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ABSTRACT

In 1991, the Nuclear Power Engineering Corporation (NUPEC) in Japan
performed dynamic tests until failure of two reinforced concrete shear walls
using the largest high-performance shaking table in the world. NUPEC has
offered OECD’s Nuclear Energy Agency (NEA) the test data as an open
International Standard Problem with the purpose of verifying seismic response
analysis methods. This report contains the analyses and results from the Danish
contribution.

The analyses consist of a static non-linear FEM analysis of the shear wall
followed by non-linear dynamic analyses of a lumped mass single degree of
freedom model of the structure.

The static analysis has been performed by a non-linear FEM programme that
is being developed at present. The programme takes into account the non-linear
material behaviour of concrete, rotating crack directions, sliding in old cracks
and compressive strength reduction effects.

The non-linear load/displacement relationship found in the static analysis is
used as envelope curve in the dynamic analyses. Hysteresis features that
include stiffness degradation and pinching effects are used to describe the
cyclic behaviour of the shear wall. The trapezoidal rule combined with
Newton/Raphson iterations have been used to solve the initial value problem.

The CPU time for the static analysis is about 15 minutes, the CPU time for
all the dynamic analyses about 15 seconds (586/100 MHz PC with 8MB
RAM). The results compare quite well with the actual test results.
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0.0 INTRODUCTION
0.1 General

Seismic design of reinforced concrete structures is a matter of great concern.
Still today, earthquakes are responsible for the loss of large human and
economic resources. For this reason, research aiming at a better understanding
of the behaviour of structures subjected to dynamic loading is necessary.

Especially in the case of nuclear installations, understanding and prediction
of the dynamic behaviour of structures and of the equipment and piping within
these, are important factors.

Since 1986, the Nuclear Power Engineering Corporation (NUPEC) in Japan
has conducted large tests in order to improve and develop seismic analysis
codes and to enhance reliability of seismic safety evaluation methods. As part
of these projects tests were performed in 1991 with the purpose of studying the
dynamic response characteristics of reinforced concrete shear walls as major
earthquake resisting elements of a reactor building. One of the primary goals
was to obtain experimental data to verify seismic response analysis methods,
ref. [94.1].

These tests were some of the largest dynamic tests until failure of reinforced
concrete specimens ever made. The weight of the specimens was about 200
tons. The vibration tests were done in Tadotsu Engineering Laboratory using
the largest high-performance shaking table in the world, ref. [94.1].

NUPEC has offered OECD’s Nuclear Energy Agency the test data as an
open International Standard Problem (ISP). The proposal for the ISP was sent
out in March 1994, and this report contains the result from the Danish
contribution. The layout of this report is in accordance with the specification
given in [94.2]. This chapter contains general information regarding the ISP.

0.2 The International Standard Problem

The geometry of the test specimen can be seen in figure 0.1.

The weight of the top slab is 29.1 tons. At the top slab, additional weights
of 92.9 tons are present. These weights are fixed at the upper and lower
surface of the top slab, resp. The total weight of the top slab, including the
additional weights, is 122.0 tons.

The reinforcement in the web wall is D6@70 bars (deformed bars, nominal
diameter 6.35 mm, spacing 70 mm) in each side of the wall both horizontally
and vertically. D6@]175 bars are used for the vertical reinforcement of the
flange walls. As an exception, D6@70 bars are used for the vertical rein-
forcement at the intersections of the web wall and the flange walls.
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Figure 0.1: The test specimen, ref. [94.2] (measurements in mm).

For detailed information about geometry, additional weights, reinforcement and
concrete, see ref. [94.2].
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The structure was subjected to 6 vibration steps of increasing magnitude
(named RUNI1, RUN2, RUN2’, RUN3, RUN4 and RUNS). The shear wall
failed during RUNS. The duration of the prepared input wave was 10 seconds.
The horizontal accelerations at the top of the base slab (the input accelerations)

can be seen in appendix A.
The maximum acceleration measured at the top of the base slab, in each of

the 5 runs, can be seen in table 0.1:

RUN number: " Maximum acceleration (m/s%)
1 0.530
2 1.120
2 3.040
3 3.520
4 5.044
5 12.300

Table 0.1: Maximum acceleration at top of base slab.

0.3 Short Description of Analysis Method

The results in this report are based on a static non-linear FEM analysis of the
shear wall followed by a non-linear dynamic analysis of a lumped mass single
degree of freedom system. The non-linear FEM programme used is being
developed at present at the Department of Structural Engineering, Technical
University of Denmark, ref. /96.1/.

1.0 GENERAL INFORMATION

1.1 Computer Information

Type of Computer:

Personal Computer (PC), 586/100 MHz

Memory Size:

8 MB RAM



1.2 Code Information

Category of Analvtical Method:

Non-linear dynamic analysis by means of a single degree of freedom lumped-
mass model based on the results of a non-linear static FEM analysis.

Code Name and Version:

The computer code used is original.

Total Number of Degrees of Freedom:

In the static FEM analysis, the total number of Degrees of Freedom (DOF’s)
is 420. The number of nodes is 210 (2 DOF’s per node), and the number of
elements used is 182 (4 nodes per element). The element mesh and a
description of the type of element used may be found in section 2. In the
dynamic lumped mass analysis 1 DOF is present.

Non-linear Analysis Algorithm:

The load/displacement curve found in the non-linear static analysis has been
determined by applying constant horizontal displacement increments at the top
slab. The stiffnesses in each load step are determined by the constitutive laws
of the concrete and the reinforcement, as described in section 3.

Due to the large concentration of masses at the top slab, it has been con-
sidered reasonable to base the dynamic analyses on a single degree of freedom
model. The mass of the top slab including the additional weights has been
lumped into one mass. This mass is then supported by a spring and allowed to
move in the horizontal direction only. The spring stiffness is given by the
load/displacement curve determined in the non-linear static analysis and a set
of hysteresis rules, see section 2.5.

The trapezoidal rule has been used for the time integration scheme, see e.g.
[82.1]. For each time step At, an iteration method using the modified Newton-
Raphson method is used to obtain equilibrium. The mass and damping
properties are kept constant during each RUN. The governing equilibrium
equation at the time 7+A¢, iteration k is given by (1.1):



t+At f+At t+At
Ma. ™ + Cv'™ + K'Au, = R - F.{

t+At t+Ar
W =y +Aw

a.n

The sup-/subscripts denote the corresponding time/iteration number. u, v and
a are the displacements, velocities and accelerations, resp. M, C and K are the
mass, damping and stiffness coefficients, resp. R is the externally applied load,
and F' is the nodal point force.

Using the trapezoidal rule of time integration, the displacement increment
at iteration k can be found by (1.2):

K+ 2+ 2clau, -
At? At

. 4 +AL 4 2 4 At
RS - FP8 - M) - wf) - vt - af - C | u - uf) - vt
k-1 Atz(kl ) A At(kl )
(1.2)
For each time step, the initial conditions (1.3) are used:
ut+At - ut
0 (1.3)
Ftt = F1

When the displacement increment is below a given residual value, the iteration
process is stopped, and the new velocities and accelerations are found by (1.4):

at*thr = 4 [ut+At _ ut] _ ivt - at
Ar* Az (1.4)
AL LIS _éf[azmt + at}

1.3 Dynamic Analysis Condition

In table 1.1, the applied time step, the CPU time for 12 seconds of analysis
and whether or not vertical input is taken into account is stated for each run.



Run 1 2 3 4 S
_’i“ime Step (s) 0.001 ] 0.001 0.001 0.001 0.001
CPU time (s) | 3 3 3 3 3

Vert. input No No No No No

Table 1.1: Dynamic analysis general information.
1.4 Static Analysis Condition

A constant displacement increment of 1/10 mm was used at the top slab. A
total of 166 load steps, corresponding to a total displacement of 16.6 mm, were
applied.

The CPU time of the static analysis was 988 sec.

2 MODEL DESCRIPTION
2.1 Element Mesh Scheme

In figure 2.1 the element mesh is shown. All elements used are HOTCH-
POTCH disk elements, see section 2.2.

The model is two-dimensional. The flange walls have been modelled as disk
elements with thicknesses corresponding to the length of the flange wall (2980
mm), while the web wall has been modelled by disk elements with thicknesses
corresponding to the actual thickness of the web wall (75 mm). The base slab
has not been modelled. The top slab has been modelled by very stiff disk
elements.

The gravity forces from the top slab and the additional masses have been
applied as initial loads at the top of the structure. The gravity forces from the
masses in the shear wall have been neglected.

The shear wall is supported rigidly at the base.

2.2 Element Type Used

The element used is the so-called "HOTCH-POTCH’ Disk Element, ref. [94.3].
This element is based on a simple, mechanical model, that causes normal
stresses to be concentrated in stringers along the element edges, and shear to
be transferred by a constant in-plane shear stress field. The element has a
transparent behaviour very similar to the stringer method, and the constant
shear stress within each element makes it well-suited for analysis and design
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Figure 2.1: Element mesh (measurements in mm).

~ of reinforced concrete disks. The element is neither a compatible nor an
equilibrium element and is therefore called the "HOTCH-POTCH’ disk
element.

The element has four nodes and is rectangular with side lengths /; and /,, see
figure 2.2. In each of the four stringers, the reinforcement ratio o may be
specified. The number of freedom degrees in each node is 2 (displacement u
in x- and y-direction, resp).

The normal stiffnesses are concentrated in stringers along the four edges of
the element. Contributions are present from the concrete as well as the
reinforcement. The normal stiffness k of the stringer from node 1 to node 2 is
given by (2.1):
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Figure 2.2: The HOTCH-POTCH disk element.
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E, and E, is Young’s Modulus of reinforcement and of concrete, resp.

The shear strain within the element is assumed to be constant and calculated
from the mean displacements in each stringer. As the reinforcement is parallel
to the element edges, only the concrete contributes to the shear stiffness.

The element stiffness matrix £ is given by (2.2-3):

S A S T T '3
kitks  k, ky+ks -k, ~ks ~k, ~ks k,
i - -k, ~ke ~k,  kyrkg k,  -kytks K ks 2.2)
Tk k ok K ktk K kk K
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1 L
k, = E(ES p4+Ec't)'T 2.3)
2
l
- Lgrh
4 L
I
A
4 I
(- Lo

Here G is the shear modulus of the concrete.
2.3 Spring Model Scheme

The entire model is lumped into one mass M (weight 122 ton, corresponding
to weight of top slab and additional weights). Only displacements in the
horizontal direction are possible. Total motions are denoted by subscript .
Support motions are denoted by subscript g. The spring model scheme is
shown in figure 2.3.

The equilibrium of the system is given by (2.4):

Ma, + Cv + Ku = 0 2.9

This can be written as (2.5), ref. [75.1]:

Ma + Cv + Ku = -Ma (9 (2.5)

For each time step, by applying a load corresponding to the mass M multiplied
by the input acceleration at the base slab at this time, the numerical method
described in section 1 will yield displacements, velocities and accelerations
relative to the ground.
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Figure 2.3: Spring model scheme.

2.4 Stiffness Evaluation of Spring

The stiffness of the spring is defined by the load/displacement curve found in
the non-linear static FEM-analysis, see figure 2.4.

The expressions (2.6) found by using best fit methods are used to analyti-
cally represent the load/displacement curve in the dynamic programme:

-16.3mm<u<-0.8mm: F = -0.555-10°N+156.6-10°N/mu+
4,598-10°N/m?u?

|| <0.8mm: F = 846.5-10°Njmu 2.6)

0.8mm<u<16.3mm: F = 0.555-10°N+156.6-10°N/mu-
4,598-10°N/m?u?

The specimen is considered to have failed if absolute displacements larger than
16.3 mm occur.

In figure 2.4, the actual results from the FEM-analysis have been shown
with a full line while the expressions (2.6) have been shown with a dotted line.
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Figure 2.4: Load/displacement curves (FEM analysis and best-fiy).

2.5 Hysteresis Loop of Spring

The applied hysteresis behaviour is illustrated in figure 2.5.

For each element, the maximum response points, during the whole loading
history, are stored (including preceding RUN’s). For positive displacements/-
positive displacement increments and for negative displacements/negative
displacement increments, the reloading branches of the hysteresis loops are
directed at these previous maximum response points. Otherwise, in order to
model pinching action, the reloading branches are directed at the points P,/-P,
on the vertical axis. The unloading slope is similar to the original slope K.

A value of P,=80,000 N has been used in these analyses.
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Figure 2.5: Hysteresis behavior.

2.6 Evaluation of Damping

The damping ratios in table 2.1 have been applied to the single DOF system
as viscous damping.

RUN: Damping Ratio:
1 1%
2 1%
3 2%
4 2%
5 2%

Table 2.1: Applied damping ratios.

In RUN1 and RUN2, elastic behaviour is expected and thus no hysteresis
damping will be present. For these RUNS, a viscous damping of 1% has been
considered reasonable. For RUN3-5, non-linear behaviour is significant and
this will introduce hysteresis damping on top of the viscous damping.
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3 CONSTITUTIVE LAW OF CONCRETE

3.1 General

A detailed description of the constitutive models used can be found in ref.
[96.1]. In this chapter, the main features of the models are described.

A smeared crack model is used. When uncracked, the orthotropic stiffnesses
of the HOTCH-POTCH disk element are determined by the principal strains
and the uniaxial stress/strain relationship.

When the maximum tensile stress exceeds the tensile strength of the con-
crete, the element cracks. After cracking, the orthotropic stiffnesses are
determined by the strains parallel to and perpendicular to the crack, resp. The
shear stiffness in the crack is kept at a high level. This makes is possible for
shear stresses to build up in the crack surface. Additional cracks will occur in
the element each time the tensile stress in another section exceeds the tensile
strength of the concrete.

If the shear stress in a crack surface exceeds the maximum allowable shear
stress, determined by a modified Coulomb yield criteria, sliding occurs in the
crack. In this case, the stiffnesses of the element are determined by elasto-
plastic constitutive relationships.

3.2 Stress/strain Diagram

Compressive stresses/strains are defined as positive.

If uncracked, the orthotropic stiffnesses of the HOTCH-POTCH disk element
are determined by the two principal strains defining the principal strain
coordinate system x’y’, see figure 3.1.

If cracks are present in an element, the normal stiffnesses are determined by
the normal strains in the coordinate system defined by the newest crack. The
coordinate system x’y’ is now defined by the crack direction.

In plane stress, the generalized Hooke’s law is given by (3.1).

Oy Qy Qn 0 |fey
G| = le 022 0 Ey/ (3-1)

Y

Tx'y’ 0 0 QG6 Yx’y’

where ¢ are the stresses, O;;, O;) O, and Qg are the components of the
stiffness matrix and ¢ the engineering strains.
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Figure 3.1: Definition of coordinate systems.

If not cracked, the normal stiffnesses Q,, and Q,, are determined as functions
of the normal strains in the x’y’-system from the uniaxial stress/strain
relationship in figure 3.2. ‘

If cracked, the normal stiffnesses Q,, and (,, are determined as functions
of the normal strains in the x’y’-system from the uniaxial stress/strain
relationship in figure 3.3. A similar behaviour for non-crushed/crushed
concrete is used.

The material parameters for the concrete used in this analysis can be seen
in table 3.1:
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Figure 3.2: Uniaxial stress/strain relationship, uncracked concrete.

P 28.64 MPa
X 0 MPa
£ -1.5 MPa
£ 0 MPa
E, 22.95 GPa
¢ 0.0027
, 0.0050
, 0.000065
e, 0.000157
v 0.15/0.00
7 2400 kg/m?

Table 3.1: Material parameters used.

v is the Poisson’s ratio which is taken as 0.15 if uncracked and 0.00 if cracked.
n is the density of the combined concrete/reinforcement.
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Figure 3.3: Uniaxial stress/strain relationship, cracked concrete.

The stress/strain relationship in the compressive range from e=0 to ¢=0.0027
is given by the following expression suggested in [92.1] (3.2):

o -f {1 - (1_5)"} (3.2)
€

where:

) (3.3)

The initial value of Young’s Modulus E, has been calculated as a function of
7. by the following expression, also suggested in [92.1] (f. in MPa):
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E, = 10,300£>° (f. in MPa) (3.4)

The shear stiffness Oy is determined as half the average value of the two
normal stiffnesses.
The constitutive equations in the xy-system are given by (3.5), ref. [80.1]:

o, Q Qi Qs €,

S 612 622 —Q_zs € (3.5)

‘ny QIG Q26 QGS ny

where:

Qy; = Qyycos* 8+Qysin 8+2 (Qy, + 2Qg4) sin® 6 cos” 8

Q,, = Q,sin’ 8+Q,,c0s* 6+2 (Q,,+ 2Q) sin® 6 cos’ 8

Q,, = (Q;,+Q,,~4Q,) sin® 6 cos? B+Q,,(cos* B+sin’ ) 3.6)
665 = (Q;+0yn-2Q,, --2066)sin2 0 cos? B +Q66(sin4 8+cos* 9)

Qs = (Q,,-0Q;,~2Qq,) cos® 8 5in8-(Q,, ~Q,~2Q4;) cosb sin’

Qy = (Q;,-Qy,~2Q) cosB sin® 6-(Q,,~Qy,~2Q4) cos’ O sind

Assuming a constant value of 6, the incremental constitutive equations are
given by (3.7):

Ao, Q; Qp Qi Ae,
Aoy | =1Q;, Qpn Q| As, 3.7
A‘ny QIG Q26 Qéé A'ny

33 Compressive Strength Reduction

When a crack is formed in reinforced concrete, the rebars near the cracks will
cause a slip followed by punching of the concrete. This is illustrated in figure
3.4 taken from Y.Goto, ref. [71.1].
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Figure 3.4: Cracked section, ref. Y.Goto [71.1].

Goto examined cracking in concrete by injecting ink into round test specimens
and subjecting these to pure tension. The punching and the internal cracking
around the rebar will cause a reduction in the compressive strength parallel to
the crack. Based on these observations, it is considered reasonable to determine
areduced compressive strength as a function of the tensile stresses perpendicu-
lar to the crack surface.

The reduced compressive strength £, is expressed as an effectiveness factor
v multiplied by the compressive strength £, (3.8):

fc’ = vy 3.8)

The value of the effectiveness factor » can be determined by figure 3.5, ref.
/96.1/. The term X is given by (3.9):

PO

X = s
1.43\/f;

3.9

p is the reinforcement ratio and o, the reinforcement stress. The reinforcement
direction causing the largest reduction is used.

As can be seen, the proposed reduction is a function of the compressive
strength of the concrete and the tensile stress. In the case of plain concrete, the
reduction will be zero.
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Effectiveness Factor

Figure 3.5: Compressive strength reduction factor.

3.4 Cracking and Crushing

A crack is introduced when one of the principal stresses become lower
(numerically larger) than the tensile strength f. The stress level in the element
is decreased to the level £, and a force equivalent to this change in stress level
is applied to the system. This may in turn generate new cracks.

Crushing is handled similarly.

3.5 Yield Model

If the shear stress in a crack reaches the maximum shear stress given by the
yield condition shown in figure 3.6, plastic sliding occurs. The plastic strain
increments ¢ and vy (normal strain and change of angle, resp.) are given by the
normality condition. The angle between the plastic strain vector and the
vertical axis is referred to as a.

According to the theory of plasticity, ref. [84.1] ¢, the cohesion, is given by
(3.10):
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Figure 3.6: Dissipation in yield line (crack surface).
c = Lvf (3.10)
4 c

where » is an effectiveness factor. Recent studies at the Department of
Structural Engineering at the Technical University of Denmark, ref. [94.4],
show, that for cracked concrete this effectiveness factor can be expressed as

(3.11)

where v, is the effectiveness factor for uncracked concrete, and v, is the sliding
reduction factor due to cracking. The angle of friction is taken as 37 degrees.

The following values for v, and v, taken from [84.1] and [94.4], resp., are
used (3.12):
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s (fc in MPa) (3.12)

For reasons of simplicity, hardening/softening behaviour has been neglected in
this investigation. Thus, when yielding, the stress/strain relationship in the
crack coordinate system x’y’is given by the elastoplastic constitutive equations

(3.13-14).

where:

Q;,Qgek 0 tanzo‘QuQsek €y
- 0 Qy 0 €, (3.13)

tan*aQ,;Quk 0 tanaQ,,Quk [\ V.4

k= — 1 (3.14)

2
tan”aQ;; + Qe

4.0 CONSTITUTIVE LAW OF REBAR

The stress/strain diagram used for the rebars is depicted in figure 4.1:
The material parameters used for the rebars have been taken from [94.2], see

table 4.1:
E, 184.37 GPa
E’ 0.353 GPa
€ 0.00208
€, 0.291
o, 383 MPa

Table 4.1: Material parameters used for rebars.
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0 b —— e e

Figure 4.1: Stress/strain diagram for rebars.

5.0 BOND AND SLIP BETWEEN CONCRETE AND REBARS

The traditional effects regarding bond and slip between concrete and rebars
have not been included. The effect of compressive strength reduction due to
slip of concrete near cracks has been included by the method described in
section 3.3.

6.0 RESULTS

As specified in [94.2], results are presented as response time histories, see
section 6.1, as horizontal force/displacement relationships, see section 6.2 and
as tables and figures summarizing the calculated results for each RUN, see
section 6.3.
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6.1 Time History Items

In appendix A, figures of the following time history items are plotted for each
of the five RUNSs:

1) Horizontal acceleration at top of base slab.
2) Horizontal acceleration of center of top slab (calculated and measured).
3) Horizontal displacement of center of top slab (calculated and measured).

6.2 Horizontal Force - Displacement Relationships

In appendix B, figures showing the following force-displacement relationships
can be seen:

1) Horizontal force - horizontal displacement of top slab.
2) Horizontal force - vertical relative displacement of right flange.
3) Horizontal force - vertical relative displacement of left flange.

6.3 Summary of Calculated Results
In table 6.1 the following results for each RUN can be found:

1) Initial natural frequency.

2) Maximum response displacement at center of top slab.
3) Maximum response acceleration at center of top slab.
RUN Initial natural Maximum Maximum
frequency response response
at end of RUN displacement acceleration
(Hz) (mm) (m/s?)
RUNI1 13.3 0.29 2.01
RUN2 133 0.85 5.61
RUN3 13.0 1.36 6.24
RUN4 10.8 2.90 7.98
RUNS 8.3 10.46 13.91

Table 6.1: Summary of results from dynamic analyses.
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In table 6.2, a summary of the calculated results from the static analysis can
be seen. In figure 6.1 the locations of the phenomena in table 6.1 are shown
(by the corresponding letter).

Phenomena Horizontal displ. Horizontal force
(mm) (kN)

(a) Flange wall. 0.6 475
Initiation point of bending
crack.
(b) Web wall. 1.3 747
Initiation point of shear
crack.
(c) Flange wall vert. rebar. 7.6 1,479
Initiation point of yield.
(d) Web wall vert. rebar. 9.0 1,597
Initiation point of yield.
(e) Web wall hor. rebar. 16.3 1,909
Initiation point of yield.
(f) Crush point 16.3 1,909

Maximum load 16.3 1,909

Table 6.2: Summary of calculated results for top slab (static analysis).

In figure 6.2-3 the appearance of concrete cracks at 2/3 of the maximum load
and at the maximum load, resp., can be seen. The line style and thickness of
each crack indicate the size of the tensile strain perpendicular to the crack.
(Dotted lines indicate tensile strains < dashed lines < full lines < full, thick
lines.)
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Figure 6.1: Location of phenomena.
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Figure 6.2: Crack formation at 2/3 of maximum load.
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Figure 6.3: Crack formation at maximum load.

6.4 Comparison with Test Results

By comparing the horizontal accelerations and displacements at the top slab,
determined from the test and the lumped mass analysis resp., the following
items are noted:

1) For RUNI1 the correspondence between test and analysis is almost
exact. The behaviour in RUNI is purely elastic.

2) For RUN2 the correspondence is very good for the first 4-5 seconds.
After this stage, a discrepancy is present. This indicates that the
envelope curve determined from the static analysis is not accurate, at
the stage at which most cracking takes place.

3) For RUN3 and RUN4 large non-linearities are present. The correspon-
dence between test and analysis results is very good.
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For RUNS the correspondence between test and analysis results is very
good for the first three seconds of the analysis. However, after this
stage some discrepancies are present. In contrast to the actual test
results, the analysis does not predict collapse of the structure in RUNS.
Apparently, the load carrying capacity, determined by the static analysis
is too high towards the end of the analysis. This indicates that the
load/displacement curve, determined from the static FEM analysis, is
inaccurate towards the end of the analysis or that it should be reduced
when used as an envelope curve for cyclic, large deformation loading.
By increasing the ground accelerations by 15%, collapse was predicted
by the analysis.

In figure 6.4, the relation between maximum inertial force and maximum
displacement for each RUN is shown. The correspondence is seen to be

excellent.
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Figure 6.4: Maximum inertial force/maximum displacement relation-
ships.
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For this type of problem, the proposed solution method is excellent. For
systems of shear walls, in [96.2], a method that introduces only one degree of
freedom for each shear wall and in which the non-linear behaviour of each
shear wall is determined from an independent load/displacement envelope
curve, is presented.

7.0 CONCLUSION

In this report, the non-linear behaviour of a shear wall, subjected to five
earthquakes of increasing magnitude (RUNI1-5), each of a duration of 12
seconds, is examined. The shear wall is represented by a one degree of
freedom model and analysed by a lumped mass analysis. The envelope curve
used is non-linear and based on a non-linear static FEM analysis.

The non-linear static FEM analysis is based on an original code described in
section 3 and more thoroughly in ref. /96.1/.

The total CPU time for the static analysis was 15 minutes. The total CPU time
for the 5 non-linear dynamic analyses was approximately 15 seconds. All
analyses were performed on a 586/100 MHz PC with 8 MB RAM.

The correspondence between test and analysis results is excellent, the
simplifications and the CPU time of the analyses taken into account. Especially
the correspondence between maximum displacement and maximum accelera-
tion, for each of the 5 RUNs, is good. In contrast to the test results, the
analysis does not predict collapse of the shear wall in RUNS. This is probably
due to an overestimation of the ultimate load by the envelope curve. By
increasing the amplitudes of RUN5 by 15%, collapse was predicted by the
analysis. '

It can be concluded that the model proposed is excellent for determining the
dynamic behaviour of a shear wall with a large concentrated mass.
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APPENDIX A - Time History Items

In this appendix, the following figures are included:

A.l: RUNI - Accelerations at top of base slab (input data).
A.2: RUNI - Accelerations at center of top slab (calculated).
A.3: RUNI - Accelerations at center of top slab (measured).
A.4: RUNI - Displacements at center of top slab (calculated).
A.5: RUNI - Displacements at center of top slab (measured).

A.6: RUN2 - Accelerations at top of base slab (input data).
A.7:  RUN2 - Accelerations at center of top slab (calculated).
A.8: RUN2 - Accelerations at center of top slab (measured).
A.9: RUN2 - Displacements at center of top slab (calculated).
A.10: RUN2 - Displacements at center of top slab (measured).

A.11: RUN3 - Accelerations at top of base slab (input data).
A.12: RUN3 - Accelerations at center of top slab (calculated).
A.13: RUN3 - Accelerations at center of top slab (measured).
A.14: RUN3 - Displacements at center of top slab (calculated).
A.15: RUN3 - Displacements at center of top slab (measured).

A.16: RUN4 - Accelerations at top of base slab (input data).
A.17: RUN4 - Accelerations at center of top slab (calculated).
A.18: RUN4 - Accelerations at center of top slab (measured).
A.19: RUN4 - Displacements at center of top slab (calculated).
A.20: RUN4 - Displacements at center of top slab (measured).

A.21: RUNS5 - Accelerations at top of base slab (input data).
A.22: RUNS - Accelerations at center of top slab (calculated).
A.23: RUNS5 - Accelerations at center of top slab (measured).
A.24: RUNS - Displacements at center of top slab (calculated).
A.25: RUNS - Displacements at center of top slab (measured).
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Figure A.1: RUNI - Accelerations at top of base slab (input data).
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Figure A.2: RUNI - Accelerations at center of top slab (calculated).
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Figure A.3: RUNI - Accelerations at center of top slab (measured).
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Figure A.4: RUNI - Displacements at center of top slab (calculated).
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Figure A.5: RUNI - Displacements at center of top slab (measured).
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Figure A.6: RUN2 - Accelerations at top of base slab (input data).
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Figure A.7: RUN2 - Accelerations at center of top slab (calculated).
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Figure A.8: RUN2 - Accelerations at center of top slab (measured).
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Figure A.9: RUN2 - Displacements at center of top slab (calculated).
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Figure A.10: RUN?2 - Displacements at center of top slab (measured).
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Figure A.11: RUN3 - Accelerations

at top of base slab (input data).
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Figure A.12: RUN3 - Accelerations

at center of top slab (calculated).
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Figure A.13: RUN3 - Accelerations

at center of top slab (measured).
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Figure A.14: RUN3 - Displacements at center of top slab (calculated).
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Figure A.15: RUN3 - Displacements at center of top slab (measured).
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Figure A.16: RUN4 - Accelerations at top of base slab (input data).
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Figure A.17: RUN4 - Accelerations at center of top slab (calculated).
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Figure A.18: RUN4 - Accelerations at center of fop slab (measured).
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Figure A.19: RUN4 - Displacements at center of top slab (calculated).
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Figure A.20: RUN4 - Displacements at center of top slab (measured).
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Figure A.21: RUNS - Accelerations at top of base slab (input data).
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Figure A.22: RUNS - Accelerations at center of top slab (calculated).
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Figure A.23: RUNS - Accelerations at center of top slab (measured).
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Figure A.24: RUNS - Displacements at center of top slab (calculated).
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Figure A.25: RUNS - Displacements at center of top slab (measured).
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APPENDIX B - Force / Displacement Relationships

In figure B.1, the horizontal force / horizontal displacement relationship is
shown.
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Figure B.1: Horizontal force / horizontal displacement relationship.
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In figure B.2, the horizontal force / vertical displacement of right flange
relationship is shown.
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Figure B.2: Horizontal force / vertical displacement of right flange

relationship.
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In figure B.3, the horizontal force / vertical displacement of left flange
relationship is shown.

(kN)

T T T T

Horizontal force

4
N

Vertical displacement of left flange at lower surface of top slab (mm.)

Figure B.3: Horizontal force / vertical displacement of left flange

relationship.
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