IABM husbygning

DTU Institut for Anvendit Bygge- og Milfoteknik

IABM husbygning beskriver

Aktuelle byggerier 96

Særtryk fra Byggeindustrien
50

IABM husbygning

DTU Institut for Anvendt Bygge- og Miljoteknik

FORORD

Årshefte 1996 indeholder særtryk fra Byggeindustrien af 7 artikler i serien "Aktuelle Byggerier".
Som det fremgår af indholdsfortegnelsen har årets "Aktuelle Byggerier" hovedsageligt beskrevet nyt erhvervsbyggeri, samt renoveringsarbejder i forbindelse med boligbyggeri fra 60-erne.
Emnevalgene, som forfatterne foretager i samråd med Byggeindustriens redaktionskomité, afspejler på den ene side byggesektorens aktuelle aktiviteter, og er tillige et udtryk for byggeprojekter med et nyt og anderledes indhold, - det være sig i konstruktion, i materialevalg, i form og farve.

Artiklerne er i 1996 blevet fortsat i beskrivende form, og med vægt pả gode billeder og ensartede tegninger, herunder specielt nogle karakteristiske detaljer. Seriens forfattere vil gerne takke byggeriernes parter for stor imødekommenhed i forbindelse med udarbejdelsen af de aktuelle projektbeskrivelser og tegningsdetaljer.
Dette årshefte afslutter serien "Aktuelle Byggerier" med artikel nr. 164, der omhandler renovering af boligbyggeriet Maglehøj i Frederiksværk. Artikel nr. 1 om boligbyggeriet Vollsmoseplanen ved Odense blev skrevet i 1969 efter aftale mellem arkitekt Marius Kjeldsen og ingeniørdocent Henrik Nissen. Artikelserien har således beskrevet byggeteknisk udviklingshistorie hen over 27 år, med forhåbentligt godt udbytte for Byggeindustriens læsere.
For forfatternes vedkommende har det været en god lejlighed til at følge byggeriets udvikling pả nærmeste hold og samtidig at skabe personlige kontakter til byggesektoren, hvilket er af meget stor betydning for et DTU-undervisningsinstitut i Anvendt Byggeteknik.

På forfatternes vegne
Per Kjærbye

Indhold af årgang 1996

158 Forskningscenter for Skov og Landskab Per Kjærbye

159 IKEA
H.E. Hansen og Per Kjærbye

160 Nyt filmstudie i TV-byen
Erik Brandt, SBI
161 Arkitekternes Hus
H.E. Hansen

162 Ydervægge, facader og gavle
Per Kjærbye
163 Ingeniørens Hus, Kalvebod Brygge
Per Kjærbye
164 Maglehøj - renovering af boligbyggeri
Per Kjærbye

um på undergulv samt klodsegulv på afretning.
Dæk i sidekorridorer, på gangbroer og i midtersektionen er trækassetter på limtræbjælker, der understøttes på cirkulære træsøjler eller indspændes i de murede kerner.
Tagkonstruktioner er dels 20°-tagpaptage på limtræspær eller 30°-glastage på stålrammer. De papdækkede tage anordnes over kontorarealerne, mens glastagene etableres over sidekorridorer og dele af midtersektionen. Spær og rammer opstilles pr $1,2 \mathrm{~m}$ svarende til det overordnede modul. På limtræspærene oplægges et krydsende lægtesystem samt 19 mm finer med tagpap i listedækning; på stålrammerne oplægges Vitral-glaspaneler.
Ydervægge er udført som træbaseret 2 -trins konstruktion med 22 mm bræddebe-
på hhv $24 \mathrm{M}, 40,8 \mathrm{M}, 9,6 \mathrm{M} \mathrm{og}$ med korridorbredder fra $1,6 \mathrm{~m}$ til $2,3 \mathrm{~m}$.
Etagehøjden er $3,0 \mathrm{~m}$ i stueetagen med en rumhøjde på $2,54 \mathrm{~m}$, mens 1 . etages rumhøjde varierer fra ca $3,5 \mathrm{~m}$ til ca $2,2 \mathrm{~m}$ ved facaden.

Som det tillige fremgår af tværsnittet, er hver fløj disponeret med en langsgående muret kerne, der danner en hushøj bygningskrop. Kernerne adskiller arbejdsrum fra korridorer, og indeholder desuden fremføringsveje for installationer. Kernerne føres 2 moduler, 24 M , ud gennem gavlene, og ca 1 m op over tagfladerne.

Materialevalget har iøvrigt været stærkt påvirket af bygherrens arbejdsområde, og der er således i vidt omfang anvendt træ i de bærende konstruktioner og som facadebeklædning.

Hovedkonstruktionen

Funderingen består af pladsstøbte betonbjælker mellem punktfundamenter med dimensionerne $\varnothing 800$, $\emptyset 1000$ og $ø 1200 \mathrm{~mm}$. Funderingslinierne ligger typisk under ydervæggene, under de bærende tværvægge og under de murede kerner.

Kælderkonstruktioner, krybekælder og terrændæk er pladsstøbte.
Over terræn er bygninger udført af præfabrikerede bygningsdele med bærende betonvægge, træbjælker samt træ- og stålspær i husenes tværretning og med murede kerner i længderetningen.
Etageadskillelsen er 220 mm betondækelementer med træguly på strøer på bløde brikker og med nedhængt akustikloft; i stueetagen anvendes tillige linole-

Figur 1. Etageplan, l:500. Bygningsanlægget er udformet som 2 vinklede kontorbygninger med sidekorridor, der i midterzonen sammenbygges til fællesfunktionerne: reception, kopirum, bibliotek og kantine. Planen er blevet karakteriseret som timeglasformet. Kontorerne på bygningernes „ydersider" har træfacader med spring i facadelinierne, mens sidekorridorerne og kantinen har plane glasfacader. Der projekteres i en 12M-takt i længderetningerne, mens breddemål er fastlagt udfra de aktuelle funktioner.

Figur 2. Tværsnit, 1:250. Det lodrette snit er lagt gennem midtersektionen med kælder, og viser dels kontorfacader med og uden fremspring, dels de murede langsgående kerner, dels gangbroerne, der bliver til sidekorridorer i de frie flgje, og dels vises de forskellige tagopbygninger. 1 Murede kerner, 2 Kontorer, 3 Fællesarealer, 4 Ganghroer/sidekorridorer, 5 Tagpaptage, 6 Glastage.

Beliggenhed

Syd for Hørsholm på Hørsholm Kongevej 11, umiddelbart over for Dr. Neergaardsvej, der fører ind til det tidligere udlagte forskningscenter-område, med blandt andet Statens Byggeforskningsinstitut.

Art og omfang

Bygningsanlægget, der er på ca 3100 etage-m2, indeholder kontorer, laboratorier, kantine og træværksteder. Byggeriet er opført i 2 etager med delvis kælder.

Bygherre

Miljø- og Energiministeriet samt undervisningsministeriet

Arkitekt
Bornebusch Tegnestue A/S, 1471 København K

Rådgivende ingeniører

 Konstruktioner og VVS: Hansen, Carlsen \& Frølund A/S, 1879 Frederiksberg C
El-installationer:

Mogens Balslev A/S, 2610 Rødovre

Landskabsarkitekt

Jørgen Vesterholt, $2100 \mathrm{~K} \varnothing$ benhavn \varnothing

Uddrag af entrepriser
Kloak, beton og murer:
HHM-Byg A/S, 3400 Hillerød
Lamineret træ:
Lami Limtræ A/S, 4621 Gadstrup
VVS:
E. Mortensen \& Søn A/S, 3200 Helsinge

Ventilation:

Unit Industri, 3050 Humlebæk
El:
LN-El, 2630 Tåstrup
Tømrer-snedker:
John Svendsens Bygningssnedkeri, 2970 Hørsholm

Tagpaplægning:

AS Albertsen og Holm, 4000 Roskilde
Glastage og glasfacader:

TEK-Viktoria, 2600 Glostrup
Trægulve:
Sunds Paneler/Parket, 7451 Sunds
Junckers Industri A/S
4600 Køge

Arealforhold

Byggeriet på ialt ca 3100 m2-etageareal er placeret på en ca 12.200 m 2 stor grund.

Tidsforhold

Projektering 1993, licitation januar 94, byggestart maj 94, byggeriet afsluttet august 1995.

Økonomi

Ca. 30 mio.kr.

Figur 3. Lodret snit i facadens fundament, 1:50. Bygningerne afsluttes nedadtil med fuld kælder under midtersektionen, krybekælder under de sydlige fløje og med terrændæk under de nordlige. Detaljen viser afslutningen ved terrændæk med en pladsstabt randbjælke mellem punktiundamenter, samt lodret bjælkeisolering yderst af trykfast mineraluld og inderst af Leca. De cirkuære træsøjler forsættes ned i terræn med et betonelement.
klædning af Thuja yderst; elementerne er monteret mellem Ø 220 mm facadesøjler af træsorten Thuja (K18), opstillet pr 12M.
De murede kerner er 960 mm brede og bestå af 2 længdevægge i $1 / 2$-sten og af tværvægge pr 12M i 1 stens murværk; de udvendige dele af kernerne over tag og ved gavle bestå udelukkende af 1-stens flige.

Statisk hovedsystem

Det statiske hovedsystem, der udgøres af nogle af de omtalte hovedbygnings-dele, beskrives bedst ved at følge lasternes vej fra angrebspunkter gennem statisk aktive bygningsdele til fundamenter og jord.
Lodrette laster på tagflader føres gennem lægter og spær til facadesøjler og til de murede kerner; fra disse bygningsdele går lasterne direkte til jord.
Vandrette tværlaster føres fra træ- og glasfacader gennem træsøjler, metalsprosser og stålrammer til de murede kerner, til etagedækket og til sokkeloversider. Tværfligene i de murede kerner, samt de bærende

Figur 5. Lodret snit i etagedæk/muret kerne, 1:25. For overførsel af vandrette længdekræfter ira dæk til de langsgående kerner etableres der fladstålsforankringer mellem huldækelementer og pladsstøbt plade inden i de murede kerner.

Figur 7. Lodret snit ved tagfod, 1:20. Det 1 m brede udhæng fugtbeskytter såvel spær som træfacaden. De afrundede spær pr 1,2 m danner understøtning for krydslægter og tagflade. 1 Cirkulær træsgjle, 2 Tagrem, 3 Spær, 4 Lægte, 5 Krydslægte, 6 Vandfasi finer, 7 Trekantlister og pap.
betonelementvægge i stueetagen viderefører tværlasterne til fundamenter og jord. Fra sokkeloversider føøres lasterne gennem dæk over kælder, dæk over krybekælder og terrændæk til fundamentskonstruktioner og jord.
Vandrette længdelaster overføres af gavle til tagflader og etagedæk; begge disse bygningsdele viderefører ved skivevirkning lasterne til de murede kerner, der
således virker som længdestabiliserende hovedkonstruktion.
De primære samlingsdetaljer i det statisk aktive hovedsystem er i nogen grad vist i artiklens illustrationer.

Samlingsdetaljer

Projektets tegningsmateriale afspejler generelt en meget omhyggelig ingeniørprojektering med oversigtsplaner og snit i råhus eller i

Figur 4. Lodret snit i etagedæk i kontordel, 1:25. Etagedækket, der udføres af 220 mm betonhulelementer, indgår ved optagelse af såvel lodret som vandrette laster. Snittef viser fugearmering og afslutninger mod facadesgjler af træ og mod de langsgående kerner af murværk.

Figur 6. Lodret snit i træbjæIke/ muret kerne, 1:20. De udkragede gangbroer, der danner sidekorridorer for kontorflgjene, er understøftet på korte limitræbjælker. Disse træbjælker er indspændt i kernernes murede tværvægge. Snittel viser, hvordan dette er anordnet: 6 mm stålkappe om bjælkens indspændingsdel, omstabning med beton indenfor bredden af 1 -stens murværk.
færdigt hus, der tilgodeser alle væsentlige funktionskrav.
Fundamentsdetaljerne viser pladsstøbte bjælker på cirkulære punktfundamenter; bjælkerne isoleres langs de lodrette sider med 50 mm trykfaste batts udvendigt og ca 250 mm Leca på indersiden. Facadesøjlerne forankres til bjælken via indstøbte fladstål. Se figur 3.

Etagedækket, der består af 220 mm tykke huldækelementer i kontordelen, understøttes på 180 mm tykke betontværvægge, og en effektiv dækfugearming låser elementerne sammen til en skivekonstruktion. Denne tunge dækskive kobles til den længdeafstivende murede kerne med kraftige fladstål, der vises på figur 5 .

De laminerede træbjælker er dels simpelt understøttet på træsøjler og murværk, dels udkragede fra kernernes tværvægge ved gangbroerne på 1. etage. Denne indspænding foretages ved at indstøbe bjælken

Kontorafsnittenes facader er planlagt med stor taktfasthed, nemlig 12M mellem de cirkulære Thujatræsgjler, der bærer hovedspærene for tagpaptagene. Ydervægselementerne er traditionelle trabaserede 2 -trins konstruktioner, yderst beklædt med træsorten Thuja, der forventes at ældes til en mere grålig overflade, og som fra naturens side er imprægneret.
i murværket efter først at have monteret en 6 mm stålkappe omkring denne del af bjælken. Detaljen vises på figur 6.
Tag og facade samles traditionelt med tagrem på $₫ ø j$ letoppe, spær og tagflade. Tagpaptagene opbygges med 2 lag listedækning på 19 mm vandfast krydsfiner, der understøttes på et krydsende lægtesystem på spærene, der afrundes ved udhænget. Se foto 3 og figur 7 .
Sammenbygningen mellem de murede kerner og tagkonstruktionerne foretages via betonbjælkeelementer, der monteres på langs i kernerne og understøttes på de mange murede tværflige, idet tagpaptagenes træspær og glastagenes stålrammer kan ikke understøttes af de kun 108 mm tynde murede længdeflige, jævnfør figur 8.
Den 2-etagers høje glaskonstruktion udfor kantinens \emptyset stvendte facade understøttes for vandret last på det yderste laminerede spær. Dette spær er natur-

Figur 8. Lodret snit i tagflader/muret kerne, 1:20. De langsgående kerner indgår i det lastoptagende system ved dels af modtage lodret taglast, som vist på figuren, dels være langdeaistivende hovedhygningsdel, og dels ved at overfgre tværlast fra øverste etage. 1 Muret kerne med $1 / 2$-stens łængdeflige, 2 Betonbjælker på kernens 1 -stens tværflige, 3 Træspær, 4 Metalrammer, 5 Tagpaptag over kontorer, 6 Glastag over gangbroer, 7 Letbeton indmures for brydning ai kuldebroer, 8 Udluftningsrgr.

Figur 9. Lodret snit ved kantinefacade, 1:20. Kantinens astvæg udfares med en hushgj sprosset glaskonstruktion, der understøttes pà kraftige lodrette RHS-profiler. Disse stålprofiler afleverer vindlasten pà overside sokkel og på yderste tagbjælke. Snittet viser den øverste samling samt diverse tagtilslutninger i forbindelse med etablering af en langsgående vandrende. 1 Kanthjæike i limtræ, 2 Stålsajle, 3 Stålkonsol for samling af bjælke og sgjle, 4 Afstivende finerplade, 5 Spær, 6 Hardrock-isolering over spær, 7 Vandrende med fald 1:40, 8 Kantinens glasfacade, 9 Afdækning af glasfacades top.
ligt forstærket med en 19 mm finerplade, der dels danner vederlag for tagspær og dels udgør bund i vandrenden mellem skråtag og glasfacadens $ø$ vre afdækning, som vist på figur 9 .

Afsluttende bemærkninger

Som det fremgår af fotos og tegninger har forskerne for skov og landskab fået et meget inspirerende bygningsværk med det beskrevne nye center i Hørsholm. Såvel ude som inde ånder huset af træ, som imidlertid er anvendt på naturlig måde i den bærende hovedkonstruktion og som beklædningsmateriale. Endvidere

er det lykkedes husets projekterende teknikere at få placeret de mange arbejdsrum på en sådan måde, at huset virker overskueligt og velfungerende.

Byggeteknikken er nok traditionel, men indeholder på samme tid mange arkitektoniske og konstruktionsmæssige nyskabelser, såvel i bygningsform, som ved valg af konstruktiondele og samlings-metoder,- igen en understregning af den uendelighed af muligheder, der ligger i at udvælge og sammenstille de grundlæggende bygningsdele: vagge-dæk- og tagkonstruktioner.

Plandisposition

Det aktuelle byggeri, IKEA og varehuscenter på Nybrovej, er projekteret over et planlægningsmodul på 60 M , med supermodulerne $120 \mathrm{M}, 180 \mathrm{M}$ og 240 M som hovedspændvidder i elementkonstruktionerne, med 60 M som modul for pladsstøbte konstruktioner og for søjleplaceringer i etage 1 , og med submodul 30M som modulær bredde af ydervægselementerne.

Som det fremgår af plantegningen består projektet af et vinkelformet varehuscenter med bredde $2 \times 180 \mathrm{M}$ og med længder på $7 \times 120 \mathrm{M}$ og 17x120M; hertil kommer IKEA-huset med hovedmålene $10 \times 120 \mathrm{M}$ og $9 \times 120 \mathrm{M}$.
Den fri højde under bjælkerne varierer fra ca $2,8 \mathrm{~m}$ i underetager til $8,2 \mathrm{~m}$ i den højeste del af IKEA-huset. Bygningerne er i 1 og 2 etager med delvis kælder.

Konstruktioner

Alle bygninger er konstruktivt udformet som et skeletsystem af betonelementer: søjler, konsolbjælker og TTplader. Funderingen er udført med pæle, pladsstøbte fundamentsbjælker og TTplader.
Ydervægge er overalt projekteret som træbaserede, isolerede elementer med eternitregnskærm ved varehuscentret og med galvaniserede stålplader som ydre beklædning på IKEA-huset; isoleringstykkelsen er ca 150 mm . Ydervæggene fastholdes til RHS-søjler pr 3 m .

Tagopbygningen er TTSelementer med mineraluld og polystyren, herpå en punktklæbet tagdug; isoleringstykkelsen er $70+110$ mm .

Etageadskillelserne bestå af TT-elementer med ca 100 mm maskinglittet overbeton. Enkelte steder etableres der nedhæengte lofter.

Overdækninger langs

IKEA

Af lektor akademiingeniar Per Kjærbye og lektor civilingeniør H.E.Hansen

bygningernes indgangsfacader består i tagniveau af aluzink profilplader ophængt i og understøttet af galvaniserede stålrør; udfor etage-

Fig. 1. Planoversigt, ca 1:400. Byggeriet er disponeret som et fladt U med indkarsel og parkering i gårdrummet. Vinkelhuset mellem modullinie 1 35 er varehuscenteret, mens IKEA-bygningen ligger mellem linierne 35550 g A-V. Alle bygningerne er modulprojekteret over et kvadratnet på 60 M x 60M; vinkelbygningens 2 figje er dog trukket 30M fra hinanden.

IKEA \& varehuscentret
åbner sig mod syd,
reklamesgjlerne over trappetårnene giver klar vejvisning til kunderne.
alet som mod husets bagside langs Helsingørmotorvejen opstilles skiltetårne i stålgitterkonstruktioner med højder på op til 18 meter; tårnene fastholdes til bygningerne med stålrør og med stål-barduner.

Statisk hovedsystem

I bygningernes hovedsystemer føres lodrette laster fra TT-plader i tag og etager til konsolbjælker, søjler og punktfundamenter. I en rakke bygningsafsnit oplægges bjælkerne i etage 2 på langs af bygningerne, mens de i etage 1 lægges på tværs.
Vandrette vindlaster føres fra ydervægselementer til RHS-søjler og videre ind i tag- og etageskiver. Fra etagedæk føres lasterne til tvær- og længdevægge af beton; disse vægge stabiliseres kun af deres egenlast, hvorfor de efterspændes.

Samlinger

Alle samlinger i det primære betonhovedsystem er ordinære og standardiserede. For hver ca 24 m etableres dilatation med indlæggelse af neoprenelejer i elementsamlingerne og med tele-skop-profiler i den pladsstøbte overbeton.

Vandrette dækskivekræfter overføres til de afstivende efterspændte betonvægge gennem armerede samlinger mellem vægge og overbeton.
I modullinie 39 opstilles tunge 280 mm ydervægselementer i etage 2 på ensidige konsolbjælker i etage 1. Grundet stivhedsforskelle mellem bjælker og vægge foretages der en efterspanding af hele undersiden af den ca 41 m lange væglinien 39 , med ialt 17 vægelementer.

Samlinger mellem ydervægselementer indbyrdes, mod RHS-søjler og ved sammenskæringen til tag er alle

Fig. 2. Tværsnit, 1:250. Som det ses af tvarsnittet 1 varehuscenteret er TT-pladernes spændretninger forskellige ide 2 etager: på tværs i etage 1 og på langs i etage 2, med hovedspænd på 180M. Det konstruktive hovedsystem er af beton og består af sgjler, konsolbjælker og TT-plader, hertil enkelte afstivende vægge.
udført efter sikre 2-trinsprincipper.

Installationer

Afløbsinstallationer. Spildevandssystemet er udført som et traditionelt gravitationssystem i PEH- og Loro-X-rør. Tagvand er projekteret for stor fyldning som UV-system med tagbrønde tilsluttet vandrette ledninger under loft. Rørmaterialet er svejste PEH-rør isorerede mod dryp.

Fig. 3. Tvarsnit, 1:250. Tværsnittet i IKEA-bygningen, her modullinie $35-39$, viser principielt det samme strukturelle system som i varehuscenteret, dog her med et hovedspænd på 120M i etagedækket og 240M for den sadelformede TT-tagplade. I linie 39 understattes den bærende væg i etage 2 af en søjle-bjælkerække i etage 1, hvilket har nødvendiggjort indlæggelse af et trækbånd gennem vægelementerne 1 etage 2 , i praksis en efterspænding.

Beliggenhed

Nybrovej 2 i Gentofte ved Helsingørmotorvejens begyndelse.

Art og omfang

Butikscenter i 2 etager på ialt $30.646 \mathrm{~m}^{2}$, heraf IKEAvarehuset på $18.245 \mathrm{~m}^{2}$. Der er 1000 parkeringspladser, hvoraf 350 er overdækkede.

Bygherre

IKEA Handelsselskab A/S,
2630 Tåstrup
Arkitekt og landskabsarkitekt
Tegnestuen Vandkunsten, 1407 Kbh. K

Ingeniør og byggeledelse

Klaus Nielsen, rådgivende ingeniørfirma FRI A/S, 2990 Nivå

Ingeniør El.

Francesco Morelli, 1401
Kbh. K
Ingeniør, miljø
COWI-Consult A/S, 2800
Lyngby
Trafikanalyse
Anders Nyvig A/S, 2970 Hørsholm

Entreprenører

1. Jord, kloak
og gasafværgning
Larsen \& Nielsen A/S, 3460
Birkerød

2. Råhusentreprise

Pihl \& søn, 2800 Lyngby 3. Hovedentreprenør
komplettering
H. Hoffmann \& sømner

2600 Glostrup

Underentreprenører

Betonelementer: Spæncom A/S, 2640 Hedehusene Smede: Frederiks Smede \& Maskinforretning, 7470 Karup
Holbæk Maskinværksted A/S, 4300 Holbæk
MK Industri, 6971 Spjald Tømrer: Chr. Jensen \& sønner A/S, 4700 Næestved
Tagdækning: Hetag Tagdækning A/S, 8722 Hedensted
Elevator: KONE elevator A/S, 2400 Kbh . NV
El \& sprinkler: Albertsen \&

Holm A/S, 4000 Roskilde VVS : Ben-co VVS Aps, 8355 Solbjerg
Ventilation: Klimodan A/ S, 8362 Hørning
Automatik CTS: SAAS Instrument A/S, 2610 Rødovre

Tidsterminer

Arkitektkonkurrence juni 1993, projektstart januar 1994, byggestart januar 1995.

Indflytning butikker 3.nov., IKEA 23. nov. 1995.

Økonomi

Entreprisesum 222 Mio. kr , byggegrund $35 \mathrm{Mio} . \mathrm{kr}$. Kvadratmeterpris 4500 kr .

Vandinstallationer. Hovedledninger er af kobberrør. Skjulte koblingsledninger i væg er PEX-rør uden samlinger i tomrør. IKEA-huset forsynes med varmt vand fra en 25001 varmtvandsbeholder AJVA type 12 placeret i teknikrum på 1. sal. Her er også af hensyn til opvasken et trykforøgeranlæg Grundfoss Hydro 2000 og et blødgøringsanlæg.
Opvarmning og ventilation. Hele IKEA-byggeriet opvarmes med lavtemperaturan$\operatorname{læg} 65 / 30^{\circ} \mathrm{C}$, der leveres af to varmevekslere Alfa Laval CB $30-900 \mathrm{~kW}$, der forsynes med fjernvarme $80 / 35{ }^{\circ} \mathrm{C}$ fra naboen NESA. De rummelige, højloftede butikker er hovedsageligt opvarmede og ventilerede med luftvarmeanlæg, enkelte steder suppleret med radiatorer for at modvirke kuldenedfald fra vinduer i områder for stillesiddende ophold, og indgangspartier er beskyttet mod træk med "varmlufttæpper".
Ventilationen er opdelt funktionelt på 12 store anlæg. Alle kanaler fremtræder som synlige spirokanaler. Hovedkanalerne er „skjult" imellem TT-bjælkerne, hvorfra mindre kanaler fordeler luften til store indblæsningsarmaturer under lofterne. Aggregaterne fra PM-ventilation er typisk opbygget af: filter, udsugningsventilator, spjæld-

Fig. 6. Lodret snit 1:20. Detaljen viser et lodret snit i en bærende og afstivende vag, idet vaggen dels danner lodret vederlag for en konsolbjælke, dels danner vandret vederlag for TT-pladens overbeton for overfarsel af dækskivelast. Enkelte steder iprojektet er det nadvendigt at påtrykke Iodret last på de afstivende vægge gennem lodrette efterspandinger.

Fig. 4. Opstalt af del af vag 39, 1:200. Vægelementerne i linie 39 på strekningen fra linie C-L efterspændes med kabler ca 1 meter over vægundersiderne for at kompensere for en eftergivelig bjælkeunderstatning i underetagen. De punkterede linier er recesser i vægelementernes indersider.

Fig. 5. Detalier, ca 1:20. Bygningerne er opdelte i dilatationsafsnit med $36-48 \mathrm{~m}$'s længder. Dilatationsmulighederne skabes med glidelejer som armerede neopreneplader i vederlagene mellem bjalker og TT-plader. Overbetonen afbrydes ved indlæggelse af teleskop-profiler. I taget kan isoleringen og tagdugen optage de forventelige differensbevagelser

sektor, indblæsningsfilter, tomdel for køleflade, inspektionsdel, varmeflade, indblæsningsventilator, fordelingsbox, lydssluse. De fleste aggregater står frit på taget midt over funktionsområdet. De fem største anlæg for Ikea-huset er samlet i et isoleret teknikrum på taget. Belastningerne pr. m^{3} er små, derfor ventileres der med så beskedent et luftskifte som 1 gang i timen. Anlæggene kører ofte med 100% recirkulation og luftmængden kan nedsættes til 2/3. Ved stort „ryk ind" sørger kuldioxid-sensorer for at øge luftmængden og udeluftandelen. To anlæg for restaurationen og radiobutikken samt edb anlægget er udstyrede med køleanlæg. Alle anlæg er forberedt for installation af køleflader. To anlæg har varmegenvinding, restauranten en krydspladeveksler, administrationen en roterende varmeveksler. Den samlede ventilationsluftmængde er på ca. 250.000
$\mathrm{m}^{3} / \mathrm{h}$. IKEA-huset overvåges og styres via CTS-anlæg. Brandbeskyttelse. Butikshuset er med mindre undtagelser klassificeret og sprinklet efter NR-3 kategori III. Højlageret dog efter HRL kategori III, sprinklet i to niveauer.
Herudover er ventilationsanlæggene udstyret med brandtermostater, der ved for høj temperatur stopper anlæg og lukker spjæld. Hvor ventilationskanaler passerer brandsektioner, de ikke betjener, er de brandisolerede. På store afløbsledninger, der passerer etageadskillelser, er der monteret Firesafe rørmanchet-

Fig. 7. 3D-model at skiltetårn. I gàrdrummet langs bygningerne opstilles stålgitterkenstruktioner til bæring af reklameskilte. Tårnene er ca 18 m haje med 10 m şjler og en reklameflade på ca $8 \times 10 \mathrm{~m}$. Figuren viser en 3Dudtegning af det rumlige stålgitter, hvor vinkelstål er vist med fuldstreg, T-stål med tyndstreg og RHS-stål med punkteret streg.

ter. Endelig er der anbragt brandskabe med slangevinder i henhold til BR 82.
Gasafværgeventilation.
Som bekendt er hele centret bygget på en gammel losseplads.
Som ekspert på området har COWI-consult stået for forundersøgelser, rådgiver for projektering og gennemførelse af de ret omfattende afværgeforanstaltninger. Forundersøgelsen afslørede en del giftaffald, der blev fjernet, endvidere at lossepladsen stadig producerede gasser, methan og kuldioxid. Da det var for kostbart at fjerne affaldet,
valgtes det at forsegle byggegrunden og etablere gasafværgeventilation. Parkeringsarealer er ventileret passivt fra et drænnet gennem stålrørene i et pergolasystem.

Under bygningerne er etableret et dobbelt ventilationssystem i to niveauer, som vist på figur 10 . Anlægget er overvaget med gasdetektorer, der registrerer gaskoncentrationerne i alle hulrumsafsnit, samt barometerstanden, idet lavtryk bevirker forøget gasudvikling. For at sikre driften af gasafværgeanlægget, er både ventilatorer og overvåg-

ningssytem tilsluttede et nødstrømsanlæg.

Afsluttende bemærkninger

Projektet har allerede i sin korte levetid fået stor presseomtale, hvilket vel er naturligt, når man betænker den meget synlige beliggenhed ganske tæt op af Helsingør-motorvejen Gentofte Kommune.
Byggeriet bør også skabe omtale, såvel for sit arkitektoniske udtryk som for sit ingeniørmæssige indhold, og byggeriet kan tåle det.
Indenfor stramme \emptyset kono-

Fig. 8. Aksonometri af udhæng. Langs ydervæggene mod gàrdrummet anordnes udkragede tage bestående af profilerede metalplader på stålgittersystemer. Tegningen viser det projekterede stangsystem, der skal overfare lodrette op-og nedadrettede laster; stængerne understøttes dels på bygningerne, og dels ved bredere udhæng på søjlerækker parallelt med ydervæggene. Et skiltetårn er medtaget i punkteret streg.

Fig. 9. Vandret snit i ydervag, 1:15. Alle ydervægge er af 2 -trins princip, og er opbygget af træskelet med isolering, dampspærre og indvendig gips samt vindspærrende gipsplade, trykimpragnerede lægter og regnskærm; regnskærmen er pä IKEA-bygningen galvaniseret stàlplade og på varehuscenteret er anvendt B9-balgeeternit liggende. Til venstre pà figuren ses, hvorledes ydervæggen passerer foran en bærende-afstivende betonvæg; til hajre ses, hvorledes ydervæggen fastgares til de sekundære stålsøjler, der tillige brandisoleres.

Fig. 10. Lodret snit i krybekælder, 1:20.
A. Primære gasafværgningssystem. 1. Indblæst luft.

2. Vaskede naddesten

3. Eventuel indsivende lossepladsgas.
4. Sivergr.
5. Udsugningskanal af Wavin drænrar.
6. Fundamentsbjælke.
7. Kraftig geotekstil.
8. Pælefundering.
9. Indstøbt plastliste.
10. Fastggrelsesliste.
B. Sekundære gasafvargningssystem i krybekælder, mellem TTbjalker ventileres med 0,5 ganges luftskifte.
11. TT-bjæIker
12. Overbeton.
13. Kraftig plastikmenbran.
derne indkøbshus, der kan tåle at blive set på og brugt.

Projekteringsteknisk er byggeriet også aktuelt med en gennemført elektronisk behandling såvel i ingeniøranalyser som i produktionstegninger. Dog er en række af arkitektens detailtegninger udført manuelt.
Nærværende artikel er også et spejl af dette, idet ingeniørfirmaet direkte har leveret de viste tegninger fra computer, mens arkitektens detaljer er aftrykt direkte fra projektmaterialet.

Gademghlering
Firmaet Holger Andreasen AS. har lanceret et helt nyt produktprogram, der gør firmaet til totalleverandør af vejbygnings- og byplanlægningsopgaver.

Det nye produktprogram, som er udviklet i samarbejde med det engelske firma Streetscene, omfatter alle former for vejudstyr spændende fra pullerter, rækværker og bænke til gadedekorering som blomsterkasser og vejbelysning m.m.
Produkterne er udført i særdeles holdbare materialer fortrinsvis støbejernsprodukter. Filosofien i det nye produktprogram og den nye produktion har været at skabe et flexibelt system, der går fra helt store leverancer helt ned til enkelte enheder.
Konceptet med at have en totalleverandør til levering af byfornyelsesprodukter og produkter til vej og by har allerede vist sin berettigelse i England, hvor systemet har været afprøvet i flere år. Med en enkelt totalleverandør sikres en let og nem beslutningsproces, og der sikres en nem leverings- og udførelsesproces. Skal eksempelvis en gågade renoveres med blomsterkasser, lygtepæle, bænke, affaldsspande kan Holger Andreasen AS. ved hjælp af et avanceret computerprogram specialdesigne de enkelte produkter.
Holger Andreasen AS.
Tlf. 31496111.

Nyt filmstudie i TV-byen

Med indvielsen af et nyt filmstudie har DR fået gode faciliteter til fremtidige TV-optagelser.

Af seniorforsker, civilingeniør Erik Brandt, SBI

DR's nye filmstudie består af en rektangulær bygning opbygget over et modul på 72M. Længde og bredde af bygningen er henholdsvis 6 x 72 M og $5 \times 72 \mathrm{M}(\sim 43,2 \mathrm{x}$ 36 m). Som det fremgår af plantegningen - figur 1 - er

Beliggenhed

TV-byen, Mørkøjvej 500

Art \& omfang

Studiebygning i 2 etager. Gulvplan ca $1500 \mathrm{~m}^{2}$, kælder ca $1500 \mathrm{~m}^{2} \mathrm{og}$ indskudt etage ca $350 \mathrm{~m}^{2}$.

Bygherre

Danmarks Radio

Bygherrerådgivere

Vilhelm Lauritsens Tegnestue (arkitekt), Rambøll (konstruktioner), Birch \& Krogboe (installationer)

Totalentreprenør
Højgaard \& Schultz
hovedparten af bygningen optaget af to studier, som fylder henholdsvis halvdelen og en fjerdedel af det samlede grundareal. I de to studier er rumhøjden helt til underside tag dvs godt 8 m . Til begge studier er

Rådgivere:

Johansen \& Partners (arkitekter), Moe \& Brødsgaard (el og VVS)

Tagdækning

Nordisk Tagdækning

Økonomi

Entreprisesum ca 15 mio. excl. færdiggørelse af indskudt etage

Tidsterminer

Projektstart: primo december 1995 (nedrivning af eksisterende pavilloner) Aflevering: 1. maj 1996
der adgang udefra gennem hejseporte med porthøjde pà knap 6 m .
I den sidste fjerdel af bygningen er der en inskudt etage. I stueplan herunder er der to prøvesale, mens
\qquad

der ovenover er mulighed for indretning af kontorer eller lignende.

Bygningen er udført med fuld kælder, hvoraf hovedparten er beregnet til opmagasinering, og intet har med brugen af de nye studier at gøre. Kun to mindre områder af kælderen skal bruges i forbindelse med de nye studier. Et lille areal pắ ca $5 \times 7 \mathrm{~m}$ midt under det store studie er udnyttet til studiegrav,

Facade at bygningen, der er opbygget i en kombination at beton, stál og limitra
der kan benyttes til opbygning af kulisser, hvor der er behov for nedbygning af fx en trappe. Af samme grund er der i studiegulvet lavet et optageligt dækele-
ment. Desuden er der et lille teknikrum i kxlderen.

Bygningen er opført imellem eksisterende bygninger i TV-byen, på et areal der før husede to pavilloner. Pá grund af at studiebygningen har skullet opføres i et område som var tæt bebygget, har der været specielle problemer med udforelsen

bl.a. med tilkørsel og oplægning af lange elementer.

Hovedkonstruktion

Bygningen er opbygget i en kombination af beton, stål og limtræ.

På trods af beliggenheden i Gyngemosen har der ikke været behov for specielle funderingsforanstaltninger, og fundering er sket med almindelige randfundamenter.

Kelderen er udført med pladsstøbt betongulv udført som terrændæk og bestående af 150 mm Leca nødder og 120 mm armeret beton. Kældervæggene er opført med filigranelementer ovenpå terrrændækket. Udvendigt er kældervæggene isoleret med 100 mm mineraluld. Terrændækket er udført i sektioner, og således at den yderste del er udført forst af hensyn til montering af kældervægelementer. På grund af at udstøbningen foregik i håd frost, har udstøbningen af betondækket budt på specielle problemer, idet betonen havde svært ved at hærde. Før og efter udstøbningen blev de aktuelle sektioner dækket med et telt af presenninger, og der blev varmet op med varmekanoner.

Dakket består af 22 m lange huldækselementer. På grund af pladsforholdene måtte kranen, til monteringen i begyndelsen stå i kxlderetagen, hvor den blev

flyttet efterhånden som elementerne blev lagt op. Gulv i prøvesale og studier er udført som svømmende gulv. Skillelaget er en kraftig geotekstil og gulvpladen er to lag 21 mm amerikansk krydsfiner som er samlet med fer og not - figur 2 a \& b. De to pladelag er sømmet sammen. På grund af de store gulvdimensioner er der lavet en bred spalte langs alle vægge. Spalten dækkes af en indvendig lydabsorberende beklædning se senere. Formålet med denne gulvopbygning er, at gøre det nemt at fastgøre kulisser mv i pladegulvet, og at det i givet fald er simpelt at udskifte gulvpladerne.

Over jorden består konstruktionen af et søjle-drager system i en blanding af stål og beton. Der er anvendt stå rundt om studierne, medens der er anvendt beton ved den indskudte etage. De bxerende stålsøjler er udført som BD60 ved inddækning med $2 \times 19 \mathrm{~mm}$

spånplade $\operatorname{og} 1 \times 13 \mathrm{~mm}$ gipsplade. Dækelementerne i den indskudte etage er samme type som i kælderdækket. De er på grund af pladsforholdene monteret med anvendelse af to kra-
ner placeret i hvert sit hjørne af bygningen.

Ydervaggene er udført med stålkassetter isoleret med 150 mm mineraluld kl. 39. På ydersiden er der vindafdækning af 9 mm gipspla-
de, ventileret hulrum og en 3 mm naturanodiseret aluminium. Der er ikke dampspærre i væggen og derfor er der gjort meget ud af at tætne samlinger, skruehuller mv. På indersiden er
væggenes overflader næsten overalt dækket af lydabsorberende akustikplader af typen Ecophon i størrelsen $100 \times 1200 \times 1200$ mm. I studierne er akustikpladerne på det nederste stykke beskyttet med alustrækmetal og yderligere er der opsat brandimprægneret høvlet bræddebeklædning som spredt forskalling - se figur 3. I prøvesalene er der opsat bræddebeklædning på overvæggene.
Indervaggene er gipspladevægge udfyldt med mineraluld af lydhensyn. Opbygningen af væggene er forskellig afhængig af de omgivende bygningsdele. Under og over det indskudte dæk er fx benyttet en opbygning med 95 mm lodrette stållægter pr 600 mm med 2 x 13 mm gipsplader på begge sider. Loftstilslutning er udført med teleskopløsning. Ved væg mellem studier er der anvendt specialprofiler opsat mellem stålsøjlerne. Ved indervægge på den indskudte etage er der benyttet systemvægge som i princippet er nemme at flytte. Der skal dog hver gang af hensyn til brandsikkerheden udføres isolering mellem loftsskinne og underside af tagplader.
Porten mellem studierne er af lydhensyn udført som en dobbelt port.
Tagkonstruktionen består af 110 mm trapezplader udlagt på limtræsdragere i størrelsen 185 x (900 1170) mm - jvf figur 4 . Over pladerne er lagt en $0,2 \mathrm{~mm}$ dampspærre og 180 mm Rockwool tagplader. Der er opbygget fald med to-vejs tagkiler. Belægningen er Protan tagfolie. Under ta-

Figur 7
get er udført nedhængt loft af akustikplader.

Statisk hovedsystem

De bærende og afstivende systemer følger de ovenfor beskrevne hovedkonstruktioner. Lodrette laster føres gennem bjælker og søjler ned til kældervægge og fundamenter og videre til jord. Vandrette laster optages af tværdragere og krydsafstivninger. En oversigt over den bærende konstruktion er vist på figur 5.

Detaljer

I figurerne 6 til 10 vises eksempler på de samlingsdetaljer, der er benyttet.

Figur 6 viser dækvederlaget på kældervæg med indstøbte gevindstænger for montering af stålsøjler.
Figur 7 viser vandret snit i facadevæg med søjle, stålkassetter og alu-beklædning men uden lydabsorberende beklædning indvendig. Figur 8 viser lodret snit

i stern.
Figur 9 a \& b viser detaljer af udvendig pladebeklædning på vinkeljern. a. viser beklædningsarbejdet ved port til det store studie med vindafdækningen synlig. b viser det færdige resultat på gavl. Figur 10 viser
samling stålsøjle-limtræsdrager. Søjlen er af brandhensyn indklædt med plademateriale.

Installationer

Byggeriet har stort set ordinære installationer når
overalt, nogle steder både over og under nedhængt loft. Der er APDL anlæg på alle døre så de lukkes it tilfælde af alarm på grund af røg eller varme.
Til studiebrug er der et fjernbetjent varslingsanlæg, der benyttes ved optagelse. Ved start af optagelse udsendes et lydsignal, og desuden tændes signallamper der melder om optagelsen en gul lampe udenfor rummet, en rød lampe i rummet og en blå lampe i naborummet.

Afsluttende bemærkninger

Netop i disse dage primo maj 1996 er studier og prøvesale afleveret til bygherren, og de første kulisser er ved at blive bygget op, mens de sidste smamangler afhjælpes. På trods af den hårde vinter er det lykkedes at overholde tidsterminerne, og der har i hele vinteren kun været holdt tre vejrligsdage. Imponerende den hårde vinter taget i betragt-

bortses fra installationerne, der har at gøre med studiebrugen.
Vand- og afløbsinstallationer er af helt almindelig type. Varmeanlæg er med caloriferer i studierne og med radiatorer i prøvesale. Radiatorerne er efter bygherrens ønske anbragt højt oppe på vaggene, for at undgà at de kommer i vejen i gulvhøjde.

Tagafløb er udført med UV-system for stor fyldning, med tagbrønde tilsluttet vandrette ledninger, der er trukket i isoleringslaget.

Der er røgdetektorer

ning. Den indskudte etage færdiggøres - i henhold til planen-senere.

IABM beskriver aktuelle byggerier 161

ARKITEKTERNES HUS

Fig. 9. Et vue over byggepladsen set fra toppen af GI Dok.

Det har været en vanskelig opgave at være arkitekt på arkitekternes eget hus, placeret på en byggegrund der emmer af historie og kvalitet. Det er lykkedes for Nielsen, Nielsen og Nielsen, med en Bygning der er nutidig, enkel og let, en værdig ramme for arkitektstanden

Byggeriets data

Beliggenhed: Strandgade 27, mellem GI. Dok og Eigiveds Pakhus
Byggedata: kontor- og administrationsbygning ialt 3230 m^{2}; 5 etager. Budgetterede hảndvæerkerudgifter 12000 $\mathrm{kr} / \mathrm{m}^{2}$.
Bygherre: Arkitekkernes Pensionskasse
Bygherrerådgiver: Conelius Hansen, Stampe \& Bendiksen
Arkitekt: Nielsen, Nielsen og Nielsen
Ingeniør: Rambell
Landinspektør:
Landinspektørkontoret

Hovedentreprener: Hajgaard \& Schuliz a/s
Underentreprenører: Letbetonmontage:
Gasbetonmontøren Aps
Murer: Håndvæerkergruppen Nordsiæelland
Tømrer: Hugo Svaneeng
Trægulve: Trip Trap A/S
Tagdæekning: Nordisk
Tagentreprise a/s
Gulvbelægning: P. Rasmussen \& sønner
Stål, alu og glas: EK-Viktoria a/s, Schuco International, Scanglas A/S
Maler:Palle B. Andersen

WS \& sprinkler: Ludvigsen \&
Herman a/s
Ventilation: Marius Hansen Ventilation a/s
Automatik: Danfoss a / s El: a/s Alliance Elevator: Otis a/s Telefon: Teledanmark Rengøring: JK Service Container: Farum Containerudlejning A/S Fugning: Kims Fugeservice Byggevand: H\&JVS Materiel hejs: Hillerød Elevatorfabrik A/S Stillads: Dansk Stillads Service

Fig. 1. Siluationsplan 112500 Viser huor dan Arkitekternes hus lukker hullet i Strand gades husrakker Pä pladsen mellem Gl Dok og Eiglveds pak hus er vist den gamle tordoks placering.

Betonelementer:
Betonelement a / s
Letbeton: Anco Herlev
Pudset Lecafacade: F.C
Entreprise A/S
Stålbeslag, Lecafacade:
Maglekilde Maskinfabrik A/S
Gulve i toiletter + kokken:
Acalor Scandinavia A/S
Trapper: Sundby Trapper
Tidsterminer
Arkitekfkonkurrence okt.
1994, Licitation 1. etape nov. 1994, 2. etape marts
1995, byggestart dec.
1995, allevering sept. 1996.

Byggeriets disposition

Byggeriet er realiseret på basis af en arkitektkonkurrence i 1994, der udsprang of et behov for at samle en række of arkitekternes faglige organisationer. Konkurrencen blev vundet af arkitekffirmaet Nielsen, Nielsen og Nielsen fra Århus. I konkurrenceprogrammet var der et krav om to brugere af huset, dette koncept er bevaret i det udførte projekt. Bygningen virker som en fritliggende glasmontre, hvor der er stukket en hvid "betonpind" igennem.
Den svæevende betonbygning er udlejet til Udenrigsministeriet, som har egne adskilte adgangsforhold fra trappeopgang og elevatortårn i den vestige port. Stueetagen i

Fig.2. Stueplan 1.300. 1. Hovedindgang. 2 Reception. 3. Kokken. 4 Modelokaler. 5 Det panoptiske rum 6. Udstilingsareal. 7. Vandbassin

Fig. 10. Troeskinets glas daekning filpasser sig milioet ved at spejle omgivelserne.
forbygningen (fig. 2), der er i dobbelt etageheride indeholder foruden hovedindgangen, reception, kantine og to mødelokaler for arkitekternes hus. Hovedindgangen fører ind til det panoptiske rum, en glasoverdæekket centralhal, der indeholder en fritstående glaselevator og et stålgalleri med trapper og gangbroer med forbindelse til „træeskrinet". Det rummer kontorer og andre faciliteter for arkitekternes faglige organisationer (danske arkitekters landsforbund, ansatte arkitekters råd og praktiserende arkitekters råd) samt arkitekternes forlagsvirksomhed.

Konstruktioner
Da byggepladsen ligger tæt
ved havnen på opfyld og under grundvandsstanden, blev der rammet spunsvæegge omkring byggegruppen. Parterre (kæelderetagen) er derfor udført som en (tung) vandłæt konstruktion i armeret insitustøbt beton med en Volclay membran Daek over kælder, med bl. a. sikringsrum, er ligeledes insitustøbt. "Træskrinet" består af en traditionel betonelementbygning i 5 etager. Samtlige dæek er 220 mm forspæendte huldæekelementer, der er understøttet af søjle/biæelkeelementer i facaden og væegelementer mod det panoptiske rum.
"Betonpinden", der vender ud mod Strandgade, indeholder stueetage, $2,3 \log 4$
etage (fig. 3), idet stueetagen har dobbelt etagehejde. Bygningen er ca. 8 m bred, læengden i stueetagen er ca. 36 m , mens længden i de øvrige etager er $48 \mathrm{~m} .2 .-4$ etage udkrages over stueetagen ved gavlene, idet der i stueetagen ved begge gavle er åben passage (porte) fra Strandgade mod havnepladsen. Konstruktionerne er hovedsageligt udfert med betonelementer. Dæek of 220 mm huldækelementer, der spænder pá fværs mellem facadeelementerne. Facaderne er bærende 180 mm tykke bagvægselementer (med topkonsoller), isolering og Leca-skalmur. De udkragede ender har givet nogle interessante beregnings- og

Fig. 3.4 sals plan 1.300 .1 ,Betonpin de" med kotorer for Udenigs: ministeriel 2. , Stavaret", stål galleri med trapper og gangbro er. 3
"Traeskir net" Arki: tekternes hus.
montagemssige problemer. Samlingerne mellem de enkelte facadeelementer er forsynede med briler (fig.5), så hiver facade udgør en samlet skivekonstruktion ca.10 m høj og 48 m lang. Facadetne understøttes via to 8 m høje 330 mm brede kantbjæelker på de fire 250 mm tykke, kraftigt armerede tvæervægge mod de to trappeskakte og omkring hovedindgangen
Stabiliteten overfor vandrette kræefter sikres af de tværgående væegge samt facaderne og den langsgående væeg i stueetagen ved det lille modelokale. De vandrette kræefter overføres of dæekkonstruktionen ved skivevirkning til de stabiliserende vægge (fig. 6). Specielt kan næevnes, at konstruktionen er en af de første herhjemme, der er dimensioneret efter stringermetoden, med et Edb-program, der er udviklet i samarbeide mellem BKM, DTU og Ramboll. Den Edb-tekniske redigering, herunder udarbejdelse af brugerfladen er foretaget af Ramball. Stålkonstruktioner. „Træeskrinet" kunne med lige så stor ret have fået tilnavnet "Glasskrinet" eller "Stålburet" |fig. 4), for disse materialer er nok så fremtredende. Der er en del stålkonstruktioner i bygningen. Hele træeskrinet er indkapslet i en glasfacade, der bæeres af en stålkonstruktion, der udmæerker sig ved at væere næsten usynlig set udefra. Det er opnået ved $f x$. at træekke de bærende søjler veek fra hiørnerne, der i stedet er afstivede med fladjern under 45 grader. I det centrale panoptiske rum er der diagonalt i rummet opstillet et skråtstillet "stơlstavzer". Funktionen er at bære gangbroer og trappeforbindelser mellem de forskellige afdelinger i arkitekternes hus. Men stålkonstruktionen indgår også i afstivningen af gavlenes glasfacader. Den arkitektoniske ide med de skro̊ søjler er al give en forestilling om stilladserne omkring et skib i en tørdok. Stavəeret består af elleve 19 m hrje, ret slanke stålsøjler of IPE 200 lukket fil kasseprofiler med stålplader $10 * 280$

Fig. 4 Snit 1300 1 Hovedindgang 2. Betonpinden, foran vindueme ses solafskermningen. 3. Det panopliske fum med tappegalle. niel 4 . Tresskrinet. 5. Ventilations og keleanlaeg er placerede pá taget
mm. Stålsøjlerne er opstillet på gulvet i parterre (fig. 7) og er foroven forbundet med UNP 200 stålprofil. Gangbroerne hviler på konsoller af RHS 200* 100 * 8 mm fastgiort til sojlerne med 4 stk. montagebolte M16 (fig. 8). Stavaeret er fritstående og fastholdes ved tværbroerne med Klæbeankre til træeskrinet. Konstruktionen er dimensioneret for en belastning på $3 \mathrm{kN} / \mathrm{m}^{2}$. Gangbroerne er ikke klassificeret som flugiveje. Sto̊lkonstruktionen er ikke brandbeskyttet med isolering eller brandmaling, men stabiliteten er eftervist (BS3O) via en beregning af brandforlobet. I toppen af det panoptiske rum er der etableret røglemme. Stơlkonstruktionerne i glasvaeggene mod trapperum er beskyttet med brandmaling.

Materialer

Også ved materialevalget er der opnået en klar adskillelse mellem de to bygninger. Betonpinden er udvendig logså mod det panoptiske rum) isoleret med 100 mm rockwool og en skalmur af 75 mm leca-blokke, der er pudset i feltopdelt, hvidt puds. På facaden mod Strandgade er der foran vinduerne ophæengt en stålkonstruktion med faste vandrette lameller af cedertrae, der fungerer som solafskzermning, men også som et karak-
tergivende element. Indvendigf i stueetagen er væggene beklæedt med børstede rustrie stålplader. Gulvene i indgangspartiet, der fortsæetter ind i det panoptiske rum og udstillingstrappen, er belagt med 15 mm COPETTI-gulv. Lofterne er lyddæempende
gibslofter $600 * 600 \mathrm{~mm}$. Træeskrinets navn er ikke tilfældigt, for på overfladerne er træe det dominerende materiale. Bygningen er som et træeskrin, der ligger inden i en glasmontre, som omslutter både træeskrinet, trappetårnene og det panoptiske rum.

Mod dette er vaeggen beklæedt med perforerede lyddæmpende log isolerende) paneler af ahorn. Bag glasfacaderne er monteret brede lodrette skodder med ahornfiner. Disse kan drejes for regulering of lysindfald, udkig og kulde/varme. Gulvene i alle etager og pá gangbroer er 20 mm ahornstavparket. Det nedhæengte loft fremtreder som en ubrudt flade uden installationer. Det er opbygget af rusfrie stålkasselter med straekmetal. Lysarmaturer og ventilation er monteret over lofiskassetterne. Taget er isoleret med 100 mm polystyren tagplader dæekket of en Sarnafil tagdug.

Installationer

Bygningen er forsynet med fiernvarme, samlet effekt 300 kW. I boilerrummet i kæelderen er opstillet en pladevarmeveksler Kähler \& Breum M6FGL på 269 kW , der veksler fra $95 / 45^{\circ} \mathrm{C}$ til $70 /$ $40^{\circ} \mathrm{C}$. Varmivandsforsyningen sker med en 500 / lodretstående $K \& B$ varmivandsbeholder Combiterm med to spiraler, effekt 40 kW . De to lejemål har hver sin blandeslojife med separate energimálere. Betonpinden er opvarmet med Hudevad radiatorer. Ventilationsanlæegget er sparet, men forberedt med frringsveje m.v. De to mødelokaler i stuen er ventilerede med trykstyrede VAV-anlæeg, forberedt for keling, samlet ydelse $6000 \mathrm{~m}^{3} / \mathrm{h}$. Træeskrinet er ventileret og kelef (direkte ekspansion) ydelse $10000 \mathrm{~m}^{3} / \mathrm{h}$, kgleeffekt 60 kW . Da glasfocaderne gár fra gulv til loft, er der ved gulvet monteret stottevarme med inddæekkede RIOkonvektorer. Det er endvidere muligt individuelt at åbne

Fig.8. Konsol for gangbroer 1:10. 1. stavæersaile IPE 200. 2. Forstarkningsplade 10 mm . 3. Konsol af RHS $100 * 50 * 8$ mm. 4. Konsolflange $200 * 300 * 30 \mathrm{~mm}$. 5. Montagebolte 4 sik MI6.

Fig. 5. Lodret snit 1.201 yderveg ved betonpindens udkragede del 1 Vædelement med konsol. 2. Kantarmering. 3. Opragende låsebajle fra det nederst veegelement. 4. Daekelement oplagt pá konsol 5 Udragende lo̊sebojle fra dakelement 0. Justerbar montagesoile" of RHS $50 * 50 * 6 \mathrm{~mm}>\varnothing_{\text {ver }}$ ste vagelement med nedad ragende lásebojle.

Fig. 6 . Lodret snit telagekryds 120.1 Tver veeg 250 mm . 2. lásebolle. 3. Dockelement 4. forankring of daekelemeni til vaervaeg 5 Insitustebl etage: doek

Fig: 11. Trappetärnets hiornelosning gor glastacadens stälkonstruktion noesten usynlig.
nogle heitsiddende vinduer i alle kontorer. Det panoptiske rum er ikke regnet opvarmet, men der er gulvarme i indgang og stueetage, for at holde gulvene torre. Hvis der bliver for varmt om sommeren, åbnes ventilationslemme i toppen automalisk. De to kontorblokke er fuldsprinklede, i det panoptiske rum er der ragdetektorer, der i tilfzelde af brand åbner røglemmene. Al automatik er af fabrikat Danfoss.

Afsluttende bemærkninger

Som ved mange byggerier i en by, har der væeret trange pladsforhold for entreprenørerne. Det har veret nødvendigt at stable skurbyen for at skaffe den absolut nedvendige arbejds-og lagerplads. I hele byggeperioden er der betalt parkeringsafgiff til Københavns kommune, fordi man har fäet leveret betonelementer og pumpebeton fra Strandgade. Den relativ strenge vinter har kostet en del vinterforanstaltninger og har givet nogen forsinkelse. Byggeriet kan derfor forst ventes fæerdigt i lobet of september, så det er ikke muligt at vise billeder, der giver et reffærdigt indtryk af det fardige byggeri. I stedet er vist et par ¢jebliksbilleder of en byggeplads i den heffige sluffase. Men der er næeppe twivl om at arkitekternes eget hus nok skal blive vist og bedømt. Mon ikke dommen bliver at arkitekternes hus på værdig vis repræsenterer arkitektstanden.

Ydervægge, facader og gavle

Ydervæggen udgor sammen med tagkonstruktionen bygningens klimaskærm, og skal således projekteres til at tilfredsstille mange forskelligartede funktionskrav. Sumitidig udtrykker ydervæggen ved sinf form og sit materialevalg bygningens kvalitet og funktion. Derfor må arkitekt og ingenior i fallesskab være ansvarlige for ydervæggens ydeevnevurdering, dens konstruktion og udforelse.

2. Skalmur på betonelement

Generelle forhold

Ydervægge i dansk boligbyggeri udførtes i æeldre tid altid af massivt murværk senere som hulmure med og uden isolering. Efter byggeri ets industrialisering i sutningen af 50^{\prime} erne æendredes ydervægskonstrukkionerne fil skalmurede betonvæegge, og senere til betonsandwichveegge, i kombination med lette trabaserede opbygninger. Samtidig med denne udvikling æendredes byggelovgiv ningens grundlag fra de ældre hảndværksbetingede ingeniermetoder fil nye funktionsopdelte krav, som indfertes i Bygningsreglementet 1962. Dette mediørte, at der på ingeniør- og arkitektskoler blev oprettet kurser om projektering effer funktionskrav. Her blev de statiske, de bæeremæessige krav sideordnet med den øvrige bygningstysik i en helhedsonalyse, som dæekker vurderinger af akustiske, varme-fugtmaessige og brandiekniske forhold
samt andre relevante påvirk ninger i den aktuelle projekłeringssituation.
Dette bygningstysiske projekteringskoncept passede ganske godt fil den beskrevne udvikling of ydervæeggens konstruktion, som gik fra simple homogene opbygninger til de stærkt funktionsopdelte, hvor hvert lag i ydervæeggen har sin specielle funktion: regnskæerm, luftspæer
re, varmeisolering, dampspærre, brandskærm etc.

Arkitekikrav

Sideləbende med opfyldelse af de næevnte bygningslysiske krav skal ydervæggen arkitektprojekteres med valg af materiale og overflader, form og farver, placeringer af vinduer, dere og altaner, og hermed hele ydervægsfladens geometriske forhold

Skalnur pá letbeton

Fig. 1. Ydervægge og ydervægsfuger bør altid konstrueres efter 2 -trinsprincippet med et luftret og et varmeisolerende lag inderst, og yderst en omtrent vandtæt regnskæerm med et bagvedliggende ventileret hulum, som vist pả snit C. Snit A viser den ælldre homogene ydervægstype, hvor alle funktioner skal den ælare homogene ydervægstype, hvor alle funktioner skal
klares of éf materiale. Snit B viser l-frinslosningen, hvor det yderste lag skal være bäde regn- og luftret,- et meget svæert kiav at opfylde.
1 Regnskæerm. 2 Luftspærre. 3 Varmeisolering. 4 Fugtspærre. 5 Beklodning.

3. Betonelementer

I industrialiseringens begyndelse var ydervæegstyperne i hej grad ingenior- og produktionsstyret pả den máde, at alle atvigelser fra brugen af standardiserede bygningsdele medførte stæerkt foragede elementpriser. Dette betod temmelig ens bygninger, hvad form og struktur angik, og industrialiseret byggeri fik et dơrligt omdomme, der i nogen grad stadig hæenger ved.

4. Betonelementer

Senere læerte arkitekt, ingeniør og producent at samarbejde om projektering og udformning of præffobrikerede bygningsdele, således at også det industrialiserede byggeri fik en stor grad af variation i form og struktur, der primæert kom til udryk i bygningernes ydervægge, samtidig med at byggeriets økonomi var tilfredsstillende Dagens byggeri præges af meget stor variation i opbygning af ydervargge, valg af materiale, form og farve,tank blot på vore seneste større byggeudstilliger: Blangstedgård ved Odense og Egebjerggård i Ballerup.

Bygningsfysisk projektering

Ydervæeggens udformning bør bestemmes i et tæet sam
spil mellem de indvolverede teknikere og bygherren. Alle bygningsdelens påvirkninger og funktioner skal omhyggeligt filgodeses igennem en bygningsfysisk projektering, hvor alle parter mả tage sit ansvar.
Da ydervegge normalt altid er helt eller delvis prefabrikerede er netop rollefordelingerne og dermed ansvarsforholdene vigtige.
For år tilbage lå ydervzegsudformningen hovedsageligt hos arkitekten, på nær væeggens bæeremæessige forhold. Idag varetages den beregningsmæssige behandling af de avrige funktionskrav normalt hos ingenieren i samarbejide med producenten. Og som nogle arkitekter udrykker det: nu er der alene de yderste par millimeter tilbage til arkitektonisk udfotdelse.

5. Skalmur og metalplader på beton

Projekteringsfordelingen ber smitte of pó ansvarsfordelingen for det samlede produkt, og lige sả vigtigt er det, at parterne er sikker på, af alle betydende forhold for ydervæeggens korrekte funktion er vurderet sagligt betryggende. Et afgrerende forhold for ydervægges holdbarhed er teoretiske og praktiske vurderinger of de varme fugtmæssige forhold. Hvor de
varmemæessige krav styres af Bygningsieglementets betingelser, skal de fugtmæssige forhold normall beregnes/ vurderes af de proiekterende. Ydervegges udvikingshistorie og de fugtmæessige forhold er behandlet pă figur 1,
hvor luftrykvariationen over dels en massiv yderveg (A), dels en 1 -trins opbygning (B) og endelig en 2 -trins opbygning (C) er vist. Tegningen er hentet fra et af vore forelæsningsnotater og viser, hvorledes man isiluation A og B har et trykfald over ydervæggens yderste slagsregnspơvirkede flade; dette gik godt ved den tykke homogene væg (A), mens det vil være vacceptabelt ved den tynde yderskærm

6. Metalkassetter på stål|skelet
med revner og fuger (B). Den sikreste konstruktion er den velkendte 2 -trins losning med regnskæerm med bagvedliggende veniileret hulrum (C). De på figur 1 beskrevne virkemáder bør iagttages såvel ved projektering of nye ydervægge som ved facaderenovering.

Aktuelle ydervegge

Dagens byggeri indeholder ofie en blanding af tunge og lette ydervegskonstruktioner. De tunge er udfort af murværk og beton/letbeton, eller i kombination,- de lette er pladebeklædie trae- eller metalbaserede opbygninger. Der er ikke nogle fordelingsregler for valg af tunge hhiv lette ydervægge, men det er

7. Skalmur med altaner og karnapper

Fig. 2. Med de senere års stedse agede krav ill varmeisolering er temperaturen i de yderste lag i ydervagge blevet lavere. Figuren viser temperaturfordelingen i ydervaegge med varierende isoleringstykkelse. Idag ligger en skalmur eller yderste plade i et betonsandwichelement og falger ganske tat udetemperaturen. Med de mange frysepunktspassager i den danske vinter kan dette medfere frostsprængninger i regnskærmen. 1 Massiv 11/2-stens mur. 2 Isoleret 408 mm hulmur med 1 -stens bagmur. 3 Isoleret 438 mm hulmur med bredstens bagmur. 4 Betonsandwichelement $150+175+80 \mathrm{~mm}$.

8. Skalmur, træ, zink og glas
indlysende, at såfremt ydervæggen er bærende vil den hyppigt tilhare den funge kategori.
Ydervæegstyper kan påvirke indeklimaet, fx ved afgasning eller ved den varmeakkumulerende evne.
Glasydervaegge er også meget anvendt i de senere års erhvervsbyggeri, og ved renovering af boligblokkes altaner og trapperum. Ogsá her er der væesentige indekli-

9. Skalmuret beton med glaspartier
mamæessige forhold at vurdere, som fx opsamling af passiv solvarme. Ved renovering skal den bygningstysiske konsekvens af en tillægsskæerm af glas tillige vurderes kvalificeret.
Mange materialer anvendes aktuelle ydervægskonstruktioner. Når hertil lægges, at facader ofte krummer, er der stadig behov for projektering af ydervægge, samlinger og fuger, som bør følge de grundlæeggende teoretiske principper.

Tunge ydervægge

De tunge ydervægstyper har udviklet sig fra massive til bedre og bedre varmeisolerede dobbeltkonstruktioner i takt med Bygningsreglementets stadig voksende krav. Med øget varmeisoleringstyk-

10. Betonelementer, skalmur og glas
kelse og med afskaffelse af alle væsentlige kuldebroer vil temperaturen i ydervæggens yderste lag blive lavere. Dette forhold er behandlet på figur 2 for dels den homogene væg (1), hvor en massiv kuldebro holder de yderste lag relativt varme, dels de moderat og de højisolerede dobbeltkonstruktioner (2, 3 og 4), hvor de yderste lag folger udetemperaturen ganske neje, og hivor $0^{\circ} \mathrm{C}$-punktet ligger helt inde i isoleringen for den stationæere tilstand 20° til $-5^{\circ} \mathrm{C}$.
Dette forhold øger tæethedskravene til de tunge ydervægges yderste lag, idet de
mange frysepunktspassager i det danske klima ellers let vil betyde frostspræengninger af skalmuren eller yderpladen i betonsandwichelementet. Med de senere års øgede anvendelse af skalmurede højisolerede konstruktioner har murerfaget erkendt det beskrevne problem, og har netop igangsat et afklarings projekt om mulige forbedringer af skalmurens liv som yderste lag i ydervæggen.

11. Beton, metalkassetter og glas

Letfe ydervagge

De træ- eller metalbaserede ydervægge produceres i udstrakt omfang som præfabrikerede bygningsdele, og således vil alle vaesentige funktionbetingede krav normalt være opfyldt af produk-

Fig. 3. De lette træbaserede ydervægstyper findes idag på markedet som et veldokumenteret elementsystem, der tillige indeholder samlingsprincipper og fugeopbygninger. Figuren viser et lodret snit i to facadeelementers samling med et etagedæk, der ligeledes er træbaseret. Regnskæermen er ikke indeholdt i det viste element, men momteres på stedet. Fra de storre producenter ligger alle elementtegninger og samlingsdetaljer parate på CAD-systemer.

12. Bølgeeternit og galvaniseret plade
tet. Kun såfremt ydervæggen skal indgå i byggeriet på en speciel måde, tx være afstivende må der udføres supplerende projektering. Forslag til fastgørelser og fugeudformninger vil ligeledes følge med produktet. Her vil det således være vigtigt, at få besluttet ansvaret for den færdigmonterede ydervægs rette virkemåde.

13. Beton, skalmur, metal og glas

Der vil normalt være en vis grad af valgfrihed, hvad angår regnskærmen. Også her er det nødvendigt, at de projekterende tager en dialog med producenten, der jo har en ganske betydelig specialviden om sit produkt. Figur 3 viser et lodret snit i træbaseret ydervæg og etageadskillelse; regnskærmen monteres på stedet. For de lette ydervægstypers vedkommende er det igen de varme-fugtmæessige funktioner, som der skal ofres stor opmærksomhed. Skal der indbygges nye materialer eller nye konstruktive principper bør der foretages laboratorieforsøg med såvel bygningsdel som fuger overfor luftræethed og for tæethed mod slagregn og fygesne.

Glasvegge

Ydervægge af glas er specialistarbejde, hvor glas, sprosser, isæetningssystemer og fastgørelser udgør et samlet produkt. Glastyper og sprosseprofiler kan dog ændres efter projekt.
Glas indgår idag bygningsty-

14. Skalmur og glas
sisk på lige fod med andre materialer, og kan således projekteres eller valges udfra funktionsbestemte kriterier, som fx bæereevne, brudsikkerhed, lydreduktion, varme- og kondensmodstand, brandmodstandsevne, samt lys- og energigennemgang og forskellig indfarvning eller farvebelægninger.
Figur 4 viser i lodret snit en aktiv solvæeg i et kontorbyggeri; indvendigt en 2-lagsrude, dernæst et ca 300 mm ventilerbart hulrum, og yderst et forhæengt glas på et skjult sprossesystem.

15. Solvæg på betonkonstruktion.

Fig. 4. Figuren viser et lodret snit i en glasvag i et moderne kontorhus, Midtermolen i Kobenhavns havn. Lodrette sprosser fastgøres til betondrekkets forkanter, og inderst udfy/des som normalt med let brystning og 2 -lags ruder. Foran denne 1 -trins facade etableres en solvæg bestående af endnu en glasskærm på sprosser med et bagvedliggende ventilerbart hulrum. Solvarmen kan akkumuleres eller ventileres ud, alt effer behov.

Eksempler

I denne summariske gennemgang af aktuelle ydervæegstyper vises kalajdoskopisk et udvalg of moderne huse som eksempler på arkitekternes meget bevidste arbeide med bygningsudtrykket. Selv rationelt, industrialiseret og modu lært byggeri kan med velvalgte ydervaegge fremstå varieret i form, farve og struktur.

Top Sky skærm med solceller.

Top Sky

Schüco præsenterer fleksible løsninger tilpasset bygningens arkitektur, aluminiumkonstruktioner til butiksfacader og indgangspartier. Flere Top Sky halvtage kan sammenbygges og med solceller signaleres miliøbevidsthed.

Top Sky er ikke kun et halvtag, der giver ly for regn

Top Sky halvage finder isæer anvendelse til butiksfacader eller indgangspartier og kan væere med til at formgive facadetyper
Konstruktionen kan monteres i Schüco-facadesystemerne FW 50 og SK 60 V , men også pá andre facader af metal og træe samt sten og beton.
Fordelene for bygherren er: En aluminium-konstruktion af god kvalitet, der er korrosionsbestandig og nem at
vedigeholde. Funktionen bestemmes af det glas der isæettes. Klart glas, når der kun ønskes beskyttelse mod regn, coated glas til solafskæerming eller solceller når halvtaget skal fungere både som klimaskæerm og miliøvenlig stremkilde
Der findes 2 forskellige typer: Top Sky 1 med aluminiumkonsoller og fast vinkel på 30°. Top Sky II med aluminiumarm og variabel hæeldning mellem $30^{\circ} \circ \mathrm{g} 45^{\circ}$. Alle konstruktionselementer består af aluminium eller rustfrit stål og kan lakeres ; alle RALfarver.
Store opgaver kan loses med Top Sky halviage: Sammenbygningen er nem, bredden og dybden er variabel. Halvtagene fremstilles efter må og tilpasses de lokale forhold. Miliøgevinsten: I stedet for at indsæette almindeligt eller coated glas kan der indsæettes solceller, der producerer strom. Solcellerne findes i forskellige størrelser og farver, som forbindes til moduler imellem ruderne. På en sydfacade uden skygge kan $1 \mathrm{~m}^{2}$ solcellemoduler med monokrystalline celler producere op til 100 Kwh strøm pr. år. Det elektroniske tilbehør til solenergien er også del af Schüco's leveringsprogram. Top Sky halvtage kan leveres of aluminiumproducenter, som producerer i Schüco-systemer.

Yderligere oplysninger: Schüco International KG TIf. +4536772688 Fax. +4536772566

Aflektor Per Kiardye, DTU Institut for Anvendf Bygge- og Miliadekrik.

Ingeniorernes Hus, Kalvehod Brygge

- nyt domicil for Ingeniorforeningen i Danmark, IDA

Ingeniørernes Hus består af en langebygning og et punkthus, begge med 6 etager, et tårn med 8 etager inklusive et 2 -etagers rum overst oppe, samt en forbindelsesbygning i én etage. Husenes ydervaegge er et balanceret mix af rode teglsten, vinduespartier og store glasfelter, der optraeder dels som karnapvinduer, dels som klimaskəerm på tårnet, dels som inddəekning af gavitrapper, og dels som et gennemgående lysbånd under de brede tagudhæeng. Der anvendes farvet og ufarvet spejlende glas i kombination med klart glas, hvor alle typer er energiruder.

Projektets data:

Beliggenhed
Kalvebod Brygge, 1560
Kabenhavn V
Art og omfang
Domicil for Ingeniørforeningen i Danmark, IDA. Et kon: torbyggeri bestående af et lengehus i 6 etager med separat indgangsbygning og et .8 etagers tårn, samt et punkthus i 6 etager forbundet fil længehuset med en énetages forbindelsesbygning. lalt 11.494 etage-m², heraf er $975 \mathrm{~m}^{2}$ kzelder.

Bygherre

Ingeniørhuset A/S, 1780 København V

Arkitekter
Kieler Architects A/S og
Niels Brons ApS, 2100
Kabenhavn \varnothing
Ro̊dgivende ingeniører
Crone \& Koch A/S (konstruktioner og installationer), Carl Bro A/S (geotekniske undersøgelser), Cowi A/S (forurening og afvergeforanstaltninger), Anders Nyvig A/S (trafikplanlægning), Birch \& Krogboe A/S lakustik|.

[^0]Hovedentreprenør
C.G. Jensen, 2750 Ballerup

Økonomi
DKK 100 mio (1996).

Bygherreprogram

Bygherren, Ingeniorhuset A / S, opstillede følgende krav fil konstruktioner og materialer: "Huset skal opfares of velgennemprovede, anerkendte konstruktioner og materialer Tekniske installationer skal væere fuldr tilstroekkelige; mekanisk ventilation i kongresafsnititene, i restaurant ○g i kantine skal suppleres med koling.
Huset skal etableres ud fra en hoj miliøbevidsthed i resourceforbrug, konstruktioner, materialevalg, ventilati-

> Projekt Ingeniorernes Hus i Kobenhavn har verret genstand for sfor opmaerksomhed ingenior- og arkitektidisskrifter: Alle overordnede projekibeslutninger er nu truffet, detailprojekteringen er langt fremme, of de nodvendige inddaemningsarbejder for byggeriet er feardige. Her gives en korf beskrivelse og en status for projektet.
on, teknik, og såfremt der er fordele herved, i aktive energispareforanstaltninger." Miliøindsatsen omfattede også beliggenheden of IDA's nye domicil, sáledes blev det bla vurderet, om Ingeniørforeningens eksisterende ejendomme kunne anvendes, om Dahlerup's Pakhus var en mulighed, eller om der skulle bygges en ny administrationsbygning.
Da en central og også gerne en speciel placering var onskelig, blev der arbeidet med nybyggeri langs Københavns havnelab. Byggeriet skulle samle alle Ingeniørforeningens aktiviteter. Entreprenørfirmaet C.G. Jensen ejede et grundstykke på Kalvebod Brygge, et område som Kieler Arkitects havde udarbejdet lokalplan for,- en delplan som senere skal indgá i en samlet plan for byudvidelser i Kobenhavns Havn.
Det endte med, at man valgte en grund i den nu vedtag ne lokalplan for Fisketorvet langs Kalvebod Brygge, der straekker sig fra Bernstorffsgade tilog med den gamle fiskerihavn.

Organisation

Et projektsamarbejde blev etableret mellem arkitekifirmaerne Niels Brøns og Kieler Architects, Crone \& Koch Rådgivende Ingeniører og entreprenørfirmaet C.G Jensen; endvidere blev ingeniørfirmaet Moe \& Brødsgaard filknyttet som miliakonsulenter.
Senere er kredsen af rådgivende ingeniører udvidet til også al omfatte Anders Nyvig, Birch \& Krogboe, Corl Bro og Cowi; et bredt udsnit of IDA's mediemmer er således nu involveret i projektet.
Som det er velkendt fra mange af de senere års større privalfinansierede bygge- og konkurrenceopgaver, opnås stor projekteringseffekt ved at bygherre, arkitekt og entreprenør samarbejder i den tidligste fase, hvor projektprogram med målsæetninger og ekonomiske betingelser formuleres.
! projekteringsfasen udvides kredsen med de rådgivende

Fig. 1. Plan af etage 1, ca 1:750. Planen viser sammenhæengen mellem de beskrevne bygninger: langen med indgangsbygning, punkthuset og forbindelsesbygningen samt tåmet. Bygningerne er projekteret over er modulnet med 48 M som planlæegningsmål, dog med funktionsbetingede afvigelser nogle få steder, hvor der anvendes $30 \mathrm{M}, 60 \mathrm{M}, 84 \mathrm{M}$ og 90 M . Nettet bruges både som koordineringsvæerktøj og som styring af elementopdelinger. Læengst til heire ses den 2 -etagers konte-rencesal,- omkring den centrale adgangskerne er der placeret endnu én stor og to mindre modesale, der har adgang til en balkon med udsigt over havnearealet.
ingeniører, og i udførelsesfasen fortsæetter samarbejdet mellem arkitekt, ingenior og entreprenør.
Denne projekteringsmodel er blever brugt med succes på Ingeniørernes Hus, og har betydet, at bygherrens krav til projektet er blevet opfyldt optimalt.

Ingeniorernes Hus

IDA's domicil består af 3 bygningskroppe: et læengehus, et to̊m og et punkthus, der sammenholdes af en let forbindelsesbygning.
Læenge- og punkthus udføres med 6 etager; tåmet er i 8 etager og afsluttes med et 2 etagers hajt glasrum.
Beliggenheden ved vandet udnyttes med spejlinger og udsyn. Læengebygningen og punkhuset folger kajen og omslutter et lille bassin, mens to̊met er placeret længere ude i havnelobet med restaurant og ude-servering på en flydeponton.
Hele bygningskomplekset hviler på et 0.8 m høit podium, hvis skrå sider beklæedes med lyse betonelementer og samler således de 3 forskellige bygninger.
Bygningerne fremstå i en vekselvirkning mellem robuste materialer som murværk,
beton, granit, glas, stål og træ.

I de røde teglstensfacader

 placeres små og store, klare og spejlende glaspartier, der i \varnothing verste etage udvider sig fil et sammenhæengende glasbånd; dette bånd skaber lethed i overgangen til det de brede tagflader, hvor det brede tagudhæeng forsynes med skrå stålsøjler.
Konstrukfioner

Bygningskomplekset opføres med pladsstrbt kolder og med betonelementer i etagerne.
Funderingen foretages med 10-12 m lange betonpæele i et inddæemmet område of havnelobet.
Facaderne består af bæerende og længdeafstivende betonrammer, hvorimellem der oplægges 270 mm tykke langspænddæk fra facade til facade. Tvæerafstivningen foretages ved gavivæegge og ved trappe- og elevatorkerner.
Rammeelementerne har tykkelser på 200, 250 og 300 mm . Der isoleres med 150 mm , og yderst afsluttes med skalmur i rode, blødstrøgne sten. I øversie etage udføres regnskærmen af glas.
Tage udføres som traespar
og -kassetter med aluminiumsdækning.
Tånets øverste 2 etoger beklæedes med glasydervægge.
Alle trappekonstruktioner er brandmalede ståltrapper.
Der anvendes overalt energi glas med λ-væerdier varierende mellem $0,5-1,4 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$. Indvendige væegge er beton og letbeton samt gipsvæeg-ge,- alle med miliøvenlige behandlinger.
Lofter er generelt gips-systemer, dog alu-systemer i offentlige rum; belysning integreres i loftsystemerne.
Gulve er valgt til hårditræ og slebne hvide betonfliser i offentlige arealer og i konfe-rencesal,- ææpper og træ i kontorer og konferencerum,klinker i toilefter og kokkenarealer.

Installationer

Der modtages fjernvarme fra Københavns Belysningsvæsen, og der installeres tillige solceller.
Der installeres mekanisk ventilation i hele huset. Opvarmning sker med traditionelt vandvarmeanlæg med radiatorer. Derudover forsynes konference- og møderum, stue, 1. og 2. sal i tårn og i læengehus samt kantine og køkken med køling.
Køleanlæggets kondensator køles med havand. Alle ventilationsanlæg forsynes med varmegenvinding. Varme- og ventilationsanlæg styres og overvåges af CTSanlæeg, der tillige opsamler og præsenterer energidata. Der installeres belysningsanlaeg baseret på lavenergiarmaturer, og der etableres installationspaneler langs ydervægge for foring of el, edb og telefonkabler.

Afsluttende bemærkninger

Overalt i projektering og ved valg af materialer og konstruktioner er der tæenkt milio-rigtigt,- med solafskærmning, minimal varmeafvigelse fra belysning, kuldebroisolering af sprosser, forsvarlig men minimal mekanisk ventilation, toiletter med minimum skyllemængde, vandbesparende armaturer, miliømalede overFlader. Desuden er principperne for miliørigtig projekte-

Fig. 2. Tværsnit C, ca 1:750. Snittet er lagt gennem tårn, længehus, sidegang og indgangsbygning. Længehusets sadeltag er forsynet med en forhejet midtersektion for placering og fremforing af installationer. Indgangsbygning og tån afsluttes med glasklaedte skråtage, mens forbindelsesbygningen har fladt tag. Hovedkonstruktionerne er udført af betonelementer, skråtage er understøittet på stâlrammer, mens sadeltage er trækassetter på træespæer.
ring anvendt ved valg af såvel hovedstruktur som kompletterende bygningsdele.
Af mere usæedvanlige, men
dog traditionelle projekteringsforhold skal nævnes, at Ingeniørernes Hus i 6 etager skal dimensioneres for ulykkeslast, hvor den rumlige
stabilitet skal eftervises med borffald af bæerende bygningsdele. Endvidere skal der naturligvis foretages brandtekniske analyser of
bærende bygningsdele, herunder de ca 7.5 m høje betonvægge ved den toetagers høje konferencesal.

DTU-IABM beskriver Aktuelle Byggerier 164

Maglehoj - renovering af boligbyggeri

Boligbebyggelsen Maglehoj fremstå efter renoveringen med nye tagkonstruktioner, nye gavle, nye døre og vinduer samt nye altanvæegge; desuden er facademurvaerket beskyttet med fugning, filtsning og nye brede tagudhæeng. Udenomsarealerne er tillige omlagt med etablering og moblering af nye opholdsarealer, legepladser, stisystemer, pladser, beplantninger og parkeringsområder.

Byggeriets data

Beliggenhed
Havtornvej og Ildtornvej, 3300 Frederiksværk

Art og omfang Renovering af 9 boligblokke med ialt 419 lejligheder, samt opførelse af ca $300 \mathrm{~m}^{2}$ nyt fæelleshus.
Renoveringen omfatter $12.000 \mathrm{~m}^{2} \mathrm{tag}, 8.000 \mathrm{~m}^{2}$ ydervæg og $60.000 \mathrm{~m}^{2}$ udenomsarealer, desuden udskiftning af døre og vinduer, nye altaninddæekninger og ny varmtvandsforsyning.

Altanfacaden på de 4 -etagers blokke er her vist for renoveringen med delvis overdækkede altaner, fritstående altanvanger, flade tage og pultage med eternitbeklæedt tagpande, men ingen alvorligere nedbrydninger af konstruktioner og materialer.

Bygherre

Lejerbo afd 135-0, Maglehøj

Bygherrerådgiver

Boligselskabet Lejerbo, Byg-
geafdelingen, $2100 \varnothing$
Arkitekt
Niels Houlberg, m.a.a./ p.a.r., 1458 K

Totalrådgiver og rådgivende ingeniør
Birch \& Krogboe A/S, 2830 Virum

Landskabskonsulent
Asger Kousgaard Laursen, 3520 Farum

Entreprenører

Boligblokke: Enemærke \& Petersen A/S, 4100 Ring sted
Frelleshus: Kim Johansen A/ S, 3300 Frederiksverk Udenomsarealer: K.Fl. Jacobsen A/S, 3300 Frederiksværk

Leverandører

Bla,- mursten: Wewers Teglværker; vinduer og døre: Combi Frame; altanfacader: Alutec.

Tidsplan
Finansieringsforholdene var afklaret i 1989; beboermoder påbegyndtes 11991 ; byggepladsstart august 1995; aflevering af bygningsarbejder primo december 1996.

Økonomi

Samlet byggesum er ca DKK 90 mio.

Af lekior Per Kiarbye, DTUInsititut for Anvendt Bygge- og Milipteknik

Bolighoyggeriet Maglehoj i udkanten of Frederiksvark gennemgir for tiden en renovering, der andrer bebyggelsen fra en lettere nedslidt og trist 60^{\prime} er-cjendom til bygningsfysisk fidssyarende bolighlokke. I sxardeleshed bidrager renoveringen of ydervagge, altaner og tag med nye forfriskende former og farver. Der opfores tillige ef feclleshus, og udenomsarealerne ombegges og mobleres.

Fig. 1. Situationsplan. Bebyggelsen opdeles, som noget nyt, i 4 hovedomrader med hver sin identifet. Dette fremhæeves dels gennem facadeog farvevariationer, dels ved forskellig plantevalg fra område til omráde. De 9 blokke suppleres med et nyt frelleshus, der placeres ved torvet ved bebyggelsens hovedindgang

Generelt om byggeriet

Boligbyggeriet Maglehəj, der er optørt omkring år 1970, er et muret byggeri med huldzekelementer understørttet på 1 -stens tvæervaegge og med ringe isolerede massive $11 / 2$-stens mure i facader og gave.
Der er anordnet opholds. altaner med specialdæekelementer, der oplægges på de murede ydervægge og på fritstående altanvanger Tagkonstruktionen var oprindelig en kombination af pultage med trægitterspær over selve huskroppen og af flade tage over lejlighedsfremspringene i altanfacaderne. Som det fremgår af hosstơende fotos og tegninger havde taget ingen udhaeng; tagdæeknin gen var overalt tagpap pá brodder eller krydsfiner. De vasentligste årsager til renoveringsarbejderne var fugiforholdene i de omtrent uisolerede ydervægge, i træerammer og karme omkring døre og vinduer samt i tagkonstruktionerne.
Det samlede renoveringsprojekt omfatter nye tagkonstruktioner overalt, nye gavle på

Fig. 2. Etageplan, ca 1:400 fra en 3 -etagers b'lok. Byggeri et er opfert med bærende og afstivende vægge i massivt murvark, dog med indmuring af letklinker-sten i midten of ydervæggene. Huldækelementer oplægges mellem iværvæggene med separat altanplade mellem murede vanger. Lejlighedernes planlosninger berøres ikke of renoveringen.

Altanfacaden på de 3-etagers blokke fremstår noget trist,- men konstruktioner og materialer er selv efter 25 ärs pävirkninger stadig funktionsdygtige.
alle blokke, fugning og filtsning af facademurvæerket etablering af franske altaner, udskiftning af døre og vinduer, altanlukninger, kældernedgange med nye trapper, ny varmtvandsforsyning og ny varmecentral, nyt ventilationssystem og omlæg ning af alle udearealer.

Tagkonstruktionen

Renoveringsarbejderne i forbindelse med tagene bestod af ca $12.000 \mathrm{~m}^{2}$ nye afvalmede sadeltage med teglsten og med $1,5 \mathrm{~m}$ brede udhæeng i sãvel facader som gavle, fastgjort med skråstivere fil ydervaeggene. Over lejlighedernes tremspring i facaderne anordnes i forbindelse med tagrenoveringen nye frontispicer.
De eksisterende flade tage blev blot overdæekket, hvorimod det var nødvendigt at fjerne de yderste dele af pultaget for at give plads til de nye tagfladers gitterspæer.

Ydervegge

Som næevnt var de oprindelige ydervægge opført som $11 / 2$-sten massivt murvæerk, dog var den midterste sten

Fig. 3. Tvarsnit i overste elage og i taget, 1:200. Den eksisterende kombination af pulttag og fladt tag æendres til 25°-sadeltag med traegitterspæerfag på langsgående remme. Dele af den gamle tagkonstruktion bliver sto̊ende, hvilket reducerede afdæekningsarbeiderne under udførelsen. Tagfladerne afvalmes i gavle ne, og der etableres et $1,5 \mathrm{~m}$ bredt udhæeng langs baide facader og gavle

Neerbillede af den fugede og filtsede facade, de nye vinduer og inddəekninger, en udkradset stodfuge, samt "vinduesoverliggeren".

Renoveringen of de 4 -etagers blokke omfatter tillige etablering af frontispicer, der ogsả med sine brede udhæng beskytter murvæerket og giver facaderne karakfer. De lukkede altaner giver stor brugsværdi, og beskyiter endvidere de murvinger, der fortsat bærer altanpladerne.
de senest opførte blokke udskiftet med en letklinkersten. Det blev besluttet kun at tillægsisolere de hårdest slagregnspåvirkede gavle, samt at athiælpe de hygrotermiske forhold i facaderne ved dels at udskifte døre og vinduer, dels at inddæekke opholdsaltanerne. Desuden vil de brede nye tagudhæeng medvirke til at udtørre og beskytte murværket. Tillægsisoleringen af gavlene blev udført med 150 mm batts beskyttet af en ny $1 / 2$ stens skalmur.

Altanerne

Altankonstruktionerne, ialt 286 stk, blev konstateret i relativ god stand, med kun beskeden betonnedbrydning og med kun få og smá afskalninger i vederlaget mellem betonplade og murværk. Altanbagvæggene er træebaserede partier, ligeledes i god stand selv efter 25 års funktionstid, på nær i de øverste etager, der er uden overdækning. Renoveringen kunne således indskræenkes til kun at omfatte udskiftning af de øverste altanbagvægge, ialt 39 partier.
For at hindre yderligere nedbrydning af betonplade og murværk blev det besluttet at glasinddæekke samtlige altaner. Derved opnås tillige en mæerkbar reduktion af bygningernes varmetab, og tilførsel af passiv solvarme; desuden

Fig. 4. Lodrette snit ved altanfacade og ved gavl, 1:50. Snittet til venstre, der er lagt ved den bæerende altanvange, viser den nye altanlukning, det nye tag med afslutninger og det brede udhæeng understøttet via skrästivere. Til højre viser snittet den tillægsisolerede bærende gavl, der forsynes med ny skalmur; gavlene afvalmes og udhrenget understøttes som i facadelinien.

Fig. 5. Detalie ved skråstiver i gavl, 1:20. Et beslag of fladstål forankres til det eksisterende murværk. Låsningen mellem stälbeslaget og tagets skråstiver af stăl foretages med en ståldorn, der svejses fast. Samlingen placeres i niveau med en påstebt frise, der adskiller blankt murvaerk fra fuget, filtset og farvet murvæerk.

Fig. 6. Lodrette snit i altanvægge. De lette altanlukninger udføres med aluminiumspros-
ser, brystringsplader og skydevinduer i forsiden, og med fast glas i sidefelterne. Lukningen beskytter altanbagvæggen, altanpladen og murvaerket fra yderligere nedbrydning fra veirliget. Desuden reduceres varmerabet, og beboerne kan anvende altanerne som udestuer en større del af året.

Ved beboermøderne har der været udtrykt et stærkt ønske om opførelse of et egentligt fælleshus i forbindelse med renoveringsprojekt Maglehøj. Resultatet er blevet et ca 300 m^{2} stort fæelleshus placeret ved den eksisterende købmand ved "indgangen" til bebyggelsen. Fælleshuset indeholder blandt andet vaerksteder, kontorer, toiletter, køkken, spise/opholdsplads, foyer og garderobe, samt 3 sale med flytbare væegge til maksimalt ca $200 \mathrm{~m}^{2}$ Fæelleshuset er opbygget omkring den centrale sal, og har pyramidetag med lyslanterne i kippen

Afsluttende bemærkninger

Maglehoj's beboere har i meget hoi grad været infor meret om og inddraget beslutningerne om den omfat-

Fælleshuset på ca $300 \mathrm{~m}^{2}$ kan rumme alle væsentlige beboeraktiviteter med værksteder, kontor, køkken, spiseplads, toiletter og 3 store sale. Huset er konstrueret med pyramidetag og lyslanterne i toppen over et større fællesområde.

Fig. 7. Plan af fæelleshus, ca 1:400. Fælleshuset på ca $300 \mathrm{~m}^{2}$ er indrettet med kvadratisk grundplan over et heriloftet centralrum. Taget er pyramideformet med lyslanterne i toppen. Mange beboeraktiviteter kan foregå i det indrettede værksted, kontor, kokken, café og sale.

Efter renoveringen fremstår altanfacaderne på de 3 -etagers blokke moderne og effektive overfor veirliget med efterbehandlet murværk, altanlukninger, nye dare og vinduer, og med brede tagudhzeng.

Fig. 8. Eksempler på inventar til udearealer. Med til renove ringen horer udenomsarealerne, hvor de retliniede sti- og vejforlab æendres til nye snoede stisystemer, og veje med parkeringsarealer placeres langs bebyggelsens afgraensninger. Der er desuden foretaget en ræeke mableringer of områderne med pavilloner pergulaer, portaler, udhuse mv .
tende renoveringssag. Der har væeret afholdt en lang række møder, dels fællesmø der, dels mader i underudvalg, der har taget sig af de forskellige kategorier af renoveringsarbeider, så som beslutninger om farver, mate rialer, tagformer, udhæeng, vinduer, døre, altanvægge, falleshus, udenomsarealer etc.
Der er en klar opfattelse hos bygherre og de indvolverede teknikere om, at dette udstrak te, intense og positive samarbejde, der aldrig blev en pligt, i høj grad har væeret medvirkende til det gode resultat, - et resultat der har forvandlet en nedslidt Magle-hof-bebyggelse til ef moderne boligkompleks, såvel i arkitektur som i bygningstysisk funktion.

[^0]: Miligkonsulent
 Moe \& Brodsgaard A/S
 Miliørädgivning
 Landskabsarkitekt
 Landskab \& Rum A/S, 8641
 Sorring

