Lignocellulosematerialers vandbinding

Jette Schaumann

Lignocellulosematerialers vandbinding Copyright (c) by Jette Schaumann, 1996
Tryk:
LTT
Danmarks Tekniske Universitet
Lyngby
ISBN 87-7740-170-0
ISSN 1396-2167
Bogbinder:
H. Meyer, Bygning 101, DTU

Lignocellulosematerialers vandbinding

Fomrd

Denne rapport er udført i forbindelse med forskningsprojektet: "Karakterisering af lignocelluloseprpdukters porestruktur", NON93-DTH-4. Projektet er financieret af Landbrugs- og Fiskeriministeriet.

Styregruppen for projektet har følgende udefra kommende medlemmer: Professor Per Ole Olesen, KVL/Sektion for skovbrug, Professor Per Freiesleben Hansen, Aalborg Universitet, Laboratorieleder mag. scient. Torsten Reffstrup, Bioteknologisk Institut, Konservator, Ph. D. stud. Poul jensen, Nationalmuseet og civilingeniør Henrik Lund, Novo Nordisk A/S. Styregruppens eksterne medlemmer takkes for udbytterige diskussioner og udvist interesse i forbindelse med projektet.

Styregruppen består af følgende interne medlemmer fra BKM, Institut for Bærende Konstruktioner og Materialer, DTU: Projektleder, docent Preben Hoffmeyer, Lektor Kurt Kielsgaard Hansen og Lektor Lauge Fuglsang Nielsen. I takkes alle for et meget lærerigt og positivt samarbejde.

En særlig tak rettes til professor Per Freiesleben Hansen, Aalborg Universitet og Laboratorietekniker Ulla Gjøl Jacobsen, BKM for henholdsvis meget hyppige og konstruktive drøftelser af vands termodynamiske størrelser, og Ulla Gjøl Jacobsen takkes for stor omhu og engagement ved måling af lignocelluloses befugtningsvarme.

Professor Per Ole Olesen, KVL og Belinda Bjerre, Risø har venligst stillet lignocellulosematerialer til rådighed.

Rapporten indeholder 6 kapitler, der er nummereret som anført i følgende indholdsfortegnelse. Bagerst er der et bilag, hvori målte ligevægtsfugtindhold er anført.

BKM maj 1996
Jette Schaumann

Synopsis

Vandbindingen af 8 lignocellulosematerialer er undersøgt: Bøgepulp; Bøgeplade fremstillet af bøgepulp; Hvedepulp; Hvedeplade fremstillet af hvedepulp; Acetyleret hvede på basis af hvedepulp; Formalet hvedehalm; Steam exploaded hvedehalm og vådoxideret hvedehalm. For materialerne er der målt adsorptionsisotermer ved 23,33 og $43^{\circ} \mathrm{C}$ og total befugtningsvarme ved $33^{\circ} \mathrm{C}$. For hvedepulp og -plade er der målt befugtningsvarme for 7 begyndelsesfugtindhold ved $33^{\circ} \mathrm{C}$. Adsorptionsiostermer er beskrevet ved L. Fuglsang Nielsens model. Clausius-Clapeyrons ligning er benyttet til beregning af differentiel entalpi i afhængighed af fugtindhold og relativ fugtighed. Bindingsenergien af en infinitesimal vandmængde er fundet tiltagende med mindsket vandindhold, relativ fugtighed samt indholdet af hemicellulose i materialet. Der er fundet en direkte sammenhæng mellem materialernes vandsorptionsisotermer, totale befugtningsvarme og kemiske sammensætning eller strukturelle ændringer ved en pulpbehandling. Hemicellulose er fundet relativt mere amorf end vandbindende i forhold til de øvrige polymerer. Målt befugtningsvarme er omregnet og fundet sammenlignelig med differentiel befugtningsentalpi.

Nøgleord: Hvedepulp, træpulp, pulpplade, behandlet pulp, vandbinding, vandsorptionsisoterm, befugtningsvarme, differentiel befugtningsvarme, Clausius-Clapeyrons ligning.

Abstract

Absorption of water has been examined for 8 straw and wood pulp materials: beech pulp, beechplate, wheat pulp, wheatplate, acetylated wheat pulp, grinded wheat straw, steam exploded wheat and wet oxided wheat. Absorption isotherms are measured at $23^{\circ} \mathrm{C}, 33^{\circ} \mathrm{C}$ and $43^{\circ} \mathrm{C}$. Isotherms are modeled by the Fuglsang Nielsen model. The heat of wetting is measured at $33^{\circ} \mathrm{C}$. Clausius-Clapeyrons equation is used to calculate differential heat of wetting for the materials. It is found that the composition of polymers and structural modifications of the cell wall under a treatment are related to the isotherms, total and differential heat of wetting.

Keywords: Straw pulp, wood pulp, pulp plate, treated pulp, water absorption, isotherm, heat of wetting, differential heat of wetting, Clausius-Clapeyron equation.
ii

Indholdsfortegnelse:

Side:

1. Indledning 1
2. Materialer 7
3. Adsorptionsisotermer 9
3.1. Metoder 9
3.1.1. Diskussion 12
3.1.2. Litteraturen 14
3.2. Resultater 15
3.2.1. Materialer 15
3.2.1.1. Diskussion 22
3.2.2. Temperatureffekt 24
3.2.2.1. Diskussion 29
3.3. Diskussion 29
3.4. Konklusion 30
4. Befugtningsentalpi 31
4.1. Metoder 31
4.1.1. Clausius-Clapeyrons ligning 31
4.1.2. Befugtningsentalpi 33
4.2. Resultater 37
4.2.1. Differentiel befugtningsentalpi, u 37
4.2.1.1. Diskussion 38

Side:

4.2.2. Differentiel befugtningsentalpi, RF 41
4.2.2.1. Diskussion 43
4.2.3. Befugtningsentalpi 44
4.2.3.1. Diskussion 45
4.3. Konklusion 45
5. Befugtningsvarme 47
5.1. Metoder 47
5.1.1. Kalorimetermåling 47
5.1.2. Analyser 48
5.2. Resultater 49
5.2.1. Varmeudviklingshastighed 49
5.2.1.1. Diskussion 53
5.2.2. Total befugtningsvarme 53
5.2.2.1. Diskussion 54
5.2.3. Befugtningsvarme 55
5.2.3.1. Diskussion 56
5.2.4. Differentiel befugtningsvarme 57
5.2.4.1. Diskussion 58
5.3. Diskussion 58
5.4. Konklusion 58
6. Konklusion 59
Liste over anvendte symboler 63
Litteratur 65
Bilag 1. Ligevægtsfugtindhold 67

1. Indledning

Lignocellulose er betegnelsen for biomasse, som primært indeholder polymererne: Cellulose, hemicellulose og lignin. Ved og bark af træer, buske samt stængel og blade af halm betegnes ofte lignocellulose.

For at nyttiggøre lignocellulose kan denne behandles på en række forskellige måder. Lignocellulose kan for eksempel behandles mekanisk ved neddeling eller formaling i en mølle, hvor produktet betegnes pulp. Sker formalingen ved forhøjet temperatur, omkring $180^{\circ} \mathrm{C}$, anvendes procesbetegnelsen: termisk, mekanisk pulpning. Lignocellulose kan ogsả modificeres ved autoklavering, hvor pulpen påvirkes med samtidig højt damptryk og temperatur. Foretages autoklaveringen med vanddamp, fås et produkt, som betegnes steam exploaded pulp. Etableres overtrykket under autoklaveringen af ilt O_{2} over pulp opslemmet i vand og en base, for eksempel $\mathrm{Na}_{2} \mathrm{CO}_{3}$, betegnes produktet vådoxideret pulp.

Lignocellulose kan også modificeres kemisk og enzymatisk. Til papirfremstilling tilstræbes det, at lignocellulosens ligninindhold er minimalt, idet lignin gråfarver papir og giver papir for stor stivhed. For at mindske ligninindholdet kraftkoges lignocellulose typisk industrielt i stærke baser med NaOH og $\mathrm{Na}_{2} \mathrm{~S}$. Indholdet af lignin kan også mindskes ved enzymatisk behandling. Pulp kan acetyleres ved en kemisk behandling. Herved reduceres pulpens vandbinding. Dette er ønskeligt, når pulp skal indgå i elementer til konstruktionsformål. Når pulpens vandbinding mindskes, nedsættes samtidig styrke- og volumenændringer på grund af pulpens samvirken med den omgivende luft.

Der kan fremstilles byggeplader udelukkende af pulpfibre. Dette kræver, at fibrene formpresses under samtidig høj temperatur og tryk. Under processen tilstræbes det, at lignin i pulpen flyder så meget, at ligninen kan sammenbinde pulpen ved at etablere en matriks mellem de enkelte fibre. I forhold til den her nævnte simple fremstilling af pulpplader er der naturligvis mulighed for at forbedre pladernes kvalitet både med hensyn til valg af pulp, fremstillingsteknik og bindemiddelmatriks mellem pulpfibrene.

Lignocellulose kan således behandles mekanisk, termisk, kemisk og enzymatisk. Ved disse modificeringer er det ikke muligt at opstille kemiske reaktionsligninger, for de omdannelser, som sker. Ej heller kan det entydigt angives, på hvilken måde cellevæggen i lignocellulose ændrer struktur ved en given pulpbehandling. I denne rapport er lignocellulose søgt karakteriseret på baggrund af materialernes vandbinding og vandbindingsenergi.

Ved materialekarakteriseringen har det været nødvendigt med en overordnet stillingtagen til lignocelluloses vandbinding. Denne meget komplicerede materialeegenskab er imidlertid ikke kendt i alle detaljer. Og der findes mange modeller, som beskriver cellevæggens vandbinding. Meget genereliseret kan der skelnes mellem teorier, som er baseret på såkaldt mono- eller polymolekylær vandbinding til cellevæggen. Den hyppigt anvendte BET-teori er et eksempel på beskrivelse af polymolekylær vandbinding. BET-teorien angiver, at cellevæggen maksimalt indeholder typisk 5-8 molekylelag vand. Afhængig af valgt sorptionsteori fås samtidig vidt forskellig tolkning af lignocelluloses vandsorptionsisoterm. Med ud-

1. Indledning

gangspunkt i polymolekylær sorption udtrykker isotermen porer, mens monomolekylær sorption udtrykker vandbinding til cellevæggen.

I denne rapport beskrives cellevæggens vandbinding som monolagssorption, såkaldt Langmuir sorption (1918). Dette valg er foretaget på baggrund af følgende, pkt. a) - g):
a) Vand i cellevæggen er ikke frysbart, hvilket peger i retning af, at cellevæggen binder et og maksimalt to molekylelag vand (Ifølge BET- eller DENT' s sorptionsteori er maksimalt 1-2 vandmolekylelag bundet til en overflade).
b) Lignocelluloses styrke, stivhed, svind og svelning ændres med cellevæggens fugtindhold. Dette indikerer, at vandmolekyler samvirker med cellevæggen. Mere end 1-2 molekylelag vand bundet til cellevæggen kan formodentligt ikke ændrer lignocellulosens tekniske egenskaber.
c) Ved en given kemisk behandling af lignocellulose parallelforskydes hele vandsorptionsisotermer vertikalt. Dette vidner om, at vand bindes direkte til cellevæggen (monolagssorption). Beskrives sorptionen ved polymolekylær sorption, er det kun det først bundne vandmolekylelag, som afspejler de kemiske ændringer ved lignocellulosebehandlingen. De øvrige vandmolekylelag udtrykker derfor lignocellulosens porer, da der ikke længere er plads til direkte binding på cellevæggen. Ved brug af polymolekylær sorptionsteori svarer det til, at isotermer før og efter en kemisk behandling af lignocellulose kan krydse hinanden, når beregnet monolagssorption er indtruffet ved et fugtindhold på omkring beregnet 5%. Dette er imidlertid ikke set beskrevet i litteraturen.
d) Det antages, at alle cellevæggens vandbindingspladser bliver besat ved et fugtindhold på omkring 30%. Efter BET-teorien kan det beregnes, at monolagssorption typisk afsluttes ved et fugtindhold på omkring 5%. Dette er ikke fysisk muligt, da vand er mere tilskyndet til binding direkte til cellevæggens sorptionssteder frem for oven på molekylelag nummer 1.
e) Såfremt lignocellulose med ledige vandbindingspladser (fugtindhold under fibermætningspunktet) tilsættes vand, vil vandet få en mere ordnet struktur (mindsket entropi), hvilket afspejler vandbinding. Yderligere er processen eksoterm, hvilket indikerer vandbinding til lignocellulose. På denne baggrund kan det ikke forklares, at monolagssorption allerede ophører omkring et fugtindhold på 5%. Dette forudsiges typisk ved brug af polymolekylær sorptionsteori for cellevæggen.
f) Lignocellulose indeholder såkaldt hemicellulose og lignin. Disse polymerer binder formodentligt vand ved monomolekylær sorption, da der antageligt ikke er hulrum i disse kemiske stoffer.
g) Højereliggende vandsorptionsisoterm angiver øget fibermætningspunkt, hvilket indikerer, at isotermen væsentligst beskriver vandbinding og ikke porer.

Lignocellulose indeholder hydrofile hydroxylgrupper OH , som binder vand. Lignocellulose binder vand ind til, at fibermætningspunktet nås ved en relativ luftfugtighed på omkring
100%. Dette svarer til vandindhold i lignocellulose på omtrent 30% af tørvægten. Ved modificering af lignocellulose vil indholdet af hydrofile hydroxylgrupper formodentligt ændres. Ved at sammenholde lignocellulosematerialers vandbinding og vandbindingsenergi før og efter en behandling kan mulige procesforløb antageligt identificeres og dermed påvirkes i en ønskelig retning.

Måden, hvorpå vand bindes til lignocellulose, vil formodentligt kunne have interesse ved vurdering af formpressede pulpplader, som ønskes anvendt til konstruktionsformål, hvilket omtales senere. Styrken og stivheden af et pulpbaseret byggeprodukt afhænger blandt andet af pulpfibrenes egenstyrke og -stivhed. Pulpfibrenes delkomponenter har forskellige mekaniske egenskaber. Cellulose har kædestruktur, som udmærker sig ved høj trækstyrke i længderetningen. Lignin afstiver cellulosekæderne og bidrager som trykstyrke- og stivhedskomponenten i lignocellulose. Hemicellulose findes væsentligst som molekylekæder i ligninen.

Styrken af et formpresset emne afhænger ikke alene af pulpfibrenes egenstyrke. Emnets styrke vil også vokse med antallet af bindinger, der etableres mellem pulpfibrene. Flydning af lignin indikerer, at denne kan være anvendt til indbyrdes binding og afstivning mellem pulpfibre. En sådan sammenbinding af pulpfibre fordrer et vist ligninindhold, idet ligninen både skal afstive de enkelte fibre og samtidig fungere som bindemiddelmatriks mellem fibrene. Vands binding til lignocellulose vil kunne indikere, om lignin er flydt ud mellem fibrene og etableret en bindemiddelmatriks.

Styrken og stivheden af et formpresset pulpemne mindskes med øget porøsitet, hvor porøsitet udtrykker hulrum i forhold til faststof. Porøsiteten i tor tilstand vil kunne afdækkes ved brug af inerte, ikke polære stoffer, eksempelvis nitrogen og helium. Porøsiteten kan ikke bestemmes ved brug af polære stoffer som for eksempel vand. Dette skyldes, at polære stoffer har affinitet (vil bindes) til andet end porer (hulrum). Vand bindes af hemicellulose og lignin, som udgør bindingspladser for vand uden at der er porer (hulrum) i hemicellulose og lignin. Yderligere bindes vand i cellevæggen ind til, at fibermætningspunktet nås ved en relativ luffugtighed på omkring 100%. Dette svarer til, at der med øget fugtindhold på vandsorptionsisotermen fås stigende porøsitet og tiltagende indre overflade i lignocellulose, hvorved lignocellulosens porøsitet ikke kan bestemmes entydigt for et lignocellulosemateriale.

På en række punkter adskiller lignocellulose sig fra stenbaserede bygningsmaterialer som: Tegl, beton og puds. For de stenbaserede materialer betragtes: Porestørrelser, styrke, stivhed, svind og svelning som materialekonstanter i brugstilstanden. Disse parametre er ikke materialekonstanter for lignocellulose. Lignocelluloses styrke og stivhed afhænger af relativ luftfugtighed i omgivelserne. Dette skyldes, at vandbindingen øges ind til, at fibermætningspunktet nås. I modsætning til stenbaserede materialer mindskes styrke og stivhed af lignocellulose med øget indhold af bundet vand i cellevæggen. Svind og svelning er knyttet til sorption af bundet vand i cellevæggen.

I det meget store problemkompleks angående formpressede pulpplader fokuserer denne

1. Indledning

rapport på, at svind, svelning og styrkeændringer tiltager med energien, hvormed vandmolekyler fra den omgivende luft bindes eller frigives fra cellevæggen. Jo tættere vandmolekylerne har knyttet sig til sorptionsstederne, des mere fremtrædende bliver styrke-, og stivhedsændringer samt svind og svelning af lignocellulose.

Materialekarakteriseringen er her foretaget på baggrund af, at hemicellulose er den mest vandbindende komponent, mens lignin er den mindst vandbindende af polymererne. Lignocelluloses fibermætningspunkt og vandsorptionsisoterm er parametre, som udtrykker materialernes vandbinding.

Ved karakteriseringen er det også benyttet, at hemicellulose er den mest amorfe af polymererne, mens lignin er mindst amorf med hensyn til vandbinding. Dette betyder, at en given vandmængde vil bindes tættere (det vil sige med større energi) til hemicellulose iforhold til lignin. Differentiel befugtningsentalpi og -entropi er størrelser, som øges i takt med, hvor amorf lignocellulosen er med hensyn til vandbinding.

Lignocelluloses befugtningsvarme, svind og svelning pr. tørstofenhed øges med både den bundne vandmængde, og hvor amorfe lignocellulosens bindingspladser er med hensyn til vand. Idet hemicellulose samtidig er mest vandbindende og amorf, fås antageligt større materialeforskelle før og efter en behandling af lignocellulose, såfremt sammenholdelsen foretages på baggrund af ovennævnte størrelser i forhold til forskel i vandbinding.

I denne forbindelse er det nødvendigt at definere den her anvendte betegnelse for amorf, da der ikke er fuld overensstemmelse med klassiske definitioner. Amorfe OH-grupper binder vand, mens krystallinske hydroxylgrupper ikke er vandbindende. Ved krystallinske områder forstås, at lignocellulosens OH -grupper parvis er bundet direkte til hinanden. Disse krystallinske OH -grupper er ikke vandbindende, da der ikke opnås en energimæssig gevinst ved at indbygge vand mellem hydroxylgrupperne. De mest amorfe OH-grupper betegnes her frie. Dette svarer til, at OH-grupperne ikke samvirker med andre af lignocellulosens hydroxylgrupper. En fri OH-gruppe har typisk en vinkel med den tilhørende molekylekæde på 90°. Såfremt 2 hydroxylgrupper peger imod hinanden, betegnes disse som værende mindre amorfe end frie OH -grupper. Jo mindre amorfe hydroxylgrupperne er, desto mere er de orienteret imod hinanden.

Vand vil først besætte frie OH -grupper og dernæst hydroxylgrupper, som er aftagende amorfe, da der herved opnås det største fald i fri energi. Et vandmolekyle vil bindes hårdest til en fri OH -gruppe. Vandets bindingsenergi aftager med faldende amorfitet af OH-grupper. Dette skyldes, at mindre amorfe hydroxylgrupper allerede har brugt noget bindingskapacitet, og de vil derfor ikke knytte vand så tæt til sig.

Rapporten

Som et bidrag til at opbygge egnede karakteriseringsmetoder for lignocellulose, fokuserer denne rapport på følgende aspekter inden for dette store emneområde:

1) Vandsorptionsmåling. Kritisk metodegennemgang ved brug af BKM' s udstyr til bestemmelse af lignocellulosematerialers vandbinding.
2) Differentiel befugtningsentalpi.Vands bindingsenergi til lignocellulosematerialer beregnes i afhængighed af fugtindhold og relativ fugtighed. Dette kræver nøjagtige vandsorptionsmålinger ved mere end en temperatur.
3) Befugtningsvarme målt kalorimetrisk. Ny målemetode til karakterisering af lignocellulose. Resultater omregnes og sammenholdes med differentiel befugtningsentalpi.

1. Indledning

2. Materialer

Alle materialer er modtaget og lagret i lufttør tilstand frem til prøvning.
Overvejende er materialerne findelte ved modtagelse, og materialerne er prøvet i den modtagne stand. Dette gælder med undtagelse af: Bøgeplade, hvedeplade og vådoxideret hvede. Pladernes dimension er: $190 \times 190 \times 4 \mathrm{~mm}$ ved modtagelse. Vådoxideret hvede er modtaget som tørre filterkager. Bøgeplade, hvedeplade og vådoxideret hvede er efter modtagelse og før prøvning neddelt til tynde, bøjelige flager med en spids syl.

Materialerne er kendetegnet med de forkortede betegnelser, som er anvendt i de følgende kapitler.

1. $\operatorname{Bøg}(p)$

Bøgepulp.Termisk, mekanisk pulpet ved $170^{\circ} \mathrm{C}$. pi parentes refererer til, at bøgepulpen er reference til bøgepladen.

Cellulose	Hemicellulose	Lignin	Aske	$\mathrm{S}=\mathrm{H} / \mathrm{L}$
$41,9 \%$	$24,0 \%$	$22,3 \%$	$0,9 \%$	1,1

Tabel 2.1. Sammenscetning af bøgepulp, bog(p). Sorptionsfaktoren S angiver indholdet af hemicellulose i forhold til lignin efter vagt.

2. Hvede($p, a)$

Hvedepulp. Termisk, mekanisk pulpet ved $170^{\circ} \mathrm{C}$. p,a i parentes refererer til, at hvedepulpen er reference til hvedepladen og acetyleret hvede.

Cellulose	Hemicellulose	Lignin	Aske	$\mathrm{S}=\mathrm{H} / \mathrm{L}$
$42,4 \%$	$32,1 \%$	$14,7 \%$	$1,9 \%$	2,2

Tabel 2.2. Sammensaetning af hvedepulp, hvede(p,a). Sorptionsfaktoren S angiver indholdet af hemicellulose i forhold til lignin efter vcegt.

3. Bøgeplade

Formpresset bøgeplade bestående udelukkende af bøgepulp, bøg(p). Formpresset 7,5 minutter ved $175^{\circ} \mathrm{C}$ i et lukket system.

4. Hvedeplade

Formpresset hvedeplade bestående udelukkende af hvedepulp; hvede(p,a). Formpresset 10 minutter ved $175^{\circ} \mathrm{C}$ i et lukket system.

5. Acetyleret hvede

Hvede(p, a) er anvendt som udgangsmateriale. På pulpens hydroxylgrupper er der kemisk

2. Materialer

bundet acetylgrupper, som ikke er vandbindende. Acetyleringsgraden er 20\%. Acetyleringsgraden angiver pulpens vægtforøgelse ved acetyleringen.

6. Hvede(s, v)

Hvede fra 1993 høsten. Findelt i hammermølle. s, v i parentes refererer til, at hveden er reference til steam exploded og vådoxideret hvede.

Cellulose	Hemicellulose	Lignin	Aske	$\mathrm{S}=\mathrm{H} / \mathrm{L}$
$38,0 \%$	$32,8 \%$	$8,9 \%$	$1,4 \%$	3,7

Tabel 2.3. Sammensatning af findelt hvedehalm, hvede(s,v). Sorptionsfaktoren S angiver indholdet af hemicellulose i forhold til lignin efter vagt.

7. S.e. hvede

Steam exploded hvede. Hvede(s,v) er benyttet som udgangsmateriale. Damppåvirket ved $180^{\circ} \mathrm{C}$ i 10 minutter ved et partialdamptryk på 10 bar.

Cellulose	Hemicellulose	Lignin	Aske	$\mathrm{S}=\mathrm{H} / \mathrm{L}$
$42,5 \%$	$28,4 \%$	$11,0 \%$	$1,1 \%$	2,6

Tabel 2.4. Sammensctning af steam exploded hvedepulp, S.e. hvede. Sorptionsfaktoren S angiver indholdet af hemicellulose i forhold til lignin efter vagt.

8. Vådoxi. hvede

Vådoxideret hvede. Hvede(s,v) er brugt som udgangsmateriale. 1 liter vand er tilsat 13 g $\mathrm{Na}_{2} \mathrm{CO}_{3}$ og 80 g halm. Blandingen er autoklaveret ved $185^{\circ} \mathrm{C}$ i 15 minutter. Trykket er etableret af ilt O_{2} med et iltpartialtryk på 12 bar.

Cellulose	Hemicellulose	Lignin	Aske	$\mathrm{S}=\mathrm{H} / \mathrm{L}$
$62,4 \%$	$13,0 \%$	$7,5 \%$	$2,4 \%$	1,7

Tabel 2.5. Sammenscetning af vådoxideret hvedepulp, Vådoxi. hvede. Sorptionsfaktoren S angiver indholdet of hemicellulose i forhold til lignin efter vagt.

Polymersammensætningen af: $\mathrm{B} ø \mathrm{~g}(\mathrm{p})$ og hvede(p, a) er bestemt af KVL/Sektion for skovbrug. Kemiske analyser af: Hvede(s, v), S.e. hvede og Vådoxi. hvede er foretaget af Risø. Analysedata for materialerne kan derfor ikke direkte sammenholdes mellem KVL og Risø.

3. Adsorptionsisotermer

Materialernes vandsorptionsisoterm angiver ligevægtsfugtindholdet i afhængighed af relativ luftfugtigheder ved konstant temperatur. Ved adsorptionsisoterm forstås, at ligevægtsfugtindholdet er opnået ved vandoptagelse. I kapitel 3.1. beskrives og diskuteres den anvendte metode. I kapitel 3.2. præsenteres materialernes adsorptionsisotermer fastlagt ved henholdsvis 23,33 og $43^{\circ} \mathrm{C}$.

3.1. Metoder

Ekssikkatormetoden har været benyttet til eksperimentel bestemmelse af adsorptionsisotermer. Lignocelluloseprøver i åbne vejeglas anbringes i en ekssikkator med en mættet saltopløsning i bunden. Forsøgsopstillingen ses i figur 1.

Figur 1. Ekssikkator (stor glasbeholder) med mættet saltopløsning (saltkrystaller og væske) i bunden. Åbne vejeglas med låg skråtstillet er anbragt på porcelænskiven. Vejeglassene indeholder lignocelluloseprøver. I ekssikkatorlåget ses en hane, hvorved trykket i ekssikkatoren kan pumpes ned på saltenes mætningsdamptryk. Herved sker lignocelluloseprøvernes sorption hurtigere. Ved bestemmelse af $m_{\text {fugtig }} i$ (1) åbnes ekssikkatoren, og vejeglas lukkes med låg. Herefter foretages vejningen på en vægt uden for ekssikkatoren.

Over en mættet saltopløsning er den relative fugtighed RF konstant ved en given temperatur. RF i hele ekssikkatoren er identisk med den relative fugtighed over den mættede saltopløsning. For en given RF vil lignocelluloseproverne opnå konstant ligevægtsfugtindhold u. Ligevægtsfugtindholdet udtrykker, hvor meget vand lignocellulosen indeholder i forhold til tørstof, jf. (1):

$$
\begin{equation*}
u=\frac{m_{f u g t i g}-m_{\text {tor }}}{m_{\text {tor }}}=\frac{m_{\text {vand }}}{m_{\text {torstof }}} \quad, \quad[g / g] \tag{1}
\end{equation*}
$$

$\mathrm{m}_{\text {fugtig }}$ er vægten af lignocellulose, når denne har opnået konstant vægt i et klima med en given RF. $\mathrm{m}_{\text {tor }}$ er vægten af lignocellulose itør tilstand.

Ligevægtsfugtindhold er bestemt af (1), hvor de indgående størrelser $\mathrm{m}_{\text {fugtig }}$ og $\mathrm{m}_{\text {tor }}$ er fastlagt ved vejning. Tørvægte er bestemt som gennemsnittet af 5 enkeltbestemmelser af $m_{\text {tor }}$. Ved $43^{\circ} \mathrm{C}$ er $m_{\text {fugtig }}$ bestemt på baggrund af 5 enkeltbestemmelser af $m_{\text {fugtig }}$. Ved $23^{\circ} \mathrm{Cog}$ $33^{\circ} \mathrm{C}$ er der 1 bestemmelse af $\mathrm{m}_{\text {fugtig }}$, jf. bilag 1 .

Som tørringsmiddel til bestemmelse af $\mathrm{m}_{\text {tor }}$ er der anvendt magnesiumperklorat, $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$ med $\mathrm{RF}=0,00003$ ved $20^{\circ} \mathrm{C}$. RF over mættede saltopløsninger er fra litteraturen, Greenspan, [1]. Anvendte salte og deres RF ved henholdsvis 23,33 og $43^{\circ} \mathrm{C}$ er anført i bilag 1 .

Lignocelluloseprøver er først tørret over $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$, og tørvægte er bestemt. Lignocellulose er herefter bragt til fugtligevægt parallelt svarende til een materialetype i hver ekssikkator. Starttemperaturen var $43^{\circ} \mathrm{C}$, hvor ligevægtsfugtindhold først bestemmes. Herefter er temperaturen sænket til $33^{\circ} \mathrm{C}$ og endelig $23^{\circ} \mathrm{C}$, hvor ligevægtsfugtindhold er bestemt ved hvert temperaturniveau.

Figur 2. Termostatstyret vandbad med ekssikkatorer, hvor temperaturen kan reguleres med en nøjagtighed på $\pm 0,1^{\circ} \mathrm{C}$.

Fastlæggelse af sorptionsisotermer forudsætter konstant temperatur. For at sikre dette er ekssikkatorer anbragt i termostatstyret vandbad med låg. I vandbadet kan temperaturen ind-
stilles med en nøjagtighed på $\pm 0,1^{\circ} \mathrm{C}$. I figur 2 ses vandbadet med ekssikkatorer.
Ekssikkatorerne er anbragt på magnetomrører for at sikre god luftopblanding i ekssikkatorer. På venstre side af vandbadet ses termostaten. Langs vandbadets sider er der kølerør i bunden, hvilket muliggør, at temperaturen i badet kan være lavere end lufttemperaturen. På ekssikkatoren med højest RF ses en sort isoleringstop, som mindsker kondensation på indersiden af ekssikkatorlåget. Til forsøgene er der anvendt mindre ekssikkatorer end vist i figur 1. For at hindre, at ekssikkatorer flyder i det termostatstyrede vandbad, jf. figur 2, er de fikserede med elastikker, som er fastgjort med kroge i vandbadets ristebund.
\AA bning af ekssikkatorer er foretaget i klimatiseret, termostatstyret handsketelt for ikke at ændre tør- og vådvægte, som er opnået over henholdsvis tøringsmiddel og saltopløsninger. Over åbne vejeglas i ekssikkatorer er der lagt en gennemsigtig skive (udklippet af overhead) for ikke at blæse ned i materialeprøver ved åbning af ekssikkatorer. Overheadskiven har en diameter, som er få millimeter mindre end ekssikkatoren. Herved flyttes overheadskiven minimalt i luftstrålens retning, når undertrykket udlignes i ekssikkatoren, og pulpprover skærmes for luftstrålen.

Handsketeltet er udstyret med en kombineret varmer+blæser, hvor blæseren sikrer god og hurtig luftopblanding. Blæseren er ikke afbrudt under forsøgsrækken. Teltets temperatur reguleres i forhold til et kviksølvtermometer som reference. Temperaturen ved åbningsstedet for ekssikkatorer er $\pm 1^{\circ} \mathrm{C}$. Ved tørvægtsbestemmelse er teltet fyldt praktisk mest muligt med magnesiumperklorat i bakker og silicagel i lukkede netstrømper på bunden, hvilket muliggør, at teltbunden nemt ryddes, når ekssikkatoren trækkes hen over teltbunden. Ved tørvægtsbestemmelse er temperaturen i handsketeltet cirka $0,5^{\circ} \mathrm{C}$ over temperaturen i laboratoriet, som er omtrent $20^{\circ} \mathrm{C}$. Ekssikkatorer stå minimum 2 døgn i handsketelt for åbning.

Ved tørvægtsbestemmelse kræves et konstant lavt fugtindhold i handsketeltet. Herved opnås minimal, konstant fugtgradient mellem tørringsmiddel og handsketelt. Handsketeltets minimale fugtindhold kan ikke bestemmes ved brug af en håndbåren Rotronic RF-måler, idet denne ikke er nøjagtig nok til formålet, hvilket omtales senere. For at verificere om handsketeltet har opnået minimal fugtighed er tørvægten bestemt som gennemsnittet af 5 enkeltbestemmelser af $m_{\text {tor }}$, hvorfor det formodes, at relativ fugtighed og temperatur i handsketeltet er forskellig. I bilag 1 er angivet samhørende værdier af lagringstider over tørringsmiddel og opnåede enkeltværdier af $\mathrm{m}_{\text {tgr }}$ samt den fastlagte gennemsnitlige tørvægt og spredning heraf for hver pulpprove.

På baggrund af indledende pilotforsøg opnås lav konstant fugtindhold i handsketeltet efter 2 døgns lukning med ventilation. Kortere opbevaringstid af ekssikkatorer i handsketelt før åbning bevirker, at fugtindholdet i pulpprøver er omkring 1% vurderet i forhold til angivne tørvægte i bilag 1. Brug af Rotronic RF-måler til vurdering af teltets fugtighed er ikke tilstrækkeligt, idet RF-måleren ikke kan skelne RF ved 1 og 2 døgn til trods for, at pulpprøverne optager mere fugt, såfremt de kun har stået i handsketeltet 1 døgn før åbning af ekssikkatoren.

3. Adsorptionsisotermer

Ved vådvægtsbestemmelse reguleres relativ fugtighed i handsketeltet ved brug af bakker med vand, hvor antallet af bakker justeres i forhold til en håndbåren Rotronic RF-måler. Det er mere præcist at regulere RF ved brug af mættede saltopløsninger, men det er væsentligt hurtigere at regulere RF med vand. Ved vådvægtsbestemmelse er RF i handsketeltet ned til 5%-point lavere end ekssikkatorens RF. Temperaturen i handsketeltet er som ekssikkatorens temperatur $\pm 1^{\circ} \mathrm{C}$.

Ved vådvægtsbestemmelse kræves samme temperatur og RF i handsketeltet som i ekssikkatoren. Da $\mathrm{m}_{\text {fugtig }}$ ændres i løbet af fugtoptegelsesperioden samt RF og temperatur i handsketelt varierer, er $m_{\text {fugtig }}$ bestemt som gennemsnittet af 5 enkeltbestemmelser af vådvægten ved $43^{\circ} \mathrm{C}$. Enkeltbestemmelser af $\mathrm{m}_{\text {fugtig }}$ og gennemsnitlig ligevagtsfugtindhold og spredninger er anført i bilag 1 . Ved 23 og $33^{\circ} \mathrm{C}$ er ligevægtsfugtindholdet bestemt på baggrund af 1 bestemmelse af $m_{\text {fugtig. }}$. RF i handsketeltet er ned til 5%-point lavere end ekssikkatorens RF.

RF i handsketeltet fastlægges med en Rotronic RF-måler som reference. Fra pilotforsøg er det fundet, af RF i handsketeltet ved vådvægtsbestemmelse skal være ned til 5%-point lavere end RF i ekssikkatoren. Såfremt dette ikke er opfyldt, vil pulpprøverne optage fugt i handsketeltet. Ved den laveste RF på 6%, frembragt af lithium bromid som salt, kan ligevægtsfugtindholdet øges op til 500%, såfremt RF i handsketeltet er over 6%. Ved RF i handsketeltet under cirka 5%-point af RF i ekssikkatoren er der ikke fundet vægtændringer af pulpprøver. Dette skyldes antageligt, at alle materialeprøver er under fibermætning, hvorved vandet i pulpen ikke frigives ved RF i handsketelt marginalt under RF i ekssikkatoren.

Efter åbning af ekssikkatorer i handsketelt er låg sat på vejeglas og ekssikkator. Ekssikkatoren er afkølet i laboratoriet, hvor vejningen er foretaget ved cirka $20^{\circ} \mathrm{C}$. Ekssikkatorer er afkølet 0,$5 ; 3 ; 13 \mathrm{og} 23^{\circ} \mathrm{C}$ ved henholdsvis tørvægtsbestemmelse og vådvægtsbestemmelse ved 23,33 og $43^{\circ} \mathrm{C}$. Ved tørvægtsbestemmelse er ekssikkatorer klimatiseret 1 time og ellers 5 timer før vejning. Fra pilotforsøg er det fundet, at klimatiseringen er meget vigtig. Bestemmes vægten af vejeglas under afkølning, vil vejeglasvægten øges med tiden, idet undertrykket i vejeglas formodentligt udlignes ved, at der trækkes luft igennem glasslibningen.

Efter klimatisering er vejeglas grundigt aftørret på ydersiden med vatpinde for at fjerne saltkrystaller.

Vejning er foretaget på "Sartorius research" med en nøjagtighed på $\pm 0,0001$ g.
Efter hver vejning er der kalibreret med et 50 g lod, da vægten af vejeglas + lignocellulose typisk er 48 g .

3.1.1. Diskussion

For at bevare lignocellulosens opnåede vægt i en ekssikkator med et givet klima, stilles der meget høje krav til klimastyringen, hvor ekssikkatoren åbnes. Er klimastyrringen ikke til-
strækkelig god, er der mulighed for, at torre lignocelluloseprøver indeholder 1% fugt til trods for, at låg sættes på vejeglas hurtigst muligt. Ved vådvægtsbestemmelse af prover med lavest fugtindhold er der mulighed for, at vægten mangedobles, såfremt klimastyringen under åbning af ekssikkatorer ikke er under kontrol.

Spredningen på en lignocelluloseprøves tørvægt er generelt mindre end spredningen på provens vådvægte ved $43^{\circ} \mathrm{C}$, som fremgår af bilag 1 . Herved fås en indikation af, at tørvægtene er mindst fejlbehæftede. Dette skyldes formodentligt, at der ved tarvægtsbestemmelse er mulighed for at etablere et klima med konstant lav fugtighed ved åbning af ekssikkatorer. Ved vådvægtsbestemmelse varierer relativ fugtighed ved åbning af ekssikkatorer, da klimastyringen er foretaget subjektivt ved brug af vandbakker i stedet for saltopløsninger.

Metoden forudsætter, at der kun er vandmolekyler i rummet over den mættede saltopløsning i ekssikkatoren. Ved de højeste fugtigheder: $\mathrm{RF} \approx 55 \%$ (natrium bromid), $\mathrm{RF} \approx 75$ $\%$ (natrium chlorid) og $\mathrm{RF} \approx 91 \%$ (kaliumnitrat) er der konstateret saltkrystaller på ydersiden af vejeglas, hvor salt er fjernet før vejning. Mindsket temperatur og højere ekssikkatortryk synes at mindske tendensen til "saltvandringen", som ikke er undgået i disse undersøgelser.

Af bilag 1 ses, at fugtindhold u generelt er bestemt med en variation på $\pm 0,1 \%$. Ved RF ≈ 75 og 91%, hvor henholdsvis natrium chlorid og kaliumnitrat er brugt til mættede saltopløsninger, er variationen på fugtindholdet $\pm 1 \%$. Dette skyldes primært, at der er konstateret saltkrystaller på indersiden af vejeglas og på materialeprøver, hvorved de fastlagte fugtindhold og variationer heraf ved de to højeste RF-niveauer er yderst fejlbehæftede.

Det er ikke kun fugtindhold, som er vanskelige at fastlægge. Isotermbestemmelse fordrer nøjagtig kendskab til RF i ekssikkatoren. Ved $\mathrm{RF} \approx 75 \%$ (natrium chlorid) og RF $\approx 91 \%$ (kaliumnitrat) er der ved $43^{\circ} \mathrm{C}$ konstateret frit vand på ekssikkatorernes lodrette indersider, hvor det frie vand har $\mathrm{RF}=100 \%$. Ved $33^{\circ} \mathrm{C}$ blev der kun konstateret frit vand i ekssikkatoren med højest $\mathrm{RF} \approx 91 \%$. Det tyder på, at øget tryk og mindsket temperatur i ekssikkatoren mindsker tendensen til kondensation, som ikke er elimineret i disse undersøgelser.

Den relative fugtighed over saltene ved 23,33 og $43^{\circ} \mathrm{C}$ er fastlagt i henhold til litteraturen, Greenspan [1]. RF for de her anvendte salte er i Greenspan samlet på baggrund af 2 til 10 forskellige litteraturreferencer. De mættede saltes RF er derfor ikke bestemt med samme nøjagtighed.

Calium carbonat med RF på cirka 43 \% er anvendt. De fastlagte fugtindhold har været systematisk for høje i forhold til materialernes øvrige punkter på isotermen. Dette blev konstateret selv efter flere udskiftninger af salt ved RF $=43 \%$. Ligevægtsfugtindhold bestemt med calium carbonat som mættet saltopløsning er derfor ikke anvendt til fastlæggelse af isotermer. På denne baggrund bør RF over mættede saltopløsninger ved forskellige temperaturer gennemgås meget kritisk.

3. Adsorptionsisotermer

En litteraturgennemgang til bestemmelse af sorptionsisotermer ved forskellige temperaturer har været nødvendig.

3.1.2. Litteraturen

I litteraturen er der kun fundet data fra Kelsey 1956 [2], som angiver samhørende målte ligevægtsværdier af RF og u fastlagt ved mere end een temperatur. Sorptionsdata er for massivt fyrretræ. Sorptionsisotermer er fastlagt for fyrretræ i et lukket system svarende til, at prøvens fugtindhold kan bestemmes ved den aktuelle relative fugtighed. Sorptionsdata for de undersagte materialer er sammenholdt med Kelseys adsorptionsdata ved $23 \mathrm{og} 43^{\circ} \mathrm{C}$.

I den øvrige trælitteratur, er der ikke anført målte sorptionsdata, hvilket omtales herefter:
Sitka gran. I Stamm, 1935 [3] er afbildet sorptionsisotermer. I Skaar, 1988 [4, s. 56] ses de samme sorptionsisotermer som i Stamm [3]. I Skaar [4] er træarten ikke nævnt, og der henvises til Hawley [5]. I Hawley [5] er Stamms [3] data afbiledet som sorptionsisosterer i stedet for som sorptionsisotermer i [3]. I Kollmann, 1968 [6, s. 190] gives en forklaring: Loughborough (medforfatter til [3]) har stået for udarbejdelsen af sorptionsisotermerne for Sitka gran. Loughborough's funktioner er blot afbildet på to forskellige måder i hhv. Stamm [3] og Hawley [5]. I Kollmann [6] er afbildningen atter ændret, idet temperaturer er omregner fra ${ }^{\circ} \mathrm{F}$ til ${ }^{\circ} \mathrm{C}$. Yderligere er der ekstrapoleret i temperaturområdet: $100^{\circ} \mathrm{C}$ til $130^{\circ} \mathrm{C}$.

Følgende bemærkes til ovennævnte, hvor forskellige afbildninger er baseret på samme forsøgsmateriale.
a) Der er ikke afbildet forsøgsresultater.
b) Der er ikke kildehenvisning til, hvor forsøgsresultater skal findes. I [3] oplyses, at sorptionsisotermerne er baseret på forsøg udført på Forest Products Laboratory Wisconsin.
c) Isotermerne dækker både adsorption og desorption [3]. Men isotermerne er forskellige for de to procestyper.
d) Hvordan er ligevægtsfugtindholdet bestemt eksperimentelt?
e) Der er målt damptryk, p. Men giver damptrykmåleren velunderbyggede resultater ?
f) Der er ikke nævnt nogen forsøgstekniske problemer eller forbehold.
g) Hvis sorptionsisotermerne i [3] er eksperimentelt underbygget, har den eksperimentelle indsats været meget stor: Temperaturer fra $20-100^{\circ} \mathrm{C}$; RF fra $10-90 \%$, fastlagt med intervaller på 10%-point. Der er uden problemer målt fugtindhold ned til $0,5 \%$.

Andre. I Luikov [7] og Kollmann [8] er der uden måledata optegnet sorptionsisotermer ved forskellige temperaturer. Temperaturområdet i [8] er $70-180^{\circ} \mathrm{C}$. I [7, s. 200] er der ingen kilde, og trætræarten er heller ikke angivet.

I det falgende er sorptionsdata sammenholdt med Stamm [9] ved 23 og $43^{\circ} \mathrm{C}$.

3.2. Resultater

I dette kapitel er afbildet målte sorptionsdata fra bilag 1 for lignocellulosematerialerne. Adsorptionsisotermerne er beskrevet ved L. Fuglsang Nielsens model [10]. I kapitel 3.2.1. er resultaterne sammenholdt med hensyn til undersøgte materialer og sorptionsisotermer hentet fra litteraturen, Stamm, [9] og Kelsey [2]. I kapitel 3.2.2. ses sorptionsdata og tilhørende isotermer sammenstillet ud fra forskellige temperaturer.

3.2.1. Materialer

Figur 3. Sorptionsisotermer ved $23^{\circ} \mathrm{C}$ for alle materialer og Stamm [9] og Kelsey [2].

Figur 4. Sorptionsisotermer for lignocellulose ved $33^{\circ} \mathrm{C}$.

Figur 5. Sorptionsisotermer for materialer ved $43^{\circ} \mathrm{C}$ og Stamm [9] og Kelsey [2].

Figur 6. Sorptionsisotermer for alle lignocellulosematerialer ved $43^{\circ} \mathrm{C}$.

Figur 7. Sorptionsisotermer for bøgepulp og -plade ved $23^{\circ} \mathrm{C}$.

Figur 8. Sorptionsisotermer for bogepulp og -plade ved $33^{\circ} \mathrm{C}$.

Figur 9. Sorptionsisotermer for bøgepulp og -plade ved $43^{\circ} \mathrm{C}$.

Figur 10. Sorptionsisotermer for hvedepulp, -plade og acetyleret hvede ved $23^{\circ} \mathrm{C}$.

Figur 11. Sorptionsisotermer for hvedepulp, -plade og acetyleret hvede ved $33^{\circ} \mathrm{C}$.

Figur 12. Sorptionsisotermer for hvedepulp-, plade og acetyleret hvede ved $43^{\circ} \mathrm{C}$.

Figur 13. Sorptionsisotermer for hvede, steam exploded og vådoxideret hvede ved $23^{\circ} \mathrm{C}$.

Figur 14. Sorptionsisotermer for hvede, steam exploded og vådoxideret hvede ved $33^{\circ} \mathrm{C}$.

Figur 15. Sorptionsisotermer for hvede, steam exploded og vådoxideret hvede ved $43^{\circ} \mathrm{C}$.

1) Der er fundet væsentligt lavere vandbinding i de undersøgte materialer sammenlignet med Stamm [9] og Kelsey [2], jf. figur 3 og 5.
2) Materialernes forskel i vandbinding er cirka 3-5 \%-point.
3) For materialerne er der i nævnte rækkefølge fundet aftagende vandbinding (lavere liggende isoterm): Hvede(s,v); S.e. hvede; Hvede(p,a); Vådoxideret hvede; bøg(p); Hvedeplade; Bøgeplade; Acetyleret hvede, jf. figur 1, 2 og 3.
4) Bøgepladen binder mindre vand end den anvendte pulp: $\operatorname{B} ø g(p)$, jf. figur 6 .
5) Hvedepladen binder mindre vand end den anvendte pulp: Hvede(p,a), jf. figur 7.
6) Acetyleret hvede binder mindre end den anvendte pulp: Hvede(p,a), jf. figur 8.
7) Ved vådoxidering og steam explotion af hvede(s,v) bindes mindre vand, jf. fig 7.

3.2.1.1. Diskussion

Der henvises herefter til punkterne i forrige afsnit.
Ad. 1) Resultatet er uventet. Umiddelbart forventes det, at de undersøgte materialers vandbinding er højere end for fyrre- og grantræ, hhv. Kelsey og Stamm, da indholdet af hemicellulose i forhold til lignin generelt er større i halmprodukter end itræ. Såfremt klimastyringen ikke er tilstrækkelig nøjagtig ved åbning af ekssikkatorer, vil de undersøgte materialer naturligt opnå fugtindhold på niveau eller højere end angivet af Stamm og Kelsey.

Ad. 2) Materialernes forskel i vandbinding er ikke markant i forhold til metodens usikkerheder. Det ansees for tvivlsomt, om urutinerede personer inden for en rimelig måleperiode kan påpege materialeforskelle på baggrund af vandsorptionsisotermer.

Ad. 3) I tabel 3.1 er materialerne på baggrund af isotermerne anført med aftagende vandbinding i første søjle. For at vurderer isotermernes indbyrdes beliggenhed, er materialernes tilhørende sorptionsfaktor S anført i anden søjle. S angiver indholdet ef hemicellulose i forhold til lignin efter vægt, jf. kapitel 2. I sidste søjle i tabel 3.1 er angivet materialernes målte totale befugtningsvarme, hvor højereliggende isoterm forventes at øge den totale befugtningsvarme.

Sorptionsfaktoren S underbygger den fundne indbyrdes beliggenhed af vandsorptionsisotermerne. Materialernes totale befugtningsvarme Q_{0} understøtter også den fundne indbyrdes placering af isotermerne.

Aftagende vandbinding, bestemt af isotermer	Sorptionsfaktor, $\mathrm{S}=\mathrm{H} / \mathrm{L}$	Total befugtningsvarme, $\mathrm{Q}_{0},[\mathrm{~J} / \mathrm{g}$ torstof $]$
Hvede(s,v)	3,7	80,5
S.e. hvede	2,6	73,1
Hvede(p,a)	2,2	71,3
Vådoxideret hvede	1,7	70,8
bøg(p)	1,1	679
Hvedeplade		55,0
Bøgeplade	54,8	
Acetyleret hvede		40,6

Tabel 3.1. Undersggte lignocellulosematerialers isotermer sammenholdt med kemisk sammensetning og måle total befugtningsvarme.

Ad. 4) Resultatet er forventet. Ved formpresning af pulpplader tilstrabes det, at ligninen flyder, således at der etableres en matriks mellem de enkelte pulpfibre. Resultatet tyder på, at der har været flydning af lignin under pladefremstillingen. Flydning af lignin ved formpresning vil antageligt involvere en kemisk blokering eller nedbrydning af nogle frie hydroxylgrupper i hemicellulose, som primært findes i lignin. Såfremt hemicellulosens frie hydroxylgrupper er indgået i kemiske reaktioner eller nedbrudt under presningen, vil pulpemnets vandbinding være mindre end de anvendte pulpfibre. Dette skyldes, at de pladser i hemicellulosen, hvor vandet ville adsorberes, i stedet er nedbrudt eller indgået til kemisk reaktion - enten i de enkelte fibre eller mellem fibrene. Der er også mulighed for, at hydrofile hydroxylgrupper i cellulosens fibrilsystem er blevet blokeret med hensyn til vandbinding ved fremstilling af bogepladen.

Ad. 5) Resultatet er forventet. Diskussionen ses ovenfor. Ved fremstilling af bøge- og hvedepladen er der nogenlunde samme mindskelse af vandbindingen i forhold til de anvendte pulpfibre. Dette betyder, at der under fremstillingen formodentligt er sket de samme blokeringer af hydrofile hydroxylgrupper.

Ad. 6) Resultatet er ventet. Ved acetylering indbygges der kemisk acetylgrupper på lignocellulosens hydroxylgrupper [11], og acetylgrupper er ikke polære og derfor ikke vandbindende. Resultatet kan ikke vurderes på baggrund af kemisk sammensætning før og efter acetylering, da acetylering antageligt ikke ændrer det stakiometriske forhold mellem polymererne. Dette svarer til, at der formodentligt er samme sorptionsfaktor S for ubehandlet og acetyleret hvede. Idet vægten af acetyleret hvede er relativt højest, fås samtidigt at vandbindingen bliver forholdsvis lavere. Ved fremtidige forsøg bør det overvejes, at nomere vandbindingen med hensyn til for eksempel 80% af torvægten for en acetyleringsgrad på 20%.

Ad. 7) På baggrund af materialernes indbyrdes sorptionsfaktor S , er resultatet forventet. Materialernes målte totale befugtningsvarme Q_{0} underbygger også resultatet.
3. Adsorptionsisotermer

3.2.2. Temperatureffekt

Figur 16. Sorptionsisotermer for bogepulp, bøg(p) ved 23, 33 og $43^{\circ} \mathrm{C}$.

Figur 17. Sorptionsisotermer for hvedepulp, hvede(p,a) ved $23,33 \mathrm{og} 43^{\circ} \mathrm{C}$.

Figur 18. Sorptionsisotermer for bogeplade ved 23, 33 og $43^{\circ} \mathrm{C}$.

Figur 19. Sorptionsisotermer for hvedeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Figur 20. Sorptionsisotermer for acetyleret hede ved 23, 33 og $43^{\circ} \mathrm{C}$.

Figur 21. Sorptionsisotermer for hvede(s,v) ved 23, 33 og $43^{\circ} \mathrm{C}$.

Figur 22. Sorptionsisotermer for Steam exploded hvede, S.e. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

Figur 23. Sorptionsisotermer for Vådoxideret hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

Figur 24. Sorptionsisotermer fra Stamm [8], $25^{\circ} \mathrm{C}-100^{\circ} \mathrm{C}$.

1) Med mindsket temperatur ages vandindholdet, jf. figur 16-23.
2) Ved lave relative fugtigheder øges vandindholdet forholdsvis mest i området: $33^{\circ} \mathrm{C}$ til $23^{\circ} \mathrm{C}$ i forhold til intervallet: $43^{\circ} \mathrm{C}$ til $33^{\circ} \mathrm{C}$.
3) Temperatureffekten på vandindholdet er fundet uafhængig af relativ fugtighed.

3.2.2.1. Diskussion

Ad. 1) Dette er forventet, idet alene øget temperatur bevirker tiltagende aktivering af vandmolekyler, hvorved lignocellulosen ikke binder så meget vand.

Ad. 2) Resultatet er uventet. I henhold til Stamm, figur 24, forventes minimal, ækvivalent temperaturforskel for begge temperaturintervaller. Det tyder således på, at det ikke har været tilstrækkeligt, at bestemme isotermer ved $230 \mathrm{~g} 33^{\circ} \mathrm{C}$ på baggrund af kun een måling af prøvernes vådvægte. Det uventede resultat kan også indikere, at saltene: Lithium bromid $(R F \approx 6 \%)$ og/eller lithium chlorid $(R F \approx 11 \%)$ har en andre relative fugtigheder end de anvendte i henhold til Greenspan, [1].

Ad. 3) Resultatet er uventet. Med mindsket vandindhold forventes det, at temperatureffekten aftager, jf. figur 24. Resultatet kan formodentligt skyldes, at isotermerne ved en given temperatur er mest fejlbehæftede ved de to højeste RF-niveauer kombineret med ovennævnte usikkerhed mellem temperaturerne ved de laveste relative fugtigheder.

3.3. Diskussion

Der er fundet relativt små forskelle i materialernes vandbinding, omkring 3-5\%-point. For at kunne identificere disse forskelle stilles der meget høje krav til både udførelse og udstyr. Fedt og salt på vejeglas, manglende klimatisering før vejning og åbning af ekssikkatorer i laboratorieklima er eksempler på fejlkilder, som kan sløre materialeforskellene betragteligt. Det er derfor spørgsmålet, om lignocelluloses vandbinding er fremtidens karakteriseringsmetode, når sorptionsforskelle og krævet målenøjagtighed sammenholdes.

Det er overraskende, at der i litteraturen kun findes et sæt af sorptionsdata fastlagt ved mere end een temperatur for massivt fyrretræ, Kelsey, [2]. Det er bemærkelsesværdigt, at Stamm [9] og Kelsey [2] kan fastlægge næsten overensstemmende isotermer for hhv. gran og fyr - formodentligt bestemt efter forskellige metoder. Såfremt klimatiseringen ved åbning af ekssikkatorer ikke er tilstrækkeligt god, er det her konstateret, at fugtindhold kan mangedobles ved lave fugtigheder.

3.4. Konklusion

1) Ved forbedring af ekssikkatormetoden bør saltvandring til vejeglas undersøges og mindskes. Konsensation i ekssikkatorer bør underkastes et kritisk gennemsyn.
2) Fugtindhold bestemt ved $\mathrm{RF} \approx 75 \%$ og 91% (salte: natrium chlorid og kaliumnitrat) er yderst fejlbehæftede.
3) Relativ fugtighed over mættede saltopløsninger ved forskellige temperaturer bør bestemmes eksperimentelt. Disse undersøgelser han givet anledning til at rejse tvivl om RF over saltene: Lithium bromid ($R F \approx 6 \%$), lithium chlorid ($R F \approx 11 \%$) og calium carbonat (RF $\approx 43 \%$).
4) For at bevare fugtindhold opnået i lignocellulose er det nødvendigt at håndtere åbne vejeglas i klimatiseret handskeboks.
5) For et givet lignocellulosemateriale er der fundet en entydig sammenhæng mellem: Vandsorptionsisotermens vertikale beliggenhed, totale befugtningsvarme og indhold af hemicellulose. Dette underbygger, at cellevæggens vandbinding kan beskrives ved Langmuirsorption.

4. Befugtningsentalpi

4.1. Metoder

På baggrund af materialernes sorptionsisotermer fastlagt ved mere end 1 temperatur beregnes differentiel befugtningsentalpi. Clausius-Clapeyrons ligning benyttes til beregningen. Beregnede værdier af differentiel befugtningsentalpi beskrives ved et empirisk udtryk opstillet af Skaar [4]. Herved kan differentiel befugtningsentalpi fastlægges i afhængighed af fugtindhold og relativ fugtighed ved de eksperimentelt undersøgte temperaturer. Yderligere kan materialernes sorptions- og befugtningsentalpi bestemmes, hvor befugtningsentalpien kan sammenholdes direkte med befugtningsvarmen målt kalorimetrisk.

4.1.1. Clausius-Clapeyrons ligning

Det følgende er på baggrund af Freiesleben [12].

Beregningsforudsætninger

A) Materialeprøve med konstant fugtindhold u.
B) Faseovergang: $\mathrm{H}_{2} \mathrm{O}(\mathrm{a}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ for et enkomponentsystem.
C) Reversibel ligevægtsproces.
D) Ideal gas, $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$.

Grundlag

Der forudsættes ligevægt mellem en adsorberet fase $\mathrm{H}_{2} \mathrm{O}(\mathrm{a})$ og gasfase $\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ ved temperaturen T og damptrykket p. Gibbs fri reaktionsenergi ΔG_{T} er herved 0 . Dette er indsat i formel (2). For en ideal gas ved temperaturen T kan Gibbs fri reaktionsenergi ved standarddamptrykket $p=p^{\theta}$ omregnes til det aktuelle damptryk p. Denne omregning ses af udtryk (2). $\Delta \mathrm{G}_{\mathrm{T}}{ }^{\theta}$ er standardreaktionsenergien ved temperaturen T og damptrykket $\mathrm{p}=\mathrm{p}^{\theta}$, som er standardtrykket. $\Delta \mathrm{G}_{\mathrm{T}}$ er reaktionsenergien ved temperaturen T og damptrykket $\mathrm{p} . \mathrm{R}$ er gaskonstanten.

$$
\begin{equation*}
\Delta G_{T}=\Delta G_{T}^{\theta}+R T \cdot \ln \left(\frac{p}{p^{\theta}}\right) \equiv 0 \tag{2}
\end{equation*}
$$

Isoleres $\ln \left(p / p^{\theta}\right)$ i (2) fås (3). Gibbs fri energi G er defineret som $G \equiv H$ - TS, hvor H er systemets entalpi, og S er systemets entropi. Denne definition er indført i (3). Ved omskrivning af (3) fås (4).

$$
\begin{equation*}
\ln \left(\frac{p}{p^{\theta}}\right)=-\frac{\Delta G_{T}^{\theta}}{R T}=-\left(\frac{\Delta H_{T}^{\theta}-T \Delta S_{T}^{\theta}}{R T}\right) \tag{3}
\end{equation*}
$$

De termodyamiske størrelser $\Delta \mathrm{H}_{\mathrm{T}}{ }^{\theta}$ og $\Delta \mathrm{S}_{\mathrm{T}}{ }^{\theta} \mathrm{i}$ (4) er knyttet til sorption af en infinitisimal fugtmængde, idet fugtindholdet u er forudsat konstant, jf. A). $\Delta H_{T}{ }^{\theta}$ og $\Delta S_{T}{ }^{\theta}$ betegnes derfor herefter generelt: differentiel reaktionsentalpi og differentiel reaktionsentropi.

$$
\begin{equation*}
\ln \left(\frac{p}{p^{\theta}}\right)=-\left(\frac{\Delta H_{T}^{\theta}}{R}\right) \cdot\left(\frac{1}{T}\right)+\frac{\Delta S_{T}^{\theta}}{R} \tag{4}
\end{equation*}
$$

Plottes forsøgsresultater i afbildningen: $\left(1 / T, \ln \left(p / p^{\theta}\right)\right)$ kan den differentielle reaktionsentalpi $\Delta H_{T}{ }^{\theta}$ og den differentielle reaktionsentropi $\Delta \mathrm{S}_{\mathrm{T}}{ }^{\theta}$ beregnes som kurveparametre, der beskriver forsøgsresultater for konstant u, jf. A). $-\Delta H_{T}{ }^{\theta} / \mathrm{R}$ er kurvetangentens hældning og $\Delta \mathrm{S}_{\mathrm{T}}{ }^{\theta} / \mathrm{R}$ er kurvetangentens beregnede skæring med ordinataksen, jf. (4). Denne afbildning ses i figur 25.

Såfremt sammenhængen mellem $1 / T$ og $\ln \left(p / p{ }^{\theta}\right)$ er retlinet, er $\Delta H_{T}{ }^{\theta}$ og $\Delta S_{T}{ }^{\theta}$ konstante i det betragtede temperaturområde. Det er ikke givet, at sammenhægen mellem $1 / \mathrm{T}$ og $\ln \left(\mathrm{p} / \mathrm{p}^{\theta}\right)$ er retlinet, idet entalpi og entropi er temperaturafhængige størrelser, jf. (5) og (6).

$$
\begin{align*}
& H_{T}=H_{298}^{\theta}+c_{p}(T-298,15) \tag{5}\\
& S(T, p)=S_{298}^{\theta}+c_{p} \cdot \ln \left(\frac{T}{298,15}\right)-R \cdot \ln \left(\frac{p}{101325}\right) \tag{6}
\end{align*}
$$

Udtrykket (7) er identisk med (4). I (7) er differentiel reaktionsentalpi $\Delta \mathrm{H}_{\mathrm{T}}{ }^{\theta}$ og -entropi $\Delta \mathrm{S}_{\mathrm{T}}{ }^{\theta} \mathrm{i}$ (4) substitueret med hhv. $\Delta \mathrm{H}^{\prime}$ og $\Delta \mathrm{S}^{\prime}$. Dette er alene for at fâ en mere bekvem notation. Ofte måles relativ fugtighed $R F$ og ikke damptryk p. Idet $R F=p / p_{m}(T)$, kan damptrykket p indføres herved $\mathrm{i}(7) . \mathrm{p}_{\mathrm{m}}(\mathrm{T})$ er mætningsdamptrykket ved temperaturen $\mathrm{T} . \mathrm{p}_{\mathrm{m}}(\mathrm{T})$ kan findes ved tabelopslag, f.eks [12].

$$
\begin{equation*}
\ln \left(\frac{p}{p^{\theta}}\right)=\ln \left(\frac{R F \cdot p_{m}(T)}{p^{\theta}}\right)=-\left(\frac{\Delta H^{\prime}}{R}\right) \cdot\left(\frac{1}{T}\right)+\frac{\Delta S^{\prime}}{R} \quad, H_{2} O(a) \rightarrow H_{2} O(g) \tag{7}
\end{equation*}
$$

Ønskes differentiel entalpi og -entropi beregnet for faseovergangen: $\mathrm{H}_{2} \mathrm{O}(\mathrm{a}) \rightarrow \mathrm{H}_{2} \mathrm{O}(1)$ benyttes (8). Til karakterisering af materialer er det underordnet, om (7) eller (8) benyttes. Ved brug af (7) indregnes i forhold til (8) ekstra energi til faseomdannelsen: $\mathrm{H}_{2} \mathrm{O}(\mathrm{l}) \rightarrow \mathrm{H}_{2} \mathrm{O}(\mathrm{g})$, som er materialeuafhængig. I det følgende anvendes (8), da RF haves direkte.

$$
\begin{equation*}
\ln (R F)=-\left(\frac{\Delta H^{\prime}}{R}\right) \cdot\left(\frac{1}{T}\right)+\frac{\Delta S^{\prime}}{R} \quad, H_{2} O(a) \rightarrow H_{2} O(g) \tag{8}
\end{equation*}
$$

Differentiel etropi, ΔS^{\prime}, formel (8)
Entropi udtrykker, om et stof har mere ellere mindre ordnet molekylær struktur. Jo lavere entropi et stof har, des mere ordnet er stoffets molekylære struktur.
Adsorberet vand har i forhold til frit vand og vanddamp den mest ordnede molekylære struktur og dermed den laveste entropi. Udtrykt ved standardentropi: $\mathrm{S}_{298}{ }^{\theta}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{g})\right)>$ $\mathrm{S}_{298}{ }^{\theta}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{l})\right)>\mathrm{S}_{298}{ }^{\theta}\left(\mathrm{H}_{2} \mathrm{O}(\mathrm{a})\right)$. Følgende haves generelt:
a) Ved desorption øges vandets entropi ($\Delta S^{\prime}>0$), idet vandets molekylære struktur herved bliver mere uordnet.
b) Ved desorption af $\mathrm{H}_{2} \mathrm{O}($ a) $ø$ ges vandets entropi forholdsvis mere end ved desorption af $\mathrm{H}_{2} \mathrm{O}(\mathrm{l})$

4.1.2. Befugtningsentalpi

Differentiel befugtningsentalpi $-\Delta H^{\prime} \mathrm{i}$ (8) angiver varmeudviklingen ved adsorption af en infinitisimal vandmængde til lignocellulose med et konstant fugtindhold u. $-\Delta H^{\prime}$ kan afbildes i afhængighed af u. Differentiel befugtningsentalpi $-\Delta H^{\prime}$ kan også afbildes i afhængighed af relativ fugtighed ved konstant temperatur T. Dette svarer til, at materialer sammenholdes på baggrund af samme konditionering. Befugtningsentalpien $-\Delta H$ angiver den totale varmeudvikling ved vandbefugtning af lignocellulose med begyndelsesfugtindholdet $u .-\Delta H$ beregnes på baggrund af $-\Delta H^{\prime}$. Sorptionsentalpien: $\left(-\Delta H_{0}-(-\Delta H)\right.$) angiver varmeudviklingen ved vandbefugtning af tor lignocellulose med $u g$ vand $/ g$ tørstof. Sorptionsentalpien beregnes på baggrund af differentiel befugtningsentalpi: $-\Delta H^{\prime}$.

Grundlag for beregning af $-\Delta H^{\prime} .1 / T$ afbildes i afhængighed af $\ln (R F)$ for konstant u.
$-\Delta H^{\prime} / R$ er kurvetangentens hældning, og $\Delta S^{\prime} / R$ er kurvetangentens beregnede skæring med ordinataksen, jf. (8). Ved beregning af $-\Delta H^{\prime}$ forudsættes retlinet sammenhæng mellem $1 / T$ og $\ln (R F)$ for et givet fugtindhold u. I figur 25 ses et eksempel på en sådan afbildning. Afbildningen er vist for hvede((s, v), som er reference til steam exploded og vådoxideret hvede. På baggrund af liniernes hældning beregnes den differentielle befugtningsentalpi ΔH^{\prime} i afhængighed af u for samtlige materialer. For de undersøgte materialer er $-\Delta H^{\prime}$ fastlagt på baggrund af linier med korrelationskoefficienter på 0,95-1,00.

Beregning af $-\Delta H^{\prime}$. Differentiel befugtningsentalpi $-\Delta H^{\prime}$ beregnes af ovennævnte tangenthældning for konstant u efter formel (8).

Figur 25. $\ln (R F)$ fastlagt i afhengighed af $1 / T_{K}$ for de angivne fugtindhold. Hvede(s, v).
Modellering af - ΔH^{\prime}. Beregnede værdier of $-\Delta H^{\prime}$ beskrives ved det empiriske udtryk (9) fra Skaar, [4]:

$$
\begin{equation*}
-\Delta H^{\prime}=-\Delta H_{0}^{\prime} \cdot \exp (-A \cdot u),[k J / m o l] \tag{9}
\end{equation*}
$$

$-\Delta H_{0}{ }^{\prime}$ og A er konstante for et givet lignocellulosebaseret materiale, som fastlegges ved kurvetilpasning til beregnede værdier af $-\Delta H^{\prime} i$ afthængighed af u. A er en parameter, som beskriver kurveformen af $-\Delta H^{\prime} \mathrm{i}$ afhængighed af u. $-\Delta H_{0}{ }^{\prime}$ ' den initielle, differentielle befugtningsentalpi. $-\Delta H_{0}{ }^{\prime}$ angiver varmeudviklingen ved tør lignocelluloses adsorption af en infinitisimal vandmængde.

Identisk konditionering af lignocellulose. For konstant temperatur og en given relativ fugtighed aflæses tilhorende fugtindhold af materialernes isotermer. Differentiel befugtningsentalpi $-\Delta H^{\prime}$ beregnes af (9). $-\Delta H^{\prime}$ afbildes som funktion af RF ved en given temperatur. Ved samme konditionering (konstant T og RF) af materialepraver angiver - ΔH^{\prime} varmeudviklingen ved materialernes adsorption af en infinitisimal vandmængde ved en given RF
og T.
Befugtningsentalpi $-\Delta H$. Befugtningsentalpien $-\Delta H$ beregnes efter (10) på baggrund af $-\Delta H^{\prime} \mathrm{i}(9)$. Ved integration af (9) fås befugtningsentalpien $-\Delta H$ af (10), hvor varmeudviklingen $-\Delta H$ tilskrives vandbefugtning til fibermætning u_{f}. Leddet foran integralet $i(10)$ har enheden [J/g vand], hvor vands molmassen $M=18,02 \mathrm{~g} / \mathrm{mol}$ er brugt. I (10) har $d u$ enheden [g vand/g tørstof], hvorved der fra (9) til (10) er omregnet fra enheden mol vand til g torstof.

$$
\begin{equation*}
-\Delta H=-\frac{1000}{18,02} \Delta H_{0}^{\prime} \int_{u}^{u_{f}} \exp (-A \cdot u) d u,[J / g \text { terstof }] \tag{10}
\end{equation*}
$$

Ved integration af (10) fås følgende udtryk (11), hvorefter befugtningsentalpien beregnes:

$$
\begin{equation*}
-\Delta H=-\frac{1000}{18,02} \frac{\Delta H_{0}^{\prime}}{A}\left(\exp (-A \cdot u)-\exp \left(-A \cdot u_{f}\right)\right),[J / g \text { torstof }] \tag{11}
\end{equation*}
$$

Befugtningsentalpien $-\Delta H$ i (11) kan direkte sammenholdes med målt befugtningsvarme Q.

Sorptionsentalpi $\left(-\Delta \mathrm{H}_{0}-(-\Delta \mathrm{H})\right)$
Sorptionsentalpien [J/g tørstof] beregnes af (12) på baggrund af $-\Delta H^{\prime} \mathrm{i}$ (9) ved integration fra fugtindholdet 0 til u:

$$
\begin{equation*}
\left(-\Delta H_{0}-(-\Delta H)\right)=-\frac{1000}{18,02} \Delta H_{0}^{\prime} \int_{0}^{u} \exp (-A \cdot u) d u \quad,[J / g \text { terstof }] \tag{12}
\end{equation*}
$$

Efter løsning af integralet $i(12)$ beregnes sorptionsentalpien $\left(-\Delta H_{0}-(-\Delta H)\right)$ af (13):

$$
\begin{equation*}
\left(-\Delta H_{0}-(-\Delta H)\right)=-\frac{1000}{18,02} \frac{\Delta H_{0}^{\prime}}{A}(1-\exp (-A \cdot u)),[J / g \text { torstof }] \tag{13}
\end{equation*}
$$

Figur 26. Differentiel befugtningsentalpi i afhengighed af fugtindhold.

Figur 27. Sorptionsentalpi i afhongighed af fugtindhold.

4.2. Resultater

I det følgende fremgå fastlagte differentielle befugtningsentalpier i afhængighed af fugtindhold og relativ fugtighed for de undersøgte materialer. Sorptionsentalpi er afbildet i afhængighed af u. Differentiel befugtningsentropi $-\Delta S^{\prime}$ er for samtlige materialer fundet positiv for fugtindhold op til fibermætning u_{f}. Herved fås, at det frie vand opnår en mere ordnet molekylær struktur ved lignocellulosens binding af vandet. Resultatet indikerer, at vandbindingen sker direkte til materialets sorptionssteder op til fibermætningspunktet. Dette indikerer Langmuir sorption i cellevæggen, som ændrer karakter med aget fugtindhold.

4.2.1. Differentiel befugtuingsentalpi i afhængighed af u

Beregnede værdier af $-\Delta H^{\prime}$ ses plottet i figur 26. De beregnede $-\Delta H^{\prime}$ værdier er beskrevet ved (9) fra Skaar [4]. Funktionerne i figur 26 er på baggrund af kurveparametrene i tabel 4.1.

Materiale	$\mathrm{S}=\mathrm{H} / \mathrm{L}$	$-\Delta \mathrm{H}_{0}{ }^{\prime},[\mathrm{kJ} / \mathrm{mol}]$	A
Hvede(s,v)	3,7	36,9	18
S.e. hvede	2,6	31,2	15
Hvede(p,a)	2,2	27,6	16
Vådoxideret hvede	1,7	25,2	15
Bøg(p)	1,1	21,4	13
Hvedeplade		11,6	8
Bøgeplade	7,1	4	
Acetyleret hvede		6,8	10

Tabel 4.1. Materialernes sorptionsfaktor S fra kapitel 2 sammenholdt med parametre til beskrivelse af $-\Delta H^{\prime}$ som funktion af fugtindhold efter formel (9).

1) Beregnet initiel, differentiel befugtningsentalpi $-\Delta H_{0}{ }^{\prime}$ er i området: $7-37 \mathrm{~kJ} / \mathrm{mol}$.
2) Differentiel befugtningsentalpi $-\Delta \mathrm{H}^{\prime}$ tiltager med mindsket fugtindhold u i lignocellulose, jf. figur 27.
3) Differentiel befugtningsentalpi $-\Delta H^{\prime}$ aftager asymptotisk til 0 med øget fugtindhold u.
4) Den maksimale forskel på materialernes initielle, differentielle befugtningsentalpi, $-\Delta H_{0}{ }^{\prime}$ er godt en faktor 5, jf. tabel 4.1.
5) $-\Delta H_{0}{ }^{\prime}$ øges med materialernes sorptionsfaktor S, der angiver indholdet af hemicellulose i forhold til lignin pr. cellulose efter vægt, jf. tabel 4.1.
6) Ved fremstilling af hedepladen er $-\Delta H_{0}{ }^{\prime}$ reduceret 2,4 gange i forhold til den anvendte

4. Befugtningsentalpi

pulp.
7) Bøgepladen har $-\Delta \mathrm{H}_{0}$ ', som er 3 gange lavere end den anvendte pulp.
8) Ved acetylering er den initielle, differentielle befugtningsentalpi $-\Delta H_{0}{ }^{\prime}$ nedsat betragteligt.

4.2.1.1. Diskussion

Følgende henviser til punkterne i forrige afsnit.
Ad. 1) Stamm [9] og Skaar [4] angiver $-\Delta H_{0}{ }^{\prime}$ på $15-25 \mathrm{~kJ} / \mathrm{mol}$ for lignocellulose generelt. Disse refererer til både beregnede og kalorimetrisk bestemte værdier. I henhold hertil er initiel, differentiel befugtningsentalpi her beregnet som værende inden for et for stort interval. Det er således ikke sikkert, at sorptionsisotermerne her er fastlagt med tilstrækkelig stor nøjagtighed til, at $-\Delta H_{0}{ }^{\prime}$ kan bestemmes nøjagtigt nok. Den her fundne indbyrdes placering af materialernes $-\Delta H_{0}{ }^{\prime}$ vil formodentligt ikke ændres på grund af de fejlbehæftede isotermer. Dette tilskrives, at der antageligt er samme systematiske fejl knyttet til alle undersøgte materialer, da der herfor generelt ikke er ækvivalent afstand mellem isotermerne i temperaturområderne: $23-33^{\circ} \mathrm{C}$ og $33-43^{\circ} \mathrm{C}$.

Det ansees også for muligt, at $-\Delta H_{0}$ '-værdierne i litteraturen ikke er nøjagtige nok, idet $-\Delta H_{0}{ }^{\prime}$ er yderst vanskelig at fastlægge eksperimentelt.

Ad. 2) En infinitisimal, konstant vandmængde bindes hårdest (størst $-\Delta H_{0}{ }^{\prime}$) til tør lignocellulose $(u=0)$. Dette vand bindes formodentligt til pulpfiberens frie overflader eller på kanten af lumen, da vandet har lettest adgang til disse sorptionspladser. Denne infinitisimale, konstante vandmængde vil bindes til sorptionssteder med størst affinitet til vand, og disse steder er formodentligt de mest amorfe (dvs. frie) OH-grupper, da systemet herved opnå lavest fri energi. Med fugtindhold $u>0 \mathrm{~g} / \mathrm{g}$ vil dette vand have besat de mest amorfe hydroxylgrupper nærmest pulpoverfladen og lumen. Tilsættes en sådan lignocelluloseprøve (u $>0 \mathrm{~g} / \mathrm{g}$) en infinitisimal vandmængde, kan tilsat vand bindes af OH -grupper en smugle nærmere cellevæggens indre eller af ledige OH -grupper på pulpoverfladen. Det kan ikke afgøres, på hvilke af de 2 nævnte steder, vandet vil bindes. Dette kræver kendskab til de enkelte OH -gruppers energiforhold. Det forventes således, at cellevæggens vandindhold \varnothing ges ved diffusion startende fra frie overflader kombineret med vandbinding til OH -grupper undervejs. Først når fibermætningspunktet nås, er der tilstrækkelig vand til mætning af alle OH-grupper, og cellevæggens fugtindhold bliver først da konstant. Den differentielle befugtningsentalpi aftager med fugtindholdet ind til, at fibermætningspunktet nås, hvor alle OH-grupper er vandmættede, og monolagssorption herved formodentligt opnås. Fibermætningspunktet for lignocellulose er vanligt typisk omkring $0,30 \mathrm{~g} / \mathrm{g}$.

Idet differentiel befugtningsentalpi $-\Delta H^{\prime}$ aftager med $ø$ get u fås ikke , at lignocellulose bliver mindre amorf imod cellevæggens indre. Dette skyldes, at der med aget u ikke direkte registreres binding mellem en OH -gruppe og tilsat vand. Ekstra tilsat vand vil også bindes af allerede bundet vand, hvorved tilsat vand ikke fæstnes så hårdt til en amorf OH-gruppe.

Yderligere vil ledige OH -grupper formodentligt bruge noget bindingskapacitet på eksisterende vand, hvorved tilsat vand, som forårsager $-\Delta H^{\prime}$, ikke bindes så tæt til hydroxylgrupperne. En OH-gruppe i cellevæggens indre kan således være lige så amorf som en OH -gruppe på pulpoverfladen, og der registreres forskellig $-\Delta H^{\prime}$ for de to ens OH -grupper.

Ad. 3) Dette indikerer vandbinding ind til, at fibermætningspunktet nås. Anvendes BETteorien, der gælder for faste materialer, fås typisk $5-7 \mathrm{~kJ} / \mathrm{mol}$ for det først bundne molekylelag (vanligt $u=5 \%$) [9]. BET-entalpien er således lavere end den differentielle befugtningsentalpi. Ved vurdering af fugtdeformationer og ændringer af mekaniske egenskaber som følge af varierende fugtindhold i lignocellulose, er det formålstjeneligt at anvende $-\Delta \mathrm{H}^{\prime}$ frem for BET-entalpien, idet $-\Delta \mathrm{H}^{\prime}$ angiver vandbindingen til cellevæggen.

Ønskes materialernes sorptionsentalpi, [J/g tørstof] beregnet for et fugtindhold på for eksempel $0,05 \mathrm{~g} / \mathrm{g}$ - integreres fra $u=0$ til $u=0,05 \mathrm{~g} / \mathrm{g}$ i figur 26 , hvor resultatet ses for $\mathrm{u}=$ $0,05 \mathrm{~g} / \mathrm{g}$ i figur 27. Cellevægge i de materialer, som har størst sorptionsentalpi, [J / g tørstof], vil svelle mest og få størst reduktion af styrke og stivhed, når u øges fra 0 til 5%. \emptyset ges materialernes fugtindhold fra 5 til 10%, făs der en yderligere svelning samt styrkeog stivhedsreduktion. Disse materialeændringer er dog mindre end ved ændring af u fra 0 til 5%, jf. figur 26 . Dette ses ved, at sorptionsentalpien vist i figur 27 er relativt større fra $u=0$ til $u=5 \%$ end i intervallet: $u=5$ til $u=10 \%$. Dette gælder dog kun under forudsætning af, at bundet vand på overfladen ændrer lignocelluloses egenskaber som bundet vand nærmere cellevæggens indre, hvilket ikke er sikkert.

Styrkens afhængighed af fugtindholdet har omtrent samme grundform som differentiel befugtningsentalpi i figur 26. Dette giver en indikation af, at fugtbetingede styrkeændringer af lignocellulose afhænger af ændret vandindhold og bindingsentalpien, som ses i figur 27. Svind- og svelningsforløb følger ikke energikurverne, hvilket giver en indikation af, at størrelserne afhænger af både ændret vandindhold, binding heraf (figur 27) samt det sorberede vands placering i cellevæggen. Umiddelbart forventes det, at vand fjernet fra cellevæggens indre kan give samme eller større svind i forhold til vand fjernet fra overfladen, selv om dette vand er hårdest bundet til lignocellulosen, jf. figur 26.

Cellevæggens vandbindingsentalpi aftager således med øget fugtindhold u. Dette skyldes, at ikke vandmættede OH -grupper bruger noget af sin bindingskapacitet på eksisterende vand u. Og med aget u tiltager OH -gruppernes binding til eksisterende vand, hvorved $-\Delta H^{\prime}$ (tilsat vand) aftager. Yderligere registreres i $-\Delta H^{\prime}$ både binding til OH -grupper og eksisterende vand u. Da vandbindingsentalpien er mindre for vand end en OH-gruppe, aftager $-\Delta H^{\prime}$ også af denne grund med øget u.

Cellevæggens vandindhold og vandbindingsentalpi er to af de afgørende forhold vedrørende lignocellulosens karakteristika med hensyn til svind, svelning og mekaniske egenskaber. Der kan dog ikke sluttes direkte fra cellevæggen til lignocellulosen, idet stivheder og geometrier heraf har stor indflydelse på lignocellulosens materialeegenskaber.

Ad. 4) Aftagende $-\Delta \mathrm{H}_{0}{ }^{\prime}$ ved en pulpbehandling indikerer, at pulpen nær overfladen er ble-

4. Befugtningsentalpi

vet mindre amorf med hensyn til vandbinding ved behandlingen, da en given lille vandmængde bindes med lavere entalpi. Ved bestemmelse af lignocelluloses befugtningsentalpi, svind og svelning fastlægges en relativ ændring af, både hvor amorf og vandbindende pulpen er før og efter en behandling. Lignocelluloses vandsorptionsisoterm og fibermætningspunkt angiver ikke ændringer af graden af krystallinitet med hensyn til vandbinding før og efter en behandling. Disse materialestørrelser beskriver ændringer af vandbindingen, og det fastlægges ikke, om vandet er mere eller mindre løst bundet til lignocellulosen. Differentiel befugtningsentalpi, $-\Delta \mathrm{H}^{\prime}$ er alene et udtryk for lignocellulosens krystallinitet med hensyn til vandbinding.

Da der er markant forskel på lignocellulosens initielle, differentielle befugtningsentalpi og samtidig en begrænset forskel i total vandbinding (vandsorptionsisotermer), făs således en god indikation af, at: Hemicellulose binder marginalt mere vand i forhold til de øvrige polymerer, idet isotermerne ikke ændres markant med sorptionsfaktoren S (Hemicellulose i forhold til lignin efter vægt). Men hemicellulose er speciel derved, at vandet bindes meget hårdt i forhold til cellulose og lignin, da hemicellulose er den mest amorfe af polymererne. Dette ses ved, at den differentielle befugtningsentalpi $-\Delta \mathrm{H}^{\prime}$ øges betragteligt med sorptionsfaktoren $S(S=H / L)$.

Ad. 5) Idet den initielle, differentielle befugtningsentalpi $-\Delta \mathrm{H}_{0}{ }^{\prime}$ tiltager markant med lignocellulosens indhold af hemicellulose (analog med sorptionsfaktoren S) fås et incitament til, at vurdere en pulpbehandling på baggrund af energiforhold ved vandbefugtning frem for at vurdere på baggrund af den totale vandbinding (vandsorptionsisoterm og fibermætningspunkt). Da materialeforskellene er betragteligt større ved en energibetragtning, kan der samtidigt accepteres større spredninger på måleresultater.

Ad. 6) Aftagende $-\Delta H_{0}{ }^{\prime}$ ved fremstilling af pulpplader er forventet. Der fås herved en indikation af, at de enkelte fibres frie overflade og lumen er blevet modificeret i onskelig retning. Lignin erantageligt flydt ud mellem fibrene og har etableret en matriks, hvilket samtidig har involveret en kemisk blokering eller nedbrydning af hemicellulosens OH-grupper nær fibrenes overflade, hvorved $-\Delta H_{0}{ }^{\prime}$ mindskes. Mindsket initiel, differentiel befugtningsentalpi ved fremstilling af pulpplader er en yderst gunstig styringsstyringsparemeter, hvilket omtales senere. Men det er spørgsmålet, om ikke størrelser rent måleteknisk er for uhåndterlig til industrielle undersøgelser.

Ved fremstilling af formpressede pulpplader vil en naturlig designretning være: Minimal differentiel befugtningsentalpi $-\Delta H^{\prime}$. Hermed vil vandmolekyler i den omgivende luft integrerer sig i mindre grad med lignocellulosen, da aftagende $-\Delta H^{\prime}$ indikerer, at energien er mindre, når en given vandmængde fra omgivelserne bindes til lignocellulose. Med mindsket $-\Delta \mathrm{H}^{\prime}$ for pulpmaterialerne vil styrkexndringer, svind og svelning reduceres, når relativ luftfugtighed varierer i den omgivende luft. Såfremt $-\Delta H^{\prime}(u)$ kunne bringes ned på omtrent $0 \mathrm{~kJ} / \mathrm{mol}$ i figur 26 , ville pulppladens styrke ikke nedsættes med øget relativ luftfugtighed i omgivelserne, og pladen vil ikke svelle herved. $-\Delta H^{\prime}=0 \mathrm{~kJ} / \mathrm{mol}$ i figur 26 svarer til frit vand i lumen, og vand i lumen ændrer ikke lignocellulosens tekniske egenskaber. Hemicellulose er formodentligt den af polymererne, som knytter en given vandmængde hårdest til sig ved hydrogenbinding, da $-\Delta H^{\prime}$ øges med sorptionsfaktoren S (indhold af hemicellulose i
forhold til lignin).
Ad. 7) Ved fremstilling af hvede- og bøgepladen er differentiel befugtningsentalpi mindsket af samme størrelsesorden i forhold til de anvendte pulpfibre. Der fås herved en indikation af, at der nogenlunde er etableret de samme: Bindinger mellem fibrene, modificeringer af cellevægge og nedbrydninger af hemicellulose.

Ad. 8) Acetylgrupper har besat lignocellulosens amorfe hydroxylgrupper, hvorved den differentielle befugtningsentalpi mindskes. Effektiviteten af en acetylering kan formodentligt vurderes på baggrund af differentiel befugtningsentalpi.

4.2.2. Differentiel befugtningsentalpi, RF

I figur 28-30 er afbildet samhørende værdier af differentiel befugtningsentalpi og relativ lufffugtighed ved henholdsvis 23,33 og $43^{\circ} \mathrm{C}$ svarende til ens konditionering med hensyn til RF og T .

1) Differentiel befugtningsentalpi er for alle materialer positiv op til en relativ fugtighed på omkring 100%.
2) Op til $\mathrm{RF} \approx 0,2$ aftager differentiel befugtningsentalpi $-\Delta \mathrm{H}^{\prime}$ for materialerne i rækkefølgen: Hvede(s, v), S.e. hvede, Hvede(p, a), Vådoxi. hvede, bøg(p), hvedeplade samt bøgeplade og acetyleret hvede på samme niveau. Ved RF $>0,2$ mindskes forskellen mellem materialernes differentielle befugtningsentalpi $-\Delta H^{\prime}$.
3) Ved samme konditionering af lignocelluloseprøver (konstant $R F>0$) bevirker mindsket temperatur en nedsat differentiel befugtningsentalpi $-\Delta H^{\prime}$.
4) Bøgepladen har lavere differentiel befugtningsentalpi $-\Delta \mathrm{H}^{\prime}$ end hvedepladen.
5) Bøgepladen har en differentiel befugtningsentalpi af samme størrelsesorden som acetyleret hvede.

Figur 28. Differentiel befugtningsentalpi i afheengighed af relativ fugtighed ved $23^{\circ} \mathrm{C}$.

Figur 29. Differentiel befugtningsentalpi i afhangighed af relativ fugtighed ved $33^{\circ} \mathrm{C}$.

Figur 30. Differentiel befugtningsentalpi i afhangighed af relativ fugtighed ved $43^{\circ} \mathrm{C}$.

4.2.2.1. Diskussion

Følgende numrer henviser til punkterne i forrige afsnit.
Ad. 1) Der fås en indikation af, at lignocellulose binder vand ind til at fibermætningspunktet nås ved $R F \approx 100 \%$. Differentiel entalpi $-\Delta H^{\prime}$ er beregnet på baggrund af vandsorptionsisotermerne, som er yderst fejlbehæftede ved høje RF-niveauer. På baggrund af disse resultater kan det derfor ikke endeligt afgøres, at vand bindes ind til en relativ fugtighed på omkring 100%.

Ad. 2) Op til $\mathrm{RF} \approx 0,2$ aftager materialernes tendens til svind, svelning og styrkeændringer i den nævnte rækkefølge. Dette skyldes, at aftagende $-\Delta H^{\prime}$ for en given temperatur og RF indikerer mindre bindingsenergi ved sorption af vandmolekyler fra den omgivende luft. Ved $\mathrm{RF}>\approx 0,2$ er der muligvis også den nævnte forskel mellem materialernes $-\Delta \mathrm{H}^{\prime}$. Men sorptionsisotermerne, der danner grundlag for afbildningerne i figur 28-30 er yderst fejlbehæftede ved høje RF-niveauer.

Ad. 3) Herved fås, at alene mindsket temperatur i et givet klima (T konstant) reducerer tendensen til svind/svelning og styrkeændringer. Der kan ikke umiddelbart gives en forklaring herpå.

Ad. 4) Som før nævnt tyder det på, at der i forhold til de anvendte pulpfibre er sket om-

4. Befugtningsentalpi

trentligt de samme omdannelser ved fremstilling af bøge- og hvedepladen. Bøgepladen har antageligt den laveste differentielle befugtningsentalpi, da indholdet af hemicellulose er lavest, jf. kapitel 2. Lav differentiel befugtningsentalpi indikerer, at bøgepladen svinder, sveller og ændrer mindre styrke end hvedepladen ved de undersøgte temperaturer og RF.

Bøgepladen har i forhold til hvedepladen et relativt højere ligninindhold, hvilket angiver højere styrke- og stivhedsniveau, da lignin er trykstyrkekomponent og afstiver pulpfibrene. Herved vil et givet svind af cellevæggen bevirke lavere kontraktion af bøgepladen i forhold til hvedepladen.

Ad. 5) Ved fremstilling af bøgepladen er hemicellulosen formodentligt blevet kemisk blokeret eller nedbrudt med hensyn til vandbinding i en sådan grad, at vandsorptionen er på niveau med acetyleret hvede.

4.2.3. Befugtningsentalpi

Materialernes befugtningsentalpi $-\Delta H$ beregnes af (11), hvor $-\Delta H_{0}{ }^{\prime}$ og A er anført i tabel 4.1 for materialerne. Beregning af $-\Delta H$ fordrer kendskab til materialernes fibermætningspunkt u_{p}, som aflæses af figur 26 svarende til $-\Delta \mathrm{H}^{\prime}=0 \mathrm{~kJ} / \mathrm{mol}$. På baggrund af differentiel befugtningsentalpi $-\Delta \mathrm{H}^{\prime}$ i figur 26 er det ikke muligt at bestemme materialernes fibermætningspunkt u_{f}. I tabel 4.2 er der anvendt $u_{f}=0,30 \mathrm{~g} / \mathrm{g}$ for alle materialer ved beregning af befugtningsentalpi $-\Delta H(0)$.

Materiale	$\mathrm{Q}_{0},[\mathrm{~J} / \mathrm{g}$ tørstof $]$	$-\Delta \mathrm{H}(0)$ efter (11), [J/g tørstof]
Hvede($\mathrm{s}, \mathrm{v})$	80,5	113,4
S.e. hvede	73,1	113,2
Hvede(p,a)	71,3	94,6
Vådoxi. hvede	70,8	92,2
Bøg(p)	67,9	89,5
Hvedeplade	55,0	74,6
Bøgeplade	54,8	70,5
Acetyleret hvede	40,6	35,9

Tabel 4.2. Målt total befugtningsvarme Q_{0} og beregnet total befugtningsentalpi $-\Delta H(0)$ for torre prover. Fibermoetningspunktet for materialerne u_{f} er iformel (11) sat til $0,30 \mathrm{~g} / \mathrm{g}$.

1) Af tabel 4.2 ses, at den beregnede totale befugtningsentalpi $-\Delta H(0)$ alment er betydeligt større end den kalorimetrisk målte befugtningsvarme Q_{0}. Med undtagelse af acetyleret hvede beregnes ved brug af (11) en for høj $-\Delta H(0)$-værdi, som er $30-55 \%$ højere end den målte Q_{0}. For acetyleret hvede beregnes en total befugtningsentalpi $-\Delta H(0)$, som er 12% lavere end den målte Q_{0}.
2) Materialernes befugtningsentalpi $-\Delta H$ kan ikke beregnes på baggrund af differentiel
befugtningsentalpi $-\Delta \mathrm{H}^{\prime}$ i figur 27 .

4.2.3.1. Diskussion

Differentiel befugtningsentalpi $-\Delta H^{\prime}$ i figur 27 er beregnet alene på baggrund af materialernes sorptionsisotermer. Som omtalt i kapitel 3.4 er sorptionsisotermerne fejlbehæftede ved de 2 højeste RF-niveauer. Dette svarer til, at fugtindhold u over cirka $0,1-0,15 \mathrm{~g} / \mathrm{g}$ ikke er fastlagt rigtigt. Forløbet af $-\Delta H^{\prime}$ i figur 27 er derfor også fejlbehæftede ved og over disse fugtindhold u. Der kræves derfor formodentligt en mere nøjagtig fastlæggelse af sorptionsisotermer, før differentiel befugtningsentalpi $-\Delta H^{\prime}$ kan omregnes sikkert til befugtningsentalpi $-\Delta H$. Der er også mulighed for, at det empiriske udtryk (9) fra Skaar [4] ikke er optimalt med hensyn til beskrivelse af $-\Delta H^{\prime}$.

De omtalte materialetolkninger på baggrund af differentiel befugtningsentalpi i kapitel 4.2.1 og 4.2 .2 bliver ikke berørt af førnævnte metodefejl. Dette skyldes, at materialernes differentielle befugtningsentalpi alene er baseret på tolkninger ved lave fugtindhold. Og ved lave fugtindhold er isotermerne bestemt med størst nøjagtighed, jf. bilag.

4.3. Konklusion

1) Clausius-Clapeyrons ligning er egnet til beregning af differentiel befugtningsentalpi og -entropi ved vandbinding til cellevæggen.
2) Befugtningsentalpi kan ikke beregnes tilstrækkeligt nøjagtigt på baggrund af differentiel befugtningsentalpi. Der kan således ikke omregnes korrekt fra beregnet befugtningsentalpi til målt befugtningsvarme, som er sammenlignelige størrelser.
3) Sorptionsentalpi kan beregnes ved lave fugtindhold på baggrund af differentiel befugtningsentalpi.
4) Fibermætningspunktet er beregnet til omtrent $0,3 \mathrm{~g} / \mathrm{g}$ for samtlige materialer.
5) Materialernes fibermætningspunkt kan ikke fastlægges med tilstrækkelig stor nøjagtighed ud fra beregnet differentiel befugtningsentalpi.
6) Beregnede totale befugtningsvarmer er typisk $30-60 \%$ højere end materialernes målte totale befugtningsvarmer.
7) Total befugtningsvarme kan ikke beregnes nøjagtigt ud fra differentiel befugtningsentalpi.
8) Materialernes maksimale differentielle befugtningsentalpi er i området: $7-37 \mathrm{~kJ} / \mathrm{mol}$.
9) Differentiel befugtningsentalpi øges med indholdet af hemicellulose. Hemicellulose binder således vand hårdest til sig af polymererne.
10) Hvedepladen vil svinde og svelle og ændrer mekaniske egenskaber mere end bøgepladen, da både vandbindingen, [g vand/g tørstof] og vandbindingsentalpien, [J/g tørstof] er størst for hvedepladen.

5. Befugtningsvarme

Der er kalorimetrisk målt totale befugtningsvarme for samtlige materialer. For at unders \varnothing ge sammenhængen mellem beregnet varmeudvikling (entalpi) og målt varmeudvikling Q er befugtningsvarmen bestemt ved forskellige fugtindhold i hvedepulp: Hvede(p, a) og hvedeplade fremstillet af pulpen. Ved kalorimetermåling fastlægges befugtningsvarmen Q [J/g tørstof] for lignocellulose med begyndelsesfugtindholdet u. Varmeudviklingen skyldes lignocelluloses binding af vand, som er en eksoterm proces. Målinger er foretaget ved $33^{\circ} \mathrm{C}$ svarende til middeltemperaturen, hvorfor adsorptionsisotermer er bestemt.

5.1. Metoder

For materialeprøver er der anvendt samme udtørrings- og fugtpåvirkning som ved fastlæggelse af vandsorptionsisotermer. Materialeprover er udtørret minimum 1 måned over magnesiumperklorat: $\mathrm{Mg}\left(\mathrm{ClO}_{4}\right)_{2}$. Den følgende fugtoptagelse er sket over de samme salte som ved vandsorptionsbestemmelse, jf. bilag 1 . Fugtoptagelsen er forløbet 3 måneder ved $33^{\circ} \mathrm{C}$ i termostatstyret vandbad, jf. figur 2. Der er ikke bestemt ligevægtsfugtindhold for de anvendte materialeprover. Benyttede ligevægtsfugtindhold u er identiske med de anvendte ved fastlæggelse af vandsorptionsisotermer, jf. bilag 1.

Al håndtering af åbne lignocelluloseprever er foretaget i klimatiseret handsketelt, hvor henholdsvis tørringsmiddel og mættede saltopløsninger er benyttet til sikring af konstant relativ fugtighed. Temperaturen i handsketeltet er $33 \pm 1^{\circ} \mathrm{C}$ med kviksølvtermometer som reference.

5.1.1. Kalorimetermåling

Befugtningsvarmen er fastlagt i henhold til [13] ved konstant $33^{\circ} \mathrm{C}$. Instituttets mikrokalorimeter af typen CALVET fra SETRAM er benyttet ved måling af lignocelluloses befugtningsvarme.

1) Kalorimeterets prøvebeholder fyldes med lignocellulose i klimatiseret handsketelt. Prøvevolumenet er maksimalt, hvorved prøvemængder m er $0,12-0,31 \mathrm{~g} .0,12 \mathrm{~g}$ er omtrentlig prøvestørrelse for pulpene: Hvede (p, a) og bøg(p). $0,31 \mathrm{~g}$ er cirkavægt for bøge- og hvedeplade. Prøvebeholder lukkes og vejes. Prøvebeholder skrues på en styrestang med vandbeholder. Materialeprøve og vandbeholder er adskilt fra hinanden.
2) Styrestang nedsænkes i udluftet kalorimeter ved $33^{\circ} \mathrm{C}$. Udluftning foretages med nitrogen N_{2} for at fjerne vand fra kalorimeterets indre.
3) Efter cirka 1 time opnås temperaturligevægt mellem en reference- og prøvecelle. Prøvebeholder med lignocellulose påføres vacuum i 10 sekunder.
4) Styrestang skydes ned, hvorved en nål gennembryder en gummipakning i vandbeholderen, og prøvebeholderen med lignocellulose fyldes herved med vand.
5) Varmeudviklingshastigheden ved vandbefugtning fastlægges nu i forhold til referencecellen. Ved vandbefugtningen registreres ikke en temperaturstigning, hvor aflæsningsnøjagtigheden er: $\pm 0,01^{\circ} \mathrm{C}$. Data opsamles af styringscomputer til kalorimeter.
6) Varmeudviklingshastigheden omregnes til SI-enheder og korrigeres for en konstant registreret hastighed mellem prøve- og referencecelle.
7) Med kendt mængde af lignocellulose $m,[g]$ og fugtindhold $u,[g / g]$ beregnes tørvægten af lignocellulose $\mathrm{m}_{\text {to }}$ af (12):

$$
\begin{equation*}
m_{t e r}=\frac{m}{1+u} \tag{12}
\end{equation*}
$$

Varmeudviklingshastigheden fundet under pkt. 6) deles med tørvægten $\mathrm{m}_{\text {ter }}$ (12). Herved fås varmeudviklingshastigheden $\mathrm{dQ} / \mathrm{dt}$ over tid i : $\mathrm{J} /(\mathrm{g}$ tørstof)(time). I figur 31 ses en sådan afbildning.
8) Lignocelluloses befugtningsvarme $Q,[\mathrm{~J} / \mathrm{g}$ tørstof $]$ bestemmes ved numerisk integration af dQ/dt fastlagt under 7).
9) Før forsøg afsluttes, vejes prøvebeholderen for at sikre tilstrækkelig vandtilsætning. Vandindholdet efter vandbefugtningen skal være større end fibermætning, som vanligt svarer til: $u_{f} \approx 30 \%$.

5.1.2. Analyser

Ifølge Skaar [4] er målte værdier af befugtningsvarmen $Q i$ afhængighed af begyndelsesfugtindholdet u beskrevet ved det empiriske udtryk (13):

$$
\begin{equation*}
Q=Q_{0} \cdot \exp (-B \cdot u),[J / g \text { torstof }] \tag{13}
\end{equation*}
$$

$\mathrm{Q}_{0} \mathrm{og} \mathrm{B}$ er konstante for et givet lignocellulosebaseret materiale. Q_{0} angiver den totale befugtningsvarme svarende til vandmætning af tørre lignocelluloseprøver. B er en kurveparameter, der beskriver kurveformen af Q i afhængighed af u. Befugtningsvarmen Q i (13) kan direkte sammenholdes med befugtningsentalpien $-\Delta H$ i formel (11).

Den differentielle befugtningsvarme Q^{\prime} bestemmes som (14). Q^{\prime} er den negative hældning af $Q(u)$ i (13). Den differentielle befugtningsvarme Q^{\prime} er varmeudviklingen ved en øget infinitisimal vandsorption, hvilket fås med mindsket fugtindhold u til start i prøven.

$$
\begin{equation*}
Q^{\prime}=-\frac{d Q}{d u}=\left(\frac{18,02}{1000}\right) \cdot B \cdot Q_{0} \cdot \exp (-B \cdot u),[k J / m o l] \tag{14}
\end{equation*}
$$

Differentiel befugtningsvarme Q^{\prime} (14) er direkte sammenlignelig med differentiel befugtningsentalpi $-\Delta H^{\prime}$ (9).

5.2. Resultater

5.2.1. Varmeudvikdingshastighed

I figur 31-37 er afbildet målt varmeudviklingshastighed i Joul pr. time pr. g tør lignocelIulose.

1) Fugtindhold efter vandbefugtning er $100-500 \%$ ($>u_{f} \approx 30 \%$), hvilket er tilstrækkeligt til sikring af vandbinding til alle lignocellulosens sorptionspladser for vand.
2) Varmeudviklingshastigheden, $d Q / d t$ øges mest ved begyndende vandbefugtning. Maksimal varmeudviklingshastighed er omtrent $300 \mathrm{~J} / \mathrm{hg}$. Maksimal varmeudviklingshastighed aftager markant med begyndelsesfugtindhold over omkring 5-10\%.
3) Varmeudviklingshastigheden aftager uafhængigt af fugtindholdet u efter 2-5 minutter (0,03-0,08 time).
4) Måleperioden er maksimalt 1 time for alle undersøgte materialer.
5) Befugtningsvarmen Q er fastlagt på baggrund af $d Q /$ dt op til 0,6 time (cirka 40 minutter).
6) Befugtningsvarmen Q øges med mindsket begyndelsesfugtindhold u i lignocellulosen.

Figur 31. Varmeudviklingshastighed for hvedeplade ved $R F=0 \%$ (Magnesiumperklorat).

Figur 32. Varmeudviklingshastighed for hvedeplade ved $R F=6 \%$ (Lithium bromid).

Figur 33. Varmeudviklingshastighed for hvedeplade ved $R F=11 \%$ (Lithium chlorid).

Figur 34. Varmeudviklingshastighed for hvedeplade ved $R F=32 \%$ (Magnesium chlorid).

Figur 35. Varmeudviklingshastighed for hvedeplade ved $R F=55 \%$ (Natrium bromid).

Figur 36. Varmeudviklingshastighed for hvedeplade ved $R F=75 \%$ (Natrium chlorid).

Figur 37. Varmeudviklingshastighed for hvedeplade ved $R F=91 \%$ (Kaliumnitrat).

5.2.1.1. Diskussion

Den anvendte prøvebeholder til kalorimeteret er udviklet af professor Freiesleben Hansen, Aalborg Universitet. Det oprindelige formål med prøvebeholderen har været måling af varmeudvikling af cement og lignende pulvere, [4]. I alle tilfælde er disse pulvertyper tørre før vandbefugtningen. Lignocellulose kan imidlertid indeholde fugt før tilsætning af vand. Da materialeprøven bliver evakueret før vandbefugtningen, er der således mulighed for, at begyndelsesfugtindholdet u mindskes. Ved måling af befugtningsvarme på ikke tor lignocellulose, er evakueringstiden nedsat til 10 sekunder, hvor 30 sekunder er gangst og her anvendt for tørt materiale. Da de undersøgte materialer er under fibermætning, er det spørgsmålet, hvor meget vand der fjernes ved evakueringen. Pumpetidens effekt på befugtningsvarmen af ikke tørre materialer bør undersøges meget grundigt, før prøvebeholderens egnethed kan vurderes endeligt. Vandbefugtning ved knusning af en glasampul kan overvejes som alternativ løsning.

Det er forventet, at befugtningsvarmen Q mindskes med øget begyndelsesfugtindhold u i lignocellulose. Med øget fugtindhold u reduceres samtidig antallet af sorptionspladser, der er til rådighed for befugtningsvand, og varmeudviklingen $Q[J / g$ tørstof] nedsættes.

5.2.2. Total befugtningsvarme

I tabel 5.1 er angivet målt total befugtningsvarme Q_{0} for materialerne, hvilket svarer til tørre prøver før vandbefugtning. Der er overvejende foretaget een måling af Q_{0}. For pulpen: Hvede (p, a) og hvedepladen er der foretaget dobbeltbestemmelse af Q_{0}, hvor gennemsnitsværdien er anført i tabellen. I tabel 5.2 ses enkeltresultater.

Materiale	Total befugtningsvarme, $\mathrm{Q}_{0},[\mathrm{~J} / \mathrm{g}$ tørstof]	Sorptionsfak- tor, $\mathrm{S}=\mathrm{H} / \mathrm{L}$
Hvede(s,v)	80,5	3,7
S.e. hvede	73,1	2,6
Hvede(p,a)	71,3	2,2
Vådoxideret hvede	70,8	1,7
Bøg(p)	67,9	1,1
Hvedeplade	55,0	
Bøgeplade	54,8	
Acetyleret hvede	40,6	

Tabel 5.1. Materialernes målte totalt befugtningsvarme Q_{σ}

1) Forskellen mellem materialernes totale befugtningsvarme er cirka en faktor 2 , hvor Q_{0} er fastlagt mellem 40 og $80 \mathrm{~J} / \mathrm{g}$ tørstof.
2) Total befugtningsvarme Q_{0} tiltager med øget sorptionsfaktor S.

5. Befugtningsvarme

3) Bøgepladens totale befugtningsvarme Q_{0} er 19% lavere end den anvendte pulp: $B ø g(p)$.
4) Hvedepladens Q_{0} er omtrent 23% lavere end den anvendte pulp: Hvede($\left.p, a\right)$.
5) Hvede- og bøgepladen har total befugtningsvarme på samme niveau, cirka $55 \mathrm{~J} / \mathrm{g}$ tørstof.
6) Ved acetylering mindskes Q_{0} med omkring en faktor 1,8 i forhold til udgangsmaterialet: Hvede (p, a).

5.2.2.1. Diskussion

Der henvises til punkterne i forrige afsnit.
Ad. 1) I henhold til Stamm [9] og Skaar [4] er den totale befugtningsvarme for lignocellulose: $40-150 \mathrm{~J} / \mathrm{g}$ tørstof. Den nedre grænse repræsenterer lignin, og den største værdi er fundet for hemicellulose. De her malle totale befugtningsvarmer er i overensstemmelse med data fra littereturen. Total befugtningsvarme ages med både lignocellulosens vandbinding, [g vand/g tørstof] og hvor amorft materialet er med hensyn til vandbinding, [J/g vand]. Hemicellulose binder både mest vand og knytter vand tættest til sig i forhold til de andre polymerer. Det tyder derfor pă, at forskelle i Q_{0} før og efter en behandling af lignocellulose er større, end hvis blot forskelle i vandbinding (sorptionsisoterm og fibermætningspunkt) eller bindingsenergi (for eksempel differentiel befugtningsentalpi: $-\Delta \mathrm{H}^{\prime}$) sammenholdes. Måleteknisk er Q_{0} en hensigtsmæssig parameter i forhold til ovennævnte, da materialeforskelle antageligt er relativt større, og Q_{0} er lettest at måle.

Ad. 2) Dette er ventet. Med voksende sorptionsfaktor S øges indholdet af hemicellulose, som samtidig er mest vandbindende og amorft med hensyn til vandbinding. Begge materialeaspekter indikerer tiltagende total befugtningsvarme Q_{0}.

Ad. 3) Mindsket total befugtningsvarme er en gunstig styringsparameter ved fremstilling af formpressede pulpplader. Der fås en indikation af, at hemicelluloses sorptionssteder er indgået i kemisk reaktion eller nedbrudt ved pladefremstillingen. Dette kan formodentligt relateres til øget ligninflydning, der er en forudsætning ved etablering af matriksen mellem pulpfibrene. Aftagende Q_{0} indikerer samtidigt en mindsket tendens til svind, svelning og styrkeændringer, når den relative luftfugtighed varierer i omgivelserne. Dette skyldes, at der med lavere Q_{0} er færre sorptionspladser, og materialeegenskaberne er knyttet til fugtindholdet. Yderligere er det antageligt samtidigt sorptionssteder med størst vandbindingsenergi, der er blokeret (mindsket Q_{0}), hvor svind, svelning og styrkeændringer ud over vandindholdet også øges med vandbindingsenergien.
Q_{0} kan muligvis have industriel interesse ved vurdering af formpressede pulpplader. En grundig undersøgelse er nødvendig for at afdække forskelle i Q_{0} mellem pladerne.

Ad. 4) I henhold til ovennævnte er der formodentligt sket de samme blokeringer af vandsorptionspladser som for bøgepladen. Samme resultat fremgik af materialernes vandsorptionsisotermer og differentielle befugtningsentalpi.

Ad. 5) Resultatet er uventet. Det forventes, at Q_{0} er større for hvedepladen end for bøgepladen, da den anvendte hvedepulp indeholder mere hemicellulose end bøgepulpen. Ligeledes er der antageligt er sket de samme blokeringer af sorptionspladser ved fremstilling af pladerne. Total befugtningsvarme skal underbygges med flere målinger, før resultatet kan vurderes.

Ad. 6) Der fås en indikation af, at amorfe og vandbindende steder er blevet blokeret ved acetyleringen. Total befugtningsvarme kan formodentligt have industriel interesse ved vurdering af effektiviteten af acetyleringen. Idet tørvægten af acetyleret hvede er relativt høj, fås naturligt en lav befugtningsvarme i forhold til de andre lignocellulosematerialer. Andre nomeringer end tørvægten af acetyleret materiale bør vurderes ved fremtidige målinger af befugtningsvarme. Vægten af acetyleret materiale kan for eksempel indregnes som: $\mathrm{m}_{\text {tor }}(100-$ acetyleringsprocenten).

5.2.3. Befugtningsvanme

I tabel 5.2 ses målt befugtningsvarme Q af henholdsvis hvedepulp: Hvede($p, a)$ og hvedeplade ved de anførte begyndelsesfugtindhold u.

Hvedepulp: Hvede(p,a)		Hvedeplade	
$\mathrm{u},[\mathrm{g} / \mathrm{g}]$	$\mathrm{Q},[\mathrm{J} / \mathrm{g}$ tørstof $]$	$\mathrm{u},[\mathrm{g} / \mathrm{g}]$	$\mathrm{Q},[\mathrm{J} / \mathrm{g}$ tørstof $]$
0	$71,3(70,3)(72,2)$	0	$55,0(55,6)(54,3)$
0,0167	54,9	0,0121	42,8
0,0238	44,3	0,0191	38,9
0,0546	27,5	0,0414	28,5
0,0912	13,1	0,0691	17,2
0,1435	5,2	0,1226	5,7
0,1950	2,4	0,1792	1,4

Tabel 5.2. Befugtningsvarme for: Hvede(p,a) og hvedeplade med de angivne fugtindhold u. Tallene i parentes er enkeltbestemmelser of total befugtningsvarme. Tal foran parentes er gennemsnitlig befugtningsvarme.

I figur 38 er afbildet samhørende målte værdier af befugtningsvarme Q og begyndelsesfugtindhold u for: Hvede (p, a) og hvedepladen fremstillet heraf. Data er fra tabel 5.2. De indtegnede funktioner er fastlagt efter formel (13) og fremgår i endelig udgave af tabel 5.3.

5. Befugtningsvarme

Materiale	Befugtningsvarme, (13)	Differentiel befugtningsvarme,(14)
Hvede (p, a)	$\mathrm{Q}=70,3 \exp (-18 \mathrm{u}) \quad,[\mathrm{J} / \mathrm{g}$ tørstof $]$	$\mathrm{Q}^{\prime}=22,8 \exp (-18 \mathrm{u}) \quad,[\mathrm{kJ} / \mathrm{mol}]$
Hvedeplade	$\mathrm{Q}=55,6 \exp (-17 \mathrm{u}) \quad,[\mathrm{J} / \mathrm{g}$ tørstof $]$	$\mathrm{Q}^{\prime}=17,0 \exp (-17 \mathrm{u}) \quad,[\mathrm{kJ} / \mathrm{mol}]$

Tabel 5.3. Befugtningsvarme Q og differentiel befugtningsvarme Q^{\prime} efter formel (13) og (14) for: Hvede (p, a) og hvedeplade. A nvendt data ses i tabel 5.2 .

Figur 38. Befugtningsvarme Q for: Hvede (p, a) og hvedeplade med angivne begyndelsesfugtindhold u.

1) Af figur 38 ses, at fibermætningspunktet er omkring $0,30 \mathrm{~g} / \mathrm{g}$ for både hvede(p,a) og hvedeplade. u_{f} svarer til $\mathrm{Q}=0 \mathrm{~J} / \mathrm{g}$ tørstof.
2) Befugtningsvarmen Q aftager med øget begyndelsesfugtindhold ui lignocellulose.
3) Hvedepladen har lavere befugtningsvarme end den hertil anvendte pulp: Hvede($p, a)$.

5.2.3.1. Diskussion

Der henvises herefter til punkterne i forrige afsnit.
Ad. 1) Da hvede (p, a) er mere vandbindende, [g vand/g tørstof] end hvedepladen forventes herfor også et højere fibermætningspunkt. Der er formodentligt ikke målt befugtningsvarme ved tilstrækkeligt høje fugtindhold til, at u_{f} kan bestemmes med tilstrækkelig stor nøjagtig-
hed.

Det er spørgsmålet, om metoden er velegnet til bestemmelse af u_{f}. Dette tilskrives, at varmeudviklingen mindskes betragteligt i forhold til en given kalorimeterusikkerhed, når u øges. For at vurdere dette er det nødvendigt med en grundig metodegennemgang.

I henhold til Skaar [4] er der en entydig sammenhæng mellem lignocelluloses fibermætningspunkt og totale befugtningsvarme. Dette er ikke overraskende, idet begge udtrykker vandbinding. Som før omtalt forventes større forskelle ved en behandling, såfremt ændringer af Q_{0} og ikke u_{f} sammenholdes. Q_{0} er måleteknisk betydeligt lettest at bestemme samtidig med at der kan accepteres størst spredning på Q_{0} grundet større materialeforskelle før og efter en behandling af lignocellulose.

Ad. 2) Dette er forventet, idet befugtningsvarmen afspejler vandbindingspladser, der ikke allerede er besat af begyndelsesfugten \mathbf{u}

Ad. 3) Dette er forventet, da pladen er mindst vandbindende og formodentligt er mindst amorf med hensyn til vandbinding.

5.2.4. Differentiel befugtningsvarme

Af figur 39 fremgår henholdsvis differentiel befugtningsvarme Q^{\prime} og -entalpi $-\Delta H^{\prime}$. Q^{\prime} er på baggrund af måling, mens $-\Delta H^{\prime}$ er beregnet. Q^{\prime} ses i tabel 5.3 , og $-\Delta H^{\prime}$ er fra tabel 4.1.

Figur 39. Differentiel befugtningsentalpi $-\Delta H^{\prime}$ og -varme Q^{\prime} for: Hvede(p,a) og hvedeplade.

1) På baggrund af både $-\Delta H^{\prime}$ og Q^{\prime} fås, at værdierne for pladen er lavere end for den anvendte pulp: Hvede (p,a).
2) Der ses ikke systematisk forskel på Q^{\prime} og $-\Delta H^{\prime}$ for et givet fugtindhold u.

5.2.4.1. Diskussion

Ad. 1) Resultatet er tilfredsstillende, da der fås en indikation af, at Clausius-Clapeyrons ligning og kalorimetermåling begge er egnede og ligeværdige ved vurdering af lignocelluloses vandbindingsenergi. I Stamm [9] er de 2 metoder også fundet sammenlignelige.

Ad. 2) Det er umiddelbart tilfredsstillende, at $-\Delta H^{\prime}$ eksempelvis ikke er systematisk højere end Q^{\prime}, idet dette kan indikere metodeforskel ved vurdering af samme materialeegenskab: Vandbindingsenergi.

5.4. Konklusion

1) Instituttets mikrokalorimeter (CALVET fra SETRAM) har tilstrækkelig stor målenøjagtighed til fastlæggelse af lignocelluloses befugtningsvarme.
2) I overensstemmelse med litteraturen er der for de undersøgte materialer målt total befugtningsvarme fra 40 til $80 \mathrm{~J} / \mathrm{g}$ tørstof.
3) Total befugtningsvarme mindskes med reduceret indhold af hemicellulose i pulp, kemisk blokering af vandsorptionssteder ved acetylering samt kemisk og mekanisk blokering eller nedbrydning af OH -grupper ved fremstilling af formpressede pulpplader.
4) For 7 forskellige begyndelsesfugtindhold u er befugtningsvarmen fundet mindre for hvedepladen end den hertil anvendte pulp: Hvede(p,a).
5) Hvedepladen og den hertil anvendte pulp har begge et fibermætningspunkt u_{f} på omtrent $0,3 \mathrm{~g} / \mathrm{g}$.
6) Gyldigheden af et kalorimetrisk bestemt fibermætningspunkt ved vandbefugtning kan ikke vurderes på det foreliggende eksperimentelle grundlag.
7) Målt befugtningsvarme for hvedepulp og -plade kan omregnes til differentiel befugtningsvarme og sammenlignes med beregnet differentiel befugtningsentalpi.
8) Sorptionsvarme (J/g tørstof af en given vandmængde bundet i cellevæggen) kan beregnes på baggrund af differentiel befugtningsvarme.
9) Egnetheden af den her anvendte prøvebeholder til kalorimeteret skal undersøges grundigt.
10) Der kræves adskillige flere kalorimeterkørsler, før det kan verificeres, om kalorimetermetoden er egnet til bestemmelse af lignocelluloses befugtningsvarme.

6. Konklusion

Sorptionsisotermer

Lignocelluloses vandbinding, er en vigtig materialeparameter. Som udgangspunkt for betragtningerne er der:

1) Eksperimentelt fastlagt sorptionsisotermer ved 3 temperaturer: 23,33 og $43^{\circ} \mathrm{C}$.

Undersøgelserne har givet et godt eksperimentelt erfaringsgrundlag:
2) Mcettede saltoplosninger er egnede til etablering af klima med en given relativ luftfugtighed.

Der er dog visse usikkerheder knyttet til anvendelse af mættede saltopløsninger:
3a) Saltenes RF ved forskellige temperaturer bor undersoges eksperimentelt, da erfaringsgrundlaget fra litteraturen er sparsomt.

3b) Med øget luftfugtighed tiltager tendensen til saltvandring og kondensation, som kan give fejlbehoeftede isotermer ved høje fugtindhold i lignocellulose.

Ved fastlæggelse af sorptionsisotermer stilles der også krav om nøjagtig kendskab til lignocellulosens fugtindhold:

4a) Det er nødvendigt at håndtere åbne lignocelluloseprøver i klimatiseret handsketelt med nogenlunde samme relotive fugtighed som torringsmiddel eller moettet saltoplosning.

4b) Ved vådvcegtsbestemmelse er det vigtigt, at klimateltet har samme temperatur som ekssikkatoren med materialeprover. Og det er påkrevet, at der kun vejes på klimatiserede lignocelluloseprover.

4c) Der er alment fastlagt tilfredsstillende ligevœegtsfugtindhold med en variation på \pm $0,001 \mathrm{~g} / \mathrm{g}$. Ved en relativ luftfugtighed over 75% svarende til et fugtindhold på typisk 12% er isotermerne fejlbehoeftede, uden at der dog kan angives talstarrelser for usikkerheden.

Det er nødvendigt at beskrive eksperimentelle sorptionsdata matematisk:
5) Sorptionsmodellen opstillet af L. Fuglsang Nielsen, BKM er fundet y derst velegnet til modellering af målte sorptionsvcerdier for lignocellulose.

For de fastlagte sorptionsisotermer er det fundet at:
6a) Materialernes forskel ivandbinding er typisk 3-5\%-point.

6b) Ved lave fugtindhold, hvor den relative luftfugtighed er mindre end 0,2, er materialernes forskel i vandbinding omkring 1\%-point. Det ansees ikke for sandsynligt, at disse materialeforskelle kan påpeges of uøvede personer inden for en rimelig måleperiode, da der stilles meget høje krav til både udforelse og udstyr.

Materialer

7) Med en acetyleringsgrad på 20% er vandbindingen omtrent halveret for den anvendte hvedepulp.
8) I forhold til bogepulp binder hvedepulp 1%-point mere vand. Hvede-og bogepulp er anvendt til fremstilling af formpressede pulpplader. Resultatet tilskrives, at hvedepulpen har det hojeste indhold af hemicellulose.
9) Hvedepladen binder cirka 1\%-point mere vand i forhold til bøgepladen. Dette tilskrives det relativt større indhold af hemicellulose i den anvendte hvedepulp. . Sammenholdt med 8) fås også, at der omtrentligt er sket de samme deaktiveringer af hydrofile hydroxylgrupper ved pladefremstillingerne.
10) Formpresset hvede- og bøgeplade binder typisk 2%-point mindre vand end de anvendte pulpfibre. Dette indikerer, at der er sket omtrent de samme kemiske blokeringer og nedbrydninger af hemicellulose ved begge pladefremstillinger. Cellulosens fibrilsystem kan også vare blevet modificeret ved pladefremstillingerne. Resultatet er i overensstemmelse med 9.
11) Steam exploded og vådoxideret hvede binder maksimalt 1-\%-point mindre vand i forhold til den anvendte hvedepulp. Pulpenes kemiske sammensætning underbygger den indbyrdes marginale placering of vandsorptionsisotermerne.
12) Der er fundet en entydig sammenhceng mellem lignocellulosematerialernes vandindhold bestemt af isotermer og relative indhold af hemicellulose. Herved fås en indikation af, at isotermer udtrykker vandbinding, såkaldt Langmuir-sorption og ikke porer (hulrum), som angivet ved for eksempel BET-teorien.
13) Der er fundet en entydig sammenhoung mellem isotermernes beliggenhed og målte totale befugtningsvarme, hvor sidstnavnte angiver vandbinding. Dette giver et kraftigt signal om, at isotermen primœrt udtrykker vandbinding, Langmuirsorption, og ikke porer (hulrum).

Energiligning

Vands differentielle bindingsentalpi til lignocellulosens cellevæg er beregnet efter ClausiusClapeyrons ligning. Til formålet er kun anvendt materialernes sorptionsisotermer fastlagt ved 3 temperaturer. Dette har muliggjort:
14) Den mest amorfe hydroxylgruppe med hensyn til vandbinding på pulpfibrenes
overflade eller lumen kan udpeges relativt.
15) Der er mellem materialerne en faktor 5 i forskel på differentiel vandbindingsentalpi for den mest amorfe hydroxylgruppe på lignocelluloses overflade.

Ovennævnte differentielle bindingsentalpi øges med lignocellulosens indhold af hemicellulose, hvilket afstedkommer følgende hypotese:

16a) Hemicellulose er markant mere amorf end de andre polymerer, men kun marginalt mere vandbindende, jf. 6a).

16b) Lignocelluloses svind, svelning og cendringer af mekaniske egenskeber skyldes primert, at vand knyttes markant toettere til hemicellulose iforhold til dennes vandbinding.

Materialer

17) For samtlige materialer er differentiel vandbindingsentalpi til cellevceggen beregnet i afhoengighed af lignocellulosens fugtindhold og relative luftfugtighed.
18) Maksimal differentiel vandbindingsentalpi mindskes på samme niveau, omtrent en faktor 3 for hvede-og bøgeplade i forhold til de anvendte pulpfibre. Herved fås en indikation af, at pulpoverfladen er blevet coatet i lignin, som er nodvendig bindemiddelmatriks mellem pulpfibrene.
19) Vandbindingsentalpien er op til 1,6 gange starre for hvedepladen i forhold til bogepladen. Det betyder, at hvedepladen vil svinde, svelle og cendre styrke og stivhed mest, ved en given cendring of cellevœggenes fugtindhold.
20) Det er yderst gunstigt at mindske pulppladers vandbindingsentalpi, jf. 18) og 19).

Fibermætningspunkt

Nøjagtigheden af isotermerne mindskes ved fugtindhold fra cirka 12%, hvorover usikkerheden øges betragteligt.

21a) Det har derfor ikke varet muligt at bestemme materialernes fibermotningspunkt med ansket precision. Fibermætningspunktet er fastlagt til $0,30 \mathrm{~g} / \mathrm{g}$ for samtlige materialer.

21b) Materialernes befugtningsvarme kan ikke beregnes, da der stilles krav til både nøjagtige isotermer og fibermatningspunkt.

Kalorimeter

22) Den totale befugtningsvarme er målt kalorimetrisk for samtlige materialer.
23) Der er fundet en entydig sammenhong mellem materialernes sorptionsisoterm og totale befugtningsvarme.

Dette åbner mulighed for:
24) Total befugtningsvarme for og efter en behandling af lignocellulose er en hurtig og måleteknisk let måde at afgare cendringer af vandbinding, som alternativ til for eksempel vandsorptionsisotermen og fibermœtningspunktet.

For hvedepulp og pladen fremstillet heraf er der målt befugtningsvarme ved forskellige begyndelsesfugtindhold.
25) Målt befugtningsvarme ved forskellige fugtindhold kan omregnes og sammenlignes med resultater fra energiligning.
26) Der skal udføres flere kalorimeterforsøg, for metodens egnethed kan vurderes endeligt.

Liste over anvendte symboler

$c_{p} \quad$ varmekapaciteten, [$\mathrm{J} / \mathrm{molK}$]
$\mathrm{H}_{2} \mathrm{O}(\mathrm{a})$ adsorberet vand
$\mathrm{H}_{2} \mathrm{O}(\mathrm{g})$ vanddamp
$\mathrm{H}_{2} \mathrm{O}(1)$ frit vand
$m_{\text {fuetig }} \quad$ vægt af prove, der indeholder fugt
$\mathrm{m}_{\text {tor }} \quad$ vægt af tor prove
p damptryk, [Pa]
$\mathrm{p}^{\theta} \quad$ standardtryk $=101325 \mathrm{~Pa}$
Q befugtningsvarme, [J / g torstof]
Q' differentiel befugtningsvarme, $[\mathrm{kJ} / \mathrm{mol}]$
$\mathrm{dQ} / \mathrm{dt} \quad$ varmeudviklingshastighed, $[\mathrm{J} / \mathrm{g}$ terstof \cdot time]
$\mathrm{Q}_{0}{ }^{\prime} \quad$ initial differentiel befugtningsvarme, $[\mathrm{kJ} / \mathrm{mol}]$
$\mathrm{Q}_{\text {tot }} \quad$ total befugtningsvarme, [J / g tørstof]
RF relativ fugtighed
$\mathrm{p}_{\mathrm{m}}(\mathrm{T}) \quad$ mætningsdamptryk for vand ved temperaturen $\mathrm{T},[\mathrm{Pa}]$
$\mathrm{R} \quad=8,314 \mathrm{~J} / \mathrm{molK}$ er gaskonstanten
$S \quad$ sorptionsfaktor $=\mathrm{H} / \mathrm{L} . \mathrm{S}$ angiver: Indhold af hemicellulose i forhold til lignin efter vægt
T temperaturen, [K]
u ligevægtsfugtindhold, [g vand/g tørstof]
$\mathrm{u}_{\mathrm{f}} \quad$ fugtindholdet svarende til fibermætning, [g vand/g torstof]
$-\Delta H \quad$ befugtningsentalpi, [J/g tørstof]
$-\Delta H_{0}{ }^{\prime} \quad$ initial differentiel befugtningsentalpi, [$\mathrm{J} / \mathrm{mol}$]
$-\Delta H_{\text {tot }}$ total befugtningsentalpi, [J/g torstof]
$\Delta H_{T}{ }^{\text {a }} \quad$ differentiel entalpi, [$\left.\mathrm{J} / \mathrm{mol}\right]$
$\Delta H^{\prime} \quad$ differentiel entalpi, $[\mathrm{J} / \mathrm{mol}]$
$\Delta \mathrm{S}_{\mathrm{T}}{ }^{\ominus} \quad$ differentiel entropi, [$\mathrm{J} / \mathrm{mol} \mathrm{K}$]
$\Delta S^{\prime} \quad$ differentiel entropi, [$\mathrm{J} / \mathrm{mol} \mathrm{K}$]

Litteratur

[1] Greenspan, L: "Humidity Fixed Points of Binary Saturated Aqueous Solutions", JOURNAL OF RESEARCH of the National Bureau of Standards - A. Physics and Chemistry, Vol. 81A, No. 1, January-Fenruary 1977.
[2] Kelsey, Kathleen E.: "The Sorption of Water Vapour by Wood", Australian Journal of Applied Science, No. 8, 1957, s. 42-54.
[3] Stamm, A.J. \& Loughborough, W.K.: "Thermodynamic of the Swelling of Wood", The Journal of Physical Chemistry, Vol. 39, No. 1, 1935, s. 121-132.
[4] Skaar, C.: "Wood-Water Relations", Springer Series in Wood Science, Springer-Verlag, Berlin, Heidelberg, 1988
[5] Hawley, L.F.: "Wood-liquid relations", U.S. Dep. Agr., Tech. Bull. No. 248, 1931, s. 1-34.
[6] Kollmann, F.P. \& Côté, W.A., jr.: "Principles of Wood Science and Technology I Solid Wood", Springer-Verlag, Berlin, Heidelberg, New York, 1968.
[7] Luikov, A.V.: "Heat and Mass Transfer in Capillary-porous Bodies", Pergamon Press, Oxford, 1966.
[8] Kollmann, F. \& Schneider, A.: "Über das Sorptionsverhalten wärmebehandelet Hölzer", Holz als Roh- und Werkstoff, 21. jahrgang, Heft 3, Springer-Verlag, Berlin, Göttingen, Heidelberg, s. 77-85, märz 1963.
[9] Stamm, A.J.: "Wood and Cellulose Science", The Ronald Press Company, nr: 64-20126, New York, 1964.
[10] Nielsen, L. Fuglsang: "Pore Size Distribution and Shrinkage of Porous Material As related to Moisture Sorption", Teknisk Rapport 316, Laboratoriet for Bygningsmaterialer, Danmarks Tekniske Højskole, 1994, s. 1-68.
[11] Watsfeldt, R. \& Westin, M.: "Byggprodukter av acetylerade träfibre", Institutionen för Skogsindustriell Kemiteknik, Department of Forest Products and Chemical Engineering, 1990.
[12] Freiesleben Hansen, P.: "Materialefysik for bygningsingeniører Beregningsgrundlaget", Instituttet for Bygningsteknik, Aalborg Universitetscenter, oktober 1993.
[13] Schaumann, J \& Gjøl Jacobsen, U.: "Lignocellulosematerialers befugtningsvarme bestemt ved isotermkalorimetri", Teknisk Rapport, Danmarks Tekniske Universitet, Institut for Bærende Konstruktioner og Materialer, 1996.

Litteratur

[14] Helleskov Jybæk, S.: "Måling af hydratiseringsvarme ved isoterm kalorimetri", Teknisk rapport 331/94, Danmarks Tekniske Universitet, Laboratoriet for Bygningsmaterialer", 1994.

Bilag 1. Fugtindhold
Liste over tabeller i bilag 1:

Tabel nr:	Materiale:	Salt:			Side
B1.1.	$\mathrm{B} \not \mathrm{g}(\mathrm{p})$		LiBr,	6\%	69
B1.2.	$\operatorname{Bag}(\mathrm{p})$	Lithium chlorid,	LiCl,	11\%	70
B1.3.	$\mathrm{B} \quad \mathrm{g}(\mathrm{p})$	Magnesium chlorid,	MgCl_{2},	32\%	70
B1.4.	Bøg(p)	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	71
B1.5.	$\mathrm{B} \not \mathrm{g}(\mathrm{p})$	Natrium bromid,	NaBr ,	55\%	72
B1.6.	$\mathrm{B} \not \mathrm{g}(\mathrm{p})$	Natrium chlorid,	NaCl ,	75\%	72
B1.7.	$\mathrm{B} \varnothing \mathrm{g}(\mathrm{p})$	Kaliumnitrat,	KNO_{3},	91\%	73
B1.8.	Hvede(p,a)	Lithium bromid,	LiBr ,	6\%	74
B1.9.	Hvede(p,a)	Lithium chlorid,	LiCl,	11\%	74
B1.10.	Hvede(p,a)	Magnesium chlorid,	MgCl_{2},	32\%	75
B1.11.	Hvede (p, a)	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	76
B1.12.	Hvede(p,a)	Natrium bromid,	NaBr ,	55\%	76
B1.13.	Hvede(p, a)	Natrium chlorid,	NaCl,	75\%	77
B1.14.	Hvede (p,a)	Kaliumnitrat,	KNO_{3},	91\%	78
B1.15.	Bøgeplade	Lithium bromid,	LiBr,	6\%	79
B1.16.	Bageplade	Lithium chlorid,	LiCl,	11\%	79
B1.17.	Bøgeplade	Magnesium chlorid,	MgCl_{2},	32\%	80
B1.18.	Bøgeplade	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	81
B1.19.	Bageplade	Natrium bromid,	NaBr ,	55\%	82
B1.20.	Bøgeplade	Natrium chlorid,	NaCl ,	75\%	82
B1.21.	Bøgeplade	Kaliumnitrat,	KNO_{3},	91\%	83
B1.22.	Hvedeplade	Lithium bromid,	LiBr,	6\%	84
B1.23.	Hvedeplade	Lithium chlorid,	LiCl,	11\%	84
B1.24.	Hvedeplade	Magnesium chlorid,	MgCl_{2},	32\%	85
B1.25.	Hvedeplade	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	86
B1.26.	Hvedeplade	Natrium bromid,	NaBr ,	55\%	86
B1.27.	Hvedeplade	Natrium chlorid,	NaCl ,	75\%	87
B1.28.	Hvedeplade	Kaliumnitrat,	KNO_{3},	91\%	88
B1.29.	Acet. hvede	Lithium bromid,	LiBr,	6\%	89
B1.30.	Acet. hvede	Lithium chlorid,	LiCl,	11\%	89
B1.31.	Acet. hvede	Magnesium chlorid,	MgCl_{2},	32\%	90
B1.32.	Acet. hvede	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	91
B1.33.	Acet. hvede	Natrium bromid,	NaBr ,	55\%	91
B1.34.	Acet. hvede	Natrium chlorid,	NaCl,	75\%	92
B1.35.	Acet. hvede	Kaliumnitrat,	KNO_{3},	91\%	93
B1.36.	Hvede(s, v)	Lithium bromid,	LiBr,	6\%	93
B1.37.	Hvede(s,v)	Lithium chlorid,	LiCl,	11\%	94
B1.38.	Hvede(s,v)	Magnesium chlorid,	MgCl_{2},	32\%	95
B1.39.	Hvede(s,v)	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	95
B1.40.	Hvede(s,v)	Natrium bromid,	NaBr ,	55\%	96
B1.41.	Hvede(s,v)	Natrium chlorid,	NaCl ,	75\%	97

Bilag 1. Fugtindhold

B1.42.	Hvede(s,v)	Kaliumnitrat,	KNO_{3},	91\%	97
$\overline{\mathrm{B} 1.43 .}$	S.e. hvede	Lithium bromid,	LiBr,	6\%	98
B1.44.	S.e. hvede	Lithium chlorid,	LiCl,	11\%	99
B1.45.	S.e. hvede	Magnesium chlorid,	MgCl_{2},	32\%	99
B1.46.	S.e. hvede	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	100
B1.47.	S.e. hvede	Natrium bromid,	NaBr ,	55\%	101
B1.48.	S.e. hvede	Natrium chlorid,	NaCl ,	75\%	101
B1.49.	S.e. hvede	Kaliumnitrat,	KNO_{3},	91\%	102
B1.50.	Vådoxi. hvede	Lithium bromid,	LiBr ,	6\%	103
B1.51.	Vådoxi. hvede	Lithium chlorid,	LiCl,	11\%	103
B1.52.	Vådoxi. hvede	Magnesium chlorid,	MgCl_{2},	32\%	104
B1.53.	Vådoxi. hvede	Kalium carbonat,	$\mathrm{K}_{2} \mathrm{CO}_{3}$,	43\%	105
B1.54.	Vådoxi. hvede	Natrium bromid,	NaBr ,	55\%	105
B1.55.	Vådoxi. hvede	Natrium chlorid,	NaCl,	75\%	106
B1.56.	Vådoxi. hvede	Kaliumnitrat,	KNO_{3},	91\%	107

Ligevægtsfugtindhold u er bestemt af (B1.1), Freiesleben [12].

$$
\begin{equation*}
u=\frac{m_{\text {fugtig }}-m_{t o r}}{m_{\text {ter }}} \tag{B1.1}
\end{equation*}
$$

$m_{\text {tor }}$ er vægten af lignocellulose itør tilstand bestemt på baggrund af 5 enkeltbestemmelser af $m_{\text {ter. }}$. Ved $43^{\circ} \mathrm{C}$ er $m_{\text {fuptig }}$ fastlagt som gennemsnittet af 5 bestemmelser af $m_{\text {fugtig }}$ for en given RF. Ved $23^{\circ} \mathrm{C}$ og $33^{\circ} \mathrm{C}$ er der for en given RF 1 bestemmelse af $\mathrm{m}_{\text {fugtig }}$.

Variationen på ligevægtsfugtindholdet u ved $43^{\circ} \mathrm{C}$ er bestemt af (B1.2). Ved anvendelse af (B1.2) forudsættes fugtindholdet u af være normaltfordelt.

$$
\begin{equation*}
\Delta u=\sqrt{\left(\left(\frac{\delta u}{\delta m_{t o r}}\right) \cdot s\left(m_{t o r}\right)\right)^{2}+\left(\left(\frac{\delta u}{\delta m_{f u g t i g}}\right) \cdot s\left(m_{f u g t i g}\right)\right)^{2}} \tag{B1.2}
\end{equation*}
$$

hvor: $s\left(m_{\text {tor }}\right)$ er spredningen på tørvægten. $s\left(m_{\text {fugtig }}\right)$ er spredningen på vådvægten. $\delta u / \delta m_{\text {tor }}$ og $\delta u / \delta m_{\text {fugtig }}$ făs ved differentiation af u i (Bl.1):

$$
\begin{equation*}
\frac{\delta u}{\delta m_{\text {fugtig }}}=\frac{1}{m_{\text {tor }}} \quad ; \quad \frac{\delta u}{\delta m_{\text {ter }}}=-\frac{m_{\text {fugtig }}}{\left(m_{\text {ter }}\right)^{2}} \tag{B1.3}
\end{equation*}
$$

$m_{\text {tor }} i$ ($B 1.3$) er prøvernes gennemsnitlige tørvægt, og $m_{\text {fugtig }}$ er prøvernes gennemsnitlige vægt opnået ved en given RF og temperatur. Anførte relative fugtigheder er på baggrund af Greenspan [1]. Angivne tider i dette bilag er varigheden af sorptionen ved konstant RF og temperatur.

Bøg(p), Lithium bromid, $6 \%,\left\{(D ø g n), m_{\text {ter }}[g]\right\}$	$\{(101), 2,5965\},\{(108), 2,5994\}$,
$\{(112), 2,5960\},\{(115), 2,5967\},\{(120), 2,5958\}$	
$\mathbf{m}_{\text {tør }}=2,5969 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0015 \mathrm{~g}$

Tabel B.1.1. Ligevagtsfugtindhold, u, ved $R F \approx 6 \%$ for: $B ø g(p)$ ved 23,33 og $43^{\circ} \mathrm{C}$.

$\operatorname{Bog}(\mathbf{p})$, Lithium chlorid, $11 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$	$\{(101), 2,8688\},\{(108), 2,8728\}$,
$\{(112), 2,8696\},\{(115), 2,8692\},\{(120), 2,8688\}$	
$\mathbf{m}_{\text {tor }}=2,8698 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0017 \mathrm{~g}$

	$\operatorname{Bog}(\mathrm{p})$, Lithium chlorid, $11 \%, m_{\text {fugsig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=11,30 \%$	$\mathrm{RF}=11,26$ \%	$\mathrm{RF}=11,18 \%$
40 61 64 68 74 31 25	2,9361	2,9246	$\begin{aligned} & 2,9213 \\ & 2,9182 \\ & 2,9189 \\ & 2,9182 \\ & 2,9191 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=2,9191 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugtig }}\right)=0,0013 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0172 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0191 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0231 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta u=0,0008 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.2. Ligevagtsfugtindhold, u, ved $R F \approx 11 \%$ for: $\operatorname{Bøg}(p)$ ved 23,33 og $43^{\circ} \mathrm{C}$.

Bogg(p), Magnesium chlorid, $32 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$	$\{(101), 2,8346\}$,
$\{(108), 2,8382\},\{(112), 2,8344\},\{(115), 2,8351\},\{(120), 2,8339\}$	
$\mathbf{m}_{\text {tor }}=2,8352 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0017 \mathrm{~g}$

	$\operatorname{Bog}(\mathbf{p})$, Magnesium chlorid, $32 \%, m_{\text {fugtig' }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=32,9 \%$	$\mathrm{RF}=32,2 \%$	$\mathrm{RF}=31,3 \%$
41 61 64 68 74 31 25	3,0053	2,9798	$\begin{aligned} & 2,9596 \\ & 2,9547 \\ & 2,9606 \\ & 2,9652 \\ & 2,9600 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=2,9600 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$s\left(m_{\text {fugig }}\right)=0,0037 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0440 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0510 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0601 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0014 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.3. Ligevogtsfugtindhold, u, ved $R F \approx 32 \%$ for: $\operatorname{Bog}(p)$ ved 23,33 og $43^{\circ} \mathrm{C}$.

Bøg(p), Kalium carbonat, $43 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(101), 2,8179\}$,
$\{(108), 2,8218\},\{(112), 2,8180\},\{(115), 2,8219\},\{(120), 2,8180\}$	
$\mathbf{m}_{\text {brr }}=2,8195 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0021 \mathrm{~g}$

	Bøg(p), Kalium carbonat, $43 \%, m_{\text {fugtigg }}[\mathrm{g}]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	$\mathrm{RF}=43,17 \%$	$\mathrm{RF}=43,18 \%$
62			3,0029
64			2,9977
68			3,0045
74			2,9988
78			2,9982
81			
$\mathbf{s}_{\text {tugig }}=3,0011 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	$\Delta \mathbf{m}=0,0046$		
$\mathbf{u}=0,0644 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$			

Tabel B.1.4. Ligevcegtsfugtindhold, u, ved $R F \approx 43 \%$ for: $\operatorname{Bog}(p)$ ved $43^{\circ} \mathrm{C}$.

$\mathbf{B g g}(\mathbf{p})$, Natrium bromid, $55 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$	$\{(101), 3,0007\}$,
$\{(108), 3,0043\},\{(112), 3,0003\},\{(115), 3,0004\},\{(120), 2,9996\}$	
$\mathbf{m}_{\text {tor }}=3,0011 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0019 \mathrm{~g}$

	$\operatorname{Bog}(\mathrm{p})$, Natrium bromid, $55 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
$\begin{aligned} & 41 \\ & 65 \\ & 68 \\ & 72 \\ & 81 \\ & 31 \\ & 25 \end{aligned}$	3,2697	3,2406	$\begin{aligned} & 3,2294 \\ & 3,2279 \\ & 3,2224 \\ & 3,2258 \\ & 3,2208 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=3,2253 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugtig }}\right)=0,0036 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0747 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0798 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0895 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0014 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.5. Ligevœgtsfugtindhold, u, ved $R F \approx 55 \%$ for: $B ø g(p)$ ved 23, 33 og $43^{\circ} \mathrm{C}$.

Tabel B.1.6. Ligevagtsfugtindhold, u, ved $R F \approx 75 \%$ for: $\operatorname{Bog}(p)$ ved $23,33 \operatorname{og} 43^{\circ} \mathrm{C}$.

Bog(p), Kaliumnitrat, $91 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(101), 1,1183\}$
$\{(108), 1,1195\},\{(112), 1,1179\},\{(115), 1,1185\},\{(120), 1,1184\}$	
$\mathbf{m}_{\text {tor }}=1,1185 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0006 \mathrm{~g}$

	$\operatorname{Bqg}(\mathbf{p})$, Kaliumnitrat, $91 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=94,0 \%$	$\mathrm{RF}=91,4 \%$	RF $=87,9 \%$
$\begin{aligned} & 63 \\ & 65 \\ & 68 \\ & 72 \\ & 81 \\ & 31 \\ & 25 \end{aligned}$	1,3407	1,3186	$\begin{aligned} & 1,3024 \\ & 1,3030 \\ & 1,2919 \\ & 1,3085 \\ & 1,3070 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=1,3026 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0065 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1646 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1789 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1987 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0058 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.7. Ligeveegtsfugtindhold, u, ved $R F \approx 91 \%$ for: $\operatorname{Bog}(p)$ ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvede($\mathbf{p}, \mathrm{a})$, Lithium bromid, $6 \%,\left\{(\mathrm{Dqg} n), m_{\text {tor }}[g]\right\}$	$\{(101), 2,7800\}$,
$\{(108), 2,7809\},\{(112), 2,7795\},\{(115), 2,7798\},\{(120), 2,7794\}$	
$\mathbf{m}_{\text {tr }}=2,7799 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0006 \mathrm{~g}$

	Hvede(p,a), Lithium bromid, $6 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=6,46 \%$	$\mathrm{RF}=6,04 \%$	$\mathrm{RF}=5,71 \%$
40 64 68 74 81 31 25	2,8366	2,8263	$\begin{aligned} & 2,8166 \\ & 2,8237 \\ & 2,8218 \\ & 2,8195 \\ & 2,8209 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=2,8205 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathrm{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0027 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0146 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0167 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0204 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0010 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.8. Ligevegtsfugtindhold, u, ved $R F \approx 6 \%$ for: Hvede (p, a) ved $23,33 \operatorname{og} 43^{\circ} \mathrm{C}$.

Hvede(p,a), Lithium chlorid, $11 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(101), 2,3208\}$,

$\{(108), 2,3217\},\{(112), 2,3208\},\{(115), 2,3203\},\{(120), 2,3204\}$	
$\mathbf{m}_{\text {tar }}=2,3208 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0006 \mathrm{~g}$

	Hvede(p,a), Lithium chlorid, $11 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=11,30 \%$	$\mathrm{RF}=11,26 \%$	$\mathrm{RF}=11,18 \%$
$\begin{aligned} & 40 \\ & 61 \\ & 64 \\ & 68 \\ & 74 \\ & 31 \\ & 25 \end{aligned}$	2,3874	2,3760	$\begin{aligned} & 2,3717 \\ & 2,3702 \\ & 2,3708 \\ & 2,3703 \\ & 2,3705 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=2,3707 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0006 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0215 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0238 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0287 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0004 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.9. Ligevagtsfugtindhold, u, ved $R F \approx 11 \%$ for: Hvede(p,a) ved 23, $33 \operatorname{og} 43^{\circ} \mathrm{C}$.

Hvede(p,a), Magnesium chlorid, $32 \%,\left\{(D \operatorname{Dag} n), m_{\text {tor }}[g]\right\}$	$\{(101), 2,6738\}$
$\{(108), 2,6746\},\{(112), 2,6733\},\{(115), 2,6731\},\{(120), 2,6728\}$	
$\mathbf{m}_{\text {ter }}=2,6735 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0007 \mathrm{~g}$

	Hvede(\mathbf{p}, \mathbf{a}), Magnesium chlorid, $32 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=32,9 \%$	$\mathrm{RF}=32,2 \%$	RF $=31,3 \%$
41 61 64 68 74 31 25	2,8360	2,8195	$\begin{aligned} & 2,8094 \\ & 2,8042 \\ & 2,8096 \\ & 2,8143 \\ & 2,8100 \end{aligned}$
$\mathrm{m}_{\text {fugig }}=2,8095 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0036 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0509 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0546 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0608 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0014 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.10. Ligevcegtsfugtindhold ved $R F \approx 32 \%$ for: Hvede(p,a) ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvede(p,a), Kalium carbonat, $43 \%,\left\{(D \operatorname{ggn}), m_{\text {tor }}[g]\right\}$	$\{(101), 2,8430\}$,
$\{(108), 2,8441\},\{(112), 2,8425\},\{(115), 2,8422\},\{(120), 2,8420\}$	
$\mathbf{m}_{\text {ter }}=2,8428 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0008 \mathrm{~g}$

	Hvede(p,a), Kalium carbonat, 43\%, $m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	$\mathrm{RF}=43,17 \%$	RF $=43,18 \%$
62 64 68 74 78 81			$\begin{aligned} & 3,0590 \\ & 3,0514 \\ & 3,0495 \\ & 3,0495 \\ & 3,0584 \\ & 3,0566 \\ & \hline \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=3,0541 \mathrm{~g}$		$s\left(\mathrm{~m}_{\text {fugig }}\right)=0,0044 \mathrm{~g}$	
$\mathbf{u}=0,0743 \mathrm{~g} / \mathrm{g}$		$\Delta \mathbf{u}=0,0016 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.11. Ligevcegtsfugtindhold, ved $R F \approx 43 \%$ for: $H v e d e(p, a)$ ved $43^{\circ} \mathrm{C}$.

| Hvede(p,a), Natrium bromid, $55 \%,\left\{(D \ell g n), m_{\text {tor }}[g 7\}\right.$ | $\{(101), 2,6301\}$, |
| :--- | :--- | :--- |
| $\{(108), 2,6311\},\{(112), 2,6299\},\{(115), 2,6301\},\{(120), 2,6298\}$ | |
| $\mathbf{m}_{\text {tor }}=2,6302 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0005 \mathrm{~g}$ |

	Hvede(\mathbf{p}, \mathbf{a}), Natrium bromid, $55 \%, m_{\text {fugstig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
$\begin{aligned} & 41 \\ & 65 \\ & 68 \\ & 72 \\ & 81 \\ & 31 \\ & 25 \end{aligned}$	2,9011	2,8701	$\begin{aligned} & 2,8551 \\ & 2,8556 \\ & 2,8499 \\ & 2,8527 \\ & 2,8489 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=2,8524 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0030 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0845 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0912 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1030 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0012 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.12. Ligevagtsfugtindhold ved $R F=55 \%$ for: $\operatorname{Hvede}(p, a)$ ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvede(p,a), Natrium chlorid, $75 \%,\left\{(\right.$ Døgn $\left.), m_{\text {tar }}[g]\right\}$	$\{(101), 1,0468\}$,
$\{(108), 1,0468\},\{(112), 1,0466\},\{(115), 1,0462\},\{(120), 1,0463\}$	
$\mathbf{m}_{\text {tor }}=1,0465 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0003 \mathrm{~g}$

Tabel B.1.13. Ligevœgtsfugtindhold ved $R F \approx 75 \%$ for: $\operatorname{Hvede}(p, a)$ ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvede(p,a), Kaliumnitrat, $91 \%,\left\{(\right.$ Døgn $\left.), m_{\text {tor }}[g]\right\}$	$\{(101), 1,1917\}$,
$\{(108), 1,1920\},\{(112), 1,1913\},\{(115), 1,1914\},\{(120), 1,1914\}$	
$\mathbf{m}_{\text {tor }}=1,1916 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0003 \mathrm{~g}$

Bilag 1. Fugtindhold

	Hvede(p,a), Kaliumnitrat, $91 \%, m_{\text {futig }}[\mathrm{g}]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=94,0 \%$	$\mathrm{RF}=91,4 \%$	$\mathrm{RF}=87,9 \%$
63			1,4005
65			1,4060
68			1,3803
72			1,4155
81			1,4112
31		$\mathbf{s}\left(\mathbf{m}_{\text {fugtig }}\right)=0,0137 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
25		$\Delta \mathbf{u}=0,0115 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	
$\mathbf{m}_{\text {fugig }}=1,4027 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$			
$\mathbf{u}=0,1772 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$			
$\mathbf{u}=0,1950 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right)$			
$\mathbf{u}=0,2110 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right)$			

Tabel B.1.14. Ligevcegtsfugtindhold ved $R F \approx 91 \%$ for: Hvede (p, a) ved 23,33 og $43^{\circ} \mathrm{C}$.

Bøgeplade, Lithium bromid, $6 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(67), 14,9111\}$,
$\{(70), 14,9111\},\{(73), 14,9113\},\{(77), 14,9043\},\{(84), 14,9053\}$	
$\mathbf{m}_{\text {tor }}=14,9086 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0035 \mathrm{~g}$

Tabel B.1.15. Ligevcegtsfugtindhold, u, ved $R F \approx 6 \%$ for: Bogeplade ved 23, $33 \operatorname{og} 43^{\circ} \mathrm{C}$.

Bogeplade, Lithium chlorid, $11 \%,\left\{(\mathrm{Dogn}), m_{\text {tor }}[g]\right\}$			43\},
$\{(70), 15,0050\},\{(73), 15,0038\},\{(77), 14,9975\},\{(84), 14,9981\}$			
$\mathbf{m}_{\text {tr }}=15,0017 \mathrm{~g}$		$\mathbf{s}\left(\mathrm{m}_{\text {bar }}\right)=0,0036 \mathrm{~g}$	
	Bogeplade, Lithium chlorid, $11 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=11,30 \%$	$\mathrm{RF}=11,26 \%$	$\mathrm{RF}=11,18 \%$
$\begin{array}{r} 76 \\ 97 \\ 100 \\ 104 \\ 111 \\ 31 \\ 25 \end{array}$	15,3107	15,2147	$\begin{aligned} & 15,1909 \\ & 15,1856 \\ & 15,1904 \\ & 15,1888 \\ & 15,1898 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=15,1891 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fuguig }}\right)=0,0021 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0125 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0142 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0206 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0003$	

Tabel B.1.16. Ligevcegtsfugtindhold ved $R F \approx 11 \%$ for: Bogeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

| Bogeplade, Magnesium chlorid, $32 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$ | $\{(67), 15,3274\}$ |
| :--- | :--- | :--- |
| $\{(70), 15,3280\},\{(73), 15,3271\},\{(77), 15,3207\},\{(84), 15,3222\}$ | |
| $\mathbf{m}_{\text {tar }}=15,3251 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0034 \mathrm{~g}$ |

Tabel B.1.17. Ligevegtsfugtindhold ved $R F \approx 32 \%$ for: Bogeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Bogeplade, Kalium carbonat, $43 \%,\left\{(D ø g n), m_{\text {tan }}[g]\right\}$	$\{(67), 14,7542\}$
$\{(70), 14,7541\},\{(73), 14,7536\},\{(77), 14,7472\},\{(84), 14,7490\}$	
$\mathbf{m}_{\text {tar }}=14,7516 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0033 \mathrm{~g}$

	Bogeplade, Kalium carbonat, $43 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	RF $=43,17 \%$	$\mathrm{RF}=43,18 \%$
$\begin{array}{r} 98 \\ 100 \\ 104 \\ 111 \\ 115 \\ 118 \end{array}$			
$\mathbf{m}_{\text {fugtig }}=15,5540 \mathrm{~g}$		$\mathbf{s}\left(\mathbf{m}_{\text {fuguig }}\right)=0,0187 \mathrm{~g}$	
$\mathbf{u}=0,0544 \mathrm{~g} / \mathrm{g}$		$\Delta \mathbf{u}=0,0013 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.18. Ligevcegtsfugtindhold, ved $R F \approx 43 \%$ for: Bøgeplade ved $43^{\circ} \mathrm{C}$.

| Bogeplade, Natrium bromid, $55 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$ | $\{(67), 15,6152\}$ |
| :--- | :--- | :--- |
| $\{(70), 15,6154\},\{(73), 15,6151\},\{(77), 15,6083\},\{(84), 15,6094\}$ | |
| $\mathbf{m}_{\text {tor }}=15,6127 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0035 \mathrm{~g}$ |

		rium bromid,	[g]
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
$\begin{array}{r} 77 \\ 101 \\ 104 \\ 108 \\ 118 \\ 31 \\ 25 \end{array}$	16,7899	16,6478	$\begin{aligned} & 16,4279 \\ & 16,4180 \\ & 16,4043 \\ & 16,4148 \\ & 16,3996 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=16,4129 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fogig }}\right)=0,0112 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0513 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0663 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0754 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0008 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.19. Ligevagtsfugtindhold ved $R F \approx 55 \%$ for: Bogeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Bøgeplade, Natrium chlorid, $75 \%,\left\{(\mathrm{D} ø \mathrm{gn}), \mathrm{m}_{\text {tan }}[g]\right\}$			$\{(67), 6,7247\}$
$\{(70), 6,7248\},\{(73), 6,7247\},\{(77), 6,7216\},\{(84), 6,7223\}$			
$\mathbf{m}_{\text {car }}=6,7236$		$\mathbf{s}\left(\mathrm{m}_{\text {ter }}\right)=0,0015 \mathrm{~g}$	
	Bogeplade, Natrium chlorid, $75 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=75,4 \%$	$\mathrm{RF}=75,0 \%$	$\mathrm{RF}=74,6 \%$
77 101 104 108 118 31 25	7,4803	7,4417	$\begin{aligned} & 7,3705 \\ & 7,4506 \\ & 7,3887 \\ & 7,3933 \\ & 7,3859 \end{aligned}$
$\mathbf{m}_{\text {fugtg }}=7,3978 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathrm{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0307 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1003 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1068 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1125 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0046 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.20. Ligevagtsfugtindhold ved $R F=75 \%$ for: Bøgeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Bøgeplade, Kaliumnitrat, $91 \%,\left\{(\right.$ Døgn $\left.), m_{\text {tan }}[g]\right\}$	$\{(67), 6,5693\}$
$\{(70), 6,5697\},\{(73), 6,5696\},\{(77), 6,5666\},\{(84), 6,5672\}$	
$\mathbf{m}_{\text {tgr }}=6,5685 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0015 \mathrm{~g}$

	Bogeplade, Kaliumnitrat, $91 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=94,0 \%$	$\mathrm{RF}=91,4 \%$	$\mathrm{RF}=87,9 \%$
$\begin{array}{r} 99 \\ 101 \\ 104 \\ 108 \\ 118 \\ 31 \\ 25 \end{array}$	7,8494	7,6819	$\begin{aligned} & 7,4893 \\ & 7,4980 \\ & 7,4659 \\ & 7,5017 \\ & 7,4966 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=7,4903 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$s\left(m_{\text {fuggig }}\right)=0,0144 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1403 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1695 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1950 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0022 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.21. Ligevagtsfugtindhold ved $R F \approx 91 \%$ for: Bøgeplade ved 23, 33 og $43^{\circ} \mathrm{C}$.

| Hvedeplade, Lithium bromid, $6 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$ | $\{(67), 15,1310\}$ |
| :--- | :--- | :--- |
| $\{(70), 15,1329\},\{(73), 15,1310\},\{(77), 15,1302\},\{(84), 15,1314\}$ | |
| $\mathbf{m}_{\text {ter }}=15,1313 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0010 \mathrm{~g}$ |

	Hvedeplade, Lithium bromid, $6 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=6,46 \%$	$\mathrm{RF}=6,04 \%$	$\mathrm{RF}=5,71 \%$
76 100 104 111 118 31 25	15,3779	15,3144	$\begin{aligned} & 15,2779 \\ & 15,2994 \\ & 15,2899 \\ & 15,2848 \\ & 15,2840 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=15,2872 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugtig }}\right)=0,0080 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0103 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0121 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0163 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0005 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.22. Ligevagtsfugtindhold ved $R F \approx 6 \%$ for: Hvedeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvedeplade, Lithium chlorid, 11\%, $\left\{(\mathrm{Dogn}), m_{\text {ton }}[g]\right\}$			\{(67), 16,6980\}
$\{(70), 16,6984\},\{(73), 16,6962\},\{(77), 16,6944\},\{(84), 16,6972\}$			
$\mathrm{m}_{\text {ter }}=16,6968 \mathrm{~g}$		$s\left(m_{\text {wro }}\right)=0,0016 \mathrm{~g}$	
	Hvedeplade, Lithium chlorid, $11 \%, m_{\text {fusigg }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=11,30 \%$	$\mathrm{RF}=11,26 \%$	$\mathrm{RF}=11,18 \%$
76 97 100 104 111 31 25	$17,1092$	17,0157	$\begin{aligned} & 16,9694 \\ & 16,9628 \\ & 16,9697 \\ & 16,9683 \\ & 16,9698 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=16,9680 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$s\left(\mathrm{~m}_{\text {tugig }}\right)=0,0030 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0162 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0191 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0247 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0002 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

| Hvedeplade, Magnesium chlorid, $32 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$ | $\{(67), 16,0022\}$ |
| :--- | :--- | :--- |
| $\{(70), 16,0033\},\{(73), 16,0011\},\{(77), 16,0002\},\{(84), 16,0021\}$ | |
| $\mathbf{m}_{\text {tgr }}=16,0018 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0012 \mathbf{g}$ |

Tabel B.1.24. Ligevoegtsfugtindhold ved $R F \approx 32 \%$ for: Hvedeplade ved $23,33 \mathrm{og} 43^{\circ} \mathrm{C}$.

Hvedeplade, Kalium carbonat, $43 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(67), 15,0575\}$
$\{(70), 15,0579\},\{(73), 15,0555\},\{(77), 15,0545\},\{(84), 15,0566\}$	
$\mathbf{m}_{\text {tor }}=15,0564 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0014 \mathrm{~g}$

Bilag 1. Fugtindhold

	Hvedeplade, Kalium carbonat, $43 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	$\mathrm{RF}=43,17 \%$	$\mathrm{RF}=43,18 \%$
98			16,0051
100		15,9769	
104		16,0130	
111		15,9649	
115		15,9734	
118			15,9975
$\mathbf{m}_{\text {fugig }}=15,9885 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {fugtig }}\right)=0,0194 \mathrm{~g}$		
$\mathbf{u}=0,0619 \mathrm{~g} / \mathrm{g}$	$\Delta \mathbf{u}=0,0013 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$		

Tabel B.1.25. Ligevcegtsfugtindhold, ved $R F \approx 43 \%$ for: Hvedeplade ved $43^{\circ} \mathrm{C}$.

| Hvedeplade, Natrium bromid, $55 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$ | $\{(67), 16,4883\}$ |
| :--- | :--- | :--- |
| $\{(70), 16,4903\},\{(73), 16,4884\},\{(77), 16,4875\},\{(84), 16,4886\}$ | |
| $\mathbf{m}_{\text {tor }}=16,4886 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0010 \mathrm{~g}$ |

	Hvedeplade, Natrium bromid, $55 \%, m_{\text {fugtige }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
$\begin{array}{r} 77 \\ 101 \\ 104 \\ 108 \\ 118 \\ 31 \\ 25 \end{array}$	17,7615	17,6280	$\begin{aligned} & 17,4834 \\ & 17,4776 \\ & 17,4587 \\ & 17,4710 \\ & 17,4556 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=17,4693 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathrm{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0119 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0595 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0691 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0772 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0007 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.26. Ligeveegtsfugtindhold ved $R F=55 \%$ for: Hedeplade ved $23,33 \operatorname{og} 43^{\circ} \mathrm{C}$.

| Hvedeplade, Natrium chlorid, $75 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$ | $\{(67), 7,2174\}$ |
| :--- | :--- | :--- |
| $\{(70), 7,2180\},\{(73), 7,2170\},\{(77), 7,2171\},\{(84), 7,2174\}$ | |
| $\mathbf{m}_{\text {ter }}=7,2174 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0004 \mathrm{~g}$ |

Tabel B.1.27. Ligevagtsfugtindhold ved $R F \approx 75 \%$ for: Hvedeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvedeplade, Kaliumnitrat, $91 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(67), 7,2068\}$
$\{(70), 7,2075\},\{(73), 7,2070\},\{(77), 7,2065\},\{(84), 7,2070\}$	
$\mathbf{m}_{\text {tor }}=7,2070 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0004 \mathrm{~g}$

	Hvedeplade, Kaliumnitrat, $91 \%, m_{\text {fuggig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=94,0 \%$	$\mathrm{RF}=91,4 \%$	RF $=87,9 \%$
$\begin{array}{r} 99 \\ 101 \\ 104 \\ 108 \\ 118 \\ 31 \\ 25 \end{array}$	8,6556	8,4985	$\begin{aligned} & 8,3181 \\ & 8,3581 \\ & 8,3106 \\ & 8,3601 \\ & 8,3602 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=8,3414 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0249 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1574 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1792 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,2010 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0035 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.28. Ligevcegtsfugtindhold ved $R F \approx 91 \%$ for: Hvedeplade ved 23,33 og $43^{\circ} \mathrm{C}$.

Acet. hvede, Lithium bromid, $6 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(85), 3,0175\},\{(96), 3,0183\}$
$\{(100), 3,0188\},\{(103), 3,0177\},\{(105), 3,0174\}$	
$\mathbf{m}_{\text {tor }}=3,0179 \mathrm{~g}$	$\mathbf{s}\left(\mathrm{~m}_{\text {tar }}\right)=0,0006 \mathrm{~g}$

	Acet. hvede, Lithium bromid, $6 \%, m_{\text {fuptig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=6,46 \%$	$\mathrm{RF}=6,04 \%$	$\mathrm{RF}=5,71 \%$
$\begin{aligned} & 22 \\ & 46 \\ & 50 \\ & 62 \\ & 69 \\ & 31 \\ & 25 \end{aligned}$	3,0366	3,0315	$\begin{aligned} & 3,0286 \\ & 3,0314 \\ & 3,0292 \\ & 3,0281 \\ & 3,0299 \end{aligned}$
$\mathrm{m}_{\text {fugig }}=3,0294 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathrm{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0013 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0038 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0045 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0062 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0005 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.29. Ligevegtsfugtindhold ved $R F \approx 6 \%$ for: A cet. hvede ved 23,33 og $43^{\circ} \mathrm{C}$.

Acet. hvede, Lithium chlorid, $11 \%,\left\{(D \lg n), m_{\text {tor }}[g]\right\}$	$\{(85), 3,3700\}$,
$\{(96), 3,3696\},\{(100), 3,3688\},\{(103), 3,3688\},\{(105), 3,3687\}$	
$\mathbf{m}_{\text {tor }}=3,3692 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0006 \mathrm{~g}$

	Acet. hvede, Lithium chlorid, $11 \%, m_{\text {fugtig }}[\mathrm{g}]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=11,30 \%$	RF $=11,26 \%$	$\mathrm{RF}=11,18 \%$
12 33 36 40 52 31 25	3,4012	3,3935	$\begin{aligned} & 3,3935 \\ & 3,3919 \\ & 3,3922 \\ & 3,3918 \\ & 3,3919 \end{aligned}$
		$s\left(m_{\text {fugig }}\right)=0,0007 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0069 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0072 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0095 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0003 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Bilag I. Fugtindhold

Acet. hvede, Magnesium chlorid, $32 \%,\left\{(\right.$ Døgn $\left.), m_{\text {tar }}[g]\right\}$	$\{(85), 3,2333\}$,
$\{(96), 3,2342\},\{(100), 3,2322\},\{(103), 3,2331\},\{(105), 3,2324\}$	
$\mathbf{m}_{\text {tar }}=3,2330 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0008 \mathrm{~g}$

	Acet. hvede, Magnesium chlorid, $32 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=32,9 \%$	$\mathrm{RF}=32,2 \%$	$\mathrm{RF}=31,3 \%$
13 33 36 40 52 31 25	3,3038	3,2935	$\begin{aligned} & 3,2882 \\ & 3,2866 \\ & 3,2893 \\ & 3,2939 \\ & 3,2893 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=3,2895 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathrm{s}\left(\mathrm{m}_{\text {fugiip }}\right)=0,0027 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0175 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0187 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0219 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathrm{u}=0,0009 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.31. Ligevcegtsfugtindhold ved $R F \approx 32 \%$ for: A cet. hvede ved $23,33 \mathrm{og} 43^{\circ} \mathrm{C}$.

Acet. hvede, Kalium carbonat, $43 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(85), 3,2644\}$,
$\{(96), 3,2668\},\{(100), 3,2638\},\{(103), 3,2639\},\{(105), 3,2637\}$	
$\mathbf{m}_{\text {tor }}=3,2645 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0013 \mathrm{~g}$

	Acet. hvede, Kalium carbonat, $43 \%, m_{\text {fugtg }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=43,16 \%$	RF $=43,17 \%$	RF $=43,18 \%$
34			3,3569
36			3,3507
40			3,3588
52			3,3512
56			3,3507
59			3,3567
$\mathbf{m}_{\text {fugtg }}=3,3542 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0037 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\mathbf{u}=0,0275 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$		$\Delta \mathbf{u}=0,0012 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.32. Ligevagtsfugtindhold, ved $R F \approx 43 \%$ for: Acet. hvede ved $43^{\circ} \mathrm{C}$.

Acet. hvede, Natrium bromid, $55 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(85), 3,1278\}$,
$\{(96), 3,1311\},\{(100), 3,1264\},\{(103), 3,1268\},\{(105), 3,1262\}$	
$\mathbf{m}_{\text {ter }}=3,1277 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0020 \mathrm{~g}$

	Acet. hvede, Natrium bromid, $55 \%, m_{\text {fugtig: }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
23			3,2281
47			3,2307
50			3,2287
54			3,2297
69			3,2272
31		3,2372	
25	3,2537		
$\mathbf{m}_{\text {fugtig }}=3,2289 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugtig }}\right)=0,0014 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0324 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0350 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0403 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta u=0,0008 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.33. Ligevegtsfugtindhold ved $R F \approx 55 \%$ for: A cet. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

Acet. hvede, Natrium chlorid, $75 \%,\left\{(\right.$ Døgn $\left.), m_{\text {tor }}[g]\right\}$	$\{(85), 1,3481\}$,
$\{(96), 1,3482\},\{(100), 1,3474\},\{(103), 1,3470\},\{(105), 1,3477\}$	
$\mathbf{m}_{\text {tor }}=1,3477 \mathbf{g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0005 \mathrm{~g}$

	Acet. hvede, Natrium chlorid, $75 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=75,4 \%$	RF $=75,0 \%$	$\mathrm{RF}=74,6 \%$
$\begin{aligned} & 23 \\ & 47 \\ & 50 \\ & 54 \\ & 69 \\ & 31 \\ & 25 \end{aligned}$	1,4416	1,4366	$\begin{aligned} & 1,4214 \\ & 1,4313 \\ & 1,4238 \\ & 1,4267 \\ & 1,4265 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=1,4259 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugtig }}\right)=0,0037 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0580 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0660 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0697 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0028 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.34. Ligevcegtsfugtindhold ved $R F \approx 75 \%$ for: Acet. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

Acet. hvede, Kaliumnitrat, $91 \%,\left\{(\right.$ Degn $\left.), m_{\text {tor }}[g]\right\}$	$\{(85), 1,2895\}$,
$\{(96), 1,2898\},\{(100), 1,2891\},\{(103), 1,2891\},\{(105), 1,2887\}$	
$\mathbf{m}_{\text {ter }}=1,2892 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {trr }}\right)=0,0004 \mathrm{~g}$

	Acet. hvede, Kaliumnitrat, $91 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=94,0 \%$	RF $=91,4 \%$	$\mathrm{RF}=87,9 \%$
35 37 40 44 59 31 25	1,4233	1,4065	$\begin{aligned} & 1,3942 \\ & 1,3918 \\ & 1,3957 \\ & 1,3938 \\ & 1,3948 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=1,3941 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0015 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0814 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0910 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1040 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0012 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.35. Ligevagtsfugtindhold ved $R F \approx 91 \%$ for: Acet. hvede ved 23, $33 \mathrm{og} 43^{\circ} \mathrm{C}$.

Hvede(s,v), Lithium bromid, $6 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$	$\{(80), 5,2517\}$,
$\{(91), 5,2525\},\{(95), 5,2525\},\{(98), 5,2511\},\{(100), 5,2509\}$	
$\mathbf{m}_{\text {tar }}=5,2517 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0008 \mathrm{~g}$

	Hvede(s,v), Lithium bromid, $6 \%, m_{\text {fugtige }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=6,46 \%$	$\mathrm{RF}=6,04 \%$	$\mathrm{RF}=5,71 \%$
$\begin{aligned} & 22 \\ & 46 \\ & 50 \\ & 62 \\ & 69 \\ & 31 \\ & 25 \end{aligned}$	5,3888	5,3567	$\begin{aligned} & 5,3353 \\ & 5,3409 \\ & 5,3459 \\ & 5,3434 \\ & 5,3436 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=5,3418 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0041 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0172 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0200 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0261 \mathrm{~g} / \mathrm{g}(23 \circ \mathrm{C}) \end{aligned}$		$\Delta \mathbf{u}=0,0008 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Bilag 1. Fugtindhold

| Hvede(s,v), Lithium chlorid, $11 \%,\left\{(D ø g n), m_{t a r}[g]\right\}$ | $\{(80), 5,2745\}$, |
| :--- | :--- | :--- |
| $\{(91), 5,2753\},\{(95), 5,2752\},\{(98), 5,2737\},\{(100), 5,2738\}$ | |
| $\mathbf{m}_{t a r}=5,2745 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{t a r}\right)=0,0008 \mathrm{~g}$ |

Tabel B.1.37. Ligevœegtsfugtindhold ved $R F \approx 11 \%$ for: Hvede(s,v) ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvede(s,v), Magnesium chlorid, $32 \%,\left\{(\right.$ Dggn $\left.), m_{\text {tor }}[g]\right\}$	$\{(80), 5,3017\}$,
$\{(91), 5,3023\},\{(95), 5,3027\},\{(98), 5,3017\},\{(100), 5,3016\}$	
$\mathbf{m}_{\text {tar }}=5,3020 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0005 \mathrm{~g}$

	Hvede(s,v), Magnesium chlorid, $32 \%, m_{\text {fuglig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=32,9 \%$	$\mathrm{RF}=32,2 \%$	$\mathrm{RF}=31,3 \%$
$\begin{aligned} & 13 \\ & 33 \\ & 36 \\ & 40 \\ & 52 \\ & 31 \\ & 25 \end{aligned}$	5,6662	5,6079	$\begin{aligned} & 5,5991 \\ & 5,5873 \\ & 5,6011 \\ & 5,6129 \\ & 5,6010 \end{aligned}$
$\mathrm{m}_{\text {fugtig }}=5,6003 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0091 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0563 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0577 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0687 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0017 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.38. Ligevcegtsfugtindhold ved $R F \approx 32 \%$ for: H vede(s,v) ved $23,33 \operatorname{og} 43^{\circ} \mathrm{C}$.

| Hvede(s,v), Kalium carbonat, $43 \%,\left\{(D ø g n), m_{\text {tor }}[g]\right\}$ | $\{(80), 5,0420\}$, |
| :--- | :--- | :--- |
| $\{(91), 5,0427\},\{(95), 5,0425\},\{(98), 5,0416\},\{(100), 5,0415\}$ | |
| $\mathbf{m}_{\text {ter }}=5,0421 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0005 \mathrm{~g}$ |

	Hvede(s,v), Kalium carbonat, $43 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	$\mathrm{RF}=43,17 \%$	$\mathrm{RF}=43,18 \%$
34			4,4488
36			5,4421
40		5,4453	
52		5,4440	
56		5,4412	
59			5,4464
$\mathbf{m}_{\text {fugig }}=5,4446 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0028 \mathrm{~g}$		
$\mathbf{u}=0,0798 \mathrm{~g} / \mathrm{g}$	$\Delta \mathbf{u}=0,0006 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$		

Tabel B 1.39. Ligevagtsfugtindhold, ved $R F \approx 43 \%$ for: Hvede(s,v) ved $43^{\circ} \mathrm{C}$.

Bilag 1. Fugtindhold

Hvede(s,v), Natrium bromid, $55 \%,\left\{(\right.$ Døgn $\left.), m_{t o r}[g]\right\}$	$\{(80), 5,2089\}$,
$\{(91), 5,2100\},\{(95), 5,2083\},\{(98), 5,2074\},\{(100), 5,2069\}$	
$\mathbf{m}_{\text {ter }}=5,2083 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0012 \mathrm{~g}$

	Hvede(s,v), Natrium bromid, $55 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
$\begin{aligned} & 23 \\ & 47 \\ & 50 \\ & 54 \\ & 69 \\ & 31 \\ & 25 \end{aligned}$	5,7968	5,7099	$\begin{aligned} & 5,6882 \\ & 5,6887 \\ & 5,6876 \\ & 5,6910 \\ & 5,6800 \end{aligned}$
$\mathbf{m}_{\text {fugtg }}=5,6871 \mathrm{~g}$		$\mathrm{s}\left(\mathrm{m}_{\text {fugtig }}\right)=0,0042 \mathrm{~g}$	
$\begin{aligned} & \mathbf{u}=0,0919 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0963 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1130 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathrm{u}=0,0008 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.40. Ligevcegtsfugtindhold ved $R F \approx 55 \%$ for: Hvede(s,v) ved 23,33 og $43^{\circ} \mathrm{C}$.

| Hvede(s,v), Natrium chlorid, $75 \%,\left\{(\right.$ Døgn $\left.), m_{\text {ler }}[g]\right\}$ | $\{(80), 2,1682\}$, |
| :--- | :--- | :--- |
| $\{(91), 2,1685\},\{(95), 2,1690\},\{(98), 2,1674\},\{(100), 2,1677\}$ | |
| $\mathrm{m}_{\text {ter }}=2,1682 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0006 \mathrm{~g}$ |

Tabel B.1.41. Ligevegtsfugtindhold ved $R F \approx 75 \%$ for: Hvede(s,v) ved 23,33 og $43^{\circ} \mathrm{C}$.

Hvede(s,v), Kaliumnitrat, $91 \%,\left\{(\right.$ Dogn $\left.), m_{\text {tor }}[g]\right\}$	$\{(80), 2,0230\}$,
$\{(91), 2,0232\},\{(95), 2,0235\},\{(98), 2,0229\},\{(100), 2,0230\}$	
$\mathbf{m}_{\text {tr }}=2,0231 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tr }}\right)=0,0002 \mathrm{~g}$

Tabel B.1.42. Ligevagtsfugtindhold ved $R F \approx 91 \%$ for: Hvede((s, v) ved 23,33 og $43^{\circ} \mathrm{C}$.
S.e. hvede, Lithium bromid, $6 \%,\left\{(D e g n), m_{t a r}[g]\right\} \quad\{(102), 3,9359\}$
$\{(105), 3,9348\},\{(107), 3,9348\},\{(109), 3,9350\},\{(115), 3,9353\}$

$\mathbf{m}_{\text {tar }}=3,9352 \mathrm{~g}$	$\mathbf{s}\left(\mathrm{~m}_{\text {tar }}\right)=0,0005 \mathrm{~g}$

	S.e. hvede, Lithium bromid, $6 \%, m_{\text {fugtige }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=6,46 \%$	$\mathrm{RF}=6,04 \%$	RF $=5,71 \%$
$\begin{aligned} & 23 \\ & 47 \\ & 51 \\ & 57 \\ & 64 \\ & 31 \\ & 25 \end{aligned}$	4,0261	4,0123	$\begin{aligned} & 3,9988 \\ & 4,0017 \\ & 4,0043 \\ & 4,0009 \\ & 4,0018 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=4,0015 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathrm{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0020 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0168 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0196 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0231 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0005 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.43. Ligevœgtsfugtindhold ved $R F \approx 6 \%$ for: S.e. hvede ved 23,33 og $43^{\circ} \mathrm{C}$.

S.e. hvede, Lithium chlorid, $11 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$	$\{(102), 3,7202\}$,

$\{(105), 3,7189\},\{(107), 3,7189\},\{(109), 3,7199\},\{(115), 3,7193\}$

$\mathbf{m}_{\text {tar }}=3,7194 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0006 \mathrm{~g}$

	S.e. hvede, Lithium chlorid, $11 \%, m_{\text {fugig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	RF $=11,30 \%$	$\mathrm{RF}=11,26 \%$	$\mathrm{RF}=11,18 \%$
13 34 37 41 47 31 25	3,8351	3,8168	$\begin{aligned} & 3,8091 \\ & 3,8083 \\ & 3,8108 \\ & 3,8097 \\ & 3,8092 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=3,8094 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugtig }}\right)=0,0009 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0242 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0262 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0311 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0003 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.44. Ligevagtsfugtindhold ved $R F \approx 11 \%$ for: S.e. hvede ved $23,33 \mathrm{og} 43^{\circ} \mathrm{C}$.

| S.e. hvede, Magnesium chlorid, $32 \%,\left\{(\right.$ Døgn $\left.), m_{\text {ter }}[g]\right\}$ | $\{(102), 3,5637\}$, |
| :--- | :--- | :--- |
| $\{(105), 3,5626\},\{(107), 3,5631\},\{(109), 3,5631\},\{(115), 3,5633\}$ | |
| $\mathbf{m}_{\text {ter }}=3,5632 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0004 \mathrm{~g}$ |

	S.e. hvede, Magnesium chlorid, $32 \%, m_{\text {fuggig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=32,9 \%$	RF $=32,2 \%$	$\mathrm{RF}=31,3 \%$
14 34 37 41 47 31 25	3,7781	3,7695	$\begin{aligned} & 3,7540 \\ & 3,7474 \\ & 3,7559 \\ & 3,7638 \\ & 3,7568 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=3,7556 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0059 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0540 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0579 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0603 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0017 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

S.e. hvede, Kalium carbonat, $43 \%,\left\{(\right.$ Døgn $\left.), m_{t a r}[g]\right\}$	$\{(102), 3,5361\}$,
$\{(105), 3,5357\},\{(107), 3,5355\},\{(109), 3,5355\},\{(115), 3,5356\}$	
$\mathbf{m}_{\text {tar }}=3,5357 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0002 \mathrm{~g}$

	S.e. hvede, Kalium carbonat, $43 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	$\mathrm{RF}=43,17 \%$	$\mathrm{RF}=43,18 \%$
35 37 41 47 51 54			$\begin{aligned} & 3,8065 \\ & 3,8075 \\ & 3,8160 \\ & 3,8039 \\ & 3,8118 \\ & 3,8128 \\ & \hline \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=3,8098 \mathrm{~g}$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0045 \mathrm{~g}$	
$\mathbf{u}=0,0775 \mathrm{~g} / \mathrm{g}$		$\Delta \mathbf{u}=0,0013 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.46. Ligevagtsfugtindhold, ved $R F \approx 43 \%$ for: S.e. hvede ved $43^{\circ} \mathrm{C}$.

| S.e. hvede, Natrium bromid, $55 \%,\left\{(D ø g n), m_{t a r}[g]\right\}$ | $\{(102), 3,5530\}$, |
| :--- | :--- | :--- |
| $\{(105), 3,5520\},\{(107), 3,5519\},\{(109), 3,5523\},\{(115), 3,5526\}$ | |
| $\mathbf{m}_{\text {tar }}=3,5524 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0005 \mathrm{~g}$ |

	S.e. hvede, Natrium bromid, $55 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52,3 \%$
24			3,8670
38			3,8632
41			3,8651
45			3,8694
54			3,8627
31		3,8856	
25	3,9250		
$\mathbf{m}_{\text {fugtig }}=3,8655 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0028 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0881 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0938 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1049 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0008 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.47. Ligevagtsfugtindhold ved $R F \approx 55 \%$ for: S.e. hvede ved $23,33 \mathrm{og} 43^{\circ} \mathrm{C}$.

| S.e. hvede, Natrium chlorid, $75 \%,\left\{(\right.$ Døgn $\left.), m_{\text {tor }}[g]\right\}$ | $\{(102), 1,5587\}$, |
| :--- | :--- | :--- |
| $\{(105), 1,5581\},\{(107), 1,5583\},\{(109), 1,5585\},\{(115), 1,5586\}$ | |
| $\mathbf{m}_{\text {tar }}=1,5584 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tgr }}\right)=0,0002 \mathrm{~g}$ |

	S.e. hvede, Natrium chlorid, $75 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=75,4 \%$	$\mathrm{RF}=75,0 \%$	$\mathrm{RF}=74,6 \%$
$\begin{aligned} & 24 \\ & 38 \\ & 41 \\ & 45 \\ & 54 \\ & 31 \\ & 25 \end{aligned}$	1,7900	1,7789	$\begin{aligned} & 1,7545 \\ & 1,7965 \\ & 1,7682 \\ & 1,7737 \\ & 1,7716 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=1,7729 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugtig }}\right)=0,0152 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1376 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1415 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1486 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0098 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.48. Ligevcegtsfugtindhold ved $R F \approx 75 \%$ for: S.e. hvede ved 23,33 og $43^{\circ} \mathrm{C}$.

S.e. hvede, Kaliumnitrat, $91 \%,\left\{(D g g n), m_{\text {tor }}[g]\right\}$	$\{(102), 1,6804\}$,
$\{(105), 1,6793\},\{(107), 1,6793\},\{(109), 1,6796\},\{(115), 1,6794\}$	
$\boldsymbol{m}_{\text {tor }}=1,6796 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {ter }}\right)=0,0005 \mathrm{~g}$

	S.e. hvede, Kaliumnitrat, $91 \%, m_{\text {fugzig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=94,0 \%$	$\mathrm{RF}=91,4 \%$	$\mathrm{RF}=87,9 \%$
36 38 41 45 54 31 25	2,0224	2,0051	$\begin{aligned} & 1,9759 \\ & 1,9741 \\ & 1,9613 \\ & 1,9857 \\ & 1,9855 \end{aligned}$
$\mathbf{m}_{\text {fugig }}=1,9765 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$s\left(m_{\text {fugtig }}\right)=0,0100 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1768 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1938 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,2041 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathrm{u}=0,0060 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.49. Ligevcegtsfugtindhold ved $R F \approx 91 \%$ for: S.e. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

| Vådoxi. hvede, Lithium bromid, $6 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$ | $\{(105), 4,3387\}$, |
| :--- | :--- | :--- |
| $\{(108), 4,3391\},\{(110), 4,3382\},\{(112), 4,3386\},\{(118), 4,3384\}$ | |
| $\mathbf{m}_{\text {tor }}=4,3386 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0003 \mathrm{~g}$ |

Tabel B.1.50. Ligevagtsfugtindhold ved $R F \approx 6 \%$ for: Vådoxi. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

| Vådoxi. hvede, Lithium chlorid, $11 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$ | $\{(105), 4,5569\}$, |
| :--- | :--- | :--- |
| $\{(108), 4,5568\},\{(110), 4,5564\},\{(112), 4,5570\},\{(118), 4,5566\}$ | |
| $\mathbf{m}_{\text {tor }}=4,5567 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0002 \mathrm{~g}$ |

	Vådoxi. hvede, Lithium chlorid, $11 \%, m_{\text {fugig }},[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=11,30 \%$	$\mathrm{RF}=11,26$ \%	$\mathrm{RF}=11,18 \%$
13 34 37 41 47 31 25	4,6902	4,6724	$\begin{aligned} & 4,6682 \\ & 4,6676 \\ & 4,6591 \\ & 4,6589 \\ & 4,6597 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=4,6627 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugtig }}\right)=0,0048 \mathrm{~g}(430 \mathrm{C})$	
$\begin{aligned} & \mathbf{u}=0,0233 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0254 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0293 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0011 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

| Vådoxi. hvede, Magnesium chlorid, $32 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$ | $\{(105), 4,7125\}$, |
| :--- | :--- | :--- |
| $\{(108), 4,7126\},\{(110), 4,7132\},\{(112), 4,7131\},\{(118), 4,7130\}$ | |
| $\mathbf{m}_{\text {tor }}=4,7129 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0003 \mathrm{~g}$ |

	Vådoxi. hvede, Magnesium chlorid, 32%, $m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=32,9 \%$	$\mathrm{RF}=32,2 \%$	$\mathrm{RF}=31,3 \%$
$\begin{aligned} & 14 \\ & 34 \\ & 37 \\ & 41 \\ & 47 \\ & 31 \\ & 25 \end{aligned}$	4,9801	4,9537	$\begin{aligned} & 4,9337 \\ & 4,9279 \\ & 4,9362 \\ & 4,9492 \\ & 4,9396 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=4,9373 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugig }}\right)=0,0079 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,0476 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0511 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0567 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathrm{u}=0,0017 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.52. Ligevœegtsfugtindhold ved $R F \approx 32 \%$ for: Vådoxi. hvede ved 23,33 og $43^{\circ} \mathrm{C}$.

| Vådoxi. hvede, Kalium carbonat, $43 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$ | $\{(105), 4,7222\}$, |
| :--- | :--- | :--- |
| $\{(108), 4,7215\},\{(110), 4,7216\},\{(112), 4,7221\},\{(118), 4,7218\}$ | |
| $\mathbf{m}_{\text {tar }}=4,7218 \mathrm{~g}$ | $\mathrm{~s}\left(\mathrm{~m}_{\text {tar }}\right)=0,0003 \mathrm{~g}$ |

	Vådoxi. hvede, Kalium carbonat, $43 \%, m_{\text {fugtig }}[\mathrm{g}]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=43,16 \%$	$\mathrm{RF}=43,17 \%$	$\mathrm{RF}=43,18 \%$
35			5,0341
37			5,0309
41			5,0418
47			5,0285
51			5,0338
54			5,0369
$\mathbf{m}_{\text {fugig }}=$	($43^{\circ} \mathrm{C}$)	$s\left(m_{\text {fugig }}\right)=0,00$	
$\mathbf{u}=0,06$	$3^{\circ} \mathrm{C}$)	$\Delta \mathbf{u}=0,0010 \mathrm{~g}$	

Tabel B.1.53. Ligevagtsfugtindhold, ved $R F \approx 43 \%$ for: Vädoxi. hvede ved $43^{\circ} \mathrm{C}$.

Vådoxi. hvede, Natrium bromid, $55 \%,\left\{(D ø g n), m_{t o r}[g]\right\}$	$\{(105), 4,6583\}$,
$\{(108), 4,6576\},\{(110), 4,6584\},\{(112), 4,6578\},\{(118), 4,6580\}$	
$\mathbf{m}_{\text {tor }}=4,6580 \mathrm{~g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tor }}\right)=0,0003 \mathrm{~g}$

	Vådoxi. hvede, Natrium bromid, $55 \%, m_{\text {fugtig }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=58,1 \%$	$\mathrm{RF}=55,2 \%$	$\mathrm{RF}=52 ; 3 \%$
$\begin{aligned} & 24 \\ & 38 \\ & 41 \\ & 45 \\ & 54 \\ & 31 \\ & 25 \end{aligned}$	5,0837	5,0372	$\begin{aligned} & 5,0043 \\ & 5,0120 \\ & 5,0057 \\ & 5,0107 \\ & 5,0029 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=5,0071 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0040 \mathrm{~g}$	
$\begin{aligned} & \mathbf{u}=0,0749 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0814 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,0914 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0009 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.54. Ligevagtsfugtindhold ved $R F \approx 55 \%$ for: Vådoxi. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

| Vådoxi. hvede, Natrium chlorid, $75 \%,\left\{(\right.$ Dogn $\left.), m_{\text {tor }}[g]\right\}$ | $\{(105), 1,8610\}$, |
| :--- | :--- | :--- |
| $\{(108), 1,8607\},\{(110), 1,8608\},\{(112), 1,8605\},\{(118), 1,8609\}$ | |
| $\mathbf{m}_{\text {tar }}=1,8608 \mathrm{~g}$ | $\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0002 \mathrm{~g}$ |

	Vådoxi. hvede, Natrium chlorid, $75 \%, m_{\text {fugtigi }}[g]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Døgn	$\mathrm{RF}=75,4 \%$	$\mathrm{RF}=75,0 \%$	$\mathrm{RF}=74,6 \%$
$\begin{aligned} & 24 \\ & 38 \\ & 41 \\ & 45 \\ & 54 \\ & 31 \\ & 25 \end{aligned}$	2,1168	2,0990	$\begin{aligned} & 2,0593 \\ & 2,1070 \\ & 2,0737 \\ & 2,0794 \\ & 2,0769 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=2,0793 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathrm{m}_{\text {fugtig }}\right)=0,0174 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1174 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1280 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1376 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0094 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.55. Ligevcegtsfugtindhold ved $R F \approx 75 \%$ for: Vådoxi. hvede ved 23,33 og $43^{\circ} \mathrm{C}$.

Vådoxi. hvede, Kaliumnitrat, $91 \%,\left\{(D ø g n), m_{\text {tar }}[g]\right\}$	$\{(105), 1,6100\}$,
$\{(108), 1,6100\},\{(110), 1,6097\},\{(112), 1,6098\},\{(118), 1,6099\}$	
$\mathbf{m}_{\text {ter }}=1,6099 \mathbf{g}$	$\mathbf{s}\left(\mathbf{m}_{\text {tar }}\right)=0,0001 \mathrm{~g}$

	Vådoxi. hvede, Kaliumnitrat, 91%, $m_{\text {fugrig }}[\mathrm{g}]$		
	$23^{\circ} \mathrm{C}$	$33^{\circ} \mathrm{C}$	$43^{\circ} \mathrm{C}$
Dagn	RF $=94,0 \%$	$\mathrm{RF}=91,4 \%$	$\mathrm{RF}=87,9 \%$
36 38 41 45 54 31 25	1,9314	1,8981	$\begin{aligned} & 1,8717 \\ & 1,8688 \\ & 1,8914 \\ & 1,8809 \\ & 1,8782 \end{aligned}$
$\mathbf{m}_{\text {fugtig }}=1,8782 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$		$\mathbf{s}\left(\mathbf{m}_{\text {fugig }}\right)=0,0088 \mathrm{~g}\left(43^{\circ} \mathrm{C}\right)$	
$\begin{aligned} & \mathbf{u}=0,1667 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1790 \mathrm{~g} / \mathrm{g}\left(33^{\circ} \mathrm{C}\right) \\ & \mathbf{u}=0,1997 \mathrm{~g} / \mathrm{g}\left(23^{\circ} \mathrm{C}\right) \end{aligned}$		$\Delta \mathbf{u}=0,0055 \mathrm{~g} / \mathrm{g}\left(43^{\circ} \mathrm{C}\right)$	

Tabel B.1.56. Ligevagtsfugtindhold ved $R F \approx 91 \%$ for: Vådoxi. hvede ved 23, 33 og $43^{\circ} \mathrm{C}$.

Bilag I. Fugtindhold

