
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and for the yield strength:

19.8 - 176

625 :

3

24-625-(10% 176 = 68

1l

c

Instead of using the Weibull roots n referring to the volume scale it has been
suggested in [90.1] to use the length scale roots n/3. When this is done the effec-
tive crack length term a’, = 1, might be used to determine the fracture strength f,
at the crack tip and the plastic zone length a, may be used to calculate the yield
stress at the crack tip, see also [94.1].

From [94.1] we have the following equations for the calculation of the ultimate
strengths:

The formula for the yield strength is:

N3
e 2l Ki|nji-2 (5.11)
Y 27
For the tensile strength we have:
1
Kk 2132 (5.12)
1 nit g S ¥
f.=1c B
2nf,

Using this approach it is often found that the theoretical yield strength f, exceeds
the fracture strength f,. In this case it may be assumed, that f, = f at the crack tip.
The ultimate strengths depend on K|, because the size of the plastic and fracture
zone length depend on K|, see section 2.2. K, may be chosen as an average value
in the actual interval. In our case K| varies from about 20 MN/m™? to 50 MN/m™".
As an average we may put K, = 35 MN/m™ in the calculations.

Using formulas (5.11) and (5.12) we get the ultimate strengths:

f = 5120 MPa

; (5.13)
f = 4470 MPa
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Since f, is found less than f, we must use:

f, = f, = 4470 MPa (5.14)

Two test series were carried out in [79.1] with different stress ratios R=06 /O nax-
The load conditions are listed in table 5.1:

R:"—Gmin/ Gmax AG Gmin Gmax Pm'm Pmax

MPa MPa MPa kN kN

Series 3 0.35 111 59 170 35 102
Series 4 0.5 107 107 214 64 128

Table 5.1 Load conditions for the specimens in series 3 and 4 respectively, [79.1].

In the following the parameters shown in table 5.2 will be used to predict the crack
propagation behaviour of the WCCT specimens:

> | g | wowl g A
3 mm 14 mm 246 -0.15 4470 MPa | 4470 MPa
Table 5.0 Parameters for Welded Center Cracked Tests.

In table 5.2 a, is half the initial crack length, D the diameter of the hole at the
crack center, see figure 4.1.

Consider first the reference specimen U, which was not welded. In section 2.3 the
influence of the R-ratio was discussed and a new approach to take into account the
R ratio effect was suggested.

In figure 5.1 the test results from series 3 and 4 are compared with Forman's
equation and the new proposal.

The values C, n and K, used in Forman’s equation (2.32) are 1.69E-9, 2.54 and
108MN/m*? respectively. These values are based on a best fit taken from [79.1}
The results found using the Bnergy Crack Propagation formula (ECP) are based on
the parameters shown in table 5.2.
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Figure 5.1 Theory compared with test results, specimen U.

It appears that Forman’s formula gives too high crack growth rate for the specimen
U4. The test results give almost identical crack growth rates, and it is observed that
the new approach to take the R ratio into account gives very good resulis.

The resulis from ECP predict a little less crack growth rate than found in the
experiment. This might be regulated with a slightly higher choice of the average
value of K,, when determining the uvltimate strengths. Within normal expected
uncertainty it must be concluded that ECP gives very accurate results. Contrary to
Forman’s formula, we also observe that close to failure (K, = AK/(1-R) = K«
= 120 MN/m”?) ECP predicts that specimen U4 should fai] before specimen U3 as
observed, see figure 2.3
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In figure 5.2 a comparison between the test results for specimen P, welded per-
pendicular to the load direction, and the Energy Crack Propagation formula (ECP)
is shown. In section 4.2 it was observed that the residual stress field, which is
dominated by the tension stress field, increased the crack growth rate in the whole
AK, range. It appears that, by using the procedure described i section 3.2 and 3.3,
the ECP-formula shows extremely good accordance with the test results. This
means that the effect from different R ratios is taken into account so similar crack
growth rates are obtained in the two test series. It may be concluded that the
energy crack propagation formula is able to take the effects from the residual
stresses into account.
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Figure 5.2 Theory compared with test results, specimen P

In specimen P there are no effects from the residual compression field neither in
the test results nor in the calculated results. This is due to the fact that the residual
compression stresses only are active very close failure, where the crack growth rate
is very high. This is contrary to the specimen L, welded longitudinally to the load
direction. In the begining of crack propagation the residual tension stress field is
active, but after some crack propagation the residual compression stress field 1s
becoming active and reduces the crack growth rate. In figure 5.3 a calculation with
ECP has been compared with the test results. We observe that the calculated crack
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growth rate follows the same pattern as the tests results. For AK; = 25 MN/m*” the
crack growth rate starts to relaxe, both in theory and tests, due to the residual
compression stresses.
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Figure 5.3 Theory compared with test resulls, specimen L.

However the theory predicts far too high crack growth rates. Forman’s formula also
to a certain degree gives too high predicted crack growth rates, especially for
specimen L4, see [79.1]. This might be explained by the very high residual stress
field in the center of the specimen. It is a fact that the tests results from specimen
L follow the test results from specimen P in the low AK| range. Therefore the
effective residual stress field is lower than the values given in table 4.2

It is known that if the residual stresses plus external load is close o the yield
strength the effect from the residual stress field will be relaxed. However this 1s not
a very likely explanation in this case, because the yield strength equals f, = 625
MPa and 6.+0,,,, = 118 + 214 = 332 MPa < {,.

If the residual stress field is not relaxed by yielding or other reasons, then the most
likely explanation is that the residual stresses measured have been overestimated,
when using the approximation with a constant stress field.
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If the residual stresses decrease very fast, as in the case of specimen L, it wil be
more accurate to aproximate the residual stress field with a descending linear stress
function. In appendix D a relation for a linear residual stress field has been derived,
and it is shown that a constant stress of about 80 MPa in the tension region would
be more accurate.

An estimate of the effective residual stress field on the basis of the approximate
linear stress fit, and the fact that specimen L follows specimen P in the low AK,

range, is given in table 5.3:

Specimen L

crack interval 0-20 mm 20-75 mm

oV = 80 MPa = -30 MPa
Table 5.3 Estimated residual stress field, specimen L.

Using this residual stress field we find the crack growth rates shown in figure 5.4.
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Figure 5.4 Theory compared with test results, specimen L.
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Now the theory gives good accordance with the test results in the low range of
AK,, but still not for higher values of AK| The crack growth rates for specimen L3
seem to relaxe at AK, = 25 MN/m”?, while the theory predicts a relaxation at AK,
~ 29 MN/m*?. For a maximum load of 6, = 170 MPa, we have AK, =29 MN/m**
and K,_,. = 44 MN/m>*. These values correspond to a crack length a = 21 mm.
This is in accordance with the crack interval given in table 5.3 showing that the
residual tension stress field will start to be relaxed at a = 20 mm. However the test
results indicate that this takes place for AK, = 25 MN/m** and K|, = 38 MN/m*?,
which corresponds to a crack length of about 16 mm. Therefore it must be con-
cluded that the residual compression field starts to be active for a crack length of
about 16 mm in this specific test.

Specimen L
crack interval 0-16 mm 16-75 mm
o = 80 MPa =~ -30 MPa

Table 5.4 Estimated residual stress field, specimen L.
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Figure 5.5 Theory compared with test results, specimen L.
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In figure 5.5 a calculation with the residual stress field given in table 5.4 is pre-
sented. Comparing with figure 5.4 we observe that the result is very sensitive to
the transition point between tension and compression. Further we observe that the
transition point a, = 16 mm gives extremely good accordance between test and
theory.

Finally a comparison between tests and theory for the whole test series 3 and 4 is
shown in figures 5.6 and 5.7. The crack growth rates for specimen L3 and L4 are
determined on the basis of the residual stress field given in table 5.4.
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Figure 5.6 Theory compared with rest results. specimen L.
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Figure 5.7 Theory compared with test results, specimen L.

It must be concluded that the Energy Crack Propagation formula (ECP) gives very
good results when compared with test results.
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5.3 Welded Joint Test specimen (WJT)

In this section the test results for the Welded Joint Test specimens will be com-
pared with calculations. Firstly some basic parameter studies will be performed,
and a definition of the standard parameters used will be established. Secondly the
effect from the residual stress field will be taken into account.

In section 3.3 a formula to determine the stress intensity factor was presented, see
equation 3.1. The stress gradient correction factor F is determined by equation
(5.15), see also equation (3.3):

F SCF

G 1{a)4 (5.15)
1+=|—

it}

In this case the stress concentration factor SCF and the parameters d and q will be
estimated on the basis of FEM calculations described in [90.2], see appendix B. It
has to be noted that the two weld toes have different geometry, see figure 4.8. The
crack will propagate at the weld toe with the largest stress concentration, i.e. the
crack will propagate at the weld toe 2 and the weld toe 4 in plate 16 and 8 mm
respectively, see appendix B. '
The stress concentration factor SCF equals F; when the crack length a=0. From
appendix B we therefore get SCF=2.543 for plate 16 mm. If we compare this with
formula (3.4), having a weld toe width 1=3 mm, we get SCF=2.785. We observe
a close similarity. The small difference may be explained by the fact that the
geometry of the weld toe is not symmetrical. see figure 4.8.

In the same way we find SCP=2.189 for plate 8 mum, see appendix B.

In [85.1] it is stated that F, equals 1 for a/t>=0.325. This is in agreement with the
FEM calculations in appendix B. Taking the middle crack point for mnstance at
a/t=0.125 (corresponding to a=2 mm for plate 16 mm), the constants d and ¢ can
be determined using formula (5.15) and appendix B.

For plate 16 mm we have

51



2.543 2.543

1= 2% A j141-_ 23988
1+1(0.325)1 1+1(0.125)
d d (5.16)
é _ 1543 A 1141 - 2.543
(0.325)1 L1 43( 3.125)‘1
d = 0.4957 A q=02383

Similarly the following constants are found for plate 8 mm, taking the middle crack
point in a=1.5 mm, and using SCF=2.189:

d = 0.6040 A q = 0.2946 (5.17)

Hereby the stress gradient correction factor Fy can be calculated by formula (5.15)
using the parameters shown in table 5.5:

plate 16 mm (0.4957 0.2383
plate § mm 2.189 0.6040 0.2946

Table 5.5 Parameters to determine the stress gradient correction Jactor F,..

The parameters recommended in [85.1] for non-load carrying fillet welded connec-
tions are very close to the values in table 5.5. The difference between the values
is due to the fact that the geometry of the weld toe is not symmetrical, see figure
4.8. Furthermore a comparison with the method suggested and the FEM values
shows very good agreement.

When solving the crack propagation formula to determine the number of cycles to
failure N, the limits a, and &, in formula (3.16) have to be determined.

As described in section 3.3 the initial crack length 4, is put equal to a, = 0.2 mm
as an average value of measured notch values in welded connections.

The upper limit a; can be estimated on the basis of K. In section 4.3 K. was
determined to be about Ko = 180 MN/m™. K, depends upon the stress level. From
the tests results, we have an average value of about AG = 200 MPa. Using formula
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(3.1) we get the limits:

a, = 7.9 mm for plate 8 mm

a; = 15.5 mm for plate 16 mm
These limits give K; = K for Ac = 200 MPa.
Both values are very close to the thickness of the specimen. In most tests failure
will appear earlier due to static failure caused by yielding in the remaining area.
Normally failure takes place for a; = 0.5+t. This value will be used in the follow-
ing. Furthermore it will be shown that if a; >> a,, then a small change in a; does
not affect the results very much.
As described in section 2.3 K, is a function of the stress intensity factor K. It is
therefore necessary to determine the parameters M’ and n’. In section 4.3 we
observed that the test results showed a Paris m value of about m=3, see figures
4.12 and 4.13. This is in the range of what normally is observed for normal
strength steel.
From equation (2.30) we hereby get:

‘3 =05 (5.18)

= 134 (5.19)

These values will be used in the following.

We also have to estimate the ultimate strengths of the material in the crack tip.
This will be done using the same procedure as in section 5.2, i.e. the size effect 15
calculated using Weibull’s size effect law, see formula (5.3). The empirical param-
eters ¢ and n are determined on the basis of the atomic strength and the laboratory
strength. By formula (5.4), we get the following Weibull parameters for the frac-
ture strengthe

n=_ 8 47

o ( 32000
1.2-55@}

(5.20)

AN

3

1.2-550-(7-10°% 117 = 18

@]
]
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and for the yield strength:

n=ﬂ‘—=15.1

8300

108(715;) (5.21)

3
2.4-405-(102) 151 = 389

[¢]
1l

The ultimate strengths depend on K;, because the size of the plastic and the frac-
ture zone length depend on K|, see section 2.2. K, may be chosen as an average
value in the interval in case. For instance in our case for plate 8 mm K, varies
from about 5 MN/m” to 23 MN/m*?, corresponding to a crack length varying from
0.2 mm to a; = 4 mm. Contrary to earlier investigations with CCT specimens,
[94.1], K, must be put equal to a value in the lower range of the interval, due to
the very small initial crack length. In the case of welded joint connections most of
the cycles to failure take place for very small crack lengths, i.e. the number of
cycles to failure is highly dependent on the initial crack length. In table 5.6 it is
shown that at least 4/5 of the total number of cycles to failure is used to extend the
crack to half the crack length at failure { a = 2 mm) which corresponds to a K,
value of 14 MN/m™. Therefore K, must as an average be put equal to 8-10 MN/-
m™. We use K, = 9 MN/m*”. Then the ultimate strengths may be calculated by
equation (5.11) and (5.12):

t, = 8542 MPa (5.22)
f, = 10515 MPa
a, = 0.2 mm Plate 8 mm  ACG = 200 MPa
a K, N
I mm 5 122400
2 mm 14 186500
4 mm 23 226300

Table 5.6 Number of cycles as a function of the crack length. The number of
cycles, N, has been determined using the parameters from table 5.7.
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In the following parameter study, the parameters used will be those determined in
section 3.3 and above, see table 5.7:

I 0.2 mm 0.5 13.4 0.5 0.25 | 8542 MPa | 10515 MPa
Table 5.7 Parameters for Welded Joint Tests.

Firstly it is important to verify that the numerical method used gives sufficient
accuracy. Two numerical routines are used, one to solve the crack propagation
formula and the other one to integrate numerically over the whole crack interval.
The programme used is listed in appendix C. In table 5.8 calculated values of N;
(number of cycles to failure) are listed for different number of steps. It is observed
that the Runge Kutta method used to solve the differential equation, the Crack
Propagation Formula (ECP), is the most sensitive. It is concluded that a number
of steps equal to 200 in both numerical calculations gives sufficient accuracy,
having an error less than 2%.

Number of steps Ac=200 MPa
Solving the crack Numerical N,
propagation formula integration Cycles to failure

50 200 213000
100 200 221800
200 200 226300
400 200 228500
800 200 229500
200 100 226400
200 200 226300
200 400 226200

Table 5.8 Examination of the influence of steps in the calculation.
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The influence of a change in the crack length at failure a; is negligible as discussed
earlier. In table 5.9 N; has been determined for different values of a, and it may be
concluded that a choice of a; equal to half the specimen width gives sufficient
accuracy, having an error less than 5%. Notice that for az>>>a; a change in a, does
not influence the result very much.

Plate 8 mm Ac=200 MPa

a; 4 mm 6 mm 7 mm

N; 226300 235600 236700
Table 5.9 Number of cycles to failure for different crack lengths at failure.

On the contrary a change in the initial crack length a, influences the result a lot.
In table 5.10 the initial crack length is varied between 0.075 mm and 0.4 mm,
which may be considered as a lower and an upper limit for the plate investigated,
see section 3.3. The influence of the initial crack length is shown in figure 5.8.
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Figure 5.8 Influence of initial crack length on fatigue life.
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Plate 8 mm Ac=200 MPa

a.

1

0.075 mm

0.1 mm

0.2 mm

0.4 mm

N;

299100

276600

226300

177000

Table 5.10 Number of cycles to failure for different initial crack lengths.

As may be seen in figure 5.9, the crack shape parameter a/b also has a large effect
on the calculated fatigue lifes. The two extreme cases are a/b=1 which corresponds
to a circular crack front and a/b=0.1 which corresponds to a linear crack front. In
between we have elliptically shaped crack fronts.
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Figure 5.9 Influence of the crack shape parameter a/b on
fatigue life.

Plate 8 mm  Ac=200 MPa li

a/b 0.1 mm 025mm | 05 mm | 075 mm 1.0 mm
N; 182900 226300 357760 583800 939400
Table 5.11 Number of cycles to failure for different a/b ratios.

57



Finally a comparison with the test results presented in section 4.3 will be produced.
In the calculation we will take the residual stress field into account, using a similar
method as in section 5.2. As seen from section 4.3, figures 4.10 and 4.11, the
residual stress field in the tension zone can be aproximated by a linear stress field.
Using the method described in appendix D, we find a residual stress field as given
in table 5.12.

Plate 8 mm Plate 16 mm
crack 0-24 2.4-56 5.6-8 0-4.8 4.8-11.2 11.2-16
interval min mim mm mm mim mm
c” 60 MPa | -40 MPa 60 MPa || 100 MPa | -55 MPa | 100 MPa

Table 5.12 Residual stress distribution in plate 8 mm and plate 16 mm respectively.

Using the parameters in table 5.7 a calculation with the Energy Crack Propagation
Formula is performed. In the figures 5.10 and 5.11 the test results for plate 8 mm
and plate 16 mm are compared with a calculation including the residual stress field
and a calculation neclecting the residual stresses.
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Figure 5.10 Theory compared with iest results, plate & mm.
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Figure 5.11 Theory compared with test results, plate 16 mm.

We observe in the figures 5.10 and 5.11 that the residual stress field reduces the
fatigue service life of the specimen, as expected. The effect from the residual stress
field is largest in the low stress range, where the residual stress field is more
significant compared to the external load. It is further observed that the calculated
fatigue life is smaller than the test results.

The reason cannot be an overestimation of the residual stress field, because it 1s
observed that neclecting the effect of the residual stress field we still underestimate
the fatigue life by the calculation.

The discrepancy might instead be explained by the crack closure phenomenon,
described in section 2.3. If we take the effect from the crack closure mto account,
and determine the crack growth as a function of the effective stress intensity factor
AKypy = Ko - K, where K, is determined by equation (2.39) and (2.40) we get
the fatigue life shown in figure 5.12 and 5.13.

Now we observe a very good accordance between test and theory. The calculated
fatigue life is a little smaller than found in the tests. It may be explained by an
overestimation of the residual stress field or it may be explained by the very rough
model used to predict the effect from crack closure.

59



Further it is seen that ECP gives more accurate results in the low stress range. This
may be explained by the fact that the residual stress effect is relaxed when the
applied stress is close to the yield strength, as decribed in section 3.2.

The effect of crack closure has to be compared with more test results, before a
final conclusion may be drawn. However, the results presented here show that
taking this effect into account rather good results are obtained.
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Figure 5.13 Theory compared with test results, plate 16 mm
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Chapter 6

Conclusion

In the present investigation, the fatigue life of welded connections under constant
amplitude loading has been studied. It has been the main purpose to examine the
capability of the Energy Crack Propagation Formula (ECP) to predict crack propa-
gation. Two tests series influenced by different parameters, such as residual stress-
es, the stress ratio R and crack closure are examined.

The overall conclusion is that ECP is able to predict crack propagation in welded
connections and estimate the fatigue life very well.

A new method to take the influence of the R ratio into account has been derived.
The method showed better results than those found by Forman’s equation. Stll a
comparison with more tests has to be carried out before a final conclusion regard-
ing the validity of the method can be made.

In the investigation of the WCCT specimen a large influence of the residual stress
field was observed. In the paper an approximate method to take the residual
stresses into account was introduced. Very good results were obtained both in the
tension and in the compression residual stress field range. It was shown that ECP
was able to predict the change of the crack propagation rate very precisely, when
the minimum stress including the residual stress was Jess than zero. This might
encourage to investigate the capability of ECP when applied to specimens with
R<0 and, using a similar procedure.

The method is simple and may be used for practical applications, but more tests
must be evaluated to ensure the general validity of the method.

61



It was shown that crack closure could be taken into account using a very simple
empirical equation. Although the empirical relation is based on a large theoretical
investigation the result can not be considered as a general way to describe the
effect from crack closure. However, the method used does indicate that crack
closure might be determined solely on the basis of the maximum stress level
including the residual stress, and on the assumption that the minimum stress is less
than the crack opening stress.

To fully understand the effect of residual stresses, R-ratio and crack closure, more
research is still needed. It has been the purpose of this paper to present a new
theory, to evaluate it, and hopefully to encourage the reader to apply it to other test
conditions and thereby getting closer to the understanding of the behaviour of crack
propagation in welded connections.

It may be concluded that the results obtained in this work look very promising.
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Appendix B

Geometrical correction factor F.

The number refers to weld toe 1, 2, 3 and 4 respectively, see figure 4.8.

a Plate 16 mm Plate 8 mm
(mm) 1 2 3 4
0.0 2.407 2.543 2.123 2.189
0.1 2.233 2.345 1.973 2.026
0.2 1.957 2.021 1.733 1.756
0.4 1.642 1.662 1.460 1.455
0.7 1.434 1.442 1.281 1.275
1.1 1.295 1.297 1.162 1.157
1.5 1.213 1.210 1.092 1.088
2.0 1.151 1.141 1.039 1.035
3.0 1.083 1.068 1.000 1.000
4.0 1.043 1.028 1.0 1.0
5.0 1.013 1.003 1.0 1.0
6.5 1.000 1.000 1.0 1.0
8.0 1.0 1.0 1.0 1.0
10.0 1.0 1.0 - -
12.0 1.0 1.0 - -
16.0 1.0 1.0 - -
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Appendix C

Pascal programme solving the
Crack Propagation Formula.

The programme takes residual stresses, crack closure and R-ratio into account.

The programme determines the fatigue life (number of cycles to failure). If the
programme is used to determine the da/dN as a function of AK,, neclect the
procedure trapez and then run the programme for different choices of initial crack

length ai.

Main procedures:

RUN: Controles the main programme,

CRACKRATE: Energy Crack Propagation Formula (ECP).
RUNGEKUTTA:  Solves the differential equation numerically.
TRAPEZ: Numerical integration, determines the fatigue life.
programme ECP;

uses crt,dos,graph;

const

pi=3.141592654 ;

var

clos : real;
leny : real;
q,d2,D,B,W,L,ra,s1,a,acr,ao0,any . real;
astart,da,dda,sda,le : real;
dadn : real;



kil ki2,kicl,dle,nk, mk, kstop

: real;

dp,rp,p,pmax,pmin,dadp : real;
E,kmin,Kmax,ddk,dK,Kii,Gf,Kicbasis,fy,ft : real;
kitrans,kink,step1,step : real;
ud,ud1,ind : text;
udfilnavn,udfilnavnl : string(.12.);
j,i,valg,gammelﬁl,stepZ,stepsda,stop . integer;
m,y : real;
n,nn,nnn : longint;
delta,dd, FANE : integer;
ok,okud1,okud2,0k2,0k3,0kstop,okud3 : boolean;
tast : char;

k . array[l..4] of real;
cl,c2,c3,c4,modelk . real;
indatafil, outputdatafil,outputdatafil 1 . string(.12.);
Fs,Fe,Fwt,Fg,elipse,sigma : Double;
kr,al,a2,a3,p1,p2,p3,sigmal ,sigma2 sigma3 : double;
Rs,Rres,sigmamax,sigmamin,sigmares : double;
ai,af,h : double;
f,fi,ff : double;
s,step . integer;

sum,intf : double;

function pp(fa,fx :real ) :real;
begin

pp:=exp(fa*In(fx));

end;

function (*Stress intensity factor™®)
ki(fp,fa,fb,fw :oreal) o real;
begin
CASE fane of
I:begin
= CCTH
y:=(sqrt(1/cos((pi*fa)/fw)));
ki: =y*(sqrt(pi*fa)*fp/(fb*fw));
end;
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2:begin
(*CCT including hole around crack*)
D:=0.004;
y:=(0.94+(0.34/(0.14 +(a-(D/2))/D))) *(sqrt(1/cos((pi*fa)/fw)));
ki: =y*(sqrt(pi*fa)*fp/(fb*fw));
end;

3:begin
(* Welded Joint *)

Fs:=1.12-0.12*(elipse);

Fe: =pp(-0.5,(1 +4.5945*pp(1.65,¢lipse/2)));

Fwt: =sqrt(1/(cos(pi*fa/(2*fw))));

if ABS(fw-0.008) < 1E-10 then begin
d2:=0.3356;
q:=0.5768;
Fg:=2.189/(14(1/d2)*pp(q,fa/fw));
if Fg<=1 then Fg:=1;
end;
if ABS(fw-0.016) < 1E-10 then begin
d2:=0.2383;
q:=0.4957;
Fg:=2.543/(1+(1/d2)y*pplq,fa/tw));
if Fg< =1 then Fg:=1;

end;
ki: =Fs*Fe*Fwt*Fg*sqrt(pi*fa)*fp/(fb*fw);
end;
end;
end;
function

Ip(fp,fa,fb,fw iy fft  : real) : real;
{(* Plastic zone correction factor *)
begin

cl:=1/(2%p1);

kil:=ki(fp,fa,fb,fw);

Ip: =c1*sqr(kil)/(ffy*fft);
end;
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function
dlp(fp,fa,fb,fw,ffy,fft : real) : real;
begin
cl:=1/(2*pi);
kil:=ki(fp,fa,fb,fw);
c2:=1-(0.061 *(fft/ffy));
dlp: =c1*Q2/fp)*sqr(kil)/(ffy*fft);
end;

function
kic(fkmax : real) : real;
(* Critical stress intensity factor *)
begin
if fkmax < = kitrans then
begin
kic: =kicbasis;
end;
if fkmax > kitrans then
begin
kink: =pp(nk,fkmax);
kic: =mk*kink;
end;
end;

procedure outputdata;

(* write da/dN as function of AK, *)

begin
stepsda: =stepsda+1;
if a > (acr-(sda*2)) then sda: =(acr-a0)/100;
writeln(ud,ddk,dda,” *,nn,” " le);
writeln{udl, kmax,kicl);
a:=a-+sda;

end;
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procedure crackrate;

begin
(*Residual stresses™)
pl:=sigmal*b*w;
if ra+leny>al then begin
pl:=(sigmal*b*w*(al)+sigma2*b*w*(ra-al))/ra;
end;

(* factor clos = crack closure *)
clos: =1-0.3%(1 +sigmal/sigma);

le: =Ip(clos*(rp+p1),ra,b,w,fy,ft);
dle: =dlp(clos*(rp+p1),ra,b,w,fy,ft);
kil:=ki(clos*rp,ra,b,w);
ki2: =ki(clos*rp,ra-+le,b,w);
kicl:=kic(clos¥*kmax);
(*Residual stresses™)
pl:=sigmal *b*w;
kr: =ki{clos*pl,ra,b,w};
if ra+leny>al then begin
p2:=(sigmal*b*w*(al) +sigma2*b*w¥(ra-al))/ra;
kr:=ki(clos*p2,ra,b,w);
end;
kil:=(kil +kr);
ki2: =(ki2 +kr);
kicl:=kic(kmax+kr);
(* Determination of crack increment by ECP *)
dadp: =(sqr¢kil)*dle)
/(sqrikicl)-sqr{ki2));
end;

procedure rungekutta;

begin
(* Determination of k-values *)
k[1}:=1;
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=1
for i:=1 to 4 do
begin

m:=(trunc (i/2))/2; (* values 0, 1/2, 1/2, 1 for i=1 til 4 *)
p: =p+m*dp;
ra: =a-+m*dp*k[j];
Crackrate;
k[i]: =dadp;
J:=i;  (* To take into account the next a *)

end;
any:=a-+(dp/6)*(k[1]+2*k[2] +2*k[3] +k[4]);
{da:=any-a;}

da: =(dp/6)*(k[1]+2*k[2] +2*k[3] +k[4]);
if da < O then stop: =1,

end;
procedure run;

begin;
a:=ao;
kmax:=ki(pmax,a,b,w);
kmin: =ki(pmin,a,b,w);
ddk: =kmax-kmin;
kii: =ddk;
dp:=(pmax-pmin)/delta;

writeln;
writeln(" N= ",nn,” acr= ",acr:i4:4,” a= " a:4:4);}

dd: =0;
p:=pmin;
dda: =0;

kmax:=ki{pmax,a,b,w);
~ kmin: =ki(pmin,a,b,w);
ddk: =kmax-kmin;
repeat (* load is increased *)
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dd:=dd+1;

p:=p-+dp;

rungekutta;

leny: =le;

dda:=dda+da;

a:=a-+dda;
until (dd> =delta) or (p> =pmax) or (stop=1);
dadn: =dda;
outputdata; (* procedure write to file *)

end;

procedure trapez;

begin

sum: =0;
for s:=1 to (step-1) do begin

write(s,” ’);
ao:=ai+s*h;

end,;

run;
f:=1/dadn;
sum: =sum+7{;
ao:=ai;

run;

fi: =1/dadn;
ao:; =af;

run;
ff:=1/dadn;

intf: =h*( 0.5%(fi +1{f) +sum );
writeln(’Np = 7, intf);
writeln;
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procedure Zeroindata;

begin

fane:=0;

ok2: =false;okstop: =false;okud]: =false;okud2: =false;okud3: =false;

nn: =0;stepsda: =0;stop: =0;step2: =1;step: =1;

modelk: =0;b: =0;a: =0;w: =0;1: =0;pmin: =0;pmax: =0;e: =0;fy: =0;ft: =0;n: =0;
delta: =0;kicbasis: =0;kitrans: =0;nk: =0;mk: =0;

kr:=0;leny: =0;
a1:=0;a2:=0;a3:=O;p1:=O;p2:=0;p3:=0;sigmal:=O;sigma2:=0;sigma3:=0;
Rs:=0;Rres: =0;sigmamin: =0;sigmamax: =0;sigmares: =0;

indatafil: =" ’;

outputdatafil: =" ’;

outputdatafill: =" ’;

end;

Procedure indata;
begin

b:=0.090; (* thickness *)

w:=0.016; (* width %)

sigma: = 100; (* maximum stress *)

pmin:=0;  (* minimum load *)

pmax: =sigma*w*b;

E:=210000; {MPa=MN/m2}

fy:=9477;, {MN/m2}

ft: =fy;

delta:=200; (* steps through one cycle *)

fane:=9; (* 9 for welded joint stress intensity factor *)
kitrans:=0; (* Limitation for Critical stress intensity factor *)

nk:=0.5; (* Ki-kic parameters *)
mk:=13.4; (* Ki-kic parameters ¥)

(*indata for trapez procedure*®)
elipse:=0.25; {ratio between a og b, elipse =a/b}
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step: =200; (*total steps to failure*)
ai:=0.0002; {m} (*initial crack length*)
af:=0.008; {m} (*critical carck length*)
h: =(af-ai)/step; (*steplength*)

end;

procedure inresidual;
(*residual stresses*)
begin

(*data for Glinkas WCCT test specimen u*)
{ al:=0.075;

a2:=0.075;

sigmal:=0;

sigma2: =0;}

(*data for Glinkas WCCT test specimen P*)
{ al:=0.044;

a2:=0.075;

sigmal:=62;

sigma2:=-88;}

(*data for Glinkas WCCT test specimen L*)
{ al:=0.020;

a2:=0.075;

sigmal:=11§;

sigma2:=-43;}

(*data for Glinkas WCCT test specimen L second calculation™)
{ al:=0.016;

a2:=0.075;

sigmal:=80;

sigma2: =-30;}

{(*data for Ibsgs WIT test plate 8 mm™)
{ al:=0.0024;

a2:=0.0056;

a3:=0.008;

sigmal:=80;

sigma?2: =-40;

sigma3:=80;}
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(*data for Ibsgs WIT test plate 16 mm*)
{ al:=0.0048;

a2:=0.0112;

a3:=0.016;

sigmal: =130;

sigma2: =-55;

sigma3:=130;}

end;
{Mainprogram}
begin
zeroindata;
indata;
inresidual;
trapez;

begin

close(ud);

end;

end.
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Appendix D

Approximation of linear residual stress field.

In this appendix a formula to determine the residual stress intensity factor K, on
the basis of a linear residual stress field will be derived. An aproximation using
a constant stress field will be proposed. The method may be used when the stress
is varying very fast, since this reduces the effect from the residual stress as will
be shown. The result is utilized for specimen L, which has a very steep stress
field in the lower AK, range, see section 5.2.

The stress intensity factor from a residual stress field o> has been given in section

3.2, formula (3.10):
o
- 2\{“ [=2 r® 4 ®.1)
0 g/a ~x?

If we assume a linear variation of the stress field, we have:

o7 (®) = 0y-2x ®.2)
a

o, being the residual stress at x = 0. Along the length a, the residual stress
decreases to zero value. Substituting this into (F.1) we get

p:3 a
43 o

K, = 2,| 2o L gy ol X 4 (D.3)

Tl oya 4 ya?-x?

The resuit is
, — 20, ,
K, = gy/na- ——aya .4
agy/ T
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If we insert the transition point between tension and compression, a=a,, we get
the simple result:

2
K, = ogyfna, (1- =) D.5)

In the case of specimen L, the residual stress field was aproximated with a con-
stant stress o = 118 MPa, see figure 4.2. This corresponds to a stress intensity
factor of K, = ¢ vra, = 29.6 MN/m’” at the transition point, (neclecting the
geometrical correction factor 8). If we instead assume a linear stress field having
0o = 200 MPa and a, = 20 mm we get from formula (F.5): K. = 18.2 MN/m*2.
This corresponds in a constant stress field to ¢ = 72.7 MPa, which is quite lower
than the value used.

It is therefore suggested to reduce the residual stress field for the investigation of
specimen L to a constant stress field with say ¢ = 80 MPa. This leads to an error
only in the very low AK, range. To obtain equilibrium it is suggested that the
compression stresses are reduced to -30 MPa.

In the case of specimen P it is sufficiently accurate to approximate with a constant
residual stress field without reduction, due to the shape of the residual stress field.

Dealing with the fillet Welded Joint Test specimens (WJT), see section 5.3,
similarly a reduced constant residual stress field will be used. At the transition
point a, = 2.4 mm for plate 8 mm, we have;

K, = op/7a, (1-2) = 165700004 = 5.2MNjm*? D.6)

v

Using a constant residual stress field and demanding same stress intensity factor
in the transition point we get the constant stress in the tension range:

o = = . = 60MPa D.7)
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Similarly for plate 16 mm in the transition point a, = 4.8 mm:

6 = 275(1-2) = 100MPa (D.8)
T

To obtain equilibrium in the compression zone the stresses will be put equal to
= -40 MPa for plate 8 mm and ¢ = -55 MPa for plate 16 mm.
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