DIAB husbygning \& SB1

DIAB og SBI beskriver

Aktuelle byggerier 1987

DIAB husbygning

Janmarks Ingeniørakademi, Bygningsafdelingen

$\square \infty$

Jtatens Byggeforskningsinstitut

DIAB Husbygning \& SBI
beskriver
AKTUELLE BYGGERIER 1987

Forord

Med denne udgivelse af "Aktuelle Byggerier 1987" fortsætter Danmarks Ingeniørakademi og Statens Byggeforskningsinstitut en 17-årig tradition, nemlig, at udsende arets byggetekniske artikler som en nytarshilsen til vore kontakter blandt byggeriets parter. Forfatterne $i=1987$ har været: civilingeniør Klaus Hansen, SBI, og lektorerne H. E. Hansen, Per Kjærbye og Ejnar Søndergaard, DIAB.

Som det vil være kendt for de fleste byggefagfolk har ord som byggeskader, sjusk og skandaler været hyppigt brugt i de senere \neq. Det er tankevækkende for forfatterkredsen, at en stor part af de nu 106 beskrevne byggerier har fatet hæftet en af ovennævnte betegnelser pa sig. I dag er sprogbrugen heldigvis sà smát ved at ændre sig. Positivt ladede termer, som fx kvalitetssikring og projektgranskning, vinder frem, dels for at byggeriets parter, herunder undervisning og forskning. kan genvinde sit ry fra før 60'erne, dels fremskyndet af Byggestyrelsens cirkulære om kvalitetssikring.

De senere års artikler i serien "Aktuelle Byggerier" indledes med: "DIAB og SBI beskriver", dvs, artiklerne er af mere registrerende karakter end projektgranskende. Det hænder dog. at en forfatter vover byggetekniske vurderinger af enkelte detaljer. Den beskrivende form er helt bevidst valgt af flere arsager: dels for overhovedet at fad adgang til projekterne. dels for at stille den skrivende sa frit som muligt, hvilket giver variation, og dels af ansvarsmæssige arsager. Denne artikelform vil derfor blive fortsat. saledes at artiklerne kan bruges som dokumentation for tidens byggeskik.

For forfatterkredsen
Per Kjærbye

Indhold af \&rgang 1987
102 Hewlett Packard 4
Per Kjærbye
103 Time/system 10H. E. Hansen
104 Greenland Passage 18105 Administrationsbygning for Grønlands Hjemmestyre22Ejnar Søndergaard
106 Forskningscentret ved Hørsholm 28
Klaus Hansen

Hewlett-Packard A/S, Birkerod

Af lektor Per Kjærbye, DIAB

Hewlett-Packard A/S Danmark indflyttede i oktober 1986 et nyt $7.500 \mathrm{~m}^{2}$ stort hovedkontor, naturskønt beliggende i Birkerød syd, indeholdende såvel administration som salgs- og servicekontor.

I efteráret 1983 påbegyndte edbfirmaet Hewlett-Packard udarbejdelse af byggeprogram for nyt hovedkontor i Danmark. H-P i Danmark har gennem en specielt
nedsat projektgruppe varetaget brugerinteresserne, mens den tekniske og økonomiske kontrol med projektet er forestáet af firmaets centrale byggestyringsfunktion

Beliggenhed

Byggeriet ligger ved Birkerəd Kongevej med adgang fra denne og støder mod syd op til et stort fredet og naturskent omráde, Dumpedalen og Bistrup Hegn.

Art og omfang

Administrativt hovedkontor samt salgs- og servicefunktion, herunder kursusfaciliteter. Bruttoetagearealet er pá $5.800 \mathrm{~m}^{2}$, hvortil kommer tek-nik- og birum samt parkeringskælder pài alt $1.700 \mathrm{~m}^{2}$.

Bygherre

Hewlett-Packard A/S, Danmark.

Rådgivende teknikere

Arkitekterne Hans Dall og Torben Lindhardtsen a / s, Helsinger.
For konstruktioner: Carl Bro A / S, rád.ing.firma FRI, Glostrup.
For VVS: J.C. Strunge Jensen ApS, Solrad Strand.
El: Mogens Balslev, rád.ing. FRI, Rødovre. Landskabsarkitekt Peter Thorsen, MDL, Virum.

Hovedentreprenor

Rasmussen \& Schiotz A/S, R\&S Erhverv, Birkerad.

Entrepriseform

R\&S Erhverv blev valgt som hovedentreprenor efter en afholdt bunden licitation på ráhusentreprisen incl. overtagelse af de senere udbudte fagentrepriser.

Leverandører, råhus

Færdigblandet beton: KH, Hillerad. Elementer: Dansk Spændbeton. Filigranelementer: Poul Larsen, Ronne. Murer: VE Entrepriser Veddelev ApS, Roskilde Tagdækning: Scanditag, Bagsværd. Facader: Marius Hansen \& Søn A/S, Glostrup.

Opførelsesdata

Byggestart 4. juni 1985, jordog kloakarbejde indtil ultimo juli 1985, hvorefter betonarbejder pábegyndtes. Rejsegilde 10. januar 1986 og indflytning 17. oktober 1986.

Okonomi

Entreprisesum: kr. 62 mill.
ved Europakontoret i Geneve. Grundkab blev gjort i maj 1984, forberedende byggepladsarbejder i efteråret 1984, udbud af ràhusentreprisen i maj 1985 og af fagentrepriserne i august 1985.

Projektering og tilsyn med byggeriet er udført af det i indledningen nævnte team af radgivende teknikere.

Entrepriseformen blev en hovedentreprise, men pả en ny og utraditionel form. I alt 7 entreprenerer blev indbudt til at afgive tilbud pả ráhusentreprisen og samtidig overtage styringen af og ansvaret for de aktuelle fagentrepriser, der omfattede følgende arbejder: tagdækning, lukningsarbejder, komplettering, lette flytbare skillevægge, vand, sanitet og køleanlæg, sprinkleranlæg, ventilationsanlæg, automatik, el-installationer, elevator, edb-gulve med tæppebelægning, malerarbejde, brandalarmering, køkken, lofter, gartner.

Byggeriets disposition

Byggeriet er planlagt som en 2etagers bygning med fuld kælder, hvortil der ved grundens naturlige fald er adgang direkte fra terræn.

I kælderetagen, parterren, er alle trafikale arealer, sá som vareekspedition mv. placeret. Desuden er der anordnet P-areal samt teknik- og sikringsrum. Stueplanen indrettes hovedsageligt til kursus- og udstillingsaktiviteter samt til receptionen og kokkenkantineforhold. \varnothing verste etage rummer et stort vægfrit kontorlandskab samt lukkede arealer til

Foto: Anne S. Rubæk Hansen.
direktion, made- og konferencelokaler samt til edb-maskinrum.

Bygningens ydre fremstar en kelt i gul skalmuring og med store nærmest fabriksagtige vindues arealer til belysning af den stors rumdybde; afstanden fra facadє til facade er $6 \times 8,4=50,4 \mathrm{~m}$. Faca den har med sin vindueskonstruk. tion et dybt relief, og der arbejdes med skrá murafslutninger ved sàlbænk og langs nogle af vindues. hullernes sidefalse.

Endvidere brydes bygningens ydre af store glaskarnapper ved hovedindgang og ved kantine, opbygget pả svære cirkulære stảlprofiler.

Situationsolan, 117200. A Nyt Hoved kontor. B Planlagt udvidelse. 1 P-omrảa de med armeret græs, akacietræer og bogek/umper. 2 Eksisterende træbælte som efterplantes. 3 Hegnspiantning mod Dumpedalen og Kongevejen. 4 Egetreer og gros. 5 Vedbend. 6 Smà. bladet lind pà forplads. 7 Evt. asketræer langs Kongevejen.

Hewlett Packard A/S, Birkerod fortsat

Konstruktivt system

Projektet er bygget op over et saj-le-bjælke-pladesystem af simpelt understattede betonkomponenter. Søjlernes centerafstande er 8,4 m , der derfor bliver spændvidde for bjælker og dæk. Dækelementerne sammenláses langs alle randfuger, og bygningens stabili-
tet sikres herefter af 2 bygnings høje betonkerner i forbindelse med adgangsveje og toiletgrupper.
Hovedmodulet pá 84 M opdeles i facaderne pá 12 M murpiller og $3 \times 24 \mathrm{M}$ vinduesbredder, adskilt af 350 mm smalle murede sprosser. Ydervaggens opbygning er i gvrigt interessant, sảvel arkitekto-
nisk som konstruktionsteknisk, primært grundet de store murede felter samt den anseelige tykkelse af 775 mm .

For statisk at klare overførslen af vindlast fra de store murede facadefelter pá $8,4 \times 4,4=37 \mathrm{~m}^{2}$ understøttes murværket dels af pladsstøbte kantbjælker og af søjler og randbjælker, dels af lod-
rette stảlprofiler, der boltes til hovedkonstruktionens konsolbjælker. Som det ses af artiklens detailfigurer forankres murværket ved indstøbte eller pásvejste rustfri bindere.

Selve ydervæggens opbygning er ogsá detaljeret behandlet pȧ hosstảende figurer. Imellem hovedsøjlerne opmures 100 mm tyk-

Etageplan, 1:400. Det konstruktive hovedsystem muligger en àben etageplan. Søjlemodulet er 84 M , der i facaden underopdeles i en moduler murpille pá 12 M plus et vinduesmodut pá 72 M , der igen opdeles pa 3 glasmoduler à 24 M . Planen viser husets afstivende kemer ved toiletgrupper og adgangsvele, Tillegsfacader at glas findes wed indgangen, 1F-1G og i forbindelse med kantinen langs 7D-7F.
ke porebetonblokke, der som omtalt fastholdes med rustfri bindere til de vindoptagende stál- og betonkonstruktioner. Herefter opsættes mineraluld i tykkelsen $100+125 \mathrm{~mm}$. Dernæst pladsstobes en 410 mm bred betonbjælk, der overdækker den dybe vinduesfals, bærer den overliggende skalmur, og som understøttes pȧ de murede sprosser og piller. Endelig skalmures facaden foran et ca. 300 mm bredt hulrum, der dog langs murkronen og i brystningskonstruktionen udstøbes med le-ca-beton mod en eternit-forskalling.

Kompletterende bygningsdele

Tagdækningen er Trokal-dug med fibertex på kileskàret mineraluld, plastmembran og 220 mm dækelement. \varnothing verst afsluttes med et 50 mm stenlag af bakkemateriale. De brede murkroner afdækkes med pulverlakeret aluminiumsplade fastgjort til leca-betonen.
Etageadskillelsen opbygges over et 220 mm betondæk. Herpà opstilles et edb-gulv, og tæppe pálægges. Der ophænges endvidere et stàlkassetteloft med indlagt lydabsorberende materiale Der kan sảledes fores kabelbakker i sȧvel

Lodret snit i facade, 1115. Detatien viser facadekonstruktion samt dens tils/utninger til tagdæk og etageadskillelse. 1 Konsolbiælke 2 Dæekelement. 3 Facadebjæike 4 Porebeton, 100 mm .5 Mineraluld, $125+100 \mathrm{~mm}$. 6 Stálprofiler til forankring af murverk. 7 Skalmur med stander-og labeskifter. 8 Etemitplade. 9 Pladsstabt leca-beton. 10 Kileskàret mineraluld. 11 Trokal-tagdækning. 12 Sten, 50 mm .13 Nedhængt stálpladeloft med akustisk regulering. 14 EDBgulv med tæppebelægning.
gulv som loft. Etagehøjden er 4400 mm , rumhøjden er 2962 mm .

Indvendige vægge i parterre er udfort af armeret beton eller af letbetonelementer. I etagerne udfores alle sekundære vægge som lette flytbare konstruktioner.

Installationer

Huset er velforsynet med installationer, sảvel til kraftforsyning som til luftbehandling. Pà el-siden etableres: 10 kV hovedforsyning, $2 \times 1000 \mathrm{kVA}$ transformere, hoved- og fordelingstavler, kabelbakker i loft og gulv med følgende fremforinger: jordingsanlæg, belysningsanlæg, ned- og panikbelysning, kraftinstallation, uranlæg, fællesantenne, telefon, hojttalerkabler, datatransmission,

Lodret snit ved indgang, 1100. I tacademodulet 1F-1G opbygges en tillmgskonstruktion bestảende af termoglas med alu-glaslister og karm understottet pá $\varnothing 76,1$ sáledes pà O 193,7 stàlrammer. Rammeme fastgeres til indmurede stàlbeslag. Glaskonstruktionens skrá tagflade forsynes med solgardiner.

Luftfoto fra 28. november 1986. Foto: Aerodan.

AV-installation, internt TV og brandalarmering. Endvidere installeres elevatorer og et loftebord.

På luftbehandlingssiden installeres: 2 naturgasfyrede kedler til sȧvel radiatoranlæg som ventilationssystem. Endvidere opstilles 2 kølekompressorer med køletårne
pả taget. Radiatoranlægget sikrer mod koldt indfald fra vinduerne, mens ventilationssystemet sarger for supplerende opvarmning og luftbehandling.
Det centrale ventilationsaggregat er pȧ grundlag af edb-baserede varmebalanceberegninger di-
mensioneret til $64.000 \mathrm{~m}^{3} / \mathrm{h}$. Indblæsningsluften kan filtreres, befugtes, opvarmes eller koles; i kontoromrader vil temperaturen være $23^{\circ} \mathrm{C} \pm 2^{\circ} \mathrm{C}$, og den relative luftfugtighed $50 \% \pm 10 \%$. Kantine og køkken ventileres via særskilt luftbehandlingsanlæg.

Vandret snit i hushjarne 1B, 1:50. Planudsnittet viser den 775 mm tykke facadekonstruktion med 2400 mm underopdelinger bestảende af 350 htv .1550 mm brede murpiller. Snittet viser endvidere sajletversnit, ska/mur og inclvendig porebeton samt de lodrette stálprofiler til afstivning at de murede felter. 1 Betonsajler. 21 -og U-profiler med pásvejste bindere. 3 Porebeton, 100 mm . 4 Mineraluld, $125+100 \mathrm{~mm} .5$ Skalmur, 108 mm . 6 Rustfri bindere pr. 400 mm .

Bygningen totalsprinkles fra et $130 \mathrm{~m}^{3}$ vandreservoir i parterren via el- og dieseldrevne pumper, der automatisk starter ved sprink lerudlosning, samtidig afgives alarm til brandvæsenet. Til styring, overvågning og regulering af de beskrevne installationer installeres et CTS-anlæg.

Afsluttende bemærkninger

Som det forhåbentligt fremgàr af ovenstảende tekst og tegninger er endnu et særpræget industri-kontorhus skabt i en moderne rationel byggeteknik og i et hojt kvalitetsniveau med hensyn til sảvel konstruktioner og overflader som til installationerne. Disse forhold sættes i relief ved en udsøgt beliggenhed, tæt pả Birkerøds sydlige indfaldsvej og som nabo til en storsláet natur. Der vil med god grund blive lagt mærke til Hew-lett-Packard's ny hovedkontor.

DIAB og SBI beskriver Aktuelle Byggerier 103
Af lektor, civilingeniar
H.E. Hansen.

Tegninger. Anne Krag-Jensen

Time/system

Beliggenhed

Gydevang 25-29, Industrikvarteret nord for Allered.

Art og omfang

Center for udvikling, produktion og markedsfaring af planlægningskalendere.
$7100 \mathrm{~m}^{2}$ etageareal fordelt pà
$3800 \mathrm{~m}^{2}$ produktion og lager og $3300 \mathrm{~m}^{2}$ administration.

Bygherre

Ole Berg, Time/system.

Rådgivere

Bygherrerảdgiver: civilingeni-
ør Preben Pedersen, PP-gruppen A/S, 2840 Holte. Arkitekt: I/S Salling-Mortensen tegnestue, 8270 Højbjerg, sagsarkitekt Jørgen Johansen. Ingeniør: Konstruktioner og VVS-installationer, Crone \& Koch K/S, 2920 Charlottenlund, sagsingeniør Bruno Rasmussen. El-installationer: ER-elektric A/S, sagsingenier Peter Lundov, 2000 Kabenhavn F

Entreprenører og leverandorer

Totalentreprenar C.G. Jensen A/S, sagsleder Peter Gamst. Betonelementer: Jysk beton elementfabrik A/S. Spindeltrappe og gangbro: KH Beton

A/S. Væksthus: Marius Hansen \& Sen A/S metalfacader. Rumgitter: Scandinavian space construction A / S. Ventilation: Dansk Klimablock A/S. VVS: Sanoterm A/S. Lofter og skillevægge: Deko Loft + væg A/S.

Opferelsesdata

Start pả byggeriet: 1. juni 1986. Produktion og lager afleveret januar 1987. Administrationsbygningerne skal afleveres 1. juni 1987.

Okonomi

Den samlede byggepris ca. 40 mill. kr. excl. moms.

Det stàr ikke sà dàrligt til mec dansk industri, som det ofte frem gảr af medierne. De senere àr omfattende industribyggeri vid ner om, at en del virksomhede som bla. Time/system har hafi succes.
Denne artikel belyser, hvordar teknikkerne har skabt et bygger med et vist internationalt preg ved at kombinerer traditionelt be. tonelementbyggeri med stàl og glas.

Time/system International ud vikler, producerer og markedsfo rer planlægningskalendere. Fir maet, der blev startet for kun sek: ár siden af Ole Berg, har udvikle sig næsten eksplostivt. I da fremstilles kalendere pà 10 sprog og de eksporteres til mere end 2 lande. Omsætningen har passere 100 mill. kr. om àret; der er loc ansatte her i Danmark, og et pa: hundrede forhandlere jorder over.
Firmaets vækst gjorde det ned vendigt hurtigt at skaffe mer plads, end der var til rádighed ids lejede lokaler i Skovlunde. Byg herren engagerende derfor PP gruppen til at definere byggeop

Fig. 1. Opstalt af sydfacade 1:100. De runde former pá elementer, omkring vinduer og flojdørene til kantinen samt den hvide overflade giver hele byggeriet et sydlandsk udseende.

saven, der blev udbudt i totalenreprisekonkurrence i 1985. De tre ndkomne projekter blev vurderet af Crone \& Koch og PP-gruppen, jer fandt, at et projekt udarbejdet af C.G. Jensen i samarbejde med arkitekt Salling-Mortensens tegnestue var billigst, og bedst opfyldte bygherrens onsker og krav, ag C.G. Jensen fik derfor overdraget arbejdet.

Hoveddisposition

I projektfasen skete der store ændringer i disponeringen af bygaingerne. Pà den erhvervede grund var det svært at placere produktions- og lagerhallen, der var ikke gode udvidelsesmuligheder og for lange interne transportveje. Det lykkedes at købe 7000 m^{2} grund mere, sá byggegrunden nu er pá ca. $30.000 \mathrm{~m}^{2}$. Det har, som det ses pá oversigsplanen (fig. 2) givet et optimal udnyttelse af grunden med ideelle tilkarselsforhold.
Den vinkelformede administrationsbygning har fáet en meget central placering, og den markante centrale glasbygning lader

Fig. 2. Situationsplan 1:2000. A lagerbygning. B produktion. C væksthus med hovedindgang. Dog E administration. Ser en planlagt svammehal. U viser udvidelsesmuligheder.

ikke den besagende i tvivl om, hvor hovedindgangen er. Selvom der er valgt helt traditionelle standard betonelementer, har bygherren haft et ønske om at distancere sig fra vort kolde klima ved at give byggeriet en karakter, der henleder tankerne pȧ en sydlandsk stil, størstedelen af firmaets kunder er jo fra udlandet.

Projektbeskrivelse

Hele byggeriet er opbygget over et modulnet pá $2,4 \mathrm{~m}$. Halomrädet er opdelt i to lige store sammenbyggede »skibe«. Lagerhallen, der er opdelt i »gader« af stabelreoler har en fri hajde pá $5,5 \mathrm{~m}$. Den er overdækket med SRP 240/72 tagplader, forspændte dobbelt T-plader med sadelform og hældning 1:40, pladebredde $2,4 \mathrm{~m}$ og kiphøjde 720 mm . Mellem TT-pladerne er der udfyldt med vaffelplader MRP 240×240 og tre lags overnlyspaneler Dukadan, sá der netop er 7% lysareal. Mod vest ligger TT-pladerne af pá

Fig. 3. Lodret snit i væksthusets glas facade 1:50. 1. Bærende stàlsajler ind spændt i kælder-og stuegulv. 2. Rum gitter. 3. Tagkassetter. 4. Glastacade 5. Stalsøjler IPE 300 til at "bære" glas facaden. 6. Stàlkonsoller, der bærer 7 gangbroer mellem administrations tlajene.
strengbetonbjælker, der bæres af $420 \times 420 \mathrm{~mm}$ betonsøjler pr. 9,6 m , sả det äbner mulighed for fremtidige udvidelser af lagerhallen. Produktionshallen er opbygget pȧ samme måde, men har kun en fri hajde på $3,5 \mathrm{~m}$. Facaden er opbygget af $2,4 \mathrm{~m}$ brede etagehøje sandwich-elementer, der har 66 mm forplade, 125 mm isolering og 145 mm bagplade.

Til administrationsbygningere er anvendt samme type elezenter som i hallerne. Etagedæk r TT-plader, VRP 240/40, der эænder (12 m) mellem facadeeletenter, så man er helt frit stillet led placering af skillevægge. Som det fremgår, er betonkonruktionen helt traditionel med e sikre afprovede detaljer, der er endetegnet for godt dansk mon-
tagebyggeri. Arkitekten har dog formảet med meget fả virkemidler at give byggeriet sit sydlandske særpræg. Betonelementerne har frilagte overflader. Jysk beton har til Time/system udviklet en speciel recept pả bȧde stenmateriale, hvid calcineret flint og cementmertel, så man har opnået en meget lys, næsten hvid overflade. Alle hjorner af bygningskroppen
har afrundede kanter, og omkring vinduerne er falsen markeret som en bred hvid ramme med runde hjorner (se fig. 1).

Hele stueetagen pá blok D er optaget af kantinen. I sydfacaden ud mod en haveterrasse er alle vinduer erstattet med fløjdgre med romanske buer, der giver kantinen et preg af italiensk restaurant.

Tagpladerne er dækket med en dampspærre GF 2000, isoleringen bestár af 135 mm A-underlagsplade og 45 mm pladebatts mekanisk fastgjort til underlaget. Tagpappen er tolags, underpap PS 2000 og overpap PF 4200 fuldklæbet. Gulvbelægningen i hallerne er Salviacim industribelægning. I administrationsbygningen er der pả etagerne valgt tæpper. I stueetagen er der italiensk marmorgulv - Brechia Pernice.

Skillevægge er udført som lette vægge DEKO typen $1090-\mathrm{N}$ med skellet af stälprofiler og med enkelt 13 mm glasfiberarmeret gipsplade.

I produktionsafdelingen er valgt en mere slagfast og lydisolerende skillevægstype DEKO 1290 med $2 \times 13 \mathrm{~mm}$ gips beklædt med metalplader Dobel 105 til dørhøjde og overvæggen vinylbeklædt.

De nedhængte lofter er ligeledes af fabrikat DEKO.

For at give et særligt blødt lys i gangene er der udviklet en speciel lysrende af gipsplader, der er bukket i facon.

ittermoruder fabrikat Pilking. n. Glasruderne er monteret pá stälrorskellet af RHS-profiler. asfacaden »bæres« af 13 hodstalsajler af IPE 300, der er stgjort til stuegulvet og med et NP 240 til rumgitteret (se fig. 3 ; 8).
Som det fremgảr, er der ofret eget på væksthuset ikke blot for tage vel imod kunderne. Vækst1set er også et forbindelsesled ellem produktionen og de to adinistrationsblokke. Det bedste deryk af rummets funktion fås - arktitektens interiørbillede fig. De àbne gangbroer og spindelappen giver et levende indtryk af ulighederne for både fysisk og suel kommunikation - det er edet, man mødes.

1stallationer

loakanlægget er udfert som parat-system. Drænsystemet før via drenpumpebrend til stik is overfladevand. Afleb fra kælir føres over kloakpumpebrend spildevandsstik. Tagnedløbene udfort som UV-system med indrette ledninger. Alt overflaevand er fort til et faskinomrade

Fig. 6. Temperaturer i væksthuset en varm sommerdag. Kurve 1.4 angiver indeluftemperaturen. 1. Kappa gront energi, $k=2,0$, uffskifte $n=1 / 2 n^{-1}$. 2. Almindelig termoruce $k=3,2$, luftskifte $n=1 / 2 h^{-1}$. З. Kappa grent energi, luftskiften $=5,5 h^{-1}$. 4 . Som 3, men dar og vinduer abbne. 5. Udelufttemperaturen t_{t}

Fig. 7. Energiforbruget. Det skraverode areal viser, at der spares 25% pá energiforbruget i vaksthuset ved at bruge kappa-glas i stedet for almindelige termoruder.

ventilationsanlæg er til væksthu－ set．Det er et stort rum pá 2300 m^{3} ，og der er regnet med et luft－ skifte pá $n=5,5 h^{-1}$ ．Det er ogsá nadvendigt，for der kan blive me－ get varmt iet glashus．Dette er un－ dersøgt nærmere af stud．ing． Finn Carlsson fra Ingeniarakade－ miets byningsafdeling，der havde sin praktiktid i efteràret 1986 hos C．G．Jensen pà Time／system byg－ geriet．Finn Carlsson var facineret af glasbygningen og havde hart om et stort EDB－program BLAST，der var velegnet til speci－ elt at analysere varmebalance for glasbygninger．

Her skal kort gengives nogle
hovedpunkter af undersøgelsen， der blev udfort med vejledning af civilingeniar Jargen Christensen fra Laboratoriet for varmeisole－ ring．Fig． 6 viser，at en varm som－ merdag（kurve 5）kan der blive meget varmt med kun naturlig luftskifte（ $n=1 / 2$ ）．Kurve 1 viser， at det faktisk bliver varmere med det valgte specialglas end med al－ mindelig 2 lags termovinduer． Kurve 2．Det skyldes，at selvom kappaglasset formindsker solind－ faldet，er det sả godt isolerende （ $k=2 \mathrm{~W} / \mathrm{m}^{2} \mathrm{~K}$ ），at det giver var－ meoverskud．Kurve 3 viser tempe－ raturen ved det valgte luftskifte $\mathrm{n}=5,5$ ，der er ingen forskel pà

Fig．8．Lodret snit i væksthustag． 1. Stálsojle SIS 2172，D／d $=6096 / 5696.2$. Rumgitter af stàlror（Scan－space）． 3. Fod for rumgitter， 4 stk．M 16 stàlbolte 4．Understatning for tagkassetter pr． $2,4 \times 2,4$ m．5．Tagkassetter，Iys træbe－ ton，isolering，brædder，tagpap．6．Alu－ miniuminddækning．7．Gummistrim－ ler．8．Butylfuge．9．Elastopad $4 \times 10+$ topforseiling．10．Vinduesrammer af RHS－stàlprotiler．11．Termorude Pil kington， 4 mm kappa gron， 15 mm ar－ gon， 4 mm kappa energi，hærdet． 12. UNP 240 befæstigelse af vinduesfaca． de til rumgitter．13．Montagebolte， 4 stk．M 16 stàlbolte kvl． 8,8 ＋skiver． 14. Nylonskiver，M 16．15．Umbracoskrue RF M 20×40 ．16．Nylonskive，M 20.17 Facadestàlsoile，IPE 300.
menter, er det lykkedes arkitekterne med enkle design-, form- og farvevirkninger at give byggeriet sit særpreg.

Afslutningsvis bør det nævnes, at Time/system International ijanuar 1987 blev solgt for 57 mill. kroner kontant til den store finske koncern Amer Yhtyma Oy. Det i artiklen omtalte byggeri er imidlertid ikke omfattet af handelen. Ole Berg har været stærkt engageret i byggeriets tilblivelse og kunne ikke skille sig af med det. I stedet lejer de nye finske ejere bygningerne af Ole Berg, der i gurigt fortsætter som konsulent for Ti me/system.

Fig. 9. Væksthus under montage. Gangbroer er opstillede. Rumgitter er ved at blive sat ned pà de fire stàlsojler.

Greenland Passage, London

Af lektor Per Kjærbye, DIAB

En storstilet byggeplan er i disse år under udførelse langs Themsen i havneområderne øst for London City, i de nu forladte dokarealer. Planen admiñistreres af London by gennem selskabet

London Docklands Development Corporation, der har udarbejdet en overordnet plan for art og omfang af al byggeri i følgende dokker: Wapping, Isle of Dogs, the Royal Docks og Surrey Docks.

Fig. 1. Prasentationsmodel af projektet Greenland Passage. Themsen lober l fotogratiets venstre side, imidten ses indsejlingsslusen til Greenland Dock. Langs slusen oplores $2-5$ etagers boligbyggeri, der indrammer gárdhaver; forrest i billedet og yodersi ved Themsens kaj ligger en 9 etagers blok, Den i artiklen beskrevne blok 1 ses bag den 9 etagers bygning, vinkelret pa Themsen.

Beliggenhed

Byggeriet er placeret i London Docklands ved indsejlingen til Greenland Dock, som danner en del af Surrey Docks, beliggende ca. 4 km øst for Tower Bridge.

Art og Omfang

144 boliger samt 2 underjordiske parkeringskældre. Boli-
gerne, der er et mix af houses, maisonettes og flats, er fordelt pá 10 blokke, der er fra 3 til 9 etager hoje.

Bebyggelsen er beliggende pá et ca. $12.140 \mathrm{~m}^{2}$ (3 acres) stort grundstykke og andrager ca. $20.000 \mathrm{~m}^{2}$ etageareal samt ca. $5.000 \mathrm{~m}^{2}$ parkeringskæIder.

Bygherre/Developer

Islef UK Ltd., c/o Islef Inter-
national, 5100 Odense C, et joint venture mellem IslefGruppen, 3460 Birkerad og Christiani \& Nielsen Ltd., Grosvener Place, London.

Arkitekt

Kjær \& Richter, Stærmose, 8000 Ảrhus C.

Ingenior

Andrews Kent \& Stone, Croy-
don, UK.

Opførelsesdata

Byggeriet påbegyndtes 1. september 1986 og vil være endeligt afsluttet 1 . august 1988.

Okonomi

Samlede udgifter, incl. grundkob og finansiering, er 250 mill. DKK.
G. 2. Kort over London Docklands ud vet af London Docklands Developent Corporation. Greenland Dock, ar er en del at Surrey Docks. er beliginde ast for undergrundsstationen Irrey Docks, hvor Themsen forlaber t nord-syd. De stiplede stregerer nye rbindelser, bemærk specielt flodrun med pier-anlæg udfor Greenland 2ck.

ondon Docklands, der omfatter apping, Isle of Dogs, the Royal ocks og Surrey Docks har narligvis en enestáende beliggen?d i ábne, rekreative arealer med in 2-10 km's afstand fra Lonon City. Der investeres for gjeikket i omradets infrastruktur, ər pá transportsiden vil medføre igende muligheder: nye veje ed blandt andet tilslutning til otorvej M 11, flere busruter, ny o over Themsen, togforbindelse ocklands-City, udbygning af adergrundsbanea, ny flodbádsite, samt en ny lufthavn, London ity Airport, i den estligste del af nrådet, i Royal Docks.
Hvert af de 4 nævnte dokområir er opdelt i et stort antal »proktarealer< eller entrepriser, fx er arrey Docks udlagt til 63 forskelye projekter. Ét af disse arealer efter international konkurrence erdraget til Islef UK Ltd., der er
et joint venture mellem IslefGruppen og Christiani \& Nielsen's engelske afdeling. Det aktuelle omráde, byggegrund 22 , ligger pà begge sider af indsejlingen til Greenland Dock og udgør et areal pá godt $12.000 \mathrm{~m}^{2}$, der efter den overordnede plan er udlagt til boligbyggeri.
Islef UK havde allerede ved et mede med London Docklands den 13. maj 1985 presenteret et arkitektprojekt, Greenland Passage, udarbejdet af arkitektfirma Kjær \& Richter, Stærmose. Efter nogle projektjusteringer blev byggeprogrammet endeligt vedtaget ved endnu et mede i London, den 20. november 1985, og detailprojekteringen blev den 1. april 1986 igangsat hos det radgivende ingenierfirma Andrews Kent \& Stone i Croydon. Projektideen hviler på at forene danske byggestyringsprincipper og dansk bygge- og
materialekvalitet med engelsk arkitektur og boform. Projektet er blevet godt modtaget af de engelske myndigheder, og der er udsigt til endnu en byggeopgave, sandsynligvis en renovering af et pakhus ved Columbia Wharf, et andet projektomráde i Surrey Docks.

Greenland Passage

Projektet Greenland Passage bestảr af ialt 10 boligblokke. Blok 1 er en bygningslænge i 3 etager, placeret vinkelret pà Themsen, som udfor Greenland Dock leber ret nord-syd. Blokken 2, 3, 4 og 5 i 2-5 etager indrammer en gárdhave pá nordsiden af dok-slusen, blokkene $7,8,9$ og 10 ligger tilsvarende på sydsiden, mens blok 6 er en 9 etagers boligbygning beliggende langst fremme ved Themsen's bred.

Illustrationerne viser oversigter og modelfotos af det samlede byggeri, Greenland Passage, hvorimod tegninger og den efterfalgende tekst kun omhandler blok 1, der dog er karakteristisk for sável det samlede arkitektprojekt, hvad planlosninger og facader angår, som for den anvendte byggeteknik, herunder materialevalg og hovedsystemets opbygning.

Blok 1, hovedstruktur

Boligblok 1 er en ca. 73 m lang og $8-10 \mathrm{~m}$ bred bygning i 3 etager, indeholdende i alt 12 relativt smalle lejligheder i 3 etager, altsá den typiske engelske hustype. Der opereres med flere lejlighedsvarianter, der dog alle er opbygget med garage, entré, toilet og evt. et soverum i etage 1 , kakken og opholdsrum i etage 2 , og endelig soveverelser og bad/toilet i etage

Fig. 4. Plantegning, 1:200. Tegningen viser halvdelen af blok 1, fra gavi til portrummet i husets midte. Endvidere er alle 3 etageplaner vist som anfart averst pá tegningen OGarage. 1 Entre. 2 Korridortrappe 3 Soverum. 4 Badfoilet. 5 Kokken. 6 Opholdsrum. 7 Altan. 8 Karnapvindue.
3. Huset er forsynet med altaner, tagterrasser og 2 -etagers karnapvinduer, hvilket er stærkt medvirkende til et spændende facadeudtryk, der pả samme tid virker klassisk og moderne.

Hovedkonstruktionen er baseret på pladsstøbte vægge og dæk, der udføres med brug af tunnelforskalling. De engelske entreprenører arbejder kun nedigt med elementsystemer i den bærende og afstivende struktur. Blokken er et typisk tværvægsbyggeri med 200 mm tykke betonvægge pr. 5,4 m , dog med et $3,6 \mathrm{~m}$ felt i bygningens midte, hvor der etableres en portgennemgang. Bygningen længdeafstives af gavllejlighederne, hvis facader ogsá pladstøøbes i 200 mm's tykkelse. Dakkonstruktionen er udfort som 250 mm krydsarmerede plader, der langs facadelinierne er kantforstærkede med typisk 160×390 mm ribber. Tværvæggene i etage 3 fastholdes af 2 langsgàende HE profilstal $254 \times 254 \times 73$, der boltes til væggenes top. Disse stälprofiler undersotter tillige de anvendte tragitterspær, der oplægges pr. 600 mm . Den beskrevne hovedkonstruktion funderes via fundamentsbjalker med typisk tværsnit $\mathrm{b} \times \mathrm{h}=750 \times 600 \mathrm{~mm}^{2}$ pá \varnothing

450 pale, der under twerafstivende vægge placeres pr. 2 m og under de langdeafstivende vægge pr. $3,6 \mathrm{~m}$.

Bygningsdele

Lejlighedsskel består af 200 mm pladsstabt beton med 10 mm

Fig. 5. Typisk tværsnit i blok 1, 1:150. Vægge og dæk pladsstabes, ydervegge ud fares som skatmurede kombinationsvægge med betonelementer som murkroner, lag er trægitterspærtag pà stálprofiler fastholdt til twærveggenes top. 0 Garage. 3 Soverum. 5 Køkken.
puds på begge sider. Konstruktionen fares ubrudt igennem til underside tag, hvor der brandtæetnes med en martelstopning eller andet godkendt materiale.

Tvær- og længdeafstivende ydervægge er 400 mm tykke bestáende af: 200 betonvæg med 10 mm puds, 80 mm hulrum med 50 mm isolering, samt yderst en 110 mm skalmur. I de ikke bærende facadelinier er opbygningen: 100 mm letbeton, 80 mm hulrum med 50 mm isolering og 110 mm skalmur, i alt 290 mm . Ydervegge afsluttes gverst med hvide betonele-ment-kroner.
Indvendige ikke-bærende vægge er 70 mm etagehøje letbetonelementer, der spartles for tapetsering.
Etageadskillelserne er askeparket pả stroer pá blode brikker pà papunderlag, 250 mm betondæk med 10 mm puds pà undersiden. Fra dækkonstruktionen udkrages altanplader, som enten pladsstobes eller monteres som prefabrikerede elementer; endvidere udkrages stảbjælker som vederlag for de anvendte 2 -etagers karnapvinduer.
Tagkonstruktionen er opbygget over 15° s trægitterspær pr. 600 mm , der oplægges og forankres til
g. 6. Detailudsnit af tagopbygning, 50. Tagspærene, der udfores af træ, læegges og forankres til langsgảene stàlprofiler; spærfoden under profi. t monteres efter oplægningen. urkroner tares op over tagfladen og sluttes med hvide betonelementer. 1 E $254 \times 254 \times 73$ protilstàl med pảeist forankringsplade. 2 Trægitterær. 3 Kileskárne lægter. 4 Lottspla. $\because, 2 \times 12,6 \mathrm{~mm}$ gips. 5 Trykfast isoleig, 50 mm . 6 Hulmur. 7 Betoneleent. Skrá tagtlader afsluttes med 76 mm aluminiumplader.
langsgảende HE-profiler. Tag$æ$ kningen er 18 mm vandfast fiar, plastfolie, 50 mm trykfast isoring, og $0,76 \mathrm{~mm}$ overfladebeandlet aluminium, der udfares red stảende false. Loftet udfares $\lceil 2 \times 13 \mathrm{~mm}$ gipsplade fastgjort irekte i spærfod. Mellem indbyget altan og tagrum udfores loftet led 50 mm isolering, dampspær:og vandfast finér med forsegle₹ fuger.
Terrændæk er opbygget af 200 im beton pả plastfolie på 150 im kapillarbrydende materiale.

)etaljer

ireenland Passage er som tidlige: nævint opfort i hảndværksæessig teknik og med velkendte aterialer, og det beskrevne hoedsystem og de næunte bygingsdele har funktionstekniske deevner, der svarer til engelske rav, der pá mange punkter ad-

skiller sig fra vore. Eksempelvis ses det, at de varmetekniske lovkrav er vasentligt lempeligere, idet der kan tillades kun 50 mm termisk isolering i ydervægge og tag, og at udkragede betonaltaner kan udferes med rene kuldebroer. Disse forhold gør, at projektets konstruktionstekniske detaljer er knapt sà interessante for danske byggeteknikere. I det falgende redegares dog for et par usædvanlige losninger omkring forankringer af dels tagkonstruktionen og dels de udkragede element-altaner og karnapvinduer.

Figur 6 viser i et lodret tværsnit ved den ene tagfod, hvorledes spærene ligger af pá langsgȧende HE-profilstal. Spærene, der tilvirkes uden tagfod pá den yderste strakning, oplægges pr. 600 mm og fastholdes til stäldrageren via påsvejste vinkelstàl. Idet varmeisoleringen ligger ovenpå spærhovedet, er tagrummet i princip-
pet opvarmet, hvilket vil sige, at rummet ikke kan ventileres.
Figur 7 beskriver i et lodret længdesnit fastgørelsen mellem de omtalte stảldragere og tværvaggene i \quad verste etage. Forst afrettes vederlaget med cementmartel, hvorefter HE-profilets underflange boltes til 2 indstabte bolte. Dragerne stades udenfor vederlaget med en svejst og boltet kroppladesamling.

Figur 8 viser princippet for fastholdelse af udkragede betonelementaltaner og stàlprofiler til bæring af karnapvinduerne. Der udsparres en 55 mm fordybning i dækkets overside, og der indstobes rustfri stảlankre i recessens bagside samt et vinkelstảl i dækkets forkant. Det udkragede element placeres i fordybningen og trakforankres i bagsiden med rustfri bolte gennem ankre til inserts i elementets bagside.

Afsluttende bemærkninger

Det beskrevne projekt er interessant, dels grundet dets sterrelse og beliggenhed, dels på grund af den byggeexport-idé, der her er brugt. De involverede danske teknikere har haft dygtighed og held til at sælge netop de dele af et byggeprojekt, som gruppen synes, de kunne, og har dernæst overladt resten til lokale teknikere, der pa alle mȧder kender de lokale spilleregler. Dansk arkitektur stảr hojt og kan tilrettes udlandsforhold, helst med stedkendte arkitekter som konsulenter, - det blev gort her. Dansk finish og danske materialer er kendt for sine kvaliteter, det bliver anvendt i Greenland Passage. Danske styringssystemer og finansieringsforhold er blevet effektive værktøjer, - de anvendes ved de gamle grenlandske dokker.

ig. 7. Lodret længdesnit i tværvægge og stảbiælker, 1:20. De pladsstobte 200 m tykke tvervægge styres af 2 langsgàende stálbjælker, der boltes til vaggeis top Figuren viser en gavivaeg til hojre og en indre twærveg til venstre. Stalæikerne danner desuden vederlag for bygningens speer. 1 Betontwervægge. 2 ertelpude. 3 indstobt boit. 4 HE $254 \times 254 \times 73$ prolilstál. 5 Svejst og boltet kropadesamling.

Fig. 8. Lodret snit, 1.50 i volkraget altanplade, udfert som betonelement. Som det ses, oplegges plade i en udsparring i det pladsstabte dak og sikres ved en forankring ipladens bagside. 1 Forkant at bæerende betonvaeg. 2 Kantribbe pà plads. stobt 250 mm tykt dæk. 3 indstobt og forankret vinkelstàl. 4 Indstobt forankringsbesiag. 5 Prefabrikeret altanplade. 6 Insert og boltesamling.

Administrationsbygning for Gronlands Hjemmestyre

Af lektor, civilingeniar Ejnar Sondergaard, DIAB Detailtegninger: Anne Krag-Jensen

For Grønlands Hjemmestyre i Godthảb opfares en administrationsbygning i tilknytning til det eksisterende administrationskompleks. Bygningen, der er itre etager og med delvis udnyttet tagetage, bestár af to sammenbyggede parallelforskudte fløje med et fælles sadeltag. Bygningen er forbundet med de eksisterende bygninger med en mellembygning i to etager. Grundarealet for byggeriet er $886 \mathrm{~m}^{2}$. Det samlede etageareal er $3011 \mathrm{~m}^{2}$.

Bygningen er en traditionelt indrettet kontorbygning. Det, der er bemærkelsesværdigt ved byggeriet, er det bærende hovedsystem, og det er i hovedsagen det, der behandles i artiklen.

Bygningen er funderet direkte på fjeld og er forsynet med krybekælder. Dækket over krybekælderen er udfart som et armeret betonribbedæk.

I Byggeindustrien 1987:4 redegjorde civilingeniar JensChr. Schmidt for et forsagsprojekt iverksat af BUR med det formål at udvikle et byggesystem i stâl til anvendelse i etagebyggeri. Projektet var affact af Byggestyrelsens konkurrence om videreudvikling af dansk etageboligbyggeri, hwor konkurrenceprojekterne pegede pá behovet for sterre fleksibilitet i byggeriet. Krav om fleksibilitet peger i retning af systemer med bærende sajler frem for systemer med bzrende vægge, og det er nærliggende at tanke pà stàl i denne sammenhæng. Det kan undre, at udviklingen i Danmark ikke forlængst er gàet mod anvendelse af bærende stálkon-
struktioner i etagebyggeriet. Det er en kendsgerning, at mens der i dag praktisk taget ikke bygges i stál i forbindelse med etagebyggeri i Danmark, vinder stålbyggeriet storre og storre indpas i de fleste europaiske lande.

En del af forklaringen pa, at stâlet ikke er slået an i dansk etagebyggeri, er sikkert det dárlige renommé stålet har med hensyn til brandsikkerhed. Imidlertid foreligger der i dag et velunderbygget normfastsat grundlag for en brandteknisk beregning, og en forsvarlig brandisolering er nu teknisk mulig og okonomisk overkommelig.

1 Grenland er den traditionelle byggeform for etagebyg
geri pladsstøbt beton, hvilket begrenser perioden for udendars arbejder til de få sommermảneder. Stálbyggeri synes derfor her at vere et serlig oplagt altemativ.
Stalkonstruktionen i udenlandske stảlbyggerier indskranker sig ofte til kun at omfatte selve bjælke-sgjlesystemet, mens dækkene udfores af betonelementer eller som kompositdæk af korrugerede stålplader med pladsstabt beton.

I det her beskrevne byggeri er anvendelsen af stal konsekvent. Bjælke-sojlesystemet og de stabiliserende gitre er af stål, og dækkene er rene ståltyndpladedæk.

Fig. 1. Tyarant 1:150. Snittet ar lagt I den nordige forskucte Hef. Syolige fiaj ses til venstre og mellembygningen til hefre.

Fig. 2. Situationsplan 1:2000. 1. Ny administrationsbygning og ny mellembyg. ning. 2. Eksisterende administrationsbygning.

Ved projektering af byggeri pá Grenland benyttes i hovedtrækkene det danske normkompleks, idet dog naturlaster fastsættes efter de særlige gronlandske forhold. For vindlasten er her benyttet et hastighedstryk på $1,6 \mathrm{kN} /$ m^{2}, og snelasten er sat til 1,5 $\mathrm{kN} / \mathrm{m}^{2}$ - pá taget af mellembygningen nærmest hovedbygningen endog til $4,0 \mathrm{kN} / \mathrm{m}^{2}$ af hensyn til sneophobning.

Stålkonstruktionen

Stálkonstruktionen bestár af et bjælke-søjlesystem af valsede profiler og dæk af korrugeret stảlplade. Bygningen er stabiliseret ved vindgitre, der ligeledes er af profilstál.

Som det fremgár af planen over bygningen, se figur 3, er der i hver af de to delfleje en central $2,5 \mathrm{~m}$ bred korridor, mens dybden af
kontorrummene ast og vest herfor er $4,5 \mathrm{~m}$. Bredden af den enkelte delfløj er säledes $11,5 \mathrm{~m}$.
Hovedprincippet for søjlearrangementet er, at der er anbragt facadesojler HE 120B pr. 3 mog korridorsøjler RHS $180 \times 180 \times 10$ pr. 6 m . Søjlerne er alle fort gennem de tre nederste etager uden stad og er sáledes ca. 10 m høje.
Bjælkesystemet bestảr af langsgàende hovedbjælker af IPE 360, der spænder 6 m mellem korridorsøjlerne. Pà tværs af bygningen er oplagt bjælker pr. 3 m , der spænder mellem sajlerne og de langsgàende bjælker. Tværbjælkerne er typisk af IPE 220 over kontorerne - i særlig hårdt belastede omráder dog HE 220A - og af HE 120A over korridorerne. Samtlige bjælker er simpelt understøttede pá søjler og pá andre bjælker, idet de er oplagt pà konsoller i form af pȧsvejste klodser, se figur 7.
Dækkene udfares af korrugerede stálplader ASJ 106 med godstykkelsen $1,5 \mathrm{~mm}$, profilhøjden 106 mm og et belgemodul pá 250 mm . Pladerne er forsynet med en rilleafstivning i overflan-
fortscetter side 22

Fig, 4. Tværsnit gennem stàlkonstruktionen 11750. hele det barende system er af stál, tagkonstruktionen dog af træ.

Fig. 5. Lodret snit i dæk ved facade 1:10. 1. 3,2 mm linoleum, 2. 22 mm spánplade, 3. 50×50 strger pr. 500 mm pá blade brikker, 4.50 mm mineraluld, 5. 13 mm gips. plade, 6. Korrugeret stalplade type ASJ 106, $t=1,5 \mathrm{~mm}$, 7. Hovedtwærbjælke IPE 220, 8. UPS 140 der forer vind pá tacaden ud til hovedtværbiælkerne, 9. 50 mm mineraluld, $10.2 \times 13 \mathrm{~mm}$ gipsplade, 11. Rigel $75 \times 100,12.75 \mathrm{~mm}$ mineraluld, 13. 9 mm gipsplade med bagvedliggende dampspærre, 14. 125 mm mineraluld, 15. 13 mm gipsplade, 16. Træbeklædning.
(fortsat fra side 19)
gen og zig-zag aftivninger i kroppene. Pladerne spænder i bygnin gens længderetning, idet de er understøttede af stảlskeletkonstruk. tionens tværbjælker pr. 3 m . Som befæestelsesmiddel mellem plader og bjælker er benyttet selvboren de skruer. Der er 2 skruer i hver profilbund over hver bjælke. 1 overlapsamlingen mellem plader ne indbyrdes er benyttet blindnitter af rustfrit stảl pr. 400 mm , se evrigt figur 8.

Stabilitet af bygningen

Stálkonstruktionen omfatter ogsá et system af lodrette og vandrette vindgitre til nedforing af vandret te laster pà bygningen, se figur 3 .
Af lodrette gitre er i bygningens længderetning anbragt fire enheder, nemlig i linierne B, C, D og E. I tværretningen er anbragt ialt otte gitterenheder ifem modullinier med indbyrdes afstand 12 m . I hver af modullinierne 11, 19 og 27 er der to gitterenheder, se figur 4.

Da stälkonstruktionerne er fremstillet pà GTO's værft i Godthảb, er vindgitrene udført som komplette opsvejste elementer gennem tre etager, dvs. typisk ca. 5 m brede og 10 m haje, og transporteret fra produktionssted til byggeplads. Gitrene er udført som K -gitre, i gavlene dog som V-gitre. De primære søjler i stàlskeletkonstruktionen indgàr som flanger i gitrene. For gitterflanger i facader benyttes dog RHS $120 \times 120 \times 10$ i stedet for HE 120B. Etagebjælkerne indgàr som rigler i gitrene, og som gitterudfyldningsstænger er typisk benyttet RHS $100 \times$ 100×10.
Samtlige lodrette vindgitterflanger er monteret i 800 mm dybe udsparinger i fundamentet. Af hensyn til indjusteringen er sgjlerne anbragt pá indstøbte ankerbolte, men kraftoverfaringen fra gitter til fundament beror på den armerede udstøbning i udsparingerne.
I princippet ville det være muligt at udnytte skivevirkningen i de korrugerede dækplader til at fore vinden pá facaderne over i de tværgȧende lodrette gitre Man har dog valgt - under hensyntagen til den store vindlast og af hensyn til montagesituationen at indlegge ialt fire opsvejste vandrette gitre, der heer spænder 12 m mellem de lodrette tværgitre.
rt disse gitre er flanger, vertikar og diagonaler udfort af HE 10 A.
Stålkonstruktionerne i mellemgningen er anordnet pá en lidt 1den måde end i hovedbygninm, men de grundlæggende prinpper er de samme.
Stàl i facader er korrosionsbeyltet til korrosionsklasse 3. Stál:le, der omstøbes, er korrosionsskyttet til korrosionsklasse 4. vrige stálkonstruktioner er ale\geq beskyttet med priming.

ìrfaringer med tålbyggeriet

Wle svejste samlinger er udfort på ærksted, medens alle montageamlinger er udfort boltede. Erfangerne med stảlbyggeriet er goe, og hverken værkstedsarbejdet ller montagearbejdet, der overejende blev udfort i vintersæsoen, har budt på større probleger.
Anvendelsen af selvborende suer ved fastgørelsen af dækelesenterne til bjælkerne, hvor bongen af hullet, skæringen af geindet $o g$ isætningen af skruen regår i én operation, er sæerdeles ekvem og giver en meget hurtig iontage.
Ved varkstedsarbejdet har arejdsstyrken bestatet af 50 pct. anske certifikatsvejsere og 50 ct. lokale arbejdere. Ved montaearbejdet var 98 pct. af arbejdsytken lokale arbejdere. Der var emlig kun én faglært dansk arejder pá et hold med et halvt undrede lokale arbejdere. Foroldet illustrerer, at stảlkonstrukoner er velegnede i forbindelse red byggesystemer til eksport til or eksempel udviklingslande.
Et karakteristisk træk ved stảlonstruktionen er samlingen melsm bjælker og søjler, som er vist á figur 7. Det samme princip er renyttet ved samlingen mellem værbjælker og længdebjælker. iamlingen giver en bekvem monage uden lose laskeplader. Til de a. 300 mm lange gennemgående olte i samlingen benyttedes 20 am varmforzinkede pindbolte af valitet 8.8 . Som et kuriosum og il almindelig advarsel skal nævtes, at man ved disse bolte var ude or hydrogenskørhed i $7-8$ bolte, vorefter alle pindbolte måtte udkiftes. Hydrogenskørhed kan ptræde i forbindelse med varmorzinkning af hárde bolte og

Fig. 6. Lodret snit gennem gulv og let skillevæg 1:10. Ved skillevægge er anbragt dobbeltstraer, og spánpladen er opslidset for at hindre lydforplant ning. Visse steder i kontorerne er anbragt dobbeltstroer over hovedtværbiælkerne som en forberedelse for senere opslids. ning at spảnolade og opstilling af veg.

Fig. 7. Typisk detalie af samling mellem biælker og sejle 1170. 1. RHS $180 \times 180 \times$ 10, 2. IPE 220, 3. HE 120A, 4. og 5. Plade $25 \mathrm{~mm}, 6$. Indsuejste emne ror $033,7 \times 4,7.2$ boite M20, 8, nRe-dekamsudfyldning" med tykkelse atpasset efter tolerancen.

Fig. 8. Samling mellem tyndpladedæk og hovedtværbiælker 1:10. S: selvborende skruer type SFS SD $15 \mathrm{H} 15 \mathrm{5}, 5 \times 38$, P: blindnitter af rustfrit stàl type SSO164 SS.
medfører, at boltene bryder skørt uden nævneværdig ydre last. Fænomenet er sáledes yderst ubehageligt, og i stảlnormen anføres da ogsá, at forzinkning af hảrde bolte skal udføres sảledes, at hydrogenskørhed ikke forekommer.

Øyrige
 bygningskonstruktioner

Tagkonstruktionen bestár af træstolper anbragt over stảlkonstruktionens søjler, altsȧ pr. 3 m i facader og pr. 6 m langs korridorerne. Stolperne understøtter langsgảende remme, hvorpả er oplagt bjælkespær pr. 750 mm . Tagbeklædningen bestár af korrugerede stälplader pả et undertag af tagpapbeklædt krydsfiner. Loftkonstruktionen over den udnyttede del af tagetagen er ligeledes af træ. Tagkonstruktionen er isoleret med 200 mm mineraluld og udluftet langs facaderne.

I facaderne er der imellem de primære stảlsøjler anbragt lodrette træbjælker til optagelse af vindlasten pá facaden. Disse træbjælker understøttes i vandret retning af et USP 140 profil, der fører lasten ud til hovedtværbjælkerne. I facaden er vandret anbragt 75 mm facadetommer, der bærer en lodret træbeklædning. Facaderne er ventileret og isoleret med $125 \times 75 \mathrm{~mm}$ mineraluld, se i ovrigt figur 5 .

Brand- og lydforhold

Alle stälkonstruktioner dimensioneres og brandisoleres til BS 60. Tyndpladedækkene og bjælkerne brandisoleres med 50 mm mineraluld. Facadesøjler isoleres pả den indvendige flade med 2×13 mm gips og pat de frie sider med 40 mm mineraluld. Indvendige sojler og gitterudfyldning i K-gitre brandbeskyttes med 3 lag Unitherm brandmaling. Vindgitrene sikrer stabilitet for fuld vindlast under en 60 minutters brand.

For etageadskillelserne er det tilstræbt, at den vertikale luftlydisolering er $R 3 /{ }_{w} \geq 53 \mathrm{~dB}$, og at det vertikale trinlydniveau er $L_{n, w}^{\prime} \leq 63 \mathrm{~dB}$. Luftlydisolationen svarer til kravet for etageboligbyggeri, hvorimod trinstøjniveauet er en suækkelse pá 5 dB i forhold il kravet for etageboligbyggeri, men dog i overensstemmelse med den anbefalede værdi for kontorbyggeri. Værdien er den samme, som gælder for skolebyggeri.

Forskningscentret ved Horsholm -mmatamems

Nogle af målene for byggeriets udvikling - og for dette byggeri - er rationel opførelse af individuelle og fleksible huse med god totaløkonomi. Om det sidste kan det være svært at dømme allerede nu. Men vedrørende de andre forhold er forskningscentrets byggeri for GENM A/S er godt eksempel på hvor langt man kan nå i dag.

Såvel bygherre som lejer har været engagerede deltagere i planlægningen af byggeriet.

Beliggenhed

Dr. Neergaards Vej 5, Forskningscentret ved Horsholm.

Art og omfang

Byggeriet omfatter et toetages administrationsafsnit pá ca. 2.000 m^{2} etageareal og ni "pavilloner" pá huer ca. $400 \mathrm{~m}^{2}$, som kan an-
vendes sável til kontorer, laboratorier, produktion og lager. Bruttoetagearealet er i alt $5.548 \mathrm{~m}^{2}$ samt 889 m 2 kalder.

Bygherre og lejer

Bygherre: Forskningscentret ved Harsholm.

Lejer: General Electric Nuclear Medical A/S, GENM A/S.

Projekterende

Arkitekt: Skaarup \& Jespersen MAA A/S.
Ingeniar: Dines Jørgensen \& co. A/S.
Landskab: Birgitte Fink.

Storentrepriser

Ràhus: Rasmussen \& Schiotz A/S Komplettering: P. Jul Hansen A/S.

Installationer: Monies \& Andersen, A/s.

Opforelsesdata

Byggeriet blev pabbegyndt i oktober 1986 og var færdigt i oktober 1987.

Okonomi

Samlet anskaffelsessum ca. 44 millioner kr . excl, moms.
orskningscentret ved Hørsholm lev oprettet i 60^{\prime} erne som det føre forsøg pȧ at oprette det, der nu aldes en »forskerpark«. Formát var at fremme den tekniske og hvervsmæssige udvikling ved at umle en række offentige og priite forsknings- og udviklingsinitutioner og -firmaer. Disse kan iten selv bygge pá lejede arealer ler leje sig ind i Forskningscenets bygninger.
De ferste byggerier blev fuldint i begyndelsen af 70'erne. Men gik udviklingen istả som følge - oliekrisen og stagnationen. Og irst i begyndelsen af 80^{\prime} erne kom :r gang i udbygningen - på det Iste med sá mange byggerier, at :r máske ikke vil gà mange àr, ir byggemulighederne er udtom-

Forskningscentret har siden 178 været en selvstændig selvfiunsierende institution, som fảr re indtægter fra udlejningen af ealer og bygninger. Bl.a. pả den: baggrund deltager centret, selv eget aktivt i planlægningen af ne nybyggerier. Bestyrelsen har særligt byggeudvalg og centret r flere teknikere ansat, som selv or forestáet nogle af de tidligere ggerier.
Der har især været focuseret pá 'gningernes totaløkonomi og pá gningernes tilpasningsdygtig:d til nye lejere Lejerne má selv gne med at skulle investere i arlige installationer mm ., som ke kan forventes brugt af en efrfolgende lejer.
Omrảdet rummer særlige kvaeter dels gennem sin beliggen:d dels pá grund af sin beplantng, som forestas af Arboretet i arsholm. En indsats som falges særlige krav om bla. parkeigspladsernes indplacering i n skovagtige beplantning, og af samarbejde med landskabsartekt Birgitte Fink.
En ny lokalplan er nu under larbejdelse af Birkerad Komune til aflosning af den gælden-
byplanvedtægt fra 60'erne. a. vil et krav om flade tage blive

Fig. 1.

Fig. 2.

Fig. 3.
ændret - byggeriet for GENM A/S er det forste, som har fáet dispensation herfra.

Programmering og planlægning

Kravene til byggeriet kan kort opsummeres til:

- multianvendelighed,
- utraditionel og inspirerende arbejdsplads, samt
- indpasning i den allerede eksisterende beplantning.
I forbindelse med det sidste blev der dog ogsà taget hensyn til et omráde pà grunden, som krævede ekstrafundering.
Arkitekten var projekteringsog byggeleder, i et tæt samarbejde med bygherren og lejeren, som øvede indflydelse pá bebyggelsens udformning.

Byggeriet blev udbudt som indbudt storentrepriseudbud. I forbindelse hermed blev der anvendt ydeevneudbud for tagkonstruktionen.

Fleksible bygninger

Bebyggelsens opsplitning i enkeltbygninger forbundet af smá mellembygninger tilgodeser bảde bygherrens ønske om, at bebyggelsen i givet fald skal kunne lejes ud til flere lejere, og lejerens onske om en utraditionel og inspirerende arbejdsplads, hvor gruppetilhersforholdet er understreget af bygningsopdelingen.

Bebyggelsens lave pavillonagtige karakter bevirker at den indpasser sig i bevoksningen pá en helt anden máde end de gvrige byggerier i omrádet. Samtidig
med at slægtskabet med disse er fastholdt gennem de krævede lyse facader og morke vinduesrammer.
Gárdhaverne formes forskelligt og er sà store, at de ogsá egner sig til udeophold.
De lave bygninger er disponeret sadan at ganglinier og minstallationsbroer« over disse, dels forbinder bygningerne indbyrdes, dels giver adgang til arealerne i midten og langs bygningens periferi, se figur 3.

Disse arealer kan sá opsplittes i større eller mindre grad, alt efter om bygningerne anvendes til kontorer, laboratorier, lager eller andet.

Gangforlabet kan forekomme lidt snarklet, fordi det indeholder mange knæk og dore, men kedeligt er det ikke.

De toetages bygninger er tænk anvendt til forskning, udviklin samt administrative formal, me er i princippet disponeret pá sarr me mảde med centrale ganglinie omkring midtersejlerne Taglar ternerne er her udformet sor glaspyramider, der giver lys t begge etager. Se figur 8 og 9 .

Søjlebȧrne pavillontage

Tagelementerne i pavillonern pyramidetage spænder fra face derne, hvor de understottes a bagvæggen i facadeelementern til limtræbjæiker placeret lang kanten af taglanternen og lang graterne i tagfladen. Bjælkern bæres af sajler, som er placert dels under hjornerne af taglantes nen dels synligt i hjørnerne af p c villonerne.

Tagene over mellembygninger-- bæres ligeledes af bagvæggene, m samtidig danner brandskel. Taglanternerne pà ca. $5 \times 5 \mathrm{~m}$ er ekket med tagelementer bäret stålrammer fastgjort til de unrliggende limtræbjælker. Vindlasten optages ved skive--kning i tagfladerne og ved indænding af de korte søjler i hjørrne af bygningerne. I de lave gninger medvirker væggene sáles ikke til bygningernes afstivng.
Bygningerne kunne have været bygget sảledes, at søjlerne kun-- undværes. Da dette ville stille xre krav til samlingerne og have șærliggjort montagen, og da jlerne er med til at markere bygngemes indvendige struktur. enne losning blev ikke valgt.
I de toetages administrationsgninger anvendes midtersøjler-- ogsȧ til at understøttet etageIskillelsen. Hjornesøjlerne kun: have været undladt.

1deklima 0 g sranderlige vægge

f hensyn til indeklimaet er der .a. anvendt silicatmaling pá de dvendige vægge men også ange andre forhold har været arderet. Lejeren har pá nogle ealer ønsket tæppebelægning. Gulvene i pavillonerne er begt med salviacium-gulve, en lys \dot{a}, fugefri belægning, udført m en áben gradueret asfaltben stummet med cementmartel ed plastadditiver. Dette giver et odt gulv uden risiko for revneannelser.
Ikke bærende indervægge er tført af gipsvægge pá stảlskelet. isse er ikke flytbare, men kan smt nedtages og erstattes af nye egge placeret andetsteds.
Pá samme máde kan der foreges forandringer af facaderne, et der overalt er $>$ vindueshuller« de bærende bagvægge. Dette debærer, at de facader, som ikke forsynet med vinduer nu, kan irsynes hermed senere

ïlgængelige

istallationer

om folge af sável bygherrens im lejerens anske om tilgængeli; fleksible installationer, er hodinstallationerne placeret over inglinierne på en sinstallationso«, som ogsả passerer gennem

Fig. 4.

Fig. 5.

Fig. 6.

Fig. 8.

fortsat fra side 23

mellembygningerne, se figur 3,4 og 5.

Installationsbroen er placeret $2,70 \mathrm{~m}$ over gulv og er $1,80 \mathrm{~m}$ bred. Herpá er el, varme og ventilationskanaler placeret. Teknikrum placeres i mellembygningerne, som ogsá rummer toiletter og andre vådinstallationer, idet bygningerne ikke er forberedt for indretning af vàdlaboratorier. Efter krav fra bygherren er der gulvafleb i alle rum med vandhane.

Elinstallationerne fremfores i gvrigt i elbakker under vinduerne, hvor ogsá radiatorerne er placeret.

Pá grund af den store rumhejde er bygningerne forsynet med et "lanterneanlæg« som kan recirkulere varmepuden under taglanternen, se figur 4. Ellers er bygningerne ikke forsynet med mekanisk
ventilation medmindre rumfunktionen kræver det. Men installationsbroen rummer plads hertil, og bygningerne er forberedt for ophængning af ventilationskanaler til punktudsugning.
De to-etages bygninger er sprinklet pả grund af den àbne forbindelse mellem etagerne. Og glaslanternerne er her forsynet med varmeribber og vinduerne kan åbnes.

Hurtig opførelse - kold vinter

Rảhuset blev udfort med anvendelse af facade- og tagelementer, dels pá grund af den ønskede korte byggetid, dels pá grund af, at

Fig. 7.

Fig. 9.
byggeriet blev igangsat i oktober mảned.

Tolerancekravene til de store midtersajlers placering blev klaret ved at montere limtræbjælkerne, inden der blev støbt ud omkring bunden af sejlerne.

Vinteren var meget kold, men tidsplanen blev holdt under kraftig brug af vinterforanstaltninger. Bl.a. blev der anvendt flytbare telte til beskyttelse af terrændækkene under udstøbningen, og midlertidige vinduer til lukning af facaderne.

Afsluttende bemærkninger

Byggeriet her er et godt eksempel på, at anvendelse af større prefabrikerede komponenter ud-
mærket kan gå i spænd med ønsker om individuelt byggeri med særpræg - ogsá uden at antallet af komponentvarianter bliver meget stort.

Byggeriet illustrerer ogsá, at tilstedeværelsen af en bygherre med langsigtede udlejningsinteresser kan indebære, dels at der lægges større vægt pá totaløkonomi og fleksibilitet, dels at der skelnes skarpere imellem de bygningsdele som udlejeren har ansvaret for og de mere brugsorienterede - eventuelt specielle - bygningsdele som lejeren selv má investere i.

