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Preface

The Nordic Association for Computational Mechanics (NoACM) was created
in October 1988 with the purpose of promoting research and applications
within the area of computational mechanics and to contribute to contacts and
interchange of ideas between researchers and practitioners in this field. In
1991 the Baltic states joined NoACM.

The main activity of NoACM is the annual Seminar on Computational Me-
chanics. The format of the seminar is a small number of keynote lectures and a
large number of short presentations. This preprint volume contains extended
abstracts for both the invited lectures and the short presentations. The pur-
pose is to allow the author to state the main ideas and give a few references
for further study. Thus the contents of this volume should be considered as
appetizers and not a substitute for the full text.

The organizing commitee gratefully acknowledge support from both the De-
partment of Structural Engineering and Materials and the Technical Univer-
sity of Denmark. Personnally I should also like to express my thanks to
Professor Steen Krenk, Lund Institute of Technology, for invaluable advice
during the planning of the seminar.

Lyngby, October 1996

Lars Damkilde
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ON ENGINEERING DESIGN OPTIMIZATION

Niels Olhoff
Institute of Mechanical Engineering
Aalborg University, DK-9220 Aalborg, Denmark

Abstract - A survey of problems of optimum engineering design is presented. The main emphasis is
devoted to fundamental aspects and current methods and capabilities for topology and shape
optimization, and a number of examples will be given.

The methods are selected from conditions of versatility and suitability for integration into an
engineering design optimization system which realizes the design process as an iterative solution
procedure of a multicriterion optimization problem based on the concept of integration of finite element
analysis, design sensitivity analysis, and optimization by mathematical programming.

1. Introduction

Engineering activity has always involved endeavours towards optimization, and this
particularly holds true for the field of engineering design. Earlier, engineering design was
conceived as a kind of "art" that demanded great ingenuity and experience of the designer, and
the development of the field was characterized by gradual evolution in terms of the continual
improvement of existing rypes of engineering designs. The design process generally was a
sequential "trial and error" process where the designer’s skills and experience were the most
important prerequisites for successful decisions for the "trial" phase.

In contrast, today’s strong technological competition which requires reduction of design
time and using of products with high quality and functionality with resulting high costs,
together with the current emphasis on saving of energy and reuse of materials, consideration
of environmental problems, etc., often involves the creation of new products for which prior
engineering experience is totally lacking. The development of such products must naturally
lend itself towards scientific methods.

Hence, during recent decades, engineering design has changed from "art" and "evolution"
to scientifically based methods of rational design and optimization. This development has been
strongly boosted by the advent of reliable general analysis methods such as finite element
analysis, design sensitivity analysis, and methods of mathematical programming, together with
the exponentially increasing speed and capacity of digital computers. Thus, methods of rational
design and optimization are now finding widespread use in aeronautical, aerospace,
mechanical, nuclear, civil, and off-shore engineering. In materials science, the techniques are
now being used in research devoted to tailoring of materials with specific properties. The
development has been supported by vigorous research in the fields of design sensitivity
analysis and optimum design, see e.g., the proceedings [1-4] from recent conferences and the
monograph [5].

In this lecture the engineering design process is conceived as an iterative solution
procedure for a multicriteria optimization problem. The problem is defined, possibly redefined
during the solution process, and finally solved, by the designer in an interactive dialogue with
a suitable software system for design optimization. The process can be essentially considered
as a rational search for the optimal spatial distribution of material within a prescribed
admissible structural domain subject to multiple criteria and constraints. Accordingly, it is the



aim of this lecture to present basic concepts for problems of engineering design treat
rationally as multicriterion problems, and to give a brief survey of selected enabling metho
illustrated by examples. The topics of the lecture are outlined below. The methods select
for presentation reflect those that constitute part of the backbone of the Optimum DESi;
SYstem ODESSY (see [6-9]), which is being developed at Aalborg University, and most -
the examples to be presented have been obtained using ODESSY. For reasons of brevity, tl
CAD-integration and the interactive design capabilities [6,7] of the system will not be covere
here.

The design optimization system is developed as part of a project within the Dani
Technical Research Council’s Programme of Research on Computer Aided Design. Th
project is carried out in a fruitful collaboration between researchers from the Institute
Mechanical Engineering of Aalborg University and the Department of Mathematics and t}
Department of Solid Mechanics of the Technical University of Denmark. Many colleagues ar
friends from abroad have also participated in the work, and their inspiring cooperation
gratefully acknowledged.

2. Basic Concepts

The label engineering design optimization identifies the type of design problem where the s
of structural parameters is subdivided into so-called "preassigned parameters" and "desig
variables", and the problem consists in determining optimum values of the design variable
such that they maximize or minimize a specific function termed the objective (or criterion, «
cost function), while satisfying a set of geometrical and/or behavioural requirements which ar
specified prior to design, and are called constraints. A brief account of other basic concep
will be given, and the types of different design variables, objective and constraint functior
which ODESSY can handle, will be discussed.

3. Mathematical Formulation for Multicriteria Optimization

The optimization system ODESSY is based on the concept of integration of modules of finit
element analysis, design sensitivity analysis and mathematical programming. Since in practic:
problems of optimum engineering design it is necessary to take into account several structur:
performance and failure criteria in the problem formulation, a multicriterion approach has bee
adopted. Moreover, in order to meet practical needs of versatility, the basic mathematic:
formulation for optimum design must possess sufficient flexibility such that the system ca
handle both problems of minimizing cost subject to several constraints, and problems of multi
criterion optimization for prescribed resource (and additional constraints). To achieve thes
goals, the multicriterion problem is cast in scalar form by stating it as minimization of th
maximum of a weighted set of the criteria. Such an interpretation of the multicriterio:
optimization problem can be formulated as a problem of minimizing a variable upper boun
on the weighted criteria, and this bound formulation [10,11] implies the considerabl
advantage that the multicriterion problem becomes differentiable.

4. Design Sensitivity Analysis

Structural shape optimization requires an efficient and reliable method of shape sensitivit
analysis, and a commonly used technique is based on implicit differentiation of the finit
element discretized equilibrium conditions for the structure with respect to the desig
variables. The most general implementation of this technique, which is preferable from th
viewpoint of computational cost and ease of implementation, implies application of numerica
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anrerenuauon or te mnnite element stittness matrices [12,13], and is termed the semi-
analytical method of sensitivity analysis. This method has been implemented as an integral
part of a finite element system which is developed (and being continually extended) for
structural analyses and integrated in ODESSY. This way semi-analytical sensitivity analyses
can be carried out in a unified manner for a large number of different types of finite elements
and types of structural behaviour [7,9].

It is well-known that the design sensitivity analysis of eigenvalues is complicated in the
case of multiple eigenvalues as these are not differentiable functions of design variables in the
usual Fréchet sense. However, based on a mathematical perturbation technique, a general
framework [14] has been established for design sensitivity analysis and optimization of
multiple eigenvalues of complex structures. This development is substantiated by a number
of examples in [14,15].

Whereas the semi-analytical method of sensitivity analysis works very well for a large
majority of problems, it has recently been shown by way of examples [16] that the method
may yield erroneous shape design sensitivities for plates, shells, and long slender structures.
However, a simple, easily implemented and computationally inexpensive numerical method
of "exact" semi-analytical sensitivity analysis (exact except for round-off error) that completely
eliminates the deficiencies is now available (see [ 17,18]), and has been successfully
implemented in ODESSY.

S. Shape Optimization of Discrete Structures

While optimization of discrete 2D or 3D truss or frame structures with cross-sectional areas
of bar or beam members as design variables is termed sizing optimization, and optimization
with positions of a given number of joints as design variables is called configuration
optimization, the combined problem of optimizing both sizing and configuration is labeled
shape optimization of the discrete structure. Minimization of the structural weight is most
often the design objective in such problems which usually encounter multiple loading
conditions with constraints that include stresses, displacements, and elastic as well as plastic
buckling of members in compression, see, e.g., [8,19].

6. Shape Optimization of Continuum Structures

In this type of problem, the goal is to determine the shape of the structural domain, i.c.. the
problem is defined on a domain that is unknown a priori. Like optimization problems in
general, shape optimization is a highly non-linear problem where it is necessary to employ an
iterative numerical solution scheme and to determine the optimum design through a sequence
of redesign and reanalysis. This implies that the structural geometry must be repeatedly
converted into a finite element model with the proper loads and boundary conditions, and that
the variable structural design must be described (parameterized) in terms of a finite number
of geometrical variables.

Particularly for problems of shape optimization of continuum structures, it is necessary
to make a clear distinction between the analysis model as represented by the finite element
model, and the parameterized geometric model of the variable structure which is termed the
design model (cf. [20]). The design model is endowed with additional significance because it
can be closely connected with a CAD model as described in [6].

The design model may consist of so-called design elements as presented in [7,20]. The
boundaries of the design elements can be curves of almost any character, i.e., piecewise
straight lines, arcs, b-splines of any degree of continuity, Bezier curves, Coons patches, etc.
It is therefore very simple to generate relatively complicated geometries with a small number
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of design elements. The shapes of the boundaries are controlled by a number of control point
also often termed master nodes.

7. Topology Optimization

It is characteristic that the solution to a shape optimization problem (cf. Sections 5 and 6) wi
always have the same topology as that of the initial design. Thus, the topology of
mechanical structure or component to be optimized cannot be changed by using methods ¢
shape optimization. As the choice of the best topology has considerable impact on the gai
to be achieved by optimization, the development [21] of a method for topology optimizatic
was a remarkable break-through in the field of optimum design. The reader is referred to z
exhaustive monograph [5] for recent developments and publications.

Contrary to shape problems, a problem of topology optimization is defined on a fixe
domain of space, and the structure is considered as a spatial sub-domain with high density «
material. The topology problem is basically one of discrete optimization, but this difficulty .
avoided by introducing relationships between stiffness components and density based o
physical modelling of porous, periodic microstructures whose orientation and density ai
described by continuous variables over the admissible design domain.

The topology optimization results in a prediction of the structural type and overall layou
and gives a rough description of the shape of the outer as well as inner boundaries of th
structure. This motivates the use of topology optimization as a preprocessor for subsequet
shape or sizing optimization [22]. Thus, depending on the amount of material available, th
generated topology will basically either define the rough shape of a continuum structure
possibly with macroscopic interior holes, or the skeleton of a truss- or beam-like structure wit
slender members. This way, the optimal topology can be used as a basis for the abovemer
tioned procedures for refined shape optimization.

8. Closure

This short paper reflects coordinated research activities towards the creation of an interactiv
engineering design environment for rational design and optimization of mechanical product:
systems and components. Current efforts are devoted to further extensions of the engineerin
design facilities in terms of methods as well as design criteria and objectives, with a view ¢
allowing for solution of as broad a spectrum of practical engineering design problems a
possible. This to a large extent implies expansion of the system capabilities into other field
of engineering, and will hopefully result in a truly multidisciplinary engineering design systenr
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Parametric dependence in structural response
by
Anders Eriksson and Costin Pacoste

Department of Structural Engineering,
Structural Mechanics group,
Royal Institute of Technology,
Stockholm, 1996.

For all structures of some complexity, the behaviour under loading is dependent on
the specific configuration and measures of the structural components. In particular,
these parameters affect the relative importances of structural instabilities. The study
of generalised path-following procedures, cf. [1,2,3], has had as one objective to find
methods, with which these aspects can be clarified and quantified.

The primary target in using these these general paths has been the detajled de-
scription of structural instabilities. Although they can in many cases be seen as
over-simplifications with respect to real behaviour, elastic instability analyses are
useful tools for the understanding of the behaviour of many structures. On the
other hand, formal instability analyses can be considered as overly sophisticated,
but it is possible to show, that many instability aspects are missed by the common
analysis models. It can also be shown that simplified analysis models sometimes give
incorrect information concerning the stability or instability of critical situations. At
least from a theoretical viewpoint, it is therefore interesting to study the complex
instability phenomena that occur for particular instances of a structure, when the
geometry is parameterised.

In order to accurately evaluate the instability behaviour of structures, three basic
ingredients are needed: First, sufficiently accurate numerical elements are needed
for the discretised structural model, as discussed in [4,5]. Second, suitable numerical
methods are needed for treatment of the non-linear structural relations that arise
from these discrete models, cf. [1,2,3]. Further, the analyses require methods for
handling and describing the critical states. Some methods for this, related to e. g.
catastrophe theoretical concepts, are discussed in [3,6].

From the application viewpoint, the generalised formulations allow studies of a struc-
tural equilibrium problem from unconventional directions. Rather than seeing the
response as 4 function of a variable load, for a specified structure, the response is
seen as a function also of the parameters defining the structure. By adding new
dimensions to the model, the dependence of the results can be obtained, without
complete re-calculation of alternative structural models. Although the stated prob-
lems will be slightly more complicated than the basic equilibrium problem, their



use can in many cases be time-saving in the total context of analysis. The study of
structures in a multi-parametric setting also allows the treatment of the genericity
of the behaviour, thus avoiding whole new paths to be evaluated in order to study
variations in structural geometry or imperfections,

Also, a few other computational tools are considered in [3] for the description of the
parameter dependence of structural response aspects. Using these different tools, it
is possible to completely describe the phenomenological behaviour of the structure
in different parametric regions.

These methods can be used for many practical purposes. Primarily, the sensitivity in
instability situations can be described. In particular, for an obtained instability for
a specific structural configuration, the sensitivity of this behaviour can be evaluated.
Typical parameters in this case are geometric parameters, sectional parameters and
imperfections in load or geometry; these aspects are discussed in [3]. In these cases,
the variations of the used parameters are normally small, just aiming at describing
the local variations in response.

The second application area is related to larger variations of the parameters of the
structure. It is related to the different qualitative behaviours of structure in different
parameter regions. In relation to instability problems, the question is dealing with
whether certain instability phenomena can occur, and at what load. Results in
this area can be obtained from generalised path-following, where turning points
in the higher-dimensional space indicate the limits for a region where a certain
phenomenon occurs. It is also possible to follow curves of parametric combinations,
where a critical state exists or a certain stress level is reached at a specified external
load. This problem, obviously closely related to structural optimisation, is shown

by Fig. 1.

For the studied problem, the design variables have been chosen as the structural
height H, and the sectional height A; the design load was chosen as P, = —100. The
problem has been subjected to the constraints that the safety against the limit points
should be > 1.5, the safety against buckling > 1.3, and that the maximum stress
in the fundamental solution to the design load should be less than 10000. In the
region of limited deflections, the maximum (compressive) stresses will be at either
the ends or the quarter points of the beams. These two situations were considered
individually in the present analysis. Altogether, four different paths were evaluated.

The results from the calculations are summarised in Fig. 1, where the combinations
of the two parameters that fulfil the limiting criteria are shown, by paths shown as
solid and dotted lines. Obviously these curves need interpretation to give any conclu-
sions. The dotted parts of the o related curves are thus excluded, as these solutions
give higher tensile than compressive stresses in the studied sections; they correspond
to structures that must be inverted before being able to carry the specified load.
The top half of the bifurcation curve is also excluded as the points correspond to
the load at the return of the bifurcation path being the specified value. The turning
point on this curve obviously gives the parametric combination for which a degen-
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Figure 1: Evaluated parametric limits for different demands for clamped toggle
frame.

erated bifurcation point is obtained at the studied load. The points on the top half
of the limit load curve correspond to the ‘minimum’ load being the specified value.
The turning point on this curve gives the parametric combination for which a third
order limit point is obtained at the studied load.

From the remaining parts of the curves, as marked by solid lines in the figure, the
feasibility region for the design is clearly shown.

Similar methods have also been used in a study of dome-shaped space grid struc-
tures. Emphasis was here put on the flexibility in the connections between the
members. It is shown, that the instabilities are severely affected by these flexibili-
ties, leading to a total disappearing of some of them for high enough joint stiffnesses.
Further results from these analyses, together with some comments on the compu-
tational organisation of these complicated large-size analyses, will be given in the
presentation.

From the theoretical viewpoint, the latter approach can give important phenomeno-
logical information. For instance, it has in [4] been shown that a simple toggle frame
can give a butterfly catastrophe instability for a certain parametric combination. In
the reference, this parametric combination was found manually, by evaluating the
post-critical paths, for different structural heights. It has, however, in [3] been shown
how this situation can be found from the generalised path-following procedure, by
specifying an augmented fold line problem. Although the stated problem is of larger
size than the fundamental problem, the obtained procedure is much more efficient
then the manual method. The results and some comments on the computations will

be given.

In a similar way, also other instances of complex instabilities can be found, e.g.
swallowtail catastrophes, or hilltop-branching states. Although these only occur for
specific instances, and thereby are of limited practical importance, these limiting
situations are of major importance in the understanding of instability phenomena.
Some aspects of this, and some examples of uncommon instabilities will be shown



1n the presentation.
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COMPUTER AIDED TAILORING OF COMPOSITES

A. PRAMILA

Department of Mechanical Engineering, University of Oulu, Linnanmaa,
SF-90570 Oulu, Finland

Abstract-A CAD-system for tailoring thermomechanical properties of composite structures is presented. The properties
considered can be forced to a prescribed value, to a given range or the minimum or the maximum value of the
property can be sought. The approach adopted is 2 macromechanical one, i.e. the properties of the plies are
assumed to be given as is the case in normal design practise. Thus, the variables by which the designer can
influence the properties are the ply orientations and ply thicknesses. The solution of this inverse problem, the
search of ply orientation and thickness combinations leading to desired properties, is formulated as a
constrained nonlinear minimization problem. Thus far, following thermomechanical properties have been
considered for a typical point in an arbitrary laminated structure: in-plane and bending stiffnesses, coefficients
of thermal expansion, strains, stresses, values of the failure criterion and curvatures due to mechanical and
thermal loads. For plates and cylindrical shells the properties considered in addition to the abovementioned
are displacements, buckling loads and eigenfrequencies

INTRODUCTION

“Composites are considered to be combinations of materials differing in composition or form on
a macroscale. The constituents retain their identities in the composite, i.e. they do not dissolve or
otherwise merge completely into each other although they act in concert”. [1], [2].

There are many types of composites. Most used are polymers reinforced by thin fibres. The most
common form is a laminate consisting of several unidirectional plies or layers. The plies used are
anisotropic which gives the opportunity to vary the thermomechanical properties of the laminate
or the laminated structure even after the dimensions and material (ply) have been chosen by
varying the orientations and thicknesses of the different plies. The determination of the
thermomechanical properties can be tedious, the range of calculations required extends from the
use of explicit equations to solution of a nonlinear boundary-value problem. This together with
large number of design variables makes the use of a trial-and-error method almost hopeless in the
design of composite structures with specified properties.

The design, i.e. search of ply thickness and orientation combination leading to specified
thermomechanical properties is called here the solution of an inverse problem to make clear the
distinction to an analysis problem, where the design parameters are given and one derives the
properties, and to the optimization, where the values of chosen properties are minimized or
maximized. The term “inverse problem” has been used earlier, e.g. in vibration engineering, when
structures having prescribed eigenfrequencies are searched for.

The optimization of composite structures has earlier concentrated almost exclusively on weight
optimization, see, e.g. references [3] and [4]. In some cases extrema of some thermomechanical
properties have also been sought for, see, e.g. [5]and [6].

Sigmund, [7] and [8], has numerically constructed materials with arbitrary prescribed positively
semi-definite constitutive tensor. In his approach the cost function to be minimized is the weight,
the prescribed constitutive parameters are taken into account as constraints and the design
variables define the composition and topology of the material. This approach can, however, lead
to materials which are very difficult to manufacture in practice.
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This paper summarizes the work presented in references [9], [10], [11], [12]and [13]. In ou
approach the design variables are the ply orientations and/or ply thicknesses. This, of course, put:
limits to the attainable properties. However, this approach produces laminates that can actually
be manufactured. The programs developed are intended for and have already been applied in the
practical design of composite structures.

FORMULATION OF THE INVERSE PROBLEM

The different thermomechanical properties and response parameters depend on ply properties, ply
orientations, ply thicknesses and on the geometry, boundary conditions and loading of the

structure, i.e.
F=F{6, t, geom., bound,, etc.). (D)
Usually the design task can be stated in the following way

=FE i=1...,m

F,
L U
FE"<sF <F, i=m+1,... M (2)

z

oy

~

where an overbar indicates a prescribed value and superscripts U and L refer to upper and lower
bounds, respectively.

The basic idea is simply to formulate the problem as a constrained minimization problem

in S ol (3)
min ) |F; - F,
>
subject to
Fr<E=<F' i=m+1,...M (4)

Search of maxima or minima can be carried out by replacing (3) by corresponding statement. The
result of the constrained minimization is a set of orientations and thicknesses leading to the
prescribed properties and response parameters. The result is by no means unique. The same
response parameters and properties can be obtained by several combinations of design parameters.
Of course, sometimes the specified values and bounds can be such that there is no solution at all.

CALCULATION OF PROPERTIES AND RESPONSE PARAMETERS

Classical lamination theory is used in the calculation of the properties and response parameters
associated to a representative point of the laminate. The basic equations are the stress-strain
relationships in ply co-ordinate system

o=Q (g-aAT), (5)
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in laminate co-ordinate system

T=10Q (-TAT) (6)
and the kinematical assumption

e(z2)=e’+zx 7N

where all the symbols have their standard meanings (see, e.g. [14]). From these the fundamental
relationships

N=A¢ +Bk-N, (8
and
M=Be +Dx-M, 9

are derived. Here N and M are vectors containing the external forces and moments per unit width;
A, B, D are the in-plane, coupling and bending stiffness matrices; €” and x are vectors containing
the midplane strains and curvatures; Ny and My are vectors containing the apparent thermal forces
and moments per unit width.

The cost function used and the constraints applied can contain any of the strains, stresses,
curvatures, effective moduli and/or effective coefficients of thermal expansion which can be

derived using the above equations.

As a failure criterion we apply the Tsai-Hill criterion, for which all the strength parameters are
easily available.

In many applications laminates are used as shell or plate structures. The designer is interested in
displacement, strain and stress fields of the structure under some transverse forces. Due to
relatively high strength of advanced composites the structures tend to become quite slender. Thus,
also buckling loads and eigenfrequencies must be possible to consider as design criteria.

One possibility to include these into the design system would have been to use the FEM.
However, because the analysis part must be performed several times during the minimization, the
computational effort would have been prohibitive. Therefore, approximate solution algorithms
based on the application of the Ritz method together with continuous shape functions over the
whole domain have been adopted. Beams, rectangular plates and cylindrical shells have this far
been included into the program system.

For rectangular plates both Kirchhoff theory and First Order Shear Deformation Theory (FSDPT)
have been applied. The trial functions used are either products of trigonometric functions or
products of the eigenforms of beams. They are chosen in such a way that the essential boundary
conditions will be satisfied. The accuracy of the solutions has been studied by doing comparisons
with available analytical solutions in special cases and with FEM results for laminates of arbitrary
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stacking sequence. For example, the differences between the eigenfrequency results are within :
few percent when 100 trial functions are used. More details are given in reference [9].

Because the thickness to radius ratio can be relatively high in the applications (paper machine
rolls) the shear deformable Sander’s theory was chosen for the representation of the deformatio
kinematics of the cylindrical shell. Again, products of suitable trigonometric functions are use«
as shape functions. A special feature included into the program system is that the fibre orientatio:
can vary as a function of the axial co-ordinate of the cylinder. This gives additional possibilitie:
to improve the properties of the structure. When material properties of commercially availabl
plies are applied to a composite cylinder of length 2.0m, radius 0.245m and thickness 10mm, the
increase in the lowest eigenfrequency was at its maximum 45%, when linear orientation variatios

was employed, [12].

Paper machine rolls contain components like journals and steel heads. Therefore, componen
mode synthesis is applied in their vibration analysis. Heads and journals are taken into account a:

point masses.

MINIMIZATION ALGORITHMS EMPLOYED

The possible properties used in the cost function and in the constraints are complicated and highly
nonlinear functions of the design variables. Therefore, nonlinear minimization methods which dc
not use gradients or which use numerically calculated gradients seemed to be the only suitable
ones. The flexible tolerance method [15] and the sequential quadratic programming method [16
were chosen for the minimization.

The flexible tolerance method (FTM) is a Nelder-Mead-type search method, which improves the
value of the cost function by using information provided by the feasible points as well as certair
nonfeasible points called nearfeasible points. The nearfeasible limit is gradually made more anc
more restrictive as the search approaches the minimum, until only a feasible point is accepted at

the minimum.

In sequential quadratic programming (SQP) each iteration consists of two stages: search directior
is first determined as the solution of the quadratic programming subproblem and thereafter the
step length to this direction is determined by using the augmented Lagrangian function.

According to the experience gained this far the FTM works quite well even if the initial guess of
the design variables does not satisfy the constraints. However, it seems to be very slow compared
with the SQP. For example, in maximizing the in-plane stiffness of a composite plate with a
constraint on the first eigenfrequency of the flexural vibrations, the computational time required
by FTM was 20 times the computational time needed by SQP.

On the other hand, SQP is more sensitive to the selection of initial starting point than FTM. An
initial point, for which SQP cannot find the proper search direction, may give a good start when
FTM is used. A promising idea seems to be to run first a few iterations by FTM and then continue

by SQP.
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COMPUTER PROGRAMS DEVELOPED

Two computer program systems have been developed based on the theory given in references
[9], ..., [13]. The first one, LAMINYV, is a general program for tailoring the properties of
laminates (point properties) and properties of laminated plates and the second one, COMROL,
is specifically developed for designing paper machine rolls made of composite materials.

The design variables used are the ply thicknesses and ply orientations. Thus, in a general case the
number of design variables is twice the number of plies in the laminate. However, if the laminate
is restricted to be of a special type, e.g. symmetric or symmetric and balanced, the number of
design variables is reduced and, of course, also the computational effort. Design variables and
properties used in cost function and constraints are scaled to same order of magnitude to avoid

difficulties in the minimization.

Following properties can be included into the cost function or into the constraints in LAMINV

*in-plane elastic moduli E’, E,°and G, °

*flexural moduli E., E fand G, f

*in-plane coefficients of thermal expansion

*coefficients of thermal warping and twisting

*buckling load of a rectangular laminated plate in uniaxial or biaxial compression
*three lowest eigenfrequencies of a laminated plate

*value of failure criterion

*ply strains due to mechanical or thermal loads

*curvatures and twist of the midplane

*maximum ply strains due to transverse loading in a laminated plate
*maximum displacement of a laminated plate

*total thickness of the laminate

The properties considered in COMROL are

*maximum deflection of the roll due to web tension and own weight
*critical speed of rotation

*coefficients of thermal expansion

*engineering constants of the shell laminate (in-plane and bending)
*value of the failure criterion

*buckling load of the shell

*total thickness of the laminate or mass of the laminate

The size of the eigenvalue problem depends on the number of terms used in the double
trigonometric series. During the minimization process the eigenvalue problem is solved several
times. Therefore, to save in computational time, the minimization is performed in two stages.
First, the minimization is done with small number of terms, say 3x3 or 5x5, and the minimum
obtained in this way is used as a starting point for minimization with larger number of points.
Usually only a few iteration cycles are needed in this second stage.
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EXAMPLES

As a first design example we consider the design of a symmetric eight ply Kevlar/epoxy laminate.
The design specification is as follows:

*in-plane stiffness in x-direction 50 GPa

*CTE in x-direction 0.0 1/°C (zero!)

*CTE in y-direction 12.0 10 1/°C(the same as in steel)

*value of Tsai-Hill criterion less than 0.8 in each ply due to in-plane loads 100 kN/m in both

directions

The ply properties used are E;=76.0 GPa, E,=5.50 GPa, v,=0.34, G, =2.4 GPa, ¢ =-4.0 10
1/°C, @,=79.0 10° 1/°C, X=1400 MPa, Y=12 MPa, X =235 MPa, Y.=53 MPa and S=34 MPa.
Thickness of each layer is chosen to be 0.5Smm. Thus, as design variables we have four ply
orientations.

As the starting points we use laminate stacking sequences

A: [45%/-45°/45%-45°],

B: [20°/-40%/60%-80°],

C: [0°/90%/-60°/40°],

The laminate stacking sequences obtained and corresponding properties are listed
in table 1.

Table I Results by SQP and by FTM

Starting point A Starting point B Starting point C
SQP FTM SQP FIM SQP FIM
0, -1.6 8.7 -25.2 -12.6 -24.4 -2.1
o, -24.3 -13.8 6.9 9.8 79.6 87.21
0, 10.0 88.9 114 -12.4 3.7 -15.9
0, -89.9 4.8 1.25
E,’/GPa |
/(10 1/°C)
@,/(10° 1/°C)
Max. of T-H crit
N of iter. 116 557 38 188 57 304
Comp. time/s 10.2 353 6.6 272 7.6 15.3
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The results show, that both the methods can find a laminate stacking sequence having the
prescribed properties. At first sight it seems that the specification can be fulfilled by many
different orientation combinations. One should, however, keep in mind that in this design problem
only in-plane properties were considered. Thus, the order of layers does not matter here.

Clearly FT'M is more time consuming than SQP.

When also the ply thicknesses are taken into account the dimension of the design space increases
from four to eight. The total thickness which, of course, should be as small as possible, is now
added to the cost function. The starting points have same initial orientations as before and at point
A all the ply thicknesses are 0.5mm, at point B the ply thicknesses are 0.2mm, 0.6mm, 0.6mm and
0.2mm and at point C all the ply thicknesses are 0.6mm.

Again both minimization algorithms find a laminate stacking sequence fulfilling the specification.
By using SQP the total thickness varies from 2.62mm to 2.93mm. FIM results range from
3.19mm to 4.44mm. Computational time required by FTM is longer than needed by SQP.

The second example is concerning with the design of a tension measuring roll. The chosen
dimensions of the roll are:

*total length 6400mm

*length of the cylindrical shell 5730mm
*inner diameter of the roll 603mm
*diameter of the journals 70mm

*mass of the steel head 60 kg

*mass of the rubber cover 60 kg

*web tension 0.14 kN/m

*contact angle 130°

The further design requirements are:

*critical running speed 2800 m/min
*maximum deflection less than 0.745 mm
*circumferential CTE less than 10 10°¢ 1/°C

The roll will be manufactured by filament winding and thus the ply orientations are restricted into
the range 5°... 88°. The material used is carbon fibre reinforced epoxy and the ply properties are
E;=139.0 GPa, E,=6.509 GPa, v,,=0.29, G,,=G,;=2.41 GPa, G,;=1.44 GPa,

0,=0.29 10°° 1/°C, ,=58.6 10-6 1/°C and density 1540 kg/m® .

The ply thickness is 0.3 mm and the number of layers is chosen to be 28. Moreover, to avoid
thermal warping the laminate is required to be symmetric and balanced. Thus the number of design
variables is seven.

Two different initial stacking sequences were used A: [15/-15/30/-30/18/-18/10/-10/20/-20/45/-
45/65/-65], and B:[55/-55/15/-15/15/-15/15/-15/15-15/55/-55/55/-55].. The results are given in
table II.
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Table II Resulting laminate stacking sequence for the tension measuring roll.

Starting point
A B
0, 15.7 5.0
o, 35.0 51
0, 15.5 5.0
0, 9.9 10.7
0, 18.9 50.2
0, 49.8 88.0
0, 71.3 88.0
Max displ./mm
Crit. vel./(m/min)
0, /(10¢1/°C)
Number of iterations | 13+5 11+4
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INDUSTRIAL APPLICATIONS OF
COMPUTATIONAL MECHANICS
FOR MARINE STRUCTURES

Peter Bjerager, Ph.D.
DET NORSKE VERITAS
Hovik, Norway

INTRODUCTION

A short introduction is given to the FEM-based structural analysis system SESAM from Det
Norske Veritas, Norway. Some applications of SESAM for design and operation of ships and
offshore platforms in order to ensure the life time safety and integrity of these marine
structures is then summarised.

SESAM STRUCTURAL ANALYSIS SYSTEM FOR MARINE STRUCTURES

SESAM is a dedicated and comprehensive finite element based software system for structural
and hydrodynamic design and analyses in the offshore and maritime industries. The system
has integrated and special purpose facilities for structural modelling, hydrostatic and
hydrodynamic load generation including first and second order wave diffraction analysis,
linear and non-linear, static and dynamic FEM-based structural analysis, pile and soil
analysis, results presentation and extended calculations for design such as fatigue analysis and
checking of the structural capacities.

The system is efficient for marine structures compared to general purpose FEM systems due
to integrated specialised capabilities such as

modellers for structures such as stiffened plates and tubular members

international rules for allowable geometry constructs

loads from e.g., wave, wind, current, equipment and earthquake

combined hydrodynamic and structural analysis

codified checks on structural strength according to international standards

ultimate strength, fatigue life and fracture mechanics analysis

short and long term response estimation based on frequency as well as time domain
calculations, and

e probabilistic inspection planning.

SESAM is offered worldwide by Det Norske Veritas. It is today recognised as a market leader
for the marine industry and it is used by oil companies, engineering consultants, contractors,
yards, research institutions and universities in more than 20 countries.

A distinct characteristic of SESAM is its role as a technology platform for the marine
industry. Results from joint industry R&D projects are often implemented in SESAM to make
these new developments available for practical engineering use in the industry. Furthermore,
SESAM has integrated components from a number of products and technology partners
including MIT, Sintef, Marintek, and Norwegian Geotechnical Institute.
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APPLICATIONS IN THE OFFSHORE INDUSTRY

SESAM is being used throughout the life time of offshore structures to help ensure a safe and
cost-efficient design, construction and operation of these structures. The phases during the life

of an offshore platform are
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Besides a broad use during design, many operators of offshore installations (most often an oil
company) have established re-analysis systems based on SESAM for use in modifications and

integrity analyses in case of structural damages.

SESAM is used for many different types of offshore platforms, including jackets structures,
semi-submersible structures, tension-leg platforms and concrete gravity structures. Examples

of some of these structures are shown below.

The analyses can be very comprehensive with up to 2 million degrees of freedom for the
larger models. These are executed on supercomputers or parallel configurations, typically

networked workstations. When SESAM is used for regular design of e.g. jacket structures the
analysis models are computationally less demanding and such analyses are typically executed

on desktop computers including PCs.
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Non-linear Collapse Analysis of Offshore Platforms

Today, non-linear collapse of jacket structures, topside decks and jack-up rigs are becoming
increasingly common in the offshore industry. Accidental damage such as that caused by
explosion, fire, dropped objects, extreme environmental events, or from ships collisions poses
a threat to the safety and operation of offshore structures. By performing a non-linear analysis,
the engineer can document the reserve strength of a structure, both before and after damage,
and in this way help in the decision related to e.g. discontinued oil and gas production,
evacuation of the platform and subsequent repair.
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structure in the world.

Probabilistic Analysis for Inspection Planning

A fairly new and advanced type of structural analysis of offshore structures is probabilistic
analysis for the purpose of repair and inspection planning with respect to fatigue damages.
Such analyses are based on either an SN-approach or based on a crack growth model. The
advantage of using a probabilistic approach is that information gained during inspections can
be taken directly into account through so-called Bayesian updating.

Very substantial cost savings in inspection of offshore platforms have been achieved this way,
notably in the Norwegian and British sectors of the North Sea.
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Traditionally, the design of ships are based on experience-calibrated rules published by ship
classification societies. As the first classification society, Det Norske Veritas introduced early
on rules based on direct finite element calculations and calibrated to full scale measurements

on ships in operation.
Today, the direct use of hydrodynamic and structural analysis in design and building of ships

have become common. In particular, large ship yards use finite element analysis to improve
design of details and to help ensure a safe and cost-efficient ship design.

Recently, the major ship classification societies have furthermore introduced class notations
involving finite element calculations of parts of the ship. These class notations from Det
Norske Veritas are Computational Ship Analysis I and II, where CSA I involves a structural
analysis based on prescribed (rule-based) wave loadings, whereas CSA II involves a direct
hydrodynamic simulation of the wave loadings.

Direct finite-element based analysis of a passenger ship

NavuTicus HULL for Ship Design

To facilitate the design of ships according to CSA I and II, Det Norske Veritas provides an
integrated analysis system NAUTICUS HULL for classification rule checking, direct finite
element based computations as well as other related analysis of a ship. The needed modules o:
the SESAM analysis system are integrated into NAUTICUS HULL.

Mooring Analysis of Ships

Based on vessel descriptions in terms of mass, force, coefficients for wind, current drag and
wave drift excitation, motion transfer functions and damping coefficients, static and dynamic
analyses of mooring systems for ships are performed within SESAM. In this way, frequency
dependent transfer functions and wave drift coefficients as calculated in the hydrodynamic
modules in SESAM can be directly applied.

DET NORSKE VERITAS

DET NORSKE VERITAS is an autonomous, independent foundation with the objective of
safeguarding life, property and the environment. DNV is an international provider of
classification, certification and advisory services. DNV has 4,000 employees and a network o
300 offices in 100 countries.

DET NORSKE VERITAS provides also commercial software products for the maritime and
offshore industries worldwide. DNV SOFTWARE is the unit being responsible for development
maintenance, support, sales, marketing and distribution of DNV’s high technology software
products. The products include the engineering analysis systems SESAM, NAUTICUS,
PILOT and PROBAN and the client base consists of 300 companies in 30 countries. DNV
SOFTWARE has 45 employees.
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PRODUCT MODEL FOR STRUCTURAL ANALYSIS OF SKELETON

Markku Heinisuo, Dr. Tech.
Tampere University of Technology
Box 600

33101 Tampere, Finland
email:markku2@ijunior.ce.tut.fi

ABSTRACT

The paper deals with a product model which is used when transferring data from CAD to FEM of skeletal
structures. The product data model is presented using EXPRESS-G (and EXPRESS) and the
corresponding data is stored by using the standard 1SO-10303-21 (STEP). The product model is used as
a part of a knowledge based approach to the design of steel structures. The pilot programs are written to
import the corresponding STEP-file from FST-model (product model including the geometry of the
skeleton) and to export the input file into an analyzing program (ABAQUS). The present paper shows the
main entities needed in the structural analysis. The model was originally developed for the design of steel
structures, but it can be used for wooden, concrete and composite structures, too. Exact stiffness matrices
(based on the solution of the governing differential eguations) are recommended to be used when ever
they are available in order to keep the number of DOF as small as possible. The analysis types in the
present model are the linear static and the buckling analysis.

INTRODUCTION

Many closed systems for the data transfer between different tasks e.g. the geometrical
modelling and the analysis have been written for the structural design of wooden
structures (Mikkola, 1985) and the design of steel structures (Heinisuo, et al, 1991). The
solution for the data transfer problem in projects is searched nowadays in the open (i.e.
hardware and software independent) environment and using neutral data files.

The product models are used to solve the data transfer problems. In this paper the
product model for the structural analysis of skeletal structures is proposed. The model
was originally developed for the structural analysis of steel structures, but it can be used
for other structures, too. There exist at ieast two models for steel skeletons where the
geometry model and the structural analysis have been combined (Haller, 1994,
ClMsteel, 1995) and where the standard ISO-10303 have been used for the
implementation. The use of parts ISO-10303-11 and 1SO-10303-21 have proved to be
efficient and widely accepted tools to present the product modeils. The analysis models
given in the references (Haller, 1994, CiMsteel, 1995) are based on the use of beam
elements. Moreover, the geometrical model and the analyzing model are combined to
the same model in those references. The application independent proposition for the
standard of the finite element analysis does exist (1ISO-10303-104). This model is
perhaps too large to apply in practical building projects, nowadays. The situation is
changing ali the time due to increasing power of computers. There exists general
algorithms for the generation of the three dimensional analyzing models from the
geometrical model (Boender et al, 1994), but also these algorithms lead to too heavy
models in practice. However, some features are taken from the models of the literature
to the present model.
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tools for the creation of the analysis model from the geometry. This holds true especiail:
for the joints of the skeleton. When modelling joints the very profound models ar
needed (Romeijn et al, 1993) depending on the level of the knowledge wanted from th
behavior of the joint and moreover, from the whole skeleton. Also, the bars betweeil
joints must be analyzed by using very profound beam elements in some cases (Heinisut
et al, 1995). This situation holds especially for the open section thin walled purlins uset
widely in steel structures. The knowlegde based approach for the design of stee
skeletons is proposed in (Heinisuo, Hyvérinen, 1996). One goal of the present study wa:
also, that the model should be as computer and software independent as possible. The
use of the standard STEP (EXPRESS and EXPRESS-G for the product data model anc
ISO-10303-21 for the transfer file) was chosen to fulfill this demand. The analysis i
based on the finite element method.

The following features were also decided to incorporate into the model because the)
were found, in the previous projects, to be essential in order to do practical design
Unique reference to the geometrical model from the analysis model must exist. There
may be needed different analysis models. At least linear and buckling analysis types
must be available. The analysis model must include submodels with their own coordinate
systems, 0D, 1D, 2D and 3D elements must be available with reference to the elemen
type (not in details as in 1SO-10303-104). Many kinds of beam elements must be
available due to different needs in practice and due to interfaces between different leve
local element models. Element constraints are needed for beam elements e.g. in the
analysis of purlins. Moreover, the model must be as simple as possible but it should be
possible to expand the model to the cases excluded so far from the model. The mosi
urgent needs to expand the mode!l are the loading schema and the results scheme
which are outside the scope of this paper. Also, the gap elements are badly needec
when modelling joints. At the present stage the model is materially linear and the only
non-linearity arises when running the buckling analysis. Static analysis is supported ai
the present stage.

PRODUCT DATA MODEL FOR THE STRUCTURAL ANALYSIS OF SKELETON

An EXPRESS-G diagram of the proposed product data model for the structural analysis
of the skeleton is presented in Fig. 1. More details and the entities of the product data
model are presented using EXPRESS in Ref. (Heinisuo, 1996). By tracing the entity
PROPERTY it can be seen what kinds of element types are used in the model, so far.

CONCLUSIONS

As a conclusion, a part of the design process can now be done automatically by the
computer without extra work of the structural designer and by using the neutral data
files. The process starts from the geometrical model made by the CAD program
(AutoCAD was used in tests) and the bar data is stored as a STEP-file (FST-model,
Heinisuo, Hyvérinen, 1995, Hyvérinen, 1996). Simple joint models are used, so far. The
STEP-file following the schema given in this paper is next generated from the
geometrical model automatically and converted to the analysis program (ABAQUS was
used in tests).
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Figure 1. Product data model of structural analysis of skeleton
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Optimization of fiber-reinforced
plastic circular plates

Jaan Lellep and Annely Mirk

Institute of Applied Mathematics,
Tartu University,
EE2400 Tartu, ESTONIA

The problems of optimization of rigid-plastic structural elements have
been solved mostly under the condition that external loads acting on the
element are quasi-static. Only little attention is paid to the optimization
of plastic plates and shells subjected to dynamic loadings. Rigid-plastic re-
inforced beams have been studied in [3,5] and circular cylindrical shells of
piece-wise constant thickness in [4,5]. Herein an attempt is made to deter-
mine the optimal parameters for a circular plate made of a fiber-reinforced
composite material and subjected to an impulsive loading.

Let us consider a simply supported circular plate of piece wise constant

thickness (Fig.1)
_ | ho, r€(0,a),
h—{hl,re(a,R) (1)

Fig.1. Circular plate of piece wise constant thickness.
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Assume that the different thicknesses and radius a are preliminarily
unfixed. We are looking for the design of the plate for which the maximal
residual deflection has the minimal value for given total weight. The dual
problem which consists in the minimization of the weight of the plate under
given maximal residual deflection will be considered also.

The equilibrium equation of a plate element may be presented as

o (0 *W
(97‘ (a (TM]) Mz) ’r h 3t2 (2)

where y stands for the mass per unit area of the middle surface of the plate.
L 1
¢ ) B
A i

Fig.2. Velocity distribution.

The method of mode form solutions will be used in the present paper.
Assume that the velocity distribution has the form of a triangle (Fig.2) where
Wo = Wo(t) is an unknown function. According to the method of mode form
solutions the initial kinetic energy

R
Ko = / p W3(r,0)dr (3)

0

is considered as a given constant. The relation (3) serves for determination
of the acceleration W, at the center of the plate whereas

3322/ =Wo (1- %) . (4)
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The material of the plate is a fiber reinforced composite material. Lance
and Robinson [1,2] suggested simple linear approximations of the yield sur-
faces for fiber reinforced circular plates and cylindrical shells. According to
Lance and Robinson we consider the fiber reinforced composite as a quasi-
homogeneous anisotropic material having different yield stresses in different
directions.

For a radially reinforced sandwich plate the yield curve is formed by
intersection of the lines

my =+6+% my=+7? |, my—m; =£p4° (5)

Similarily, for a circumferentially reinforced circular plate the yield condition
is formed by

my = i72 , Mo = iIB 72 y M2 —Tmp = :tIB 72 (6)

In (5) and (6) u ;
o
mi2 = ]\41»(;2 s 7= ?{; 9 /6 = 0__27 (7)
My being the yield moment for the matrix material. The quantities oy and
oo stand for the yield stresses for the fibers and matrix, respectively. Note
that if 8 = 1 the both yield conditions (5) and (6) coincide with the Tresca
condition. '

It appears that the plastic flow regime corresponds to the side of the
yield hexagon where m; attains an extremal value. Substituting an appro-
priate value of m, from (5),(6) with (1) and (4) in (2) one can integrate the
latter equation with respect to the coordinate r. When satisfying the con-
ditions of continuity imposed on the generalized stresses at r = a and the

corresponding boundary conditions one can state that

Wo = Wo(a, o, hy) = const (8)

It easily follows from the equations of motion that the parameters
a, ho, hy are coupled, e.g. one has

f(CL, ho, hl) =0 (9)

and
a2h0 + (R2 bt a2)h1 - V = 0 (10)
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According to the method of mode form solutions one obtains from (8)
that the maximal residual deflection
[Wo(0)]?

W= ot 11
> W (11)

where the initial velocity W, may be defined making use of (3).

The problem of non-linear programming (9),(10),(11) is solved by the
use of the Lagrangian multipliers. The set of non-linear algebraic equations
is solved numerically by the Newton’s method. Calculations carried out show
that the maximal residual deflection may be considerably decreased by the
rational distribution of the material in the plate. For instance, in the case
B =1 and V/V. = 0.9 the residual deflection may be diminished 6.3%using
the plate of piece wise constant thickness.
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CAD Integrated Shape Design Optimisation

by Anders S. Kristensen
Institute of Mechanical Engineering, Aalborg University, Pontoppidanstraede 101,
9220 Aalborg, Denmark

September 12, 1996

Abstract

The objective of this paper is to present CAD integrated shape optimisation of solid
geometries. The objective has been to develop a computer-aided environment for inter-
active structural design, analysis, design sensitivity analysis, synthesis, and design shape
optimisation. As a basis for this development the structural optimisation system ODESSY
(Optimimum DESign SYstem) and the Solid Modelling system Pro/ENGINEER have been

applied.

The introduction of design sensitivity analysis and optimum design concepts in the eighties
and nineties, reviewed in for example Haug (1981), Schmitt (1982), Vanderplats (1982), and
Olhoff and Taylor (1993), have provided computational techniques to evaluate structural effects
of certain design changes quantatively. In addition to this has the ongoing development of more
and more powerfull computers and enhanced computer graphics extended the geometric modelling
techniques to include the concept of Solid Modelling. By this concept is it possible to create,
process, communicate, and maintain a complete mathematical representation of the shape of
a physical part by a computer and which moreover can be inspected visually in a computer
graphics environment. The focus on CAD integrated design shape optimisation has increased
in recent years as seen in papers by Braibant and Fleury (1984), Fleury (1987), Botkin (1991),
Botkin (1992), Rasmussen (1990), Rasmussen (1991), and Zhang, Beckers, and Fleury (1995).

Interactive Shape Design Optimisation

In 1991 the development of an interactive 3D computer-aided environment for structural design,
analysis, design sensitivity analysis, synthesis, and design optimisation was initiated. This system
has been designated ODESSY (Optimum DESign SYstem). ODESSY is entirely developed and
programmed® by people at the Institute of Mechanical Engineering (IME) at Aalborg University.

My colleague Oluf Krog has integrated ODESSY with the CAD system AutoCAD. However,
the integration is limited to the problem definition, i.e. ODESSY features perform the design
alterations during optimisation. This implies the presence of geometrical features in order to
regenerate or recompute the geometry during optimisation. However, as the geometry becomes
complicated the geometrical features become sophisticated and difficult to develop and imple-
ment in a general purpose optimisation system. This is solved by applying the Solid Modelling
system Pro/ENGINEER which offers a ANSI C or C++ interfacing facility Pro/DEVELOP. By
Pro/DEVELOP an interactive access to and control of the geometrical database and all geomet-
rical features available in Pro/ENGINEER is possible. Pro/ENGINEER apply a parametrical
representation as described by Mortenson (1985) and Faux and Pratt (1987). The parametric

1ODESSY is programmed in ANSI C and C+4+.
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representation provides an explicit mathematical representation of relatively complex geometri
both in 2D and 3D.

zIe

.21

183.71

" Figure 1: The parameterisation of a Solid Model in Pro/ENGINEER.

The advantage of applying the parametric representation is easy shape control of the geometr
which is essential for performing design alterations of solid mechanical components. Within th
graphical environment of Pro/ENGINEER a mechanical component or part is defined, i.e.
geometrical model. Applying the Solid Modelling in general and Pro/ENGINEER in particule
the definition of the shape of a mechanical component are accomplished by a few key dimensior
which are independent variables. These parameters are used to compute a complete mathe
matical representation in the form of parametric representations which are used in the surfac
representation of the geometrical model. ‘

The information needed to define the surfaces applied in a Pro/ENGINEER model are terme
basic geometrical data, see figure 2. These data are collected in the geometrical database 1
Pro/ENGINEER and stored in a file as indicated by an arrow in figure 2.

Basic Geometrical Data

ODESSY Input Text File Data Processing

* acd

ODESSY

Pro/ENGINEER

Figure 2: A schematic overview of the file transfer flow between Pro/ENGINEER and ODESSY
The arrows indicate the direction of communication between Pro/ENGINEER and ODESSY.

The basic geometrical data are processed in order to accommodate the ODESSY data structur
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and to establish a design and an analysis model for the problem, which are defined interactively
in the Pro/ENGINEER design environment. Thus, the key dimensions in figure 1 can be chosen
as design variables in the definition of a design model.

However, the implication of applying the Solid Model representation is related to the computation
of mesh sensitivities as the intersection curves obtained from the boundary evaluations in the
Solid Modelling system are not derived analytically for a spatial perturbation of a design variable.
As a consequence of this it is necessary to determine mesh sensitivities by a finite difference
approximation, that is

aX(A) " AX(Al, RN A]) X(AZ' -+ AAZ') — X(Ai)

9A; AA; = AA; (1)

Applying the finite difference scheme has an effect on the accuracy of the sensitivity analysis as
both truncation and condition errors may occur. However, the accuracy problem can be resolved
applying the improved method of semi-analytical shape design sensitivity analysis as devised by
Olhoff and Rasmussen (1991), Olhoff, Rasmussen, and Lund (1992), and Lund (1994).

Examples

The interactive shape design optimisation approach will be illustrated through some simple ex-
amples. It will be shown that optimisation of generally applied mechanical solid components is
accomplished by the outlined approach.

Conclusion

The succes of the optimisation process is affected by the quality of the mesh and therefore the
accuracy of the mesh sensitivies. However, it is believed that having established this interactive
shape design environment a basis for further improvements to the optimisation process is achieved.
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ADAPTIVE FINITE ELEMENT ANALYSIS FOR PROBLEMS
WITH COMPLICATED GEOMETRY

X.D. Li and N.~E. Wiberg
Department of Structural Mechanics
Chalmers University of Technology
S—412 96 Goteborg, Sweden

SUMMARY

An adaptive finite element program for two-dimensional stress analysis based on using the Zien-
kiewicz-Zhu error estimator by SPR postprocessing and a quadrilateral mesh generator has been
developed. This paper explains briefly the SPR and the approach used for mesh generation and
reports numerical experiments of the adaptive analysis on some rather complicated geometries.

INTRODUCTION

Error estimation and adaptivity are a fundamental subject to all computational mechanics and, in
particular, to the finite element method. For two-dimensional stress analysis, the Zienkiewicz-
Zhu error estimator based on the superconvergent patch recovery (SPR) is the most practical a
posteriori error estimator capable of estimating both local and global errors in the energy norm
[1-3]. In our previously published papers on adaptive analysis using SPR, only simple problems
e.g. arectangular or an L-shape domain with one single material were considered. Itis, therefore,
very important to apply the SPR and the adaptive analysis to engineering problems in order to see
that these new research results are truly applicable to structures with complicated geometry and
multi-material properties. Recently, we have developed an automatic quadrilateral mesh genera-
tor which can deal with arbitrary two-dimensional domains and, based on that, an adaptive finite
element program for two-dimensional stress problems using the SPR technique to calculate the
error estimate. In the following, we shall explain briefly the SPR technique and the ideas used for
mesh generation and report our numerical experiments on some problems with very complicated
geometries.

THEORY

An h—remeshing adaptive finite element analysis consists of three main stages: (a) a mesh gener-
ator generating a new mesh according to the required element size distribution; (b) a finite ele-
ment solver producing numerical solutions and (c) an error estimator evaluating the obtained
solutions to check for stop or to predict nearly optimal new element size distribution for reme-
shing. Clearly, an efficient error estimator and a robust mesh generator are two key issues here.
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Zienkiewicz—Zhu error estimate by SPR

We use the Zienkiewicz—Zhu error estimator which is based on the approximation that the erroi
in stresses can be written as

eo=0—-0d"'=z=0 -0 (1)

in which o are the exact stresses, o are the stresses by finite element approximation and o™ are

‘recovered’ values of o" obtained by some postprocessing process. When the energy norm is
used, the global error estimator reads
1/2

Izl = [ [ (0" — o")p Yo" - o")d ©
2

In orderto obtain ¢, the SPR algorithm assumes that in a local patch (Figure 1 for 4-node bilinear
elements) the values of ¢ are approximated by a simple polynomial expansion of one order (or

more) higher than the expression of o”, which can be expressed as

o; = Pa;, 1= x7yxy (3)

where o] are the stress components, &; are the unknown coefficients to be determined and Pis a
set of polynomial which for 4-node bilinear elementis P = [1, x, y, xy]. By fitting 0;in a
least square sense to superconvergent values of o, where k is the appropriate sampling point, we
obtain the local patch equations as

— — pT —
Aa; = B, P = PP, B, = P10}, (4)
A A A  superconvergent point
o O— ] o nodal point
A A ® patch assembly point

Figure 1. A typical local patch for 4-node quadrilateral elements

Quadrilateral mesh generation

A quadrilateral mesh generator for two-dimensional arbitrary domains has been developed. The
approach is based on two steps: (1) generate a triangular mesh by the advancing front method
presented by Peraie et al [4]; and (2) transform the triangular mesh to a pure quadrilateral mesh
following the idea suggested by Rank et al [5].

In order to run the mesh generator, it is necessary to specify a background triangular mesh which
covers the domain to be analyzed completely and contains the information of expected element
size distribution. Nodes on the boundary of the region are created first and then an initial front is
formed. Elements and interior nodes are generated simultaneously while the front is advanced
and updated accordingly. When the front becomes empty, a triangular mesh will be at hand.
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'I'he strategy to transform a triangular mesh to a quadrilateral one is to split two neighbouring
triangles into four quadrilateral elements as shown in Figure 2a. Before actually doing so, all
possible combinations are stored in a listand sorted according to some criterion, for which we use
the difference between largest and smallest interior angle. After the combinations, some triangle
‘islands’ will be left and need to be split into three quadrilaterals as shown in Figure 2b. Finally,
the Laplacian smoothing and other postprocessing are performed to improve the quality of the
mesh further.

L

(a) (b)

Figure 2. Creation of quadrilaterals by (a) splitting two neighbouring triangles into
four and (b) splitting one triangle into three

NUMERICAL EXAMPLES

"Two examples shown in Figures 3 and 4 are considered respectively here. The first one is a plane
strain problem with a symmetric geometry. Starting with a fairly good mesh, only one step adap-
tive remeshing is needed to achieve an accuracy of 7.5%, as shown in Figure 5. The second one is
a plane stress problem with a very complicated geometry. A tolerance of 12.5% is specified and
three meshes adaptively generated are shown in Figure 6. We observe that, although very dense
and refined meshes are used, the tolerance is still not met. This is due to the limitation of our
machine and also the fact that linear elements are not accurate enough for such a problem.

O pill

llllllllll -

Figure 3 A plane strain problem Figure 4 A plane stress problem
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Figure 5 Meshes obtained for the plane strain problem in Figure 3.
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Figure 6 Meshes obtained for the plane stress problem in Figure 4.
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Finite element analysis of the Erichsen
cupping test with special reference to necking

Ramin Moshfegh and Larsgunnar Nilsson
Division of Solid Mechanics
Linkoping Institute of Technology

Abstract

This paper presents a finite element analysis of the Erichsen Cup-
ping Test in order to obtain the forming limit diagram. Special refer-
ence has been made to strain localization. The numerical analysis has
been carried out both with non-adaptive and adaptive finite element
methods. A method for the prediction of localized necking is devel-
oped. The numerical results are compared to experimental results for
sheets of aluminium alloy, 2024-O.

Introduction

The forming of sheet metal components is a very common and important manu-
facturing process. In an effort to better understanding the sheet forming process,
much research has been carried out using various technologies involving experi-
mental and computational methods. Among these, the computational methods,
especially finite element methods (FEM), have made significant progress during
the last two decades. Sheet metal forming differs from most other metal forming
processes in that different deformation modes can operate in different areas of the
sheet, which makes it more difficult to control the process. The sheet is plasti-
cally deformed by bending and stretching. The process is predominantly tensile
in nature and the amount of deformation that can be achieved in a single stage
may be limited by the onset of tensile instabilities, i.e., necking and tearing. On
the other hand the sheet is usually thin so that buckling or wrinkling may take
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place in regions where at least one of the membrane stresses is compressive. Dif-
ferent testing methods are used to determine the suitability of the sheet metal for
a forming process. One of the most common methods in stretch forming test is the
so-called Erichsen cupping test. In this test rigidly held sheet strips are stretched
by a punch to a cup until failure appears. The failure mode of sheet metals in a
forming operation usually involves the formation of a localized neck, a locally thin
region within which the strain field is concentrated, and a shear fracture in the
necked region. The maximum strains that can be attained in the sheet material
prior to the onset of localized necking are generally referred to as the forming
limits strains. A plot of the major and minor limit strains in the principal strain
space constitutes a forming limits diagram, FLD.

Finite element model for the analysis of the Erichsen
test :

The setup for the Erichsen cupping test consists of the punch, the blank holder,
the die with draw-beads and the blank. Due to symmetry only one quarter of
the system is modelled using FEM with the two symmetry planes zz- and yz-
planes, respectively, see Figure 1. The  wpoey, fALL77
numerical simulations have been car- R ERESENA
ried out with the explicit finite element
program LS-DYNA3D [1],[2], which in-
cludes both adaptive and non-adaptive
program options. The FE discretiza-
tion of the numerical model is shown
in Figure 1. The blank is discretized
using quadrilateral Hughes-Liu shell el-
ements. By changing the blank width
from 20 to 200 mm several deformation
modes of the blank can be obtained. %’
The punch, blank holder and die were N X
modelled as rigid bodies and the blank Figure 1: Finite element model of the Erich-
as an elasto-plastic material with ex- sen cupping test setup
ponential hardening oy = Ceg,. The friction was modelled using the Coulomb
friction law. However, the friction coefficients are different between different con-
tact surfaces as shown in Table 1. As an approximation all nodes outside the
draw-beads area are assumed to be fixed, and the draw-beads are therefore not
modelled.
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Contact surface u-value
Punch Blank 0.05
Blank holder Blank 0.61
Die Blank 0.61

Table 1: The friction coefficients between different parts
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The numerical results and comparison with experiments

To verify the numerical results against experiments, the aluminium alloy material
2024-O has been used as a reference material. Joneby [4] measured the principal
strains of the deformed blanks for the reference material from different suppli-
ers, see Figure 2. As shown in this figure the measured principal strains are
concentrated in different sides of the forming limit diagram with relatively large
distributions of the strain values. The difference between the experimentally ob-
tained FLD can be observed, in spite of the fact that the reference materials are
the same in both of the experiments. The post-processor program LS-TAURUS [3]
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0.5 |Lxperiment 2 --&-f

G f
£ :
S |
S 0.4 :
&? '
"g :
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(o} . . .
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‘2 0.1 Frereermemioee e ............................................... -
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-0.2 -0.1 0 0.1 0.2 0.3 0.4

Minor principal strain o

Figure 2: Comparison between the experimentally obtained forming limit dia-
grams (FLD)

has been used for evaluating the numerical results. This program has an option,
"CGAT”, which generate grid circles on the material surface. To evaluate the
principal strains we choose those deformed circles which have 2 to 3 mm distance
from the element with the minimum thickness. At the same time the strain values
can be evaluated for those elements which are near to the selected circles around
the necking zone (the element length is about 2 to 3 mm). Figure 3 compares
the numerical results with the experimental measurements of the principal strain
distribution in the FLD for a non-adaptive FE simulation. Figure 4 shows the
comparison between the obtained FLD which was performed using the adaptive
options in the LS-DYNA3D program and the experimental results.
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Figure 3: Comparison of experimental values of the principal strains with non-
adaptive FE simulation results. (Curve A: The Circular Grid Analysis,” CGAT”,

and Curve B: The "selected” elements)
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Figure 4: Comparison of experimental values of the principal strains with adaptive
FE simulation results. (Curve A: The Circular Grid Analysis, ”CGAT”, and Curve

B: The "selected” elements)
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Conclusion

Both non-adaptive and adaptive FE simulations are shown to yield accurate results
in the simulation of the Erichsen cupping test by the explicit FE method. The
shape of the deformed blanks and the obtained values of the failure strains show
good agreements with the experimental results.
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Introduction

The computation of residual stresses and spring back are of importance in blade forming as an
example of closed die and precise forging. In finite element computations incorporating elastic
effects in the constitutive equations, elastic recovery effects can be directly predicted. This type
of analysis is called solid approach. On the other hand, in flow approach, a rigid— plastic (—visco-
plastic) constitute equation is used and solved in Eulerian coordinates. In order to compute the
elastic effects in this approach, one way is to solve the problem in unloading by a pure elastic analy-
sis. It has been reported that this approach is accurate enough in open die forging [ 1 ] and sheet
metal forming[ 2 ] in loading. And in unloading good results have been reported for the spring
back.

We report here numerical analysis of blade forging solved by solid and flow approaches, for both
loading and unloading. The final shape and volume of blade are very similar and regarding the
calculated residual stresses the two approaches give results with small differences.

Possible reasons for the differences may be that the residual stresses are influenced by the stress
distribution and elastic deformation at the ending step of loading, and the deformation history.
The stress distribution is very similar for the two simulations at the closing of the dies so it has
no influence on the residual stresses at the opening of the dies.

There is some elastic deformation in the billet and the dies obtained in the solid approach at the
closing of the dies.

There is almost a closed cavity at the end of the loading and therefore the pressure on the work-
piece material is very high which results in large elastic deformations and elastic volume change
both in the dies and the workpiece. But these elastic effects are neglected in the flow approach
computation and so the simulation of the remaining part of the process in unloading (opening of
the dies ) can be expected to have some errors.

To find out the influence of these elastic deformations on the residual stresses in closed die forg-
ing, another approach was used. The flow approach is used to solve the problem until some steps
before closing the dies. At that time the two corners are still enough open to let the workpiece ma-
terial escape from the applied pressure. And there are no considerable elastic deformations and
elastic volume changes. From this time step, the simulation is switched to solid approach. This will
introduce the correct elastic effects at the ending steps and therefore the simulation of unloading
and the residual stresses can be more accurate. The primary solutions show only small changes
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in the residual stresses. Therefore, the deformation history has the main effect on the resic
stresses.

1. Blade Forging

Blade forming is one of the bulk forming processes in which two dies form an original b:
of metal, normally of circular shape [ 3 ]. This problem, as other closed die forging proces
involves contact surfaces with friction as well as geometrical and material nonlinearities.

The dies come down slowly during the process, therefore, this process is quasistatic and beca
the problem is assumed to be in plane strain, the deformation of the cross section is considel
In finite element discretization, the upper and lower dies and the billet are divided into 39,42
1200 elements, respectively. The total number of nodes are 1369.
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Figure 1. left (solid) right (flow)

The friction between the dies and the material is simulated using the Coulomb law and a fricti
coefficient of 0.577. The load curve is a linearly— prescribed displacement of the top surface of {
upper die which moves down about 44 mm during the process.

The characteristics used are E=210 GPa, »=0.3, 0=8400 kg/m*, K=658 MPa, n=0.19 :
the billet and E=2100 GPa,»=0.3, 0=8400 kg/m® for the dies.

2. Description of the code

The finite element code used was DEFORM (version 4.0)1,Scientific Forming Technology Corg
ration(1994)[ 4 ].

DEFORM is an implicit code in which the flow approach and solid approach are used for sta
problems. It can handle finite deformation in two dimensions and is designed specially for t
forming processes.

In flow approach, the Levy—Mises constitute equation is used and the velocity of nodes are t

1. This code was provided by the Production Engineering department, professor Ralph Crafoord.
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variables. In the solid approach, the Updated Lagrangian formulation and the Green—Naghdi
stress rate are used.

In the code, a four—noded isoparametric element with 2x2 Gaussian points and elastoplastic ma-
terial was used.

The flow rule used for the billet is a power law plasticity with obvious notations :

o sP\n
oy = KE")" +y (1)
- Ef. Stress. - Efl Stress
151.0 Otyect# 2 1510 Object ¥ 2
A= 59164 A= 591,64
B 64470 Ba 64525
c= 697.78 Cx 690.88
D 750.82 D= 75250
o E= 203.88 ... E= 80812
nze F= 85694 1128 Fu 85074
G 910,00 Q= 913.36
Ha 969.06 He 56896
0= 981.89 tn 10206
A= 51067 De 850.17
746 76 ax BAs
2 »n
>
3 3
> >
40.0 T T T T 1 0.0 T T T T 1
840 58 176 208 588 97.0 : 840 s58 76 206 588 #7.0
X-axis X-axis

Figure 2. Effective residual stresses in solid (left) and flow (right) solutions

3. Computations and Comparisons

The problem was solved first by the solid approach. Both closing and opening of the dies was in-
cluded in the simulation. In order to turn to the unloading situation, the dies either are removed
or are moved to be separated from the billet. The volume of the billet increases in opening the dies
because the elastically—compressed workpiece material is recovered. Volume change percentage
in the billet at the end of the simulation is trivial (0.3%) as is expected. The dies are also deformed
elastically resulting in a spring back. The remaining stresses after separation of the dies are the

residual stresses.

Blade forging with the same characteristics was simulated again by the flow approach. The solving
methods, step sizes, convergence criteria, contacting algorithms, etc. were the same as for the
solid simulation. When switching to unloading, the linear elastic material was invoked for the
billet and the dies were opened. At the end, the shape of blade was similar to the last result and
the volume change percentage was also as before (0.3%). Figure 1 shows the deformed billet at
the end of simulation in both approaches. The effective residual stresses were more than the for-
mer simulation. Moreover, there was no spring back for the billet in this solution. Figure 2 shows
the effective residual stresses for the two solutions showing only small differences.

Another simulation was made by the flow approach. However, some steps before the dies were

49



closed, the code was switched to the solid approach. Final shape of blade was the same as be
but the effective residual stresses are close to the flow solution.

4. Conclusion

Computation of the blade forging in the isothermal case was performed by three methods.
In the solid approach the whole process was simulated using an elasto—plastic constitute e«
tion. In the flow approach combined with pure elastic approach in opening the dies, the effe
residual stresses show small differences while the final shapes of blade are very similar.

In the third approach, the simulation starts with the flow approach and is followed by solid
proach some steps before closing the dies. This new way seems to be more effective than the
others in the loading part of simulation. The primary computations show that in unloading,
final shape is the same as the two others and the effective residual stresses are more close to
flow formulation. The likely reason is that the largest part of the simulation history are the s:
in these two solutions. '
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Introduction

In numerical analysis of plastic forming processes for aluminium extrusions it has been shown
that an accurate modelling of the alloy’s plastic properties is important for reliable predictions
of the final geometry of the extrusion'. Experiments indicate that extruded aluminium profiles
have significant plastic anisotropy in yield strength, plastic flow and ductility, and thus rather

advanced plasticity models are needed to capture the physical response’.

In this paper we focus on the accuracy and computational efficiency of some
anisotropic plasticity models proposed in the open literature. The models are based on the
incremental theory of plasticity, and the main ingredients in this class of models are a yield
criterion, a flow rule and a strain hardening rule.

Three yield criteria proposed by Hill’, Barlat’ and Karafillis and Boyce’ were
investigated, using an associated flow rule and an isotropic strain hardening rule. These yield
criteria are all valid for orthotropic and plastic incompressible materials. The plasticity models
were implemented in the finite element code LS-DYNA3D® for shell elements.

Material tests

The elastoplastic material characteristics of the aluminium alloy AA 7108 T5 were identified
by tensile testing’. Tensile specimens were taken from an extruded aluminium plate in
directions & = 0°, 35°, 45°, 55° and 90° with the extrusion axis.

The tests were performed in a universal testing machine under quasi-static loading
conditions at room temperature, measuring the load, the cross-head displacement, and the
length and width strains.

Based on the test results the stress-plastic strain curves, 6, =0, (€} ), and the R-

ratios, R, = R, (€f), in the five directions were calculated, where € is plastic length strain.

The R-ratio is the ratio of the width-to-thickness plastic strains and gives information on the
plastic flow of the material. It was found that the R-ratios varied only slightly with increasing
plastic length strains, and a mean R-ratio, R, was fitted to the experimental data for each

direction.
The flow stress ratios, r, =0, /0, , can be used to check the strain hardening

characteristics of the alloy. For the actual alloy only small variations in the flow stress ratios
were observed with increasing plastic length strains, which indicates that isotropic strain
hardening is sufficient to model the tensile stress-strain behaviour. Hence, a mean flow stress
ratio, 7, , was identified for each direction.

Identification
The three yield criteria can all be calibrated by means of flow stress ratios, 7, , and R-ratios,

ﬁa , from tensile tests in the 0°, 45° and 90° directions. Unfortunately, no unique
identification of the material constants is available for either of the yield criteria.
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Several identifications are possible for the Hill criterion but only two are considered
here. The first identification (ID1) gives an optimal calibration of the yield criterion and uses

three flow stress ratios 7,, 7,5 and 7,, and one R-ratio R, . In the second (ID2) three R-ratios
R,, R, and R,, and one flow stress ratio 7, are used, and the identification is optimal with
regards to plastic flow.

Barlat* describes two methods of identification for his yield criterion: the first (ID1)
USes 7y, 7ogs Ry s R, and R,, , whereas the second (ID2) requires 7, R,, R,; and R,,. Here
the first identification gives a better prediction of the yield condition, whereas the second
gives optimal results for the plastic flow.

For the Karafillis and Boyce criterion only one identification was established, using a
method similar to that described in their paper’. In the calibration 7, R,, R,; and R, are
utilised.

The isotropic strain hardening rule was identified from the stress-plastic strain curve in
the 0° direction: &, =0,(&{ ). The elastic properties of the alloy were assumed to be

isotropic.

Numerical Study
Numerical studies of the tensile tests were carried out using LS-DYNA3D in order to assess
the accuracy and the computational efficiency of the anisotropic plasticity models.

In the tensile tests it was observed that the location of necking was dependent on the
direction ¢, and therefore a full model of the test specimen was used. The model consists of
1316 Belytschko-Lin-Tsay shell elements® with one-point quadrature. The finite element
model is depicted in Figure 1. The load was applied through the pins in each end of the
specimen which were given a prescribed velocity in opposite directions. The pins were
modelled as rigid bodies tied to the specimen.

Explicit time stepping algorithms like the central difference method used in LS-
DYNAS3D, put strong limitations on the size of the time step. In order to reduce the number of
time steps, the quasi-static simulations were performed using mass-scaling. It was assumed
that 10 000 time steps were sufficient to solve the problem, and the density of the alloy was

then scaled with a factor of 1.6-10".

Results

Figure 2 compares the experimental and predicted force-displacement curves in the five
directions. The figure clearly illustrates the plastic anisotropy of the aluminium alloy — in
strength and ductility. It is also seen that the aluminium alloy 7108 in temper TS5 has very
limited strain hardening.

The Hill criterion identified by three flow stress ratios and one R-ratio (ID1) gives
correct force levels in four of the five directions and conservative estimates on the ductility of
the alloy. However, the force level in the 35° direction is somewhat underestimated. The
results also indicate that isotropic hardening is a reasonable assumption for the tensile
behaviour of the alloy. The first identification of the Barlat criterion gives also acceptable
results, but the predicted force levels in the 35°, 45° and 55° directions are lower than the
experimental ones.

It is obvious that calibrations based mainly on the R-ratios may lead to very erroneous
predictions of the force levels. This is the case for the second identification (ID2) of the Hill
and Barlat criteria, and to some extent for the Karafillis and Boyce criterion.

The relative CPU time requirements for the Hill, Barlat and Karafillis and Boyce yield
criteria were 1.0, 2.0 and 3.3, respectively.
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Figure 2: Force-displacement curves from physical and simulated tensile tests on aluminium
alloy AA7108 T5 in five directions 0°, 35°, 45°, 55° and 90° with the extrusion axis
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1 Introduction

A wealth of literature deals with the description and constitutive modeling of
the rate-dependent macroscopic characteristics of metals and alloys, includ-
ing creep, at elevated temperature. The simple creep law NORTON [1] has
been used extensively in engineering practice to simulate stationary creep.
More realistic models are obtained within the framework of viscoplasticity,
by which a threshold value of stress must be exceeded before rate-dependent
inelastic strain can develop, e.g. PERZYNA [3]. A major feature (advantage)
of the classical viscoplastic theory is that the rate-independent elastic-plastic
behavior will be activated at very small loading rate. The behavior close to rup-
ture has been modeled by introducing damage, which approach goes back to
KacHANOV [2]. Viscoplastic deformation may be coupled kinetically to dam-
age, as described by LEMAITRE [4], and the theory can be based on the sound
thermodynamic principle of non-negative dissipation of energy. As a result,
the classical transient, stationary and rupture phases of creep are described
conveniently, as shown in Fig. 1. For example, transient phase is modelled
with aid of nonlinear saturation hardening of the quasistatic viscoplastic yield
surface.

In the classical viscoplasticity formulations, the response becomes completely
elastic without limit on the stress at infinite loading rate, which is not realistic.
Therefore, we introduce a dynamic yield surface, that is approached asymp-
totically at infinite loading rate. This essential behavior is accomplished by a
special choice of “overstress” function, which has the property that the ap-
parent fluidity becomes infinite when the stress approaches (from inside) the
dynamic yield surface. Although rather simple in concept, this feature is es-
sential for the possibility to describe, in a quite realistic fashion, the influence
of large strain-rate on the total stress-strain relation.

. As to the choice of viscoplastic formulation, a generalization of the concept of
DuvauTt & LIONs [5] is adopted in order to include the pertinent hardening
or (thermal) softening characteristics.
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2 Integration technique

The fully implicit Backward Euler rule is adopted for integrating the evolu-
tion equations (for the effective stress, the hardening stresses and the damage
variable). Due to the presence of damage, it also appears that the quasistatic
(elastic-plastic) solution is affected by the viscoplastic characteristics, which
represents an additional “nonlinearity” as compared to the situation without
damage, cf. SIMO & HUGHES [6]. In order to achieve quadratic convergence
in the FE-algorithm at equilibrium iterations in each timestep, it is necessary
to derive the proper Algorithmic Tangent Stiffness (ATS) tensor.
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Fig. 1. Monotonic creep behavior in biazial stress (01 /0y = o2/0y = 1.5) for different
values of the damage modulus. (a) Strain versus time, (b) Hardening stress and
damage versus time.
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Abstract

A practical approach is outlined for decomposing a large fluid domain for acoustic
calculations. The scheme is based on modal description of the separate subdomains.
The suggested scheme results in a final symmetric problem of the type Az = b where
= contains the modal coordinates. The approach is utilized on an aircraft cabin.

Theory

Consider a large acoustic domain, using fluid pressure, p, as the independent variable.
By introducing an interior boundary with displacement as independent variable, the fi-
nite element model of the total domain achieves properties that can be used for domain
decomposition. Fluid pressure, a force type variable, and displacement are conjugate
variables in the virtual work sense. The information handling between the subdomains is

sketched below.

—Hp BH'Z
‘Force ‘Interior ‘Force
system’ A boundary’ system’
Bjp + Dp Ai 4+ Cx Bp + Dp
BH —Hp

Figure 1: Two pressure (force) type systems coupled by a displacement type system.

The finite element matrix description of the total system reads

Ms  p*HE 0 1 K 000 D1 Fpi
0 Mayer 0 ’&/layer + —H1 0 —H2 Ulgyer | = 0 (1)
0 pc’Hi My, D2 0 0 ?Kp D2 Fry

where, My, Myq, K1, Ky are the fluid system matrices for the two separate domains, and
Myayer is the mass matrix of the interior fluid boundary, using a displacement formulation.
Utayer 1S the displacement of the boundary. The ‘stiffness’ of the boundary is neglected.
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layer and n is the unit vector in the normal direction at the fluid layer. The symmet
property of the matrix blocks for each subdomain makes it possible to diagonalize ea
block independently. Let @jqyer and @y, 7 = 1,2 be sets of eigenvectors so that

(blj;yeerayerélayer = Dlayera
(I)?TMfT(I)fT = -[fr and (I)’;I;Kfr@fr = Df,n, T = 1, 2,

where Djqy.r and Dy, are diagonal matrices. The modal form of Eq. (1) reads

I pc2ﬁf 0 §f1 Dy 000 51 QD?I Fr
0 Dla.yer 0 g.layer + _ﬁl 0 _EZ flayer = 0 : (;
0 pcHI Ip £r 0 0 Dp 3P %, Fro

where £n represents the modal coordinates in each subdomain, and H, = @lq;ye,H,@ f
r = 1,2. The inverse of the modal mass matrix is

Ifl —pc2ﬁgDﬁ;er 0
0 Dizyer o . (¢
0 —pczHgD;z;er If2

Multiplying from the left by this inverse then yields

Df1+ —_— _
sr o1 = | 0 pczHlTDl;;e,.Hz
) L2 D G\ (VR
fi
élaye‘r + - Dl—;gl/e'r Hl O - Dl:],;eTHz é’layer - O . (E
£ €12 @7, Fr
d 2T -1 FF D+ d
pC H2 DlayerHl O 2~T -1 —
pc H2 DlayerH2

Apart from the zero eigenmodes the system matrix is equivalent to the following matris

( Dfl -+ pc2ﬁ?D£;erﬁl pCQEfDl:zzjerFQ ) (6

pczHgD;zierHl Dyy + chHgD[;;e,Hg
This system is then used for eigenvalue analysis. Only a limited selection av mode
from the subdomains is used. The interior boundary is treated as ‘virtual’, meaning, th

stiffness is set to zero for simplicity and the mass contribution is given as small a valu
as possible.
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A section of an aircraft cabin is studied. The total length of the cabin section is 8.4
meter and the diameter is 2.3 meter. The cabin is divided in two parts and the result,
eigenvectors computed according to the suggested scheme, is compared to an eigenvalue
analysis of the complete model.

e The complete model holds 7068 nodes.

e The individual parts are 4.9 m and 3.5 m and have 2976 and 4216 nodes respectively.

¢ 80 modes from each part are used to compute the first 20 modes of the complete
cabin section.

s . Y
P Y

Figure 2: Section of aircraft cabin used in this study.

It is of interest to compare not only the eigenvalues, but the shape of the eigenvectors as
well. As a simple measure of the shape correlation we use

_ Vreduced * Veomplete

B l 'U'reducedl , Ucomplete ,

Where Ureduceq 1S an eigenvector computed from the decomposed modes and Vcomplete 15 Al
eigenvector computed from the original model. Hence, if they are identical we get € = 1.
In Table 1 the first 20 modes are listed. They are compared and listed so that the ‘shape
correlation factor’, as defined above, is as close to one as possible for each mode. Mode
13 and 14 in the complete model are in reversed order compared to the suggested scheme.
The ‘shape correlation factor’ are listed in Table 2.
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mode No | suggested scheme complete model
1 0.0 0.0
2 25.49 20.37
3 43.20 40.73
4 61.82 61.06
5 81.65 81.65
6 85.55 81.34
7 85.65 84.09
8 92.41 91.04
9 101.3 101.6
10 102.7 101.5
11 109.2 109.2
12 112.1 111.0
13 117.3 116.3
14 119.9 114.6
15 125.3 124.5
16 125.7 121.7
17 1294 1294
18 139.0 135.2
19 143.2 141.7
20 147.7 147.8

Table 2: Shape correlation factor.
Result for the first 20 modes

1
0.9982
0.9627
0.9889

1
0.9632
0.9945
0.9556
0.9992
0.9879

1
0.9958
0.9576
0.9265
0.9886
0.9695
0.9985
0.9407
0.9951
0.9987
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Topological fluid mechanics
of axisymmetric flows

Morten Brgns
Department of Mathematics
Technical University of Denmark
DK-2800 Lyngby
Denmark

When the dynamic equations for a fluid problem are solved a velocity field
v(x,2) is obtained. The streamlines are found as the trajectories of this field, i.e.
by solving the ordinary differential equations

dx/dt = v(x,1). (1)

These differential equations can be studied using qualitative methods from the
theory of dynamical systems such as bifurcation theory and singularity theory. By
this, a link from concepts from dynamical systems to concepts from fluid mechan-
ics can be established. For instance, if a critical point of (1) is a center, the fluid
mechanics interpretation is a vortex, while a saddle is a stagnation point.

Topological fluid mechanics in the sense of the present paper is the study and
classification of flow patterns close to a critical point. Bakker [1] has given an
extensive classification of such patterns in two-dimensional flows close to a plane
wall, and the present author [2] has in the same vein classified flows near free and
viscous interfaces.

Here we discuss the topology of steady viscous incompressible axisymmetric
flows in the vicinity of the axis. Symmetry allows one to study the flow patterns
in the meridional plane only, making the system (1) two-dimensional.

Following previous studies the vector field v is expanded in a Taylor series at
a point on the axis. From the dynamic equations, the equation of continuity, and
boundary conditions relations between the expansion coefficients are obtained,
making it possible to eliminate some of them. The remaining coefficients are
considered as bifurcation parameters.

When the expansion point is a critical point the Jacobian matrix 4 — dv/ox
is generically hyperbolic, and the critical point is a stagnation point. The sim-
plest degeneration occurs when zero is an eigenvalue of A with multiplicity one.
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Figure 1: An example of an unfolding showing possible patterns of separation
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We consider this singularity as the organizing center for unfoldings depending on
higher-order terms.

The equations are simplified using the theory of normal forms, that is, a series
of near-identity coordinate transformations. To the authors knowledge this has
not been used in topological fluid mechanics before. This results in a significant
reduction of the number of terms involved, and with this we easily obtain the most
common bifurcations of the flow patterns. We compare these with experimental
results by Escudier [3] on the Vogel-Ronneberg flow (a cylindrical vessel filled
with fluid where the lid is rotated uniformly to create a vortex motion.) We show
that the topology changes observed when recirculating bubbles on the vortex axis
are created and interact follow the topological classification and that the complete
set of patterns found is contained in a codimension-3 unfolding of the singularity.

Hence, we propose topological fluid mechanics as a tool for understanding
visualisations of flows, whether they are obtained experimentally or numerically.
Furthermore, one may speculate if the basic topological structures we obtain can
be used as elements in a numerical procedure, generalising well-known vortex
methods.
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Tracking non-spherical particles in combustion systems

Lasse Rosendahl and Thomas J. Condra
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Abstract. For the purposes of tracking in combustion systems particles have hitherto
been treated as being near-spherical. This paper presents a unified superellipsoid based
formulation for spherical and non-spherical particles together with a treatment of the
extra forces which arise when tracking elongated particles.

Keywords: Computational fluid dynamics, non-spherical particles, biomass, combus-
tion

1 Introduction

The application of Computational Fluid Dynamics (CFD) to the analysis of the combustion of
discrete fuel droplets or particles has been normally based on the solution of the continuous
phase using a Navier-Stokes solver and then using a Lagrangian tracking method on the
discrete phase.The tracking procedure is normally based on the assumption that the particles
are perfect spheres, with perhaps a correction factor for non-sphericity (Kunii and Levenspiel,
1969). This assumption, in a pragmatic spirit, can be accepted, especially for droplets and in
pulverised coal combustion applications. However where the particle is of a material such as
waste or biomass then the sphericity assumption is clearly deficient.

This paper deals with a unified formulation for the analysis of the tracking behaviour of
solid particles whose shapes stretche from the spherical to an elongated cylindrical shape.
The paper considers the practical formulation of a unified geometrical particle description
and deals with the extra forces which arise for elongated cylindrical particles.

The inspiration for this work is the development of a CFD based system to analyse the
co-firing of coal and biomass particulate material (straw).The gas phase is calculated using
the CFD commercial code CFX, and the combustion and particle tracking is carried out in a
program Pcombust, where the particle tracking formulation has been incorporated. Pcombust
calculates particle trajectories, phase coupling information as well as detailed information
about the individual particles. For further details on Pcombust refer to Rosendahl! (1996} and
to http://www.iet.auc.dk.

2 Description of formulation

2.1 Particle shape

The main feature of the dispersed phase formulation is the shape description. A superelliptic
shape function (Hein, 1964) is applied, which allows for a three-parameter description of a
particle: n n

Ly =1, n>20, -lz=,321-0 (1)
a b a

By variation of n and the axis aspect ratio, f, a range of axi-symmetric particles from spheres
via ellipsoids to cylinders can be generated, all using the same shape formulation.(see fig.1)

2.2 Particle forces

The primary force to be considered is the drag force, which dominates the motion of an
individual particle. Independent of particle shape, the drag force (see fig. 2) is formulated as:

1
Fp= §CDPgApluy - up,(ug —up) (2)
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n = 3
n = 4
n = 10
n = 12

Fig. 1. Various shapes generated using different parameters in the superelliptic formulation

The main difficulty lies in the formulation of the drag coefficient which must be done so
that variations in the two shape-determining parameters, n and f, are included in the drag
coeflicient, as well as the standard correlation arising from departure from Stokes conditions.
The current formulation utilises a Stokes correlation due to A. Kaskas (Brauer,1971) as well
as a number of numerical correlations due to shape variation, valid for particle Reynolds
numbers less than 103:

Co = O s | git—] ™ ®
D = LD sphere (ﬂ—1)+f1ﬁR€p n

with

fa = 0.857+ 1.46 x 1073(n — 2.0)
fig = 0.07+2.65 x 10~3(100.0 — 8) 4)
fop = 0.142+ 5.68 x 07%(8 — 5.0)

Lift forces include aerodynamic lift, arising from orientability, lift due to velocity gradients
(Saffmann forces) in the flow, or particle rotation, which induces a velocity difference on
opposing sides of the particle (Magnus forces). The current model includes aerodynamical

Fig.2. The aerodynamic forces on a particle
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lift forces only, as these are considered the dominant lift forces. The cross-flow principle
(Horner, 1965) is used, essentially making the lift force a function of the drag coefficient, and
subsequently the particle Reynolds number:

CL,aero = Cp fo sin? a; cos (5)

Finally, through a dominant force consideration, gravity is included in the force balance as a
conservative force.

2.3 Particle torques

Two contributions to the rotational motion of the particle are considered. The first is the
inherent fluid vorticity, which will act on the particle as a torque due to the viscous forces at
the particle surface. Based on Besnard and Harlow (1986), the viscous torque can be expressed
as:

S (1
Toise = Ko pigAsd, (Ev X u, —,,> (6)

with K, of order unity. The second particle torque included in Pcombust is the pitching
moment, arising from the aerodynamic forces. These forces act at the centre of pressure, thus
giving rise to a torque about an axis perpendicular to the plane defined by the major particle
axis and flow velocity vector. Maintaining the coefficient formulation and still utilizing the
cross-flow pririciple, the pitching moment coefficient can be expressed as:

Cn = Cp sin o; cos o; (")

The location of the centre of pressure is a function of the incidence angle o; and axes aspect
ratio 3:

Zep = 0.5b (1 — exp(1 — B)) (1 — sin® ;) (8)

2.4 Orientability

The orientability necessitates the determination of the incidence angle between the particle
and the flow velocity vector. Using directional cosines, this relationship is:

o = Z arccos(cos By, cos fy) (9)
i

The projected area can thus be expressed as a function of the incidence angle:
Ap = ma®(cos® o; + Ry sin? o) (10)

. Ag.m
Wlth Rﬁ = Z‘i“o‘%—.
0,: T

3 Concluding remarks

Although this work shows that it is possible to extend the existing methodology of particle
tracking from spheres to superellipsoids, it is clear that much work need still be done. This
is primarily true of the experimental data available to verify a code like Pcombust, where
particularly more extensive drag measurements would be very valuable.
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4 Nomenclature

4.1 Symbols

p: demnsity [kg/m®]

u: velocity in inertial frame of reference [m/s)

X: inertial coordinate system [m]

a, b: minor and major particle semi-axis, respectively [m]
dp: equivalent spherical diameter [m]

B: axes aspect ratio, b/a [~]

Rp: area ratio, ng—::%;, [=]

n: superelliptic exponent [~]

m: particle mass [kg]

I: moment of inertia in the inertial coordinate system []
w: inertial system angular velocity [rad/s]

F: force [N]

T, T: torque [N'm]

f'(#): time derivative (velocity)

f(t): position

C': non-dimensional coefficient

A: area [m?]

Re: Reynolds number [-]

f: correlation [~]

ai: angle of incidence [rad)]

ZTep: distance from centre of gravity to pressure centre [m]

6: direction angle [rad)]
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Nonlocal plasticity and continuum damage
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Material model

A decoupled nonlocal plasticity and damage model is proposed. Damage is rep-
resented by a scalar field that reduces the mean stress and is assumed to depend
on a portion of the mean strain energy when this is positive, in accordance with
Simo and Ju (1987). The plasticity model consists of a modified Drucker-Prager
yield function with local hardening nonlocal softening as proposed by Strémberg
and Ristinmaa (1996). From the assumption of nonlocal softening, a material
length scale enters the constitutive equations.

The resulting equations are analysed for uniaxial compression, and the local
version allows for the derivation of a stress-strain relation, cf. Figure 1.

NORMALIZED STRESS

" L 2 A s 1 L 2 n
0 0.02 004 006 008 0.1 012 014 016 018 0.2 [ 002 004 006 008 01 012 014 038 018 0.2

MILLISTRAIN MILLISTRAIN
(a) Stress versus millistrain, for ¢ = (b) Damage versus millistrain for ¢ =
2, 1.5, 1.25, 1, 0.75, 0.5, 106 pPq-! 2, 1.5, 1.25, 1, 0.75, 0.5, 10~% pg—1
from top. from top.

Figure 1: Material parameters h/G = —0.24, v = 0.25 and different damage
parameters c.
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Finite element formulation

In order to simulate shear band formation in plane strain, a finite element model
is implemented in the code CALFEM given as a toolbox in MATLAB(R). The
solution strategy is split into a displacement estimate for equilibrium and the
integration of constitutive equations. The consistency condition will result in a
matrix equation for determination of the field of plastic multipliers. An iteration
algorithm taken from Strémberg and Ristinmaa (1996) is used for finding the
solution. When the displacement estimate and the plastic multiplier are given,
the state of damage is determined.

Results

The model is applied to a slope loaded by gravity, also considered in Ortiz et al.
(1984), Pamin and deBorst (1995). In the slope, damage and nonlocal plasticity
interact to redistribute the displacement field to become localized in a shear
band of a certain width, dependent of the material length scale, denoted by I,
cf Figure 2, 3. The direction of the shear band depend on damage. In the
shear band, damage is distributed, however more localized than the effective
plastic strain. The shear band formation will cause instability in the global
force-displacement relation and a parameter study shows the influence of damage
and nonlocal plasticity.

XX
SO,
05 05 Sy 2
SERSRS A A0S
SIS SIS =
s A,
LS LS, b [ ST ] ] S
o \XM%%%%% 2] o
0 05 1 15 2 0 0.5 1 15 2
(a) Deformed mesh 14 x 14, I = 0.17m, (b) Deformed mesh 16 x 16, [ = 0.083m,
magnification factor: 2000. magnification factor: 2500.

Figure 2: Material parameters h/E = —0.08 and (¢ = 0.5 Pa~!, s = 0).
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(a) B/E = =008, I = 0.17m,
c=05Pa"t s=0. ¢=0.5Pa~! s=0.

(c) B/E = —0.08, I = 0.083m,
c=1Pal s=0.

Figure 3: Plastic elements, variation of [ and c.
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LOCALIZATION IN DRAINED AND UNDRAINED FRICTIONAL MATERIAL
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INTRODUCTION

A characteristic feature of most failures in geomaterials is the localization of deformations into
narrow band zones. In this contribution a FE-method to capture localization at undrained
conditions is discussed. The model is based on the concept of regularized displacement discon-
tinuities which are embedded within the finite elements. The discontinuities are considered
as strain enhancements according to the enhanced strain approach, Simo and Rifai[1]. Condi-
tions for onset of localization as well the critical bifurcation directions are provided from bi-
furcation analysis of the constitutive equation, Runesson et al. [2]. The material is modeled
on mixture theory for the solid and the fluid phase. The solid phase (soil skeleton) is assumed
elastic-plastic based on a generalized Mohr-Coulomb criterion, cf. Larsson and Runesson [3].
Numerical results will be presented for a rectangular specimen of cohesive-frictional material.
In particular, we are concerned with the issue of mesh objectivity and influence of the un-
drained condition.

ELEMENT EMBEDDED LOCALIZATION BAND IN UNDRAINED SOIL

In the spirit of the developments in Larsson ef al. [4], let us briefly review the basic concepts
of the embedded localization band as follows: Upon introducing a narrow band zone pe (Of
width 0), the strain field within an element is expressed in terms of a compatible and an en-
hanced (incompatible) portion & defined as

e=¢g +&, g,= (Ve Qu)™ | é=éc+-;—f(n)(n®[[zi]])‘3’m 1)

Here, the irregular ”block” function £(x), shown in Figure 1, represents the consequent regu-

larization of the strain due to a discontinuous displacement field constructed as

u = u; + Hx)[u] , where H is the Heaviside function, cf. Larsson er al. [4]- Moreover, the

matching pore pressure field is introduced in a similar fashion as the strain field, i.e.
P=pc+p ., p=p,+fmilpl 2

where [ 5] is the pore pressure discontinuity.

For each element, the continuous part of the pressure, the displacement and the corresponding

compatible strain are interpolated by using the standard compatible shape functions v/ which
gives
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Figure 1. Enhanced CST-element with embedded localization band and the ”block” function fn).

NODEL NODEL
u= > el , =@ = > @Om™ ., p,=p,
I=1 I=1
where NODEL is the number of element nodes and m/is the gradient of each shape funci
¥’ i.e. we have m! = V!,
Let us next restrict to the case of piecewise linear approximation for the displacement, co»

sponding to the CST—element. Hence, the (independent) total stresses 7 and the enhan
strains £ are chosen as piecewise constant functions (within each £,) such that

NEL NEL

NEL
= ZXeTe » &= Z,Xeéce , [all = ZXe[Iﬁ]]e {
e=1] e=1

e=1

where y.is defined as

1 iffxe,
Xe =10 otherwise {

Due to momentum balance, we obtain the “orthogonality” conditions pertinent to the
hanced assumed strain approach, Simo and Rifai [1], as follows

fre’ 18dQ =0 e=1,.. NEL

Jrge’ (0(ge) ~pebd2 =0 e=1,..,NEL

where n is the spatially constant unit normal vector of the localization band, as depictedinF
ure 1. In (6)p, o is the solid (in geomechanics often referred to as effective) stress tensor t ;
is obtained in terms of the strain via the constitutive relation.
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NEL NEL NEL

Yv = ZXeyvea ﬁc = ZXeﬁces 02l = erﬂﬁne (7)
e=1 e=1

e=]

where y, is the (independent) total volumetric strain. Due to mass conservation of the fluid
phase, we then obtain the integrated (orthogonal) balance equations

f YveD'ed2 =0 e=1,. NEL

“ ®)
fﬁ'e(ﬁaev -+ I%:fﬁpe)d!? =0 e=1,...NEL
2,

Here K is the bulk modulus of the fluid and & is the volumetric strain of the solid phase.

We note that the orthogonality conditions (6)1 and (8); must hold for arbitrary constant 7', and
7'vein each element. In addition, if z is considered constant, the integration of these conditions
can be carried out explicitly. Combining these with (6)2 and (8),, while observing that ¢ takes
the constant values ¢ , and 0, in £, and in Q be> T€SpECtively, we obtain the continuity rela-

tionships

'}1—: 1——%)[ —n'aie+n-obe—nl[p”]]e]=0 e = 1,2..NEL
)

?__:(1 _%)[_é_n - A[a] +._1K7A[[ﬁ]]e} =0 e=172.NEL

where I, = A./L., A, = m(Q,) and Le = m(I',).In (9); we may eliminate the pressure discon-
tinuity to obtain the combined traction—mass continuity relation

re="?—:( -Z‘Z)[—n-oie-f—n-abe-i—%l{f(n@n)-d[[ﬁ]]e-n”[[pN]]eJ=0 (10)

Remark: By considering the rate form of (10) within the plasticity framework and the loading
assumption that the whole element responds plastically, we obtain the bifurcation problem

%Qu,ep . [[IZ]] — 0’ Qu,ep =n - DP . n - Kf(n ®n) (11)

where D% is the CTS-tensor. This is precisely the proper localization condition for a mixed
continuum with a compressible pore fluid. We thus conclude that localization is possible when
the undrained acoustic tensor Q% is singular. From (11) we may obtain the critical orienta-
tion n = n“ corresponding to the critical hardening modulus, cf. the analytical investigation
in Runesson ez al. [2] m
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The finite element discretized problem is solved by evaluating the local traction contin
problemsr, = 0, e = 1,..., NEL completely for each global iterate i. Hence, a displacen:
format is obtained at the global level, which may be stated as: For a given iterate i, comy

an improved solution from u{*V = 4 + £, where &, is solved from

NEL
361 [12e53=-—g§")] - C

where I%e is the part inverted element tangent stiffness matrix at A[[4#] . and [5]) ..

SOLUTION OF THE LOCAL TRACTION CONTINUITY PROBLEM

As alluded to in the previous section, the traction continuity relation (10) is evaluated cc
pletely in all elements for each global iteration. At first thought, this might be considered co
as compared to partial inversion of the iterative improvements of the discontinuities for

total system. However in the latter situation, a loading assumption must be applied to the ¢
ments, which can only be checked after convergence of the global iterations. This probler
particularly delicate in the case of ductile failure, where onset of localization is reached af
a certain amount of plastic deformation. With the adopted procedure, we thus maintain ¢
trol of the loading situation within each element throughout the analysis. For example, an ¢
ment may localize at a certain load level, in the sense that elastic loading is obtained in &
and plastic loading take place in 2,,. At the next load level, the element may become diffi
corresponding to plastic loading in the whole element.

A problem closely connected to the local element problem is how to choose the vector z wh
defines the orientation of the band. As mentioned above the band orientation is defined
n = n“ at onset of localization, and it is thereafter held fixed. In general however, this dir
tion is not unique. In the plane case there are two equally possible critical directions. In -
numerical treatment however, we must at some point choose one of these orientations. Fort
purpose, a procedure where we try to maximize the plastic dissipation is suggested. The inf
ence of various choices of n of the global response and deformation mode is investigated 1

merically. |
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Abstract

The inner softening band concept is based on simple assumptions which have proved to be
able to capture various types of failure mechanisms that occur in concrete, rocks and soils.
Most problems can successfully be modelled by using a crack function governed by the
strength of the material and a linear softening law for the band tractions and displacements.
The extra parameters that have to be defined are those that describe the softening function.
However, by invoking the fracture energy some reasonable values are easily found. A large
number of numerical results and comparisons with experiments show that the method can deal
with the major part of failure types in brittle materials.

Introduction

The approach of using interelement displacement discontinuities based upon a relationship
between increments of band tractions and displacements, the fictitious crack model ( Hillerborg
et al 1976), has been used by Dvorkin et al 1990, Klisinski et al 1991 and Lotfi & Sheng 1995.
The inner softening band method (ISB), Klisinski et.al 1991, has successfully been imple-
mented and tested versus experimental data for concrete structures. Such tests mainly deal with
mode I fracture and are therefore simple to carry out in comparison with problems that include
large stress rotations, e.g. in soil stability analysis. By introduction of the possibility for each
element to contain several active cracks, stress locking situations are avoided and hence the
ISB-method performs better.

Basic concepts

For a more detailed description of the method, see Klisinski et al 1995, Klisinski & Tano 1995.
The total rate of nodal displacements is divided into a continuous part and one part that is due
to band opening. Since the discontinuous contribution is dependent on the continuous defor-
mation the following relation can be obtained for a single fixed crack

du = du’+du’” = (I+G)du®

or for multiple fixed cracks
du = (I+Y G)du

where I is the unity matrix and G is a product of matrices containing shape functions, trans-
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lations all lead to the following constitutive relation between rates of tractions and

displacements in the band

1 olar

=17

where A is a non-zero scalar for kinematic softening, B is non-zero for isotropic softening, m

is the local direction of the band opening and @ contains derivatives of the fracture function
with respect to the tractions. State changes such as cracking, unloading and reloading are lim-
ited to just one at each increment in order to avoid convergence difficulties. If many cracks
indicate the change of state during an increment the size of the increment is reduced. Most cal
culations have been performed under displacement control but arc-length control is sometimes
necessary, e.g. for the snap-back behaviour in the four-point-shear beam test, Fig. 4.

Numerical results

Slope stability with concentrated load

Three different meshes were tested in this problem. For the finest mesh two active bands could
develop which might lead to the somewhat weaker response. Displacement control, linear kin-
ematic softening, the Mohr-Coulomb’s fracture criterion and constant strain triangles (CST)
were used.

499
£ ) Number of CST elements |

05

s "
° 05 1 15
Detormation {m) <10°

Figure 1. Displacement controlled slope stability analysis. The right figure shows responses for
three different meshes.

Slope stability with density load
Two different types of loading paths were tested for the 100-m-high vertical slope. The first
model has a free vertical slope while the density increases, Fig.2, and the second model has

supports outside the slope until the material density is reached, Fig.3. After that the supports
are gradually removed in order to model a true excavation.
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Figure 3. Crack pattern and total force from the gradually removed supports.
Four-point-shear beam

This test is interesting since it involves snap-back behaviour.
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Figure 4. Crack pattern, deformations and load-displacement diagram for the four-point-shear
beam test.
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Anchor pull-out tests & mixed mode fracture, Olofsson & Ohlsson 1995. Cylinder splitting
pressure tests, Noghabai 1995. There is also ongoing research on fiber reinforced beams.
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1 INTRODUCTION

As a result of several researches (e.g.[6, 9, 8, 12]), structural optimization prob-
lems with sizing or shape design variables can be solved efficiently by the mathe-
matical programming approach and real-life applications can be handled. With
the homogenization method proposed by Bendsge and Kikuchi [2] and then fur-
ther developed in several other works (see Bendsge [1] for a review), structural
optimization is now able to attack the topology design problem.

Despite the fact that the material distribution problem looks like a sizing
optimization, topology problems have its own characteristics and difficulties.
The discretization of the material density introduces generally between 1000
and 10000 design variables, number that was never reached before. Furthermore,
solving topology problems requires often a very high number of iterations to get
a stationary distribution. It is usual to spend more than 100 iterations to solve
the topology problem.

Up to now, few solvers for huge optimization problems, other than simple
optimality criteria, were available in topology. Thus, topology design was of-
ten restricted to formulations involving few design constraints. Generally, the
topology design was formulated as a minimum problem of a stiffness criterion,
like the compliance, with a bound over the volume.

This communication wants to report how we improve the solution procedure
of optimization of topology huge size problem by extending the mathematical
programming approach that was successful for other structural optimization
problems. At first we use dual methods that are well adapted to solve the con-
vex separable optimization problems even if the number of design variables is
large. On another hand, we look at the problem of selecting the most appropri-
ate approximations. The choice of an approximation is a compromise between
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precision and conservativity, between accuracy and computation effort to gen-
erate the data. After having compared available first order approximations, we
wanted to further reduce the number of stages necessary to arrive to the solu-
tion. To this end, we developed and validated a new approximation procedure
based on second order approximations and quasi-Newton updates preserving
the diagonal structure of the estimates.

2 A DUAL SOLVER

Solution of convex subproblems of sizing and shape problems can be performed
efficiently by dual methods [5, 8]. This is more than ever true with the subprob-
lems of topology design. The primal constrained problem with a large number of
design variables is replaced by a quasi unconstrained maximisation of the dual
function. The dimension of the dual space is limited to the number of active
constraints, which is small. The advantage of the dual formulation is real if the
relationships between primal and dual variables are rigorous and inexpensive
to compute. This 1s the case if the objective function and the constraints are
linearised by separable and convez approximations.

3 CONVEX APPROXIMATIONS
3.1 FIRST ORDER CONVEX APPROXIMATIONS

The simplest first order approximation is the first order Taylor expansion. This
linear approximation is efficient for the volume constraint, but its lack of convex-
ity makes it too few reliable for structural constraints. For structural responses,
it 1s better to turn our choice towards convex approximations. From our ex-
periences, CONLIN [9] approximation gives rise to good results in topology.
For the compliances that are self-adjoint, all the derivatives are negative and
CONLIN restores the reciprocal design variables expansion that is well known
to reduce the non-linearity of the structural responses. But convexity properties
of CONLIN are important when treating eigenfrequencies or constraints whose
first derivatives have mixed signs. The main disadvantage of CONLIN is that
the approximation introduces fixed curvatures, so that the approximation might
be too much or too few convex. This might give rise to a slow or unstable con-
vergence towards the optimum. To remedy to this problem, we select MMA [12]
approximation that generalises and improves CONLIN by introducing two sets
of asymptotes. The choice of the moving asymptotes provides the way to modify
the curvature and to fit better to the characteristics of the problem.
Nevertheless, we can conclude that both CONLIN and MMA lead to satis-
factory results for topology design and improve often greatly the performances
of the solution. In a lot problems, we observed that a solution was often achieved
in 30 to 50 iterations depending on the difficulty of the problem and the pre-
cision of the stopping criterion. One strong advantage of CONLIN and MMA
arises from the very reliable dual solvers that are used to solve the associated
convex subproblems. On another hand, one major drawback of first order ap-
proximations is that we can observe a deceleration of the progression towards
the optimum once the algorithm arrives in the neighbourhood of the optimum.
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To accelerate the convergence rate in the final stage, one needs better approxi-
mations based on curvature information [7].

3.2 SECOND ORDER CONVEX APPROXIMATIONS

Second order are high quality approximations that are indeed more precise and
that lead to faster convergence rates. Nevertheless, second order sensitivity is
very onerous to compute and to store so that the overall cost of the optimiza-
tion can be similar to the one of first order approximations [10]. The problem
becomes quickly cumbersome and impossible to manage when the size of the
problem increases.

To be able to use second order approximation schemes with large scale op-
timization problems, we developed a new procedure to generate an estimation
of the curvature information with a small computation cost 3, 4]. As separable
approximations needs only diagonal second derivatives, the idea is to built an
estimation of the curvature information with a quasi-Newton update able to
preserve diagonal structure of the Hessian estimates. This update scheme is
derived form the general theory of quasi-Newton update with sparse Hessian
estimates made by Thapa [13]. The diagonal version of the BFGS update (3, 4]
that we implemented is very un-expensive even for large scale problems since it
introduces only vectors manipulations. In [3], it was observed that for a given
topology problem, the time spent in the diagonal BFGS update is only 3 % of
the time spent in the optimizer CONLIN [6, 8] and only 0.01 % of the time
needed for sensitivity analysis with a commercial finite element package.

The theoretical algorithms was adapted to the characteristics of structural
optimization problems to yield quickly convergent estimates of the Hessian. This
adaption relies on the key role of the reciprocal design variables to reduce the
non-linearity of the structural responses. The Hessian is updated in the space
of reciprocal design variables and then converted into curvatures in terms of
the direct variables to be used in the approximation. The initial guess of the
Hessian is also very important. Starting in the reciprocal design space from
a diagonal matrix of small terms restores the curvatures of CONLIN which is
generally a good starting point.

This second order information is introduced into two well known second or-
der approximations. The first one is a second order version of MMA proposed by
Smaoui et al. [11]. The second approximation is the separable quadratic approx-
imation suggested by Fleury [7]. Combining diagonal BFGS update with both
these approximations gives very interesting results that results in important sav-
ings in terms of number of iterations and of computation time. This conclusion
can be explained as follow. Firstly, the estimation of the curvature improves
greatly the quality of the approximation with only the help of the accumulated
first order information. Secondly, instead of ignoring the second order coupling
terms, diagonal BFGS provides a way to take them into account by correction
terms on the diagonal coming from the diagonal update. Due to our initial guess
of the Hessian, one can observe, in the first lterations, a convergence history that
1s very similar to first order approximations. But after some iterations, the up-
date procedure improves the estimation of the Hessian and one can see a real
advantage in the convergence speed. Around an accumulation point satisfying
the optimality conditions, we could observe a convergence speed superior to first
order methods, sometimes closed from super-linear behaviour.
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1 Introduction

This extended abstract presents a reliability analysis of a midship section of a new double hull
tanker design. The reliability analysis is performed with respect to ultimate bending failure of the
midship section and addresses the effect of geometrical and material uncertainties as well as the
ageing effect due to corrosion.

The yearly extreme value distribution of the combined still water and wave induced bending
moment is calculated based on a simplified load combination procedure. Corrosion rates in different
areas around the hull section are estimated based on available statistical data. Also the effect of
coating durability is included in the analysis.

The ultimate load capacity of the midship section is calculated by use of an approximate beam-
column method. The initial imperfections are for all panel elements modelled as independent
identically distributed variables. One of the major complexities in the reliability analysis is to
handle this large set of independent identically distributed variables as the optimisation performed
under FORM/SORM may be jeopardised by their presence. A procedure based on order statistics
is therefore applied to handle the set of identically distributed variables.

The vessel examined is a new double hull tanker with transverse-less system, Paik et. al [10].
Main particulars are: Length between perpendiculars is 234 m, breadth moulded 42.6 m, and depth
moulded 19.2 m. The vessel has nine cargo oil tanks. The width of the double sides and the depth
of the double bottom are both 2 m, which satisfies the OPA 90 and IMO requirements for oil
pollution prevention. The analysed double hull tanker is assumed to be operating under 5 different
loading conditions in a North-Atlantic routing.

Results from the analysis are presented in terms of the yearly failure probabilities over the
lifetime of the vessel. Also the major uncertainties in the ultimate failure analysis of the midship
section are identified. The reliability analysis was performed using the order statistical approach.
The complete evaluation was very time consuming, and a model correction factor approach was
used instead. The model correction factor method was found to be preferable in the reliability
analysis of the midship section as this method predicted both reliability indices and importance
factors with high accuracy at a fraction of time.
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2 Extreme Vertical Bending Moment

The extreme value distribution of the wave-induced bending moment is established using technic
given in [4] taking into account the manoeuvring philosophy. The extreme value distribution is
each loading condition fitted to the Gamma distribution

Py = s

where my,; is the extreme wave induced moment in a voyage of duration 7. k and X are
distribution parameters. It is assumed that each voyage of the ship last for one month. ’
distribution function for the maximum sagging moment my,y = Mgy + My, Within a voyag
duration 7 is given as the convolution of the densities of the still-water induced moment my, :
the wave-induced m.;,

D — Myoy — T — Hsy
Frnax Myoy (Twoy) =/0 f_(n—) (A\z) 1exp(——/\x)®< d # )dz

asw

in which ®(.) is the standard normal distribution function, ps, and oy, are the mean value :
the standard deviation of the still-water bending moment. Fjy,,, in Eq. 2 is defined for the sagg
moment (maximum). A similar distribution is formulated for the minimal hogging (moment).

The yearly long term extreme value distribution for the maximum value (sagging) over
voyages of the vessel is:

5
Fmax(M) (m) = H{Fmax Myoy (m) }fVPi
g==]1

In the probabilistic analysis, the extreme bending moment is multiplied with a model uncertai:
factor of mean value one and CoV=10% .

3 Corrosion

The single most important cause to failure of ship structures is possible due to corrosion. Fr:
survey reports of ships registered with Nippon Kaija Kyokai (reported in the period from 1976
1981) Akita [1, 2] observed that almost 80% of all failures in ships was due to corrosion. The ar:
where a double hull tanker may be particularly exposed to corrosion include the cargo tanks, 1
double-hull vertical wing spaces, and the double bottom. The cargo tanks will most likely o
carry cargo oil throughout the ships service life, although designated cargo tanks may be used
heavy weather ballast in emergency situations. The corrosion risk within these tanks is therefi
normally very low.

The applied probabilistic model for corrosion covers: the coating protection time (corros
initiation period); the ageing effect; and the location dependent corrosion rates when coating
longer offers successful protection. The corrosion wastage W as a function of time is modelled :

W(t) = Af(t)E

in which A is the location dependent corrosion rate, f(t) defines the corrosion time function, a
B the ageing parameter. Basically, the corrosion time function f(¢) is the real time # minus t
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corrosion initiation time ¢y but in the analysis modelled as a continuous differentiable function, see
[7]-

The corrosion initiation period ¢ is taken as log-normally distributed with a mean value of
5 years and a standard deviation of 3 years. This is in accordance with the DnV Guidelines for
Corrosion [6]. The ageing parameter B is modelled as a common parameter for the entire hull
with a mean value of 1.0 and a subjectively chosen COV of 10%. The corrosion rate A is taken
to be log-normally distributed with mean value of twice the average mean rate given in [9] and a
standard deviation equal to the reported average standard deviation.

4 Ultimate bending capacity of hull section

The factors determining the ultimate collapse capacity of the hull section are the material charac-
teristics, the level of initial imperfections such as distortion and residual stresses, and the amount

of corrosion.

The method used to calculate the bending strength of the hull section is described in Hansen
[8]. The method divides the stress-strain curve of each beam into four regions: (1) a plastic tension
region in which the material behaviour is assumed to be perfectly plastic, (2) a perfectly elastic
tension region, (3) an elastic compression region, where the stress-strain curve is derived from
a Bernoulli-Euler beam theory in connection with an effective width approach, and finally 4) a
plastic compression unloading region, where the stress-strain curve is modelled by assuming that
plastic hinges are formed.

Given the stress-strain relationship for all individual stiffened plate panels in the hull-section,
the resulting bending moment M and the axial force N is calculated as a function of the vertical
location of the neutral axis 7 and the curvature . The ultimate bending moment of the hull section

is then obtained by solving the optimisation problem
max  M(n, k) (5)
s.t. N(n,k)=0 (6)

in which 7 is the vertical location of the neutral axis, and x the curvature.
The uncertainty modelling of the parameters describing the ultimate bending capacity is

Variable Name Distribution

Yield stress Log-Normal (314.0, Cov=7% )
Model uncertainty strength Normal ( 1.0, Cov=7% )
Plate imperfections Normal ( ¢/2, Cov=20% )
Stiffener imperfections Normal ( /100, Cov=20% )
7 (in residual stress) Normal (5.25, Cov = 12% )

5 Formulation of reliability analysis

The hull section consists of large plate structures which are stiffened by a relatively large number
of longitudinal stiffeners. Traditionally, the load carrying capacity of the hull section is calculated
by considering the capacity of the individual sub-elements built up of a stiffener and a part of the
plating. The ultimate load capacity of these individual sub-elements are influenced by the level
of initial imperfections such as distortion and residual stresses — at least as far as compression is
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concerned. The presence of the correlated identical stiffeners jeopardises the optimisation perfor
under FORM/SORM, because the optimisation routine at a certain stage starts interchanging
location of the weakest stiffener, second weakest, third weakest, and so on. In this context iden
stiffeners means: (1) that the stiffeners have identical geometry, (2) that they have the same s
common material parameters, and (3) that they are subjected to the same strain. To overcome
problem the ultimate load capacity of the identical stiffeners have been be ordered as a functio
their initial imperfections using order statistics.

The conditional distribution function of the ultimate load capacity of the identical stiffen
conditioned on the common set of material parameters, must be provided to obtain the orde
set of the load capacity, and thereby the ordered set of initial imperfections. These conditic
distributions are mutually independent for the individual stiffeners.

The procedure formulated utilises the simplicity in standard reliability analysis of events in
evaluation of the reliability of a system consisting of correlated identical events will not be revie
here. The problem must, however be solved as a nested reliability problem. Reference is left tc
for further description.

6 Model correction factor method

The procedure outlined in the previous section is very time consuming, and infeasible for nr
practical purposes. The model correction factor method proposed in [3, 5] seems to be an attrac
alternative.

The idea behind the model correction factor method is to formulate a simplified structt
model ~ e.g. an ideal rigid-plastic yield hinge structural model — and then, in a probabilistic se:
perform a calibration of the simplified model to the complicated, but more realistic, model. "
probabilistic calibration procedure assures that the simplified model is made “realistic” — at le
around the design point.

The model correction factor function v(Z) assures that the relation

Myeat(Z) = v(Z) Mideat (Z)

holds everywhere. M,cq1(Z) is the realistic moment and Mjgeq,i(Z) the simplified. It is evident t
the reliability analysis is unaffected of whether the left hand side or the right hand side of Ec
enters the analysis. v(Z) is approximated by a zero or first order Taylor expansion with expans
point around the design point Z* obtained using the ideal model. Within a few iterations

serie {Z*} of design points, obtained by consecutive reliability calculations using the ideal mo
in connection with the model correction factor, will converge.

The model correction factor approach was implemented within the reliability analysis progr
PROBAN [11}, and Figure 2 shows a comparison of the reliability index calculated using the ex
model and the simplified fully plastic model multiplied with the model correction factor. The mo
correction factor ¥(Z) was calculated based only on a zero order Taylor expansion. Only three
four iterations lead to the final design point. The stars represent the results of the realistic mo
and the solid line the result obtained from the model correction factor approach. It is seen t.
the results from the two methods coincide perfectly.

Figure 3 shows a comparison of the corresponding importance factors obtained by the t
models. For simplicity the importance factors are lumped into variable groups of (1) a load
group, which covers uncertainty in wave loading and still water loading, and model uncertainty,
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a strength group of yield strength, imperfections, and model uncertainty of strength calculat
and (3) a corrosion group, containing corrosion rates, ageing parameter, and corrosion initiaf
time. It is seen that also the importance factors coincide satisfactory.

The CPU-time in obtaining the reliability index due to the realistic model was around se
days compared to approximately one hour for the simplified model.
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1 Introduction

This paper is devoted to the problem of designing mechanical components made of brittl
material such as ceramics by using Weibull statistics combined with finite element base
shape optimization and mathematical programming. Such design optimization problem
are rarely discussed but design with brittle materials calls for use of structural shape
optimization as design with new materials very often cannot be based on design rules o
engineering tradition. One of the few examples of using structural shape optimization i1
the design of ceramic components can be found in a very interesting paper by Koski &
Silvennoinen (1990).

In the last decades there has been an increasing use of ceramic materials in mechani.
cal enginering applications where good wear resistance properties, high hardness, sufficient
high-temperature capability, high stiffness, and good corrosion resistance are needed. How-
ever, design with brittle materials is different from design with traditional ductile materials
due to the brittle behaviour of ceramics.

The use of ceramic materials for load carrying components involves two basic features
that must be taken into account in the design phase. First, even at high temperature.
the material has very low strain tolerance and practically exhibits no yielding. Thus, the
material behaviour is linearly elastic up to the fracture point where an unstable crack
growth suddenly takes place. Second, there is frequently large scatter in the strength data
so probabilistic methods must be used. A reliability evaluation based on a two-parameter
Weibull distribution has been generally accepted in design of ceramics, see, e.g., McLean
& Hartsock (1989). Weibull (1939) developed a probabilistic failure criterion based only
on tensile stresses in the component. Compressive failure is not considered in this criterion
because brittle materials usually fail from tensile stresses due to their very high compressive
strength.

2 Analysis of Probability of Failure

The probability of failure is computed for a ceramic component from its stress field by using
the weakest link theory based on the Weibull distribution, and for uniaxial stress, Weibull
established the following function that describes the cumulative probability of failure P
of a ceramic component

Pr=i-en = () L(2) " 2
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teristic mean fracture stress associated with a characteristic reference volume V.. V
total volume of the component and the term

(%') = I’(%ﬁ—l) =/Ooot'rlr7 exp [—t] dt

is the value of the gamma function I' at + + 1 which is easily evaluated.

In order to expand Eq. 1 to three-dimensional stress states, the concept of integr
the normal stress o, and the maximal shear stress 7 around the portion of the unit r
sphere where the normal stress is positive is generally used, see, e.g., Evans (1978), Mc

& Hartsock (1989), Andreasen (1993a, 1993b), and Fig. 1.

Figure 1: Geometric variables describing location on the unit sphere.

The normal stress and the maximal shear stress at a given location on the unit spher
given as
o, = cos?¢ (01 cos? v + o, sin’ z,i’) + ogsin? ¢

r o= \/cos2 ¢ (012 cos? ¢ + o sin? L') + o2sin® ¢ — o2
An equivalent stress o, that is a function of ¢, and 7 is introduced, i.e.
oe = 0, (04, T)

The combination of stresses causing failure is not uniquely determined due to a la
knowledge of the precise geometry of the actual flaws in the structure and a lack of
sensus regarding an appropriate crack extension criterion as stated by Andreasen (19
Therefore, different definitions of the equivalent stress can be chosen, depending or
wanted influence of shear stresses in the fracture criterion.

Thus, integrating this equivalent stress o. over the unit sphere with area A,,, the ge
equation for the probability of failure for a three-dimensional stress state is

Pi=1—exp[—B]
where the exponent B, known as the risk of rupture, is given as

2= () 7 () 4] v
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for umaxial tension, Kq. 1.

Facilities for computing the probability of failure of solid structural ceramic component
discretized by the finite element method have been implemented in the general desig
system ODESSY, see Lund (1995). This system has been developed at the Institut
of Mechanical Engineering at Aalborg University, Denmark, and ODESSY has genere
facilities for doing structural shape optimization, see Rasmussen, Lund & Olhoff (1993
and Lund (1994).

The direct differentiation approach has been used to derive expressions for design sensitiv
ities of the probability of failure P;, see Lund (1995), and it has thereby been possible t
do shape optimization of structures with design criteria involving the probability of failure

3 Shape Optimization of Cutting Bit from a Circulai
Saw Blade

An example of minimizing the probability of failure of a mechanical component made o:
a brittle material is given in this section. The example deals with shape optimization of ¢
cutting bit from a circular saw blade as illustrated in Fig. 2.

linearly varying
- load

5

Circular Saw Blade (D = 150 mm) Zoom on Cutting Bit

Figure 2: Cutting bit from a circular saw blade.

The saw blade is made of steel and the cutting bit of a cemented carbide. The cutting bit is
brazed to the saw blade at a temperature of approximately 920°C and the structure is then
cooled down. This process causes thermally induced stresses which are taken into account.
Furthermore, a linearly varying load corresponding to a maximum loading situation is
applied at the cutting bit. The cemented carbide has a characteristic mean fracture stress
o, of 1300 MPa associated with a reference volume V. of 13 mm?® and Weibull modulus m
of 11.

A 2D finite element model is used and the objective is to redesign the shape of the cutting
bit such that the probability of failure in this maximum loading situation is minimized.
The boundaries are described by quadratic B-splines having 19 shape design variables and
a SLP algorithm is used as optimizer. The only constraints originate in allowable geometric
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5000 quadratic 2D solid finite elements. The probability of failure of the initial des
Py = 47%, i.e., 1 out of 21 bits fails but having performed the shape optimizatic
probability of failure is reduced to P; = 0.0014%, i.e., 1 out of 7250 bits fails. The i
and final design of the cutting bit can be seen in Fig. 3.

P; = 4.7%: 1 out of 21 fails Py =0.0014%: 1 out of 7250 fails

Figure 3: Initial and final design of cutting bit from a circular saw blade.

The example illustrates the effectiveness of designing mechanical components ma
brittle materials by using Weibull probabilistic methods combined with finite ele
based shape optimization and mathematical programming.

References

Andreasen, J.H. (1993a): Statistics of Brittle Failure in Multiaxial Stress States. Journal
American Ceramic Society, Vol. 76, No. 11, pp. 2933-2935.

Andreasen, J.H. (1993b): Reliability Based Design of Ceramics. Report No. 57, Institute of Mech
Engineering, Aalborg University, Denmark, 27 pp. (To appear in Materials & Design).

Evans, A.G. (1978): A General Approach to the Statistical Analysis of Multiaxial Fracture. Jour
the American Ceramic Society, Vol. 61, No. 7-8, pp. 302-308.

Koski, J.; Silvennoinen; R. (1990): Multicriterla Design of Ceramic Components. In: Multic
Design Optimization (Eds. H.A. Eschenauer, J. Koski & A. Osyczka), pp. 447-463, Springer-\
Berlin.

Lund, E. (1994): Finite Element Based Design Sensitivity Analysis and Optimization. Ph.D. I
tation. Special Report No. 23, Institute of Mechanical Engineering, Aalborg University, Denmar.

pp.

Lund, E. (1995): Shape Optimization of Ceramic Components Using Weibull Statistics. In: Proc.
World Congress of Structural and Multidisciplinary Optimization (Eds. Niels Olhoff & G.I.N. Roz
pp. 323-328, Pergamon Press, Oxford, UK.

McLean, A.F.; Hartsock, D.L. (1989): Design with Structural Ceramics. In: Structural Mec
(Ed. J.B. Wachtman), pp. 27-97, Academic Press, London.

Rasmussen, J.; Lund, E.; Olhoff, N. (1993): Parametric Modeling and Analysis for Optimum L
In: Proc. Structural Optimization 98 - The World Congress on Optimal Design of Structural St
(Ed. J. Herskovits), Vol. 2, pp. 407-414, Federal University of Rio de Janeiro, Brazil.

Weibull (1939): A Statistical Theory of the Strength of Materials. Ingeniérs Vetenskabs Akade
Handlinger, Nr. 151, pp. 5-45.
94



Gradient-Regularized Plasticity Coupled to Damage -
Formulation and Numerical Algorithm

Thomas Svedberg and Kenneth Runesson
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1 Introduction

A well-known characteristic of a local continuum theory is that the localiza-
tion zone can be infinitely thin, i.e. a displacement discontinuity can develop.
This means that diffuse localization phenomena, such as the development of a
smooth neck in a tension-bar, can not be accurately described within classical
continuum theory (at least not without suitable regularization in the post-
localized range). That a displacement discontinuity is possible also leads to
numerical difficulties when conventional FE-methods, which employ continu-
ous displacement approximation, are used to capture localization phenomena.
In particular, it appears that the calculated energy dissipation will tend to
zero when the FE-mesh becomes infinitely refined, which is translated into the
physically unrealistic result that the global postlocalized response becomes in-
finitely brittle. Since this is the characteristic result of refining the FE-mesh,
it is known as “pathological” mesh-dependence.

As was already alluded to above, one possibility to ensure that the correct
amount of energy is dissipated is to employ a “local regularization” strategy
such that a non-standard interface is introduced along the localization zone.
Such “dissipation-objective” regularization of the local theory has a long tradi-
tion in the modeling of semi-brittle material response, cf. WILLAM & AL. [10],
BAZANT [1], and has relied heavily on the “fictitious crack” concept launched
by HILLERBORG & AL. [4]. Recent contributions within FE-technology are
those of LARSSON & AL. [6], SIMO & AL. [8], LARSSON & RUNESSON [5] and
STEINMANN & AL. [9].

A rational approach to model postlocalized behavior, at least from a fun-
damental mechanics viewpoint, is to introduce “global” regularization of the
governing equations by resorting to higher order continuum theory. In this pa-
per, we present a thermodynamically consistent theory of gradient-regularized
plasticity coupled to damage. The theoretical formulation is presented along
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with its numerical treatment. Only those internal variables controlling hard-
ening (in the local sense) are augmented with gradient terms. In particular, it
is shown that this approach leads to the introduction of “dissipative stresses”,
cf. HALPHEN & SON [3], on the boundary of a given body. The CDI then
imposes restrictions, in a rational fashion, on possible boundary conditions for
the plastic multiplier. This is believed to be a novel feature, that contributes
in establishing a self-consistent constitutive theory. At this point, we remark
that, so far in the literature, only heuristic arguments have been used for
choosing the (mostly homogeneous) boundary conditions.
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Fig. 1. Displacements (top row) and accumulated plastic strain (bottom row) for
gradient theory.

2 Numerical algorithm

Previous attempts to establish reliable FE-algorithms for gradient (and non-
local) formulations of plasticity are based on full coupling between the dis-
placements and the plastic multiplier in the discrete problem, cf. PAMIN [7].

In this paper we rather employ a staggered solution technique for the quite
conventional equilibrium problem and the non-classical boundary value prob-
lem in the plastic multiplier. An implicit integration strategy, viz. Backward
Euler (or CPPM), is used to solve for the plastic multiplier within a fully
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nouunedr equiuiprium step. ‘Lhe corresponding FE-formulation is of a non-
standard mized type, cf. BREZZI & FORTAIN [2], which is believed to be an
important novel feature of the present work.
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Abstract

1 The scalar damage model

The damage theory of Kachanov [2], hds been applied successfully by sev-
eral authors [3], [4] to simulate the non-linear behaviour of concrete. This
is done by introducing an internal damage variable d which monitors the
degradation of the elastic properties of the material. This paper presents a
scalar damage model capable to simulate a variety of plain and reinforced
concrete problems. The model is very attractive for large scale computa-
tions because is developed in the strain space where an explicit algorithm is
obtained.

Assuming the material behaviour to be elastic-damaging the constitutive
equation reads:

oij = (1 —d) Cfjyy er = (1 — d) 6y (1)

Thus, given a relationship d = g(e;;), the model is fully determined and
assuming an increasing function g(e;;), positive dissipation is guaranteed.

The equivalent strain €., adopted here represents a good compromise to
simulate the non-linear dependency between hydrostatic and shear effects
observed in the concrete and it is defined as [8]:

. (M —1) I§ (M—1) It \? 3 Jg
€eq = (1~ 0( 635)) {-——“——2 M=) +\/(2 M _2,,)> BEVACETL
(2)
A value of M = 1.35 is assumed in this work. The factor (1 — 6( &;;)) is
introduced to improve the response of the model around the shear dominated
zone. Thus, the damage criterion is postulated simply as: Damage growth
is possible if the loading function f vanishes, e.g.

f= €eq — k(d) =0 (3)
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Under a general state of stresses the total damage d is assumed to be a
linear combination of the tensile damage d*and the compressive damage d~
as:

d=a(6i) d* + (1~ a(éy)) d” (4)

where a(6;;) has the following definition:

a = 1—exp(=81®)
(5)
by = L Gy
o115

The B parameter is introduced to control the post-peak shear behaviour
quite important to model the transition between plain and reinforced con-

crete.
Interested in normal strength type of concretes, the tensile damage law
d* [4] and compressive damage law d~ [3] adopted have the following defi-

nitions:

df=1-=2 exp[k (l—Eﬂ-)] (6)

Eeq Eo

(1—-A7) e,
Eeq

d=1- — A7 exp(—B~ (geq — €5)) (7)

The parameters A~, B~ are identified by fitting to data from the uniaxial
compression test. However, these parameters can be related to the maximal
compressive stress f, and its corresponding strain emax. The k parameter
is found from the total specific dissipated energy gs (the area under o — ¢
curve). This requirement necessities the introduction of the fracture energy
Gy and the crack band width h. In order to reduce mesh dependency the
crack band h is linked to the size of the element used and in particular for
2D problems h = +/A,. Thus this model requires basically 6 parameters: E,

v, ft7 va fé and emax -

2 Numerical results

The following numerical examples shows the capability of the model to simu-~
late some well known concrete tests. Because of space limitations we present
only the global (F - § curve) and some local (strain or damage distribution)
results. A fully detailed description of the tests and input parameters used
will be given during the presentation of this paper.
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Splitting test [6]
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Bresler & Scordelis beam [1]
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A complete description of the previous model can be found in [5].
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Tensile Strength of Concrete
at Early Age

Anders Boe Hauggaard! and Lars Damkilde!

Introduction

The purpose of the present work is to analyse the tensile strength deve-
lopment of early age concrete by numerical and experimenta] means, The
one-dimensional tensile strength is needed when the development and distri-
bution of stresses in the early age are considered. The stresses are used to
predict the risk of harmful cracking which may affect the durability of the
concrete structure, [1]. The early age is characterised by chemical reactions
between cement particles and moisture giving the strength development, and
the reactions are termed the hydration process.

Figure 1: Dog-bone test specimen

Experimental Procedure

Dog-bone shaped test specimens have been developed to obtain the one-
dimensional tensile strength of concrete from one day after start of hydration.
Normally splitting tensile tests are used to obtain the tensile strength at these

'Department of Structural Engineering and Materials, Technical University of Den-
mark, DK-2800, Lyngby, Denmark.

103



early ages and this is because of difficulties in gluing loading plates to the
wet surfaces of the concrete. The splitting test is an indirect method and
the result depends on the Poisson ratio which is changing rapidly at early
ages. The results obtained from the dog-bone tests have been compared with
the splitting tensile strength. In Fig. 1 the dog-bone test specimen glued

Figure 2: Splitting test specimen

into the testing machine before and after testing is shown. The position of
the fracture has been confirmed by finite element analysis. The dimensions,
complying with the danish standard, are

e length: total: 480 mm and narrow section: 200 mm

e Cross section: narrow section: 100 mm x 100 mm and
large section: 140 mm x 140 mm

The specimens are glued into steel cups and the glue thickness is 5 mm on
the sides and no glue on the bottom, which means that the load is transferred
through shear from the loading plates to the specimen.

The splitting test specimen is shown in Fig. 2 and the test is a standard
procedure. Based on assumptions of the stiffness properties the failure load
is transformed to the splitting tensile strength. It is often assumed, see e.g.
[2], that the one-dimensional tensile strength is equal to 60% of the splitting
tensile strength. Surprisingly the experiments carried out indicated that this
only was true for concrete older than about 2 weeks whereas at earlier stages
the one-dimensional tensile strength seemed to be larger.
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Numerical Analysis

At early age the Poisson ratio is 0.5 immediately after start of hydration
where the cement particles are distributed in the moisture and the concrete
behaves as a liquid. In the following hours, the setting time, the Poisson ratio
decrease to a minimum followed by an increase until a final value of about 0.9.
Finite element analysis of the dog-bone and the splitting experiments have
been carried out to clarify if the development of the Poisson ratio may explain
the observed relation between the one-dimensional strength and the splitting
tensile strength. The program used is COSMOS and & simple crack criteria
has been applied where failure takes place when the maximum principal stress
reaches the tensile strength. A more refined analysis could include a crack
model e.g. using the smeared-out concept, [3]. In Fig. 3 the finite element
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Figure 3: Mesh used in the analysis of the splitting test

mesh used in the splitting case is shown and % of the structure is modelled
due to symmetry. The loading is applied through steel plates and a wood
insert which are also modelled in the analysis. In the case of the dog-bone
analysis the glue and the steel cups have also been modelled. Fig. 4 shows
the influence of the Poisson ratio on the value of the splitting tensile stress
and the one-dimensional stress, respectively, giving a maximum principal
stress of p; = 1.0 MPa. For the splitting test the influence from the Poisson
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ratio is seen to be larger and also a shift in behavior is observed. For large
values of the Poisson ratio failure occurs for lower stresses in the splitting
test whereas the opposite holds for small values of the Poisson ratio.

Conclusion

The development of the tensile strength at early age has been analysed.
A test equipment has been developed for measuring the one-dimensional
strength from one day after start of hyvdration and onwards, and the results
are compared with the standard splitting tensile strength. The results in-
dicate that the one-dimensional tensile strength is larger than the splitting
tensile strength for ages less than 2 weeks whereas the opposite holds true
for later ages. Numerical analysis studving the influence of the development
of the Poisson ratio confirm the experimental results.
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1 Abstract

This abstract presents a novel method for optimizing the directivity of the sound emissio:
from the diaphragm of an electro dynamic loudspeaker. The analysis of the loudspeake
is performed by using a finite element based modal analysis of the structural dynami
behaviour of the diaphragm and the boundary element method for the acoustic analysis
Through optimization of a dead mass distribution on the loudspeaker diaphragm, it has
been possible to improve the directivity.

2 Introduction

Electro mechanical loudspeaker units have been used for decades, but unlike other compon-
ents of the loudspeaker, the design of the diaphragm has essentially remained unchanged
from the classical conical shape.

An ideal diaphragm would have a piston-like behaviour with a, variable frequency depend-
ent radius. This is obviously not possible with an ordinary loudspeaker unit where the
radius is fixed, and the diaphragm only behaves as a piston in the lower part of its fre-
quency range. This is the reason why a typical loudspeaker has several units of different
radii, in oder to cover the entire audible frequency range. Modern loudspeaker units ex-
hibit good mechanical and acoustic behaviour, but only within a specific frequency range,
which is due to the physical behaviour of the diaphragm that "breaks up” when the ex-
citation frequency exceeds a threshold value. At the same time, while the sound radiation
is uniform in all directions when the frequency is in the lower part of its range, the dia-
phragm has a tendency to radiate within an more narrow angle for increasing excitation
frequencies. This is caused by interference phenomena that occur when the sound wave
length in the air becomes equal to or larger than the circumferential distance of the dia-
phragm. This naturally leads to the idea of designing a diaphragm which has a frequency
dependent effective radius, i.e., to perform an optimization of the diaphragm design with
a view to decouple the outer parts of the diaphragm for frequencies above the threshold
value.

An acoustic objective function has been developed for the optimization which is directly
based on achieving a predefined form of the directivity diagram. The design variables for
the problem are taken to be the masses and radial positions of a set of concentric, dead
ring masses attached to the diaphragm. In order to be able to perform this optimization, a
structural-acoustic uncoupled combination of the Finite Element (FE) and the Boundary
Element (BE) methods has been established. The analysis of the dynamic behaviour of
the diaphragm was performed with a FE discretization of the structure in vacuum and
using modal analysis. The acoustic analysis was performed by a BE analysis, using the
vibrational velocities obtained from the dynamic analysis of the diaphragm as input.
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As mentioned in the introduction, we perform the analysis of a loudspeaker diaphragm by
a combination of FE and BE which makes it possible to achieve a very flexible description
of the problem. The structural analysis is based on a FE discretization of the structure
and use of modal analysis, see [3]. The equation of motion is

[MI{D} + [CI{D} + [K|{D} = {F} 1)

where [M], [K], and [C] denote the global mass, stiffness and damping matrices, D the
global displacement vector, and dot implies differentiation with respect to time, . F(t)
denotes the harmonic excitation force to which the diaphragm is subjected. As the force
F(t) is assumed to be harmonic, the vector D can be expressed as a linear combination of
the eigenvectors of the system, and the equations of motion decouple into n independent
differential equations of second order, where n denotes the degrees of freedom of the system.
Each of the solutions to these n equations is the same as for a system with one degree of
freedom. In this way the normal velocity of the diaphragm is found and used as the input
for the acoustic analysis.

4 Acoustic analysis

The acoustic analysis is performed by using the BE method based on the Helmholtz integral
in the following form, see [4] [2] and [5],

O(P) p(P) = /S(p@)?%ﬁ{—@ ; e'wpov@)G(R)) ds @)

Here, p(P) is the pressure at an arbitrary point P, v(@) is the velocity at a point @ on a
sound emitting surface S, and it is assumed that p(Q)) and p(P) satisfy Helmholtz’ wave
equation V2p + k%p = 0 for time harmonic waves, where k is the wave number, and py is
the density of the medium. The function G(R) is the free-space Green’s function and C(P)
is the space-angle. The procedure consists in subdividing the surface of the diaphragm into
n. elements and to make a discretization of Helmholtz’ integral, that makes it possible to
set up a system of equations from which it is possible to determine the pressure everywhere
in the acoustic medium.

5 Optimization

As objective functions, several formulations where investigated but an objective function
based directly on the directivity diagram was the most succesfull, and it showed that it
was possible to obtain a uniform directivity for a flat membrane. This objective function
was formulated as the sum of the differences between the actual sound pressure level at a
number of points lying on a circle with a radius of 3 m from the center of the diaphragm.
The design variables for the problem are taken to be the masses m; and radial positions
r:, 1 = 1,..., I, of a set of concentric, dead ring masses attached to the diaphragm, i.e., the
vector of design variables is {a} = {my,....,mp,T1,.ery 7117

The optimization problem is formulated mathematically as

min[f({a}) = Z (R — RY)] (3)
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where RY and R{, respectively, are the desired and the obtained sound pressure values a
a number of points i, i=1,...,N,, and {a} is the vector of design variables.

The first constraint specifies a total mass M of the ring masses which is a minimun
allowable value. The subsequent constraints are simple side constraints on the desigr
variables, where m¥ are given upper values for the masses, and a denotes the outer radius
of the diaphragm.

6 Example: Flat diaphragm

The diaphragm was first considered as a flat, uniform circular elastic plate, modelled with
Mindlin axisymmetric elements, see [1], [6], to which a set of circular, concentric dead ring
masses were attached. The radii and the magnitude of these ring masses were adopted as
design variables.

Fig. 1 shows the design model where 32 ring formed dead masses are attached to a
circular clamped plate exited by a central, harmonically varying point force f (1) = Ae™?
with A = 1IN. First the design model was investigated for an excitation frequency of the

i z Dead
ead mass -
Baffle
J \ 2 7 7
Excitation )
Force Diaphragm
3 —]

Figure 1: Design model for flat plate diaphragm

force of 10500 Hz, which results in a very directive pattern. The target level for the sound
pressure level, the semi-circle of radius 3 m from the membrane, was choosen to be 85 dB.

Fig. 2A shows the directivity pattern for a flat diaphragm plate, both for an initial
uniform distribution of the discrete masses, and after the optimization of the discrete
masses has been performed. It is clearly seen that the optimized directivity curve is much
more uniform than the initial one. The uniform directivity is obtained by placing ring
masses located along the inner nodal circles, and thereby decoupling the outher parts of
the membrane see Fig. 2B

It was also shown that when the optimization was carried out for the sound pressure level
of 100 dB, it was possible to obtain uniform directivity in the entire audio-range from 0-20
KHz. The main difference of the optimized structure compared to the previous examples,
was a significant use of very large masses.
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7 Conclusions

The directivity of a loudspeaker diaphragm has been optimized using as design variables
the magnitudes and positions of a set of ring masses attached to the surface of the dia-
phragm. The structural vibration problem was analyzed by FE and modal analysis, while
the acoustics problem was solved using a BE analysis. The ob jective function was formu-
lated directly to prescribe a directivity pattern in the form of semi-circle. The optimization
of a flat circular membrane showed that it was possible to obtain a uniform directivity for
the hole audio frequency range (0-20 KHz). By optimization the membrane was designed
such as to act more or less as a point source by placing a large mass at the inner part
of the membrane and decoupling the outer part of the membrane, by using only smaller
masses that established a mutual cancelling effect in the vibration pattern for the outer
parts.
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OPTIMAL TOPOLOGY DESIGN
FOR CONTACT PROBLEMS

Joakim Petersson, Department of Mathematics, Technical University of Denmark

1 Introduction

Structural optimization is the problem of optimizing the performance of an
assemblage of material which is subject to external loads. The objective function
reflects what exactly is desired from the structure, and the design variables
are the parameters subject to changes when extremizing this objective. In
addition to constraints on these variables (design constraints), it is also necessary
to introduce equilibrium conditions; since equilibrium for contact problems is
governed by a variational inequality, structural optimization problems have in
general, an inherent bilevel programming form, cf. [3).

Compliance topology optimization is probably the structural optimization
problem which has been most frequently studied and used during the last decade,
see [1] for an overview. Changes in topology usually imply drastic improvements
in the structural performance, and choosing compliance as a performance mea-
sure also implies that the bilevel formulation of the problem reduces to a convex
program. '

The topology nature of the optimization is incorporated by allowing the
thickness type design variables to take zero values.

2 Problem Statements

2.1 The Equilibrium Problem

We consider a discrete (or discretized) linear—elastic structure whose state of
displacerents is represented by a vector u € $#”. Forces acting on the body are
composed of forces due to contact with a rigid body and external prescribed
forces f € R”, and therefore the force equilibrium equation reads:

f=K(h)u+CT, (1)

where A € R is a vector of contact force magnitudes, C is an r x n kinematic
transformation matrix, and K (k) is the structural stiffness matrix.

We let ¢ € 1" be a vector of initial distances between contact boundary
nodes of the body and the rigid obstacle. We then have the frictionless Signorini
contact conditions:

Cu<lg; A>0; M (Cu-g)=0, (2)

due to requirements of non-penetration, no adhesion and no contact action at a
distance, respectively.

2.2 The Design Optimization Problem

The considered structural optimization problem is
min fTu+ g7, (3)

heH
(1),(2)
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in which (1) and (2) constitute the equilibrium constraints. Here, h are the
design variables, and # defines the design constraints:

> k=1Th=V; ashsﬁ} (4)

i=1

'H:{hE?Rm

The design variables k are structural thicknesses or volumes, such as bar volumes
for trusses or thicknesses representing the discretized (elementwise constant)
thickness function for a sheet, and V is the available amount of material. These
variables affect the structural stiffness matrix (only), and K (k) = S kK,
where K; is the global specific element stiffness matrix for the ith structural
element. We let IT(u, &) = 1/2u7 K'(h)u— T u denote the total potential energy,
and U = {u | Cu < g} the set of kinematically admissible displacements.

In case g = 0 we obtain the classical compliance term, but, in general (3)
means a strive for small contact force magnitudes in addition to small displace-
ments.

It is shown in [5] that (3) can be solved by finding a saddle point (u*, h*) e
U X H toII:

(sT) Find (v*,h*) €U xH :
M(u*, h) < T(u*, h*) < H(u, h*), V(u,h) el x H.

If (u*, h*) solves (STI), and X* € ®” are Lagrange multipliers associated with
the contact conditions describing the set I/, then (u”, A", h*) solves (3).
Associated with the saddle problem (STI) is the dual pair of convex programs

Find v* Ed :
®) { Y) <YW,  Vued,

where ¥(u) Lt supsey I1(u, h), v €U, and the dual problem (D), conversely, is

to maximize (k) &f infyey (u, h) over H.

3 Algorithms for the Optimal Design Problem
3.1 The Subgradient Method

One succesful approach to solve (3) is to apply iterative algorithms, for convex
nonsmooth programs, to (P). One such alternative is the subgradient method,
which generates a sequence {u*} of feasible solutions by the formula

w1 = Py (vt - agy(u”)), k=1,2,..., (5)

where £ (u*) € 8y(u*) is an element of the subdifferential (that is, a subgra-
dient) of ¢ at u*, and Py denotes the Euclidean projection map onto 4. We
choose step lengths az according to the harmonic series formula a; = ale“/S-

Using a well-known result on subgradients of max-functions, a subgradient
of ¢ is given by &y (u¥) = K(h*)u* - f, where

B* e H(uk) ¥ arg glnea'zcﬂ(uk,h). (6)
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The linear program (6) is a continuous knapsack problem, which means that
1t can be solved very effectively by so-called greedy algorithms [4].
We define an auxiliary sequence {A(k)} by

k
h(k):%Zh’, k=1,2,..., (7)
s=1

where k¥ is given by (6). Clearly, h(k) € # for all k. (In practice, we calculate
h(k) according to h(k) = (1 - FR(E—1) + Lh*.)

According to [6, Th. 4.3], one can guarantee convergence of the iterates u*
and A(k) to solutions of (SII)!

We present a symmetric variable thickness sheet example where the thickness
function is defined on a square domain. The upper design bound is constant
and the lower is identically zero. The available amount of material is half the
volume for the upper design bound. The optimal thickness distribution is shown
in Fig. 1 where black color represent thickness values on the upper bound, and
white signifies a zero volume (voids in the structure).

Figure 1: The 6bti;hal thickness distribution for a square sheet

3.2 Linear Programming Formulation

In case of a truss structure one can state a reformulation of (STI) in the special
case when h = 0, h; = 400 and g = 0:

é’é‘?e’f fra min o7 (pt + p7)

. - (pF,0= 1)
(LP) { subject to gz > 2 (ZP)s 4 subject to CTA+ BT(p+ — =) = f
k s A20.5720,57 20

Here we have defined v = k(ly, .. €,)T, k= \ /sz‘s" and B is the m x n matrix
whose ith row contains direction cosines for bar 1.
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Suppose % € " solves (LP) and (pT,p™,X*) € ™ x R™ x R” solves (LP),,.
Define u* € R* and h* € R™ as u* := pil, h* := p~Yw' + w™) where

i = p: 73% 4, H =
V-l (wt + w™). Then, provided p > 0, (u", A*, h*) solves (3). (For details,
see [2] or chapter 4.2.6 in [1]).

As a numerical example we present a plane bridge-type structure unilaterally
supported from below at the two ends. Between these there are downward forces
acting on the lower part. A standard LP solver was used to solve (LP) and
(LP)g above, and the result is shown in Fig. 2.

wt = {uf}, o~ = {07} and W = /3% 4, w

o 0 600 00 0 O O

0 0 0 0 00 00 000 o 00
0 0 060 ¢ 0 0 O0C 00 0 0 0 0o

=¢ : contact force

sy : €Xternal load

Figure 2: Subset of groundstructure and loadcase (left), and optimal design
(right)
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SOME GENERAL OPTIMAL DESIGN RESULTS
USING ANISOTROPIC, NON—-LINEAR MATERIALS

PAULI PEDERSEN

Department of Solid Mechanics
‘Technical University of Denmark, 2800 Lyngby, Denmark

Abstract — Recent results on optimal design with anisotropic materials and optimal design
of the materials themselves are in most cases based on the assumption of linear elasticity.

We shall extent these results to the non—linear models classified as power—law elasticity.
These models return proportionality between strain energy densities, which implies local-
ized sensitivity analysis for the total strain energy and thus for a number of practical studies.

For two and three dimensional problems the effective strain and the effective stress are
defined from an energy consistent point of view, and it is shown that a definition in analogy
with von Mises stress cannot be used.

The optimization criterion of uniform energy density also holds for these non—linear mate-
rials, and several general conclusions can be based on this fact. Applications to size design
of thickness and density will illustrate this.

Then the general material design problem is addressed. Based on a constraint on the Frobe-
nius norm, the validity of recent results are extended to the non~—linear materials. In this
relation also the orientational design with orthotropic materials is focused on.
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The result for the general material design problem in terms of a non—dimensional 3T

constitutive matrix and stated in the directions of principal strain/stress is

[ & g eqp 000

e€n €f eqm 000

[@]optimal = L > |e€m enm €fy 000
(1 +eg+em) | 0 0 0 000

0 0 0 000

0 0 0 000

We note that the optimal material is orthotropic, that principal directions of material, strain
and stress are aligned and that there is no shear stiffness. In reality this matrix only has one
non-—zero eigenvalue and the material therefore has only stiffness in relation to the speci-

fied strain condition.

With respect to strength optimization, i.e. the more difficult problem with local constraints,
we shall comment on the influence of the different strength criteria.

Shape optimizations by sequential linear programming are discussed in the last part of the
lecture and the similarities with shape design based on linear elastic material are put for-
ward. The biaxial problem shown below is optimized in relation to stiffness as well as
strength and actual design parameters has been shape, size (thickness) and/or material

orientation.

|
HHHUIlHHH
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Nonlinear Continuum Mechanics with
Polarity

Esben Byskov Jes Christoffersen
Department of Department of
Structural Engineering & Materials Solid Mechanics
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September 06, 1996

Abstract

In some situations the usual local, non-polar continuum theories are deficient in
that they do not have any length scale. Therefore, they are not able to predict the
width of strain localization such as kink bands in fiber reinforced epoxy in compres-
sion. Inherent in (micro)polar continuum theories is the concept of a length scale
which may be determined either from the microstructure of the material or indirectly
by experiments. Here, we present a nonlinear, polar continuum theory which seems
to be able to handle such difficulties.

1 Introduction

Over the past decade, kink band formation in fiber reinforced epoxy in compression has
received widespread attention because this type of material failure is potentially dangerous
in expensive and important structures such as airplanes. Similar kink bands form in wood
in compression but the severity of their existence has not been determined yet. It appears
that in order to determine the kink band angle and width, introduction of a length scale
1s necessary if the material is treated as s continuum.

A more direct approach that considers the structure of the two-component material
has been utilized by Kyriakides et al. (1995) under the assumption that both the fibers
and the matrix are two-dimensional materials. A complete three-dimensional numerical
analysis involving more than just a few fibers appears to be computaionally impracticable
at the present time. Because of the extremely complicated structure of wood a full analysis
of kinking of this material is even more prohibitive. In both cases, some smeared-out theory,
Le. a continuum theory involving a length scale, is therefore appealing.

2 Polarity versus N onlocality

A nonlocal continuum theory may very well be able to handle strain localization and
other similar effects as well as a micropolar continuum theory because nonlocal theories
also involve a length scale. Among the reasons why we prefer a polar theory is that—to
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us—it appears to be more intuitively clear, in particular in connection with fiber reinforc
materials or other materials which are characterized by a pronounced and ordered structur
For other materials such as plain concrete application of nonlocal theories have yield
useful descriptions of the behavior, for example as regards the post peak characteristics
the laod-displacement curve for test specimens of differents length, where the longer t]
specimen the steeper the drop in load, see e.g. (Schreyer and Chen 1986) and (Schrey
1990).

3 A Motivation: Kink Bands

As an example of kink bands, a deformed compression test specimen made of clear wood
shown in Fig. 1. Initially, when the load is applied the fibers remain straight, but when

Wood Compression Specimen

SN
. ——
Longitudinal direction

Tangential direction
Figure 1: Kink band

reaches a certain value a kink band is formed. Both in wood and in fiber reinforced epox
this band is usually at an angle of ~ 7/8 with respect to the normal to the fibers. Th
sketch to the right in Fig. 1 shows a schematic picture of a kink band—either in wood ¢
in fiber reinforced epoxy. In the zones with straight fibers as shown in Fig. 2, the usus

RARN

HHH

Figure 2: Non-polar material

local continuum theory may be assumed to apply, while in the shaded process zones of th :
figure to the right in Fig. 1, where the fibers curve, a micropolar theory must be utilized
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Figure 3: Polar material

When fiber bending occurs, polarity develops because the fibers exert bending mo-
ments on the matrix material as indicated in Fig. 3. This effect has been taken into
account in an ad hoc fashion by Fleck et al. (1995), who established the equations for
incipient kinking. For their particular purpose the analysis seems to provide reasonable
predictions, but no attempt to investigate the behavior after the first kinking was made.
Also, the post peak behavior can not be handled by the method used by Fleck et al. (1995).

4 Basic Formulas
It is our intention to establish a full set of (micro)polar continuum mechanics formulas that
can be used to describe the kinking from its beginning till well into the post peak regime.
For that purpose we utilize an incremental description that entails kinematic, static and
constitutive equations. While the kinematics and the statics—at least in principle—do not
present substantial difficulties, see below, the constitutive behavior involves a number of
material parameters that are, in general, not known at the present time. Special care must
be taken, and a number of rather severe simplifying assumptions may be necessary.

The theory presented here is in rate form which is useful because we intend to solve
problems in incremental form. Some basic formulas are listed below with comments re-
garding our choices.

4.1 Kinematics
Let v; denote the velocity and wy, the spin, which is considered independent of the velocity.
Then, the strain rate ¢; is:

€ij = Vij = CikjWr # € (1)
and the curvature rate is Kij, where:
fij =wij # kg and  w;# L (n; - o) (2)

Thus, both the strain rate and the curvature rate are unsymmetric, and the curvature rate
is not derived from the velocity alone. Of course, this last assumption, which is fairly
common, may be enforced, if desired.
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4.2 Statics

The generalized stresses are the direct stresses ¢;; and the couple stress (moment) ;.

4.3 Rate Form of Statics

In the absence of body loads and body moment loads equilibrium requires:

*
Tiji +eikkrioy = 0

* * (
Viji +€5r (Tkl +Ekioy + fﬁkiuiz) =0

.. * * . . .
It is important to note that 7i; and v;; are objective measures of stress rates given b

*

5= Oij + 03Uk k — Vi x0k; + TikCrijWi (

Tt 3

5= fbij F WijUhk = Vi g likg + Mikeriw)

where ey;; is the permutation symbol and 0i; and [1;; are components of the rates of t}
direct stress oy; and the couple stress y;;, respectively.

4.4 Constitutive Model

For our purpose the constitutive model may be formulated as:

* Ak are usual moduli

Tii= Aijki€ik + Biiriku *J .

<7 ikl=lie ikl where: B are polar moduli (t
Vij= Byij€ir + Dijrukiui Dijn are bending moduli

The crux of the matter is to determine these constitutive paramaters and their variatic
with strain—a task which we have not completed at the time of writing.
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Summary

Based on the Closest Point Projection Method for integration of the constitutive relations in plas-
ticity, we discuss the consistently linearized tangent stiffness modulus tensor for yield criteria that
are of the Mohr—Coulomb type. With the assumption of elastic and plastic isotropy, this tensor is
shown to appear in the form of an additive modification of the continuum tangent stiffness tensor.
The convergence properties of the consistent tangent stiffness tensor are compared with its feasi-
ble approximations. The results indicate the strong sensitivity, in terms of poor convergence
properties, to careless selections.

Introduction

The incremental iterative algorithm for a FE—discretized plasticity problem must be properly de-
signed to ensure cost-efficiency, robustness and accuracy of the solution. In particular, to ensure
cost-efficiency of the algorithm, itis crucial that the computation of iterative search directions is
based on the consistent linearization of the incremental constitutive relations. This will assure the
quadratic convergence property that is pertinent to the Newton-Raphson scheme. As opposed to
the continuum response, the algorithmic tangent stiffness (ATS) modulus tensor in plastic load-
ing involves the “modified” elastic stiffness (AES) tensor, which requires the inversion of a
weighted sum of the elastic compliance and Hessian of the flow potential, as discussed by e.g.
Simo and Taylor [1]. Most investigators seem to prefer to carry out the inversion numerically,
whereby the tensorial structure of the ATS—tensor is not exploited.

Based on the developments in Larsson and Runesson [2], we discuss the general format and char-
acteristics of the Closest~Point-Projection-Method (CPPM) in principal stress space for isotrop-
ic elasticity and plasticity. Due to the inherent coaxiality between the elastic trial stress and the
updated stress, the transformation to Cartesian stress Components can conveniently be carried out
based on the eigenbases of the trial stress. To avoid unnecessary technical complexity, we restrict
to the case of perfect plasticity. The generalization to isotropic hardening (or softening) appears
to be straightforward. We establish the corresponding ATS—tensor explicitly, whereby well estab-
lished results from large—strain isotropic hyper—elasticity are exploited, cf. Simo and Taylor {31,
for the linearization of the eigenbases.
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ATS—tensor for General 1sotropic Yield Criteria

For any temporal integration method, the Algorithmic Tangent Stiffness (ATS) modulus tensor

E , is defined from the consistent linearization of the incremental stress—strain relationship, i.e.
ddo = E,: dde 1

From the CPPM, we recall that the incremental relation can be written

ap"
d0;

3
(B9 :do —de+ A f =0 with f*= > fim; and ff = (2)

i=1

where we have expanded the flow direction f* in the principal dyads m ; = &; ® g, Moreover,
we assume an isotropic yield criterion ¢ and a flow potential ¢, whereby f* and the gradient of
the yield function fare colinear, i.e. m;are principal dyads also of f. Although, we use the gener-
ic notation E° for the elastic stiffness modulus tensor, we also assume elastic isotropy, whereby
the integrated stress o and the elastic trial stress 0° = "o + E®:Ade are coaxial, ie.
m (o) = m,(0°).
Upon differentiating (2), we obtain

(E®) ™' :ddo — dde + dAL f* + A% df* = 0 3)
Remark: In the literature, it is common to differentiate f(¢) in order to formally obtain the Algo-
rithmic Elastic Stiffness (AES) modulus tensor E¢ in the relation

dAo = Ef:|dde — dAL f] (4)
where Ef is given formally, cf. Simo and Taylor [1], as
. =1 82¢* _
E; = [(E )y 4+ 44 30 ® 90 ao] (5)

The major disadvantage is that the inversion, as indicated in (5), must be carried out numerically
for a general yield criterion, whereby the tensorial structure of E§ is completely lost.

In the present paper, however, we follow a slightly different route in order to take explicit advan-
tage of the fact that the principal components f; = f;(0,,0,,03) are constant in the case of a "’lin-
ear” yield criterion (as discussed subsequently). Moreover, we use the fact that m; = m (0°).
Upon using Serrin’s theorem, we may then express m;in closed form in terms of ¢®and 9. If all o¢

are distinct, then

o¢
m;=g0g; = 5’2‘(06 =I5 = 0%)0 + 1509 09 ) (6)
where
di=2(0)* =0t + 1097, IE=6:0°, I{ = deto* (7)
We thus obtain
df* = A:ddo + B :E°: dAe (&)

where we have introduced the symmetric 4:order tensors
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A=Zit—9f—’:mi®mj, B=ZﬁM,~ ®)

where it is noted that af; / d0; = 3f; /90, Moreover, to obtain (9), it was used that 00,/80 = m -
The linearized eigenbasis M ;may be expressed in close analogy with the Serrin—Simo formula,
as given by Simo and Taylor [3], as follows:

om; 0%

M= _Uz I—é@ﬁ—]ﬁemll _(e)—l® 8—1+
i—%?‘?@[ 5007 (Tgy-1 = @ @) (10)

+0Q@m;+m;® 06 — I m® @)+ 097l ® mi) +2(I509) 7% ~ Lm, ® mi]
where
Iy =H©@) ' B0 + 09 0 09"!) an

Remark: Each M; (and m ;) is completely defined by 0°, whereas it is clear that fi(and f7) de-
pends on o in the general situation. B
Upon introducing (8) into (3), we obtain

dAa=Eg:[R:dAe—dA,1f]wizh R=1-A4) B:E® (12)

where the (reduced) AES—tensor E¢ is now defined as

E2=[(Ee)—1+A/1A]~1 (13)

It remains to calculate the dAA from the consistency condition d¢ = 0 (in plastic loading). This

gives

E? = (Eg_hLEg;fcgf:Ef;):R with he = f:E§: f" (14)
a

ATS —tensor for Linear Yield Criteria

In this section, we consider the important sub—class of yield criteria that are linear in the principal
stresses, 1.e. when ¢ is given as

$01, 03, 03) = 4101 + 4,0, + as0, — k (15)
foro; = 0, = 03, where q; = Jiare constant material parameters and k is a cohesion parameter
which is also assumed constant. To define physically meaningful criteria, we choose
ay > a; > as. Aclassof useful yield criteria, which represent a generalization of the MC—crite-

rion, is defined by the choice

— 2—a.. -~ _2a
a1—1+——-2+asmq5, a, T

and £ = 2¢ - cosP. Here, cisthe cohesion, @is the angle of internal frictionand 0 < a < lisa
parameter. The parameter a is defined such that the classical MC and the MT criteria are obtained

sin® | ;= —1+sin@® (16)

fora = Oand a = 1, respectively. It follows that a; > a; > agsincea; > 1,0 < a, = land
a3 < 0. Moreover, a,,, = 2sin® > 0 represents dilatant behavior.
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Considering the class ot linear yield criteria in (15), we conclude that A = 0. Hence, we obtaii
the trivial result E; = E°, whichimplies further simplifications when itis used that E¢ represent.
elastic isotropy defined as

e .. _ V
E—ZG(I+¢6®5), 1/)——-————1_21} (17)
where G and v are the elastic constants, 0 and I are the 2:order and the 4:order identity
tensors, respectively. We now obtain
B:o=0, B:f=0 (18)
whereby it follows that
E°:R=E‘—44LG*B , f:E°:R =f:E* (19)
From (14), we conclude that
E? = E® — 44}, G* B (20)
Here, we used the notation E for the Continuum Tangent Stiffness (CTS) modulus tensor, de-

fined as
ep — e _ 1 pe. . e . — f. €.
E? =E hE.f*@f.E with h = f:E¢:f" @1)
The ATS—tensor is thus obtained simply by subtracting the contribution AA4G2B from the CTS-
tensor.
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Modelling of Early Age Concrete

Anders Boe Hauggaard! and Lars Damkilde!?

Introduction

The scope is modelling of early age concrete which is characterised by chem-
ical reactions between cement particles and moisture. The chemical reac-
tions are denoted the hydration process and during hydration the properties
develop, i.e. increase of strength and stiffness. A material with these char-
acteristics is of the aging type. The important factors at early age are the
development of temperature, moisture and materia] properties which are cou-
pled. During hydration heat is developed and this accelerates the chemical
reactions. At the same time the increased temperature influences e.g. the
creep properties and gives a higher creep rate.

A creep model is set up taking into consideration some of the couplings at
early age and a concept suited for numerical formulations of the couplings
are discussed. The purpose of a numerical analysis is to find the development
and redistribution of stresses to predict the risk of harmful cracking, [1].

The Direct Incremental Creep Model

& &, &
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Figure 1: Rheologic model for the direct incremental creep model.

The basis for the creep model is the rheologic model shown in Fig. 1 and the
elements are n Kelvin cells, each with a stiffness matrix D,, and a viscosity
matrix n,,, and an initial spring of stiffness . The properties are functions

'Department of Structural Engineering and Materials, Technical University of Den-
mark, DK-2800, Lyngby, Denmark.
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of time and then the behavior of a Kelvin cell is given by the differential
equation
En + "77:1 (Dn +1,) én = 777:10"

where €, are the column matrices of strain in cell number n, o is the column
matrix of stress and a superimposed dot denotes derivative with respect to
time. This form of the differential equation is based on the incremental
process of hydration where new layers of cement gel are deposited on the
porewalls of older cement gel and adding stiffness to the concrete. Solving
the differential equation we get the constitutive model

=D -¢&)

where £; are the sum of strains in the n Kelvin cells and termed the initial
strains. The model characterises the material behavior with a linearisation
of the properties.

The coupling between creep and temperature is included in the model using
the activation energy principle, [2]. The elastic moduli, D, are assumed
to depend on the concrete skeleton only and then an increased temperature
influences through a higher hydration rate. In excess of the skeleton the
viscosities, 7,,, are also assumed to depend on the state of the moisture and
then a higher temperature reduces the viscosities. The adjustment of the
properties has the form

D(T) = Dy f(T) n(T) = ny g(T)

where T is the temperature, f, g are the scaling functions and Dy, n, are
reference values at the temperature, 7.
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Figure 2: Creep at a variable stress history.
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Examples

The proposed model has been used to fit some one-dimensional creep mea-
surements provided by The Danish Technological Institute and the results
are shown in Fig. 2. The concrete was loaded after 14 hours of hydration
at 20°C. Creep at three different constant temperature levels have also been
analysed with the model and the result is shown in Fig. 3. These data are
provided by Nagoya Institute of Technology, Japan. The mode] used to fit
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Figure 3: Creep at different constant temperature levels.

the data consists of a Kelvin cell, an initial spring and a single dashpot and
the parameters have a physical analogy to the process of hydration.

Standard Modelling of Aging Materials

In standard aging creep modelling the basis is the compliance function which
is expanded in exponential or potential functions. This expansion mayv be
interpreted as a rheologic model with time dependent properties but as the
properties emerge as a result of mathematics they may violate physical re-
quirements, e.g. by decreasing in certain intervals. In the present approach
the rheologic model is used directly and the properties are not allowed to
decrease. :

The compliance function depend on the complete history including all factors
and a separation of the influence of individual factors is difficult and may lead
to the same physical violations mentioned earlier. The compliance function
approach implies that all memory of the process is retained in the model
whereas the new approach only has memory through the materia] properties
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and the stress in the damper. Our model can be given additional memory by
introducing variables, which contain some weighted sums of previous states.
In Fig. 4 an illustration of such memory variables is given. Work in this field
is in prbgress.
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Figure 4: Memory variables.

Normally when generalising the compliance function to 3D analysis a con-
stant Poisson ratio is assumed and this means that the deformations become
proportional. With matrices for the generalisation we may have different
creep rates for normal and shear strains.

Conclusion

Early age concrete is a material of the aging type where the properties develop
in time as a result of the hydration process. A basis for numerical modelling is
discussed where the couplings of the factors of importance are considered. A
directly incremental model for creep is derived and the behavior of the model
is illustrated with examples. Finally standard creep modelling is compared
with the proposed model in terms of e.g. the compliance function and the
memory of the material.
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Prediction of Bending Response of Wood
Experiencing Compressive Strain Localization

Johannes Sand Poulsen

Department of Structural Engineering and Materials
Technical University of Denmark, Lyngby, Denmark

1 Introduction

When wood is exposed to compression parallel to the grain, strain localization will occur at
some point during the load history, see e.g. (Hoffmeyer 1990). Even though timber struc-
tures usually fail by development of cracks, i.e. the ultimate failure is governed by tension
and shear characteristics such as fracture toughness, strain localization in compression has
a major influence on both the failure load and the type of failure because strain localization
induces redistribution of the stress and strain fields.

In wood without defects the critical strength in uniaxial compression in the fiber direc-
tion can be as low as 30 % of the tensile strength. In compression microbuckling of fibers is
the dominating failure mode which is governed by a shear mode that localizes into a kink
band, see e.g. (Budiansky & Fleck 1993) and (Poulsen & Byskov 1996).

The stress-normalized deformation response of a typical uniaxial compression experi-
ment is shown in'Fig. 1.

Uniaxial stress o, (MPa)

O H 1 1 I 1 i
0 -0.5 -1 -1.5 -2 =25 -3

Normalized deformation (%)

Figure 1: Typical response of uniaxial compression experiment.

When a wood beam, where tensile strength is several times higher than the compressive
strength, is subjected to bending strain localization will occur in the compressive side of
the beam. It is the response of such a beam that is investigated in this paper.
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2 Modeling strain localization

A compressive constitutive response as shown in Fig. 1 together with strain localizatic
can lead to numerical problems in finite element calculations. If the stress—strain curve
simply implemented into the elements in the finite element code the solution found wi
depend on the element mesh and the way the load is incremented, see e.g. (Pietruszcze
& Mroz 1981). This is because the size of the localization zone will be determined E
the element size. We solve this problem by using so-called interface elements between tt
finite elements. With the interface placed perpendicular to the fiber direction we can easil
correlate the overall stress—strain relation to the response of the interface elements.

This approach has previously been used to investigate void nucleation between particle
by interfacial decohesion, (Needleman 1987). It is, however, believed that this is the fir:
time this approach has been used to model compressive strain localization.

If we imagine two material points A and B on each side of the interface, initially havin
the same coordinates, we can define the displacement difference across the interface z
Augap. The normal and shear components of the displacement difference can be determine
as

un=n~AuAB (]

[

ut-:t-AuAB (Z,

where n is the unit normal vector to the interface and t is the unit vector perpendiculas
to n. Negative u, corresponds to interfacial overlap. The normal and shear tractions, 7,
and, T3, can be expressed as

T.,=n-T (3

where T is the traction field. The normal and shear tractions depend on the displacemen
differences, Augp, through the constitutive relations.

The constitutive relations are specified independently for the interface and the mate
rial outside the interface. For the wood outside the interface the constitutive equation i
taken to be orthotropic and linear elastic. The constitutive relations for the interface ar
constructed so that for increasing interfacial compaction. the traction across the interfac
follows the behavior determined by experiments. This means that the response of the in
terface in compression is determined from the stress-strain curve in Fig. 1 after subtractior
of the elastic contributions. In tension the interface will behave linear elastic until fracture
In Fig. 2 a piecewise linear relation between normal traction and displacement is given.

For simplicity, the shear traction—displacement relation for the interface is taken to b
linear elastic. Another relation such as linear elastic-ideal plastic could easily be specified
but since the maximum shear traction is not reached in the interface this is of no interes
in the present context.

Our constitutive model assumes that the normal traction response is independent ¢
shear tractions. This approximation is in good accordance with experiments (van de
Put 1993).
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Figure 2: Constitutive relation for normal traction and displacement in interface.

The finite element code used is the commercial FEM program DIANA? which contains
interface elements in which the above described characteristics can be adapted.

In the finite element calculations we apply the curvature of the beam as a prescribed
deformation at one end. The beam must be given the possibility to compensate for the
difference between the neutral axis and geometric symmetry line when strain localization
takes place, otherwise axial forces will develop. This is handled by letting the supports at
one end be at an angle to the fiber direction, as illustrated in F ig. 3. Thereby no axial
force can arise because the beam is allowed to move in the fiber direction.

Initial

neutral axis

o)

Figure 3: Prescribed deformation, ©, and inclined support.

3 Results and Concluding Remarks
In Fig. 4 the numerical result obtained is compared with an experimental result. The figure
shows very good agreement between numerical and experimental results. The strength and
stiffness parameters used are mean values from compression experiments and are thus not
taken from the particular experiment shown in Fig. 4.

Trademark of TNO Building and Construction Research — Department of Computational Mechanics,
The Netherlands
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Our numerical calculations were terminated when the tensile stress reached 2.5 time
the peak compressive strength. The experiment shown in Fig. 4 had a load carryir
capacity in bending of twice the elastic moment. This equals a tensile strength three time
the compressive strength.

It seems that implementing compressive strain localization as described in this pape
using interface elements yields good results.

2 T T ¥ T
1.8
1.6
14 r
1.2

Calculation ——
Experiment -

1
0.8
0.6
04 +

Normalized bending moment M/M,

0.2

0: L i 1 k| L L 1 2 1
0 -02 -04 -06 -08 -1 -12 -14 -16 -1.8 -2

Normalized compressive deformation (%)

Figure 4: Result of bending calculation compared with experimental result.
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Numerical Simulation of Initial
Defibration of Wood

STEFAN HOLMBERG, HANS PETERSSON

Division of Structural Mechanics, LTH, Lund University, Lund, Sweden

Introduction

The objective in producing pulp is to separate the wood fibers and give them prop-
erties suitable for making paper. A process important in pulp manufacturing is that
of refining or defibration. In manufacturing refiner pulps, wood chips are fed, ran-
domly oriented, to the centre of two rotating refiner discs, see Figure 1. The chips
are successively disintegrated, the fibers being separated while moving towards the
periphery of the discs.

The huge energy consumption required in manufacturing refiner pulps is a serious
drawback. The mechanisms basic to the defibration process are incompletely known.
The present investigation aims at obtaining fundamental insight into the mechanics
of the initial defibration, insight that can be used in efforts to optimize the process
currently employed and to develop new processes and equipment in this area. The
project involves both experimental and numerical work.

-

1
WAL
3
F)

\ o0 o
OO LT =

L[]
- Ul

]

e

1
1
1
1
t
]
Y

Figure 1: Basic plan of a double-disc refiner.

Experimental Work

The experimental investigation aimed at obtaining a better understanding of the
mechanical behaviour of wood loaded perpendicular to the grain and at illustrating
the complex loading conditions present in the initial defibration process. The test
setup and sample dimensions were chosen in light of the geometry of typical refiner
segments. The test setup is shown schematically in Figure 2. The specimen is placed
between two steel plates, the test being run by moving the lower plate horizontally
while the upper one remains fixed. The specimen is thus subjected to a shear
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loading resembling the loading that the two rotating discs exert on the wood chips
in a refiner. It should be emphasized that the tests were carried out for a very
low loading rate, one of 0.02 mm/s, whereas the loading rate in a refiner can be as
high as 100 m/s. Optical equipment was used to photograph the specimens during
testing so as to reveal deformations and fracturing of the material.

Wood specimen

Steel plate

——— i

Figure 2: Schematic view of test setup.

Material Modelling

From the experimental investigation it could be concluded that the following mate-
rial characteristics need to be taken into account in order for proper modelling of
the initial defibration process to be achieved.

e The inhomogeneity of the material.
e The nonlinear inelastic response of earlywood when subjected to compression.

e The fracture mechanical behaviour of the material.

The material’s inhomogeneity is taken into account by separating the wood into
zones of earlywood and latewood, for which separate material models are employed.
The earlywood zones are also subdivided in the radial direction into several layers
differing slightly in their stiffness and strength properties. This is done to at least
partly capture the strain localization that arises when earlywood is subjected to
compression.

The response of earlywood subjected to compression perpendicular to the grain is
typical for that of cellular materials. The resulting stress-strain relation is charac-
terized by an initial linear region, followed by a plateau region with only slightly
increasing stress, and finally a region of rapidly increasing stress, corresponding to
the material being densified. To model this behaviour, a finite strain plasticity model
was employed. That model, developed for analysis of crushable foams, is based on
non-associative compressible plasticity. It uses a yield surface with an elliptical de-
pendence of deviatoric stress on pressure stress. The evolution of the yield surface
is controlled by the inelastic volume strain experienced by the material. The flow
potential used gives a direction of flow identical to the stress direction for radial
paths.
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Fracture of the material is taken into account by use of a fictitious crack model
(FCM). The fracturing properties are thus projected onto distinct cracking sur-
faces, softening stress-relative displacement relations being employed. The mode] is
a mixed-mode expansion of bi-linear one-dimensional stress-displacement relations.
This fictitious crack model is implemented in the finite element simulations by intro-
ducing special crack elements between the standard solid elements. In the present
applications, the crack elements may be subjected to non-negligible rotations com-
pared to their orientation in the initial configuration. In order to take this into
account, a local rotating coordinate system is introduced. From this local system a
transformation matrix is constructed for transforming the element equations.

The modelling of the material can be summarized as follows:

e Barlywood - Crushable foam plasticity combined with a fictitious crack model.

e Latewood - Linear elastic behaviour combined with a fictitious crack model.

Finite Element Analysis

The problem was analysed as a two-dimensional static one under plane strain con-
ditions. First-order solid elements were employed: 4-noded bilinear quadrilateral
elements for the latewood zones and 3-noded linear triangular elements for the ear-
lywood. Crack elements were introduced between the solid elements at locations
where large tensile and/or large shearing stresses occurred. When the strength of
the material was reached, these elements captured the softening behaviour of the ma-
terial. The two steel plates in the tests were modelled as rigid surfaces. A Coulomb
friction model was employed, the coefficient of friction between the steel plates and
the specimen being set to 0.25. The Newton Raphson method was used in solving
the non-linear equations. The simulations were performed using the implicit version

of ABAQUS.

Results

The major part of the deformation- and fracture processes that occurred could be
predicted by the simulations. Numerical difficulties due to the large deformations,
the complex material behaviour and the contact conditions arise when simulations of
this sort are performed. The numerical technique that was employed did not make
it possible to fully simulate the behaviour of the specimens during the complete

course of events.

In comparing the results of the simulations with the experimental results, it could
be concluded that the deformation- and fracture processes predicted by the simula-
tions and the load-displacement curves obtained were in good agreement with the
experimental results. This is shown for a 5 mm high specimen in Figures 3 and 4. In
Figure 3, the simulated fracturing of the specimen is compared with that of a typical
specimen from the corresponding test series. In figure 4, the horizontal load versus
displacement relation is compared with the relations obtained in the experiments

135



4

IR
X

!

1%
a5
Vot

S0k ORI

R L
S R RO
SRl TR SOl

R T XOAADEIRY
»x«mmmsss»xmmgggg AN
L RSO ¥
R RO
DO HODOXDOOIRA D
RAAAR TAAATKS vﬁﬂﬁﬂi“i“!}é)‘f}‘ﬂj‘
OO0 HXXDOOOOORKIS IR
AR AR ﬂﬂﬂﬂﬂﬁ“ﬂiﬁ)&‘i‘ﬁ( be
NI RO
OO T OO RO o

hARAVA
CHOTITEDOOO0OU I

Figure 3: Comparison of numerical simulation with experimental results. Fracturing
of a 5 mm high specimen.
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Figure 4: Comparison of numerical simulation with experimental results. Load-
displacement curves for 5 mm high specimens.
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Extended two-dimensional element formulation

for beam analysis
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ABSTRACT

An extended two-dimensional finite element formulation for beam cross-section analysis is proposed. In
the formulation stresses as well as deformation in the direction perpendicular to the plane analysed are
considered. The formulation is applied to simulation of the deformation development of a wooden beam

during change of moisture content.

INTRODUCTION

One characteristic of wood is that its behaviour
is strongly orthotropic due to the internal structure
of the material and very much affected by changes
of moisture content. In addition, material prop-
erties such as moisture elongation coefficient and
elastic modulus vary with the position. This of-
ten yields bad shape stability of wooden products.
To gain knowledge about the extent to which diffe-
rent parameters affect the deformation development,
it is of interest to perform computer simulations.
Three-dimensional modelling gives valuable informa-
tion about development of deformation during mois-
ture variation, see e.g. Ormarsson (1995), Dahlblom
et al. (1996a), Ormarsson et al. (1995, 1996). In
some situations, when interest is focussed primarily
on deformations and stresses of a cross section, and
when property variations in the longitudinal direc-
tion may be neglected, a two-dimensional simulation
may be sufficient. In two-dimensional modelling it
is commonly assumed that either plane stress con-
ditions or plane strain conditions are applicable. In
& wooden beam during moisture change neither of
these assumptions is normally fulfilled. Therefore,
an extended two-dimensional formulation should be
applied, where both longitudinal strains and longi-
tudinal stresses are considered.

MATERIAL PROPERTIES

Numerical simulation of the deformation process
of wood during moisture change requires a proper
constitutive model. The orthotropic structure of
the material, with different properties in the ra-
dial, tangential and longitudinal directions has to be
considered. The present work is focussed on two-
dimensional simulations and it is assumed that the
fibres are perpendicular to the cross-sectional plane
studied. Furthermore, it is assumed that the shear
strains in the /- and Ir-planes are negligible. This
means that the constitutive model only has to in-
clude four components of strain and stress. In the
constitutive model, the total strain rate ¢ is assumed
to be

€y

where the elastic strain rate €. is related to the stress
rate by Hooke’s law, i.e.

é=ée+éw+éwa

é. =Co (2)
the moisture-induced strain rate €4 is assumed to be
Ey = QW (3)

and the so-called mechano-sorptive strain, occur-
ring due to moisture changes in material exposed to
stress, is assumed to be given by

1

Smaz

(4)

Ble — w)) [éw,q]

Ews = (Ko —
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which for plane stress conditions has been proposed
by Martensson and Svensson (1995). The matrices
C, o, k and B contain material parameters and w
denotes the rate of change of moisture content. Egs.
(1) and (2) can be combined to form

o = Dé — oy (5)

where
D=C"1 (6)
00 = D(éy + €Esu) (7)

The stress-strain relation given by Eq. (5) has
been expressed in a system of coordinates with the
axes in the orthotropic directions. Due to the an-
nual ring structure of wood, these directions vary
with position, and the stress-strain relation has to
be transformed in order to be expressed with respect
to a global system of coordinates with the axes z and
y. The stress-strain relation with respect to global
coordinates can be expressed as

where :
D=GTDG (9)
&0 =GTaq (10)

in which G is a transformation matrix.
FINITE ELEMENT FORMULATION

The formulation is based on a three-dimensional
eight-node solid element with 24 degrees of freedom,
see Fig. 1.

g U114
- Uz
¥
- > Ui
Ugp 4 - ; tog 4 uqp
uig !
v - - —
21/ : Uog Uso
- i —
ug M % Us
Uy = oo —_—

FIGURE 1. Three-dimensional eight-node solid ele-
ment.
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A finite element formulation for simulation of ¢
formations and stresses is given by |

I?ezi = j)e + P, (1
where
a4 = [’L_Ll Ug ... ’(’224]7’ (1
K, = /BTDBdV (1
v
P, = / NTidS + / NTfdv (1
S v
Py = / BT&4dV 1
v
with N
B=VN (1
£ 0 0]
. 0 £ o
V= ! e
0 0o £
3 a3
[ 3y 55 0

Description of shape functions for this elemer
type can be found in e.g. Zienkiewicz and Tayl
(1989). To obtain a two-dimensional formulation t}
shear strains in the zz- and yz-planes are assume
to be zero. The degrees of freedom may be expresse
by new degrees of freedom (see Fig. 2) as

Uy =U13 = U1, U2 = U4 = ug,
'l:t4 = 1}16 = ug, 1:05 = 1}17 = Ug, (16
U7 = U9 = U3, U = U0 = Ug,
Uyg = Upp = Uy, W31 = U3 = Ug

The next step is to introduce restrictions for th
degrees of freedom in the longitudinal direction 2. 1 -
is assumed that

Ug=1lg =Ug=TU120=0 (lgk

The remaining displacements in the z-direction 1:
U138, U231, g4 are expressed as

U = by + Ymbo — T, b3 (2C

where %, is the displacement, and z.,, and ¥, defin
the position of the nodal point, and b;, by and b3 ar
new degrees of freedom which will be common fc
the whole cross section (see Fig. 2).
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FIGURE 2. Two-dimensional element with 11 de-
grees of freedom.

The relations given by Eqgs. (18), (19) and (20)
can be expressed in matrix form as

%= G.u (21)
where
v = [ug up ug ug us ug ur ug by by b ]T (22)
The finite element equations for the two-

dimensional element with 11 degrees of freedom
shown in Fig. 3 can now be expressed as

Kaia=P + P, (23)
where
K. =GTK.G. (24)
P.=GTP, (25)
Py = sz’eo (26)

This element has 8 degrees of freedom which are
handled just like a common two-dimensional element
and, in addition, 3 degrees of freedom which are com-
mon for all elements in the cross section. This means
that the global system of equations obtained when
all elements are assembled has a displacement vector
which has only three components more than when a
common two-dimensional element is used.

NUMERICAL RESULTS

The theory described above has been applied to
the cross section shown in Fig. 3. Displacements

in the transversal directions are prescribed to avoid
rigid body motions only. The input parameters used
are presented in Dahlblom et al. (1996b). The initial
moisture content was assumed to be 0.27 and results
from moisture simulations using the method pro-
posed by Claesson and Arfvidsson (1996) have been
used as input data to the displacement simulation.
The simulation was performed for two different dry-
ing schedules; Schedule 1: T = 60°C, RH =50 %
for 192 h and Schedule 2: T = 60°C, RH = 80 % for
96 h and RH = 50 % for the next 96 A. The com-
puted deformations after drying 192 h with schedule
1 are illustrated in Fig. 4. The cross section has
developed a significant cup deformation.
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FIGURE 4. Computed deformation after drying
192 h with schedule 1.

The development of cup deformation. defined as
eyp = %(al + a3) — az where a; and a3 are vertical
displacements of the upper-left and upper-right cor-
ners and ay is vertical displacement of the mid-point
of the upper edge, is for the two drying schedules
shown in Fig. 5. In addition to cup deformation, the
formulation used yields information about bending,
commonly referred to as bow and crook. The bow de-
formation aye.,, defined as midpoint transversal dis-
placement of & beam supported at the end-points, is

. 12 .
given by apg, = ﬁ;bz where [ is the beam length
and [, is the element size in the z-direction. Assum-
ing I = 3.0 m, the bow development is illustrated in
Fig. 6. The simulations performed consider stresses
in the longitudinal direction. The distribution of lon-
gitudinal stresses after drying 192 A with schedule 1
is illustrated in Fig. 7. It can be observed that the
central part of the cross section is exposed to tensile
stresses, and the left and right parts are exposed to
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compressive stresses. This is due to the higher value
of the longitudinal shrinkage coefficient close to the
pith.
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FIGURE 5. Development of cup deformation accord-
ing to schedule 1 (solid) and schedule 2 (dashed).
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FIGURE 6. Development of bow deformation ac-
cording to schedule 1 (solid) and schedule 2 (dashed).
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FIGURE 7. Distribution of longitudinal stresses af-
ter drying 192 h with schedule 1.
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CONCLUSIONS

An extended formulation for two-dimension
simulation has been presented and the capabili
of the computational method to simulate defo
mation development during moisture variation h:
been indicated. In contrast to conventional tw
dimensional formulations, assuming plane strain «
plane stress, the extended formulation considers lo;
gitudinal stresses, as well as longitudinal strains r
sulting in bending. This is obtained with a sme
increase of the computational effort.
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PLASTIC CALCULATION MODELS OF CONTINUQUS
PURLINS
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ABSTRACT

According to [1], Eurocode 3; Part 1.3, redistribution of internal forces and moments can be
utilized in dimensioning of purlins at the ultimate limit state, if the dimensioning is based on
experimentally derived (M,6)-graphs. Two different behaviour types are studied: softening
moment resistance and ideally plastic (M,8)-relation. (M,6)-relation is obtained from the support
detail test and design curve for (M,6)-relation is valitated in the full scale test. Ultimate load
yielding from the softening moment resistance model is only few percents larger than the
corresponding one resulting from the ideally plastic model in the example case.

INTRODUCTION

Cold-formed thin-walled members are widely used in roofing systems. Plastic
dimensioning allows full exploitation of the potential of the cross-section. The paper
deals with dimensioning models of gravity loaded cold-formed thin-walled multi-span
purlins of C-, Z- or Zeta cross-section with continuous full lateral restraint to one flange.

According to [1] (M,8)-graphs must be derived from tests. Rotation capacity, interaction
of bending moment and shear force and softening behaviour ((M,0)-relation) are studied
in the internal support test [1], in which a simply supported beam is loaded with a point-
load F at the mid-span. The span s is 0.4L, and it represents the portion of purlin
between the points of contraflexure on each side of the internal support, L is the actual
span of the purlin. Finite element analysis can be used in the simulation of the internal
support tests in order to study the effect of the shear force to the bending moment
capacity of the purlin and on the softening behaviour of the purlin at the internal support.

Ultimate state is reached, when mechanism appears: purlin yields in the span in addition
to the yielding at the support. The relation between the bending moment M and the
plastic rotation 6 can be supposed to be either a softening one or ideally plastic (Fig. 1).
The ideally plastic model can be used in hand calculations but for the softening model
computer calculations are needed. The softening (M, 0)-relation yields safe ultimate load
for the full scale test structure. The constant bending moment at the internal support M,
is determined from the softening (M, 8)-relation by using the estimated maximum rotation
in practice (e.g. 2°-3°).
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Fig. 1. Example beam, softening moment resistance model and ideally plastic one.

EXAMPLE CASE

Analytical equations (1) and (2), which are derived for the case shown in Fig. 1, are use
in comparison of the plastic dimensioning models. Finite element method can be used i
the computation of arbitrary multi-span continuous thin-walled beam with a softenin
moment resistance. A nonlinear rotational spring element can be used to define th
(M,0)-relation of the purlin at the internal support. Suitable algorithms are presented e.g
in [2].

A continuous gravity loaded two-span purlin (Z250/2.0) is used as an example. The spa
L is varied. The following properties were used: maximum moment in the spa
M;,,,=12.368 kNm, effective second moment of area ,=5523286 mm* and Young’
modulus E=210000 N/mm>.

Ultimate load q,;, can be calculated using ideally plastic model as follows

2
ux'P _L—..(M 2’M‘PM“"2\/M‘M’M'“‘+M span ) (1
where
Moo = constant bending moment at the internal support (3.463 kNm),
M pan = bending moment capacity in the span and

= span.

Corresponding rotation 6;, can be calculated from

L2
o L Ge™ 24 2
P El, 12 3 ™

where E is Young’s modulus and I is effective second moment of area.

The softening moment resistance is taken into account by using (M,6)-relation instead o
constant M, in equations (1) and (2) (M,=5.565 kNm). Ultimate load q, by using th
ideal plastic model is 5.55 kN/m, by using the softening model 5.69 kN/m and th
corresponding test gave 7.90 kN/m, when span L is 4.5 m. Ultimate load is labelled a
Q. and the corresponding rotation as 6.
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Fig. 2. (q./qy;»0,)-relation.
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Fig. 3. (6/6,,,6,)-relation.

CONCLUSIONS

The ideally plastic model overestimates plastic rotation and underestimates ultimate load
in dimensioning compared with the ones yielding from the softening moment resistance
model, but the difference in design is not signifigant.
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FOR CURVED ELEMENTS
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Laboratory of Structural Mechanics
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Rakentajanaukio 4A, FIN-02150 ESPOO, FINLAND

INTRODUCTION

The background of this study is in a trial to develop the analysis of curved thin-walled girders
in a case where the finite element discretization is based on the theory of Viasov [ 3 ] in a way
suggested by the authors (Paavola [ 2 ]). In this formulation the displacement interpolation is
spanned between certain cross-section planes, the directions of which adapt the curved geometry
(Figure 1. a). In this context, we call these special cross-sections as nodal planes.

nodal planes

Figure 1. a) Nodal planes. b) -n-coordinate system.

In nodal planes the directions of the displacement components U%w, uYw and u%, are defined to
coincide with the orthogonal directions of the unit vectors fixed on these planes, so that vector
€xw is a normal and the other two vectors €y« and €z are in these planes. Between nodal
planes the corresponding directions are interpolated smoothly. Thus, the displacement vector
i° of any point on the middle surface of a wall can be written as

e = UXnéXu + UYuéYu -+ 'U:ZuéZu. (1)

Now, we adopt the idea of Viasov and suggest that e.g. the displacement component u%. is
presented as a series of partial products separating the dependence on the curvilinear surface
coordinates £ and 7 (see Figure 1 b), of which coordinate ¢ corresponds the axial direction of
the girder, as follows

whal&1) = 3w (m)Ui(e) @

The other two displacement components uy. and ug, are also interpolated using the same idea
of separation, which makes it possible to construct the interpolation in axial direction and in
the cross-section plane separately. Hypothetically, we can describe the displacements of a cross-
section as completetely as required: In this case the accuracy of the interpolation is mainly
dependent on the interpolation in axial direction.
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mterpolated displacement components (e.g. U()) are . defined using the local (smoothly in-
terpolated) directions ( e.g. €xu) of a curved structure. This deviates from the conventional
interpolation technique, where the directions of the displacement components are fixed by the
global orthogonal Cartesian coordinate system in the element.

In what follows we concentrate to study the interpolation in axial direction using a simple model,
where the cross-sections of the girder are supposed to be reduced to the points. Actually, only
a curved girder axis is considered. To make our consideration as simple as possible we do all
this in two dimensions.

G- __i

nodal plane
\

Figure 2. Girder azis as plane curve.

The curvilinear coordinate o (instead of ¢) is defined to coincide with the girder axis (Figure 2).
The rectilinear normal coordinate 8 measures the distance from the axis. So, the coordinates
a and B8 form an orthogonal curvilinear coordinate system. Then, let us suppose that nodal
planes are normal to the axis and further, that the directions of the interpolated displacement
components U(a) and V(a) are respectively &, and €g, which are the unit tangent vector and
unit normal vector of the axis. Finally we write the displacement vector 4 as

i = U(a)Eu(e) + V(2)Es(a). (3)

Actually, we supposed that the displacements can be represented as a continuous vector field in
the curvilinear coordinate system with the local basis {€,(a),Ep(a)}-

INTERPOLATION

The conventional interpolation technique

Generally, we can use finite elements to model any type of continuos tensor fields including both
scalar and vector fields, which are given functions of Cartesian or of any type of curvilinear
coordinates (Oden [ 1 ]). So, for example, we can interpolate the displacement vector i in an

element as follows
i=) Nya)i, (4)

where ii; = @(c;) are displacement vectors at nodal points (or plane) a = a; .

In the conventional interpolation technique the directions of the interpolated displacement com-
ponents are defined using a fixed Cartesian coordinate system in an element. Let us denote the
corresponding base vectors with i iand j. The interpolation (4) can now be written in the form

= Ny(a)(ud +vd) = (O Ne(a)u)i+ (D Mi(a)us)i = w(a)i + v(a)], (5)
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u(ai and v(a) as

u(a) = Z Ni(a)u; and v(a)= Z N;(a)v;. (6)
Then, we introduce the geometry definition

z(a) = Z Ni(a)z; and y(a)= Z Ni(a)y, (7)

of the curved axis using the same nodes i and the same shape functions N;i(a) as used in (6).
The shape functions N; are assumed to be Lagrangian polynomials. Later we will use this same
geometry definition also with other interpolation techniques. If we write the nodal displacement
vectors i; using the local basis {€a(:),€p(1)} at the nodes, then (4) can be written in the form

=) Ni(a)(Uags) + Vis) = 3 Ni(@)Uagsy + D Ni(a)Vigsg.- (8)

It is notable, that in (8) vector i is referred everywhere in the element to the constant basis
vectors &,(;) and €g(;). Because, our aim is to find out U(e) and V(a) corresponding to U;(&)
in equation (2), we use the transformation

il _ ( Sala) T &(a) T [ &ala) | _ T(a) { (@) ©)
i T \au@) 7 as(@)-5) | asle) &s(a)
and its inverse T~!(a) to modify equations (8) to the form (3), in which we can see U(a) and
V(e) directly. Finally

Ula) = z Ni(a){Uil(8as) - D(Ea(@) - ©) + (Bags) - J)(Eale) - I+

(10 @)
Vil(8a - D(€al@) - 1) + (a0s) - DN(Eale) - DI}
V(@)=Y Ni(a}{Uil(Eags) - D(€a(e) 1) + (8agsy - )(Es() - I+
i (10 d)

Vil(€ps) 1(&s(a)-1) + (Es(s) (&s(a)- N},

where the vectors €,(c) and &g(a) are calculated using the geometry definition (7). Both
interpolations (6) and (10) reduce to (4) and thus give the same results.

The alternative interpolation technique

In view of (3), if the vector functions €,(a) and &g(a) are assumed to be given a priori, the
components U(a) and V(a) can be interpolated regarding them as a scalar fields over the
element. Thus, we may introduce the approximations

U(a) = Z Ni(a)U; and V(a)= ZNj(a)Vj. (11)

This is a more attractive choice compared with (10) because its simplicity. In our simple
consideration we just think that the vectors &,(a) and &s(c) defining the directions of the
components U(a) and V(a) can be calculated using the geometry interpolation (7), but, in
general, different approximation for these directions could be constructed as well.
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Comparison

Next, we try to find out some basic differences between this alternative and the conventional

interpolation techniques. Only one type of interpolation polynomials is applied. These cover
both the geometry specification (7) and displacement interpolation in each formulation.

Using the interpolation (11) we can write (3) in the form

i =D Ni(o)Uiléa(a) + [ Ni(e)Vilés(a). (12)

After substituting a = a; in both (8) and (11) one can see easily that the alternative and
the conventional approximations coincide at the nodes. In general, they give different values
elsewhere in the element, because the alternative interpolation technique (11) deviates from the
approximations (10) in such a way that vector i is referred to the local basis {€x(a),Es(a)}
dependent on « instead of the constant basis vectors €,(;) and €p(y).

Then, we consider a linear displacement field

u(a) = ag + a12(a) + azy(a)
v(a) = by + biz(a) + bay(a), (13)

where the coefficients are arbitrary constants. As a special case of the displacement field (13)
we have the rigid body motion. We prescribe the nodal values u(a) and v(a) consistent with
(13) to interpolate displacements both in the conventional (10) and alternative (11) way. The
displacement state (13) is reproduced exactly in conventional interpolation technique (10) as

far as condition
> Ni=1 (14)

is fulfilled.

When introducing the linear displacement state in the alternative interpolation (11) with the
geometry definition (7), the condition (14) is not enough to quarantee that the displacements
(13) really are reproduced exactly using consistent nodal values. Actually, it is possible to
prove that the alternative procedure describes the displacement field (13) exactly only in the
cases, where the girder axis is straight or the element size tends to zero. In other cases, certain
discrepancies occur. The significance of these discrepancies will be estimated and analysed.

CONCLUDING REMARKS

In the conventional isoparametric type of formulation the interpolation of the displacement field
and the geometry are of the same order. In the alternative interpolation technique suggested here
the same technique is used, but in addition the directions of the displacements are interpolated

separately.

In the continuation our purpose is to find out the restrictions for the new (or alternative) inter-
polation technique by deriving the relevant convergence criteria and studying various numerical
examples. Developing further the intrepolation of the unit vectors defining the directions of the
displacement components, on the basis of the convergence criteria is of great interest as well.

[1] ODEN, J.T., Finite Elements of Nonlinear Continua, New York, 1972. 432 p.

[2] PAAVOLA, J., A Study of Curved Thin-Walled Girders. Acta Polytechnica Scandinav-
ica, Civil Engineering and Building Construction Series No. 94, Helsink: 1990, 91 p.

[3] VLASOYV, V.Z., Thin-Walled Elastic Beams. Israel Program for Scientific Translations,
Israel, 1963, 493 p.
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TRACING LOCAL BUCKLING PHENOMENA (WRINKLES)
IN SHEET METAL FORMING
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and
ABB Corporate Research
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Abstract
Numerical simulations of sheet metal forming processes are often very time-consuming

and there is a need for assessing local buckling (wrinkle) tendencies at as early stages as
possible of the computations. In this context, wrinkles can be characterized as short-
waved out of plane deformations. Whenever the sheet is in a state of compression there is
a potential risk for wrinkles. In using a quasi-dynamic approach with explicit time
integration, the wrinkles usually develop gradually in the solution and can be hard to
detect by visual inspection until late after the onset. An important observation is that the
formation of wrinkles is characterized by the occurrence of pre-stressed areas where the
deformation is dominated by strong local out of plane rotations. The onset of these local
rotations of the stress tensors can be traced by studying the evolution of the local value of
the second order increment of internal work (a scalar quantity !). Based upon these
considerations, we present an algorithmic procedure for capturing the initiation of
wrinkling. The procedure is primarily designed for use in connection with explicit time
integration of the finite element equilibrium equations and is generally applicable to all
loading situations, including cases where contact forces and large elasto-plastic

deformations are involved.
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power, similar to Hill's bifurcation functional, see reference 1) on the form :

I= ftr{'g D+o(-DD +DW+ W'D+ WWT)}dV
1%
where 7 is the Jaumann stress rate of the Kirchhoff stress tensor, t = Jg , given by

T =+ tr(D)o — Wa—aWT

o is the Cauchy stress tensor, D the rate-of-deformation tensor and W the body spin
tensor. If we split [ , evaluated element wise, according to
where
Iy = [w{ZD+ a(—DDT)}dV ,
vV

elem

Iy, = jtr{a(DW+WTD)}dV

Vclcm

and

Iy = | };r{aWWT}dV
V

clem

we can define a "wrinkle indicator"
T e = Loy + 1y + 1o
elem —
ol +log] + [Tog]

that satisfies strictly the relation

,i elem‘ <1
When the incremental displacement field is dominated by body spin (rotation) we obtain
- l
Tejem = -0 . o |
03]

where the minus sign is valid for a buckling situation (compressive membrane stresses).
It is also observed that the value of ic,cm can be used to measure the closeness to
wrinkling. In practice, an early indication of (local) wrinkling is obtained when the
indicator starts to become negative. The versatility this indicator for tracing the onset of
wrinkles is demonstrated on several test problems (e.g. the Yoshida buckling test) and the
connection with Bergan's current stiffness parameter is discussed, for more details see

reference 2.
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EXPLICIT DYNAMIC FORMULATION OF LARGE STRAIN SHELL ANALYSIS
FOR THE MORLEY TRIANGULAR ELEMENT

Ulrika Wendt

Dept. of Structural Mechanics, Chalmers University of ‘Technology, S-412 96 Goteborg, Sweden
ABSTRACT

INTRODUCTION

In an explicit code the solution is basically split into two parts. One static partwhere the equi-
librium, constitutive relations and geometric conditions are considered for the massless ele-
ments and one dynamic part where the equilibrium of nodes (point masses) is considered.
No global mass- or stiffness matrices need to be established nor solved. The solution is per-
formed node-by-node and element-by-element.

Explicit methods are very sensitive to the time step size, and the critical time step size At
1s very small (typically microseconds) compared to time step sizes used in implicit methods.
Since the explicit method does not require any factorization each time step requires very
little computer time. As the time step size is so small only small displacement approximations
need to be considered. The central difference time integration method is used.

The equilibrium is fulfilled at discrete time intervalls At apart and the variation of accelera-
tions, velocities and displacements within each time step is assumed in some specific way.

The method is only efficient when velocity-depending damping forces are neglected and
when the mass matrix can be lumped. If higher order elements are used it is rather compli-
cated to Jump the mass matrix — this is one reason to use lower order elements. Another rea-
son is that they do not require as small critical time step, At as higher order elements do.
One simple element with only one integration point and with constant strain is the Morley
flat shell element [1] which is a triangular element with three displacements in each corner
node and one rotational degree of freedom on each side. This element was first used by Herr-
mann and Campbell [2] in linear shell analysis and later by Bicklund [3] in non-linear shell
analysis. The membrane part is conforming and the bending part is the non-conforming
constant curvature Morley triangle.
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THE MORLEY TRIANGULAR SHELL ELEMENT

The Morley shell element is a 12 degree of freedom triangular element with three forces
(displacements) in each corner node and one moment (rotation) in each mid-side node ac-
cording to figure 1. The mid-side moments and rotations follow the direction of the element
edges while the corner forces are defined in some coordinate system.

Figure 1. The Morley triangular shell element

SOLUTION SCHEME

The solution is performed node-by-node and element-by-element according figure 2 where

the part including AF, ‘4%, *Za andAu is the nodal part of the loop and the rest is the
element part. It is possible to prescribe either forces or velocities.

t=1t+ At
Prescribed force F.

AF; ——> F; ———> AF ———> "4

? J/

AG Ag Au <— t+y

[

Prescribed velocity

At
t+7u

Figure 2. Solution scheme

NODAL CALCULATIONS

From the incremental nodal forces AF the incremental displacements Au are calculated.
Since the explicit method is only efficient when the velocity-depending damping can be ne-
glected the dynamic equilibrium equation
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Mu(t) + Cu(t) + Ku(t) = F(t)

is reduced to
Mu(t) = F(t) — Ku(t) = AF

This equation is solved by the central difference time integration method according to
“Fa = Zlg(“””u —'u) 2 a = "% 0 + A

A

A, A,
—I-(H"z‘u -7 a) tHAt o=ty 4 t+4 At

t oo
0=
At

When the corner nodes are considered u are the three displacements and M are the nodal
masses. When the mid-side nodes are considered u are the rotations and M are the moments
of inertia for this node.

ELEMENT CALCULATIONS

From the incremental displacements Au calculated in the nodal part of the loop the internal
nodal forces are calculated. This is done by the use of geometry conditions to calculate the
incremental strain Ae, constitutive conditions to calculate the incremental element stresses
A and finally equilibrium conditions to calculate the nodal forces AF;

AF; = B'Ac = B'DAe = BDBAu = KAu

NUMERICAL EXAMPLES

At the moment the stretching part of the code is working satisfactory while there still is some
problem with the bending part of the solution. No numerical examples with bending can
therefore be presented at this moment.

Cantilever shell in stretching — prescribed force

A shell according to figure 3 is analyzed and compared to the solution by LS-DYNA3D using
triangular elements. The elasto-plastic material model according to von Mises has been used
with K=500 N/mm? and n=0.2. In both codes a mesh with 162 elements and 156 nodes has

been used.
F(t)

——

S Fo
E =210000 N/mm?  —— F() X
t3t?i(c)lz<nflzgso tr?\rrnaries) v=03 > E(b)
0=84.10¥kgm3 [ E(t)
> F(t)

Figure 3. Cantilever plate in stretching
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Along the right boundary the load according to figures 3 and 4 has been applied. The siz
of the load F(t) is given in the table and depends linearly on the thickness t of the shell. The
left boundary is clamped even though all nodes but one are allowed to move in the Y-direc
tion, see figure 3.

A F(t) [N]

Frnax

10 12

Figure 4. Time-load curve

In the table below the final displacement in the X-direction at the right corners is
given by u. The maximum and minimum effective stress and effective plastic strain
are also given.

case | tfmm] | Fpax[N] | this code LS-DYNA3D code
1 5.00 | 10000 u = 0.568 mm u = 0.577 mm
Effective stress [N/mm?] : Effective stress [N/mm?] :
Omax = 120 ; Opin = 116 Omax = 120 ; Opip = 115
Effective plastic strain [%]: Effective plastic strain [%]:
2 2.50 | 5000 same result as fort = 5 mm same result as fort = 5 mm

The solution of this code differs a little from the solution of the LS-DYNAS3D code wich can
be seen in the table.
As expected there is no difference between the results in cases 1 and 2.
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Computational Buckling Analysis of Wind Turbine Blades
Arnis Riekstin§

Institute of Polymer Mechanics,
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Introduction

Cylindrical shells and panels serve as a highly optimal form of shell component in a
wide range of structures, and wind turbine blades particularly. The failure of such
structures is primarily caused by the loss of stability of the shell component. An
overall weight reduction of the structure demands the structural instability to be
investigated at various stages of the design process.

Highly non-linear theoretical solutions are able to completely reproduce the
buckling behaviour of shell structures. The large-scale computer solutions have
certainly increased the capacity to analyse complex systems, but a straightforward
incorporation of these sophisticated solutions appears to be doubtful for an
engineering design. It is not yet clear how they could be of assistance at the initial, as
opposed to the final checking stage of the design process [1,2].

In the design process of a wind turbine blade, there are numerical modelling
methods used which allow to meet adequate predictions of the overall structural
response under service or ultimate loading conditions. For example, moments and
shearing forces are calculated for various cross sections taking into consideration the
section shape and material properties. However, unless the shell elements are used,
these methods do not encounter for a possible blade skin buckling. The purpose of
this paper is to show how the buckling of the structural elements of wind turbine
blades could be effectively modelled by means of the finite element method.

Modelling of a Blade Section

Let us consider a typical case of stability loss of a wind turbine blade subjected to
static loading during a blade test. If buckling occurs, it takes place in the
compressive part of the blade skin, and the buckling mode can have several waves
along the blade. Therefore, when the buckling has to be analysed, it is worth to
concentrate the attention solely on the ‘risky” parts of the blade and use more refined
methods of modelling there.
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Figure 1 Deformed shape of the blade
section

Apparently, it would be advisable to perform the buckling analysis of just the
compressed part of the blade. The blade panel has to be modelled using appropriate
boundary conditions.

As an example, the model of a section of
the whole blade is considered. In this case,
both the inner structure - the web - and the
faces are modelled by means of the
sixteen-node shell elements. A rigid in-
plane supporting is assumed for each end
of the blade section. Bending moments are
applied at the section ends. Geometrically
nonlinear formulation is used, and the
equilibrium equations are solved by means
of the well known predictor-corrector
procedure [3]. When the limit point is
reached, the deformed shape of wingblade
section has one buckle in the compressed
part of the blade section (Fig. 1).

Buckling Models of Axially Compressed Blade Panels

In the present work, effect of various types of boundary conditions on the panel
behaviour has been studied regarding the critical buckling load and the buckling
mode. A proper choice of the panel dimensions has been considered regarding the

Normalized Buckling Load

2...

0.57

reliability and efficiency of

buckling calculations.
Influence of various boundary
conditions has been

investigated regarding the
lowest buckling load of the
wingblade panels of different
lengths. Eight-node shell
elements were used to model
the panels in question.

In all cases, the
buckling mode had one

0

Figure 2 Buckling loads of cylindrical panels of
various length and supporting conditions
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edges. The main results of the buckling analysis are summarized in Fig, 2, where the
buckling loads are given versus the panel length for three types of panel supporting:
all edges clamped (0), straight edges clamped (*), and all edges hinged A).

As expected, the effect of clamped ends decreases for longer panels having all
edges clamped (o). In this case, the value of the critical buckling load tends to be that
of a clamped panel having hinges at both ends (*). Models with clamped straight edges
give the buckling load of a cylindrical panel rigidly supported by two webs along the
straight edges.

The model with hinged straight edges (A) appears to give an 'underestimated’
buckling load of the panel being situated between two webs or one web and the front
edge of the wingblade. Thus, the boundary conditions of type (*) should be used to
have better predictions of the buckling behaviour. Length of the panel should be taken
equal to the length of at least one wave of the buckling pattern.

Modelling of the Buckling Behaviour of Sandwich Panels

Sandwich panels of a typical
section of the wind turbine
blade have been analysed
using 3D solid elements for
the core part, whereas the
faces were modelled by
layered  composite  shell
elements. The same approxi-
mation order was used for
both types of elements. Three
displacement degrees of free-
dom were used for the nodes Figure3 Buckling mode of a curved cylindrical
of the 3D element. Two rota- panel under compressive loading.

tional d.o.f. have been added

for the joint nodes of the 3D

solid and the shell elements. The nodal points of the upper and lower surfaces were
joined together by rigid links at all four edges of the panel. Thus, a possible
delamination has been avoided at the panel edges.

Comparison of the Results with Blade Tests

Results of the numerical analysis has been compared with the static test data of a
21m blade. During the blade test only one buckle inwards the blade has been
observed at 0.45% compressive strain level. For the FE modelling, example of an
axially compressed cylindrical panel has been used with 3.67m radius, 0.49m width,
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0.7m length, and 0.016m thickness. The elastic properties of the multilayered
composite were: E;=25GPa, E;=5GPa, G1,=2.6GPa and v1,=0.3.

Bdge Shortening, % Both the linear buckling analysis
1.0 1 and geometrically nonlinear
E\ =, calculations were performed. The

results obtained are depicted in Fig. 4.
% / The dashed line corresponds to the

< linear analysis (buckling strain level
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nonlinear behaviour of the perfect
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Repetitive Vertical Human Loading

Jeppe Jonsson, ES-Consult A/S, Staktoften 20, 2950 Vedbzk

Anralytical expressions for the spectral distribution of repetitive vertical human loading, mainly jumping,

are validated through the use of simulated discrete time series of the load The simulation is performed
on the basis of halfsine impulse shapes and experimentally determined mean values and standard
deviations of the pulse period, the pulse starting time and the contact duration. The simudlations shows that
the developed analytical expressions for the spectral load distribution are adequate. However the use of
halfsine impulses has to be modified in order to include the influence of heel impact in the high frequency
domain of the load spectrum,

Introduction

The loads produced by humans vary a great deal and new motion patterns on for example sports stadiums
or in keep fit gymnastics may develop. Knowledge of the loads are needed in order to perform structural
analysis in the ultimate limit state and in order to fulfil the requirements in the serviceability state. A
literature survey is given by Per-Erik Eriksson in his work on Vibration of Low-Frequency Floors from
1994, [1]. The Swiss researchers Bachmann and Ammann give many valuable references and a thorough
treatment of man induced vibrations in [2]. Stochastic load models giving the spectral density distribution
of loads have been proposed, see for example Rebelo and Schere [3] and specially the work by Per-Erik
Eriksson [1]. An investigation of the mechanics of repetitive human motion has recently been performed
by Jonsson and Pilegaard Hansen in [4], this work resulted in different analytical expressions for
approximate spectral load distributions. These analytical spectra are validate by simulations, some of which
are presented in this paper. An experimental investigation has also been performed by Jonsson and
Pilegaard Hansen in [5]. It involves one person performing 5 different repetitive vertical motions on a very
stiff loading platform with eigenfrequencies above 60 Hz.

Simulated pulse train
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Figure 1. Simulated repetitive vertical human load.
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Simulated repetitive vertical human load
A halfsine impulse shape function is introduced and the load amplitude is determined by the periodic load
impulse of the contact force I=MgT,. Using the unit function u(f) a single load pulse is given by

Mng

ftt,t,7) = = sin(™) u(®) u(r. 1) 1)
A pulse train is defined as a series of » impulses using the load impulse function defined above however

we will include an additional impulse starting time ¢, within each period as follows
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The pulse periods T, the contact durations 7, and the pulse starting times Z,, are random data whi
follow a normal probability distribution. Note that the mean impulse starting time is zero, £=0. 1
simulated load shown in figure 1 and in the following figures corresponds to jumping at a frequency
2Hz with a contact duration ratio of 0.45 and standard deviations of 0.02sec for the impulse starting ti

or the pulse period and the contact duration.

Discrete force amplitude spectra
The pulse train is used to simulate about 10 seconds of experimentally measured data by discr
evaluation at a sampling frequency of f=600Hz. The m simulated measured loads 4, are Four
transformed using a discrete complex fast Fourier transform. The transformed load data are then used
find the single sided force amplitude spectrum A4, shown in figure 2 as follows

.27
-2k (1

-1 ' _ 1 met _ .
he=X o flty S Tt D) . H— Yo he ™ A4=2(HH,

Before Fourier transforming the data it is treated as if it were real measured data as in [5].

Normalized force amplitude spectrum
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Figure 2. Normalized force amplitude spectrum of simulated human loading.

Analytical force amplitude spectra
The following four load models are analyzed and the corresponding normalized load spectra are sho
in figures 3 and 4.
I A deterministic model using mean values T,=T,, t,=t, and £,;~1,=0.
I. A model where the impulse starting time ¢, is stochastic and the remaining variables .
deterministic, ie T,=7, and £,=,
II. A model with a deterministic impulse /=Mg7,, but where the pulse period T}, is stochas
the contact duration as well as the impulse starting time are deterministic, ie £,=t, and £
IV. A model where the impulse starting time f,; and the contact duration £, are stochastic and
the pulse period is deterministic, 7,,=7,,.
In the following we will state the analytical results found in Jonsson and Pilegaard Hansen [4] for e:
of the above given models, however before doing so we need to introduce a few functions. The Fow
transform of a pulse train normalized by the time period n7, is approximated by assuming that
impulses are determined by the mean pulse period as /=MgT,. The approximate Fourier transform is

1 r- -1 j B\ - ‘
H(w,t,t,, Ty n) = ;Tr"—f“’ > Aty D Tt T, ) €7 ¢«
p
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The "length" of the fourier transform of the impulse fimction is
2
|[F(w,2,)| = FF* = _I_Mg —‘/iz—n——- y 1+cos(wz) (6)
2 | %, -n2|

Further more we need the normal probability distribution p(x), its Fourier transform P () and its length
|P ()] for the variable x with a mean value 1, and a standard deviation of o, as follows

(x-1,)2
- 1..22

2 Sl . _ 1,22
() = 1 e 20; , PX((.O)‘—‘E 29 % oy, , lPx((‘))lz /PxPx = S0’ )}

o /3%

In the following we also use a spectral factor N{w,#) and its length defined as

-iwj —¢ onY 1-cos(wnT
Nom==3rdeholle 7 0y L | 2ZcostenT,) ®)

The force amplitude spectra of a pulse train of # pulses is found by use of the mean power spectrum as

A(f,n) = 2/HE" @)

The force amplitude spectra of the four load models can be written as follows, see [4],
A](fa n) =2 IN(ZTCf:n), IF(2‘JTf)I

Agfim) = 2 [ IPCROP IN@rf P+ -2 1P, @) |F2np)]

n(1-Pp 2nf))-(1-Pr 2nf)) (10)

n*(1-P, 2n 1)) el

Ap(finy=2 | Le2Re|P @nf)
n p

\

Ay(fim)= 2 \| IPQROF NGRS, W+~~~ |P,2n ) (FF°

For model IV it is necessary to evaluate the mean power spectrum for a single pulse numerically since an
analytical result has not been found.

FF* = f"; F(o,1,) F*(0,2,) p(t,) dt,, (11)
Thus the evaluation is eased by using the Fourier transform of the halfsine load pulse.

Concluding remarks
The quality of the stochastic load models reflect their simplicity, model II is the simplest, then comes
model III and finally model IV. A remaining topic is how to include the influence of 2 heel impact. It is
proposed that the individual impulse is decomposed into a 95% halfsine impulse with the measured contact
duration #, and a 5% heel halfsine impact with a short contact duration of 0.2¢,. The impulse of the heel

P

impact can be estimated using the level of the force amplitude at high frequencies.
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Figure 3. Analytical normalized force amplitude spectra for model II and IV.
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Figure 4. Analytical normalized force amplitude spectra for model IV and 1.
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1. INTRODUCTION

The development of general purpose finite element computer programs has made it possible to
perform reliable analysis of structures and structural components taking into account material
and geometric non-linearities. In typical structural engineering problems, such as inelastic local
buckling of beams and plastic collapse of plates, a shell formulation based on finite displacements
and finite rotations but small strains gives a sufficiently accurate representation of the kinematics,
whereas the material is often well described by an elastic-plastic constitutive model. In order to
ensure reliable results for a given class of structural problems it is necessary to check the finite
element solution against experimental results, and thus obtain a verified model for the problem
at hand. However, in application of this ‘calibrated model’ to various problems within the given
class, error estimation and adaptive solution strategies plays an important role. In prior studies,
geometrically non-linear problems involving linear elastic materials have been investigated [1, 2];
but in ultimate load analysis the inelastic material behavior has to be taken Into account. and
therefore error estimates and adaptive strategies for elastic-plastic materials are required.

The main difference in trying out adaptive mesh refinement in nonlinear analysis compared
to linear analysis, is that the state variables have to be mapped from one finite element model
to another, in order for the solution variables to be transformed from one step to the next For
elasticity problems involving two-and three-dimensional continuum elements, this transfer may be
carried out straight forward, as only displacements are involved. However, for shell-type problems.
mapping of state variables may be a crucial step, as explained in detail in [1, 2]. In the case of
plasticity, the situation is even more complex, and so far no mathematically proved estumators
exist, even for small strain theory of plasticity. Only Johnson et al [3] have developed an adaptive
strategy for small strain elasto-plasticity using the Henchy model. However, due to restrictions 1n
the Henchy model, this method is generally not applicable to standard elastic-plastic and e¢lastic-
viscoplastic history dependent problems.

This paper presents a study of projection-type error estimators for elastoplastic materials In
this study the improved C°-continuous solution is obtained by the superconvergent patch recovery
(SPR) method [4], which has proved to be an efficient tool for this purpose in both two-dimensional
elasticity and plate bending applications [2]. Theoretical proofs concerning the convergence of this
method is established in the elastic range only, and are thus not necessarily valid for elasto-plastic
problems. The approach is therefore based on the assumption that the improved solution is closer
to the exact one than the finite element solution. In our preliminary study several error estimators
are evaluated: Lj-norms of total stress, total strain, incremental tota) strain and equivalent total
strain error, energy rate, error based on plastic dissipation and error based on incremental plastic
work, respectively. In order to judge the quality of these estimators, the numerical results are
compared to results obtained experimentally.

The paper presents numerical results comparing the local and global effects of the different
error estimators desribed above on a perforated strip. Other industrial examples on ultimate load
analysis of structural components for which numerical results are compared to results obtained
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2. ERROR ESTIMATORS

In the displacement formulated finite element method the displacements are the primary vari-
ables, while the stresses and strains are derived from the displacements. This causes the stresses
and strains to be discontinuous across the element boundaries. A better approximation of these
quantities could be obtained by some smoothing process of the finite element quantities. Several
smoothing approaches have been proposed during the last decade, of which the SPR [4] has become
the most popular method. This method exploits the fact that the derived quantities are of better
quality at certain points within the element, the superconvergent points. An even better approxi-
mation may be obtained by including boundary conditions and interior equilibrium as constraints
on the recovery process. A thorough description of these methods may be found in [5]. In the
current work only the plain SPR-method is employed for smoothing,.

The error is approximated by the difference between the quantities obtained by the finite element
solution and the corresponding smoothed quantities. For the stresses this reads

e = g*—o" (1)

where ¢* is the smoothed stresses and o® is the stresses obtained directly from the finite element
solution. Based on (1), several error estimates have been proposed by different authors, see, e.g. [6].
Herein, we use the following error estimates which also apply to elastic-plastic analyses:

1. Ly-norm of stress error

e = / (o" — ah)T (o* — ™) dQ (2)

0

2. Lo-norm of total strain error

rofs

e = / (e* - eh)T (e* — €M) dQ (3)

Q

3. Lo-norm of incremental total strain error

" 2
e = / (e —et,) 7 dD (5)
5. Energy rate error norm

e = / (0" — crh)T (é* - éh) dQ (6)

Q

In the above, ¢ is the total strain tensor € is the total strain rate tensor and e.qv is the equivalent
total strain. The latter is given by

1 9 3
e = — [(em—ew T (eyy = 02)? + (ens — Eme)? + —(eiy+s§z+ezx>} @)

7 3
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of plastic work:

6. Error estimator based on the plastic dissipation

e = / ((o'* - o'h)T (Ae* — Ae™) + (5% —&") (g — Aa’g)) dQ (8)

7. Error estimator based on incremental plastic work

e = / (o* — a‘h)T <é; - ég) dQ (9)

o

Here, A denote incremental quantities, & is the radius of the yield surface and €y is the equivalent
plastic strain.

The key task now is to assess the accuracy of the different error estimators. In elasticity the
estimates might be assessed by employing them on problems where the analytical solution is known.
This is not the case in elastic-plastic problems. One solution might in such cases be to perform
several analyses with increasingly number of degrees of freedom to obtain convergence rates. It
1s then possible to calculate the “exact” global energy and then the error in global energy for a
certain mesh. An other possibility is to compare the finite element analysis with experimental data
obtained from laboratory test.

3. NUMERICAL EXAMPLE

A plate of length L = 36 mm and width W = 10 mm with a hole of radius B = 5 mm at its
center, is considered. The material of the plate is elastic-plastic with Young’s modulus £ = 7000
N/mm? and Poisson’s constant v = 0.2, yield stress oy = 243 N/mm? and tangent modulus
E, = 4220 N/mm?® The plate is subjected to a uni-axial tension of P = 150 N/mm? Half
the plate is modeled with 48 elements using symmetry conditions, and the load is applied in 10
equal increments. The analysis is performed using a four node Geometrically Exact Shell element
(GES) [2]. The element uses a stress resultant formulation of the material using the Ilyushin
yield criterion which is a good approximation to the von Mises criterion. The material model is
implemented with a consistent tangent modulus which is crucial for preserving a quadratic rate of
convergence of the Newton-Raphson method employed. Convergence is established with an energy
norm criteria with convergence tolerance equal to 1.0~°. Error estimation is performed at the end
of each increment.

The results presented herein are compared to those obtained by Tetambe et al. [6]. They used in
their investigation an eight-noded elastic-plastic element, while in the current study a four-noded
element is used. This causes the results to be somewhat different when it concerns magnitudes,
but the trends should be the same.

The global percentage error is plotted against the load level for the various error estimators
and is shown in Figure 1. The figure shows that the estimators are nearly constant up to a
load level equal to 5, which corresponds to a tension equal to 75 N/mm?. This is because the
model is still elastic up to this point. From load level 5 and upward the stress and strain error
exhibit a monotonic increasing behavior, even though the stresses are increasing very little. This
1s in accordance with the results obtained in [6]. The incremental total strain error is, however,
increasing in a smoother fashion than in [6]. The energy rate norm shows a jump in error initially
after plasticity occurs, but flattens out later in the load history.

When it comes to the error estimators based on plastic dissipation and incremental plastic
work they shows equal behavior. In the elastic region, up to increment number 6, they are iden-
tical, which also may be seen directly from their expresssions. The difference between these two
estimators is respresented by the second part of the expression for the plastic dissipation which
takes into account the yield-stress & and the equivalent plastic strain &. The yield stress is equal
to its initial value in the whole model apart from a small area in the bottom of the hole where
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Figure 1: Estimated global errors for the perforated strip.

yielding is initiated. The equivalent plastic strain is zero apart from this area. An explanation of
the magnitude of these error estimators in the “elastic” region is that the magnitude of the plastic
strain is very small in the area mention above and since this area is small, the percentage error

becomes fairly large.
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Analysis of contact-impact problems using
parallel computers

Per Persson and Larsgunnar Nilsson
Division of Solid Mechanics
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Abstract

This paper concerns the numerical solution of contact-impact prob-
lems using parallel computers. The theoretical problem is stated, fol-
lowed by a semi-discretisation in time and space. An explicit finite
element method is used to form the solution. The contact search used
is based on the Hierarchical Territory Algorithm, HITA, and the con-
tact forces are calculated using the Defence Node Algorithm, DENA.
The parallel implementation and numerical results are presented, and
the parallel version of HITA-DENA performs well on all test examples
compared to 'standard’ LS-DYNA3D algorithms.

Introduction

The evolution of High Performance Computers (HPC), has led computer
manufacturers to develop computers based on multiple CPU:s using a mes-
sage passing paradigm for the inter-processor exchange of data. To efficiently
exploit these so called MIMD computers, both algorithms and implementa-
tion strategies must be revised.

In Finite Element (FE) analyses the use of MIMD computers may be very
efficient, since large parts of the problem can be solved in parallel. By using
a domain decomposition of a FE mesh and distributing the different parts to
different processors, only a very small fraction of all computations needs to
be done in serial. This is especially true for explicit calculations, which does
not need the forming of a large stiffness matrix.
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However, the parallel solution of FE problems requires new algorithms.
Particularly contact-impact algorithms need to be rewritten to deal with
parts of a FE mesh that reside in different domains (processors). This article
describes a re-implementation of the contact-impact algorithm HITA-DENA,
Nilsson et al. [3], for use in a parallel computing environment.

Problem formulation

To form the dynamical contact problem we need to state

1. the equations of motion,
2. the constitutive equations,
3. the boundary conditions,
4. the contact conditions,
5

. the initial conditions.

Discretisation

A semi-discretisation is made, i.e. a FE discretisation in space, and a central
difference discretisation in time, and standard explicit FE procedures are
used. The contact conditions require a contact search and contact force
evaluation.

Contact search

The contact search is based on the Hierarchical Territory Algorithm, HITA,
where a hierarchical concept is adopted. Thediscretised contact system is
described by five primitives: contact body, contact surface, contact segment,
contact edge and contact node. For the parallel algorithm the concept sub-
body is introduced. A sub-body is the part of a physical body that is con-
tained within the same sub-domain. Thus a physical body may be split into
several sub-bodies, each residing in different sub-domains.

For the searching algorithm this means that information of all sub-bodies
must be distributed to all processors involved in the calculation. If common
territories are encountered, further calculations will be needed to evaluate if
contact between the two hierarchies occurs.
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Contact force

Contact forces are evaluated using the Defence Node Algorithm (DENA) with
Lagrange multipliers for the contact constraints. The Lagrange multiplier
method requires the solution of a system of coupled equations, but with
a decoupling of the equations the need for implicit calculations is released.
Since DENA reducesthe contact to be a node to node contact, this decoupling
makes the algorithm very efficient and simple to parallelise.

Implementation

The algorithm is implemented into the LS-DYNA3D program, Hallquist et
al. [1]., using MPI, (Message Passing Interface) by Message Passing Interface
Forum [2], as the message passing library. Flow charts of the implementa-
tion are shown, and a discussion regarding some of the problems found in
programming for parallel computers is held.

Numerical results

The results are found to be good on all tested examples. Total calcula-
tion time for the HITA-DENA algorithm is smaller than for ’standard’ LS-
DYNASD algorithms in the case of a smaller number of processors. In Figure
1, HITA-DENA can be compared to ’standard’ LS-DYNA3D. Further tuning
of the implementation is needed to be able to compete with other contact-
impact algorithms for cases with a larger number of processors.

All timings have been performed on a 64 node (128 processors) Parsytec
Gigacube Power Plus, which has also served as the development platform.
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1. Introduction

Clearance from manufacturing tolerances or wear is likely to degrade the dynamic
performance of connected machine parts. When joint clearance is introduced, the
mechanism behaviour changes because kinematically undetermined degrees of free-
dom are introduced - possibly leading to chaos[1]. The dynamic response of the
mechanical system is substantial changed, seen as high acceleration and force peaks
and dissipation of energy.

As for contact models, the simpler ones, such as Kelvin-Voigt or the Hertz model,
are characterized by a set of parameters. These include material parameters, coeffi-
cient of restitution, e, and possibly the ratio, u, of tangential to normal impulses[2].
The models can be divided into two groups - continuous and discontinuous[3] - re-
lated to whether integration is carried out through the period of contact, or stopped
and restarted with new initial conditions obtained from solving a set impulse related
equations.

Based on the equations of motion for a system of rigid bodies, simple models for
contact forces are used to model joint clearance in a multibody system. The dynamic
response of a mechanism is investigated, looking at the levels of acceleration, force
and energy dissipation.

2. Continuous Contact Models

The continuous analysis approach of two impacting bodies is performed simply by
including the contact force in the system equations of motion during the period of
contact. The most simple, known as the Kelvin-Voigt visco-elastic model, assume
linear relation between penetration depth and the impact force. Energy loss is simply
accounted for by multiplying the rebound force (impact force in the separation
phase) by the coefficient of restitution.

A more superior model, known as the Hertz force-displacement law, assumes a
nonlinear relation between penetration and impact force. The normal force to the
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plane of contact between two colliding spheres is written as|[3]
f =K+ D§ (1)

where ¢ is the relative penetration depth and n = 1.5. The parameter K depend on
material and radii of the spheres

4 R 1
K= ke
C T n (it hy) im&] 2)
_1—1/,3 o
hk"‘ ’/’I’Ek y ]”*Zaj (3)

Because of dissipation in the form of heat or permanent deformation, the relative
rebound velocity is reduced. Assuming the energy loss can be modeled as internal
damping - valid only for low impact velocities - damping can be included in the
form of a damping coefficient, D, proportional to the penetration velocity 6. The
damping factor is estimated by means of the impulse-momentum equations[3] and
the coefficient of restitution as

D:&{ﬂ%gﬁﬁJ (4)

where 6~ is the initial penetration velocity. The effect of this form for damping
is seen in Figure 1A, which shows the hysteresis of multiple impact of a heavy sphere
on a rigid barrier. Also the Hertz’ contact force for the first impact, is plotted in
Figure 1B
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Figure 1. A) Hysteresis of a ball with multiple impact on a rigid barrier. e=0.8. B)
Hertz contact force of the balls first impact.
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3. Discontinuous Contact Model

The discontinuous model assumes that the period of contact is short and thereby in-
stantaneous changes in velocity occur. Since this leads to infinite accelerations of the
bodies in contact, the overall mechanical system is subject to a energy dis-continuity,
requiring the numerical integration to be restarted with new initial conditions.

A central impact of two colliding bodies, 7 and ;, where also tangential impact
velocities are present, are written in terms of Impact-momentum equations as

oyt ot — oy gy =

mivy, + myvl = mo;, + m;vs, (5)
Tt N gy gy

mivy +myv = muy + m;vy (6)

where subscript n and ¢ refer to normal and tangential direction, respectively and
superscript — and + denote before and after the impact, respectively.

If the initial velocities are known, two more equations are needed to solve for the
four unknown velocities after the impact

vl —vh = —e(v;, —v;) (7)
M — pmvl, = my — pm;vs, (8)

where Eq. 7 use the coefficient of restitution to provide energy loss in the normal
direction, and Eq. 8 accounts for the tangential impulse or friction by means of the

ratio u.
4. Dynamic Response

CLEARANCE Ring Clearance
CONNECTIONS

Figure 2. Revolute joint with clearance.

Based on the equations of motion for a constrained multibody system

ERSINE ©

a mechanism simulation is performed by integrating forward in time. Eq. 9 both
include kinematic constraints from joints and independent degrees of freedom. To
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demonstrate the effect of joint-clearance, a revolute joint, as seen in Figure 2, is mod-
eled with clearance, and thereby controlled by contact forces instead of kinematic
constraints.

In a Slider Crank mechanism a revolute joint with clearance, connecting the
connecting-rod with the slider, is introduced. The mechanism simulation results
with and without clearance are compared. Figure 3A shows the horizontal slider
velocity and Figure 3B shows the according acceleration.
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.
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Figure 8. Horizontal velocity and acceleration response of the slider in a Slider Crank
mechanism simulated with and without clearance in the rod-slider revolute

joint.

From the velocity plot, it is clearly seen that de-acceleration is smoother since
the impacts naturally dissipate some of the kinetic energy possessed by the slider.
From the acceleration plot, it is seen how the acceleration peaks are increased almost

by a decade.
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The constitutive model for frictional materials presented here has been developed on
the basis of thorough review and evaluation of data from experiments on frictional materials,
such as soil, concrete and rock (Kim and Lade 1988, Lade and Kim 1988a, 1988b). The
framework for the evaluation and subsequent development consisted of concepts contained in
elasticity and work-hardening plasticity theories.

The total strain increments observed in a material when loaded are divided into elastic
and plastic components so that

dey = deg +de 1)

Both the elastic and the plastic strain increments are expressed in terms of effective stresses,
and all functions for the elastic behavior, failure criterion, flow rule, yield criterion, and
work-hardening/softening law are expressed in terms of the stress invariants I, I, and I; and
the stress deviator invariant J,.

Elastic Behavior.- The elastic strain increments are calculated from Hooke’s law using
a recently developed model for nonlinear variation of Young’s modulus with stress state (Lade
and Nelson 1987) The value of Poisson’s ratio, v, limited between zero and one-half for most
materials, is assumed to be constant. The expression for young’ modulus was derived from
theoretical considerations based on the principle of conservation of energy. According to this
derivation, Young’s modulus E can be expressed in terms of a power law involving
nondimensioal material constants and stress functions as follows:

2 y2
E=M~pa~[(§;) +R-;—§] )
in which
R=6.+2 €))

and p, is atmospheric pressure expressed in the same units as E, I, and /2 , and the modulus
number M and the exponent A are constant dimensionless numbers.

Eq. 2 and Fig. 1 indicate that Young’s modulus is constant along rotationally
symmetric ellipsoidal surfaces whose long axis coincide with the hydrostatic axis and whose
center is located at the origin of the principal stress space. The magnitude of Poisson’s ratio
determines the shape of the ellipsoidal surface. For v=0, R=6, and the surface becomes
spherical, whereas for v=0.5, R=co, and the surface degenerates into a line coinciding with the
hydrostatic axis.
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FIG. 1. Contours of Constant Young’s Modulus Shown in (a) Triaxial Plane; and
(b) Octahedral Plane

Failure Criterion.- A general three-dimensional failure criterion has been developed for
soils, concrete and rock (Lade 1977, 1982, 1993). This criterion is expressed as follows:

(%“27)(%)’”:’71 @

in which 1, and m are constant dimensionless numbers. In principal stress space, the failure
surface is shaped like an asymmetric bullet with the pointed apex at the origin of the stress
axes, a shown in Fig. 2. The apex angle increases with the value of ;. The failure surface is
always concave towards the hydrostatic axis, and its curvature increases with the value of m.
For m=0 the failure surface is straight, and if m>1.979 the failure surface becomes convex
towards the hydrostatic axis. Analysis of numerous sets of data for concrete and rock indicates
that m values rarely exceed 1.5. For constant value of m and increasing m: values, the
cross-sectional shape in the octahedral plane changes from circular to triangular with smoothly
rounded edges in a fashion that conforms to experimental evidence. The shape of these cross
sections does not change with the value of I, when m=0. For m>0, the cross-sectional shape of
the failure surface changes from triangular to become more circular with increasing value of I.
Similar changes in cross-sectional shape are observed from experimental studies on soil,

concrete, and rock. m=0 m=1
m=1AND O ~ny=10° ax0 o O ~ny=1030R 7y =105
D~711=10‘ I1/Pa"100 4 (] -..-,”.;1020;3 771.,104
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FIG. 2. Characteristics of Failure Surfaces Shown in Principal Stress Space: Traces
of Failure Surfaces Shown in (a) Triaxial Plane; and (b) Octahedral Plane
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Flow Rule.- The plastic strain increments are calculated from the flow rule:

ogp
dej;=dhy - 5= (5)
in which g, is a plastic potential function, and dA, is a scalar factor of proportionality. For
frictional materials the plastic potential function must be different from the yield function and
nonassociated flow is consequently obtained. A suitable plastic potential function has the
following form:

o=(vF-F+w) . (&) ©

in which ¥, , ¥, and u are dimensionless constants. The parameter ¥, acts as a weighting
factor between the triangular shape (from the I term) and the circular shape (from the I,
term). The parameter ¥, controls the intersection with the hydrostatic axis, and p determines
the curvature in the meridians. The corresponding plastic potential surfaces are shown in Fig.
3. They are shaped as asymmetric cigars with smoothly rounded triangular cross sections
similar to, but more rounded than those for the failure surfaces shown in Fig. 2.

S
Hydrostatic
Axis

V2o,

FIG. 3. Plastic Potential Surfaces Shown in Triaxial Plane

Yield Criterion and Work-Hardening/Softening Relation.- The single isotropic yield
surface is expressed as a contour of constant plastic work:

fo =1o(0) =1y () =0 ?
in which
3 h
f;z(\Pl'%"’%>° -1-17%) .4 (8)

in which h is constant, and q varies from zero at the hydrostatic axis to unity at the failure
surface. The parameter ‘P, acts as a weighting factor as in the expression for the plastic

potential.

The yield surfaces are shaped as asymmetric teardrops with smoothly rounded
triangular cross-sections and with traces in the triangular plane as shown in Fig. 4. The
relation between the yield criterion and the plastic work (Eq. 7) is described by a
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monotonically increasing function whose slope decreases with increasing plastic work, as
shown in Fig. 5. As the plastic work increases, the isotropic yield surface inflates like a balloon
until the current stress point reaches the failure surface. Beyond failure the yield surface
contracts isotropically, like a deflating balloon, with increasing amount of plastic work, as also
shown in Fig. 5.

Capabilities.- The single hardening model has been shown to capture the behavior
characteristics observed in frictional materials. This is because the behavior of materials such
as soils, concrete, and rock allows for a unified approach in describing their failure surfaces as
well as their stress-strain relations. The constitutive model described here combines all the
governing functions studied individually in a mathematically consistent entity. All required
parameter values can be determined from simple laboratory tests, such as isotropic
compression and conventional triaxial compression tests

The model has been shown to predict the stress-strain and strength behavior of soils of
different types for drained and undrained conditions and for various two- and
three-dimensional stress paths. Calculations for materials with effective cohesion and tensile
strength such as concrete have also shown overall acceptable and accurate predictions.
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Introduction

The ABAQUS cap model is applied to Copenhagen Limestone. The elasto-plastic material
model is used for failure analyses of the pylon and pier foundations of the @resund Bridge.

Copenhagen Limestone

The @resund High Bridge pylons are founded on Copenhagen Limestone. Test series on
limestone formations comparable to the is-situ conditions have been carried out by the
Danish and Swedish Geotechnical Institutes, SGI/DGI(1994). The limestone on which
the bridge is founded is characterized as slightly indurated and with a horizontal layering.
The material is thus relatively soft and orthotropic by nature. As most available material

models still apply to isotropic materials, an isotropic prototype material for elasto-plastic
modelling has been suggested by DGI/SGI(1994), cf. Fig. 1.
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Figure 1: Elasto-plastic prototype model for Copenhagen Limestone

The material model is a combination of a Critical State Line model and a cap model. It
includes a Drucker-Prager type friction surface, a cap to limit the maximum deviatoric
stress and control the isotropic compaction. For stress states on the Critical State Line
the material is allowed move to stress states outside the failure locus.
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Médel calibration

The prototype model has been used to calibrate the ABAQUS cap model to Copenhagen
Limestone, cf. Fig. 2. The choice of the cap model instead of e.g. a CSL model is motivated
by the fact that the dominating failure mode of the pylon foundations will be combined
sliding and shear, thus mainly governed by the friction parameters. The cap is mainly
introduced to limit the maximum shear stress.

Transition s
surface, F, ?

Shear failure, Fg .

A P
R{d+ptanf) |

Figure 2: ABAQUS cap model

The ABAQUS cap model yield surface consists of a linear Drucker-Prager surface and ar
elliptic cap. It is defined in terms of the stress invariants (p,g) and the material parameters

(d, tanf, pa, R), cf. Fig. 2.

t—ptanf — d for p < p,
f =
Jp—p.) + (R’ — R(ptan f +d)  forp>p.
where
p=—0y/3 is the hydrostatic pressure
t=qF(K)/2 is the deviatoric stress radius

q= ‘\/%SijSij is the von Mises stress
F(K); K €[0.8;1] 1is a function of the ratio K = 0¢/o., where oy and o, are
the uniaxial tensile and compressive strength, respectively.

If F(K) < 1 then the deviatoric contour becomes more triangular, thus modelling a dif
ference between the triaxial compressive and tensile strength. The lower bound K > 0.¢
is imposed to ensure that the deviatoric contour remains convex. However, the numerica
integration of the consistutive equations have shown to fail for K # 1.0 and therefore i
has been necessary to use to circular deviator contour, even though triaxial tests on th
limestone show that K = 0.8 for the limestone. Therefore, it has been necessary to choos
which type of failure mode is governing and then calibrate accordingly.
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Figure 3: Model predictions
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3 types of tests have been modelled in the calibration process
1. Sliding/shear
2. Passive failure
3. Active failure

It is assumed that the sliding/shear will dominate the failure of the pylon foundation anc
therefore the model is calibrated to this type of test. The same material parameters ar
then applied to the other 2 tests. The set-ups and results are shown in Fig. 3.

It is seen that the sliding/shear and the passive failure modes are well described. Th
failure load of the active failure test is, however, extremely underestimated by the model
This result is due to the application of the isotropic model to a orthotropic material. Weal
horizontal layers are embedded in the limestone formations and they govern the strengt!
in horizontal loading. For vertical loading, as in the active failure test, the failure line
crosses both strong and weak layers, thus for vertical loading the strength is dominate:
by the stronger layers. In order to get conservative predictions on the failure loads th
stronger layers are neglected.

Conclusions

The non-associated ABAQUS cap model has been applied to Copenhagen Limestone. !
single set of material parameters has been used to predict the failure loads of the 3 in-sit
tests. Sliding/shear and passive failure loads are close to the measured values, whereas th
active failure load is underestimated. The deformation properties are not modelled equall
well by a non-associated elliptic potential surface. The main problem is here the lack ¢
an explicit tension cut-off, which for low hydrostatic pressures leads to effective dilatio
angles of ¢ =~ 60°.
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Introduction

The classical critical state concept for soil is based on a self-similar family of yield surfaces with an isotropic
hardening rule controlled by the so-called critical state. The critical state theory was developed in a two-
dimensional setting using mean stress p and max stress difference ¢, and assuming associated plastic flow.
In the original model, Schofield & Wroth (1968), the yield surface was derived from an intuitive model of
plastic straining in a friction material, while this yield surface was replaced by an ellipse in the ‘modified’
theory of Roscoe & Burland (1968).

In this paper the concepts of critical state theory are generalized by introducing nonassociated plasticity,
use of a general invariant surface format that reflects the influence of all three principal stresses, and
mntroduction of a generalized hardening rule that permits the development of dilation prior to material
failure. An associated formulation was presented by Krenk (1996b).

The surface format
A friction material without cohesion can not support tension, and therefore all three principal stresses are

compressive. Figure la shows a typical yield surface in principal stress space with compression reckoned
positive. The surface is generated by the curves in the octahedral and meridian planes shown in Fig. 1b.

G; O3

F1G. 1: a) Yield surface in principal stress space, b) Generating curves in octahedral
and meridian planes.

The model is formulated in terms of the mean stress p= %0’,’,‘ and the deviatoric stress $ij = 0i5 — pbi;.
The simplest form of an octahedral contour that satisfies symmetry with respect to the three principal
deviator stress components is the cubic polynomial

(s14+d)(s2+d)(s3+d) = nd°

The size of the circumscribing triangle is determined by the stress parameter d and the shape by the non-
dimensional parameter and 7, Krenk(1996). For a friction material d p and for d = p the intersection of
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the octahedral plane and the coordinate planes o; = 0 constitutes the circumscribing triangle. With th
assumption the equation of the surface takes the form

flo) = =Js + pJa = (1—n(E))p® =0
in terms of the deviatoric stress invariants
Jo = $sijsij = —(s2ss+sss1+s182) ,  J3 = 3siSjpski = 515253
Alternatively the surface can be expressed in terms of the total stress invariant Iz = det(0;;) = 010203 :
flo) = —Is + n(p)p® = 0

This format was used by Lade & Duncan (1975) with constant 7 to generate a triangular cone, and by Lac
& Kim for a curved triangular failure surface. The general format also contains the surface of Matsuoal
& Nakai (1984), giving a smooth interpolation of the Coulomb criterion.

G3

tension
= shear

compression
0

F1G. 2: Octahedral stress contours, = 0,0.2---, 1.

The family of octahedral contours are shown in Fig. 2. The yield function f(¢) and the plastic potenti:
g(o) are obtained by selecting suitable functions 7;(p) and 7,(p), respectively.

The meridian curve takes a particularly simple form in the state of triaxial stress, o9 = —%(01 +03), show
in Fig. 2. In this state of stress J3 = 0, and thus the equation of this octahedral contour reduces t
quadratic form,

Jo = (1-n(p))p’

It is now convenient to introduce the function ¥(p), defined by 4% = 1 — . The shape of the triaxial shez
meridian contour is then directly defined by

v(p) = V1=-n(p) = VIa/p

Thus ¥ is the secant inclination in a p,~/J2 plot.

Yield surface

The yield surface is assumed to have the coordnate planes o; as tangent planes at p ~ 0, and thus for
closed surface the function 7;(p) must vary between 0 and 1, when the mean stress p varies between 0 an
the current maximum value ps. A simple function representing the typical shape of a yield function is

ny(p) = (p/ps)™

where the exponent m is a model parameter. A typical yield function is shwn in Fig. 1.
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Plastic potential

The plastic potential is constructed from constitutive considerations regarding the plastic work increment
pdel + qdel = dW?

For generalized strain increments dp,dq along the plastic potential dq/dp = —det/ def , and for triaxial
shear the relation v = q/2p leads to

4 _d AW
P dp dp  pdef
In the original Cam Clay model the plastic work was introduced via the classical Taylor hypothesis as
dW? = M pdef. However, this hypothesis violates the no-tension condition, and leads to potential surfaces
that intersect the coordinate planes ;. A simple ‘consistent’ alternative is obtained by assuming the
plastic work increment to be related to the miimum principal stress, i.e. assuming a relation of the form
dW = 2naminds§ » where n is a model parameter. With this representation the plastic work relation can
be integrated to give

Y%(P) =1 ~ (p/py)"
A typical plastic potetial surface is shown in Fig. 3.

F1G. 3: a) Plastic potential surface in principal stress space, b) Generating curves in
octabedral and meridian planes.

Stiffness and Hardening

The hardening rule should permit passage of the charcteristic state, i.e. the state of no (plastic) dilation,
into the dilatant part of stress space. This is obtained by the weighted linear work hardening rule

v
dpy = T (pdeﬁ-{-wsijdef-}

where w is a non-dimensional weight parameter that determines the dilation in the ultimate state. This
hardening rule leads to ideal plastic behaviour at the ultimate state defined by dp; = 0.

Examples

A typical example for a triaxial compression test on loose sand using experimental results from Borup &
Hedegaard (1995) is shown in Fig. 4. The model containing only three stiffness parameters, the two shape
barameters m, n, and the weight parameter w for dilation appears to capture the general behaviour well.
Figure 5 shows simulated results for triaxial constant volume (undrained) tests with loose and dense sand.
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MODELLING OF GRANULAR
FLOW IN A SILO

Jorgen Flemming Olsen and Leif Otto Nielsen
Department of Structural Engineering and Materials
Technical University of Denmark

Introduction

Many granular materials such as sand, gravel and grain are stored in silos.
Designing a silo one has to assess the loads on the silowalls arising from the
silo medium during filling, storage and discharge and it is important to avoid
geometries which are likely to promote e.g. dead zones (Fig. la) or arching

(a) (b)

Fig. 1.

The classic solutions to silo-problems assume simple geometries and sim-
ple constitutive laws like the ideal Coulomb law. These solutions, see e.g.
(Nedderman 1992), form together with empirically derived correction factors
the basis of existing codes. In recent years much work has been done as to
the numerical analysis of silo-problems and a number of different constitutive
laws and computational methods have been applied. The pioneering work
on this subject was carried out mainly by german researchers, see e.g. (Eibl
& Haussler 1984), (Eibl & Rombach 1988).
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Formulation

The equilibrium equations are given as
0455+ 0b; = 01 (1)

where o;; is the Cauchy stress tensor, b; the body force vector, i; the accel-
eration vector and p the density of the material.

The granular material is regarded as a solid body exposed to large strains.
For that reason a Lagrangian formulation is chosen meaning that all static
and kinematic variables are referred to a reference configuration. The ma-
terial is modelled with an elastic-plastic constitutive law which is expressed
as

Gijsay= Cijia D
ij(Ja) 17kl Ykl (2)

Dy = 3 (vky + v )

where 327-( Ja) is the Jaumann stress rate, Ciji the material stiffness tensor,
D;; the rate-of-deformation tensor and v; the velocity vector.

The material is assumed to be isotropic and the chosen yield surface
belongs to a family of invariant stress surfaces (Krenk 1996) in which the
deviatoric contours (Fig. 2) are defined by a size parameter and a shape
parameter.

4\03

o)) )

Fig. 2. Deviatoric contours

Further assumptions besides isotropy have been made. All yield surfaces
are identical in shape and the size of a yield surface is a function of the
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density of the material and thus obtainable from an isotropic compression
test. The assumption regarding the size of a yield surface determines at the
same time a simple hardening and softening rule. The size and the shape of
the deviatoric contours are functions of the average principal stress solely. A
yield surface is shown in Fig. 3.

Fig. 3. Yield surface

At present the associated flowrule is used implying that plastic strains
are perpendicular to the yield surface. A non-associated flowrule as well as
a rate dependent stress term will be added later.
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Error Estimation of Reissner—Mindlin Elements
using Statically Admissible Stress Resultants

Knut Morten OKSTAD, Trond KVAMSDAL* and Kjell Magne MATHISEN

Department of Structural Engineering
Norwegian University of Science and Technology
N-7034 Trondheim, Norway

1. INTRODUCTION

Error estimation in structural finite element (FE) analysis by the well-known Zienkiewicz—Zhu
approach involves the recovery of an improved C°-continuous stress field as a basic component.
The superconvergent patch recovery (SPR) method [1], has proved to be an efficient tool for this
purpose in both two-dimensional elasticity and plate bending applications. In the SPR-method,
the recovered stress field is expressed as a polynomial over a small patch of elements, typically
the group of elements that have one node in common. The coeficients of the polynomial are the
determined from a least squares fit of the polynomial to the FE stress values at the superconvergent
points (also known as Barlow points) of the elements in the patch.

The stress field obtained in this manner normally violates the governing equilibrium equations
of the problem. Therefore, in order to increase the quality of the recovered field, the method is often
enhanced by constraining the field to also satisfy interior equilibrium as well as natural boundary
conditions in a least square manner over the patch, see e.g. [2]. The square of the residual of
the equilibrium equations is then added to the SPR-functional. Instead of doing this, the interior
equilibrium can be accounted for more directly by selecting a polynomial basis for the recovered
field that a priori satisfies equilibrium. This approach is presented for two-dimensional elasticity
problems in [3] and is herein applied on plate problems with transverse shear deformation.

2. RECOVERY OF STATICALLY ADMISSIBLE STRESS RESULTANTS

Given an open bounded domain Q € R?, with boundary 8Q = 8Q,U8Q;. The governing equations
of the Reissner-Mindlin plate theory then reads

[DF DF] {‘;’} +f = 0 inQ (1)
u = W on 8, (2)
Q{‘;‘} = % on A0, (3)

Here, f = {p,,0,0} represents the distributed load, u = {w, 4, 8,37 is the unknown displacement
field, and @ and t = {V,, 4Z,, My}T are the prescribed displacements and tractions along 99,
and 0, respectively. The bending moments m = {Maz, myy, May}T and transverse shear forces
q = {4z, qy}7 are coupled to the displacement field through m = CoDpu and q = C,ID,u,
respectively, where Cp, and C, are the plate constitutive matrices. The strain-giving differential
operators IDy, and ID; and the ‘stress resultant-to-boundary traction’ transformation matrix Q are

*Currently at SINTEF Applied Mathematics, N-7034 Trondheim, Norway
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given by, respectively

0 5‘% g 2 _1 o 0 0 0 ny ny
D, = {0 0 3 | D, = [fgf 0 _1] and Q = | 0 —ny ~n, 0 0 (4)
0 8_8;(/. EX) % ny 0 Ty 0 0

where n, and n, are direction cosines of the outward unit normal vector of the boundary 690.
Following the approach presented in [3], we want to construct a statically admissible stress
resultant field, (m*, q*), that satisfies the equilibrium equation (1), on the form

*(z

{ I(’;t((x:;/y)) } = Bl(x,y)ah + Pp(x:y) aP (5)
where Py, and P, are matrices of monomials in z and Y, and ap and a;, are corresponding vectors
of coefficients giving the magnitude of each monomial. The subscript , and ,, here denote the
homogeneous and particular solution, respectively. Assuming the distributed load can be expressed
as a polynomial f(z,y) = Pi(z,y) ar with P; being another matrix of monomials and ar a vector
of known coefficients, the following constraints may be deduced from (1)

[Df DI ]P, 0 (6)
(D DI P, + B = 0 ™

in addition to a, = a;. Obviously, the constraints (6) and (7) do not define a unique choice
for Py, and Pp. To find explicit expressions for these matrices we start by assuming a complete
polynomial up to a certain order for each component of m* and q*. Insertion into (1) and collecting
coefficients of each monomialin {z, y}, then yield a linear system of equations through which some
of the coefficients are eliminated. The resulting polynomial is then reordered into the form (5).

Starting with a complete bi-quadratic polynomial for each of the five stress resultant compo-
nents, i.e. a total of 5x9 = 45 unknown coefficients, the above procedure reduces the number of
unknowns to 21 ending up with a 5x21 Py-matrix. From this matrix we herein pick the following
17 columns as a basis for the statically admissible field

100z 000y 0 a2y 0 22 0 0 0 2 0
0 100 vy 0002 0 2zy 0 ¥ 0 0 0 22

Ppyz= 100100y 2z 00 0 0 —zy —zy 22 2 0 0 (8)
6 001 01O0O0GO0C ¥y 0 z -z 0 2y 0 O
000010100 0 z -y y 2z 0 0 0

It is now easily verified that (8) satisfies the constraint (6). Depending on the polynomial order
of the load function, f(z,y), we will also have a Py-matrix. For a constant load p,, for instance,
we obtain a, = {p,} and the 5x1-matrix P,; = {0, 0, -—%—:cy, —%:c,——%y}T. More details on the
construction of the statically admissible polynomials are given in [4].

In the original SPR-approach [1], an improved stress field is determined over a small patch of
elements by a least squares fit of a bi-linear (or higher for higher-order elements) polynomial to
the FE values at the superconvergent points of the elements in the patch. Instead of a bi-linear
basis we now use the polynomials defined by (5) and (8). Accordingly, we have the following

SPR-functional to minimize with respect to the coefficients ay,

Flan) = Y (s} - Pa(@i)an — Po(w:)ap) W (s} — Pu(ws)an — Po(w:)ap) 9)
izl

Here, ; = {z;,3}T denotes the Cartesian coordinates of Barlow point ¢, s} = {mh_, .. .,q;‘ i

represents the FE stress resultants computed at that point, and ny, denotes the total number of
Barlow points in the patch. Since the matrix (8) introduces coupling between the bending moments
and the transverse shear forces which have different dimensions, a matrix of weighting factors, W,
1s introduced in the functional to enforce the same dimension on all terms. A natural choice for
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LS WEIBLILLIE MATTIX 18 the 1nverse of the constitutive matrix (or a diagonalized version of it, as
used in [4]) such that (9) turns into an energy functional.

The minimization of (9) yield a linear system of equations to solve for the unknowns ap and the
recovered stress resultant values are in turn obtained by evaluating (5) at the integration points.
For patches containing five (or more) elements we use the whole matrix P17 given above (i.e.
17 unknowns). For four-element patches, however, we drop the two last columns containing the
z2- and y*-terms, as these two terms tend to give poorly conditioned equation systems for regular
shaped patches. For patches consisting of only three elements we use only the 13 first columns of
Ppiv.

3. NUMERICAL EXAMPLE

Figure 1 shows a semi-infinite rectangular plate bounded by two parallel edges y = +% and the
edge z = 0. The deflection w and the bending moments Myy are prescribed equal to zero along
the edges y = +2 whereas the free edge z = 0 is subjected to a constant transverse shear load, ¢;.
An analytical solution to this problem based on Reissner plate theory is given in [5].

A finite portion of the plate corresponding to the rectangle (z,y) € [0,8] x [0, £] is analyzed
as indicated by the shaded area in F igure 1. Along the line ¥ = 0 symmetry boundary conditions
are applied (i.e., 8, = Mgy = gy = 0). Neither the twisting moments Mgy nor the rotations 4, are
equal to zero along the edges y = £%. The actual variation of Mgy along these edges, according
to the analytical solution, is depicted in Figure 1. These tractions are applied as external loads
along the boundary y = $ in the FE analysis whereas the rotation 8y is free. Similarly, tractions
according to the analytical solution are applied as external loads also along the line z = &.

The problem is analyzed adaptively using a Reissner-Mindlin based four-noded quadrilateral
element [6], and a relative error tolerance of 5, = 2%. In addition, we use a sequence of five
uniform meshes ranging from 8 x 2 elements up to 128 x 32 elements. For each mesh we compute
the effectivity index O, i.e. the ratio between the estimated global error and the corresponding
exact error based on the analytical solution. In addition, we compute the ‘root-mean-square’ of
the estimated local errors, defined through

02 (€22 — Nl llug)’

lle*[lave

nel

e s, = lelles = = letle (10)
el e=1

where [le¥||z denotes the usual energy norm of the estimated local error in element, e, see [4]. The
quantity (10) provides a global measure on the distribution of the estimated error over the mesh
and should ideally approach zero when the mesh is refined adaptively. The results of the analyses
are presented in Figure 2. The current recovery approach (denoted SPR+4-S) is here compared with
the original SPR-procedure (1] and SPR with equilibrium enhancement (SPR+E) according to [2].
The adapted mesh sequence based on SPR+S recovery is shown in Figure 3 and demonstrates
clearly the boundary layer effect along the edge z = 0.
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Figure 1. The semi-infinite plate problem: Geometry and properties.
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Figure 2: Results for the semi-infinite plate problem: a) Global effectivity indices (©).
b) Root-mean-square of estimated local errors (||€*||gs.)-
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Figure 3: Sequence of adaptively refined meshes obtained with SPR+S.
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ADAFLIVE FINITE ELEMENT METHOD WITH
RECOVERY BASED ESTIMATOR FOR
PARABOLIC PROBLEMS

S.Ziukas® and N.-E.Wiberg

Department of Structural Mechanics
Chalmers University of ‘Technology
S—412 96 Goteborg, Sweden

1. Abstract

Performance of Zienkiewicz-Zhu error estimator is considered for linear parabolic equations. Es-
timate of the local elliptic discretization error in energy norm is obtained by constructing a recov-
ered gradient field of a higher order of accuracy ateach time step using superconvergent proper-
ties of the solution.

2. Motivation

The method of lines (MOL) is a very popular method to solve initial-boundary value problems
in engineering. In this approach a problem is first discretized in space using, for example, Galer-
kin method, and then the resulting system of ordinary differential equations (ODE) is solved in
time with the finite difference method (FDM). As the smoothness of a solution may vary consid-
erably in space and time, discretizations with variable mesh sizes in both Space and time are need-
ed. Thus, a problem of selection effective and reliable error estimator becomes the main concern
in the adaptive analysis.

Error estimates developed for elliptic equations can be used to estimate Space discretization errors
for parabolic problems. One of such estimators based on the recovered solutions was developed
by Zienkiewicz and Zhu, see [1].

3. Model problem and objectives

Let us consider a parabolic initial-boundary value problem for the heat equation (groundwater
flow)

%lti — V-[A®)Vul = f(x,H) in XD EQXI I=(0,T]

3.1
ux,9) =0 on 02 X I ulx,0) = usx) in Q (3.1)

Formulating the standard Galerkin methodin H = L,(2)with V = Hé(.Q) leads to the approx-
imate semidiscrete problem: find u w® € §,(2) such that
(uh,,,x) +aupx) = Fx), W ES® e, T],
u(0) = u,

(3.2)

which can be integrated in time using the backward difference approximation
(3.3)
WL + k(U ) = (U + kefltx), Vg €8, 1> 0
Our goal is to discuss an estimate of the space discretization error in the “energy’ norm
Heo = Va(,-) using Zienkiewicz-Zhu error estimator

T. e—mail: saulius @sm.chalmers.se
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-

n(t) 1= [j (Guy, — AVuy)'A = (Guy, — AVuh)] » E@:= [Z 77%} (3
‘ t€T,

Gdenotes some recovery operator which acts on the finite element solution 10 give an appr«
mation to the gradient AVu.

4. Error analysis

Solving parabolic problems with the finite element method of lines it is reasonable to study
total discretization error in two steps — to analyze separately the finite element method error :
the error incurred in solving the system of ODE

u@, 1) — Uk, 1) = ulx,1) — uyx,0) + uy(x, 1) — Ux,1) = e(h,x, ) + elk,x,t) (4
Let us first separate the error arising from the finite element discretization and consider meth.
of estimating it only. Replacing u by u;, + e, the discretization error satisfies Galerkin form
tion: find e € H(l)(Q) such that
v,e) + av.e) = 0.f) — av,uy) — Vuy,) . VYW EH), V>0 (4
a(v,e) = a(v,ug — uy) , VvEHé , =20 (4
Error estimates can be established by solving or approximating equations (4.2 ) and (4.3
find a magnitude of the error.
By introducing the so called elliptic (Ritz) projection R P Hé —> §,, asthe orthogonal project
with respect to the bilinear form a(., .) and using the following decomposition
u-—-uh=(u—Rhu)+(Rhu—uh)=p+@ (4.
we see that the gradient of @ is of order O(h"), whereas the gradient of the total error is o

O(h"~1). This implies that that estimator for the local elliptic projection Jp| is also an asymptc
cally exact one for |e, i.e. le] ~ |p| up to higher order terms. Further, aiming to reduce compl:
ity of the error estimator, we neglect the time rate of change of the error, and thereby, seek

approximate solution to the local elliptic problem: find a magnitude of ¢ € Hé(.Q) in || EQSt
that

alv,e) = v,f) — av,uy) ~ (v, Uy ., Y E H(l) , V>0 (4.
interpreting u,, , as given data.
In order to find an approximation to the bilinear form we shall use Zienkiewicz-Zhu errorestin -

tor. The SPR is used to obtain the gradient of higher accuracy and ensure narrow bounds of 1
effectivity index [2]. The procedure represents a problem of finding Gu,, € [S,]9 such that

I G = AVuy 2= inf | Guy, — AV |15, (4

Local time integration error of the Euler method can be estimated by constructing a new higl
order approximation to the solution or by evaluation of the second derivative of the solution w
respect to the time in the a—priori estimate. The second order correction %" is used as the estim:
of the local truncation error

(B + k" = S2{4(v" - v7=1) - (fzy) - fty-)] (4.
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Figured.  Sequence of meshes used in the adaptive analysis aiming 12% accuracy global error in

energy norm

5. Results and discussion

The test example is a problem in which the source function f(x, #) and Dirichlet boundary condi-
tions are chosen such that the exact solution is given by

u(x,y, 1) = exp[— 80(Gc = r(9)? + (5 — 0.5)2)] (5.1)
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where r(f) = 0.5 — 0.25exp(— 10007). This represents a cone which is centered at (0.5, 0.
atr = 0 and moves with a continuously decreasing speed towards the center of the domain

In order to investigate efficiency and applicability of the estimator, the problem was solved us
a sequence of uniform triangular meshes using 10, 20, 30, and 40 linear finite elements per si
The convergence of the global error in energy norm of the finite element solution Ju — 1,

and the recovered gradient field [AVu — G(u,) ]]LZ(Q) by original SPR procedure at ¢ = 0.

shown in Figure 1. Distribution of elemental effectivity indices for the initial projection and
final state is presented in Figure 3. We notice some overestimation of the discretization error
the initial projection. Elemental effectivity indices become worse as time passes in regions n
to the boundaries, i.e. where the exact solution and its gradient are small, however, in regions w
a high solution gradient elemental effectivity indices are near unity for all time steps. That

plains the fact that the global effectivity index remains almost unchanged with even small tend
cy for overestimation of the error and it is very close to unity, see Figure 3.

The performance of Zienkiewicz-Zhu estimator was tested also in the context of adaptive ana
sis. The problem was solved using a variable time step aiming 70lS=12% accuracy relative er
in energy norm in space and TolT=2% accuracy of local temporal error. Starting from triangr
20x20 grid, three additional grids were used, see Figure 4.

6. Conclusions

® Itis shown that such error estimator is asymptotically exact for sufficiently regular
solutions that is confirmed by a numerical example. The original Superconvergent
Patch Recovery procedure gives a recovered gradient field which is more accurate
and have a higher convergence rate O(h?) than the finite element solution OhYin
energy norm.

® The global effectivity index does not differ much from unity for uniform meshes as
well as for those used in the adaptive analysis. The error estimator does not yield
an upper bound of the error in general, however, it can be noticed that the estimator
tends slightly to overestimate the discretization error for triangular meshes.

® The error estimator requires only a small fraction of the computational cost used
for the finite element analysis.

® Performance of the estimator can be improved by forcing the recovered gradient
field to satisfy the local equilibrium equation as in the elliptic case, (see [3]).
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INTRODUCTION

The sensitivity of general isoparametric quadrilateral low order finite elements due to their distorted
geometry has been analyzed since 1973. Then, an isoparametric non-conforming element was devel-
oped by Wilson et al.! and Wilson’s incompatible shape functions have entered to the history of the
finite element method. After more then twenty years that have passed, the full comprehension on the
influence of the shape of quadrilaterals on the finite element solutions is still missing. A broad class
of new mixed elements based on assumed stress or strains has been developed, References [1]-[8]. The
element of Pian-Sumihara3, 1984, appeared to be less sensitive to distorted meshes and new ap-
proaches have slightly improved this result, since then.

The use of differential geometry by Yuan57 et al. allowed to define the distortion parameters for a
general quadrilateral, an isoparametric four-node finite element. Further attempts in this field, [7],
and by utilizing systematically differential geometry, [9], led to the extension of the description of dis-
tortion measures even for quadrilaterals with curved boundaries, eight-node finite elements.

The normal (geodesic) coordinates (€, ) are used as a local coordinate system for each quadrilateral
element. In the case of plane geometry on the Euclidean space R?, these normal coordinates are skew
Cartesian and they are linearly related to the Cartesian coordinates (X, y). Both systems are developed
at the origin of the natural coordinates &, m).

The inverse maps between natural and normal coordinates are found by using the Taylor expansion
and the theory of geodesic curves. Integral curves, solutions of equations of geodesics, are expressed

by series which terms depend on variables €, 1 and the distortion measures. The rate of convergence
is similar when analyzing four- and eight-node elements.

An attempt to find the geometrical meaning of the distortion measures is made in 9]. There, it ap-
peared that these parameters define the orientation of a manifold, a topological Hausdorff space.
Here, any quadrilateral defined by smooth isoparametric maps from the closed biunit domain, includ-
ing tl}le origin, onto closed subsets in R2. Pure mathematical analysis of this problem is in the develop-
ing phase.

FOUR- AND EIGHT-NODE ISOPARAMETRIC FINITE ELEMENTS - LOCAL REP-
RESENTATIONS

Cartesian coordinate system

The usual representation of the isoparametric map
x:[-L1]x[-L1]-MC R?

of a biunit on RXR onto a quadrilateral is defined for a four-node element by
4
x] _ X} _ | ag+ a8 + ayEn + ag
X, = {Y} = ZNI(E’ n){yi} = { bO + blE + bzgn -+ b3n s
- i=1
with shape functions
N; = %(1 + EE)(1 + nm)
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for each corner node, where x;, y; are nodal coordinates of an element.

The isoparametric map for an eight-node element is defined by
8
X X;
w =i = >N fj) -
i=1

_ | a0+ 2§+ ag + aEn + aE? + am? + a gl + akn?
~ | bo+ biE + byn + byEn + bE2 + ben? + beEM + bk [

with shape functions for each node

N, = %(1 +EE) L +mEE +nm - 1) for i=1-4, comer nodes
= %(1 - EH(1 + nm) i=357 boundary nodes
= %(1 +EE)1 - 7P i=6,8 boundary nodes

Normal (geodesic) coordinate system

The normal coordinate system for any quadrilateral is based on the theory of geodesic curves.
The following settings are common for quadrilaterals with straight and curved boundaries, 4-
8-node elements, respectively. The geometric properties of 8-node elements are inherited from t
basic chord quadrilaterals spanned on corner nodes.
Let

x:[- L1} x[-11]-MC R?
be an isoparametric map such that the compositions xjo x~! and xp0 x~! are the isomorphisms. 7
map defines the normal coordinate system, Fig. 1.1.

Figure 1.1 Local normal coordinate systems for 4-node and 8-node finite elements

An isoparametric map x3(&, 7)), represents a four-node basic general quadrilateral. A geodesic El
through the origin, is the integral curve of the set of second order differential equations,

d2%t | . dEidEk _

o Tl e T
where E1=E, 2=y and a parameter s is the arc length of the geodesic curve. I' ijk are the Christo;
symbols, [9].

0, Li,k=1,2
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4U© 1ALt VECTOTS At p & M, where M 1s a manifold, to any curve passing through 0 are defined by
del)  (9Eigy 4 98dy
ds/ ~\oxds  dyds/ -
P P
If the above equation is determined at the origin and multiplied by s and noting that the direction vec-

d
tor components through the origin are 375( = 75{ and dZ g , the normal coordinates are denoted as

= (dE dEx  oEy 9 g
(&) - (B Y- (B 5),

~ _ [dE Mx , my\  _ [am_  an
ﬂ—(a'g)os <axs+537§ OS_ axx+ayy

follows,

I

Or in matrix form,

where the Jacobian J is,

a; + a,n b1+b2n
I =la; +ak b, + byt |-

The determinant
J=Jy(1 + ok + )

of the Jacobian J is a function of two parameters
a = (a;b, = azb,)/J,
Y = (azb; — azb;) /U

which are called the distortion measures. The determinant evaluated at the origin is,
JO = a1b3 - a3b1 .

By simple manipulations the set of normal coordinates becomes
<~ _ JE| _ [E+¥En
X=4>3 =
M 1 + ok

a function of the distortion measures.

DISTORTION MEASURES

a a a
A A N

be the basis vectors of the normal coordinate system for a given quadrilateral, Fig. 1.2, such that
X = Eey + Ene, + ne,

Let
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Figure 1.2.  The basic vectors for a normal (geodesic) coordinate system

The distortion parameters a, y and the determinant Jy can be equivalently represented by the tr
scalar product

Jo=(e; X ;) k
o = (e; X e,) - k/J,
v = (e, X &5) - k/J,
where the unit vector k is in the direction of the z-axis, perpendicular to x-y plane.

a, y are the real numbers, multiples of the basic volume Jy. This fact, in differential geometry, def:
an orientation of a manifold M, in our case a plane quadrilateral, [9]. The sign of the distortion par
eters gives information about shape of a quadrilateral.

CONCLUSIONS

The result of this analysis is the significant reduction of the number of the distortion parameters
general quadrilaterals with curved boundaries compared with the work of Yuan? et al. due to prc
utilizing of differential geometry. The consequences of it can lead to better understanding of sensi
ity on distorted shapes of incompatible and enhanced mixed classes of finite elements when expres
in terms of distortion measures.

The obtained result is the appropriate basis for the pure mathematical analysis on the behavior of s
ple geometrical objects, approximating physical bodies, in the field of computational mechanics.
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Introduction

Under-determined linear equation systems occur in different engineering ap-
plications. In structural engineering they typically appear when applying the
force method. As an example one could mention limit load analysis based on
The Lower Bound Theorem. In this application is a set of under-determined
equilibrium equations restrictions in an LP-problem. A significant reduction
of computer time spent on solving the LP-problem is achieved if the equilib-
rium equations are reduced before going into the optimization procedure, [1].
Experience has shown that for some structures one must apply full pivoting
to ensure numerical stability of the aforementioned reduction. Moreover is
the coefficient matrix for the equilibrium equations typically very sparse.

‘The objective of the work presented here is to deal efficiently with the
full pivoting reduction of sparse rectangular matrices using a dynamic storage
scheme based on the block matrix concept. The problem of reducing sparse
rectangular matrices has already been discussed by Kaneko [2] and treated
by Pellegrino & Heerden [3], Kaveh [4] and others. They all present methods
based on static storage. Pellegrino suggests a method of partial pivoting on
banded matrices. The advantage of this method is due to the fact that partial
pivoting will only cause fill-in inside the band, a property which is lost if full
pivoting is applied and consequently other algorithms are required. To be
thorough it should be noted that iterative methods are inapplicable, though
very popular in connection with sparse matrices.

*e-mail:- njtj@bkm.dtu. dk
fe-mail: pnp@bkm.dtu.dk
te-mail: 1d@abk.dtu.dk
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1 Mathematical Problem
The linear system restricting the LP-problem is given by:
HB=R (1)

Assume for simplicity that H has full rank - i.e. rank is equal to the number
of rows. Since Eq. (1) is an under-determined system H may be separated
into two parts, Hy and H,, where H has full rank:

[ Hy Hl}[ﬁo}zR (2)
By
Under the assumptions above there is clearly more than one candidate for
H,. However, from a numerical point of view, all these candidates are not
equally suitable. The best choice is the one which is chosen by means of
Gauss-elimination including full pivoting.
The LP-optimization requires that 3, is expressed as a function of B

By=Hy'R— Hi H\f, (3)
As reduction of the coeflicient matrix in Eq. (2) yields
H=[LDU LDH, ] (4)

it is seen that Hy'R = (LDU)™'R and H;'H, = U™'H; which are
computed using forward and backward substitution.

The dual LP-problem corresponding to the LP-problem involving the
restrictions (1) requires the computation of (H2) v where v is a vector.
As Hy = LDU the LDU-factorization of Hj is UTDLT rendering the
backward substitution procedure for (H:)~!v similar to the backward sub-
stitution procedure for (Ho) 'u, u being a vector. Therefore, the algorithm
presented here furthermore provides a cornerstone for the solution of the dual
LP-problem which also is of importance.

2 Storage Scheme and Reduction Algorithm

Dynamic storage schemes for sparse matrices are traditionally based on linked
lists of elements — one list for each row. The problem of such strategies
is the time spent on searching for elements. If the elements are in stead
grouped together in blocks the addressing will be faster. This grouping is
only advantageous if there will not be too many zeros in each block as the
sparseness will otherwise be destroyed. Equilibrium equations of structures
possess the block feature and thus invite for the use of a block strategy.
Figure 1 shows how the submatrices (in the following denoted h) are linked
together. To speed up addressing even more the blocks are also cross-linked.
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Figure 1: Block matriz storage scheme.

Figure 1 also shows how additional storage is required during factorization
motivating the use of dynamic storage allocation. The solid boxes illustrate
the submatrices at some point of factorization. The dashed box illustrates
a submatrix which will be allocated if for instance the next pivot element is
in block hy, ~ say element (h2,2)3,5. In that case subrow 3 of blockrow 2 is
subtracted from the subrows of blockrow 3 in general causing the elements
of block hj 3 to become non-zero and hence h3 3 must be allocated. However,
if the elements in subcolumn 5 of hy 3 are all zero (in practice numerically
zero) no subtractions are required and consequently the allocation of hs s is
unnecessary. To reduce such unnecessary fill-in a zero-subcolumn-check is
incorporated in the code.

As mentioned in earlier the reduction algorithm is Gauss-elimination ap-
plying full pivoting. The LDU-notation used in Eq. (4) is not strictly correct
as, due to pivoting, rows and columns are in principle permuted as factoriza-
tion proceeds. However, the storage scheme does not allow swapping of rows
and columns as that would cause 2 lot of blocks with only one non-zero sub-
row or subcolumn in contradiction with the advantage of the block concept.
In stead logical arrays are introduced to keep track of the pivot elements.

Logical arrays are also introduced to minimize the pivot search time.
Subrows eliminated during a factorization step are flagged. At the end of the
factorization step each of the flagged rows are searched for their numerically
largest element which is stored in an array having an entry for each subrow
in H. At the beginning of the next step this array is traversed and its
numerically largest element chosen as the next pivot element.

Besides reducing overhead the block concept provides a pleasant side
effect, namely that input is given in blocks allowing a simple input structur
with no need for additional topological information.
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3 Example

The following example is taken from [5]. The objective is to illustrate
how storage develops during factorization. The total size is approximately
700 x 850. The sparsity, defined as the ratio between the size of actually
allocated storage and the size of the fully allocated matrix storage, is de-
picted in Figure 2. Naturally, as a consequence of allocating blocks in stead
of single elements, some zero-elements are stored though this is not strictly
necessary. The dashed curve gives the amount of non-zero elements while
the solid line gives the amount blocks as functions of step number in the fac-
torization. Clearly further storage may be saved but compared to the 32%
storage consumed by the bandwidth method, [3], the method presented here
1s competitive.

0.16 ] i i 1 I I

0.14 b Blocks —
Non-zero elements ---

0.12

0.1
0.08
0.06
0.04
0.02

Sparsity

0
0 100 200 300 400 500 600 700

Step number

Figure 2: Development of sparsity (allocated storage relative to fully allocated
matriz storage) during factorization.

Sparsity is almost lost if the above mentioned zero-subcolumn-check is not
included in the code. In addition to almost destroying sparsity, lack of the
zero-subcolumn-check makes the storage consumption increase quite rapidly
in the beginning and then stagnate, contrary to what appears in Figure 2.
The result is superfluous time consuming manipulations on zeros already at
an early state of factorization, rendering the factorization rather time costly.

Conclusion

A method for full pivoting reduction of rectangular sparse matrices has been
presented. Since full pivoting causes unsystematically spreading of fill-in all
over the matrix a dynamic storage scheme especially suitable for matrices
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naturally thought of as block matrices has been implemented. The method
proves to be competitive to a well-known bandwidth technique [3] only pro-
viding partial pivoting.
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1. Introduction

Many of structures being used in various fields of engineering are composed of
different thin-walled structural members. Analysis and design of these structures are
based on the statements and relations of classical beam, plate and/or shell theories. It is
necessary to remark that classical theories may be applied for the structural members the
shape and geometric relations of which lie within the certain boundaries. Validity of the
above statements may be examined by development of non-classical higher-order
theories.

Despite a great difference in the existing models of thin-walled structures all of them
provide analytical or semi-analytical approximation of a three-dimensional body into
cross-sectional direction with the following reduction of the dimension of problem. As an
alternative to the existing classical models the finite element approximation of cross-
sectional distribution is introduced and presented in this paper. Such an approximation
contains the essential features of semi-analytical discretisation [ 1]. The above approach
has already been used for the development of particular equations of beams [2-4]. On
this base the semi-analytical finite elements (SFE) are introduced in-order to develop the
governing equations of linear elastostatic problems. Here, SFE approach is generalised
and extended to more complex thin-walled structures.

2. Concepts of the semi-analytical elements and basic relations

The main issue in the development of any beam, plate or shell theory is the separation
of longitudinal (surface) and cross-sectional (thickness) distribution. For this purpose, we
define the approximation of three-dimensional displacement field by expressions

u(x y,2) = f(3, 2)U(x), (1a)

u(x y,z) = f(2)U(x y) (1b)
for beams (1a) and plates or shells (1b), respectively. Here, f is the displacement
approximation matrix while U is the semi-discrete vector of generalised displacements.

The similar approximations may be developed for the strains. The three-dimensional
strain field €(x, y, z) may now be described as follows:

e(xy,z) = F(y,2)0(x) (2a)

211



and
e(xy,z) = F(z2)0(x, y), (2b)

The above expressions (2) present conventional approximations used in the
displacement approach, where the vector @ expresses generalised strains and F is the
strain approximation matrix. The stress field may be approximated independently in the
same manner as displacements (1). For beams

o(xy z) = Oy, 2)8(x), (3a)
and for plates or shells
o(x ¥ 2) = ®(2)8(x y), (3b)

where § is the vector of nodal stresses and @ - the stress approximation matrix.

The approximations (1-3) provide the basis for the derivation of the governing
equations of beams, plates or shells. Actually, this derivation is partial discretisation
problem, which reduces the three-dimensional solid body by retaining the variables
depending on longitudinal or surface co-ordinates. We introduce to use the partial
approximations (1-3) where approximation matrices are formed by the finite element
method. Finite elements describing the cross-sectional distribution are defined as the
semi-analytical finite elements. The explicit evaluation of the expression (1-3) depends on
choosing of the appropriate shape functions. Once these are obtained the derivation of
the governing equations follows a standard well-defined path.

The final set of the governing equations of thin-walled structures is formulated in the
same way as that in three-dimensional elastostatics. It consists of the compatibility,
equilibrium and constitutive relations and boundary conditions expressed in terms of semi-
discrete variables such as displacements U(x), strains ®(x) and stresses S(x). Here and in
the future the co-ordinate vector x is defined as x = {x}! for beams and as x = {x, y}! for
plates and shells.

The compatibility equations relating the generalised strains and displacements are
found by simple comparison of the displacement and strain approximations (1) and (2).
The remainder relations are derived as Euler equations associated with the modified
Hellinger-Reissner functional written for a three-dimensional solid body and containing
two independent displacement and stress fields # and ©.

For the further investigations we introduce the transformation

O(x) = C(x)8(x) 4

relating stresses .S with their resultants - generalised stresses Q. Here, the transformation
matrix Cis defined as

C(x) = ) (j )F‘cpdA, (5)
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where A is a cross-sectional area.

Depending on relative approximation order of both functions u and G, this matrix may
have different properties and to lead to different final relations resulting in different types
of semi-analytical elements: isoparametric, subparametric or superparametric. The main
difficulties occur, when the rank of transformation matrix C differs from the number of
components of both vectors § and Q. In spite of appropriate differences, it is always
possible to modify the forward relationship (4) expressing them in terms of modified
model variables S), and @, and uniquely establish the corresponding backward
transformation.

After integration over cross-section and performing of some matrix manipulations,
finally, the set of elasticity equations may be presented as follows

compatibility equations

AEWy (x) - Oy(x) = 0; (6a)
equilibrium equations

A, (x)Qp (x) = p(x); (6b)
constitutive equations

K(x)®p(x) - Oy (x) = 0. (6¢)

Here, A}, A, and K presents the new mixed differential-algebraic equation operators,

p is vector of the semi-discrete external loads while subscript A/ denotes modified
variables. The solution of the set of governing equations (6) provides the fields of
modified generalised variables. In some of the cases, this solution is insufficient for
complete recovering of the three-dimensional stress-strain fields in the shell because some
of the initial generalised variables are lost by the modification. This situation is well-
known in classical structural mechanics and described in terms of statically
(kinematically) underteminated systems where redundant variables have to be found from
additional equations.

The basic relations (6) proposed have no preliminary limitation due to geometry of
structure or due to approximation laws. The semi-analytical finite element approach is the
formal possibility to develop the non-classical higher-order theories with the desired
degree of accuracy.

3. Nllustrative examples

The versatility of SFE is demonstrated in practical applications involving well-known
solutions. The classical Euler-Bernoulli and Timoshenko theories are derived using a
single one-dimensional element. The beams with a thin-walled cross-section are
described as an assemblage of semi-analytical elements, Cross-section with three SFE
correspond to thin-walled beam theory with bimoment while cross-section with large
number of SFE has no classical analogues. On the basis of non-classical equations the
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conventional finite elements of new type are derived. Possible extensions of SFE to
dynamics are also briefly discussed.

As a rule, for description of shells and development of their equations is performed in
the curvilinear co-ordinate system. For this purpose the tensor notations are most
convenient and tensor calculus especially covariant differentiation rules are applied. The
classical shell theories may be derived by a single one-dimensional semi-analytical
element. In order to illustrate the use of semi-analytical finite elements in the shell theory,
a circular cylindrical shell is considered in details.

4. Concluding remarks

The SFE method as a formal technique is put forward to develop non-traditional of
thin-walled structures. The state variables are referred not to the central axis or the
middle surface as in classical theories but to the appropriate generatrix axes or surfaces.
The higher-order terms may be simply taken into account by refining the finite element
mesh or by increasing the order of approximation polynomials.

The SFE method proposed has some principle advantages with classical shell theories:

a) The semi-discrete displacements of shell are compatible with the displacements
of three-dimensional body;

b) The governing equations contain only the first-order derivatives;

c) Method provides extended possibilities for introducing more wide type of
loading and supports;

d) Method is independent on geometry of the structure and different types of
curved or thick structures may be considered in the same standard manner;

e) The symbolic manipulations and computer algebra may be applied for the
derivation of standard operators.

It is clear, however, that comprehensive analysis and future research are needed to
develop and extend the SFE method to more wide class of structures.
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we present the general format of beam stiffness for large diplacements and rotations, specialise to beam-
column elements in closed form for moderate local deformation, and derive the general global geometric
stiffness matrix. Plastic hinges at one or both ends of the beam elements are introduced via a block matrix
format, and hardning and local imperfections are discussed. A couple of examples are presented.

Finite Rotations in Beam Theory

Any general beam theory is based on the equilibrium equations

AN M dx
—_— = 0 —_— — =0
dsg TP C T T s XNt m

where N, M are the section force and moment vector, respectively. The equilibrium equations refer to the
deformed geometry, where x is the current position vector and sq the arc length in the initial undeformed
state.

P = bp ~ Lspxop + O(¢?)

from the state ¢ = 0. This implies that the first variation 6% can be expressed directly by its parametric
counterpart, while the increment 0g the variation d(6%), needed in the tangent stiffness relation, takes a
non-trivial quadratic form,

0 = b , d(6p) = --é-éiaxda

The internal forces in the current configuration are expressed via the internal virtual work

4
Vine = / (85 3; + on; M; ) dso
0

where €;, «; are the local components of strain and curvature, respectively.

The element tangent stiffness follows from the increment of the current iternal forces, i.e. from the
increment of the internal virtual work,

{
d(6Vims) = /0 (85 dn; + ox;ant; + d(se;) N, + d(5+5) M; ) dsq

The two first terms are the materia] stiffness expressed via the constitutive equations, while the last two
terms express the geometric stiffness, arising from the change in geometry.
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By a straightforward calculation the geomtric stiffness terms can be expressed as - see e.g. Krenk (1996)

0 0 (NxDT
L M T\ du’
d(be;) N; + d(bk;) M; = [éu’ 67 6] 0 0 5(MxI) i@
%(Nx’ +x'N) 4%

(NxI) (MxI) —(N-x)1

This general formula can then be specialized to specific beam theories via the assumed representations «
du(so) and dg(sp).
Nonlinear Co-Rotating Beam Element

In the co-rotating formulation a coordiante system is located through the beam element end points, an
the displacements consist of two parts: extension and end point rotations, see Fig. la, plus a rotatio
without deformation generated by the diplacement of the local coordinate system.
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F1G. 1: Beam element with natural deformation parameters.

The effect of the normal force N' can be built into a co-rotating beam-column element, Krenk (1995). Th
total section forces and displacements shown in Fig. 1 are related by the nonlinear relations

N = FAc¢ , M= A(¢)8

In this formulation the bending stiffness is a function of the normal force, and thereby of the axial strain ¢
The appropriate nonlinear axial strain definition is given by the derivative of the bending stiffness matri
A(e) as - Krenk (1995) - 4
- 1 L aT 1 dA
e =7 (u+i6"BO) B = —
These relations determine the current section forces from the displacements. The corresponding incremer
tal stiffness relation follows by differentiation,

au] = ([o K]+ F [ Joerm) [ 5]

where the effective length L = 1 — 1 67 dB /de @ accounts for the change in normal force for constan
end point separation u.
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Rotation stiffness

In addition to the nonlinear effects already included in the beam-column element stiffenss additional terms
arise from the rotation of the local coordinate system. Several different forms of these terms are given
in the literature.. A unique and consistent geometric stiffness matrix follows from the general form of the
increment of the virtual work given above. When the usual polynomial shape functions are substituted
and the geometric stiffness terms already included via the nonlinearity of the beam-column element are
subtracted, the resulting rotation stiffness matrix K, has the following block matrix format,

KA KB -—KA KC
K Kp -KL Kp
-K4 -Kp K,u -Kc¢
KL KI -KZ Kg

with the block matrices

1 0 -Q, -Q, 10 0o o
Ka==|-@Q, N 0 Kp==| My, M, 0
¢l -Q, o N T M, 0 M,
1 0 0 0 1 0 e@, Q.
Ke= - My —-M, 0 Kp = g aQy 0 3M,
Y M, 0 —M, aQ, —-3M, 0O
T 0 —(2My; - My.)  (2Myy — Myy) |
Kp = 5| —(2M - M,,) 0 0
(2M1y — May) 0 0 |
. 0 ~(2M3; — My.)  (2May — My,)
Kg = 8 —(2M3, — My,) 0
(2M3y — M) 0 0 i

1
where the shear forces are Qy = —Q1y = Q2 = —E(Mu +Mz)and Q, = —Q1, = Qs = E(Mly + May).

a 1s the current distance between the two end points, and the notation M, = —M;, = M3, is used. Note,
that in a rigid body rotation this geometric stiffness matrix gives the theoretically correct, but somewhat
counterintuitive result, that end forces turn by the full angle and end moments by half the angle.

Plastic Hinges

The generalized forces of the plastic hinges s; = (N, Q,, Qy, M, My, M,) at the beam element ends are
combined into the vector s7 = [s1,59]7. The generalized plastic strains are the corresponding displacement
discontiuities u”” = [u?, u8]T. In terms of the plastic potentials g;(s;) the flow relation takes the matrix

form J

du? = 111; — 691/681 0 d/\l
14 0 6g2/652 d/\g

In terms of the total element tangent stiffnes matrix K the generalized force increment is determined by

= GdA
uy
ds = Kdu® = Kdu — KGd\
When the gradients of the yield surfaces are contained in the matrix F the condition for remaining on the

yield surface(s) is
F'ds - Hdx = 0
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where H = [H;, H>| is the diagonal matrix containing the hardening moduli. The corresponding elast
plastic incremental stiffness follows by elimination of dA as

ds = (K - KG(FTKG)™'FTK) du

When only one of the plastic hinges is active the block matrix format degenerates into a sigle set of acti
blocks.

Kinematic hardening of tubular sections is introduced following Fujikubo et al. (1991). When & is the m
terial hardening modulus, the hardening of the generalized strains at a section is determined by f; = f; (s
aj)and da; = dee;’, with the diagonal section hardenig matrix H; = [ kA, %hAy, %hAz, %hJ, hly,hl,
The accumulated effect in the beam elemet depends on the length £; of the yield hinge, estimated frc
the moment distribution in the beam. The hardenig modulus of he plastic hinge is

1 8f; .. 0g;
fj 68j HJ aSj

leading to gradual hardening of the beam element.

H; =

Examples

The theory has been implemented into a computer programme, also including the effect of shear flexibili
and initial imperfections in the beamcolumn elements, and special yield conditions for dented membe
The programme is computationlly very efficient, because all element matices are given in closed form.

600 600

500 500 l //\ <,
T 400 J / g 40 4
?sm.k-/ 23001 /
3 . /
& 200 S

N wl /[

o/

0
0.000 0.100 0.200 0.300 0.000 0.002 0004 0006 0.008 0.010

Displ. of Mid node [m} Displ. of Mid node [m]

F1G. 2: K-brace under vertical force.

Figure 2 shows results from an analysis of a K-brace. The secondary maximum is followed by furth
unloading to 330 kN before an increase caused by a transfer of load to tension in the upper members. T
secondary maximum and the local minima consitiute a severe test on the nonlinear solution algorith;
Both the equilirium correction method and the orthogonal residual method performed well.
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Mode Interaction in Thin-Walled Structures

Peter Noe Poulsen and Lars Damkilde
Department of Structural Engineering and Materials,
Technical University of Denmark

Introduction

The design of thin-walled structures often leads to two or more nearly si-
multaneous buckling modes. This could €.g. be a global buckling mode and
a local buckling of a plate in some part of the structure. These buckling
modes can each have a stable postbuckling behaviour not indicating any im-
perfection sensitivity. However the interaction of stable buckling modes can
produce unstable postbuckling behaviour. In order to find the most critical
imperfection leading to mode Interaction and failure of the structure many
different imperfections have to be analysed. Thesge computations can be very
costly. The size of the problem can be reduced by making an expansion
of the displacements in a pertubation series using the nearly simultaneous
buckling modes, see e.g. (Byskov & Hutchinson 1977). The solution has
been formulated in a general finite element concept (Olsen & Poulsen 1994).
This finite element concept is implemented for a flat triangular shell element
DKTL (Poulsen & Damkilde 1996).

Formulation

Assuming the prebuckling state is linear and that there are M nearly simulta-
neous buckling modes u; the displacements can be expanded in a pertubation
series

UZAUO+§ZUZ+§Z§]UZ]+ where ’i,jE[l,M] (1)

The expansion reduces the number of degrees of freedom N for the structure
to M where N > M is typical. The imperfections are taken as a combination
of the buckling modes @ = & u;.

This expansion of the displacements leads to a solution giving M non-linear
equations.

&r(1— ‘)‘\/\;) + & &5 i + & & bijrr = 51:\/\7 where Ie[1,M] (2)

The load path of the imperfect structure is determined by solving these M
non-linear equations which can be done using standard methods.
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The unknown terms in (1) and (2) are calculated from the behaviour of the
perfect structure and they are formulated (Olsen & Poulsen 1994) in a general
finite element concept e.g.
(VIS V,I] DBV;+iVIS§V,ITDBV),)
e, ViB"BV,

aij I = (3)
where D BV is the linear stress terms and V7 8, V' I7 is a summation over
the non-linear strain terms.

When determining the load path for different imperfections it is necessary to
have a measurement of the level of imperfections in order to compare these.
This measurement is based on the total amount of energy E; necessary to
give the perfect structure the imperfections @ = & u;

1 M
Bi=so(@) e(@=EY & (4)
1=1
where each buckling mode is scaled so that the amount of energy is E.
This measurement leads to a plane in the variables & as shown in Fig. 1(a).
When determining the most critical imperfection at a certain level the points
shown in Fig. 1(a) can be used remembering that each point &2 gives two

points £&;.

A gg 4

&2 U,

(a) Imperfection plane (b) Failure modes

Fig. 1.

When assessing the structure it seams reasonable to regard both a snap
through at As and the displacements exceeding a certain limit u,, as a failure,
see Fig 1(b).
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Computational effort

The computational scheme for a mode Interaction analysis is
1. The prebuckling displacements are found solving a linear problem
2. The N buckling modes u; are found solving an eigenvalue problem

3. The displacement fields uy; are found solving a linear problem with
different load vectors

4. The terms aijr and by are computed by an element loop calculating
expressions like (3)

5. The N non-linear equations are solved for each point in the £? plane

The first 4 steps are calculated using the IV degrees of freedom in the total
structure but the computational effort is relatively small and independent
of the imperfections. Step 5 involves solution of a non-linear problem but
for the reduced M degrees of freedom. The total computational effort in
a mode interaction analysis is therefore small compared to a full non-linear
computation.

Conclusion

A mode interaction analysis formulated in a general finite element concept is
implemented using a flat shell element DKTL,. The method allows a structural
optimization at a reduced computational cost and the optimized structure
can be analysed using a full non-linear analysis.
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Integration in Numerical Phase Change
Analysis

Anders Boe Hauggaard!, Lars Damkilde! and Steen Krenk?

Introduction

Numerical analysis of non-linear phase change problems is of interest in rela-
tion to arctic engineering and settlement of frozen ground. Coupled problems
in concrete also involves non-linear phase change analysis e.g. in relation to
fire. The problems that need to be considered are illustrated in Fig. 1 and
they are a sharp step in conductivity and the latent heat. Several numerical

a) ki b) k4
) —
, . l .
ci | T c AL AT, T
1 1 i
o —— bl
¢ . ! !I
Ty T Ta Tp T

Figure 1: Modelling of phase change.

strategies exist e.g. extending the phase change zone over a finite interval
as indicated in Fig. 1. The purpose of the present work is to identify some
modelling problems and propose solutions. Focus is on integration of the
conductivity matrix and it is shown that the standard procedure of nodal
averaging leads to a systematic overestimation of the conductivity. A finite
element is proposed which explicitly accounts for the step in conductivity,
thus removing the overestimation.

1Dgpartment of Structural Engineering and Materials, Technical University of Den-
mark, DK-2800, Lyngby, Denmark.

2Division of Mechanics, Lund Institute of Technology, Lund University, $-22100, Lund,
Sweden.
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Overshoot in Temperature

The one-dimensional problem shown in Fig. 2 has been analysed with linear
triangular elements and nodal averaging of the conductivities. The material
1s water which has a step in conductivity corresponding to a factor 4. Initially
the temperature is 10 °C' and suddenly the free end is brought to -20 °C.
The variation of temperature at the points indicated in Fig. 3 is shown and

Tinit=10°C

%

To==R0°C Trzzm777777777777777 77777,
L I1=1.0m

1 ]

NN

NANNNNAN

N

Figure 2: One-dimensional bar problem.

two problems are apparent
e overshoot in temperature

e non-symmetric temperature distribution

temperature (°C)

0 25000 50000 75000 100000
time (seconds)

Figure 3: Temperature evolution.

The reason for this overshoot may be related to either positive off-diagonal
elements in the conductivity/capacity matrix and/or an overestimation of the
conductivity. In [1] it is shown that positive off-diagonal elements appear for
linear triangles when one of the angles exceed 90°. For higher order elements
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it may be shown that the problem is worse as there will always be positive off-
diagonal elements. The problem and the matrix implications are discussed
in [2] and it is shown that positive off-diagonal elements represents physical
unrealistic couplings.

q, q,

—_— - g s

Figure 4: Overestimation of conductivity.

To illustrate the problem of overestimation of the conductivity the one-
dimensional element shown in Fig. 4 is considered. The conductivity varies
linearly along the element and the nodal values are k; and k; respectively, and
the temperatures 77 and T,. At equilibrium there is no heat storage which
means that the heat flux, ¢ = —k dT/dz = const., and then the temperature
increment over an element can be found by direct integration

—ql ln(kz/kl)

1 1
AT-—q/lzdx——qlE;_ — (1)

where k* is the effective conductivity. It may be shown that 4* is less than
the average conductivity, k = (k;+k,) /2, meaning that nodal averaging gives
a systematic overestimation.

Proposed integration scheme

A finite element applicable for phase change analysis is proposed based on
the assumption of constant flux along the sides. This results in a temperature
interpolation where two linear parts meet at the phase front, thus accounting
for the different conductivities in the two phases. Using the proposed element
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the same problem as above has been analysed and the result is shown in Fig. 5
where the overshoot and non-symmetric temperature distribution have been
removed. The element has been implemented in two dimensions and used.-

10

-10

temperature (°C)
dn

0 25000 50000 75000 100000
time (seconds)

Figure 5: Temperature evolution using the proposed element.

for examples of more practical interest.

Conclusion

The problem of overshoot in temperature in relation to numerical phase
change analysis has been discussed and it is shown that overshoot is related
to the integration procedure chosen. A bi-linear finite element has been pro-
posed that explicitly take into account the step in conductivity. Examples
demonstrate that the proposed procedure removes the disturbances intro-
duced upon passage of the phase change front.
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raNL o RLEVIEN T MODELLING OF FREEZING OF
FINE GRAINED IRON ORE

by

Arild Tgrlen and Geir Horrigmoe
NORUT Teknologi AS, N-8501 NARVIK, NORWAY

INTRODUCTION

During railway transportation of fine grained iron ore from Kiruna, Sweden to Narvik, Nor-
way, the Swedish mining company LKAB experiences freeezing of iron ore every winter. The
temperature may be as low as -30 degrees centigrade causing the iron ore to freeze in the train
cars. This makes unloading the iron ore a time consuming process.

Laboratory tests on scale models have been carried out to investigate the effects of changes in
initial temperature of the iron ore and ambient temperature, see ref. 1. In the present study the
aim was to verify the laboratory results and to map the effects of changes in several other

parameters by numerical simulations. Non-linearities during freezing processes were of partic-

ular interest.

HEAT TRANSFER

The governing equation of heat conduction in solids assuming isotropic and constant thermal
conductivity (k) is given by
2 2 2
oT o0T 8T+q”’ oT

1
ox2 8y2+822 ko ot M

where T is temperature, t is time, ¢’ is internal heat generation and o, thermal diffusivity of

the material. Heat transfer is discussed in ref. 2.

On the boundaries of the solid, heat is tranferred from the body to the surrounding air due to
convection. The rate of heat transfer, which depends on the temperatures of the solid on the
surface and the ambient air temperature, is given by Newton’s law of convection,

¢ =h- (T ~T,) )
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here, T is surface temperature of the body and T_ is the ambient temperature. The convectior

coefficient, h, is depending on properties of the air flow at the surface.

Radiation effects were also added in the finite element analyses. The rate of radiation heat

transfer to the surroundings is given by
" 4 4
qrad=86'(Ts—TooJ (3)

where € is the emissivity of the surface and ¢ is the Stefan-Boltzmann constant.

MODEL PARAMETERS

Fine grained iron ore is a porous medium consisting of iron oxides (in the Kiruna mines mainly
magnetite), moisture, voids and several other constituents. Thermal properties of the iron ore
were calculated on the basis of properties of the constituents due to a continuum approach.
These properties were temperature dependent, so non-linear behaviour occurred also outside

the freezing region.

The initial conditions were uniform temperature (T > 0) in the iron ore, and constant ambient

temperature (T < 0).

On the surface of the solid, heat were transferred out of the solid by convection and radiation
according to egs. 2 and 3. The convection coefficients were calculated according to theory of
fluid flow over flat plates. At distance x from the leading edge of the plate the convection coef-

ficient is given by

ho= X (4)

where Nu_ is the Nusselt number which is dependent on fluid flow characteristics and kf is the

thermal conductivity of the fluid. The convection coefficients are somewhat temperature

dependent due to variations in fluid properties.
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A two dimensional finite element model representing a cross section of a model of the train car

(Fig. 1) were implemented using four node quadrilateral elements with one temperature DOF
at each node.

Figure 1. The iron ore train car.

Material properties were implemented in the finite element software as stepwise linear func-
tions of temperature as indicated by Fig. 2. Phase change is assumed to take place at a temper-
ature interval rather than at a discrete point to avoid convergence problems. Latent heat is
modelled by the enthalpy method. Numerical modelling of heat transfer is discussed in detaj]
in refs. 3 and 4.

-
z A EA
? =
= E
5 8
£
Temp Temp
Figure 2. Material properties. Phase change is assumed to take place in shaded area.

Boundary conditions consist of specified convection and radiation heat transfer at the surface
of the body. Emissivity was considered constant which implies that heat transfer by radiation is

proportional to T ;" as the surrounding temperature remains constant. Convection coefficients

were implenented as a stepwise linear function of film temperature (T, +7__ )/2).

The model was extended to three dimensions to investigate effects of heat transfer in three
directions at the corners of the model.

A one-dimensional model was also implemented, and it performed quite well compared to the
two- and three-dimensional models. The simple one-dimensional model was used in a sensitiv-
ity study where multiple runs were executed in order to map the effects of changes in different
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model parameters. The results from this study were mapped for easy determination of effects

from changes in any property inspected.

NUMERICAL RESULTS

During the laboratory experiments, temperatures were logged at locations as described in

ref. 1. Several numerical analyses were carried out on the laboratory model using different ini
tial conditions. Results from the finite element analyses were compared to laboratory test
results. The numerical results compared very well with the experimental data. There were
some deviation in temperature distribution and frost propagation, probably due to inaccurate

material properties and boundary conditions.

The sensitivity study showed that modelling the steel casing containing the iron ore and iclud-
ing radiation heat transfer had very little effect on the results. Changes in thermal diffusivity of
the iron ore and changes in the convection coefficients resulted in significant changes in frost

propagation.

CONCLUDING REMARKS

Numerical models of freezing processes will be a very useful tool when the problem of freez-
ing of fine grained iron ore is to be resolved. Different solutions can be evaluated without hav-
ing to build expensive prototypes. When designing new iron ore train cars, the effects of
different designs can be evaluated at an early stage of the design process.

The approach outlined in this paper will also be applicable in similar problems concerning heat
transfer in porous media. Effects of mass transfer could also be included in a revised model.
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Lonvection- diftusion problems with significant first-order
reversible reactions

Bjorn Johannesson
Division of Building Materials, Lund Institute of Technology
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E-mail: Bjorn.Johannesson@byggtek.lth.se

pore solution, present in the concrete, to an aggressive condition. For example, chloride ions present in the pore
solution and carbonation of the concrete may destroy the passivity which results in corrosion of the
reinforcement. For this reason, one is interested in predicting the magnitude of mass transfer of deleterious
substances, e.g. NaCl, from external sources into concrete. External influences such as capillary suction of
water will also contribute to flows of deleterious substances carried by the water phase (convection). In this
paper, however, a general discussion of a numerical method (Petrov-Galerkin method) capable of solving
convection-diffusion problems with good accuracy will be presented. Only averaged phenomena at the
macroscopic level will be dealt with concerning the description of mass balance and the constitutive behaviors.
Three constituents are considered in the model, that is, NaCl (pollutant y), the pore water phase (a phase ) and
the solid matrix (s, i.e. the solid parts of the concrete) which is restricted to be non-deformable.

1 Convection- diffusion problems; mass balance
The mass balance for a solute 7 (e.g NaCl) in the & phase (e.g. pore water) is given by [1], as

0”90:’;8"‘ = —div[caqa +6,c,V, +6 J(c, /p. 5]—] (1.D

where ¢, is the (averaged) mass of the pollutant » per unit volume of ¢ phase. @_is the
volumetric fraction of & in the porous material. To obtain the macroscopic balance equation
(1.1), the equation describing the microscopic balance [2] must be averaged. The averaging
process performed to reach equation (1. 1) results in two additional terms, compared with the
microscopic balance equation [1]; first, 6,¢,V, , which is the term describing the macroscopic
dispersive flux of ¥ carried by the fluctuating velocity. The phenomenon at the macroscopic
scale represents the loss of information by the passage from one scale of description to
another, larger, one [1]. The second additional term, due to averaging, is the J term which
describes the transfer of ¥ across the boundaries of the a phase, e.g., adsorption or desorption
of the pollutant . The first term in the bracket of (1.1) is the convective part of the flux, where
the specific discharge q, = 6.4, and u_is the mean velocity of the mixture (in this case the
mean velocity of @). The third term in the bracket of (1.1) describes the flux of molecular
diffusion of yin the & phase.
The mass balance equation for the o phase, without source or sink terms, becomes

_0"%2,,_ +di8,p,u,)=0 (1.2)
where P, is the averaged mass density of the a phase. If the o phase is assumed to be
incompressible ( i.e. divil, = 0) and assuming also small changes in p, due to the dissolved

pollutant ¥ present in the o phase, i.e. p, = const., (1 .2) becomes
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5;“ +div(6,u,)=0. (1.3)

The problem now reduces to an ideal tracer problem, or alternatively a forcea
convection problem, i.e. the mean velocity field W, is known (from equation (1.3)) before (1.1,
is solved.

When considering a porous medium which is deformable, the porosity will not be
constant, i.e. &, will be affected; furthermore the specific discharge vector q_is defined with
respect to the (possibly moving) solid parts of the porous medium. However, in this paper it is
assumed that the mean velocity of the solid phase is zero (W, =0) i.e. no consolidation o1
deformation in the solid phase is dealt with.

2 Constitutive equations

The macroscopic flux, J(c, /p,), due to molecular diffusion of » in the & phase, is expressed
by Fick's law as

I, /p,)=-D,y, -gradc, 2.1

where D ,.is the second rank constitutive matrix, which in many applications is assumed to
be a function of c,. Of course, the molecular diffusion takes place even if the bulk mean
velocity is zero, i.e. if W, =0. The dispersive flux (not to be confused with the convective
flux) induced by the spreading of y in the & phase due to velocity variations at the microscopic
level is, however, dependent on the bulk flow, molecular diffusion and the porous matrix
geometry. In [1] it has been proposed to use a Fickian type of law to describe the dispersive
flux, such as

¢,V, =-D, -gradc, (2.2)

and to let the constitutive matrix D, be a function of the bulk mean velocity u_and the
Peclet number (Pe =1u, | D, ), where [ is some characteristic length of the pores. For more
details concerning the constitutive relation (2.2), compare [1].

The macroscopic flux, 8,1, , due to capillary suction of the « phase is expressed as

6,u, =-D, -grad@, 2.3)

where D, is a function of 6, .
The adsorption and desorption of the tracer ¥ across the a phase boundaries is
constituted with a non-equilibrium isotherm which describes a reversible system, e.g. [3], as

= Lowc-mPy;  fi=-f (242

where C=t, /p,= mass of ¥y per unit mass of & phase, and £ and m are constants. F =
T, / P, is the mass of y per unit mass of solid. The right-hand side of (2.4a) expresses the rate
of transfer, £, of y from the liquid phase « onto the solid phase s.

Introducing the constitutive relations (2.1-2.2, 2.4) into (1.1), and assuming that the
mass change of the solid phase s due to adsorption and desorption of the tracer ¥ is small, i.e.
P, = const., 8, = const., one will obtain
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ov,L
17
where D, = D,y +D,,, isthe matrix describing hydrodynamic dispersion.
By combining (2.5) and (1.3) and using the identity div(Cq,,)= Cdivq, +q, -gradC,
(2.5) may be written as

Pa=g +P.OKC-mF)=-ai]p,Ca, ~p,0,D, grad(] @5)

0a§-+F(C-—mF)=div[9aDh-gradC]-—qa-gradC 2.6)

which is the convective-diffusion equation with an additional term describing a non-equilibrium
reversible reaction.
The equation for the @ phase is given by (1.3) and (2.3), as

0,
a

The model contains three state variables: 6, given by (2.7a), C given by (2.6) and F given by
(2.4a). The specific discharge, q, =@_u_, for the o phase is calculated with (2.7a-b); the

T a

result is used to express q, in equation (2.6).

- div[Da .gradﬁa] =0, and q_ = -D, -gradé,. (2.7a-b)

3 Finite element formulation

A finite element formulation for the convective- diffusion equation (2.6) is given by

Ca+(Kd+Kc)a+f=0, Wwhere a=%a (3.1a-b)

and where C is the consistent damping matrix K, is the diffusion stiffness matrix, K, is the
convection stiffness matrix, and the vector f carries information about both the source/sink
terms (i.e. adsorption and desorption) and the boundary conditions. The finite element
formulation of equation (2.7) is in fact the same, i.e. with K, =0, and will therefore not be
discussed further.

The discretization, in the time domain, of the nodal parameter ain (3.1) is performed
using a single time-step algorithm [4], as

EQ"—*%L(m +K )@, +06(a,, ~a,)]+1, +O(f,,, -f,)=0 (3.2)
where a, is the known values at time Z,, and (3.2) is solved for a,, at time 7, + A7. The
weighting parameter ® (in the time domain) could be chosen with values between Oand 1. @
= 0 correspotids to an explicit (or Euler) scheme,® =1 is a backward difference scheme and
the value ® = 0.5 is the well-known Crank-Nicolson scheme. Values of © greater or equal to
0.5 are shown to be unconditionally stable for equation systems which are symmetric and
positive definite. However, when dealing with the convective-diffusion equation (3.2), more
elaborate procedures for assessment of stability and performance are needed since the problem
is not symmetric. One process is to determin the so-called amplitude and relative celerity
ratios, e.g. [4]. '

The discretization of nodal parameter a in the spatial domain is performed using the
shape function N; compare equation (3.3a). Using the standard Galerkin weighting means that
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the weight function (in the spatial domain) is also described with the shape' function N,
equation (3.3b) where c is arbitrary.

C = Na, v=¢'N’ (3.3a-t

However, the standard Galerkin weighting is an unfavorable approximation when dealing witl
the diffusion-convection equation, which could be shown by writing down the one-dimensiona
steady-state version of equation (3.1), without source/sink terms, for a typical internal node i
[5]; compare equation (3.4a) where the standard Galerkin weighting has been used, i.e. (3.3a)
and (3.3b). If, for example, &@_, = 0 and @, = 100, equation (3.4a) gives @ = 50(1-Pe),
which yields a negative value if Pe > 1, which is a physically unrealistic result! However, using
the exponential method which matches the analytical solution of the steady-state version of
(3.1) (again, without source/sink terms), equation (3.4b) is obtained for a typical internal node
I; compare [5]

(~Pe* —1)a,, +2a, + (Pe® — 1)@, =0 (3.4a)

~ea_  +(1+e¥Ya, —a,, =0 (3.4b)

where the element Peclet number is Pe® =uh/2k,, @ is the mean velocity of the mixture (in
this example, i.e. in equations (3.4a) and (3.4b), is the the mean velocity of the mixture #
assumed to be greater or equall to zero), 4 is the nodal spacing and %; is the diffusion constant.
Note that for Pe®= 0 the relation in (3.4b) reduces to the Galerkin method, i.e. (3.4a),
corresponding to the diffusive term only (because the convective term is zero) [5]. The scheme
shown in (3.4b) gives exact values of C at the nodes, since it is based on the analytical solution.
Further, it should be noted that both the Galerkin method and the exponential method yield
non-symmetric equation systems.

An identical solution as that obtained with the nodal equation (3.4b), i.e. the exponential
method (but now generalize the result to consider any value of # ), could be secured using the
finite element method (here given in two dimensions) by setting

N &)+ ONT /
C=Na, V= CT[NT +a,, % 9ex I) 'qay( @)] (3.5a-b
de

Q,,; = coth Pe® —%. (3.5¢)

By using a« = 0 the standard Galerkin approximation is recovered, and with & = 1 the so-called
Jull-upwind approximation is obtained; e.g. compare [4],[5]. However, by using @
according to(3.5c¢), the optimal Petrov-Galerkin approximation is achieved which gives exact
values of the nodal parameter at the nodes in the one-dimensional case; compare [6]. Using the
definition of the Peclet number as Pe® =|q,|h,, / 2k, where h,, is the characteristic length of
the element in the streamline direction of q,, [4], accurate solutions for two or three-
dimensional cases could also be achieved (assuming that the diffusion part of the flux is
isotropic). This is accomplished because the convective flow is active only in the direction of
the mean velocity of the mixture.

Now using rectangular bi-linear elements, i.e. V’°N=VB=0, C, K 4 K, andf=fi+
fi, could be explicitly expressed as (where the Petrov-Galekin weighting is used on all terms in
the convective-diffusion equation)
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by qm(o’NT/@c>+q@(avT/oy))g N 9
opt 2 ‘qa, (-1 °

K, = [B'D,Ba4 (.7

oy 2N /dci);f‘”(m /@)]CIZBdA (3.8)

=] ( "t tn GO 29+ 0, (N /@)qu, (.9
s 2 2|
f}=L(NT+O:,,,,¢Z;C—”q””(éN /@C,);,q“y(m /@/)deA (3.10)

where it should be noted that the source/sink term S is also affected by the Petrov-Galerkin
weighting. To solve equation (3.2) numerical integration is used, since the weighting function
v, in (3.5b), is discontinuous, i.e. the discontinuity of v is considered within the element rather
than at the nodes when using numerical integration [4].

4 Examples of the streamline optimal Petrov-Galerkin method in two-dimensional
problems

Numerical integration and equally sized bi-linear elements with 3x3 integrating points are used
to solve the diffusion-convection equation (3.2). Only pure convection with and without
adsorption of mass is considered, as it represents the essence of the problems related to
numerical solutions of the diffusion-convection equation. An unconditional stable integration
scheme in the time domain, which minimizes the error in the whole domain [4] (0 =0.878),
has been used since Pe® tends to infinity. Due to a high element Pecler number, realistic critical
time-steps cannot be reached within the family of explicit schemes. Furthermore, the mean
velocity field is assumed to be constant in direction and magnitude throughout the whole
considered (space-time) domain, and the characteristic length in the direction of the mean
velocity is assumed to be 4, =+/2 &, where % is the length of the sides of the elements.

The first example, figures 4.1 and 4.2, illustrates pure convection. The maximum value of
the initial concentration field is decreased by approximately 2% after 3.5 seconds when 120
time-steps are used; this is a measure of the error since the shape of the initial concentration
field should be the same throughout the process.
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Figure 4.1. Initial concentration field of C at time Figure 4.2. Concentration field, C, after 3.
t=0 seconds. The initial concentration field (figure 4.1

is convected throughout the domain.

The second example, figures 4.1, 4.3 and 4.4 illustrates pure convection with adsorption o
mass. 120 time-steps were used. The transient sink term f is integrated in the time domai
using the value® = 0.878.
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Figure 4.3. Concentration field, C, after 3.5 seconds.  Figure 4.4. Concentration field, F, of motionles.
The initial concentration field (figure 4.1) is  adsorbed mass after 3.5 seconds.

convected throughout the domain; simultaneously

mass is adsorbed onto the solid parts of the porous

medium; compare figure 4.4.
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ON THE CORE CONGRUENTIAL TOTAL LAGRANGE FORMULATION
FOR FINITE DEFORMATION ANALYSIS OF BAR STRUCTURES
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ABSTRACT

INTRODUCTION

During the recentyears, there hasbeena newborn interest in Total Lagrange formula-
tions for geometrically nonlinear problems. We can find articles by Felippa et al. -94
(2] describing the Core Congruential formulation. Zang and Peil -96 3] has presented
a modified bar element and Ofate -95 [4] has examined the possibilities of using the
secant stiffness matrix. This presentation concerns analysis of geometrically nonlinear
bar structures. The Core Congruential Total Lagrange Formulation (CCTLF) has
been implemented for solving 3-D truss problems. The CCTLF will be described and
numerical results for some well known examples will be shown and compared with
analytical as well as numerical solutions by others.

CORE CONGRUENTIAL TOTAL LAGRAN GE FORMULATION

The origin to this total Lagrange formulation was described by Rajasekaran and
Murray [11. The formulation was later generalized by Felippa and Crivelli and by
Felippa , Crivelli and Haugen [2]- In this method the incremental form finite element
equations, on element level, is developed in two steps. The first concerns derivation
of core’ stiffness equations for an individual particle in the continuum, expressed in
terms of displacement gradients g for the particle. Then, at the second step, the core
stiffness equations are transformed to physical-DOF stiffness equations for the nodal
variables ¢ through congruential’ type transformations.

Let us consider a conservatively loaded body that undergoes finite displacements x.
These displacements are measured from a reference configuration Cy at time t=0 to
a current configuration C at time t=t as =x;—X; . Herex;(X;) is the current position
of a particle in the continuum originally situated at X; in the reference configuration.

237



The material of the body is assumed to be linear elastic obeying the constitutive rela-
tion S;=S;0+ C;E; or S=8%+CE. Here E is a vector containing the Green-Lagrange
strain components £; and § is a vector of corresponding conjugate Piola-Kirchhoff
stresses S; . Initial stresses ;0 are collected in the array S and the elastic constants
C;j are elements of the symmetric matrix C. Now we aim to establish the Core-tangent
stiffness matrix. The starting point is the Core analogue to the potential energy: The
potential energy density. This energy is differentiated twice w.r.to the dlsplacement
gradients.

The development is exemplified for a 2 -node 3D bar element. This element is re-
ferred to a local Cartesian system {X, Y, Z} with X located along with the initial loca-
tion the bar axis. The motion of a particle initially at X is described by the displace-
ment components 4. (X), u,(X) and 1, (X). As "Core-DOF” for the particle the three
displacement gradients g7, g» and g3z are chosen, defined by

2, 0%, /90X
g = gZ = a—u.y/a}?
83 91,/9%

As uniaxial strain measure we adopt the Green—Lagrange axial strain defined as

o, :
EEE156%+2[(—2+( —=)° + )2]=g1+%(g12+g22+g3“)

This can also be written
T T

&1 81
E = 82 +% &2
&3 83

Following Felippa et. al.[?l we calculate the vector b to be used in the core tangent
stiffness.

OO -
OO
O e O
OO

&1
82 = h g + —gTHg
83

1+ g
b=3E —ph+H =] &
Bg 83

Finally, we get the core tangent stiffness matrix as

(I + g &1 +g) g1+ g0 100
K=Cbh"+SH =E 8’ 88 |+8/010
symm 25> 001

Here S is the second Piola-Kirchhoff (PK2) axial stress and E is Young’s modulus.

So far, in establishing the core tangent stiffness, no approximations are made. The fi-
nite element approximations are implemented in the next step transforming the core
tangent stiffness to element tangent stiffness according to
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K=fGTI%GdV, g =Gy, (6)
v,

0

Here G is a "core” to physical degree of freedom transformation matrix that Is inde-
pendent of ¢ . G is expressed as a chain of transformations

G=71G, G=DN (7)
where matrix G transforms g to local node displacements, and 7 transforms local to

global node displacements. The I matrix is a differential operator matrix and N con-
tains the element shape functions.

NUMERICAL EXAMPLES

The snap-through behaviour of the following test examples has been traced using the
CCTLF together with a displacement incremental algorithm. The displacement com-
ponents are given as linear approximations along each bar.

P

h
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Fig. 1.a, b. Equilibrium path for the deep Von Mises truss with a small horizontal initial
imperfection at the top node. Obs that shallow truss does not exhibit any bifurcation,
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Fig. 2. Equilibrium path for the top node of a 24—bar truss dome.

CONCLUSIONS

The CCTLF has been implemented and reexamined for large deformation of bar
structures. Especially for problems with translational DOFs only, the formulation is
clear: First expressing everything in terms of displacement gradients without any
approximations, then the FEM approximation is incorporated into the transforma-
tion of the core equations to the global DOFs equations. For treatment of problems
with rotational DOFs the formulation still applies, but becomes slightly more compli-
cated. We refer to Felippa et al.[2] and the *Generalized CCTL Formulation’. The re-
sults for the Von Mises truss problems coincide with the analytical solution by Peck-
nold et al.[5]. The solution for the 24-bar truss dome correspond well to the numerical
results by Paradiso et al.[6].
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FLEXIBLE MULTIBODY SYSTEMS WITH CONSTANT MASS MATRIX

NIELS L. PEDERSEN
Department of Solid Mechanics
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1. Introduction

By describing the flexible multibody only by the position of the nodes in the inertial
frame, we have the ability to use isoparametric shape functions which results in a
constant mass matrix. The constant mass matrix makes it possible to invert the mass
matrix in a preprocessing stage. The already inverted mass matrix can then be used in
the numerical integration of the mechanical system, instead of making the inversion in
every time step. This helps reducing the computer time for the numerical simulation of
mechanical systems with flexible members, which may otherwise be considerable. By
this formulation where we only use as many variables to describe the flexible body, as
there are degrees of freedom, we do not need to introduce reference conditions, as is
needed in most other formulations for flexible multibody systems.

2. Formulation of the equations of motion

By using the principle of virtual work (variation in elastic energy equals variation in
external work) we can find the equations of motion of the flexible body. The
derivations follow the same principles as in Pedersen and Pedersen [2] and are intended
to give a clear and direct derivation

Variation of work of inertial forces

The variation in the work done by the inertial forces is given below. It can be seen that
the mass matrix is the standard mass matrix from FE-analysis, which in the case of
isoparametric shape functions is a constant.

W e =~{00} ] [¥T [¥1aV{g} = [M]=p| [¥T [¥]av (1)

[Y] is a matrix constituted by the shape functions
{g} is the nodal coordinates in the inertial frame.

Variation in elastic energy

We are still focusing on the case of small strains. The traditional small strain measure
can be used if we can find a way to eXpress {Qdis} where we have removed

/minimized the rigid body movements. This can be done as illustrated in figure 1. The
dashed rectangle in figure 1 is the original shape of the element, which has been rotated
and moved in such a way that three of the eight displacements of the element are zero
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when given in the element coordinate system, which in this case has been attached to
node (g,.9,) and aligned so that the node (g;,q,) lies on one of the coordinate axes.

In the blown-up circle the displacement of one of the four nodes is indicated.

Element coordinate
system

SR

) Initial position
Inertial frame moved and rotated

Figure 1 Displacement of an element in the inertial frame

The displacement in the element coordinate system can be written as

'y =1¥Haa 1= 1¥N7T ({a} - {a.})- {20 }) @)

where
[A] [0] [o] [o]
_ [0] [A] [0] [0] _ 1 95 — 4, —(‘]6 -4, )}
7] [0] o] [A] [0]] [4] \/(qj—ql):+(q6—q2)2 !:%“% qs — 4,
[0] [o] [0] [A]

T
{qt}z {ql’qz’% vQ2541’Q2sQ1592}
{qo ' '} = Initial position of nodes in element coordinate system.

Double prime ( " ) indicates that the vector is given with respect to the element
coordinate system. Some of the above derivations were specially related to the 4-node
element but the extension to other elements should be clear. Since the elastic energy is
not affected by translation we can rewrite the displacement used to calculate the
variation in elastic energy as

{qdis“}z([T]T{Q}_{QOH}) (3)

The variation in elastic energy can now be found. We first write the strain as

242



{e}=[D}u} = {e"}=[DNu"} G

where [D] is the standard differential operator and {u} is the displacement of the
nodes. We can now write the variation in elastic energy

U= | {oe} {0 Jav = | {8« Y [DF[C] DY 3av =
T d{5u’ '} ’ T L -
{a} fv[——ﬁd{q} J[DJ [P} Jav

{@}T[i(%@} [ [¥TIoF [CIDI¥lavig, ) =

U = {84} (7] +[G]) K )gu'} 5)

where

[G]=———— (6)

The bar over the node position in (6) is to indicate that in this differentiation only the
transformation matrix [7] is treated as a function of {g} , while the premultiplied

{q}" is treated as a constant,

Equations of motion for a mechanical system

In the general case of a mechanical system with both flexible and rigid elements, it is
still possible to get a constant “mass matrix” for the complete system. If we express the
rotational degrees of freedom for the rigid bodies in the body coordinate system, the
mass matrix of the individual rigid body is also constant. We may then connect rigid
and flexible bodies in the same way as we connect rigid bodies to each other by
applying constraints, for reference see Nikravesh [1]. In this way the size of the matrix
to be inverted in every time step is reduced to the number of constraints as given in (7).
This formulation does not rule out the effect that finer mesh in the FE-model of the
flexible body introduces higher frequencies which slow down the integration of the
system. This effect must still be avoided by use of modalsuperposition and/or the
introducing of damping.

=@M ][0T ) (@111 1)
=M, ] ((13-[2.7 (1))

@)
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3. Kane’s driver

The well known Kane’s driver or Spin-Up maneuver, as it is called in Simo and Vu-
Quoc [3], 1s used as an example. The data for the beam are given below and are taken
from [3]

o) = 4[5+ (&) (cosZ-Drad  05r<15s
i (6t —45)rad t>15s

r=sgm=00447m, E =328 Pa=446-10° Pa, p =*22%/,=191-10° %,
v=04, L=10m

The element used in this example is an 8 node rectangular element, and the result
corresponds to the ones found in literature and illustrates the ability of the formulation.
In this case 20 elements (206 degrees of freedom) were used. The high number of
degrees of freedom was necessary since the element is not the best suited for a long
slim beam. The CPU-time for this calculation was 1%z days, or 15 minutes with modal
superposition. The standard element used in this simulation is the beam element,
normal simulation time is 10 hours, but the number of degrees of freedom used is lees
e.g. 18.
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Figure 2 . Transverse tip displacement of beam.
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Summary

The computation of natural frequencies and modes in dynamics must be able to meet a demanded level
of accuracy. The paper presents a method to control the error from the discretization of an engineering
structure in the sense of the finite element method, This technique can be used as an error estimator
and an error indicator in an adaptive analysis. The error estimator and error indicator are based on post-
processed eigenmodes. The post-processing technique consists of two parts, local and global updati ng.
The local updating is a variant of the Super convergent Patch Recovery technique (SPR). The global
updating is performed by a preconditioned conjugate gradient technique.

1. Introduction

It is common in dynamics to compute natural frequencies and modes of vibration. This task is prefer-
ably accomplished by the finite element method. Applying the finite element method resultsina discre-
tization error which must be controlled for the solution to be acceptable. Generally only the lower ei gen-
frequencies of the discretized structure gives reasonable approximation to the corresponding exact
eigenfrequencies of the real engineering structure. The most important ingredient of the error estima-
tion is the construction of the new solution of ahigher quality since the exact solution for complex engi-
neering problems is generally unknown. Typically, this new improved solution is obtained by a poster-
lori procedure which utilize the original finite element solution itself,

The SPR technique for displacements (SPRD) has been applied to free vibration problems giving im-
proved eigenmodes and by the Raylei gh quotient improvedei genfrequencies, Ref. [1]. A separate patch
recovery must be made for each eigenpair. The SPRD approachis alocal updating method, why a global
system of equations never has to be solved. The method shows good results for the lower ej genfrequen-
cies but for thé higher eigenfrequencies the improvement is not enough to provide a reliable error es-
timation. In order to improve the higher eigenfrequencies we employ a preconditioned conjugate gradi-
ent method to optimize successive deflated Rayleigh quotients.

A brief description of our Wway to obtain reliable error estimators for all the ej genfrequencies of interest:
Improve the Finite Element (FE) solution of order p by the SPRD method and use this improvent as
starting trial eigenvector in the preconditioned conjugate gradient scheme, this yields a solution similar
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The traditional finite element approach to free vibration analysis of linear elastic continuum leads to
the linear eigenvalue problem

K~ AMut =0, A= (oh? (1)
where K is the stiffness matrix and M is the consistent mass matrix of the structure. a)? are the eigen-
frequencies and uf’ is a displacement field representing the corresponding eigenmode. If we know an
eigenvector then we can compute the corresponding eigenvalue by the Rayleigh quotient

uf’KufZ

Rwh) = i = @)

3. Post-processed Eigenfrequencies by Local Updating

The postprocessed eigenfrequencies will be calculated using Rayleigh quotient without solving the
generalized eigenvalue problem. A new improved eigenfrequency will be of the form

@ P =[> j (Vu;)'DVu; dx / > [ (") ou;* dx 3)

elem elem

elem elem

where 1] isa displacement field over the elements which has a higher order of accuracy.. The recovered
displacement field of the eigenmode ;" will be determined by the SPRD technique, described below.

Ithas been known that the nodal points of the finite element approximation are points at which the prime
variables have higher order accuracy than the order of accuracy in global sense. This knowledge is used
to construct a dispacement field of order p + 1 for each element where this displacement field benefit
from the higher accuracy in the nodal values. The field is constructed as: an element subject to SPRD,
the master element, defines a patch including some surrounding elements, Figure 1. The nodal values
in the patch are assumed fixed and the recovered displacement field are obtained by a least squares fit
of a local polynomial to these nodal values.

.

Figure 1. Patches used for triangular and quadrilateral elements.

g
w{f element defining the patch

@ sampling point i the element patch

This method has a good convergence for the lower eigenfrequencies, but for the higher eigenfrequen-
cies the improvement of the eigenpairs is still not enough due to the fact that the proposed approach
is local and strongly depends on the original finite element solution and in this case on a too coarse
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accurate enougn tor the analysis purposes. Therefore, the impro;zed eigenfrequencies obtained by local
updating will show good convergence only for a sufficiently fine finite element mesh.

4. Improved Eigenfrequencies by Global-Local Updating

The eigenvectors can be characterized by

Rm) = min R(@) “4)
YLV,

where Viiosspan{u;, i=1,.,j~1 }. The basic idea underlying the employment of the conju-
gate gradient method is to minimize the Rayleigh quotient over the vector space that is the M~orthogo-
nal complement to V;_1 . We anticipate that by chosing the SPRD solution of order p + 1as starting

vector in the conjugate gradient scheme we will have a rapid convergence. After the global updating
we apply SPRD of order p + 2 to obtain the fina] improvement used in the error estimator in the adap-
tive algorithm.

The error in eigenfrequencies of the ori ginal finite element solution Awf? of the post~processed solution
Aw;" and the estimated error of the finite element solution A@?, are defined as

dot = ot — 0, , Ao} =0 -0, , 4B} = o - ¢} (5)

S. Numerical example

We consider vibrational problems of elastic two—dimensional structures which, in the equilibrium posi-
tion, lie in a plane. We will be concerned with transverse vibration of thin membranes of uniform thick-
ness. A square thin membrane of uniform thickness has been used, Figure 2a, as the analytical eigenfre-
quencies are available, and the quality of improved eigenfrequencies can be studied. The problem has

been solved with consistent mass matrix. For simplicity, the wave propagation velocity ¢ = \/ﬁg_ is
assumed to be 1.0% » Where T'is the uniform tension in the membrane, In the finite element calculation,
a sequence of four regular meshes with 4x4, 8x8, 10x10 and 15x15 elements are used to study the rate
of convergence and the accuracy of the results for most commonly used linear quadrilateral elements.

One can observe that the rate of convergence towards each separate eigenfrequency is not uniform and
sufficient accuracy is achieved after a few global updating iterations. In order to keep computational
efficiency of the proposed global updating procedure the number of the iterations is therefore set to be
3 for all numerical experiments. This is done due to the reason that our goal is not to caiculate the con-
vergent eigenfrequencies for p + 1 finite element formulation, but to perform a sufficient number of
global updating iterations to calculate improved eigenpairs in order to provide sufficient quality and
reliability of the eigenfrequency error estimator. With the results of the numerical experiments at hand,
Figures 2b and 2¢, we can make the following observations:

(i) The eigenfrequencies of the original finite element solution exhibit O(h?)as predicted by apriori
error estimation.
(i))The recovered eigenfrequencies o ;> obtained by SPRD technique and by global updating, (GL)
demonstrate approximately O(h®*+D) for quadrilateral and triangular elements.
We can also observe that the SPRD technique enables us to provide good error estimates of the eigenfre-
quencies only for sufficiently small size of the elements. The global updating enables us to overcome

this shortcoming of the SPRD technique.
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The proposed local updating (SPRD) technique provides an effective and reliable mean for eigenfre-
quency improvement for free vibration problems. By this approach, the recovered stresses or strains,
used in strain energy calculation, are extracted from the recovered displacement field without any user
tuned coefficients.

For all studied cases of the numerical experiments, the improved eigenfrequencies exhibit superconver-
gence, that is the rate of the convergence of the improved values is usually two orders higher compared
to the finite element solution. The SPRD improved solution gives good initial trial eigenvector for the
modified conjugate gradient scheme, which immediately put us on the asymptotic phase of the conver-
gence profile resulting in a global-local updating technique.
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Figure 2. a) A finite element model of a square membrane
b) Convergence rates of the 1:st eigenfrequency in iterations of global updating procedure
c¢) Estimated rate of convergence of the 1:steigenfrequency and rate of convergence of global
updating with only 3 iterations + SPRD using quadrilateral elements.
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